WO2019078170A1 - ポリウレタン弾性繊維、その巻糸体、及びそれを含む製品 - Google Patents
ポリウレタン弾性繊維、その巻糸体、及びそれを含む製品 Download PDFInfo
- Publication number
- WO2019078170A1 WO2019078170A1 PCT/JP2018/038363 JP2018038363W WO2019078170A1 WO 2019078170 A1 WO2019078170 A1 WO 2019078170A1 JP 2018038363 W JP2018038363 W JP 2018038363W WO 2019078170 A1 WO2019078170 A1 WO 2019078170A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- elastic fiber
- polyurethane elastic
- multifilament
- cross
- void
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D4/00—Spinnerette packs; Cleaning thereof
- D01D4/02—Spinnerettes
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/70—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyurethanes
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/22—Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
- D02G3/32—Elastic yarns or threads ; Production of plied or cored yarns, one of which is elastic
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4326—Condensation or reaction polymers
- D04H1/4358—Polyurethanes
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/10—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyurethanes
Definitions
- the present invention relates to polyurethane elastic fibers, a wound body thereof, and products containing the same.
- Polyurethane elastic fibers have high elongation and excellent elastic properties.
- polyurethane polymer is a soft and sticky material, in the process of producing a product using yarn, yarn breakage or production variation due to unwinding from a wound body, a guide, or friction resistance with a roller Etc. problems are likely to occur, especially with long-term storage use.
- treatment agents such as silicone oil to yarn are known.
- Patent Document 1 below reports a method of applying a treatment agent comprising a specific smoothing agent and an anti-corrosion improver to a polyurethane elastic fiber, in order to solve the deterioration of the reversibility over time.
- Patent Document 3 it is proposed to manufacture a gather member for diapers having high adhesiveness by forming flat spandex by wet spinning.
- the adhesion area is improved by flattening the cross section of the multifilament, the surface of the multifilament is similar to that described in Patent Document 1 or 2.
- the adhesion state of the treatment agent is unstable, and a gather member which can be said to have a sufficiently small occurrence of slip-in has not been obtained.
- the problem to be solved by the present invention is that the surface treatment agent does not exude even after long-term storage, so that contamination of the packaging material can be prevented, and further stable regardless of the storage period It is an object of the present invention to provide a polyurethane elastic fiber suitable for a stable gather member having less friction performance and less occurrence of slip-in, and a gather member having less slip-in of polyurethane elastic fiber.
- the inventor of the present application has found that the above problem can be solved by setting the cross-sectional void area ratio of the multifilament constituting the polyurethane elastic fiber to a specific value or more.
- the present invention has been completed. That is, the present invention is as follows.
- a polyurethane elastic fiber consisting of multifilaments, having a void portion defined by contacting single yarns constituting the multifilament in the cross section of the multifilament, and the area of the void portion and the void Assuming that the total cross-sectional area is the total area of the cross-sectional areas of all the single yarns constituting the multifilament:
- Cross sectional void area ratio (%) area of void / total cross sectional area ⁇ 100
- a polyurethane elastic fiber characterized in that a cross-sectional void area ratio determined by the above is 15% or more and 60% or less.
- a gather member containing polyurethane elastic fibers, in the section of polyurethane elastic fibers consisting of multifilaments contained in the gather member, a void portion defined by contact of single yarns constituting the multifilaments with each other When the area obtained by adding the area of the void and the cross-sectional area of all the single yarns constituting the multifilament is the total cross-sectional area, Cross sectional void area ratio (%) area of void / total cross sectional area ⁇ 100 The gathers member whose section void area ratio of polyurethane elastic fiber contained in the gathers member calculated by is 15% or more and 60% or less.
- the polyurethane elastic fiber according to the present invention when used, even when the surface treatment agent is applied, the movement of the surface treatment agent is less likely to occur when stored for a long period of time, and the dirt of the packaging material and the fluctuation of the frictional property over time. Since the frequency can be suppressed, the frequency of troubles such as yarn breakage can be reduced even at the time of use at high speed such as knitting, and the productivity can be enhanced. In addition, since the adhesion amount of the surface treatment agent on the surface of the polyurethane elastic fiber is stable even in the gather member, a gather member is provided which is less likely to cause slippage of polyurethane elastic fiber due to adhesion spots or exudation of the surface treatment agent. can do.
- This embodiment is a polyurethane elastic fiber consisting of multifilaments, and has a void portion defined by contacting single yarns constituting the multifilament in the cross section of the multifilament, and the area of the void portion And the cross-sectional area of all the single yarns constituting the multifilament as a total cross-sectional area:
- Cross sectional void area ratio (%) area of the void portion / total cross sectional area ⁇ 100
- the cross-section void area ratio represented by is 15% or more and 60% or less.
- the cross-sectional void area ratio is preferably 18% or more, more preferably 20% or more.
- the cross-sectional void area ratio is preferably as high as possible, but if it exceeds 60%, the multifilament tends to be separated and thread breakage may occur, preferably 60% or less, more preferably 50% or less.
- the polyurethane elastic fiber of the present embodiment is a fiber obtained by spinning a polyurethane polymer.
- known polyurethane formation reaction technology can be used.
- a polymeric polyol for example, a polyalkylene ether glycol is reacted with diisocyanate under conditions of excess of diisocyanate to synthesize a urethane prepolymer having an isocyanate group at an end, and then this urethane prepolymer is used as a bifunctional amine or the like.
- the chain extension reaction can be carried out with an active hydrogen-containing compound to obtain a polyurethane polymer.
- a polyalkylene ether glycol having a number average molecular weight of 500 to 5,000 is reacted with an excess equivalent of diisocyanate to synthesize a prepolymer having an isocyanate group at the end, and then And polyurethaneurea polymers obtained by reacting a prepolymer with a bifunctional amine and a monofunctional amine.
- various diols substantially consisting of linear homo- or copolymers, such as polyester diols, polyether diols, polyester amide diols, polyacrylic diols, polythio ester diols, poly thio ether diols, polycarbonate diols, A mixture of these, and a copolymer of these, etc.
- polyalkylene ether glycol for example, polyoxyethylene glycol, polyoxypropylene glycol, polytetramethylene ether glycol, polyoxypentamethylene glycol, tetra Copolymerized polyether glycol consisting of methylene group and 2,2-dimethylpropylene group, Copolymerized polyether glycol consisting of tetramethylene group and 3-methyltetramethylene group Le, and mixtures thereof and the like.
- polytetramethylene ether glycol and copolymerized polyether glycol composed of tetramethylene group and 2,2-dimethylpropylene group are more preferable as the high molecular weight polyol.
- diisocyanate examples include aliphatic, alicyclic and aromatic diisocyanates.
- Active hydrogen-containing compounds that is, chain extenders having a multifunctional active hydrogen atom include, for example, hydrazine, polyhydrazine, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butane Diol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2,2-dimethyl-1,3-propanediol, diethylene glycol, dipropylene glycol, 1,4-cyclohexanedimethanol, Low molecular weight diols such as phenyldiethanolamine, ethylenediamine, 1,2-propylenediamine, 1,3-propylenediamine, 2-methyl-1,5-pentanediamine, triethylenediamine, m-xylylenediamine, piperazine, o-, m- or p-phenylene Amine, 1,3-diaminocyclohexane
- Bifunctional amines are preferable to low molecular weight diols, and at least one selected from the group consisting of ethylenediamine alone, 1,2-propylenediamine, 1,3-diaminocyclohexane, and 2-methyl-1,5-pentadiamine is 5 to Ethylenediamine mixtures containing 40 mol% are mentioned as preferred, and more preferably ethylenediamine alone.
- terminators having a monofunctional active hydrogen atom include methanol, ethanol, 2-propanol, 2-methyl-2-propanol, 1-butanol, 2-ethyl-1-hexanol, 3-methyl-1- Monoalcohols such as butanol, monoalkylamines such as isopropylamine, n-butylamine, t-butylamine, 2-ethylhexylamine, diethylamine, dimethylamine, di-n-butylamine, di-t-butylamine, diisobutylamine, -2-ethylhexylamine and dialkylamines such as diisopropylamine. These can be used alone or in combination. Monoalkyl amines or dialkyl amines which are monofunctional amines are preferred to monoalcohols.
- an amide-based polar solvent such as dimethylformamide, dimethylsulfoxide and dimethylacetamide can be used at the time of urethane prepolymer synthesis or at the time of reaction of a urethane prepolymer with an active hydrogen-containing compound. It is dimethylacetamide.
- the polyurethane polymer composition may contain various stabilizers, pigments and the like in addition to titanium oxide.
- antioxidants such as light-resistant agents, hindered phenols, benzotriazoles, benzophenones, phosphoruss and various hindered amines, and metal soaps represented by magnesium stearate (long-chain fatty acid metal salts), oxidation Inorganics such as iron oxide, zinc oxide, cerium oxide and magnesium oxide, carbon black and various pigments, antibacterial agents and deodorants including silver and zinc and compounds thereof, antistatic agents, nitrogen oxide scavengers, thermal oxidation stable An agent and a light stabilizer etc. may be used together and added.
- the polyurethane polymer thus obtained can be formed into a fiber by a known dry spinning, melt spinning, wet spinning method or the like to obtain a polyurethane elastic fiber. Also, polyurethane polymers polymerized using different raw materials may be mixed and spun at the pre-spinning stage.
- the polyurethane elastic fiber of the present embodiment can be used by containing a surface treatment agent in order to reduce the resistance during unwinding and the friction during use.
- the surface treatment agent may be previously kneaded into a stock solution for spinning, or may be applied by a known method such as roll oiling, guide oiling, and spray oiling before being wound into a paper tube at the time of spinning.
- the surface treatment agent may be applied in the step of forming another wound body after winding up without applying the surface treatment agent.
- the constitution of the surface treatment agent is not particularly limited, but polydimethylsiloxane, polyester modified silicone, polyether modified silicone, amino modified silicone, mineral oil, mineral fine particles such as silica, colloidal alumina, talc, etc., higher fatty acid metal Salt powder, for example, magnesium stearate, calcium stearate, etc., higher aliphatic carboxylic acids, higher aliphatic alcohols, paraffin, and known surface treatment agents such as solid waxes at normal temperature such as polyethylene can be used in combination .
- a surface treatment agent containing 20% or more of polydimethylsiloxane from the viewpoint of friction during use of the product
- poly in the treatment agent from the viewpoint of preventing the bleeding and movement of the treatment agent over time.
- the content of dimethylsiloxane is preferably less than 90%, more preferably less than 80%.
- the amount of the surface treatment agent applied to the weight of the polyurethane elastic fiber of the present embodiment is preferably 0.2% or more and less than 5.0%. If the application amount is less than 0.2%, the polyurethane elastic fiber has a large frictional resistance, and problems such as thread breakage occur easily when the yarn is used. On the other hand, when the application amount exceeds 5%, the contamination of the packaging material and the fluctuation of the frictional property due to the exudation of the surface treatment agent from the polyurethane elastic fiber during long-term storage tend to occur. From the viewpoint of the frictional property and the exudation of the surface treatment agent, the more preferable amount of the surface treatment agent applied is 0.5% or more and 4% or less.
- the spinning method of the polyurethane elastic fiber of the present invention is not particularly limited, but it is preferable to manufacture by spinning a polyurethane spinning solution obtained by dissolving a polyurethane polymer in an amide type polar solvent. Dry spinning can most strongly form physical crosslinks due to hydrogen bonds between hard segments as compared to melt spinning and wet spinning. In addition, dry spinning is preferable also from the viewpoint of obtaining a polyurethane elastic fiber having a high cross-sectional void area ratio and in which the single yarn is unlikely to be separated.
- melt spinning it is difficult to sufficiently bundle single yarns to produce a multifilament polyurethane elastic fiber that is difficult to be separated, and in addition to low productivity in wet spinning, a multifilament having a high cross-sectional void area ratio It is difficult to manufacture.
- the multifilament having a high area void area ratio which is a polyurethane elastic fiber according to the present embodiment, has a method of increasing the distance between the holes of the nozzle discharging the spinning solution at the time of spinning (pitch between holes)
- a method of adjusting the pressure, and a method of adjusting the speed ratio of the godet roller and the winder at the time of spinning and winding can be used in combination.
- adjustment can also be performed by a method (air direction or temperature) of supplying air at the time of spinning.
- a multifilament having a high cross-sectional void area ratio can be easily obtained if there is no process via a press roll that crushes the multifilament on the yarn path at the time of spinning.
- a polyurethane elastic fiber having a cross-sectional void area ratio of 15% to 60% it is not limited to such a production method.
- the inter-hole pitch of the spinneret is wide, and preferably 12 mm or more and less than 30 mm. If the pitch between holes is less than 12 mm, it tends to be difficult to obtain a yarn with a high percentage of void area ratio, and if it exceeds 30 mm, it tends to be difficult to focus multifilaments, making it easy to separate. easy.
- the arrangement of the nozzles on the spinning nozzle is preferably a cyclic arrangement from the viewpoint of obtaining uniform yarn physical properties.
- the false twist during spinning be appropriately weak, and in the case of using an air false twister, when the operating pressure is 0.1 MPa or more and less than 0.30 MPa, a yarn having a high cross-sectional void area ratio and difficult to loosen. It becomes easy to get. If it is less than 0.1 MPa, it tends to be a yarn in which the multifilaments are poorly converged and tends to be loose, while if it is 0.30 MPa or more, it tends to be difficult to obtain a yarn having a high cross-sectional void area ratio There is.
- a more preferable range is 0.1 MPa or more and less than 0.25 MPa.
- the speed ratio between the godet roller and the winding machine should be as low as possible, preferably 1.03 or more and less than 1.17. If it is less than 1.03, the yarn tends to be slack and breakage often occurs during spinning, and production of the yarn tends to be difficult, while if it is 1.17 or more, a multifilament having a high void area can be obtained. It tends to be difficult.
- the speed ratio between the godet roller and the winder is more preferably 1.03 or more and less than 1.15, and still more preferably 1.05 or more and less than 1.13.
- a long-chain fatty acid metal salt having 10 to 20 carbon atoms for example, fatty acid metal such as magnesium stearate
- the ratio is 0.2 wt% or less.
- the long-chain fatty acid metal salt may be contained either in the method of direct mixing in the stock solution for spinning or in the method of mixing in the surface treatment agent and applying it to the surface of the yarn at the time of spinning.
- long-chain fatty acid metal salt such as magnesium stearate
- the lubricant effect of the long-chain fatty acid metal salt is appropriate, and the surface adhesion of contacts between single particles works sufficiently. It is difficult for yarn breakage to occur.
- the content of the fatty acid metal salt is more preferably 0.1 wt% or less.
- long-chain fatty acid metal salts having 10 to 20 carbon atoms include stearic acid, 12-hydroxystearic acid, palmitic acid, oleic acid, oleic acid, magnesium salts and calcium salts of long-chain fatty acids comprising lauric acid, etc. Is preferred.
- Particularly preferable long-chain fatty acid metal salt is magnesium stearate, but any magnesium salt of long-chain fatty acid having 10 to 20 carbon atoms may be used alone or in combination.
- the fineness of the polyurethane elastic fiber obtained by spinning is preferably 150 dt or more and 1300 dt or less. If the fineness is too low, yarn breakage in the production process tends to occur, and it tends to be difficult to obtain the polyurethane elastic fiber having a high void area ratio of the present invention. In addition, even when the fineness is too high, it is difficult to collect the single filaments of the multifilament, and problems such as looseness are likely to occur. More preferable size is 150 dt or more and 900 dt or less, more preferably 300 dt or more and 900 dt or less, and still more preferably 300 dt or more and 800 dt or less.
- the multifilament which comprises the polyurethane elastic fiber of this embodiment is 14 or more and 140 or less single yarn number. If the number of single yarns is too small, tension during spinning is low and yarn breakage tends to occur, and it tends to be difficult to obtain yarns having a high percentage of void area area.
