WO2019065666A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2019065666A1
WO2019065666A1 PCT/JP2018/035552 JP2018035552W WO2019065666A1 WO 2019065666 A1 WO2019065666 A1 WO 2019065666A1 JP 2018035552 W JP2018035552 W JP 2018035552W WO 2019065666 A1 WO2019065666 A1 WO 2019065666A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic impedance
layer
bus bar
elastic wave
idt electrode
Prior art date
Application number
PCT/JP2018/035552
Other languages
English (en)
French (fr)
Inventor
大村 正志
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019545148A priority Critical patent/JP6747604B2/ja
Priority to CN201880062758.4A priority patent/CN111149294B/zh
Priority to KR1020207006824A priority patent/KR102329740B1/ko
Publication of WO2019065666A1 publication Critical patent/WO2019065666A1/ja
Priority to US16/823,440 priority patent/US11509281B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02228Guided bulk acoustic wave devices or Lamb wave devices having interdigital transducers situated in parallel planes on either side of a piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14502Surface acoustic wave [SAW] transducers for a particular purpose
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02842Means for compensation or elimination of undesirable effects of reflections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0514Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps
    • H03H9/0523Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps for flip-chip mounting
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/131Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials consisting of a multilayered structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/132Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials characterized by a particular shape
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • H03H9/14541Multilayer finger or busbar electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/175Acoustic mirrors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/205Constructional features of resonators consisting of piezoelectric or electrostrictive material having multiple resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/566Electric coupling means therefor
    • H03H9/568Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • H03H9/60Electric coupling means therefor
    • H03H9/605Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6406Filters characterised by a particular frequency characteristic
    • H03H9/6413SAW comb filters
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials

Definitions

  • the present invention relates generally to elastic wave devices, and more particularly to an elastic wave device comprising a piezoelectric layer.
  • an elastic wave device an elastic wave device using a plate wave is known (see, for example, Patent Document 1).
  • the elastic wave device described in Patent Document 1 includes a support substrate, an acoustic reflection layer (acoustic impedance layer), a piezoelectric layer, and an IDT (Interdigital Transducer) electrode.
  • the acoustic reflection layer of the elastic wave device described in Patent Document 1 includes a low acoustic impedance layer and a high acoustic impedance layer whose acoustic impedance is higher than that of the low acoustic impedance layer.
  • Patent Document 1 in order to efficiently reflect an elastic wave in the acoustic reflection layer, it is desirable that the acoustic impedance ratio, which is the ratio of the acoustic impedance of the high acoustic impedance layer to the acoustic impedance of the low acoustic impedance layer, be large. Is described. Further, Patent Document 1 discloses a combination of W (tungsten) and SiO 2 (silicon oxide) as a combination of materials that maximizes the acoustic impedance ratio.
  • An object of the present invention is to provide an elastic wave device capable of further enhancing the power resistance while suppressing the deterioration of the frequency characteristic.
  • An elastic wave device includes a substrate, a first acoustic impedance layer and a second acoustic impedance layer, a piezoelectric layer, a first IDT electrode, and a second IDT electrode.
  • the first acoustic impedance layer and the second acoustic impedance layer are formed on the substrate.
  • the piezoelectric layer is formed on the first acoustic impedance layer and the second acoustic impedance layer.
  • the first IDT electrode is formed on the piezoelectric layer, and partially overlaps the first acoustic impedance layer in a plan view from the thickness direction of the piezoelectric layer.
  • the second IDT electrode is formed on the piezoelectric layer, and partially overlaps the second acoustic impedance layer in plan view from the thickness direction.
  • the first IDT electrode and the second IDT electrode are connected in series to each other by a common bus bar shared with each other.
  • the first IDT electrode includes a first bus bar and the common bus bar facing each other, a plurality of electrode fingers connected to the first bus bar and extending toward the common bus bar, and the first bus bar connected to the common bus bar And a plurality of electrode fingers extending toward the
  • the second IDT electrode is connected to the common bus bar and the second bus bar facing each other, a plurality of electrode fingers connected to the common bus bar and extending toward the second bus bar, and the common bus bar connected to the second bus bar And a plurality of electrode fingers extending toward the Each of the first acoustic impedance layer and the second acoustic impedance layer includes at least one high acoustic impedance layer and at least one low acoustic impedance layer having an acoustic impedance lower than that of the at least one high acoustic impedance layer.
  • At least one of the at least one high acoustic impedance layer and the at least one low acoustic impedance layer is a conductive layer. At least a portion of the conductive layer in the first acoustic impedance layer and at least a portion of the conductive layer in the second acoustic impedance layer do not overlap the common bus bar in a plan view from the thickness direction.
  • the conductive layer in the first acoustic impedance layer and the conductive layer in the second acoustic impedance layer are electrically insulated.
  • the elastic wave device it is possible to further enhance the power resistance while suppressing the deterioration of the frequency characteristic.
  • FIG. 1 is a plan view of an elastic wave device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view along line AA of FIG.
  • FIG. 3 is a plan view of an elastic wave device according to Comparative Example 1.
  • FIG. 4 is a cross-sectional view of the elastic wave device of the above, taken along the line AA of FIG.
  • FIG. 5 is a frequency characteristic diagram of the impedance of each of the elastic wave device according to the embodiment of the present invention and the elastic wave device according to the first comparative example.
  • FIG. 6 is a plan view of an elastic wave device according to a first modification of the embodiment of the present invention.
  • FIG. 7 is an equivalent circuit diagram of the above elastic wave device.
  • FIG. 1 is a plan view of an elastic wave device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view along line AA of FIG.
  • FIG. 3 is a plan view of an elastic wave device according to Comparative Example 1.
  • FIG. 4
  • FIG. 8 is a plan view of an elastic wave device according to a second modification of the embodiment of the present invention.
  • FIG. 9 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 10 is a plan view of an elastic wave device according to Comparative Example 2.
  • FIG. 11 is a cross-sectional view of the elastic wave device of the above, taken along the line AA of FIG.
  • FIG. 12 is a frequency characteristic diagram of the impedance of the elastic wave device according to the second modification of the embodiment of the present invention and the elastic wave device according to the second comparison example.
  • FIG. 13 is a partially cutaway plan view of an elastic wave device according to a third modification of the embodiment of the present invention.
  • FIG. 14 is a partially cut away plan view of an elastic wave device according to a fourth modification of the embodiment of the present invention.
  • FIG. 15 is a cross-sectional view of an elastic wave device according to a fifth modification of the embodiment of the present invention.
  • FIG. 16 is a partially cutaway plan view of an elastic wave device according to a sixth modification of the embodiment of the present invention.
  • FIG. 17 is a partially cutaway plan view of an elastic wave device according to a seventh modified example of the embodiment of the present invention.
  • FIG. 18 is a plan view with a part cut away of an elastic wave device relating to a modified example 8 of one embodiment of the present invention.
  • FIG. 19 is a partially cutaway plan view of an elastic wave device according to a modified example 9 of the embodiment of the present invention.
  • FIG. 20 is a cross-sectional view of an elastic wave device according to a modification 10 of the embodiment of the present invention.
  • FIG. 21 is a partially cutaway cross-sectional view of an elastic wave device according to a
  • the elastic wave device 1 is an elastic wave device using a plate wave. As shown in FIGS. 1 and 2, the elastic wave device 1 includes a substrate 2, a first acoustic impedance layer 4A and a second acoustic impedance layer 4B, a piezoelectric layer 5, a first IDT electrode 7A and a second IDT electrode 7B. And. The first acoustic impedance layer 4A and the second acoustic impedance layer 4B are formed on the substrate 2. The piezoelectric layer 5 is formed on the first acoustic impedance layer 4A and the second acoustic impedance layer 4B.
  • the first IDT electrode 7A and the second IDT electrode 7B are formed on the piezoelectric layer 5. That is, in the elastic wave device 1, the functional electrode 6 including the first IDT electrode 7A and the second IDT electrode 7B is formed on the piezoelectric layer 5.
  • the first IDT electrode 7A and the second IDT electrode 7B are connected in series to each other by a common bus bar 70 shared with each other.
  • the first IDT electrode 7A and the second IDT electrode 7B are aligned in a second direction D2 orthogonal to the thickness direction D1 of the substrate 2 (hereinafter, also referred to as a first direction D1).
  • a direction orthogonal to the first direction D1 and the second direction D2 is referred to as a third direction D3.
  • the third direction D3 is a direction along the propagation direction of the elastic wave (in the present embodiment, a plate wave).
  • the elastic wave device 1 is disposed on the other side of the first IDT electrode 7A and the two reflectors 9 disposed on the other side of the first IDT electrode 7A in the third direction D3. And further comprising two reflectors 10.
  • the first IDT electrode 7A, the second IDT electrode 7B, the reflectors 9 and the reflectors 10 are hatched with dots, but these hatchings do not represent a cross section, and the first IDT electrode 7A is not shown.
  • the second IDT electrode 7B, the reflectors 9 and the reflectors 10, and the first acoustic impedance layer 4A and the second acoustic impedance layer 4B are simply attached to facilitate understanding.
  • the substrate 2 is a laminate including a first acoustic impedance layer 4A, a second acoustic impedance layer 4B, a piezoelectric layer 5, a first IDT electrode 7A and a second IDT electrode 7B.
  • a layer including the first acoustic impedance layer 4A and the second acoustic impedance layer 4B and interposed between the substrate 2 and the piezoelectric layer 5 is referred to as an intermediate layer 3.
  • the substrate 2 has a first major surface 21 and a second major surface 22 opposite to each other in the thickness direction D1. The first major surface 21 and the second major surface 22 face each other.
  • the plan view shape of the substrate 2 (the outer peripheral shape when the substrate 2 is viewed in the thickness direction D1) is a rectangular shape, but is not limited to a rectangular shape, and may be, for example, a square shape.
  • the substrate 2 is, for example, a silicon substrate.
  • the thickness of the substrate 2 is preferably 10 ⁇ ( ⁇ : wavelength of elastic wave determined by 2 ⁇ T 1 which is an electrode finger pitch) ⁇ m or more and 180 ⁇ m or less.
  • any thickness such as 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m, 150 ⁇ m, 160 ⁇ m, 170 ⁇ m, 180 ⁇ m, etc. may be used.
  • asperities may be formed on the surface of the silicon substrate on the piezoelectric layer 5 side. Thereby, in the elastic wave device 1, the unnecessary wave can be scattered and the unnecessary wave can be reduced.
  • the height difference of the unevenness is preferably equal to or less than 1 ⁇ 4 ⁇ .
  • the contour shape of the unevenness is appropriately selected from a triangle, an arc, a rectangle and the like.
  • the resistivity of the silicon substrate is, for example, 100 ⁇ cm or more, preferably 1000 ⁇ cm or more, and more preferably 4000 ⁇ cm or more.
  • the surface orientation of the silicon substrate on the piezoelectric layer 5 side can be, for example, (100) surface, (111) surface, (110) surface, or (551) surface.
  • the propagation direction of the elastic wave can be set without being restricted by the plane direction of the silicon substrate.
  • the first acoustic impedance layer 4A and the second acoustic impedance layer 4B are formed on the first major surface 21 of the substrate 2 as shown in FIG. ing.
  • the first acoustic impedance layer 4A faces the first IDT electrode 7A in the thickness direction D1 of the substrate 2.
  • the second acoustic impedance layer 4B faces the second IDT electrode 7B in the thickness direction D1 of the substrate 2.
  • the first acoustic impedance layer 4A has a function of suppressing the elastic wave excited by the first IDT electrode 7A from leaking to the substrate 2.
  • the second acoustic impedance layer 4B has a function of suppressing the elastic wave excited by the second IDT electrode 7B from leaking to the substrate 2.
  • the elastic wave device 1 further includes an insulating layer 30 interposed between the first acoustic impedance layer 4A and the second acoustic impedance layer 4B on the substrate 2.
  • the insulating layer 30 is formed on the substrate 2.
  • the insulating layer 30 is included in the above-described stack.
  • each of the first acoustic impedance layer 4A and the second acoustic impedance layer 4B a plurality of (three) low acoustic impedance layers 42 and a plurality (two) high acoustic impedance layers 41 are provided one by one in the thickness direction D1. It has a stacked structure alternately arranged.
  • the acoustic impedance of the low acoustic impedance layer 42 is lower than the acoustic impedance of the high acoustic impedance layer 41.
  • the first acoustic impedance layer 4 ⁇ / b> A and the second acoustic impedance layer 4 ⁇ / b> B are interposed between the substrate 2 and the piezoelectric layer 5.
  • the two high acoustic impedance layers 41 are arranged in the order from the first main surface 21 of the substrate 2 to the high acoustic impedance layer 411. , And may be referred to as a high acoustic impedance layer 412.
  • the three low acoustic impedance layers 42 may be referred to as a low acoustic impedance layer 420, a low acoustic impedance layer 421, and a low acoustic impedance layer 422 in order of proximity to the first major surface 21 of the substrate 2.
  • the low acoustic impedance layer 420, the high acoustic impedance layer 411, the low acoustic impedance layer 421, the high acoustic impedance layer 412, and the low acoustic impedance layer 422 are arranged in this order.
  • each of the first acoustic impedance layer 4A and the second acoustic impedance layer 4B is an interface between the low acoustic impedance layer 422 and the high acoustic impedance layer 412, an interface between the low acoustic impedance layer 421 and the high acoustic impedance layer 411, At each of the interfaces between the acoustic impedance layer 411 and the low acoustic impedance layer 420, elastic waves (plate waves) from the piezoelectric layer 5 can be reflected.
  • the insulating layer 30 is a region other than the first acoustic impedance layer 4A and the second acoustic impedance layer 4B in the intermediate layer 3 interposed between the substrate 2 and the piezoelectric layer 5 (the first acoustic impedance layer 4A And the second acoustic impedance layer 4B).
  • the insulating layer 30 is formed of the same material as the low acoustic impedance layer 42.
  • the insulating layer 30 has electrical insulation.
  • the material of the plurality of high acoustic impedance layers 41 is, for example, Pt (platinum).
  • the material of the plurality of low acoustic impedance layers 42 is, for example, SiO 2 (silicon oxide).
  • Each of the first acoustic impedance layer 4A and the second acoustic impedance layer 4B includes two conductive layers because each of the plurality of high acoustic impedance layers 41 is formed of Pt.
  • the low acoustic impedance layer 42 may not be a single layer, but may be a laminated structure having a plurality of layers of relatively low acoustic impedance materials. In addition, a stacked structure in which a metal layer made of titanium or nickel or the like is included between a plurality of layers may be employed. Surface roughness of the middle layer 3, the metal layer in the low acoustic impedance layer 42 having a plurality of layers, the surface of the low acoustic impedance layer 42 on the piezoelectric layer 5 side, and the surface on the substrate 2 side (for example, JIS B 0601-2001 Arithmetic mean roughness Ra) defined in ISO 4287-1997 etc.
  • nm is preferably as small as possible, specifically 100 nm or less.
  • the high acoustic impedance layer 41 may not be a single layer, but may be a laminated structure having a plurality of layers made of a material having a relatively high acoustic impedance.
  • a stacked structure in which a metal layer made of titanium or nickel or the like is included between a plurality of layers may be employed.
  • the surface roughness (for example, arithmetic average roughness Ra) of the metal layer in the high acoustic impedance layer 41 having a plurality of layers, the surface of the high acoustic impedance layer 41 on the piezoelectric layer 5 side, and the surface on the substrate 2 side is preferably as small as possible.
  • it is 100 nm or less, and is appropriately selected from, for example, 90 nm, 80 nm, 70 nm, 60 nm, 50 nm, 40 nm, 30 nm, 20 nm, 10 nm, 5 nm, 1 nm and the like.
  • the piezoelectric layer 5 is made of, for example, LiNbO 3 piezoelectric single crystal.
  • the thickness of the piezoelectric layer 5 is equal to or less than 1 ⁇ , where ⁇ is a wavelength of an elastic wave determined by the electrode finger pitch (2 ⁇ T1) of the first IDT electrode 7A and the second IDT electrode 7B.
  • is a wavelength of an elastic wave determined by the electrode finger pitch (2 ⁇ T1) of the first IDT electrode 7A and the second IDT electrode 7B.
  • the electrode finger pitch (2 ⁇ T1) will be described in the section “(2.4) First IDT electrode, second IDT electrode and reflector” described later.
  • the wavelength of the elastic wave is 1.7 ⁇ m
  • the thickness of the piezoelectric layer 5 is 340 nm.
  • the first IDT electrode 7A and the second IDT electrode 7B may be formed on either the plus surface or the minus surface in the polarization axis direction of the piezoelectric layer 5.
  • the main surface of the piezoelectric layer 5 on the side of the first IDT electrode 7A and the second IDT electrode 7B may be a positive surface or a negative surface in the polarization axis direction of the piezoelectric layer 5.
  • the plus plane in the polarization axis direction means a plane in the direction in which the plus side of the polarization component in the piezoelectric layer 5 is directed.
  • the minus face in the polarization axis direction means a face in the direction in which the minus side of the polarization component in the piezoelectric layer 5 is directed.
  • the first IDT electrode 7 A, the second IDT electrode 7 B, the reflectors 9, and the reflectors 10 are formed on the piezoelectric layer 5. More specifically, the first IDT electrode 7A, the second IDT electrode 7B, the reflectors 9 and the reflectors 10 are formed on the main surface of the piezoelectric layer 5 opposite to the intermediate layer 3 side.
  • the first IDT electrode 7A, the second IDT electrode 7B, the reflectors 9 and the reflectors 10 have conductivity.
  • the material of the first IDT electrode 7A, the second IDT electrode 7B, the reflectors 9 and the reflectors 10 is, for example, Al.
  • the thicknesses of the first IDT electrode 7A, the second IDT electrode 7B, the reflectors 9, and the reflectors 10 are, for example, 85 nm.
  • the first IDT electrode 7A and the second IDT electrode 7B are connected in series to each other by a common bus bar 70 shared with each other. Therefore, the functional electrode 6 includes the first IDT electrode 7A and the second IDT electrode 7B connected in series with each other.
  • the first IDT electrode 7A includes a first bus bar 71 and a common bus bar 70 facing each other, a plurality of electrode fingers 81 connected to the first bus bar 71, and a plurality of electrode fingers 82 connected to the common bus bar 70.
  • the second IDT electrode 7B includes a common bus bar 70 and a second bus bar 72 facing each other, a plurality of electrode fingers 81 connected to the common bus bar 70, and a plurality of electrode fingers 82 connected to the second bus bar 72. .
  • the first bus bar 71, the common bus bar 70, and the second bus bar 72 are elongated with the third direction D3 as the longitudinal direction.
  • the first bus bar 71 and the common bus bar 70 face each other in the second direction D2.
  • the plurality of electrode fingers 81 are connected to the first bus bar 71 and extend toward the common bus bar 70.
  • the plurality of electrode fingers 81 extend from the first bus bar 71 along the second direction D2.
  • the tips of the plurality of electrode fingers 81 are apart from the common bus bar 70.
  • the plurality of electrode fingers 81 have the same width in the third direction D3.
  • the plurality of electrode fingers 81 have the same length in the second direction D2.
  • the plurality of electrode fingers 82 are connected to the common bus bar 70 and extend toward the first bus bar 71.
  • the plurality of electrode fingers 82 extend from the common bus bar 70 along the second direction D2.
  • the tips of the plurality of electrode fingers 82 are apart from the first bus bar 71.
  • the plurality of electrode fingers 82 have the same width in the third direction D3. Further, the plurality of electrode fingers 82 have the same length in the second direction D2.
  • the width and length of the plurality of electrode fingers 82 are the same as the width and length of the plurality of electrode fingers 81, respectively.
  • the common bus bar 70 and the second bus bar 72 face each other in the second direction D2.
  • the plurality of electrode fingers 81 are connected to the common bus bar 70 and extend toward the second bus bar 72.
  • the plurality of electrode fingers 81 extend from the common bus bar 70 along the second direction D2.
  • the tips of the plurality of electrode fingers 81 and the second bus bar 72 are separated.
  • the plurality of electrode fingers 81 have the same width in the third direction D3.
  • the plurality of electrode fingers 81 have the same length in the second direction D2.
  • the plurality of electrode fingers 82 are connected to the second bus bar 72 and extend toward the common bus bar 70.
  • the plurality of electrode fingers 82 extend from the second bus bar 72 along the second direction D2.
  • the tips of the plurality of electrode fingers 82 are separated from the common bus bar 70.
  • the plurality of electrode fingers 82 have the same width in the third direction D3. Further, the plurality of electrode fingers 82 have the same length in the second direction D2.
  • the width and length of the plurality of electrode fingers 82 are the same as the width and length of the plurality of electrode fingers 81, respectively.
  • first IDT electrode 7A in the direction (third direction D3) in which the plurality of electrode fingers 81 and the plurality of electrode fingers 82 are orthogonal to the opposing direction (second direction D2) of the first bus bar 71 and the common bus bar 70, One by one alternately spaced apart from one another.
  • second IDT electrode 7B a direction (third direction D3) in which the plurality of electrode fingers 81 and the plurality of electrode fingers 82 are orthogonal to the opposing direction (second direction D2) of the common bus bar 70 and the second bus bar 72. , One by one, alternately spaced from one another.
  • each of the first IDT electrode 7A and the second IDT electrode 7B the electrode finger 81 and the electrode finger 82 adjacent to each other in the third direction D3 are separated.
  • the electrode finger pitch (2 ⁇ T1) of each of the first IDT electrode 7A and the second IDT electrode 7B is, as shown in FIG. 1, corresponding sides of the electrode finger 81 and the electrode finger 82 adjacent to each other in the third direction D3.
  • the value is twice the distance T1 between the left side of each of the electrode finger 81 and the electrode finger 82 parallel to the center line.
  • the value (duty ratio) obtained by dividing the electrode finger width T2 (see FIG. 1) by the distance T1 is 0.5.
  • the electrode finger width T2 is the width of the electrode finger 81 and the electrode finger 82.
  • the electrode finger pitch (2 ⁇ T1) of the first IDT electrode 7A and the electrode finger pitch (2 ⁇ T1) of the second IDT electrode 7B have the same value.
  • the plurality of electrode fingers 81 of the first IDT electrode 7A and the plurality of electrode fingers 82 of the second IDT electrode 7B are in line symmetry with the common bus bar 70 as an axis of symmetry. It is arranged. Further, in the functional electrode 6, the plurality of electrode fingers 82 of the first IDT electrode 7A and the plurality of electrode fingers 81 of the second IDT electrode 7B are arranged in line symmetry with the common bus bar 70 as an axis of symmetry. That is, the functional electrodes 6 in the elastic wave device 1 are line symmetrical with the center line of the common bus bar 70 along the third direction D3 as the axis of symmetry.
  • Each of the first IDT electrode 7A and the second IDT electrode 7B excites an elastic wave (plate wave) in a defined area 11 indicated by an alternate long and short dash line in FIG.
  • the defined area 11 is an area in which the plurality of electrode fingers 81 and the plurality of electrode fingers 82 overlap in the third direction D3.
  • the defined region 11 includes the sides of the electrode finger 81 and the electrode finger 82 located on both sides in the third direction D3 opposite to each other, the envelopes of the tips of the plurality of electrode fingers 81, and the tips of the plurality of electrode fingers 82 And the envelope of.
  • Each reflector 9 and each reflector 10 are grating reflectors.
  • One reflector 9 among the two reflectors 9 is disposed on one side (left side in FIG. 1) of the first IDT electrode 7A in the third direction D3.
  • One of the two reflectors 10 is disposed on the other side (right side in FIG. 1) of the first IDT electrode 7A in the third direction D3.
  • the reflector 9 and the reflector 10 corresponding to the first IDT electrode 7A reflect the elastic wave excited and propagated by the first IDT electrode 7A.
  • the remaining one of the two reflectors 9 is disposed on one side (left side in FIG. 1) of the second IDT electrode 7B in the third direction D3.