- the more preferable number of single yarns is 20 or more, and more preferably 25 or more from the viewpoint of easiness of obtaining a multifilament having a high cross-sectional void area ratio. In addition, when the number of single yarns is too large, it becomes difficult to gather the single filaments of the multifilament, and there is a tendency that problems such as separation occur easily. From the viewpoint of looseness of the single yarn, the more preferable number of single yarn is 120 or less, more preferably 100 or less, still more preferably 90 or less, and most preferably 80 or less.
- the denier of the multifilament single yarn constituting the polyurethane elastic fiber of the present embodiment is preferably 8 to 14 dt (dtex, dtex), more preferably 8 to 11 dt, from the viewpoint of spinnability and physical properties of the product. If the single yarn fineness is less than 8 dt, yarn breakage during spinning tends to occur, while if it is more than 14 dt, it tends to be difficult to obtain a yarn having sufficient stress.
- the cross-sectional shape of the single yarn may be a true circle or an odd-shaped cross section such as an ellipse, but it is preferable to be close to a true circle from the viewpoint of the release of the single yarn in using the product.
- At least one space portion larger than the thickness of a single yarn having the same diameter as the average single yarn diameter calculated from all the single yarns constituting the multifilament It is preferable that one be present, more preferably two or more, and still more preferably three or more. It is particularly preferable that the elastic polyurethane fiber of the present embodiment can prevent the surface treatment agent from leaking by having such a space portion. The specific method of determining the number of the space portions will be described later.
- the polyurethane elastic fiber of the present embodiment preferably has a single yarn breakage occurrence rate of 20% or less, more preferably 13% or less, which is determined by the method described later.
- the single yarn breakage occurrence rate is 20% or less, the effect of suppressing the penetration of the surface treatment agent becomes stronger.
- the cross-sectional void area defined by the bonding force of the contact points of single yarns at a level where the release rate is 20% or less is a multifilament of which the release rate exceeds 20%. It is estimated that the multifilament, which has a higher ability to hold the surface treatment agent than the cross-sectional void, and therefore has a low rate of occurrence, is highly effective in suppressing the penetration.
- the polyurethane elastic fiber of the present embodiment can be wound into any paper tube, plastic tube or the like to form a wound body.
- the surface of the paper tube or plastic tube may be coated with a resin such as parchment paper or PE, or the groove for the tail yarn may be engraved in the paper tube or the plastic tube.
- the running stress measured by draft 3.0 by the below-mentioned method of the wound yarn body of this embodiment is 0.075 g / dt or more and 0.130 g / dt or less.
- the running stress measured by draft 3.0 by the below-mentioned method of the wound yarn body of this embodiment is 0.075 g / dt or more and 0.130 g / dt or less.
- the polyurethane elastic fiber supplied from the polyurethane elastic fiber or the wound body of the present embodiment is a stretchable gather member for sanitary materials used for diapers, sanitary products, etc. by being sandwiched between any nonwoven fabric or film. be able to.
- the amount of the treatment agent on the yarn surface is stable because the penetration of the treatment agent is suppressed.
- the adhesion to a film, an adhesive or the like is stable, and a stable product with less occurrence of slip-in can be obtained.
- the nonwoven fabric used for preparation of a gather member can use what was manufactured by the well-known manufacturing method using well-known raw materials, such as a polypropylene, polyethylene, a polyethylene terephthalate, and polylactic acid.
- the non-woven fabric may be formed of a plurality of layers or may be embossed.
- a method of bonding a film or a non-woven fabric and a polyurethane elastic fiber a known method such as a method using a hot melt adhesive, a thermocompression bonding roll or ultrasonic bonding can be used, and the polyurethane elastic fiber of this embodiment is used. If it is, since the amount of treatment on the surface of the yarn is stable, high adhesion can be obtained by any bonding method.
- the cross-sectional void area ratio of the polyurethane elastic fiber taken out from the gather member of the present embodiment by the method described later is 15% or more and 60% or less. If the area void area ratio of the polyurethane elastic fiber taken out from the gather member is within this range, the adhesion amount of the surface treatment agent on the surface of the yarn is stabilized by the seepage suppression effect by the void space even in the gather member. As a result, the adhesion between the polyurethane elastic fiber and the other material becomes strong, and slip-in hardly occurs.
- the polyurethane elastic fiber of this embodiment is a natural fiber such as cotton, silk or wool, a polyamide fiber such as nylon 6 or nylon 66, a polyester fiber such as polyethylene terephthalate, polytrimethylene terephthalate or polytetramethylene terephthalate, cationic dyeable polyester Fibers, copper ammonia regenerating rayon, viscose rayon, and acetate rayon, etc., or these fibers are used for coating, entanglement, twisting, etc. to form processed yarns, and then knitted and woven by spotting High quality fabric can be obtained.
- a natural fiber such as cotton, silk or wool
- a polyamide fiber such as nylon 6 or nylon 66
- a polyester fiber such as polyethylene terephthalate, polytrimethylene terephthalate or polytetramethylene terephthalate, cationic dyeable polyester Fibers, copper ammonia regenerating rayon, viscose rayon, and acetate rayon, etc., or these fibers are used
- a fabric using a polyurethane elastic fiber has a large production amount and is supplied by a bare yarn, and therefore, it is suitable for a warp-knitted fabric having a large influence of the quality of the raw yarn.
- the warp knitted fabric includes power nets, satin nets, russell laces, two-weight lycots, etc.
- the fabric using the polyurethane elastic fiber of the present embodiment includes various stretch foundations such as swimwear, girdle, bra, intimate products, and underwear, tights, pantyhose, waistband, body suit, spats, stretch sportswear, stretch outerwear, It can be used for medical wear, stretch lining and the like.
- the polyurethane elastic fiber of the present embodiment, the wound body thereof, and the gather member including the same can also be suitably used for sanitary products such as sanitary products and disposable diapers, and the smoothness is good, and the fluctuation of the frictional property is Because it is small, high productivity and product stability can be obtained, and because the amount of the treatment agent on the surface of the polyurethane elastic fiber in the gather member is stable, the adhesive force with other materials becomes strong. It is possible to obtain a gather member having less occurrence of slip-in of polyurethane elastic fiber, or a diaper or a catamenial device including the same.
- the multifilament yarn for taking a SEM photograph of a cross section is prepared by sandwiching one multifilament by two sheets of double-sided tape-laminated cardboard, and the multifilament protruding from there is cut with a razor blade at the edge of the sheet. It cut
- the measurement magnification of the SEM is observed at an appropriate magnification so that the entire image of the cross section of the multifilament can be observed. In the present example and the comparative example, the measurement was performed in the range of 100 to 250 times.
- the number of times of measurement is five samples spaced apart by 1 m or more from the same winding body, and the average value of the top two large ones of the large cross-sectional void area rate determined from the cross section is the cross-sectional void area rate of the sample Do.
- the multifilament in a fabric decomposes
- the cross-sectional void area ratio was calculated using the area measurement function of software “SEM Control User Interface ver. 3.02” manufactured by Nippon Denshi Co., Ltd. More specifically, by using the “polygon” of the area measurement function, the area of the cross section of the multifilament can be obtained by tracing the outer periphery of all the single yarns of the multifilament cross section in the SEM photograph to be measured.
- a single yarn contacts each other includes the case where single yarns are not completely in contact with each other, and the distance (L) between centers of single yarns of single yarns is an average single yarn diameter (d) ⁇ 2
- L the distance between centers of single yarns of single yarns
- d average single yarn diameter
- to trace means to trace on a straight line connecting the centers of two adjacent single yarns.
- L and d conforms to the handling method in the case where there is a void portion where the single yarn is not completely drawn (not enclosed) described later.
- FIG. 1 shows a schematic view of a multifilament cross section for explaining how to determine the area of the cross section and the area of the void.
- the single yarns constituting the outer periphery of the cross section are discontinuous (the above-mentioned "single yarns do not touch each other") and the single yarn is not drawn (not enclosed)
- the average single yarn diameter d is obtained by measuring the number of all single yarns constituting each multifilament and the cross-sectional diameter of each unit, using the same five SEM images of the multifilament as used in the calculation of the void area ratio of the cross section.
- the length is obtained, and the value obtained for each multifilament is obtained by averaging (dividing by 5).
- the average single yarn diameter d is determined by the same method as described above except that the value obtained by dividing the sum of the major diameter and the minor diameter by 2 is used as the single yarn diameter.
- the center of the single yarn is the point of intersection of the major axis and the minor axis when calculating the major axis.
- ⁇ L>2d> The two end single filaments not in contact with each other are judged as discontinuous, and the area of the void not completely surrounded by the single filament does not enter into the void area.
- FIG. 2 shows an example of a void not completely enclosed by a single yarn.
- the average single yarn diameter d is determined in the same manner as in (1), and “the void portion larger than the size of a single yarn having the same diameter as the average single yarn diameter” means the average single yarn diameter d Assuming that a single yarn having a true circle is to be placed in the void portion, the single yarn can be placed without contacting with mutually touching single yarns other than the assumed single yarn that defines the void portion.
- Mean void area When one such void portion exists in any one of the above two SEM photographs, the number of void portions larger than the size of a single yarn having the same diameter as the average single yarn diameter is 1 and When one or more void portions exist, the number of the largest void portion among them was adopted as the number of void portions larger than the size of single yarn having the same diameter as the average single yarn diameter.
- Fineness (dt) Weight per 10000 x 1 m (g) It asked from. The measurement is carried out five times, and the average value is taken as the fineness.
- the elastic fiber winding body 1 obtained by spinning is applied to the apparatus shown in FIG. 5 and the elastic fiber delivery roll 2 is stretched at a speed of 10 m / min and the winding roll 9 is stretched at a speed of 30 m / min. It was made to travel at a magnification of 3 times, and the tension (g) at the time of yarn traveling was measured with a tension meter 8 for 3 minutes.
- a value obtained by dividing the average value of the obtained stress values by the fineness of the elastic fiber is defined as a running stress (g / dt). If this value is too high, the cross-sectional void area ratio over time tends to fluctuate, and if it is too low, the stretchability is low and the yarn tends to be loose.
- the friction angle of the ceramic hook guide (A204062 HOOK GUIDE) is made on the yarn traveling path. Measure the thread tension (T 1 ) on the input side and the thread tension (T 2 ) on the output side when inserting at °.
- ⁇ d be 0.1 or less, more preferably 0.06 or less, from the viewpoint of the stability of the frictional property as a product.
- the evaluation result has a width such as “ ⁇ to ⁇ ”.
- the polyurethane elastic fiber coated with the hot melt adhesive is continuously sandwiched between 2 sheets of non-woven fabric of 30 cm in width and 17 g / m 2 in weight (Eltus Guard (registered trademark) made by Asahi Kasei Co., Ltd.) Air cylinder which supplied an air pressure of 0.5MPa with one roller by a pair of rollers having an outer diameter of 16 cm and a width of 40 cm from the above (CQ2WB10 manufactured by SMC Corporation) Continuously crimped while pushing at -50DZ), to prepare a gathering member. The prepared gather is immediately cut out, left in an environment of 20 ° C.
- gathers member manufactured by the method which does not use hot melt adhesives, such as a thermocompression bonding roll and ultrasonic bonding, and it is difficult to take out polyurethane elastic fibers from the gathers member, gather members including polyurethane elastic fibers
- gather members including polyurethane elastic fibers Each piece is cut out to 10 cm, and after standing for 12 hours in an environment of 20 ° C. and 65% RH without tension, the cross section of the gather member containing polyurethane elastic fiber is observed by SEM, and the cross section is the same as in (1) The void area ratio may be measured.
- Adhesion retention rate 100 ⁇ (measurement length mm after 5 hours) / 200 mm Calculated by The higher the retention rate, the less slip-in of the polyurethane elastic fiber when manufacturing or wearing the product. The measurement was performed 10 times per sample, and the average value was used as the incidence of slip-in based on the following evaluation criteria.
- Example 1 A terminal-endcapped polyurethane obtained by reacting 2000 g of polytetramethylene ether glycol having a number average molecular weight of 2000 with 400 g of 4,4'-diphenylmethane diisocyanate at 60 ° C. for 3 hours under stirring in a dry nitrogen atmosphere. The prepolymer was obtained. After this was cooled to room temperature, dimethylacetamide was added and dissolved to give a polyurethane prepolymer solution.
- the polyurethane polymer is added and mixed such that the solid content of the agent is 1.00% by mass with respect to the polyurethane polymer, and the UV absorber is 0.25% by mass with respect to the polyurethane polymer, After making a homogeneous solution, degassing was performed under reduced pressure at room temperature, and this was used as a spinning stock solution.
- the surface treatment agent used was an oil comprising 67% by mass of polydimethylsiloxane, 30% by mass of mineral oil, and 3.0% by mass of amino-modified silicone.
- Example 2 A spinneret with an annular arrangement, 28 holes, an inter-hole pitch of 20 mm in the same circle, a ratio of the first godet roller to the final take-up speed of 1.10, and a fineness of A polyurethane elastic fiber of 310 dt / 28 filaments was obtained in the same manner as in Example 1 except that the discharge amount of the stock solution for spinning was adjusted to 310 dt.
- Example 3 It has an annular array, 36 holes, a pitch of 15 mm between holes in the same circle, and a ratio of the first godet roller to the final winding speed of 1.20, and the fineness is
- a polyurethane elastic fiber of 310 dt / 36 filaments was obtained in the same manner as in Example 1 except that the discharge amount of the stock solution for spinning was adjusted to 310 dt.
- Example 4 It has a ring array, 36 holes, a pitch of 20 mm between holes in the same circle, and a ratio of the first godet roller to the final winding speed of 1.10, and the fineness is
- a polyurethane elastic fiber of 310 dt / 36 filaments was obtained in the same manner as in Example 1 except that the discharge amount of the stock solution for spinning was adjusted to 310 dt.
- Example 5 A spinneret with an annular arrangement, 36 holes and an inter-hole pitch of 20 mm in the same circle is used, and the ratio of the first godet roller to the final winding speed is 1.08.
- a polyurethane elastic fiber of 310 dt / 36 filaments was obtained in the same manner as in Example 1 except that the discharge amount of the stock solution for spinning was adjusted to be 310 dt by using a false twister with compressed air of 15 MPa.
- Example 6 Using a spinneret consisting of an annular array with 36 holes and an inter-hole pitch of 15 mm in the same circle, the ratio of the first godet roller to the final winding speed is 1.15, which is 310 dt A polyurethane elastic fiber of 310 dt / 36 filaments was obtained in the same manner as in Example 1 except that the discharge amount of the stock solution for spinning was adjusted as described above.
- Example 7 Using a spinneret consisting of an annular array, with 72 holes and an inter-hole pitch of 20 mm in the same circle, the ratio of the first godet roller to the final winding speed is 1.08, giving 620 dt A polyurethane elastic fiber of 620 dt / 72 filaments was obtained in the same manner as in Example 1 except that the discharge amount of the stock spinning solution was adjusted as described above.
- Example 8 Using a spinneret consisting of an annular array, with 72 holes and an inter-hole pitch of 25 mm in the same circle, the ratio of the first godet roller to the final winding speed is 1.08, 0.15 MPa And a 620 t / 72 filament polyurethane elastic fiber was obtained in the same manner as in Example 1 except that the discharge amount of the spinning stock solution was adjusted to be 620 dt using a false twisting device with compressed air of
- Example 9 Magnesium stearate is contained in the spinning stock solution so that the amount of magnesium stearate is 0.07% by mass with respect to the mass of the polyurethane elastic fiber, and it has a cyclic arrangement, and the number of holes is 72 and the number of holes in the same circle is Example 1 except using a spinning nozzle having a pitch of 20 mm, and adjusting the discharge amount of the spinning solution so that the ratio of the first godet roller to the final winding speed is 1.08 and becomes 620 dt.
- a 620 dt / 72 filament polyurethane elastic fiber was obtained in the same manner as described above.