  • the remaining one of the two reflectors 10 is disposed on the other side (right side in FIG. 1) of the second IDT electrode 7B in the third direction D3.
  • the reflector 9 and the reflector 10 corresponding to the second IDT electrode 7B reflect the elastic wave excited and propagated by the second IDT electrode 7B.
  • the first IDT electrode 7A in a plan view from the thickness direction D1. Partially overlap the first acoustic impedance layer 4A, and the second IDT electrode 7B partially overlaps the second acoustic impedance layer 4B.
  • elastic wave device 1 at least a part (all in the present embodiment) of the conductive layer (high acoustic impedance layer 41) in first acoustic impedance layer 4A overlaps with common bus bar 70 in plan view from thickness direction D1. I did not. Further, in elastic wave device 1, at least a part (all in the present embodiment) of the conductive layer (high acoustic impedance layer 41) in second acoustic impedance layer 4 B is common bus bar 70 in plan view from thickness direction D 1. It does not overlap with. In the elastic wave device 1, the conductive layer in the first acoustic impedance layer 4A and the conductive layer in the second acoustic impedance layer 4B are electrically insulated. In the elastic wave device 1, a part of the insulating layer 30 is interposed between the conductive layer in the first acoustic impedance layer 4A and the conductive layer in the second acoustic impedance layer 4B.
  • the high acoustic impedance layer 41 (conductive layer) and the second acoustic impedance layer 4B in the first acoustic impedance layer 4A As shown in FIG. 1 in plan view from the thickness direction D1, the high acoustic impedance layer 41 (conductive layer) and the second acoustic impedance layer 4B in the first acoustic impedance layer 4A. And the high acoustic impedance layer 41 (conductive layer) in the width direction of the common bus bar 70 (the second direction D2).
  • the high acoustic impedance layer 41 (conductive layer) in the first acoustic impedance layer 4A is a first bus bar 71 of the first IDT electrode 7A in plan view from the thickness direction D1.
  • the high acoustic impedance layer 41 (conductive layer) in the second acoustic impedance layer 4B corresponds to the common bus bar 70 of the second IDT electrode 7B in plan view from the thickness direction D1. It is located between the two bus bars 72 and is separated from the common bus bar 70.
  • the entire area of the defined area 11 of the first IDT electrode 7A overlaps the conductive layer overlapping the first IDT electrode 7A.
  • the entire area of the defined region 11 of the second IDT electrode 7B overlaps the conductive layer overlapping the second IDT electrode 7B.
  • the area of the overlapping region with the conductive layer is the same.
  • the impedance of the elastic wave device 1 is the impedance of the first resonator including the first IDT electrode 7A, the piezoelectric layer 5 and the first acoustic impedance layer 4A, the second IDT electrode 7B, the piezoelectric layer 5 and the second acoustic impedance layer. And the impedance of the second resonator including 4B.
  • the elastic wave device 1 is configured such that the impedance of the elastic wave device of the reference example provided with a resonator including one IDT electrode, a piezoelectric layer, and one acoustic impedance layer is the same as the above-mentioned combined impedance.
  • the impedances of the first and second resonators are determined. Therefore, it can be said that the first resonator and the second resonator of the elastic wave device 1 are also divided resonators (series divided resonators) in which the resonator of the elastic wave device of the reference example is divided into two resonators.
  • the total area of the area of the first resonator and the area of the second resonator is made larger than the area of the resonator of the elastic wave device of the reference example.
  • the logarithm of the electrode finger 81 and the electrode finger 82 having different potentials is the electrode finger (corresponding to the electrode finger 81) and the electrode finger (corresponding to the electrode finger 82) of the IDT electrode of the elastic wave device of the reference example. (Equivalent) is more than the logarithm.
  • the elastic wave device 100 according to the comparative example 1 will be described based on FIGS. 3 and 4.
  • the elastic wave device 100 according to the comparative example 1 is different from the elastic wave device 1 according to the embodiment in the pattern of the acoustic impedance layer 4 in the intermediate layer 3.
  • the same components as those of the elastic wave device 1 according to the embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • one acoustic impedance layer 4 overlaps the first IDT electrode 7A and the second IDT electrode 7B in plan view from the thickness direction D1, and
  • the common bus bar 70 is also formed to overlap.
  • the frequency characteristic of the impedance of the elastic wave device 1 according to the embodiment is indicated by a solid line C1
  • the frequency characteristic of the impedance of the elastic wave device 100 according to the comparative example 1 is indicated by a broken line C2.
  • the frequency characteristics of the impedance shown in FIG. 5 are the measurement results.
  • the horizontal axis in FIG. 5 is frequency, and the vertical axis is 20 log when the impedance of the elastic wave device 1 according to the embodiment and the elastic wave device 100 according to the comparative example 1 is Z and the magnitude of the impedance is
  • the passband width is reduced compared to the case where the elastic wave device 100 according to comparative example 1 is applied to a ladder type filter. It becomes possible to suppress.
  • the elastic wave device 1 includes the substrate 2, the first acoustic impedance layer 4A and the second acoustic impedance layer 4B, the piezoelectric layer 5, the first IDT electrode 7A, and the second IDT electrode 7B. And.
  • the first acoustic impedance layer 4A and the second acoustic impedance layer 4B are formed on the substrate 2.
  • the piezoelectric layer 5 is formed on the first acoustic impedance layer 4A and the second acoustic impedance layer 4B.
  • the first IDT electrode 7A is formed on the piezoelectric layer 5 and partially overlaps the first acoustic impedance layer 4A in a plan view from the thickness direction D1 of the piezoelectric layer 5.
  • the second IDT electrode 7B is formed on the piezoelectric layer 5 and partially overlaps the second acoustic impedance layer 4B in plan view from the thickness direction D1.
  • the first IDT electrode 7A and the second IDT electrode 7B are connected in series to each other by a common bus bar 70 shared with each other.
  • the first IDT electrode 7A is connected to the opposing first bus bar 71 and the common bus bar 70, a plurality of electrode fingers 81 connected to the first bus bar 71 and extending toward the common bus bar 70, and connected to the common bus bar 70.
  • the second IDT electrode 7B is connected to the common bus bar 70 and the second bus bar 72 facing each other, a plurality of electrode fingers 81 connected to the common bus bar 70 and extending toward the second bus bar 72, and the second bus bar 72 And a plurality of electrode fingers 82 extending toward the bus bar 70.
  • Each of the first acoustic impedance layer 4A and the second acoustic impedance layer 4B has a high acoustic impedance layer 41 and a low acoustic impedance layer 42 whose acoustic impedance is lower than that of the high acoustic impedance layer 41.
  • the high acoustic impedance layer 41 is a conductive layer for each of the first acoustic impedance layer 4A and the second acoustic impedance layer 4B. At least a portion of the conductive layer (high acoustic impedance layer 41) in the first acoustic impedance layer 4A and at least a portion of the conductive layer (high acoustic impedance layer 41) in the second acoustic impedance layer 4B are from the thickness direction D1. It does not overlap with the common bus bar 70 in plan view.
  • the conductive layer (high acoustic impedance layer 41) in the first acoustic impedance layer 4A and the conductive layer (high acoustic impedance layer 41) in the second acoustic impedance layer 4B are electrically insulated. Thereby, in the elastic wave device 1 according to the embodiment, it is possible to further improve the power resistance while suppressing the deterioration of the frequency characteristic.
  • the elastic wave device 1 according to the embodiment includes the first IDT electrode 7A and the second IDT electrode 7B, and the first IDT electrode 7A and the second IDT electrode 7B are connected in series to each other by the common bus bar 70 shared with each other.
  • the “common bus bar 70” is a component common to the first IDT electrode 7A and the second IDT electrode 7B, and the first IDT electrode 7A and the second IDT electrode 7B are not connected via another wiring. It is a conductive bar in which the first IDT electrode 7A and the second IDT electrode 7B are integrally formed. Thus, the first IDT electrode 7A and the second IDT electrode 7B are electrically connected in series by the common bus bar 70.
  • the elastic wave device 1 as compared with the elastic wave device 100 including the acoustic impedance layer 4 overlapping the entire area of the common bus bar 70 in plan view as viewed in the thickness direction D1 as in Comparative Example 1, It becomes possible to improve frequency characteristics.
  • both ends of each of the first and second resonators are capacitively coupled via the parasitic capacitance, and the bandwidth is narrowed.
  • elastic wave device 1 concerning an embodiment, it can control that a zone width becomes narrow.
  • the plurality of high acoustic impedance layers 41 in each of the first acoustic impedance layer 4A and the second acoustic impedance layer 4B is at least one conductive layer (high acoustic impedance layer 41) Contains.
  • the acoustic impedance of the high acoustic impedance layer 41 and the low acoustic impedance layer 42 are It is possible to further increase the acoustic impedance ratio, which is the ratio to the acoustic impedance.
  • the first resonator is configured to include the first IDT electrode 7A, the piezoelectric layer 5 and the first acoustic impedance layer 4A.
  • a second resonator is configured to include the second IDT electrode 7B, the piezoelectric layer 5 and the second acoustic impedance layer 4B.
  • the combined impedance of the impedance of the first resonator and the impedance of the second resonator is a prescribed resonance including one IDT electrode, a piezoelectric layer, and one acoustic impedance layer.
  • the area of the region including the first resonator and the second resonator becomes larger than the area of the specified resonator, so the heat dissipation property is enhanced, and the frequency characteristic is improved. It is possible to improve the power resistance while suppressing the decrease.
  • the conductive layer (high acoustic impedance layer 41) in the first acoustic impedance layer 4A is common to the first bus bar 71 of the first IDT electrode 7A in plan view from the thickness direction D1. It is located between the bus bars 70.
  • the conductive layer (high acoustic impedance layer 41) in the second acoustic impedance layer 4B is located between the common bus bar 70 and the second bus bar 72 of the second IDT electrode 7B in plan view from the thickness direction D1. .
  • “same” is not limited to the case of strictly the same, and may be substantially the same (for example, the ratio of the second area to the first area is 100% ⁇ 10%).
  • the parasitic capacitance generated between the first IDT electrode 7A and the conductive layer in the first acoustic impedance layer 4A, and the conduction in the second IDT electrode 7B and the second acoustic impedance layer 4B It is possible to reduce the difference with the parasitic capacitance generated between layers. Therefore, in the elastic wave device 1 according to the embodiment, the occurrence of the ripple in the frequency characteristic of the impedance can be further suppressed. Moreover, in the elastic wave apparatus 1 which concerns on embodiment, power resistance can be improved more.
  • the thickness of the piezoelectric layer 5 Is less than 1 ⁇ .
  • the elastic wave is a plate wave.
  • the above embodiment is only one of various embodiments of the present invention.
  • the above-mentioned embodiment can be variously changed according to design etc. if the object of the present invention can be achieved.
  • the elastic wave device 1b according to the first modification of the embodiment is elastic according to the embodiment in that a plurality of (five) functional electrodes 6 are provided on the piezoelectric layer 5, as shown in FIGS. It differs from the wave device 1.
  • the same components as those of the elastic wave device 1 according to the embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the elastic wave device 1b according to the first modification is a ladder type filter.
  • An elastic wave device 1b according to the first modification includes an input terminal 15, an output terminal 16, a series arm circuit 12 provided on a first path connecting the input terminal 15 and the output terminal 16, and a first path on a first path.
  • a plurality of (two) parallel arm circuits 13 and 14 provided on a second path connecting the node and the ground (ground terminals 17 and 18) are provided.
  • the series arm circuit 12 has a plurality (three) of series arm resonators S1.
  • Each of the plurality of parallel arm circuits 13 and 14 has a parallel arm resonator P1.
  • the ground terminals 17 and 18 may be shared as one ground.
  • each of the plurality of series arm resonators S1 and the plurality of parallel arm resonators P1 is the first IDT electrode 7A and the second IDT described in the embodiment with reference to FIGS. It is comprised by the resonator containing the electrode 7B, the piezoelectric material layer 5, the 1st acoustic impedance layer 4A, and the 2nd acoustic impedance layer 4B.