- Magnesium stearate is contained in the spinning stock solution so that the amount of magnesium stearate is 0.30% by mass with respect to the mass of the polyurethane elastic fiber, and it is composed of a cyclic array, and the number of holes is 72 between holes in the same circle Example 1 except using a spinning nozzle having a pitch of 20 mm, and adjusting the discharge amount of the spinning solution so that the ratio of the first godet roller to the final winding speed is 1.08 and becomes 620 dt.
- a 620 dt / 72 filament polyurethane elastic fiber was obtained in the same manner as described above.
- Example 11 Using a spinneret consisting of an annular array, with 72 holes and an inter-hole pitch of 20 mm in the same circle, the ratio of the first godet roller to the final winding speed is 1.20 and is 620 dt A polyurethane elastic fiber of 620 dt / 72 filaments was obtained in the same manner as in Example 1 except that the discharge amount of the stock spinning solution was adjusted as described above.
- Example 12 Using a spinneret consisting of an annular array, with 72 holes and an inter-hole pitch of 20 mm in the same circle, the ratio of the first godet roller to the final winding speed is 1.02 and becomes 620 dt A polyurethane elastic fiber of 620 dt / 72 filaments was obtained in the same manner as in Example 1 except that the discharge amount of the stock spinning solution was adjusted as described above.
- Example 13 Using a spinneret consisting of an annular array with 72 holes and an inter-hole pitch of 20 mm in the same circle, the ratio of the first godet roller to the final winding speed is 1.08, 860 dt A polyurethane elastic fiber of 860 dt / 72 filaments was obtained in the same manner as in Example 1 except that the discharge amount of the stock spinning solution was adjusted as described above.
- Example 14 Using a spinneret consisting of an annular array, with 72 holes and an inter-hole pitch of 20 mm in the same circle, the ratio of the first godet roller to the final winding speed is 1.15, 940 dt A polyurethane elastic fiber of 940 dt / 72 filaments was obtained in the same manner as in Example 1 except that the discharge amount from the spinning nozzle was adjusted as described above.
- Example 15 Using a spinneret consisting of an annular array, having 96 holes and an inter-hole pitch of 15 mm in the same circle, the ratio of the first godet roller to the final winding speed is 1.15, 0.15 MPa
- the synthetic elastic fiber of 1280 dt was obtained in the same manner as in Example 1 except that the false twisting device was used with compressed air of the above and the discharge amount of the spinning stock solution was adjusted to 1280 dt.
- Comparative Example 1 Using a spinneret consisting of an annular array with 36 holes and an inter-hole pitch of 10 mm in the same circle, the ratio of the first godet roller to the final winding speed is 1.20, 0.27 MPa The obtained elastic flexible fiber of 310 dt / 36 filament was obtained in the same manner as in Example 1 except that the false twisting device was used with the compressed air and the discharge amount of the spinning stock solution was adjusted to be 310 dt.
- Comparative Example 2 Using a spinneret consisting of an annular array with 36 holes and an inter-hole pitch of 10 mm in the same circle, the ratio of the first godet roller to the final winding speed is 1.30, 0.27 MPa
- the obtained elastic flexible fiber of 310 dt / 36 filament was obtained in the same manner as in Example 1 except that the false twisting device was used with the compressed air and the discharge amount of the spinning stock solution was adjusted to be 310 dt.
- Comparative Example 4 Contact with a spinneret consisting of an annular array, with 28 holes, a 20 mm pitch between holes in the same circle, and a ratio of the first godet roller to the final winding speed of 1.10.
- the multifilaments were compressed with a pressure roller of 10 N and wound up with a winder, and the discharge amount of the spinning stock solution was adjusted so that the fineness was 310 dt. I got a fiber.
- the polyurethane elastic fiber according to the present invention By using the polyurethane elastic fiber according to the present invention, even if the polyurethane elastic fiber is stored for a long time in a warehouse after production, the packing material is not contaminated with the surface treatment agent, and the friction of the product due to the change over time Since there is no change in the sex, the frequency of thread breakage at the time of use can be reduced and productivity can be improved.
- the adhesion amount of the surface treatment agent on the surface of the polyurethane elastic fiber is stable even in the gather member, a gather member is provided which is less likely to cause slippage of polyurethane elastic fiber due to adhesion spots or exudation of the surface treatment agent. can do. Further, the gather member according to the present invention has less occurrence of slip-in.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Artificial Filaments (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Woven Fabrics (AREA)
- Absorbent Articles And Supports Therefor (AREA)
- Knitting Of Fabric (AREA)
Abstract
長期保管後も表面処理剤の浸み出しが起こらず、梱包資材の汚染を防止でき、さらに保管期間によらず安定した摩擦性能を有し、スリップインの発生が少ない安定したギャザー部材に適したポリウレタン弾性繊維を提供する。本発明に係るポリウレタン弾性繊維は、マルチフィラメントからなるポリウレタン弾性繊維であって、該マルチフィラメントの断面において、該マルチフィラメントを構成する単糸が互いに接することにより画される空隙部を有し、該空隙部の面積と該マルチフィラメントを構成するすべての単糸の断面積とを合計した面積を総断面積としたときに、下記式: 断面空隙面積率(%) = 100×空隙部の面積/総断面積 で求められる断面空隙面積率が15%以上60%以下であることを特徴とする。
Description
本発明は、ポリウレタン弾性繊維、その巻糸体、及びそれを含む製品に関する。
ポリウレタン弾性繊維は、高伸度で優れた弾性特性を有する。しかしながら、ポリウレタン重合体は柔軟かつ粘着性のある素材であるために、糸を使用した製品の製造工程において、巻糸体からの解舒時やガイド、ローラーでの摩擦抵抗による糸切れや生産ばらつき等の問題が発生しやすく、特に長期の保管後の使用でそれらの問題が非常に顕著である。
それらの問題を解決するために、シリコーンオイル等の処理剤を糸に付与する方法が知られている。
以下の特許文献1では、経日的な解舒性の悪化を解決するために、ポリウレタン弾性繊維へ特定の平滑剤と解舒性向上剤からなる処理剤を付与する手法が報告されている。また、以下の特許文献2では、高温保管後の解舒性を改善するためにジアルキルスルホコハク酸塩のような特定成分を特定量混合した弾性繊維用処理剤の使用が提案されている。
しかしながら、ポリウレタン弾性繊維の表面に特定の表面処理剤を付与するこれらの方法では、一時的に繊維表面の摩擦性を改善できるものの、保管中に糸表面の処理剤が移動することで梱包資材の汚れや経時保管中の摩擦性の変動を起こしてしまうという問題があった。また、特許文献1又は2に記載の方法で製造されるポリウレタン弾性繊維を不織布に挟み込みギャザー部材を製造すると、ポリウレタン弾性繊維の表面の処理剤の付着量が不安定であるため、十分な接着性を得ることができず、製品中で糸がスリップインしてしまうという問題もあった。
以下の特許文献3では、湿式紡糸により扁平なスパンデックスとすることで接着性の高いおむつ用のギャザー部材を製造することが提案されている。しかしながら、生産性の低い湿式紡糸であるという従来の問題点に加え、マルチフィラメントの断面を扁平にすることで接着面積は向上するものの、特許文献1又は2に記載されたものと同様、表面の処理剤の付着状態は不安定であり、スリップインの発生が十分少ないと言えるようなギャザー部材は得られていない。
以上のように、平滑性と摩擦性の改善したポリウレタン弾性繊維とスリップインの発生が少ないギャザー部材を得るために、これまで様々な表面処理剤を繊維表面へ付与する方法や繊維断面を扁平にする方法が検討されてきたが、それだけでは製品の倉庫での保管といった長期保管時の表面処理剤による梱包資材の汚染や摩擦性の変動等の問題の十分な解決やギャザー部材中のポリウレタン弾性繊維がスリップインしてしまう問題の十分な解決には至っていない。
それらの問題を解決するために、シリコーンオイル等の処理剤を糸に付与する方法が知られている。
以下の特許文献1では、経日的な解舒性の悪化を解決するために、ポリウレタン弾性繊維へ特定の平滑剤と解舒性向上剤からなる処理剤を付与する手法が報告されている。また、以下の特許文献2では、高温保管後の解舒性を改善するためにジアルキルスルホコハク酸塩のような特定成分を特定量混合した弾性繊維用処理剤の使用が提案されている。
しかしながら、ポリウレタン弾性繊維の表面に特定の表面処理剤を付与するこれらの方法では、一時的に繊維表面の摩擦性を改善できるものの、保管中に糸表面の処理剤が移動することで梱包資材の汚れや経時保管中の摩擦性の変動を起こしてしまうという問題があった。また、特許文献1又は2に記載の方法で製造されるポリウレタン弾性繊維を不織布に挟み込みギャザー部材を製造すると、ポリウレタン弾性繊維の表面の処理剤の付着量が不安定であるため、十分な接着性を得ることができず、製品中で糸がスリップインしてしまうという問題もあった。
以下の特許文献3では、湿式紡糸により扁平なスパンデックスとすることで接着性の高いおむつ用のギャザー部材を製造することが提案されている。しかしながら、生産性の低い湿式紡糸であるという従来の問題点に加え、マルチフィラメントの断面を扁平にすることで接着面積は向上するものの、特許文献1又は2に記載されたものと同様、表面の処理剤の付着状態は不安定であり、スリップインの発生が十分少ないと言えるようなギャザー部材は得られていない。
以上のように、平滑性と摩擦性の改善したポリウレタン弾性繊維とスリップインの発生が少ないギャザー部材を得るために、これまで様々な表面処理剤を繊維表面へ付与する方法や繊維断面を扁平にする方法が検討されてきたが、それだけでは製品の倉庫での保管といった長期保管時の表面処理剤による梱包資材の汚染や摩擦性の変動等の問題の十分な解決やギャザー部材中のポリウレタン弾性繊維がスリップインしてしまう問題の十分な解決には至っていない。
前記した従来技術の問題点に鑑み、本発明が解決しようとする課題は、長期保管後も表面処理剤の浸み出しが起こらず、梱包資材の汚染を防止でき、さらに保管期間によらず安定した摩擦性能を有し、スリップインの発生が少ない安定したギャザー部材に適したポリウレタン弾性繊維、及びポリウレタン弾性繊維のスリップインの発生が少ないギャザー部材を提供することである。
前記課題を解決すべく、鋭意検討し実験を重ねた結果、本願発明者は、ポリウレタン弾性繊維を構成するマルチフィラメントの断面空隙面積率を特定の値以上にすることで上記問題を解決できることを発見し、本発明を完成するに至ったものである。
すなわち本発明は以下の通りのものである。
すなわち本発明は以下の通りのものである。
[1]マルチフィラメントからなるポリウレタン弾性繊維であって、該マルチフィラメントの断面において、該マルチフィラメントを構成する単糸が互いに接することにより画される空隙部を有し、該空隙部の面積と該マルチフィラメントを構成するすべての単糸の断面積とを合計した面積を総断面積としたとき、下記式:
断面空隙面積率(%)=空隙部の面積/総断面積×100
で求められる断面空隙面積率が15%以上60%以下であることを特徴とするポリウレタン弾性繊維。
[2]前記マルチフィラメントの繊度が150dt以上1300dt以下である、前記[1]に記載のポリウレタン弾性繊維。
[3]前記マルチフィラメントの繊度が150dt以上900dt以下である、前記[1]又は[2]に記載のポリウレタン弾性繊維。
[4]前記マルチフィラメントを構成する単糸数が14本以上140本以下である、前記[1]~[3]のいずれかに記載のポリウレタン弾性繊維。
[5]前記マルチフィラメント断面において、該マルチフィラメントを構成する全ての単糸から計算される平均単糸径を直径とする単糸の大きさよりも大きな前記空隙部が少なくとも1つ存在する、前記[1]~[4]のいずれかに記載のポリウレタン弾性繊維。
[6]デマッチャー試験機により長さ40mmのマルチフィラメントを240mmの長さになるまで伸張し、再び40mmまで戻す操作を200rpmの速度で5000回繰り返しを行った際の単糸ばらけ発生率が20%以下である、前記[1]~[5]のいずれかに記載のポリウレタン弾性繊維。
[7]前記単糸ばらけ発生率が13%以下である、前記[1]~[6]のいずれかに記載のポリウレタン弾性繊維。
[8]ポリウレタン弾性繊維の重量に対する炭素数10~20の長鎖脂肪酸金属塩の含有率が0~0.2質量%である、前記[1]~[7]のいずれかに記載のポリウレタン弾性繊維。
[9]前記[1]~[8]のいずれかに記載のポリウレタン弾性繊維を含む巻糸体。
[10]ドラフト3.0における走行応力が0.075g/dt以上0.130g/dt以下である、前記[9]に記載の巻糸体。
[11]前記[1]~[8]のいずれかに記載のポリウレタン弾性繊維を含む布帛。
[12]前記[1]~[8]のいずれかに記載のポリウレタン弾性繊維が不織布に挟み込まれてなるギャザー部材。
[13]ポリウレタン弾性繊維を含むギャザー部材であって、該ギャザー部材に含まれるマルチフィラメントからなるポリウレタン弾性繊維の断面において、該マルチフィラメントを構成する単糸が互いに接することにより画される空隙部を有し、該空隙部の面積と該マルチフィラメントを構成するすべての単糸の断面積とを合計した面積を総断面積としたとき、下記式:
断面空隙面積率(%)=空隙部の面積/総断面積×100
で求められるギャザー部材に含まれるポリウレタン弾性繊維の断面空隙面積率が15%以上60%以下であるギャザー部材。
断面空隙面積率(%)=空隙部の面積/総断面積×100
で求められる断面空隙面積率が15%以上60%以下であることを特徴とするポリウレタン弾性繊維。
[2]前記マルチフィラメントの繊度が150dt以上1300dt以下である、前記[1]に記載のポリウレタン弾性繊維。
[3]前記マルチフィラメントの繊度が150dt以上900dt以下である、前記[1]又は[2]に記載のポリウレタン弾性繊維。
[4]前記マルチフィラメントを構成する単糸数が14本以上140本以下である、前記[1]~[3]のいずれかに記載のポリウレタン弾性繊維。
[5]前記マルチフィラメント断面において、該マルチフィラメントを構成する全ての単糸から計算される平均単糸径を直径とする単糸の大きさよりも大きな前記空隙部が少なくとも1つ存在する、前記[1]~[4]のいずれかに記載のポリウレタン弾性繊維。
[6]デマッチャー試験機により長さ40mmのマルチフィラメントを240mmの長さになるまで伸張し、再び40mmまで戻す操作を200rpmの速度で5000回繰り返しを行った際の単糸ばらけ発生率が20%以下である、前記[1]~[5]のいずれかに記載のポリウレタン弾性繊維。
[7]前記単糸ばらけ発生率が13%以下である、前記[1]~[6]のいずれかに記載のポリウレタン弾性繊維。
[8]ポリウレタン弾性繊維の重量に対する炭素数10~20の長鎖脂肪酸金属塩の含有率が0~0.2質量%である、前記[1]~[7]のいずれかに記載のポリウレタン弾性繊維。
[9]前記[1]~[8]のいずれかに記載のポリウレタン弾性繊維を含む巻糸体。
[10]ドラフト3.0における走行応力が0.075g/dt以上0.130g/dt以下である、前記[9]に記載の巻糸体。
[11]前記[1]~[8]のいずれかに記載のポリウレタン弾性繊維を含む布帛。
[12]前記[1]~[8]のいずれかに記載のポリウレタン弾性繊維が不織布に挟み込まれてなるギャザー部材。
[13]ポリウレタン弾性繊維を含むギャザー部材であって、該ギャザー部材に含まれるマルチフィラメントからなるポリウレタン弾性繊維の断面において、該マルチフィラメントを構成する単糸が互いに接することにより画される空隙部を有し、該空隙部の面積と該マルチフィラメントを構成するすべての単糸の断面積とを合計した面積を総断面積としたとき、下記式:
断面空隙面積率(%)=空隙部の面積/総断面積×100
で求められるギャザー部材に含まれるポリウレタン弾性繊維の断面空隙面積率が15%以上60%以下であるギャザー部材。
本発明に係るポリウレタン弾性繊維を用いれば、表面処理剤を付与した場合であっても、長期保管した場合に表面処理剤の移動が起こりにくく、梱包資材の汚れや経時での摩擦性の変動を抑制することができるため、編立等の高速での使用時であっても、糸切れ等のトラブルの頻度を低減でき、生産性を高めることができる。また、ギャザー部材中においてもポリウレタン弾性繊維表面の表面処理剤の付着量が安定しているため、表面処理剤の付着斑や浸み出しによるポリウレタン弾性繊維のスリップインの発生が少ないギャザー部材を提供することができる。
以下、本発明を実施するための形態(以下「本実施形態」という)について詳細に説明する。尚、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
本実施形態は、マルチフィラメントからなるポリウレタン弾性繊維であって、該マルチフィラメントの断面において、該マルチフィラメントを構成する単糸が互いに接することによって画される空隙部を有し、該空隙部の面積と該マルチフィラメントを構成するすべての単糸の断面積とを合計した面積を総断面積としたときに、下記式:
断面空隙面積率(%)=該空隙部の面積/該総断面積×100
で表される断面空隙面積率が15%以上60%以下であることを特徴とするポリウレタン弾性繊維である。
断面空隙面積率は18%以上が好ましく、より好ましくは20%以上である。断面空隙面積率は高いほど良いが、60%を超えるとマルチフィラメントがばらけやすくなり、糸切れが起こる可能性があるため60%以下が好ましく、より好ましくは50%以下である。
本実施形態は、マルチフィラメントからなるポリウレタン弾性繊維であって、該マルチフィラメントの断面において、該マルチフィラメントを構成する単糸が互いに接することによって画される空隙部を有し、該空隙部の面積と該マルチフィラメントを構成するすべての単糸の断面積とを合計した面積を総断面積としたときに、下記式:
断面空隙面積率(%)=該空隙部の面積/該総断面積×100
で表される断面空隙面積率が15%以上60%以下であることを特徴とするポリウレタン弾性繊維である。
断面空隙面積率は18%以上が好ましく、より好ましくは20%以上である。断面空隙面積率は高いほど良いが、60%を超えるとマルチフィラメントがばらけやすくなり、糸切れが起こる可能性があるため60%以下が好ましく、より好ましくは50%以下である。
本実施形態のポリウレタン弾性繊維は、ポリウレタン重合体を紡糸することにより得られる繊維である。
本実施形態のポリウレタン弾性繊維の原料ポリマーを製造する方法に関しては、公知のポリウレタン化反応の技術を用いることができる。高分子ポリオール、例えば、ポリアルキレンエーテルグリコールと、ジイソシアネートとをジイソシアネート過剰の条件下で反応させ、末端にイソシアネート基を有するウレタンプレポリマーを合成し、次いで、このウレタンプレポリマーを2官能性アミン等の活性水素含有化合物で鎖伸張反応を行い、ポリウレタン重合体を得ることができる。
本実施形態のポリウレタン弾性繊維の原料ポリマーを製造する方法に関しては、公知のポリウレタン化反応の技術を用いることができる。高分子ポリオール、例えば、ポリアルキレンエーテルグリコールと、ジイソシアネートとをジイソシアネート過剰の条件下で反応させ、末端にイソシアネート基を有するウレタンプレポリマーを合成し、次いで、このウレタンプレポリマーを2官能性アミン等の活性水素含有化合物で鎖伸張反応を行い、ポリウレタン重合体を得ることができる。
本実施形態のポリウレタン弾性繊維の好ましいポリマー基質としては、数平均分子量500~5000のポリアルキレンエーテルグリコールと過剰等量のジイソシアネートとを反応させて、末端にイソシアネート基を有するプレポリマーを合成し、次いで、プレポリマーに2官能性アミンと1官能性アミンとを反応させて得られるポリウレタンウレア重合体である。
高分子ポリオールとしては、実質的に線状のホモ又は共重合体からなる各種ジオール、例えば、ポリエステルジオール、ポリエーテルジオール、ポリエステルアミドジオール、ポリアクリルジオール、ポリチオエステルジオール、ポリチオエーテルジオール、ポリカーボネートジオール、これらの混合物、及びこれらの共重合物等が挙げられ、好ましくは、ポリアルキレンエーテルグリコールであり、例えば、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリオキシペンタメチレングリコール、テトラメチレン基と2,2-ジメチルプロピレン基から成る共重合ポリエーテルグリコール、テトラメチレン基と3-メチルテトラメチレン基から成る共重合ポリエーテルグリコール、及びこれらの混合物等である。これらの中でも、優れた弾性機能を示すという観点から、高分子ポリオールとしては、ポリテトラメチレンエーテルグリコール、テトラメチレン基と2,2-ジメチルプロピレン基から成る共重合ポリエーテルグリコールがより好適である。
ジイソシアネートとしては、脂肪族、脂環族、芳香族のジイソシアネート等が挙げられる。例えば、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、2,4-又は2,6-トリレンジイソシアネート、m-又はp-キシリレンジイシシアネート、α,α,α’,α’-テトラメチル-キシリレンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、4,4’-ジシクロヘキシルジイソシアネート、1,3-又は1,4-シクロヘキシレンジイソシアネート、3-(α-イソシアナートエチル)フェニルイソシアネート、1,6-ヘキサメチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、イソホロンジイソシアネート、これらの混合物、及びこれらの共重合物等が挙げられ、これらの中でもより好ましくは、4,4’-ジフェニルメタンジイソシアネートである。
活性水素含有化合物、すなわち、多官能性活性水素原子を有する鎖延長剤としては、例えば、ヒドラジン、ポリヒドラジン、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2-ジメチル-1,3-プロパンジオール、ジエチレングリコール、ジプロピレングリコール、1,4-シクロヘキサンジメタノール、フェニルジエタノールアミン等の低分子ジオールや、エチレンジアミン、1,2-プロピレンジアミン、1,3-プロピレンジアミン、2-メチル-1,5-ペンタンジアミン、トリエチレンジアミン、m-キシリレンジアミン、ピペラジン、o-、m-又はp-フェニレンジアミン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、1,6-ヘキサメチレンジアミン、N,N’-(メチレンジ-4,1-フェニレン)ビス[2-(エチルアミノ)-ウレア]等の2官能性アミンが挙げられる。
これらは単独で、又は混合して用いることができる。低分子ジオールより2官能性アミンが好ましく、エチレンジアミン単独、1,2-プロピレンジアミン、1,3-ジアミノシクロヘキサン、及び2-メチル-1,5-ペンタジアミンの群から選ばれる少なくとも1種が5~40モル%含まれるエチレンジアミン混合物が好ましいものとして挙げられ、より好ましくは、エチレンジアミン単独である。
単官能性活性水素原子を有する末端停止剤としては、例えば、メタノール、エタノール、2-プロパノール、2-メチル-2-プロパノール、1-ブタノール、2-エチル-1-ヘキサノール、3-メチル-1-ブタノール等のモノアルコールや、イソプロピルアミン、n-ブチルアミン、t-ブチルアミン、2-エチルヘキシルアミン等のモノアルキルアミンや、ジエチルアミン、ジメチルアミン、ジ-n-ブチルアミン、ジ-t-ブチルアミン、ジイソブチルアミン、ジ-2-エチルヘキシルアミン、及びジイソプロピルアミン等のジアルキルアミンが挙げられる。これらは単独で、又は混合して用いることができる。モノアルコールより、1官能性アミンであるモノアルキルアミンまたはジアルキルアミンが好ましい。
ポリウレタン化反応の操作に関しては、ウレタンプレポリマー合成時やウレタンプレポリマーと活性水素含有化合物との反応時に、ジメチルホルムアミド、ジメチルスルホキシド、及びジメチルアセトアミド等のアミド系極性溶媒を用いることができ、好ましくはジメチルアセトアミドである。
ポリウレタン重合体組成物には、酸化チタンの他、各種安定剤や顔料などが含有されていてもよい。例えば、耐光剤、ヒンダードフェノール系薬剤やベンゾトリアゾール系、ベンゾフェノン系、リン系及び各種ヒンダードアミン系の酸化防止剤、及びステアリン酸マグネシウムで代表されるような金属石鹸(長鎖脂肪酸金属塩)、酸化鉄、酸化亜鉛、酸化セリウム、及び酸化マグネシウム等の無機物、カーボンブラック及び各種顔料、銀や亜鉛やこれらの化合物などを含む抗菌剤や消臭剤、帯電防止剤、酸化窒素捕捉剤、熱酸化安定剤、及び光安定剤等を併用して添加してもよい。
このようにして得られたポリウレタン重合体は、公知の乾式紡糸、溶融紡糸又は湿式紡糸法等で繊維状に成形し、ポリウレタン弾性繊維を得ることができる。また、異なる原料を用いて重合したポリウレタン重合体を紡糸の前段階で混合して紡糸してもよい。
このようにして得られたポリウレタン重合体は、公知の乾式紡糸、溶融紡糸又は湿式紡糸法等で繊維状に成形し、ポリウレタン弾性繊維を得ることができる。また、異なる原料を用いて重合したポリウレタン重合体を紡糸の前段階で混合して紡糸してもよい。
本実施形態のポリウレタン弾性繊維は、解舒時の抵抗や使用時の摩擦性を低減するために表面処理剤を含有させて使用することができる。表面処理剤は、紡糸原液にあらかじめ練りこんでおいても良いし、紡糸時に紙管に巻き取る前にロールオイリングや、ガイドオイリング、及びスプレーオイリング等の公知の方法によって付与しても良い。または表面処理剤を付与せずに巻き取った後に巻き返して別の巻糸体を作る工程で表面処理剤を付与しても構わない。
表面処理剤の構成としては、特に限定されないが、ポリジメチルシロキサン、ポリエステル変性シリコーン、ポリエーテル変性シリコーン、アミノ変性シリコーン、鉱物油、鉱物性微粒子、例えば、シリカ、コロイダルアルミナ、タルク等、高級脂肪酸金属塩粉末、例えば、ステアリン酸マグネシウム、ステアリン酸カルシウム等、高級脂肪族カルボン酸、高級脂肪族アルコール、パラフィン、及びポリエチレン等の常温で固形状ワックス等の公知の表面処理剤を組み合わせて使用することができる。
製品の使用時の摩擦性という観点では、ポリジメチルシロキサンを20%以上含む表面処理剤を使用することが好ましいが、経時の処理剤の浸みだしや移動を防ぐという観点では、処理剤中のポリジメチルシロキサンの含有率が90%未満であることが好ましく、より好ましくは80%未満である。
本実施形態のポリウレタン弾性繊維の重量に対する表面処理剤の付与量としては、0.2%以上5.0%未満が好ましい。付与量が0.2%未満であると、ポリウレタン弾性繊維の摩擦抵抗が大きく、糸の使用時に糸切れ等の問題が起こりやすくなる。他方、付与量が5%を超えると、長期保管時のポリウレタン弾性繊維からの表面処理剤の浸みだしによる梱包資材の汚染や摩擦性の変動が起こりやすくなる。摩擦性や表面処理剤の浸みだしの観点から、より好ましい表面処理剤の付与量は0.5%以上~4%以下ある。
本発明のポリウレタン弾性繊維の紡糸方法は特に限定されないが、ポリウレタン重合体をアミド系極性溶媒に溶解して得られたポリウレタン紡糸原液を乾式紡糸して製造することが好ましい。乾式紡糸は、溶融紡糸や湿式紡糸に比べて、ハードセグメント間の水素結合による物理架橋を最も強固に形成させることができる。また、断面空隙面積率が高く、単糸がばらけにくいポリウレタン弾性繊維を得るという観点からも、乾式紡糸が好ましい。溶融紡糸では単糸を十分に集束させて、ばらけにくいマルチフィラメントのポリウレタン弾性繊維を製造するのが難しく、また、湿式紡糸では生産性が低いことに加えて、断面空隙面積率の高いマルチフィラメントを製造することが難しい。
本実施形態のポリウレタン弾性繊維である断面空隙面積率の高いマルチフィラメントは、紡糸時に紡糸原液を吐出するノズルの孔間の距離(ホール間ピッチ)を広げる方法や紡糸時の空気仮撚り機のエア圧を調整する方法、及び紡糸巻き取り時のゴデローラーと巻き取り機の速度比を調整する方法等を複合的に用いることで得ることができる。その他にも紡糸原液への特定の添加剤の添加や乾式紡糸であれば、紡糸時の給気の供給方法(風向や温度)等によっても調整することができる。また、紡糸時の糸道上でマルチフィラメントを押しつぶしてしまうプレスロールを経由する工程がない方が断面空隙面積率の高いマルチフィラメントを得やすい。但し、が15%以上60%以下の断面空隙面積率のポリウレタン弾性繊維である限り、このような製造方法に制限されるものではない。
本実施形態の断面空隙面積率の高いポリウレタン弾性繊維を得るための好ましい製造方法としては、断面空隙面積率が高く、かつ、ばらけにくい糸が得られるという観点から乾式紡糸が好ましい。また紡口のホール間ピッチが広い方が好ましく12mm以上30mm未満が好ましい。ホール間ピッチが12mm未満であると、高い断面空隙面積率の糸を得ることが難しくなる傾向があり、30mmを超えると、マルチフィラメントを集束させることが難しくなる傾向があり、ばらけやすい糸となり易い。紡口上のノズルの配列としては、均一な糸物性が得られるという観点から環状配列が好ましい。また紡糸時の仮撚りは適度に弱い方が好ましく、空気仮撚り機を用いる場合は運転圧力を0.1MPa以上0.30MPa未満とすると、断面空隙面積率が高く、かつ、ばらけにくい糸を得ることが容易になる。0.1MPa未満であると、マルチフィラメントの集束が不十分でばらけやすい糸になる傾向があり、他方、0.30MPa以上であると、断面空隙面積率の高い糸を得ることが難しくなる傾向がある。より好ましい範囲としては、0.1MPa以上0.25MPa未満である。また、ゴデローラと巻き取り機の速度比はなるべく低い方がよく、1.03以上1.17未満であることが好ましい。1.03未満であると、紡糸中に糸が弛み糸切れが多発し、糸の生産が難しくなる傾向があり、他方、1.17以上であると、高い空隙面積のマルチフィラメントを得ることが難しくなる傾向がある。より好ましいゴデローラーと巻き取り機の速度比としては、1.03以上1.15未満であり、さらに好ましい範囲としては1.05以上1.13未満である。また、高い断面空隙面積率を有したまま、単糸がばらけにくいマルチフィラメントを得るためには、炭素数10~20の長鎖脂肪酸金属塩(例えば、ステアリン酸マグネシウム等の脂肪酸金属)の含有率が0.2wt%以下であることが好ましい。長鎖脂肪酸金属塩の含有のさせ方は、紡糸原液に直接混合する方法や表面処理剤に混ぜ込み紡糸時に糸表面に付与する方法のいずれでもよい。ステアリン酸マグネシウム等の長鎖脂肪酸金属塩の量が0.2wt%以下であれば、長鎖脂肪酸金属塩の滑剤効果が適切であるため単子同士の接点の表面合着力が十分に働き、単糸のばらけは発生しにくい。より好ましい脂肪酸金属塩の含有率は0.1wt%以下である。