  • At least one series arm resonator S1 of the plurality of series arm resonators S1 includes the first IDT electrode 7A, the second IDT electrode 7B, the piezoelectric layer 5 and the first acoustic impedance layer. If it is a resonator including 4A and the second acoustic impedance layer 4B, the same effect as that of the embodiment can be obtained. Further, although the elastic wave device 1b according to the first modification includes the two parallel arm circuits 13 and 14, the number of parallel arm circuits is not limited to two, and may be one, for example. , May be three or more.
  • an elastic wave device 1c according to the second modification of the embodiment includes two first IDT electrodes 7A, and the second IDT electrode 7B is located between the two first IDT electrodes 7A. The point is different from the elastic wave device 1 according to the embodiment.
  • the same components as those of the elastic wave device 1 according to the embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the elastic wave device 1c according to the second modification of the two first IDT electrodes 7A and one second IDT electrode 7B, the first IDT electrode 7A and the second IDT electrode 7B are adjacent to each other in plan view from the thickness direction D1 of the substrate 2. Are electrically connected to each other by a common bus bar 70 shared with each other. Therefore, the elastic wave device 1c according to the second modification includes the two common bus bars 70.
  • one common bus bar 70 is included in the first IDT electrode 7A and the second IDT electrode 7B in the middle of FIG. Further, one common bus bar 70 is included in the middle second IDT electrode 7B and the lower first IDT electrode 7A in FIG.
  • the elastic wave device 100c according to the second comparative example is different from the elastic wave device 1c according to the second modification in the pattern of the acoustic impedance layer 4 in the intermediate layer 3.
  • the same components as those of the elastic wave device 1c according to the second modification are denoted by the same reference numerals, and the description thereof is omitted.
  • one acoustic impedance layer 4 includes two first IDT electrodes 7A and one second IDT electrode 7B. And the two common bus bars 70.
  • the frequency characteristic of the impedance of the elastic wave device 1c according to the second modification is indicated by a solid line E1
  • the frequency characteristic of the impedance of the elastic wave device 100c according to the second comparative example is indicated by a broken line E2.
  • the frequency characteristics of the impedance shown in FIG. 12 are the measurement results.
  • the horizontal axis of FIG. 12 is frequency, and the vertical axis is 20 log when the impedance of the elastic wave device 1c according to the modification 2 and the elastic wave device 100c according to the comparative example 2 are Z and the magnitude of the impedance is
  • the plan view shape of the substrate 2 viewed from the thickness direction D1 of the substrate 2 is not limited to the rectangular shape, and may be, for example, a square shape.
  • the material of the substrate 2 is not limited to Si (silicon), and may be, for example, LiNbO 3 (lithium niobate), LiTaO 3 (lithium tantalate), quartz, glass or the like.
  • the number of high acoustic impedance layers 41 and low acoustic impedance layers 42 in each of the first acoustic impedance layer 4A and the second acoustic impedance layer 4B is not limited to two and three, but is two or more and three or more. It may be. Further, the number of high acoustic impedance layers 41 and the number of low acoustic impedance layers 42 are not limited, and may be the same or the number of low acoustic impedance layers 42 is one more than the number of high acoustic impedance layers 41. There may be fewer.
  • the material of the plurality of high acoustic impedance layers 41 is not limited to Pt (platinum), and may be W (tungsten), for example.
  • the plurality of high acoustic impedance layers 41 are not limited to the same material as each other, and may be different materials, for example.
  • the plurality of low acoustic impedance layers 42 are not limited to the same material as each other, and may be different materials, for example.
  • the material of the piezoelectric layer 5 is not limited to LiNbO 3, for example, it may be a LiTaO 3 or the like.
  • the material of the functional electrode 6, the reflectors 9 and the reflectors 10 is not limited to Al (aluminum), and may be an Al alloy. Moreover, the material of the functional electrode 6, each reflector 9 and each reflector 10 is, for example, Cu (copper), Pt (platinum), Au (gold), Ag (silver), Ti (titanium), Ni (nickel) Or Cr (chromium), Mo (molybdenum), W (tungsten), or an alloy mainly composed of any of these metals.
  • the functional electrode 6, the reflectors 9 and the reflectors 10 are not limited to a single layer structure, and may have a multilayer structure.
  • the reflectors 9 and the reflectors 10 are not essential components.
  • the parallel arm circuit is not limited to the configuration having the parallel arm resonator, and may have, for example, an inductor, a capacitor, and the like.
  • the elastic wave devices 1, 1b and 1c in an example in which the entire area of the defined region 11 of the first IDT electrode 7A overlaps the conductive layer (high acoustic impedance layer 41) in the first acoustic impedance layer 4A in plan view from the thickness direction D1.
  • a part of the defined area 11 may overlap the conductive layer (high acoustic impedance layer 41) in plan view from the thickness direction D1.
  • the entire region of the defined region 11 of the second IDT electrode 7B overlaps the conductive layer (high acoustic impedance layer 41) in the second acoustic impedance layer 4B in plan view from the thickness direction D1.
  • a part of the defined area 11 may overlap the conductive layer (high acoustic impedance layer 41) in plan view from the thickness direction D1.
  • each of the first acoustic impedance layer 4A and the second acoustic impedance layer 4B is not limited to the example in which the high acoustic impedance layer 41 is a conductive layer, and the low acoustic impedance layer 42 may be a conductive layer.
  • the common bus bar 70 in plan view from the thickness direction D1 of the substrate 2 At least one of the conductive layer in the first acoustic impedance layer 4A and the conductive layer in the second acoustic impedance layer 4B may partially overlap.
  • the functional electrode 6 may also include two or more IDT electrodes in addition to the first IDT electrode 7A and the second IDT electrode 7B.
  • the elastic wave device 1b includes at least two of the plurality of resonators (for example, the first IDT electrode 7A, the second IDT electrode 7B, the piezoelectric layer 5, the first acoustic impedance layer 4A, and the second acoustic impedance layer 4B).
  • the propagation directions of the respective resonators may be made different, as in the elastic wave device 1b according to the third modification shown in FIG. That is, assuming that the propagation direction of the elastic wave in the upper resonator in FIG. 13 is X1, and the propagation direction of the elastic wave in the lower resonator in FIG. 13 is X2, the propagation direction X2 is relative to the propagation direction X1.
  • corresponding to the propagation direction can be set to 0 ° or more and less than 90 °. Thereby, in the elastic wave device 1b, the bandwidth can be adjusted.
  • the at least two resonators having different propagation orientations may have different propagation orientations, and may have the same configuration other than the propagation orientation, or may have different configurations other than the propagation orientation. It does not matter.
  • the elastic wave device 1 forms an inclination angle of ⁇ connecting the tips of the plurality of electrode fingers 81 with the propagation direction ⁇ ⁇ of the elastic wave.
  • the propagation direction ⁇ ⁇ of the elastic wave is the propagation direction of the elastic wave excited by the first IDT electrode 7A or the second IDT electrode 7B, and is defined by the Euler angles ( ⁇ , ⁇ , ⁇ ) of the piezoelectric layer 5 .
  • the direction in which the tips of the plurality of electrode fingers 82 are connected is parallel to the direction in which the tips of the plurality of electrode fingers 81 are connected.
  • is 2 °, 4 °, 6 °, 8 °, 10 °, 12 °, 14 °, 16 °, 18 °, 20 °, 22 °, 22 °, 26 °, 28 °, 28 °, 30 °, 32 It is possible to set any angle from among 34 °, 36 °, 38 °, 40 °, 42 °, 44 °, 46 °, 48 ° and 50 °.
  • the elastic wave device 1 is provided with the dielectric layer 19 made of silicon oxide between the first IDT electrode 7A and the second IDT electrode 7B and the piezoelectric layer 5 as in the elastic wave device 1 according to the fifth modification shown in FIG. It may be done. In this case, the bandwidth can be adjusted.
  • the elastic wave device 1 may be configured such that the first IDT electrode 7A and the second IDT electrode 7B can form a piston mode as in the elastic wave device 1 according to the sixth modification shown in FIG.
  • the elastic wave apparatus 1 which concerns on the modification 6 is demonstrated.
  • the tip portion 81a of the electrode finger 81 is in the width direction compared to the central portion 81c.
  • the base end portion 81 b of the electrode finger 81 includes a wide width portion 811 having a large width direction dimension as compared with the central portion 81 c.
  • a gap 85 is formed between the electrode finger 81 and the common bus bar 70.
  • the tip portion 82a of the electrode finger 82 has a width compared to the central portion 82c.
  • the base end portion 82b of the electrode finger 82 includes a wide width portion 821 having a larger width direction size than the central portion 82c.
  • a gap 86 is formed between the electrode finger 82 and the first bus bar 71.
  • the first bus bar 71 has a plurality of openings 711 aligned along the length direction of the first bus bar 71.
  • the first bus bar 71 includes an inner bus bar portion 713, a central bus bar portion 714, and an outer bus bar portion 712.
  • the inner bus bar portion 713 is located closer to the electrode finger 81 than the opening 711.
  • the central bus bar portion 714 has the plurality of openings 711 described above.
  • the outer bus bar portion 712 is located on the opposite side of the inner bus bar portion 713 across the central bus bar portion 714.
  • the common bus bar 70 has a plurality of openings 701A.
  • the plurality of openings 701A are aligned along the longitudinal direction of the common bus bar 70.
  • the common bus bar 70 includes an inner bus bar portion 703A of the first IDT electrode 7A, a central bus bar portion 704A, and an outer bus bar portion 702A.
  • the tip portion 81a of the electrode finger 81 has a width compared to the central portion 81c.
  • the base end portion 81 b of the electrode finger 81 includes a wide width portion 811 having a larger width direction size than the central portion 81 c.
  • a gap 87 is formed between the electrode finger 81 and the second bus bar 72.
  • the tip portion 82a of the electrode finger 82 is compared to the central portion 82c.
  • the base end portion 82b of the electrode finger 82 includes a wide width portion 821 having a large width direction size compared to the central portion 82c.
  • a gap 88 is formed between the electrode finger 82 and the common bus bar 70.
  • the second bus bar 72 has a plurality of openings 721 aligned along the length direction of the second bus bar 72.
  • the second bus bar 72 includes an inner bus bar portion 723, a central bus bar portion 724, and an outer bus bar portion 722.
  • the inner bus bar portion 723 is positioned closer to the electrode finger 82 than the opening 721.
  • the central bus bar portion 724 has the plurality of openings 721 described above.
  • the outer bus bar portion 722 is located on the opposite side of the inner bus bar portion 723 across the central bus bar portion 724.
  • the common bus bar 70 has a plurality of openings 701B.
  • the plurality of openings 701B are aligned along the longitudinal direction of the common bus bar 70.
  • the common bus bar 70 includes an inner bus bar portion 703B of the second IDT electrode 7B, a central bus bar portion 704B, and an outer bus bar portion 702B.
  • FIG. 16 in a plan view from the thickness direction of elastic wave device 1, 11 regions A1 to A11 related to first IDT electrode 7A and 11 regions B1 to B11 related to second IDT electrode 7B are included. There is. However, the area A11 and the area B11 are common areas.
  • the eleven regions A1 to A11 include portions different from each other in the piezoelectric layer 5 and the first IDT electrode 7A.
  • the ten regions B1 to B10 include portions different from each other in the piezoelectric layer 5 and the second IDT electrode 7B.
  • the velocity (sound velocity) of the elastic wave propagating in each of the regions A1 to A11 and B1 to B10 is schematically shown.
  • a region A6 positioned at the center in the second direction D2 among the above-mentioned eleven regions A1 to A11 constitutes a first central region.
  • the first central region includes central portions 81 c of the plurality of electrode fingers 81 and central portions 82 c of the plurality of electrode fingers 82.
  • the first central region is a region in which central portions 81c of the plurality of electrode fingers 81 and central portions 82c of the plurality of electrode fingers 82 overlap in the third direction D3.
  • the regions A1 and A11 located at both ends of the second direction D2 among the above-mentioned eleven regions A1 to A11 constitute a first outer bus bar region.
  • the area A1 includes the outer bus bar portion 712 of the first bus bar 71.
  • Region A11 includes outer bus bar portion 702A of common bus bar 70. In the first outer bus bar region, the acoustic velocity of the elastic wave is slower than in the first central region.