炭素数10~20の長鎖脂肪酸金属塩としては、ステアリン酸や12-ヒドロキシステアリン酸、パルミチン酸、オレイン酸、ラウリン酸からなる長鎖脂肪酸のマグネシウム塩またカルシウム塩等があげられ、マグネシウム塩のほうが好ましい。特に好ましい長鎖脂肪酸金属塩としては、ステアリン酸マグネシウムであるが、炭素数10~20の長鎖脂肪酸のマグネシウム塩であれば、単独で又は混合して使用しても構わない。
炭素数10~20の長鎖脂肪酸金属塩としては、ステアリン酸や12-ヒドロキシステアリン酸、パルミチン酸、オレイン酸、ラウリン酸からなる長鎖脂肪酸のマグネシウム塩またカルシウム塩等があげられ、マグネシウム塩のほうが好ましい。特に好ましい長鎖脂肪酸金属塩としては、ステアリン酸マグネシウムであるが、炭素数10~20の長鎖脂肪酸のマグネシウム塩であれば、単独で又は混合して使用しても構わない。
本実施形態のポリウレタン弾性繊維は、紡糸して得られたポリウレタン弾性繊維の繊度が150dt以上1300dt以下であることが好ましい。繊度が低すぎると製造工程での糸切れが起こりやすく、本発明の断面空隙面積率の高いポリウレタン弾性繊維を得ることが難しくなる傾向がある。また、繊度が高すぎる場合もマルチフィラメントの単糸を集束させることが難しくなることで、ばらけ等の問題が発生しやすくなる。より好ましい繊度としては150dt以上900dt以下であり、さらに好ましくは300dt以上900dt以下であり、よりさらに好ましくは300dt以上800dt以下である。
本実施形態のポリウレタン弾性繊維を構成するマルチフィラメントは単糸数が14本以上140本以下であることが好ましい。単糸数が少なすぎると、紡糸時の張力が低く糸切れが起こりやすく、また高い断面空隙面積率の糸を得ることが難しくなる傾向がある。高い断面空隙面積率のマルチフィラメントの得やすさという観点から、より好ましい単糸数は20本以上であり、さらに好ましくは25本以上である。また、単糸数が多すぎると、マルチフィラメントの単糸を集束させ難くなり、ばらけ等の問題が発生しやすくなる傾向がある。単糸のばらけにくさの観点から、より好ましい単糸数は120本以下であり、さらに好ましくは100本以下であり、よりさらに好ましくは90本以下であり、最も好ましくは80本以下である。
本実施形態のポリウレタン弾性繊維を構成するマルチフィラメントの単糸の繊度は、紡糸性と製品の物性の観点から、8~14dt(デシテックス、dtex)が好ましく、より好ましくは8~11dtである。単糸繊度が8dt未満であると、紡糸時の糸切れが起こりやすくなり、他方、14dtより大きいと十分な応力を有する糸を得ることが難しくなる傾向がある。
単糸の断面形状は、真円でも楕円等の異形断面でも構わないが、製品の使用上における単糸のばらけという観点からは真円に近い方が好ましい。
本実施形態のポリウレタン弾性繊維のマルチフィラメントの断面においては、該マルチフィラメントを構成する全ての単糸から計算される平均単糸径と同一径を持つ単糸の太さよりも大きな空間部分が少なくとも1つ存在することが好ましく、より好ましくは2つ以上、さらに好ましくは3つ以上持つことが好ましい。本実施形態のポリウレタン弾性繊維がこのような空間部分を持つことにより表面処理剤の浸み出しを防ぐことができるので特に好ましい。該空間部分の個数の具体的な求め方については後掲される。
本実施形態のポリウレタン弾性繊維は、後掲の手法により求められる単糸ばらけ発生率が20%以下であることが好ましく、13%以下がより好ましい。単糸ばらけ発生率が20%以下であると、表面処理剤の浸み出しを抑制する効果がより強くなる。その原理としては定かではないが、ばらけ発生率を20%以下となるレベルの単糸同士の接点の結合力で画される断面空隙部は、ばらけ発生率が20%を超えるマルチフィラメントの断面空隙部よりも、表面処理剤の保持能力が高く、それ故にばらけ発生率の低いマルチフィラメントは浸み出し抑制効果が高くなると推定している。
本実施形態のポリウレタン弾性繊維は、任意の紙管やプラスチックチューブ等に巻き取り、巻糸体とすることができる。紙管やプラスチックチューブは、表面がパーチメント紙やPE等の樹脂でコーティングされていたり、テール糸用の溝が紙管またはプラスチックチューブに彫られていたりしてもよい。
本実施形態の巻糸体は、後述の手法によりドラフト3.0で測定される走行応力が0.075g/dt以上0.130g/dt以下であることが好ましい。走行応力がこの範囲になるように巻き取ることで高い断面空隙面積率の糸を得やすくなり、また、紙管に巻き取った後に長期間保管した場合の断面空隙面積率の変動が小さく、断面空隙面積率が非常に安定した製品を得ることができる。より好ましい下限としては0.080g/dt以上であり、より好ましい上限としては0.125g/dt以下である。
本実施形態のポリウレタン弾性繊維又は巻糸体から供給されるポリウレタン弾性繊維は、任意の不織布やフィルムに挟み込むことで、オムツや生理用品等に用いられる衛生材料用の伸縮性のあるギャザー部材とすることができる。本実施形態のポリウレタン弾性繊維または巻糸体から供給されるポリウレタン弾性繊維であれば、処理剤の浸み出しが抑制されているために糸表面の処理剤量が安定しているため、不織布やフィルム、接着剤等との接着性が安定しており、スリップインの発生が少ない安定した製品を得ることができる。ギャザー部材の作製のために使用する不織布はポリプロピレン、ポリエチレン、ポリエチレンテレフタレートやポリ乳酸等の公知の素材を使用して、公知の製造方法にて製造されたものを使用することができる。不織布は複数の層から形成されていたり、エンボス加工がされていたりしても構わない。
フィルムや不織布とポリウレタン弾性繊維を接着する方法としては、ホットメルト接着剤を使用する方法や熱圧着ロール、超音波接着等の公知の方法を使用することができ、本実施形態のポリウレタン弾性繊維であれば糸表面の処理剤量が安定しているため、いずれの接着方法でも高い接着性を得ることができる。
フィルムや不織布とポリウレタン弾性繊維を接着する方法としては、ホットメルト接着剤を使用する方法や熱圧着ロール、超音波接着等の公知の方法を使用することができ、本実施形態のポリウレタン弾性繊維であれば糸表面の処理剤量が安定しているため、いずれの接着方法でも高い接着性を得ることができる。
後掲の方法により本実施形態のギャザー部材から取り出したポリウレタン弾性繊維の断面空隙面積率は15%以上60%以下であることが好ましい。ギャザー部材から取り出したポリウレタン弾性繊維の断面空隙面積率がこの範囲であると、ギャザー部材中においても、糸の表面の表面処理剤の付着量が断面空隙部による浸み出し抑制効果により安定しているため、ポリウレタン弾性繊維とそれ以外の素材との接着力が強固となり、スリップインが起こりにくくなる。
本実施形態のポリウレタン弾性繊維は、綿、絹、羊毛等の天然繊維、ナイロン6やナイロン66等のポリアミド繊維、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリテトラメチレンテレフタレート等のポリエステル繊維、カチオン可染ポリエステル繊維、銅アンモニア再生レーヨン、ビスコースレーヨン、及びアセテートレーヨン等と交編織したり、又は、これらの繊維を用いて被覆、交絡、合撚等により加工糸とした後、交編織することによって斑のない高品位な布帛を得ることができる。特にポリウレタン弾性繊維を用いた布帛では生産量が多く、ベア糸で供給されるため、原糸の品位の影響が大きい経編物に好適である。経編生地には、パワーネット、サテンネット、ラッセルレース、ツーウェイトリコットなどがあるが、本実施形態のポリウレタン弾性繊維を用いることで、経方向の筋の少ない高品位な布帛を得ることができる。
本実施形態のポリウレタン弾性繊維を用いた布帛は、水着、ガードル、ブラジャー、インティメイト商品、肌着等の各種ストレッチファンデーション、タイツ、パンティストッキング、ウェストバンド、ボディースーツ、スパッツ、ストレッチスポーツウェアー、ストレッチアウター、医療用ウェア、ストレッチ裏地等の用途に用いることができる。
本実施形態のポリウレタン弾性繊維、その巻糸体、及びそれを含むギャザー部材は、生理用品や紙おむつ等の衛生材料にも好適に用いることができ、平滑性が良好であり、摩擦性の変動が小さいため、高い生産性と製品の安定性を得ることができ、また、ギャザー部材中でのポリウレタン弾性繊維表面の処理剤量が安定していることにより他素材との接着力が強固となるため、ポリウレタン弾性繊維のスリップインの発生が少ないギャザー部材、又はそれを含むおむつ、生理用品を得ることができる。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらによって何ら限定されるものではない。尚、以下の実施例、比較例に使用した測定法、評価法等は下記の通りのものであった。
(1)断面空隙面積率の測定
マルチフィラメント1本の断面をSEMで撮影し、その断面写真からSEM写真中の該マルチフィラメントを構成する全ての単糸の断面部分の面積(A)と、該マルチフィラメントを構成する単糸が互いに接することにより画される空隙部分の面積(B)として求め、下記式:
断面空隙面積率(%)=空隙部の面積/総断面積×100
により算出する。尚、総断面積は、断面部分の面積(A)と空隙部分の面積(B)の和(A+B)によって求められる。
断面のSEM写真を撮影するためのマルチフィラメント糸は、両面テープを貼り付けた2枚の厚紙で該マルチフィラメント1本を挟み込み、そこからはみ出た該マルチフィラメントを厚紙の淵ぎりぎりのところでカミソリ刃により切断し、その断面を正面から観察できるようにSEMのステージ上にセットして観察する。本法によれば、切断時の変形による断面空隙面積率の変動はない。
SEMの測定倍率は、マルチフィラメントの断面の全体像が観察できるように適切な倍率で観察する。本実施例と比較例においては100~250倍の範囲で測定を行った。
測定回数は同一の巻糸体から1m以上の間隔をあけて、5本サンプリングし、その断面から求められた断面空隙面積率の大きいもの上位2点の平均値をそのサンプルの断面空隙面積率とする。
尚、布帛中のマルチフィラメントは、布帛及び加工糸を分解してマルチフィラメントを取り出し、5本サンプリングし、前掲の方法と同様にして断面空隙面積率を測定することができる。
マルチフィラメント1本の断面をSEMで撮影し、その断面写真からSEM写真中の該マルチフィラメントを構成する全ての単糸の断面部分の面積(A)と、該マルチフィラメントを構成する単糸が互いに接することにより画される空隙部分の面積(B)として求め、下記式:
断面空隙面積率(%)=空隙部の面積/総断面積×100
により算出する。尚、総断面積は、断面部分の面積(A)と空隙部分の面積(B)の和(A+B)によって求められる。
断面のSEM写真を撮影するためのマルチフィラメント糸は、両面テープを貼り付けた2枚の厚紙で該マルチフィラメント1本を挟み込み、そこからはみ出た該マルチフィラメントを厚紙の淵ぎりぎりのところでカミソリ刃により切断し、その断面を正面から観察できるようにSEMのステージ上にセットして観察する。本法によれば、切断時の変形による断面空隙面積率の変動はない。
SEMの測定倍率は、マルチフィラメントの断面の全体像が観察できるように適切な倍率で観察する。本実施例と比較例においては100~250倍の範囲で測定を行った。
測定回数は同一の巻糸体から1m以上の間隔をあけて、5本サンプリングし、その断面から求められた断面空隙面積率の大きいもの上位2点の平均値をそのサンプルの断面空隙面積率とする。
尚、布帛中のマルチフィラメントは、布帛及び加工糸を分解してマルチフィラメントを取り出し、5本サンプリングし、前掲の方法と同様にして断面空隙面積率を測定することができる。
断面空隙面積率は、日本電子株式会社製のソフトウェア「SEM Control User Interface ver.3.02」の面積計測機能を用いて算出した。より具体的には、面積計測機能の「多角形」を用いて、計測するSEM写真中のマルチフィラメント断面の全ての単糸の外周を隙間なくなぞることによって、マルチフィラメントの断面部分の面積(A)を求め、次に、マルチフィラメントの空隙部分の面積(B)を同様に面積計測機能の「多角形」を用いて、単糸が互いに接することにより画される空隙部における各単糸の内側をなぞることによって算出した。このようにして計測した数値(A+B)と(B)を用いて、上記式により、断面空隙面積率(%)を算出した。
尚、「単糸が互いに接する」とは、単糸同士が完全に接していない場合も含み、単糸同士の単糸間の中心間の距離(L)が平均単糸径(d)×2以下である場合には単糸が完全に接していない場合でも「互いに接する」といい、また、この場合、「なぞる」とは2つの隣接単糸の中心を結んだ直線上をなぞることを意味する。Lとdとの関係については後掲する単糸が完全に画されていない(囲われていない)空隙部がある場合の取り扱い方法に準ずる。
図1に断面部分の面積と空隙部分の面積の求め方を説明するためのマルチフィラメント断面の概略図を示す。
尚、「単糸が互いに接する」とは、単糸同士が完全に接していない場合も含み、単糸同士の単糸間の中心間の距離(L)が平均単糸径(d)×2以下である場合には単糸が完全に接していない場合でも「互いに接する」といい、また、この場合、「なぞる」とは2つの隣接単糸の中心を結んだ直線上をなぞることを意味する。Lとdとの関係については後掲する単糸が完全に画されていない(囲われていない)空隙部がある場合の取り扱い方法に準ずる。
図1に断面部分の面積と空隙部分の面積の求め方を説明するためのマルチフィラメント断面の概略図を示す。
ここで、断面の外周を構成する単糸が不連続(上記の「単糸が互いに接しない」状態)で単糸が画されない(囲われていない)空隙部がある場合は、不連続部に最も近くてお互い接しない2つの単糸の中心間距離Lと平均単糸径dにより、その単糸が「お互いに接して」外周に算入するかどうかを判断する。平均単糸径dは断面空隙面積率の算出に用いるものと同一の5本のマルチフィラメントのSEM写真を用いて、各マルチフィラメントを構成するすべての単糸の本数と各単位の断面径を測長し、各マルチフィラメントで求めた値を平均(5で除す)して求める。単糸が真円ではない場合は、長径と短径の和を2で除した値を単糸径とする以外は上述と同様の方法で平均単糸径dを求める。単糸の中心は長径と短径を算出する際の直線の交点とする。
<L>2dのとき>
互いに接していない末端の2つの単糸は不連続と判断し、単糸に完全に囲われていない空隙部の面積は空隙面積に参入しない。図2には、単糸に完全に囲われていない空隙部の例が示されている。
<L≦2dのとき>
互いに接していない末端の2つの単糸は連続であると判断し、2つの単糸の中心を結んだ直線を不連続部を補う線(外周)として、その線に囲まれる空隙部分を空隙面積に参入する。図3にはその一例としてマルチフィラメント断面が概略図的に示されており、この場合には該空隙部分は空隙面積に参入される。
<L>2dのとき>
互いに接していない末端の2つの単糸は不連続と判断し、単糸に完全に囲われていない空隙部の面積は空隙面積に参入しない。図2には、単糸に完全に囲われていない空隙部の例が示されている。
<L≦2dのとき>
互いに接していない末端の2つの単糸は連続であると判断し、2つの単糸の中心を結んだ直線を不連続部を補う線(外周)として、その線に囲まれる空隙部分を空隙面積に参入する。図3にはその一例としてマルチフィラメント断面が概略図的に示されており、この場合には該空隙部分は空隙面積に参入される。
(2)平均単糸径と同一径の単糸の大きさよりも大きな空隙部分の数
(1)で測定した5本のサンプルのうち、断面空隙面積率が大きかった上位2つのSEM写真を用いて平均単糸径を真円の直径とする単糸のサイズ以上の空隙部の数を求める。 平均単糸径dは(1)と同様にして求め、上記2つのSEM写真について、「平均単糸径と同一径の単糸の大きさよりも大きな空隙部分」とは、平均単糸径dの真円を有する単糸を想定し、その単糸を空隙部分内に配置しようとするとき、該空隙部分を画するその想定単糸以外の互いに接する単糸に接することなく配置することができるような空隙部分をいう。上記2つのSEM写真について、いずれか1方に、かかる空隙部分が1個存在する場合には、平均単糸径と同一径の単糸の大きさよりも大きな空隙部分の数を1とし、両者にかかる空隙部分が1個以上存在する場合には、そのうち最も大きな空隙部分の数を、平均単糸径と同一径の単糸の大きさよりも大きな空隙部分の数として採用した。
(1)で測定した5本のサンプルのうち、断面空隙面積率が大きかった上位2つのSEM写真を用いて平均単糸径を真円の直径とする単糸のサイズ以上の空隙部の数を求める。 平均単糸径dは(1)と同様にして求め、上記2つのSEM写真について、「平均単糸径と同一径の単糸の大きさよりも大きな空隙部分」とは、平均単糸径dの真円を有する単糸を想定し、その単糸を空隙部分内に配置しようとするとき、該空隙部分を画するその想定単糸以外の互いに接する単糸に接することなく配置することができるような空隙部分をいう。上記2つのSEM写真について、いずれか1方に、かかる空隙部分が1個存在する場合には、平均単糸径と同一径の単糸の大きさよりも大きな空隙部分の数を1とし、両者にかかる空隙部分が1個以上存在する場合には、そのうち最も大きな空隙部分の数を、平均単糸径と同一径の単糸の大きさよりも大きな空隙部分の数として採用した。
(3)繊度の測定
マルチフィラメント1本を張力のかからないように巻糸体から剥ぎ取り無張力状態かつ弛みの無い状態で1m測長して切り取り、その重量を計量し、下記式:
繊度(dt) = 10000× 1mあたりの重量(g)
から求めた。測定は5回行い、その平均値を繊度とする。
マルチフィラメント1本を張力のかからないように巻糸体から剥ぎ取り無張力状態かつ弛みの無い状態で1m測長して切り取り、その重量を計量し、下記式:
繊度(dt) = 10000× 1mあたりの重量(g)
から求めた。測定は5回行い、その平均値を繊度とする。
(4)単糸ばらけ発生率の測定
長さ40mmのマルチフィラメントを10本平行に並ぶようにデマッチャー試験機にセットし、240mmの長さになるまで糸長方向に伸張し、再び元の40mmまで緩める伸張繰り返し操作を200rpmの速度で5000回行う。その後、図4に示すように、長さ40mmのマルチフィラメントを平らに置いた状態で、マルチフィラメント中の最も単糸が収束している部分からの距離が最大で0.5mm以上離れている単糸が発生した場合と単糸が切れた場合に単糸ばらけが発生したとする。測定は同一サンプルあたり1組10本で5回測定を行い、合計50本の糸のうち何本ばらけが発生したかをカウントし、発生率を計算した。