  • the regions A2 and A10 positioned secondly from both ends of the second direction D2 constitute a first connection region.
  • Region A 2 includes a plurality of openings 711 of first bus bar 71.
  • Region A10 includes a plurality of openings 701A of common bus bar 70.
  • the acoustic velocity of the elastic wave is faster than in the first outer bus bar region and the first central region.
  • Region A 3 includes inner bus bar portion 713 of first bus bar 71.
  • Region A9 includes inner bus bar portion 703A of common bus bar 70.
  • the acoustic velocity of the elastic wave is later than in the first central region.
  • the regions A4 and A8, which are the fourth from the both ends of the second direction D2 constitute a first gap region.
  • the region A4 includes proximal end portions 81b of the plurality of electrode fingers 81 and a plurality of gaps 86.
  • the region A8 includes proximal ends 82b of the plurality of electrode fingers 82 and a plurality of gaps 85.
  • the acoustic velocity of the elastic wave is faster than in the first inner bus bar region and the first central region.
  • the regions A5 and A7 positioned fifth from the both ends of the second direction D2 out of the above-described 11 regions A1 to A11 constitute the first wide region.
  • the region A5 includes a wide width portion 811 of the base end 81b of the plurality of electrode fingers 81 and a wide width portion 822 of the tip portions 82a of the plurality of electrode fingers 82.
  • the region A7 includes the wide width portion 812 of the tip end portion 81a of the plurality of electrode fingers 81 and the wide width portion 821 of the base end portion 82b of the plurality of electrode fingers 82.
  • the acoustic velocity of the elastic wave is slower than in the first central area.
  • the region B6 positioned at the center in the second direction D2 constitutes a second central region.
  • the second central region includes central portions 81 c of the plurality of electrode fingers 81 and central portions 82 c of the plurality of electrode fingers 82.
  • the second central region is a region in which central portions 81c of the plurality of electrode fingers 81 and central portions 82c of the plurality of electrode fingers 82 overlap in the third direction D3.
  • the regions B1 and B11 located at both ends of the second direction D2 among the above-mentioned eleven regions B1 to B11 constitute a second outer bus bar region.
  • Region B 1 includes outer bus bar portion 722 of second bus bar 72.
  • Region B11 includes outer bus bar portion 702B of common bus bar 70.
  • the acoustic velocity of the elastic wave is slower than in the second central region.
  • the regions B2 and B10 positioned second from the both ends of the second direction D2 out of the above-mentioned 11 regions B1 to B11 constitute a second connection region.
  • Region B 2 includes a plurality of openings 721 of second bus bar 72.
  • Region B10 includes a plurality of openings 701B of common bus bar 70.
  • the acoustic velocity of the elastic wave is faster than in the second outer bus bar region and the second central region.
  • regions B3 and B9 which are the third from the both ends of second direction D2 among the above-mentioned 11 regions B1 to B11, constitute the second inner bus bar region doing.
  • the region B3 includes the inner bus bar portion 723 of the second bus bar 72.
  • Region B9 includes inner bus bar portion 703B of common bus bar 70.
  • the acoustic velocity of the elastic wave is later than in the second central region.
  • the regions B4 and B8, which are the fourth from the both ends of the second direction D2 among the 11 regions B1 to B11, constitute a second gap region.
  • the region B4 includes proximal end portions 81b of the plurality of electrode fingers 81 and a plurality of gaps 87.
  • the region B ⁇ b> 8 includes proximal ends 82 b of the plurality of electrode fingers 82 and a plurality of gaps 88.
  • the acoustic velocity of the elastic wave is faster than in the second inner bus bar region and the second central region.
  • the regions B5 and B7 positioned fifth from the both ends of the second direction D2 out of the above-described 11 regions B1 to B11 constitute the second wide region.
  • the region B5 includes a wide width portion 811 of the proximal end 81b of the plurality of electrode fingers 81 and a wide width portion 822 of the tip portions 82a of the plurality of electrode fingers 82.
  • the region B7 includes the wide portion 812 of the tip end portion 81a of the plurality of electrode fingers 81 and the wide portion 821 of the base end portion 82b of the plurality of electrode fingers 82.
  • the acoustic velocity of the elastic wave is slower than in the second central area.
  • the elastic wave device 1 since the second IDT electrode 7B is configured as described above, low sound velocity regions (region B5 and region B7) exist outside the second central region (region B6).
  • the high sound velocity area B2 and the high sound velocity area B10 exist outside the low sound velocity area. Therefore, in elastic wave device 1, it becomes possible to form piston mode and can control transverse mode ripple effectively.
  • the elastic wave device 1 In the elastic wave device 1 according to the sixth modification, at least one of each of the conductive layer (high acoustic impedance layer 41) in the first acoustic impedance layer 4A and the conductive layer (high acoustic impedance layer 41) in the second acoustic impedance layer 4B.
  • the portions do not overlap the common bus bar 70 in plan view from the thickness direction D1 (see FIG. 2) of the substrate 2 (see FIG. 2).
  • the conductive layer (high acoustic impedance layer 41) in the first acoustic impedance layer 4A is a plan view from the thickness direction D1 (see FIG. 2) of the substrate 2 (see FIG.
  • the conductive layer (high acoustic impedance layer 41) in the second acoustic impedance layer 4B is a part of the region B1 in plan view from the thickness direction D1 (see FIG. 2) of the substrate 2 (see FIG. 2). It overlaps with B2 to B10 and part of the area B11.
  • acoustic energy can be confined more efficiently in the vicinity of the main surface of the piezoelectric layer 5.
  • the conductive layer (high acoustic impedance layer 41) in the first acoustic impedance layer 4A is the thickness direction D1 of the substrate 2 (see FIG. 2).
  • a part of the area A2, an area A3 to A9, and a part of the area A10 overlap.
  • the conductive layer (high acoustic impedance layer 41) in the second acoustic impedance layer 4B is a part of the region B2 in plan view from the thickness direction D1 (see FIG. 2) of the substrate 2 (see FIG. 2). It overlaps with B3 to B9 and part of the area B10.
  • acoustic energy can be efficiently confined in the vicinity of the main surface of the piezoelectric layer 5 and the influence of parasitic capacitance is more appropriate than that of the elastic wave device 1 according to the sixth modification. Can be suppressed.
  • the conductive layer (high acoustic impedance layer 41) in the first acoustic impedance layer 4A has a thickness direction D1 (see FIG. 2) of the substrate 2 (see FIG. 2).
  • a part of the area A3, an area A4 to A8, and a part of the area A9 overlap.
  • the conductive layer (high acoustic impedance layer 41) in the second acoustic impedance layer 4B is a part of the region B3 in plan view from the thickness direction D1 (see FIG. 2) of the substrate 2 (see FIG. 2).
  • B4 to B8 overlap with part of the area B9.
  • acoustic energy can be appropriately confined in the vicinity of the main surface of the piezoelectric layer 5 and the influence of parasitic capacitance is suppressed more than the elastic wave device 1 according to the seventh modification. be able to.
  • the conductive layer (high acoustic impedance layer 41) in the first acoustic impedance layer 4A has a thickness direction D1 (see FIG. 2) of the substrate 2 (see FIG. 2).
  • a part of the area A4, an area A5 to A7, and a part of the area A8 overlap.
  • the conductive layer (high acoustic impedance layer 41) in the second acoustic impedance layer 4B is a part of the region B4 in a plan view from the thickness direction D1 (see FIG. 2) of the substrate 2 (see FIG. 2).
  • the acoustic energy can be confined to the minimum necessary and in the vicinity of the main surface of the piezoelectric layer 5 and the influence of the parasitic capacitance is more than that of the elastic wave device 1 according to the modification 8. It can be suppressed.
  • the elastic wave device 1 according to the modification 10 is, as shown in FIG. 20, a plurality of (two in the illustrated example) wiring layers 33A and 33B, an insulating layer 34, a spacer layer (support layer) 35, and a cover member 36 may further be provided.
  • the package PA1 in which the first IDT electrode 7A, the second IDT electrode 7B, the piezoelectric layer 5 and the intermediate layer 3 include the substrate 2, the insulating layer 34, the spacer layer 35 and the cover member 36. May be housed in
  • the wiring layer 33A is electrically connected to the first bus bar 71 of the first IDT electrode 7A.
  • the wiring layer 33B is electrically connected to the second bus bar 72 of the second IDT electrode 7B.
  • the insulating layer 34 is formed on the first major surface 21 of the substrate 2.
  • the insulating layer 34 surrounds the intermediate layer 3 and the piezoelectric layer 5.
  • the spacer layer 35 is at least partially formed on the insulating layer 34.
  • the spacer layer 35 surrounds the intermediate layer 3 and the piezoelectric layer 5 in a plan view from the thickness direction D1 of the substrate 2.
  • the cover member 36 is disposed on the spacer layer 35. In the elastic wave device 1, the spacer layer 35 is interposed between the insulating layer 34 and the circumferential portion of the cover member 36.
  • the cover member 36 is separated from the first IDT electrode 7A and the second IDT electrode 7B in the thickness direction D1.
  • the elastic wave device 1 according to the modification 10 includes a cover member 36, a spacer layer 35, an insulating layer 34, and a laminate on the substrate 2 (a laminate including the intermediate layer 3 and the piezoelectric layer 5). It has an enclosed space SP1.
  • the insulating layer 34 has electrical insulation.
  • the insulating layer 34 is formed on the first major surface 21 of the substrate 2 along the outer periphery of the substrate 2.
  • the insulating layer 34 surrounds the side surface of the intermediate layer 3 and the side surface of the piezoelectric layer 5. Here, a part of the insulating layer 34 overlaps the circumferential portion of the piezoelectric layer 5.
  • the side surface of the intermediate layer 3 and the side surface of the piezoelectric layer 5 are covered with an insulating layer 34.
  • the material of the insulating layer 34 is, for example, a synthetic resin such as epoxy resin or polyimide.
  • the wiring layer 33A overlaps a part of the first IDT electrode 7A, a part of the piezoelectric layer 5, and a part of the insulating layer 34 in the thickness direction D1 of the substrate 2.
  • the wiring layer 33 B overlaps a part of the second IDT electrode 7 B, a part of the piezoelectric layer 5, and a part of the insulating layer 34 in the thickness direction D 1 of the substrate 2.
  • the spacer layer 35 surrounds the piezoelectric layer 5 in plan view.
  • the spacer layer 35 overlaps the insulating layer 34 in the thickness direction D1 of the substrate 2.
  • a part of the spacer layer 35 also covers a portion formed on the insulating layer 34 in each of the wiring layers 33A and 33B.
  • the spacer layer 35 has a first portion formed directly on the insulating layer 34 and a second portion formed indirectly on the insulating layer 34 via a part of the wiring layers 33A and 33B. including.
  • the spacer layer 35 has electrical insulation.
  • the material of the spacer layer 35 is, for example, a synthetic resin such as epoxy resin or polyimide.
  • the material of the spacer layer 35 preferably has the same main component as the material of the insulating layer 34, and more preferably the same material.
  • the cover member 36 is flat. The cover member 36 is separated from the first IDT electrode 7A and the second IDT electrode 7B in the thickness direction D1.
  • the elastic wave device 1 according to the modification 10 has a plurality of (two in the illustrated example) external connection electrodes 37A and 37B.
  • the external connection electrode 37A is electrically connected to the first bus bar 71 of the first IDT electrode 7A.
  • the wiring layer 33A described above electrically connects the external connection electrode 37A and the first IDT electrode 7A.
  • the external connection electrode 37B is electrically connected to the second bus bar 72 of the second IDT electrode 7B.
  • the wiring layer 33B described above electrically connects the external connection electrode 37B to the second IDT electrode 7B.
  • the external connection electrodes 37A, 37B are formed on the through electrode portions 38A, 38B penetrating the spacer layer 35 and the cover member 36 in the thickness direction D1 of the substrate 2 and 39A formed on the through electrode portions 38A, 38B. , 39B, and.
  • the spacer layer 35 is formed on the insulating layer 34.
  • the spacer layer 35 is formed on the first major surface 21 of the substrate 2
  • the layer 5 may be surrounded.
  • the configuration of the package PA1 of the elastic wave device 1 according to the modification 10 may be appropriately changed to be applied to the elastic wave device 1b according to the modification 1.
  • the spacer layer 35 is formed on the first main surface 21 of the substrate 2 and the wiring layer 33B to surround the piezoelectric layer 5.
  • the outer surface 351 of the spacer layer 35 has a recess 353.
  • the substrate 2 has electrical insulation.
  • the material of the substrate 2 is, for example, LiNbO 3 (lithium niobate), LiTaO 3 (lithium tantalate), quartz, glass or the like.
  • the elastic wave device 1 according to the modification 12 includes one or more intermediate support layers (second spacer layer) positioned between the cover member 36 and the substrate 2 inside the spacer layer 35 (first spacer layer). have.
  • a plurality of elastic wave devices 1 are provided as elastic wave devices, and a plurality of elastic wave devices 1 share a single substrate 2, and a resin layer connecting the spacer layers 35 of adjacent elastic wave devices 1. May be included.
  • the resin layer is the same material as the spacer layer 35, and is integrally formed with the spacer layer 35.
  • the elastic wave device 1 further includes a resin layer extending from the spacer layer 35 positioned inside the outer periphery of the rectangular substrate 2 to the corner portion of the substrate 2 in plan view from the thickness direction D1 of the substrate 2. May be
  • An elastic wave device (1; 1b; 1c) includes a substrate (2), a first acoustic impedance layer (4A) and a second acoustic impedance layer (4B), and a piezoelectric layer (5). , And a first IDT electrode (7A) and a second IDT electrode (7B). The first acoustic impedance layer (4A) and the second acoustic impedance layer (4B) are formed on the substrate (2). The piezoelectric layer (5) is formed on the first acoustic impedance layer (4A) and the second acoustic impedance layer (4B).
  • the first IDT electrode (7A) is formed on the piezoelectric layer (5), and partially overlaps the first acoustic impedance layer (4A) in plan view from the thickness direction (D1) of the piezoelectric layer (5) Do.
  • the second IDT electrode (7B) is formed on the piezoelectric layer (5), and partially overlaps the second acoustic impedance layer (4B) in plan view from the thickness direction (D1).
  • the first IDT electrode (7A) and the second IDT electrode (7B) are connected in series to each other by a common bus bar (70) shared with each other.
  • the first IDT electrode (7A) includes a first bus bar (71) and a common bus bar (70) facing each other, and a plurality of electrode fingers connected to the first bus bar (71) and extending toward the common bus bar (70) 81) and a plurality of electrode fingers (82) connected to the common bus bar (70) and extending toward the first bus bar (71).
  • the second IDT electrode (7B) includes a common bus bar (70) and a second bus bar (72) facing each other, and a plurality of electrode fingers connected to the common bus bar (70) and extending toward the second bus bar (72) 81) and a plurality of electrode fingers (82) connected to the second bus bar (72) and extending towards the common bus bar (70).
  • Each of the first acoustic impedance layer (4A) and the second acoustic impedance layer (4B) has at least one high acoustic impedance layer (41) and at least one acoustic impedance lower than the at least one high acoustic impedance layer (41) And one low acoustic impedance layer (42).
  • at least one of the at least one high acoustic impedance layer (41) and the at least one low acoustic impedance layer (42) is a conductive layer .
  • each of the conductive layer (high acoustic impedance layer 41) in the first acoustic impedance layer (4A) and the conductive layer (high acoustic impedance layer 41) in the second acoustic impedance layer (4B) It does not overlap with the common bus bar (70) in plan view from D1).
  • the conductive layer (high acoustic impedance layer 41) in the first acoustic impedance layer (4A) and the conductive layer (high acoustic impedance layer 41) in the second acoustic impedance layer (4B) are electrically insulated.
  • the elastic wave device (1; 1b; 1c) according to the first aspect, it is possible to further enhance the power resistance while suppressing the deterioration of the frequency characteristic.
  • the at least one high acoustic impedance layer (41) includes a plurality of high acoustic impedance layers (41).
  • the at least one low acoustic impedance layer (42) comprises a plurality of low acoustic impedance layers (42).
  • a plurality of high acoustic impedance layers (41) and a plurality of low acoustic impedance layers (42) are alternately arranged in layers in the thickness direction (D1).
  • the elastic wave device (1; 1b; 1c) according to the third aspect is, in the second aspect, a plurality of high acoustic impedance layers in each of the first acoustic impedance layer (4A) and the second acoustic impedance layer (4B) (41) includes a conductive layer (high acoustic impedance layer 41).
  • the acoustic wave device (1; 1b; 1c) since it is not necessary to adopt a conductive material as the material of the low acoustic impedance layer (42), the acoustic wave device (1; 1b; 1c) It is possible to make the acoustic impedance ratio, which is the ratio of the impedance and the acoustic impedance of the low acoustic impedance layer (42), larger.
  • the elastic wave device (1; 1b; 1c) according to the fourth aspect is any one of the first to third aspects, wherein the first IDT electrode (7A; 7AA), the piezoelectric layer (5) and the first acoustic wave
  • the first resonator is configured to include the impedance layer (4A).
  • a second resonator is configured to include the second IDT electrode (7B; 7BB), the piezoelectric layer (5), and the second acoustic impedance layer (4B).
  • the combined impedance of the impedance of the first resonator and the impedance of the second resonator is a prescribed resonance including one IDT electrode, a piezoelectric layer, and one acoustic impedance layer. It is a divided resonator in which a specified resonator is divided into two resonators so as to have the same impedance as that of a child.
  • the area of the region including the first resonator and the second resonator is larger than the area of the specified resonator, so the heat dissipation is high. As a result, it is possible to enhance the power resistance while suppressing the deterioration of the frequency characteristic.
  • the elastic wave device (1; 1b; 1c) according to the fifth aspect is the conductive layer (high acoustic impedance layer 41) in the first acoustic impedance layer (4A) according to any one of the first to fourth aspects
  • the first IDT electrode (7A; 7AA) is located between the first bus bar (71) and the common bus bar (70) in plan view from the thickness direction (D1).
  • the conductive layer (high acoustic impedance layer 41) in the second acoustic impedance layer (4B) is the second common bus bar (70) of the second IDT electrode (7B; 7BB) and the second in a plan view from the thickness direction (D1). It is located between the bus bars (72).
  • the elastic wave device (1; 1b; 1c) according to the fifth aspect, it is possible to further suppress the deterioration of the frequency characteristics.