長さ40mmのマルチフィラメントを10本平行に並ぶようにデマッチャー試験機にセットし、240mmの長さになるまで糸長方向に伸張し、再び元の40mmまで緩める伸張繰り返し操作を200rpmの速度で5000回行う。その後、図4に示すように、長さ40mmのマルチフィラメントを平らに置いた状態で、マルチフィラメント中の最も単糸が収束している部分からの距離が最大で0.5mm以上離れている単糸が発生した場合と単糸が切れた場合に単糸ばらけが発生したとする。測定は同一サンプルあたり1組10本で5回測定を行い、合計50本の糸のうち何本ばらけが発生したかをカウントし、発生率を計算した。
(5)糸が含有するステアリン酸マグネシウムの定量方法
試料約1gを50ml三角フラスコに量り取り、8mlの5~10%の塩酸メタノール(東京化成工業株式会社製)に浸漬させた。これを120℃で1時間還流加熱し、メチルエステルへの誘導体化処理を行った。この反応液を回収後、メタノールで20mlに定容したものをGC/MSにて測定・定量した。
試料約1gを50ml三角フラスコに量り取り、8mlの5~10%の塩酸メタノール(東京化成工業株式会社製)に浸漬させた。これを120℃で1時間還流加熱し、メチルエステルへの誘導体化処理を行った。この反応液を回収後、メタノールで20mlに定容したものをGC/MSにて測定・定量した。
(6)走行応力測定方法
紡糸によって得られた弾性繊維の巻糸体1を、図5に示す装置にかけ、弾性繊維送り出しロール2を速度10m/分、巻き取りロール9を速度30m/分の延伸倍率3倍で走行させ、テンションメーター8で糸走行時の応力(g)を3分間測定した。得られた応力値の平均値を、弾性繊維の繊度で除した値を走行応力(g/dt)とした。この値が高過ぎると経時での断面空隙面積率が変動しやすく、低過ぎるとストレッチ性が低く、またばらけやすい糸となってしまう。
紡糸によって得られた弾性繊維の巻糸体1を、図5に示す装置にかけ、弾性繊維送り出しロール2を速度10m/分、巻き取りロール9を速度30m/分の延伸倍率3倍で走行させ、テンションメーター8で糸走行時の応力(g)を3分間測定した。得られた応力値の平均値を、弾性繊維の繊度で除した値を走行応力(g/dt)とした。この値が高過ぎると経時での断面空隙面積率が変動しやすく、低過ぎるとストレッチ性が低く、またばらけやすい糸となってしまう。
(7)保管中の表面処理剤の浸み出し評価
直径8.2cm、幅11.5cmの紙管に巻幅9cm、巻直径18cmになるように巻き取ったポリウレタン弾性繊維の巻糸体1本を外寸:縦32cm×横23cm×高さ24.5cm、厚み:0.5cmの段ボールの中心に配置し、蓋をして梱包して50℃の温風庫に4週間保管し、4週間後の段ボール内側へ表面処理剤の浸みだし具合と、糸を剥ぎ取った後の紙管への表面処理剤の浸み出し具合の外観評価を行った。
直径8.2cm、幅11.5cmの紙管に巻幅9cm、巻直径18cmになるように巻き取ったポリウレタン弾性繊維の巻糸体1本を外寸:縦32cm×横23cm×高さ24.5cm、厚み:0.5cmの段ボールの中心に配置し、蓋をして梱包して50℃の温風庫に4週間保管し、4週間後の段ボール内側へ表面処理剤の浸みだし具合と、糸を剥ぎ取った後の紙管への表面処理剤の浸み出し具合の外観評価を行った。
(8)エージング後の動摩擦係数(μd)の測定
(7)の評価で使用するものと同一巻径の糸を用いて、50℃の温風庫に4週間保管する前(エージング前)と50℃の温風庫に4週間保管した後(エージング後)の2つ巻糸体を用いて、それぞれ紙管から1cmのところまで剥ぎ取り、以下の手順に従ってμdを測定し、50℃保管前後でのμdの変動値(Δμd)を求めた。
具体的には、セラミックガイドを経由して走行している糸のセラミックガイドの前後の糸張力の比から動摩擦係数(μd)を求める。すなわち、パッケージからの送り出し速度を50m/分、巻取り速度を150m/分で糸を走行させている時に、糸の走行経路にセラミックフックガイド(湯浅糸道製:A204062 HOOK GUIDE)を摩擦角90°で挿入した際の、入力側の糸張力(T1)、出力側の糸張力(T2)を測定する。動摩擦係数(μd)は、下記式:
動摩擦係数(μd)=ln(T2/T1)/0.5π
により算出される。尚、摩擦角90°を確保するために糸道に摩擦抵抗の低い各種ガイド、回転ロール等を使用してもよい。μdの値は小さいほど、セラミックフックガイドとの摩擦が少なく良好であり、またエージング前後でのμdの値の変動が小さいほど倉庫での保管を想定した場合の摩擦性の変動が小さく、製品としての安定性が高い。より具体的には、製品としての摩擦性の安定性の観点から、Δμdが0.1以下であることが好ましく、より好ましくは0.06以下であることがより好ましい。
(7)の評価で使用するものと同一巻径の糸を用いて、50℃の温風庫に4週間保管する前(エージング前)と50℃の温風庫に4週間保管した後(エージング後)の2つ巻糸体を用いて、それぞれ紙管から1cmのところまで剥ぎ取り、以下の手順に従ってμdを測定し、50℃保管前後でのμdの変動値(Δμd)を求めた。
具体的には、セラミックガイドを経由して走行している糸のセラミックガイドの前後の糸張力の比から動摩擦係数(μd)を求める。すなわち、パッケージからの送り出し速度を50m/分、巻取り速度を150m/分で糸を走行させている時に、糸の走行経路にセラミックフックガイド(湯浅糸道製:A204062 HOOK GUIDE)を摩擦角90°で挿入した際の、入力側の糸張力(T1)、出力側の糸張力(T2)を測定する。動摩擦係数(μd)は、下記式:
動摩擦係数(μd)=ln(T2/T1)/0.5π
により算出される。尚、摩擦角90°を確保するために糸道に摩擦抵抗の低い各種ガイド、回転ロール等を使用してもよい。μdの値は小さいほど、セラミックフックガイドとの摩擦が少なく良好であり、またエージング前後でのμdの値の変動が小さいほど倉庫での保管を想定した場合の摩擦性の変動が小さく、製品としての安定性が高い。より具体的には、製品としての摩擦性の安定性の観点から、Δμdが0.1以下であることが好ましく、より好ましくは0.06以下であることがより好ましい。
(9)エージング後の内層糸揺れ
上記(7)でエージングしたポリウレタン弾性繊維を紙管から1cmの巻厚になるまで剥ぎ取り、図6に示す装置にかけ、弾性繊維送り出しロール2を、速度50m/分、弾性繊維を3回巻きつけたプレドラフトロール3を、速度80m/分、巻き取りロール4を、速度85m/分の条件で走行させた。観察部位5での、弾性繊維の挙動を3分間目視観察し、以下の評価基準で、糸揺れを評価した。本評価において、糸揺れ幅が小さいほど、糸の使用時の摩擦抵抗が小さく糸切れ等が起こりにくい。
◎:糸揺れ幅が0mm以上2mm未満
○:糸揺れ幅が2mm以上4mm未満
△:糸揺れ幅が4mm以上6mm未満
×:糸切れ幅が6mm以上又は糸切れ
尚、3分間の目視観察において、糸揺れ幅が上記評価基準の2基準の間を行き来する場合は、例えば「△~○」のように幅のある評価結果としている。
上記(7)でエージングしたポリウレタン弾性繊維を紙管から1cmの巻厚になるまで剥ぎ取り、図6に示す装置にかけ、弾性繊維送り出しロール2を、速度50m/分、弾性繊維を3回巻きつけたプレドラフトロール3を、速度80m/分、巻き取りロール4を、速度85m/分の条件で走行させた。観察部位5での、弾性繊維の挙動を3分間目視観察し、以下の評価基準で、糸揺れを評価した。本評価において、糸揺れ幅が小さいほど、糸の使用時の摩擦抵抗が小さく糸切れ等が起こりにくい。
◎:糸揺れ幅が0mm以上2mm未満
○:糸揺れ幅が2mm以上4mm未満
△:糸揺れ幅が4mm以上6mm未満
×:糸切れ幅が6mm以上又は糸切れ
尚、3分間の目視観察において、糸揺れ幅が上記評価基準の2基準の間を行き来する場合は、例えば「△~○」のように幅のある評価結果としている。
(10)エージング後の巻糸体の断面空隙面積率
上記(7)でエージングしたポリウレタン弾性繊維を測定する以外は、上記(1)と同様の方法にして測定を行った。
上記(7)でエージングしたポリウレタン弾性繊維を測定する以外は、上記(1)と同様の方法にして測定を行った。
(11)ギャザー部材に含まれるポリウレタン弾性繊維の断面空隙面積率の測定
150℃で溶融したホットメルト接着剤(ヘンケルジャパン株式会社製765E)を、5本のポリウレタン弾性繊維を7mmの間隔をあけて平行に並べ、元の長さの3倍の長さになるように伸張し、Vスリットにて付着量が伸張された1本のポリウレタン弾性繊維あたり0.04g/mとなるよう連続的に塗工しながら、該ホットメルト接着剤が塗工されたポリウレタン弾性繊維を幅30cm、目付17g/m2の不織布(旭化成株式会社製エルタスガード(登録商標))2枚で連続的に挟み込み、その上から外径16cm幅40cmの1組のローラーにて、一方のローラーを0.5MPaのエア圧を供給したエアシリンダー(SMC株式会社製CQ2WB100-50DZ)にて押し込みながら連続的に圧着し、ギャザー部材を作製した。作製したギャザーを直ちに切り出し、24時間20℃65%RHの環境で放置後、シクロヘキサンに10分間浸漬することで、ホットメルト接着剤を溶解して取り除きギャザー部材からポリウレタン弾性繊維を取り出して、無張力となるようにろ紙の上へ置き、20℃65%RHの環境で12時間乾燥した。同一の巻糸体から1m以上の間隔をあけて、5本サンプリングする代わりに、上記の通り取り出したポリウレタン弾性繊維を用いる以外は、(1)と同様の方法にて断面空隙面積率を測定した。
なお、熱圧着ロールや超音波接着等のホットメルト接着剤を使用しない方法で製造されたギャザー部材であって、ギャザー部材からのポリウレタン弾性繊維の取り出しが難しい場合は、ポリウレタン弾性繊維を含むギャザー部材ごと10cmに切り出し、無張力の状態で20℃65%RHの環境で12時間静置した後にポリウレタン弾性繊維を含むギャザー部材の断面をSEMにて観察し、(1)と同様の方法にて断面空隙面積率を測定してもよい。
150℃で溶融したホットメルト接着剤(ヘンケルジャパン株式会社製765E)を、5本のポリウレタン弾性繊維を7mmの間隔をあけて平行に並べ、元の長さの3倍の長さになるように伸張し、Vスリットにて付着量が伸張された1本のポリウレタン弾性繊維あたり0.04g/mとなるよう連続的に塗工しながら、該ホットメルト接着剤が塗工されたポリウレタン弾性繊維を幅30cm、目付17g/m2の不織布(旭化成株式会社製エルタスガード(登録商標))2枚で連続的に挟み込み、その上から外径16cm幅40cmの1組のローラーにて、一方のローラーを0.5MPaのエア圧を供給したエアシリンダー(SMC株式会社製CQ2WB100-50DZ)にて押し込みながら連続的に圧着し、ギャザー部材を作製した。作製したギャザーを直ちに切り出し、24時間20℃65%RHの環境で放置後、シクロヘキサンに10分間浸漬することで、ホットメルト接着剤を溶解して取り除きギャザー部材からポリウレタン弾性繊維を取り出して、無張力となるようにろ紙の上へ置き、20℃65%RHの環境で12時間乾燥した。同一の巻糸体から1m以上の間隔をあけて、5本サンプリングする代わりに、上記の通り取り出したポリウレタン弾性繊維を用いる以外は、(1)と同様の方法にて断面空隙面積率を測定した。
なお、熱圧着ロールや超音波接着等のホットメルト接着剤を使用しない方法で製造されたギャザー部材であって、ギャザー部材からのポリウレタン弾性繊維の取り出しが難しい場合は、ポリウレタン弾性繊維を含むギャザー部材ごと10cmに切り出し、無張力の状態で20℃65%RHの環境で12時間静置した後にポリウレタン弾性繊維を含むギャザー部材の断面をSEMにて観察し、(1)と同様の方法にて断面空隙面積率を測定してもよい。
(12)接着性の評価方法(スリップインの発生率の評価)
(11)で作製したギャザー部材をサンプルとし、このサンプルを糸長方向に250mm~300mmの長さにカットし(この時のギャザー部材の長さを初期長とする)、糸長方向に初期長の3倍になるまで延伸させた状態でダンボール板に貼り付けた。次いで、貼り付けた試験体のポリウレタン弾性繊維の長さが200mmとなるような任意の2点に不織布の上から油性ペンで印をつける。こうすることで不織布越しにインクが浸み込みポリウレタン弾性繊維にインクで印をつけることができる。この印のところでポリウレタン弾性繊維とそこに接着している不織布ごとカットし、40℃で5時間放置した。5時間後、ポリウレタン弾性繊維の印をつけた2点間の長さを測定し、保持率を以下式:
接着性保持率=100×(5時間後の計測長さmm)/200mm
により算出した。保持率が高いほど製品の製造時や着用時にてポリウレタン弾性繊維のスリップインが少ない。測定は同一サンプルあたり10回測定し、その平均値を用いて以下の評価基準に基づきスリップインの発生率とした。
5:接着性保持率を10回測定した際の平均値が95%以上
4:接着性保持率を10回測定した際の平均値が90%以上95%未満
3:接着性保持率を10回測定した際の平均値が85%以上90%未満
2:接着性保持率を10回測定した際の平均値が80%以上85%未満
1:接着性保持率を10回測定した際の平均値が80%未満
(11)で作製したギャザー部材をサンプルとし、このサンプルを糸長方向に250mm~300mmの長さにカットし(この時のギャザー部材の長さを初期長とする)、糸長方向に初期長の3倍になるまで延伸させた状態でダンボール板に貼り付けた。次いで、貼り付けた試験体のポリウレタン弾性繊維の長さが200mmとなるような任意の2点に不織布の上から油性ペンで印をつける。こうすることで不織布越しにインクが浸み込みポリウレタン弾性繊維にインクで印をつけることができる。この印のところでポリウレタン弾性繊維とそこに接着している不織布ごとカットし、40℃で5時間放置した。5時間後、ポリウレタン弾性繊維の印をつけた2点間の長さを測定し、保持率を以下式:
接着性保持率=100×(5時間後の計測長さmm)/200mm
により算出した。保持率が高いほど製品の製造時や着用時にてポリウレタン弾性繊維のスリップインが少ない。測定は同一サンプルあたり10回測定し、その平均値を用いて以下の評価基準に基づきスリップインの発生率とした。
5:接着性保持率を10回測定した際の平均値が95%以上
4:接着性保持率を10回測定した際の平均値が90%以上95%未満
3:接着性保持率を10回測定した際の平均値が85%以上90%未満
2:接着性保持率を10回測定した際の平均値が80%以上85%未満
1:接着性保持率を10回測定した際の平均値が80%未満
[実施例1]
数平均分子量2000のポリテトラメチレンエーテルグリコール2000gと、4,4’-ジフェニルメタンジイソシアネート400gとを、乾燥窒素雰囲気下、60℃において3時間、攪拌下で反応させて、末端がイソシアネートでキャップされたポリウレタンプレポリマーを得た。これを室温まで冷却した後、ジメチルアセトアミドを加え、溶解してポリウレタンプレポリマー溶液とした。
他方、エチレンジアミン33.8g及びジエチルアミン5.4gを、乾燥ジメチルアセトアミドに溶解した溶液を用意し、これを前記プレポリマー溶液に室温下で添加して、ポリウレタン固形分濃度30質量%、粘度450Pa・s(30℃)のポリウレタン溶液を得た。
ヒンダードフェノール系酸化防止剤としてCyanox1790(登録商標、サイテック・インダストリーズ社製)と紫外線吸収剤としてTinuvin234(登録商標、BASF社製)を、それぞれ、ジメチルアセトアミド10質量%溶液に調整し、前記酸化防止剤の固形分がポリウレタン重合体に対し1.00質量%になるように、また、前記紫外線吸収剤がポリウレタン重合体に対し0.25質量%になるようにポリウレタン重合体に添加・混合し、均一な溶液とした後、室温、減圧下で脱泡し、これを紡糸原液とした。
この紡糸原液を、1つ目のゴデローラーと最終の巻き取り速度の比(=最終巻き取り速度÷1つ目のゴデローラー速度)が1.15になるように巻き取り速度500m/分、熱風温度310℃で、環状配列からなり孔数14個で、同一円内のホール間ピッチが20mmであるの紡口を用いて乾式紡糸し、マルチフィラメントを0.20MPaの圧縮空気による仮撚装置で集束した後、表面処理剤をポリウレタン弾性繊維に対して3.0質量%付与し、紙製の紙管に巻き取り、150dt/14フィラメントのポリウレタン弾性繊維の巻き取りパッケージを得た。尚、表面処理剤としては、ポリジメチルシロキサン67質量%、鉱物油30質量%、アミノ変性シリコーン3.0質量%からなる油剤を用いた。
数平均分子量2000のポリテトラメチレンエーテルグリコール2000gと、4,4’-ジフェニルメタンジイソシアネート400gとを、乾燥窒素雰囲気下、60℃において3時間、攪拌下で反応させて、末端がイソシアネートでキャップされたポリウレタンプレポリマーを得た。これを室温まで冷却した後、ジメチルアセトアミドを加え、溶解してポリウレタンプレポリマー溶液とした。
他方、エチレンジアミン33.8g及びジエチルアミン5.4gを、乾燥ジメチルアセトアミドに溶解した溶液を用意し、これを前記プレポリマー溶液に室温下で添加して、ポリウレタン固形分濃度30質量%、粘度450Pa・s(30℃)のポリウレタン溶液を得た。
ヒンダードフェノール系酸化防止剤としてCyanox1790(登録商標、サイテック・インダストリーズ社製)と紫外線吸収剤としてTinuvin234(登録商標、BASF社製)を、それぞれ、ジメチルアセトアミド10質量%溶液に調整し、前記酸化防止剤の固形分がポリウレタン重合体に対し1.00質量%になるように、また、前記紫外線吸収剤がポリウレタン重合体に対し0.25質量%になるようにポリウレタン重合体に添加・混合し、均一な溶液とした後、室温、減圧下で脱泡し、これを紡糸原液とした。
この紡糸原液を、1つ目のゴデローラーと最終の巻き取り速度の比(=最終巻き取り速度÷1つ目のゴデローラー速度)が1.15になるように巻き取り速度500m/分、熱風温度310℃で、環状配列からなり孔数14個で、同一円内のホール間ピッチが20mmであるの紡口を用いて乾式紡糸し、マルチフィラメントを0.20MPaの圧縮空気による仮撚装置で集束した後、表面処理剤をポリウレタン弾性繊維に対して3.0質量%付与し、紙製の紙管に巻き取り、150dt/14フィラメントのポリウレタン弾性繊維の巻き取りパッケージを得た。尚、表面処理剤としては、ポリジメチルシロキサン67質量%、鉱物油30質量%、アミノ変性シリコーン3.0質量%からなる油剤を用いた。
[実施例2]
環状配列からなり、孔数28個で、同一円内のホール間ピッチが20mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.10で、繊度が310dtになるように紡糸原液の吐出量を調整する以外は実施例1と同様の方法で310dt/28フィラメントのポリウレタン弾性繊維を得た。
[実施例3]
環状配列からなり、孔数36個で、同一円内のホール間ピッチが15mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.20で、繊度が310dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で310dt/36フィラメントのポリウレタン弾性繊維を得た。
環状配列からなり、孔数28個で、同一円内のホール間ピッチが20mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.10で、繊度が310dtになるように紡糸原液の吐出量を調整する以外は実施例1と同様の方法で310dt/28フィラメントのポリウレタン弾性繊維を得た。