  • the elastic wave device (1; 1b; 1c) is the first IDT electrode (7A; 7AA) in a plan view from the thickness direction (D1) in any one of the first to fifth aspects. And the area of the overlapping region of the first acoustic impedance layer (4A) and the conductive layer (high acoustic impedance layer 41), and the conductive layer (high) of the second IDT electrode (7B; 7BB) and the second acoustic impedance layer (4B). The area of the overlapping region with the acoustic impedance layer 41) is the same.
  • the occurrence of ripples in the frequency characteristics of impedance can be further suppressed.
  • An elastic wave device (1b) is a serial arm provided in a first path connecting the input terminal (15) and the output terminal (16) according to any one of the first to sixth aspects.
  • a circuit (12) and parallel arm circuits (13, 14) provided on a second path connecting a node on the first path and the ground.
  • the series arm circuit (12) has a plurality of series arm resonators (S1).
  • At least one series arm resonator (S1) of the plurality of series arm resonators (S1) includes a first IDT electrode (7A), a second IDT electrode (7B), a piezoelectric layer (5), and a first acoustic impedance layer (5). It is a resonator including 4A) and a second acoustic impedance layer (4B).
  • the elastic wave device (1b) according to the seventh aspect it is possible to further enhance the power resistance while suppressing the deterioration of the frequency characteristic.
  • the elastic wave apparatus (1b) which concerns on a 8th aspect is a 7th aspect
  • parallel arm circuit (13, 14) has a parallel arm resonator (P1).
  • the elastic wave device (1; 1b; 1c) according to the ninth aspect has the electrode finger pitch (2) of the first IDT electrode (7A) and the second IDT electrode (7B) in any one of the first to eighth aspects.
  • the wavelength of the elastic wave determined by ⁇ T1) is ⁇
  • the thickness of the piezoelectric layer (5) is 1 ⁇ or less.
  • a plate wave can be excited.
  • the elastic wave is a plate wave.
  • the elastic wave device (1; 1a; 1b) according to the tenth aspect can be used as an elastic wave device using plate waves.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

周波数特性の低下を抑制しつつ耐電力性をより高める。第1IDT電極(7A)及び第2IDT電極(7B)は、互いに共有している共通バスバー(70)により互いに直列接続されている。第1音響インピーダンス層(4A)及び第2音響インピーダンス層(4B)の各々について、少なくとも1つの高音響インピーダンス層(41)及び少なくとも1つの低音響インピーダンス層の少なくとも1つが導電層である。第1音響インピーダンス層(4A)における導電層の少なくとも一部と第2音響インピーダンス層(4B)における導電層の少なくとも一部とが、圧電体層(5)の厚さ方向からの平面視において共通バスバー(70)と重複していない。第1音響インピーダンス層(4A)における導電層と第2音響インピーダンス層(4B)における導電層とが電気的に絶縁されている。

Description

弾性波装置
 本発明は、一般に弾性波装置に関し、より詳細には、圧電体層を備える弾性波装置に関する。
 従来、弾性波装置として、板波を用いた弾性波装置が知られている(例えば、特許文献1参照)。
 特許文献1に記載された弾性波装置は、支持基板と、音響反射層(音響インピーダンス層)と、圧電体層と、IDT(Interdigital Transducer)電極と、を備えている。
 特許文献1に記載された弾性波装置の音響反射層は、低音響インピーダンス層と、低音響インピーダンス層よりも音響インピーダンスが高い高音響インピーダンス層と、を有している。
 特許文献1には、音響反射層において弾性波を効率的に反射させるには、高音響インピーダンス層の音響インピーダンスと、低音響インピーダンス層の音響インピーダンスとの比である音響インピーダンス比が大きいほうが望ましい旨が記載されている。また、特許文献1には、音響インピーダンス比が最大となる材料の組み合わせとして、W(タングステン)とSiO2(酸化ケイ素)との組み合わせが開示されている。
国際公開第2012/086441号
 IDT電極を備える弾性波装置の分野においては、良好な周波数特性を維持しつつ耐電力性をより高めることが望まれている。
 本発明の目的は、周波数特性の低下を抑制しつつ耐電力性をより高めることが可能な弾性波装置を提供することにある。
 本発明の一態様に係る弾性波装置は、基板と、第1音響インピーダンス層及び第2音響インピーダンス層と、圧電体層と、第1IDT電極と、第2IDT電極と、を備える。前記第1音響インピーダンス層及び前記第2音響インピーダンス層は、前記基板上に形成されている。前記圧電体層は、前記第1音響インピーダンス層及び前記第2音響インピーダンス層上に形成されている。前記第1IDT電極は、前記圧電体層上に形成され、前記圧電体層の厚さ方向からの平面視において、前記第1音響インピーダンス層と一部重複する。前記第2IDT電極は、前記圧電体層上に形成され、前記厚さ方向からの平面視において、前記第2音響インピーダンス層と一部重複する。前記第1IDT電極及び前記第2IDT電極は、互いに共有している共通バスバーにより互いに直列接続されている。前記第1IDT電極は、対向し合う第1バスバー及び前記共通バスバーと、前記第1バスバーに接続され前記共通バスバーに向かって延びている複数の電極指と、前記共通バスバーに接続され前記第1バスバーに向かって延びている複数の電極指と、を含む。前記第2IDT電極は、対向し合う前記共通バスバー及び第2バスバーと、前記共通バスバーに接続され前記第2バスバーに向かって延びている複数の電極指と、前記第2バスバーに接続され前記共通バスバーに向かって延びている複数の電極指と、を含む。前記第1音響インピーダンス層及び前記第2音響インピーダンス層の各々は、少なくとも1つの高音響インピーダンス層と、前記少なくとも1つの高音響インピーダンス層よりも音響インピーダンスが低い少なくとも1つの低音響インピーダンス層と、を有する。前記第1音響インピーダンス層及び前記第2音響インピーダンス層の各々について、前記少なくとも1つの高音響インピーダンス層及び前記少なくとも1つの低音響インピーダンス層の少なくとも1つが導電層である。前記第1音響インピーダンス層における前記導電層の少なくとも一部と前記第2音響インピーダンス層における前記導電層の少なくとも一部とが、前記厚さ方向からの平面視において前記共通バスバーと重複していない。前記第1音響インピーダンス層における前記導電層と前記第2音響インピーダンス層における前記導電層とが電気的に絶縁されている。
 本発明の一態様に係る弾性波装置では、周波数特性の低下を抑制しつつ耐電力性をより高めることが可能となる。
図1は、本発明の一実施形態に係る弾性波装置の平面図である。 図2は、同上の弾性波装置に関し、図1のA-A線断面図である。 図3は、比較例1に係る弾性波装置の平面図である。 図4は、同上の弾性波装置に関し、図3のA-A線断面図である。 図5は、本発明の一実施形態に係る弾性波装置及び比較例1に係る弾性波装置それぞれのインピーダンスの周波数特性図である。 図6は、本発明の一実施形態の変形例1に係る弾性波装置の平面図である。 図7は、同上の弾性波装置の等価回路図である。 図8は、本発明の一実施形態の変形例2に係る弾性波装置の平面図である。 図9は、同上の弾性波装置に関し、図8のA-A線断面図である。 図10は、比較例2に係る弾性波装置の平面図である。 図11は、同上の弾性波装置に関し、図10のA-A線断面図である。 図12は、本発明の一実施形態の変形例2に係る弾性波装置及び比較例2に係る弾性波装置それぞれのインピーダンスの周波数特性図である。 図13は、本発明の一実施形態の変形例3に係る弾性波装置の一部切り欠いた平面図である。 図14は、本発明の一実施形態の変形例4に係る弾性波装置の一部切り欠いた平面図である。 図15は、本発明の一実施形態の変形例5に係る弾性波装置の断面図である。 図16は、本発明の一実施形態の変形例6に係る弾性波装置の一部切り欠いた平面図である。 図17は、本発明の一実施形態の変形例7に係る弾性波装置の一部切り欠いた平面図である。 図18は、本発明の一実施形態の変形例8に係る弾性波装置の一部切り欠いた平面図である。 図19は、本発明の一実施形態の変形例9に係る弾性波装置の一部切り欠いた平面図である。 図20は、本発明の一実施形態の変形例10に係る弾性波装置の断面図である。 図21は、本発明の一実施形態の変形例11に係る弾性波装置の一部切り欠いた断面図である。
 以下、実施形態に係る弾性波装置について、図面を参照して説明する。
 以下の実施形態等において参照する図1~4、6~11、13~21は、いずれも模式的な図であり、図中の各構成要素の大きさや厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。
 (実施形態)
 (1)弾性波装置の全体構成
 以下、実施形態に係る弾性波装置1について、図面を参照して説明する。
 実施形態に係る弾性波装置1は、板波を利用する弾性波装置である。弾性波装置1は、図1及び2に示すように、基板2と、第1音響インピーダンス層4A及び第2音響インピーダンス層4Bと、圧電体層5と、第1IDT電極7A及び第2IDT電極7Bと、を備える。第1音響インピーダンス層4A及び第2音響インピーダンス層4Bは、基板2上に形成されている。圧電体層5は、第1音響インピーダンス層4A及び第2音響インピーダンス層4B上に形成されている。第1IDT電極7A及び第2IDT電極7Bは、圧電体層5上に形成されている。つまり、弾性波装置1では、第1IDT電極7Aと第2IDT電極7Bとを含む機能電極6が、圧電体層5上に形成されている。
 第1IDT電極7A及び第2IDT電極7Bは、互いに共有している共通バスバー70により互いに直列接続されている。第1IDT電極7A及び第2IDT電極7Bは、基板2の厚さ方向D1(以下、第1方向D1ともいう)に直交する第2方向D2において並んでいる。以下、第1方向D1と第2方向D2とに直交する方向を第3方向D3という。第3方向D3は、弾性波(本実施形態では、板波)の伝搬方向に沿った方向である。
 また、弾性波装置1は、第3方向D3において第1IDT電極7A及び第2IDT電極7Bそれぞれの一方側に1つずつ配置されている2つの反射器9と、他方側に1つずつ配置されている2つの反射器10と、を更に備える。図1では、第1IDT電極7A、第2IDT電極7B、各反射器9及び各反射器10にドットのハッチングを付してあるが、これらのハッチングは、断面を表すものではなく、第1IDT電極7A、第2IDT電極7B、各反射器9及び各反射器10と、第1音響インピーダンス層4A及び第2音響インピーダンス層4Bとの関係を分かりやすくするために付してあるにすぎない。
 (2)弾性波装置の各構成要素
 次に、弾性波装置1の各構成要素について、図面を参照して説明する。
 (2.1)基板
 基板2は、図2に示すように、第1音響インピーダンス層4A、第2音響インピーダンス層4B、圧電体層5、第1IDT電極7A及び第2IDT電極7Bを含む積層体を支持している。以下では、積層体のうち、第1音響インピーダンス層4A及び第2音響インピーダンス層4Bを含み、基板2と圧電体層5との間に介在する層を、中間層3と称する。基板2は、その厚さ方向D1において互いに反対側にある第1主面21及び第2主面22を有する。第1主面21及び第2主面22は、互いに背向する。基板2の平面視形状(基板2を厚さ方向D1から見たときの外周形状)は、長方形状であるが、長方形状に限らず、例えば正方形状であってもよい。基板2は、例えばシリコン基板である。基板2の厚さは、10λ(λ:電極指ピッチである2×T1により定まる弾性波の波長)μm以上180μm以下が好適である。例えば20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、100μm、110μm、120μm、130μm、140μm、150μm、160μm、170μm、180μm等の任意の厚みとしてもよい。また、シリコン基板の圧電体層5側の面に凹凸が形成されていてもよい。これにより、弾性波装置1では、不要波が散乱し不要波を小さくすることができる。凹凸の高低差は1/4λ以下が好ましい。凹凸の輪郭形状は三角形、円弧、矩形などから適宜選択される。シリコン基板の抵抗率は例えば100Ωcm以上であり、1000Ωcm以上であるのが好ましく、4000Ωcm以上であるのが更に好ましい。シリコン基板の圧電体層5側の面方位は、例えば(100)面、(111)面、(110)面、(551)面を使うことができる。ここにおいて、弾性波の伝搬方位は、シリコン基板の面方位に制約されずに設定することができる。
 (2.2)第1音響インピーダンス層及び第2音響インピーダンス層
 第1音響インピーダンス層4A及び第2音響インピーダンス層4Bは、図2に示すように、基板2の第1主面21上に形成されている。第1音響インピーダンス層4Aは、基板2の厚さ方向D1において第1IDT電極7Aに対向する。第2音響インピーダンス層4Bは、基板2の厚さ方向D1において第2IDT電極7Bに対向する。第1音響インピーダンス層4Aは、第1IDT電極7Aで励振された弾性波が基板2に漏洩するのを抑制する機能を有する。第2音響インピーダンス層4Bは、第2IDT電極7Bで励振された弾性波が基板2に漏洩するのを抑制する機能を有する。また、弾性波装置1は、基板2上で第1音響インピーダンス層4Aと第2音響インピーダンス層4Bとの間に介在している絶縁層30を更に備える。絶縁層30は、基板2上に形成されている。絶縁層30は、上述の積層体に含まれている。第1音響インピーダンス層4A及び第2音響インピーダンス層4Bの各々は、複数(3つ)の低音響インピーダンス層42と複数(2つ)の高音響インピーダンス層41とが厚さ方向D1において一層ごとに交互に並んだ積層構造を有する。低音響インピーダンス層42の音響インピーダンスは、高音響インピーダンス層41の音響インピーダンスよりも低い。