[実施例3]
環状配列からなり、孔数36個で、同一円内のホール間ピッチが15mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.20で、繊度が310dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で310dt/36フィラメントのポリウレタン弾性繊維を得た。
[実施例4]
環状配列からなり、孔数36個で、同一円内のホール間ピッチが20mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.10で、繊度が310dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で310dt/36フィラメントのポリウレタン弾性繊維を得た。
環状配列からなり、孔数36個で、同一円内のホール間ピッチが20mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.10で、繊度が310dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で310dt/36フィラメントのポリウレタン弾性繊維を得た。
[実施例5]
環状配列からなり、孔数36個で、同一円内のホール間ピッチが20mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.08で、0.15MPaの圧縮空気で仮撚装置を使用し、310dtになるように紡糸原液の吐出量を調整する以外は実施例1と同様の方法で310dt/36フィラメントのポリウレタン弾性繊維を得た。
環状配列からなり、孔数36個で、同一円内のホール間ピッチが20mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.08で、0.15MPaの圧縮空気で仮撚装置を使用し、310dtになるように紡糸原液の吐出量を調整する以外は実施例1と同様の方法で310dt/36フィラメントのポリウレタン弾性繊維を得た。
[実施例6]
環状配列からなり、孔数36個で同一円内のホール間ピッチが15mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.15で、310dtとなるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で310dt/36フィラメントのポリウレタン弾性繊維を得た。
環状配列からなり、孔数36個で同一円内のホール間ピッチが15mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.15で、310dtとなるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で310dt/36フィラメントのポリウレタン弾性繊維を得た。
[実施例7]
環状配列からなり、孔数72個で同一円内のホール間ピッチが20mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.08で、620dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で620dt/72フィラメントのポリウレタン弾性繊維を得た。
環状配列からなり、孔数72個で同一円内のホール間ピッチが20mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.08で、620dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で620dt/72フィラメントのポリウレタン弾性繊維を得た。
[実施例8]
環状配列からなり、孔数72個で同一円内のホール間ピッチが25mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.08で、0.15MPaの圧縮空気で仮撚装置を使用し、620dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で620dt/72フィラメントのポリウレタン弾性繊維を得た。
環状配列からなり、孔数72個で同一円内のホール間ピッチが25mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.08で、0.15MPaの圧縮空気で仮撚装置を使用し、620dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で620dt/72フィラメントのポリウレタン弾性繊維を得た。
[実施例9]
ポリウレタン弾性繊維の質量に対して、ステアリン酸マグネシウム量が0.07質量%になるように紡糸原液中にステアリン酸マグネシウムを含有させ、環状配列からなり、孔数72個で同一円内のホール間ピッチが20mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.08で、620dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で620dt/72フィラメントのポリウレタン弾性繊維を得た。
ポリウレタン弾性繊維の質量に対して、ステアリン酸マグネシウム量が0.07質量%になるように紡糸原液中にステアリン酸マグネシウムを含有させ、環状配列からなり、孔数72個で同一円内のホール間ピッチが20mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.08で、620dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で620dt/72フィラメントのポリウレタン弾性繊維を得た。
[実施例10]
ポリウレタン弾性繊維の質量に対して、ステアリン酸マグネシウム量が0.30質量%になるように紡糸原液中にステアリン酸マグネシウムを含有させ、環状配列からなり、孔数72個で同一円内のホール間ピッチが20mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.08で、620dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で620dt/72フィラメントのポリウレタン弾性繊維を得た。
ポリウレタン弾性繊維の質量に対して、ステアリン酸マグネシウム量が0.30質量%になるように紡糸原液中にステアリン酸マグネシウムを含有させ、環状配列からなり、孔数72個で同一円内のホール間ピッチが20mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.08で、620dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で620dt/72フィラメントのポリウレタン弾性繊維を得た。
[実施例11]
環状配列からなり、孔数72個で同一円内のホール間ピッチが20mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.20で、620dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で620dt/72フィラメントのポリウレタン弾性繊維を得た。
環状配列からなり、孔数72個で同一円内のホール間ピッチが20mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.20で、620dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で620dt/72フィラメントのポリウレタン弾性繊維を得た。
[実施例12]
環状配列からなり、孔数72個で同一円内のホール間ピッチが20mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.02で、620dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で620dt/72フィラメントのポリウレタン弾性繊維を得た。
環状配列からなり、孔数72個で同一円内のホール間ピッチが20mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.02で、620dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で620dt/72フィラメントのポリウレタン弾性繊維を得た。
[実施例13]
環状配列からなり、孔数72個で同一円内のホール間ピッチが20mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.08で、860dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で860dt/72フィラメントのポリウレタン弾性繊維を得た。
環状配列からなり、孔数72個で同一円内のホール間ピッチが20mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.08で、860dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で860dt/72フィラメントのポリウレタン弾性繊維を得た。
[実施例14]
環状配列からなり、孔数72個で同一円内のホール間ピッチが20mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.15で、940dtになるように紡口からの吐出量を調整した以外は、実施例1と同様の方法で940dt/72フィラメントのポリウレタン弾性繊維を得た。
環状配列からなり、孔数72個で同一円内のホール間ピッチが20mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.15で、940dtになるように紡口からの吐出量を調整した以外は、実施例1と同様の方法で940dt/72フィラメントのポリウレタン弾性繊維を得た。
[実施例15]
環状配列からなり、孔数96個で同一円内のホール間ピッチが15mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.15で、0.15MPaの圧縮空気で仮撚装置を使用し、1280dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で1280dtのポリウレタン弾性繊維を得た。
環状配列からなり、孔数96個で同一円内のホール間ピッチが15mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.15で、0.15MPaの圧縮空気で仮撚装置を使用し、1280dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で1280dtのポリウレタン弾性繊維を得た。
[比較例1]
環状配列からなり、孔数36個で同一円内のホール間ピッチが10mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.20で、0.27MPaの圧縮空気で仮撚装置を使用し、310dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で310dt/36フィラメントのポリウレタン弾性繊維を得た。
環状配列からなり、孔数36個で同一円内のホール間ピッチが10mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.20で、0.27MPaの圧縮空気で仮撚装置を使用し、310dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で310dt/36フィラメントのポリウレタン弾性繊維を得た。
[比較例2]
環状配列からなり、孔数36個で同一円内のホール間ピッチが10mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.30で、0.27MPaの圧縮空気で仮撚装置を使用し、310dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で310dt/36フィラメントのポリウレタン弾性繊維を得た。
環状配列からなり、孔数36個で同一円内のホール間ピッチが10mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.30で、0.27MPaの圧縮空気で仮撚装置を使用し、310dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で310dt/36フィラメントのポリウレタン弾性繊維を得た。
[比較例3]
環状配列からなり、孔数72個で同一円内のホール間ピッチが10mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.20で、0.27MPaの圧縮空気で仮撚装置を使用し、620dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で620dt/72フィラメントのポリウレタン弾性繊維を得た。
環状配列からなり、孔数72個で同一円内のホール間ピッチが10mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.20で、0.27MPaの圧縮空気で仮撚装置を使用し、620dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で620dt/72フィラメントのポリウレタン弾性繊維を得た。
[比較例4]
環状配列からなり、孔数28個で、同一円内のホール間ピッチが20mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.10で、さらに接触圧10Nの圧縮ローラーでマルチフィラメントを圧縮した後にワインダーで巻き取り、繊度が310dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で310dt/28フィラメントのポリウレタン弾性繊維を得た。
環状配列からなり、孔数28個で、同一円内のホール間ピッチが20mmである紡口を使用し、さらに1つ目のゴデローラーと最終の巻き取り速度の比が1.10で、さらに接触圧10Nの圧縮ローラーでマルチフィラメントを圧縮した後にワインダーで巻き取り、繊度が310dtになるように紡糸原液の吐出量を調整した以外は、実施例1と同様の方法で310dt/28フィラメントのポリウレタン弾性繊維を得た。
以上の各実施例及び比較例における、製造条件、得られたポリウレタン弾性繊維の各特性の測定結果等を、以下の表1、2に示す。
本発明に係るポリウレタン弾性繊維を用いれば、ポリウレタン弾性繊維が生産後に倉庫で長期保管された場合であっても、梱包材料を表面処理剤で汚染することなく、また、経日変化による製品の摩擦性の変動もないため使用時の糸切れの頻度を低減でき、生産性を高めることができる。また、ギャザー部材中においてもポリウレタン弾性繊維表面の表面処理剤の付着量が安定しているため、表面処理剤の付着斑や浸み出しによるポリウレタン弾性繊維のスリップインの発生が少ないギャザー部材を提供することができる。また、本発明に係るギャザー部材は、スリップインの発生が少ない。
1 弾性繊維の巻糸体
2 送り出しロール
3 プレドラフトロール
4 巻き取りロール
5 観察部位
6 セラミックフックガイド
7 ベアリングフリーローラー
8 テンションメーター
9 巻き取りロール
2 送り出しロール
3 プレドラフトロール
4 巻き取りロール
5 観察部位
6 セラミックフックガイド
7 ベアリングフリーローラー
8 テンションメーター
9 巻き取りロール
Claims (13)
- マルチフィラメントからなるポリウレタン弾性繊維であって、該マルチフィラメントの断面において、該マルチフィラメントを構成する単糸が互いに接することにより画される空隙部を有し、該空隙部の面積と該マルチフィラメントを構成するすべての単糸の断面積とを合計した面積を総断面積としたとき、下記式:
断面空隙面積率(%)=空隙部の面積/総断面積×100
で求められる断面空隙面積率が15%以上60%以下であることを特徴とするポリウレタン弾性繊維。 - 前記マルチフィラメントの繊度が150dt以上1300dt以下である、請求項1に記載のポリウレタン弾性繊維。
- 前記マルチフィラメントの繊度が150dt以上900dt以下である、請求項1又は2に記載のポリウレタン弾性繊維。
- 前記マルチフィラメントを構成する単糸数が14本以上140本以下である、請求項1~3のいずれか1項に記載のポリウレタン弾性繊維。
- 前記マルチフィラメント断面において、該マルチフィラメントを構成する全ての単糸から計算される平均単糸径を直径とする単糸の大きさよりも大きな前記空隙部が少なくとも1つ存在する、請求項1~4のいずれか1項に記載のポリウレタン弾性繊維。
- デマッチャー試験機により長さ40mmのマルチフィラメントを240mmの長さになるまで伸張し、再び40mmまで戻す操作を200rpmの速度で5000回繰り返しを行った際の単糸ばらけ発生率が20%以下である、請求項1~5のいずれか1項に記載のポリウレタン弾性繊維。
- 前記単糸ばらけ発生率が13%以下である、請求項1~6のいずれか1項に記載のポリウレタン弾性繊維。
- ポリウレタン弾性繊維の重量に対する炭素数10~20の長鎖脂肪酸金属塩の含有率が0~0.2質量%である、請求項1~7のいずれか1項に記載のポリウレタン弾性繊維。
- 請求項1~8のいずれか1項に記載のポリウレタン弾性繊維を含む巻糸体。
- ドラフト3.0における走行応力が0.075g/dt以上0.130g/dt以下である、請求項9に記載の巻糸体。
- 請求項1~8のいずれか1項に記載のポリウレタン弾性繊維を含む布帛。
- 請求項1~8のいずれか1項に記載のポリウレタン弾性繊維が不織布に挟み込まれてなるギャザー部材。
- ポリウレタン弾性繊維を含むギャザー部材であって、該ギャザー部材に含まれるマルチフィラメントからなるポリウレタン弾性繊維の断面において、該マルチフィラメントを構成する単糸が互いに接することにより画される空隙部を有し、該空隙部の面積と該マルチフィラメントを構成するすべての単糸の断面積とを合計した面積を総断面積としたとき、下記式:
断面空隙面積率(%)=空隙部の面積/総断面積×100
で求められるギャザー部材に含まれるポリウレタン弾性繊維の断面空隙面積率が15%以上60%以下であるギャザー部材。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880065333.9A CN111194364B (zh) | 2017-10-18 | 2018-10-15 | 聚氨酯弹性纤维、其绕纱体、及包含其的制品 |
EP18869355.0A EP3699332A4 (en) | 2017-10-18 | 2018-10-15 | ELASTIC POLYURETHANE FIBER, THREAD WINDING IT AND PRODUCT INCLUDING IT |
SG11202002221RA SG11202002221RA (en) | 2017-10-18 | 2018-10-15 | Polyurethane elastic fiber, yarn package of same, and product including same |
JP2019549274A JP7050800B2 (ja) | 2017-10-18 | 2018-10-15 | ポリウレタン弾性繊維、その巻糸体、及びそれを含む製品 |
US16/644,339 US11781249B2 (en) | 2017-10-18 | 2018-10-15 | Polyurethane elastic fiber, yarn package of same, and product including same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-201691 | 2017-10-18 | ||
JP2017201691 | 2017-10-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019078170A1 true WO2019078170A1 (ja) | 2019-04-25 |
Family
ID=66174033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/038363 WO2019078170A1 (ja) | 2017-10-18 | 2018-10-15 | ポリウレタン弾性繊維、その巻糸体、及びそれを含む製品 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11781249B2 (ja) |
EP (1) | EP3699332A4 (ja) |
JP (1) | JP7050800B2 (ja) |
CN (1) | CN111194364B (ja) |
SG (1) | SG11202002221RA (ja) |
TW (1) | TW201923180A (ja) |
WO (1) | WO2019078170A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022054811A1 (ja) * | 2020-09-11 | 2022-03-17 | 旭化成株式会社 | ポリウレタン弾性繊維、並びにそれを含むギャザー部材、及び衛生材料 |
JP7162195B1 (ja) | 2022-02-25 | 2022-10-28 | 東レ・オペロンテックス株式会社 | ポリウレタン弾性繊維 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114929956A (zh) * | 2020-01-08 | 2022-08-19 | 株式会社村田制作所 | 纱线和布 |
JP7410307B2 (ja) * | 2020-08-12 | 2024-01-09 | 旭化成株式会社 | ポリウレタン弾性繊維及びその巻糸体、ギャザー部材、並びに衛生材料 |
CN111962190B (zh) * | 2020-08-18 | 2021-12-28 | 华峰化学股份有限公司 | 一种具有防滑弹性能的聚氨酯弹性纤维及其制备方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5007193A (en) | 1990-01-17 | 1991-04-16 | E. I. Du Pont De Nemours And Company | Fishing lure with improved elastomeric skirt |
JP2628502B2 (ja) * | 1991-12-27 | 1997-07-09 | 鐘紡株式会社 | 複合弾性糸及びその製造方法 |
JPH10310979A (ja) | 1997-05-08 | 1998-11-24 | Matsumoto Yushi Seiyaku Co Ltd | ポリウレタン弾性繊維用改質剤 |
JP2002519528A (ja) | 1998-06-30 | 2002-07-02 | バイエル・フアーザー・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | エラスタン繊維および製造方法 |
KR20040033331A (ko) | 2002-10-09 | 2004-04-28 | 태광산업주식회사 | 스판덱스 건식방사용 방사구금, 이를 이용하여 제조된스판덱스 및 스판덱스의 제조방법 |
CN1542182A (zh) | 2003-04-30 | 2004-11-03 | 远东纺织股份有限公司 | 弹性超细纤维假捻加工纱的制造方法 |
WO2014092088A1 (ja) * | 2012-12-10 | 2014-06-19 | ユニ・チャーム株式会社 | 吸収性物品 |
WO2015125753A1 (ja) | 2014-02-21 | 2015-08-27 | 松本油脂製薬株式会社 | 弾性繊維用処理剤及び弾性繊維 |
JP2015206150A (ja) * | 2014-04-23 | 2015-11-19 | 旭化成せんい株式会社 | ポリウレタン弾性繊維及びその製造方法 |
JP2016035122A (ja) * | 2014-08-04 | 2016-03-17 | 旭化成せんい株式会社 | ギャザー部材 |
JP2016211131A (ja) | 2015-05-12 | 2016-12-15 | 竹本油脂株式会社 | 乾式紡糸ポリウレタン系弾性繊維 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0548364A4 (en) | 1991-05-14 | 1994-06-22 | Kanebo Ltd | Potentially elastic conjugate fiber, production thereof, and production of fibrous structure with elasticity in expansion and contraction |
US5723080A (en) * | 1995-07-27 | 1998-03-03 | Bayer Faser Gmbh | Process for producing splittable elastane yarns |
US6214145B1 (en) | 1996-07-24 | 2001-04-10 | Dupont Toray Co., Ltd. | Coalesced multifilament spandex and method for its preparation |
JP2000054257A (ja) | 1998-07-30 | 2000-02-22 | Uesuke Senko Kk | 中空加工紡績糸の製造方法及び編織物の製造方法 |
JP4204716B2 (ja) | 1999-10-15 | 2009-01-07 | 株式会社クラレ | 自立性多孔性繊維集積体およびその製造方法 |
CN101748541A (zh) | 2008-12-17 | 2010-06-23 | 东丽纤维研究所(中国)有限公司 | 一种膨松感织物及其加工方法 |
KR101348060B1 (ko) * | 2009-02-27 | 2014-01-03 | 엑손모빌 케미칼 패턴츠 인코포레이티드 | 다층 부직 동일-공정계 라미네이트 및 이의 제조 방법 |
CN103270205A (zh) * | 2010-12-28 | 2013-08-28 | 英威达技术有限公司 | 具有可分离、摩擦力降低的长丝的双组分斯潘德克斯 |
JP5719209B2 (ja) | 2011-03-29 | 2015-05-13 | 旭化成せんい株式会社 | ポリウレタン弾性繊維及びその製法 |
JP2015206151A (ja) | 2014-04-23 | 2015-11-19 | 旭化成せんい株式会社 | ポリウレタン弾性繊維及びその製造方法 |
-
2018
- 2018-10-15 CN CN201880065333.9A patent/CN111194364B/zh active Active
- 2018-10-15 SG SG11202002221RA patent/SG11202002221RA/en unknown
- 2018-10-15 WO PCT/JP2018/038363 patent/WO2019078170A1/ja unknown
- 2018-10-15 EP EP18869355.0A patent/EP3699332A4/en active Pending
- 2018-10-15 JP JP2019549274A patent/JP7050800B2/ja active Active
- 2018-10-15 US US16/644,339 patent/US11781249B2/en active Active
- 2018-10-17 TW TW107136449A patent/TW201923180A/zh unknown
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5007193A (en) | 1990-01-17 | 1991-04-16 | E. I. Du Pont De Nemours And Company | Fishing lure with improved elastomeric skirt |
JP2628502B2 (ja) * | 1991-12-27 | 1997-07-09 | 鐘紡株式会社 | 複合弾性糸及びその製造方法 |
JPH10310979A (ja) | 1997-05-08 | 1998-11-24 | Matsumoto Yushi Seiyaku Co Ltd | ポリウレタン弾性繊維用改質剤 |
JP2002519528A (ja) | 1998-06-30 | 2002-07-02 | バイエル・フアーザー・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | エラスタン繊維および製造方法 |
US6492021B1 (en) | 1998-06-30 | 2002-12-10 | Bayer Faser Gmbh | Elastane fiber |
KR20040033331A (ko) | 2002-10-09 | 2004-04-28 | 태광산업주식회사 | 스판덱스 건식방사용 방사구금, 이를 이용하여 제조된스판덱스 및 스판덱스의 제조방법 |
CN1542182A (zh) | 2003-04-30 | 2004-11-03 | 远东纺织股份有限公司 | 弹性超细纤维假捻加工纱的制造方法 |
WO2014092088A1 (ja) * | 2012-12-10 | 2014-06-19 | ユニ・チャーム株式会社 | 吸収性物品 |
WO2015125753A1 (ja) | 2014-02-21 | 2015-08-27 | 松本油脂製薬株式会社 | 弾性繊維用処理剤及び弾性繊維 |
JP2015206150A (ja) * | 2014-04-23 | 2015-11-19 | 旭化成せんい株式会社 | ポリウレタン弾性繊維及びその製造方法 |
JP2016035122A (ja) * | 2014-08-04 | 2016-03-17 | 旭化成せんい株式会社 | ギャザー部材 |
JP2016211131A (ja) | 2015-05-12 | 2016-12-15 | 竹本油脂株式会社 | 乾式紡糸ポリウレタン系弾性繊維 |
Non-Patent Citations (4)
Title |
---|
GOTO, HACHIRO: "Spandex-polyurethane elastic yarn", KOBUNSHI, vol. 12, no. 1, 1963, pages 20 - 26, XP055596877 * |
GOTO, HACHIRO: "Spandex-polyurethane elastic yarn", POLYMER, vol. 12, no. 1, 1 January 1963 (1963-01-01), pages 20 - 26, XP055596877 |
HATTA KIYOSHI, KINARI TOSHIYASU, SHINTAKU SUKENORI, IWAKI NOBUO: "Effect of Yarn Cross Section on Air Drag for Spandex Yarn", JOURNAL OF THE TEXTILE MACHINERY SOCIETY OF JAPAN, vol. 45, no. 1, 1 January 1999 (1999-01-01), JP , pages 6 - 12, XP093075518, ISSN: 0040-5043, DOI: 10.4188/jte1955.45.6 |
RINKE H.: "Elastomeric Fibers Based on Polyurethane", ANGEWANDTE CHEMIE INTERNATIONAL EDITION IN ENGLISH, vol. 1, no. 8, 1 August 1962 (1962-08-01), DE , pages 419 - 424, XP009546851, ISSN: 0570-0833, DOI: 10.1002/anie.196204191 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022054811A1 (ja) * | 2020-09-11 | 2022-03-17 | 旭化成株式会社 | ポリウレタン弾性繊維、並びにそれを含むギャザー部材、及び衛生材料 |
EP4212654A4 (en) * | 2020-09-11 | 2024-04-10 | Asahi Kasei Kabushiki Kaisha | ELASTIC POLYURETHANE FIBER, COLLECTION ELEMENT CONTAINING IT AND SANITARY MATERIAL |
JP7162195B1 (ja) | 2022-02-25 | 2022-10-28 | 東レ・オペロンテックス株式会社 | ポリウレタン弾性繊維 |
JP2023124148A (ja) * | 2022-02-25 | 2023-09-06 | 東レ・オペロンテックス株式会社 | ポリウレタン弾性繊維 |
Also Published As
Publication number | Publication date |
---|---|
CN111194364A (zh) | 2020-05-22 |
SG11202002221RA (en) | 2020-04-29 |
TW201923180A (zh) | 2019-06-16 |
JP7050800B2 (ja) | 2022-04-08 |
EP3699332A4 (en) | 2020-11-25 |
US20200190702A1 (en) | 2020-06-18 |
CN111194364B (zh) | 2022-07-26 |
US11781249B2 (en) | 2023-10-10 |
EP3699332A1 (en) | 2020-08-26 |
JPWO2019078170A1 (ja) | 2020-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7050800B2 (ja) | ポリウレタン弾性繊維、その巻糸体、及びそれを含む製品 | |
TWI433970B (zh) | 包含防黏添加劑之彈性纖維、其用途及其製造方法 | |
KR101876597B1 (ko) | 분리가능한 마찰 감소된 필라멘트를 갖는 이성분 스판덱스 | |
JP5676457B2 (ja) | 2成分スパンデックス | |
TWI294002B (en) | Polyurethane elastic fiber | |
JP7068529B2 (ja) | ポリウレタン弾性繊維及びその巻糸体 | |
JP7402246B2 (ja) | リサイクルポリウレタン弾性繊維、その製法、該リサイクルポリウレタン弾性繊維を含む繊維構造物、ギャザー部材、及び衛生材料 | |
WO2020250994A1 (ja) | ポリウレタン弾性繊維及びそれを含む製品、並びにポリウレタン弾性繊維用表面処理剤 | |
JP7467648B2 (ja) | ポリウレタン弾性繊維、並びにそれを含むギャザー部材、及び衛生材料 | |
JP5853065B1 (ja) | ギャザー部材 | |
US6048613A (en) | Elastic polyurethane yarn and method of manufacturing the same | |
EP4198180A1 (en) | Polyurethane elastic fiber, winding body therefor, gather member, and sanitary material | |
JP4030375B2 (ja) | 接着性良好な紙おむつ用ポリウレタン弾性繊維 | |
JP2020056116A (ja) | ポリウレタン弾性繊維 | |
JP7426461B2 (ja) | ポリウレタン弾性糸巻糸体 | |
JP2005344215A (ja) | 紙おむつ用ポリウレタン弾性繊維 | |
JP2005325497A (ja) | 弾性繊維の処理剤及び弾性繊維 | |
JP2001214332A (ja) | ポリウレタン弾性繊維 | |
JP2006009178A (ja) | ナイロン中空繊維およびその製造方法 | |
JP2018138708A (ja) | ポリウレタン弾性繊維 | |
JP2020051013A (ja) | 潜在捲縮性を有する複合繊維 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18869355 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019549274 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018869355 Country of ref document: EP Effective date: 20200518 |