 第1音響インピーダンス層4A及び第2音響インピーダンス層4Bは、基板2と圧電体層5との間に介在している。以下では、説明の便宜上、第1音響インピーダンス層4A及び第2音響インピーダンス層4Bの各々において、2つの高音響インピーダンス層41を、基板2の第1主面21に近い順に、高音響インピーダンス層411、高音響インピーダンス層412と称することもある。また、3つの低音響インピーダンス層42を、基板2の第1主面21に近い順に、低音響インピーダンス層420、低音響インピーダンス層421、低音響インピーダンス層422と称することもある。
 第1音響インピーダンス層4A及び第2音響インピーダンス層4Bの各々では、基板2側から、低音響インピーダンス層420、高音響インピーダンス層411、低音響インピーダンス層421、高音響インピーダンス層412及び低音響インピーダンス層422が、この順に並んでいる。したがって、第1音響インピーダンス層4A及び第2音響インピーダンス層4Bの各々は、低音響インピーダンス層422と高音響インピーダンス層412との界面、低音響インピーダンス層421と高音響インピーダンス層411との界面、高音響インピーダンス層411と低音響インピーダンス層420との界面のそれぞれにおいて、圧電体層5からの弾性波(板波)を反射することが可能である。本実施形態では、絶縁層30は、基板2と圧電体層5との間に介在する中間層3において第1音響インピーダンス層4A及び第2音響インピーダンス層4B以外の領域(第1音響インピーダンス層4Aと第2音響インピーダンス層4Bとを除いた領域)である。絶縁層30は、低音響インピーダンス層42と同じ材料により形成されている。絶縁層30は、電気絶縁性を有する。
 第1音響インピーダンス層4A及び第2音響インピーダンス層4Bの各々において、複数の高音響インピーダンス層41の材料は、例えば、Pt(白金)である。複数の低音響インピーダンス層42の材料は、例えば、SiO2(酸化ケイ素)である。第1音響インピーダンス層4A及び第2音響インピーダンス層4Bの各々は、複数の高音響インピーダンス層41の各々がPtにより形成されているので、2層の導電層を含んでいる。
 低音響インピーダンス層42は単一の層ではなく、相対的に音響インピーダンスが低い材料からなる複数の層を有する積層構造であってもよい。また、複数の層の間にチタン又はニッケル等からなる金属層を有する積層構造であってもよい。中間層3、複数の層を有する低音響インピーダンス層42における金属層、低音響インピーダンス層42それぞれの圧電体層5側の面及び基板2側の面の表面粗さ(例えば、JIS B 0601-2001、ISO 4287-1997等で規定されている算術平均粗さRa)は小さいほど好ましく、具体的には100nm以下であり、例えば、90nm、80nm、70nm、60nm、50nm、40nm、30nm、20nm、10nm、5nm、1nm等から適宜選択される。
 同様に高音響インピーダンス層41は単一の層ではなく、相対的に音響インピーダンスが高い材料からなる複数の層を有する積層構造であってもよい。また、複数の層の間にチタン又はニッケル等からなる金属層を有する積層構造であってもよい。複数の層を有する高音響インピーダンス層41における金属層、高音響インピーダンス層41の圧電体層5側の面及び基板2側の面の表面粗さ(例えば、算術平均粗さRa)は小さいほど好ましく、具体的には100nm以下であり、例えば、90nm、80nm、70nm、60nm、50nm、40nm、30nm、20nm、10nm、5nm、1nm等から適宜選択される。
 (2.3)圧電体層
 圧電体層5は、例えば、LiNbO3圧電単結晶からなる。
 圧電体層5の厚さは、第1IDT電極7A及び第2IDT電極7Bの電極指ピッチ(2×T1)により定まる弾性波の波長をλとしたときに、1λ以下である。これにより、弾性波装置1では、第1IDT電極7A及び第2IDT電極7Bそれぞれによって板波が励振され、板波が伝搬する。電極指ピッチ(2×T1)については、後述の「(2.4)第1IDT電極、第2IDT電極及び反射器」の欄で説明する。本実施形態の弾性波装置1では、例えば、弾性波の波長が1.7μmであり、圧電体層5の厚さが340nmである。第1IDT電極7A及び第2IDT電極7Bは圧電体層5の分極軸方向におけるプラス面、マイナス面のどちらに形成されていてもよい。言い換えれば、圧電体層5における第1IDT電極7A及び第2IDT電極7B側の主面は、圧電体層5の分極軸方向におけるプラス面でもよいし、マイナス面でもよい。分極軸方向におけるプラス面とは、圧電体層5中の分極成分のプラス側が向いている方向に有る面をいう。分極軸方向におけるマイナス面とは、圧電体層5中の分極成分のマイナス側が向いている方向に有る面をいう。
 (2.4)第1IDT電極、第2IDT電極及び反射器
 第1IDT電極7A、第2IDT電極7B、各反射器9及び各反射器10は、圧電体層5上に形成されている。より詳細には、第1IDT電極7A、第2IDT電極7B、各反射器9及び各反射器10は、圧電体層5の中間層3側とは反対の主面上に形成されている。第1IDT電極7A、第2IDT電極7B、各反射器9及び各反射器10は、導電性を有する。第1IDT電極7A、第2IDT電極7B、各反射器9及び各反射器10の材料は、例えば、Alである。第1IDT電極7A、第2IDT電極7B、各反射器9及び各反射器10の厚さは、例えば、85nmである。
 第1IDT電極7A及び第2IDT電極7Bは、互いに共有している共通バスバー70により互いに直列接続されている。したがって、機能電極6は、互いに直列接続された第1IDT電極7A及び第2IDT電極7Bを含んでいる。第1IDT電極7Aは、対向し合う第1バスバー71及び共通バスバー70と、第1バスバー71に接続された複数の電極指81と、共通バスバー70に接続された複数の電極指82と、を含む。第2IDT電極7Bは、対向し合う共通バスバー70及び第2バスバー72と、共通バスバー70に接続された複数の電極指81と、第2バスバー72に接続された複数の電極指82と、を含む。
 第1バスバー71、共通バスバー70及び第2バスバー72は、第3方向D3を長手方向とする長尺状である。
 第1IDT電極7Aでは、第1バスバー71と共通バスバー70とは第2方向D2において対向し合っている。第1IDT電極7Aでは、複数の電極指81は、第1バスバー71に接続され共通バスバー70に向かって延びている。第1IDT電極7Aでは、複数の電極指81は、第1バスバー71から第2方向D2に沿って延びている。複数の電極指81の先端と共通バスバー70とは離れている。複数の電極指81は、第3方向D3の幅が同じである。また、複数の電極指81は、第2方向D2の長さが同じである。
 第1IDT電極7Aでは、複数の電極指82は、共通バスバー70に接続され第1バスバー71に向かって延びている。第1IDT電極7Aでは、複数の電極指82は、共通バスバー70から第2方向D2に沿って延びている。複数の電極指82のそれぞれの先端は、第1バスバー71とは離れている。複数の電極指82は、第3方向D3の幅が同じである。また、複数の電極指82は、第2方向D2の長さが同じである。複数の電極指82の幅及び長さは、複数の電極指81の幅及び長さそれぞれと同じである。
 第2IDT電極7Bでは、共通バスバー70と第2バスバー72とは第2方向D2において対向し合っている。第2IDT電極7Bでは、複数の電極指81は、共通バスバー70に接続され第2バスバー72に向かって延びている。第2IDT電極7Bでは、複数の電極指81は、共通バスバー70から第2方向D2に沿って延びている。複数の電極指81の先端と第2バスバー72とは離れている。複数の電極指81は、第3方向D3の幅が同じである。また、複数の電極指81は、第2方向D2の長さが同じである。
 第2IDT電極7Bでは、複数の電極指82は、第2バスバー72に接続され共通バスバー70に向かって延びている。第2IDT電極7Bでは、複数の電極指82は、第2バスバー72から第2方向D2に沿って延びている。複数の電極指82のそれぞれの先端は、共通バスバー70とは離れている。複数の電極指82は、第3方向D3の幅が同じである。また、複数の電極指82は、第2方向D2の長さが同じである。複数の電極指82の幅及び長さは、複数の電極指81の幅及び長さそれぞれと同じである。
 第1IDT電極7Aでは、複数の電極指81と複数の電極指82とが、第1バスバー71と共通バスバー70との対向方向(第2方向D2)に直交する方向(第3方向D3)において、1本ずつ交互に互いに離隔して並んでいる。また、第2IDT電極7Bでは、複数の電極指81と複数の電極指82とが、共通バスバー70と第2バスバー72との対向方向(第2方向D2)に直交する方向(第3方向D3)において、1本ずつ交互に互いに離隔して並んでいる。したがって、第1IDT電極7A及び第2IDT電極7Bの各々では、第3方向D3において隣り合う電極指81と電極指82とは離れている。第1IDT電極7A及び第2IDT電極7Bの各々の電極指ピッチ(2×T1)は、図1に示すように、第3方向D3において隣り合う電極指81と電極指82との互いに対応する辺(図1では電極指81及び電極指82それぞれにおいて中心線に平行な左側の辺)間の距離T1の2倍の値である。電極指幅T2(図1参照)を距離T1で除した値(デューティ比)は、0.5である。電極指幅T2は、電極指81及び電極指82の幅である。
 第1IDT電極7Aの電極指ピッチ(2×T1)と第2IDT電極7Bの電極指ピッチ(2×T1)とは、同じ値である。
 機能電極6では、図1に示すように、第1IDT電極7Aの複数の電極指81と第2IDT電極7Bの複数の電極指82とが、共通バスバー70を対称軸として、線対称となるように配置されている。また、機能電極6では、第1IDT電極7Aの複数の電極指82と第2IDT電極7Bの複数の電極指81とが、共通バスバー70を対称軸として、線対称となるように配置されている。つまり、弾性波装置1における機能電極6は、共通バスバー70の第3方向D3に沿った中心線を対称軸として線対称である。
 第1IDT電極7A及び第2IDT電極7Bの各々は、図1に一点鎖線で示す規定領域11において、弾性波(板波)を励振する。規定領域11は、複数の電極指81と複数の電極指82とが第3方向D3において重なる領域である。規定領域11は、第3方向D3の両側にある電極指81及び電極指82それぞれにおいて互いに反対側に位置する辺と、複数の電極指81の先端の包絡線と、複数の電極指82の先端の包絡線と、で囲まれた領域である。
 各反射器9及び各反射器10は、グレーティング反射器である。2つの反射器9のうち1つの反射器9は、第3方向D3において第1IDT電極7Aの一方側(図1では、左側)に配置されている。2つの反射器10のうち1つの反射器10は、第3方向D3において第1IDT電極7Aの他方側(図1では、右側)に配置されている。ここにおいて、第1IDT電極7Aに対応する反射器9及び反射器10は、第1IDT電極7Aで励振されて伝搬された弾性波を反射する。2つの反射器9のうち残りの1つの反射器9は、第3方向D3において第2IDT電極7Bの一方側(図1では、左側)に配置されている。2つの反射器10のうち残りの1つの反射器10は、第3方向D3において第2IDT電極7Bの他方側(図1では、右側)に配置されている。ここにおいて第2IDT電極7Bに対応する反射器9及び反射器10は、第2IDT電極7Bで励振されて伝搬された弾性波を反射する。
 (2.5)第1IDT電極、第2IDT電極、第1音響インピーダンス層及び第2音響インピーダンス層のレイアウト
 実施形態に係る弾性波装置1では、厚さ方向D1からの平面視において、第1IDT電極7Aが第1音響インピーダンス層4Aと一部重複し、第2IDT電極7Bが第2音響インピーダンス層4Bと一部重複する。
 弾性波装置1では、第1音響インピーダンス層4Aにおける導電層(高音響インピーダンス層41)の少なくとも一部(本実施形態では、全部)が、厚さ方向D1からの平面視において共通バスバー70と重複していない。また、弾性波装置1では、第2音響インピーダンス層4Bにおける導電層(高音響インピーダンス層41)の少なくとも一部(本実施形態では、全部)が、厚さ方向D1からの平面視において共通バスバー70と重複していない。弾性波装置1では、第1音響インピーダンス層4Aにおける導電層と第2音響インピーダンス層4Bにおける導電層とが電気的に絶縁されている。弾性波装置1では、絶縁層30の一部が第1音響インピーダンス層4Aにおける導電層と第2音響インピーダンス層4Bにおける導電層との間に介在している。
 実施形態に係る弾性波装置1では、厚さ方向D1からの平面視において、図1に示すように、第1音響インピーダンス層4Aにおける高音響インピーダンス層41(導電層)と第2音響インピーダンス層4Bにおける高音響インピーダンス層41(導電層)とが共通バスバー70の幅方向(第2方向D2)で離れている。ここで、実施形態に係る弾性波装置1では、厚さ方向D1からの平面視において、第1音響インピーダンス層4Aにおける高音響インピーダンス層41(導電層)が、第1IDT電極7Aの第1バスバー71と共通バスバー70との間に位置し、共通バスバー70から離れている。また、実施形態に係る弾性波装置1では、厚さ方向D1からの平面視において、第2音響インピーダンス層4Bにおける高音響インピーダンス層41(導電層)が、第2IDT電極7Bの共通バスバー70と第2バスバー72との間に位置し、共通バスバー70から離れている。
 要するに、実施形態に係る弾性波装置1では、厚さ方向D1からの平面視において、第1音響インピーダンス層4Aにおける高音響インピーダンス層41(導電層)及び第2音響インピーダンス層4Bにおける高音響インピーダンス層41(導電層)が、共通バスバー70と重なっていない。
 また、弾性波装置1では、第1IDT電極7Aの規定領域11の全域が、当該第1IDT電極7Aに重なる導電層に重なっている。また、弾性波装置1では、第2IDT電極7Bの規定領域11の全域が、当該第2IDT電極7Bに重なる導電層に重なっている。弾性波装置1では、厚さ方向D1からの平面視において、第1IDT電極7Aと第1音響インピーダンス層4Aにおける導電層との重なる領域の面積と、第2IDT電極7Bと第2音響インピーダンス層4Bにおける導電層との重なる領域の面積と、が同じである。
 (2.6)弾性波装置のインピーダンス
 弾性波装置1の周波数特性の一例として、弾性波装置1のインピーダンスの周波数特性について説明する。弾性波装置1のインピーダンスは、第1IDT電極7Aと圧電体層5と第1音響インピーダンス層4Aとを含む第1共振子のインピーダンスと、第2IDT電極7Bと圧電体層5と第2音響インピーダンス層4Bとを含む第2共振子のインピーダンスと、の合成インピーダンスとなる。
 弾性波装置1は、1つのIDT電極と圧電体層と1つの音響インピーダンス層とを含む共振子を備えた参考例の弾性波装置のインピーダンスと上記の合成インピーダンスとが同じとなるように、第1共振子及び第2共振子のインピーダンスを決めてある。したがって、弾性波装置1の第1共振子及び第2共振子は、参考例の弾性波装置の共振子を2つの共振子に分割した分割共振子(直列分割共振子)ともいえる。弾性波装置1では、第1共振子の面積と第2共振子の面積との合計面積を参考例の弾性波装置の共振子の面積よりも大きくしてある。弾性波装置1では、互いに異なる電位を有する電極指81と電極指82との対数が、参考例の弾性波装置のIDT電極における電極指(電極指81に相当)と電極指(電極指82に相当)との対数よりも多くなっている。
 実施形態に係る弾性波装置1の周波数特性について説明する前に、比較例1に係る弾性波装置100について、図3及び4に基づいて説明する。
 比較例1に係る弾性波装置100は、実施形態に係る弾性波装置1とは中間層3における音響インピーダンス層4のパターンが相違する。比較例1に係る弾性波装置100に関し、実施形態に係る弾性波装置1と同様の構成要素については、同一の符号を付して説明を省略する。
 比較例1に係る弾性波装置100では、厚さ方向D1からの平面視において、図3に示すように、1つの音響インピーダンス層4が、第1IDT電極7A及び第2IDT電極7Bに重なり、かつ、共通バスバー70にも重なる大きさに形成されている。
 図5では、実施形態に係る弾性波装置1のインピーダンスの周波数特性を実線C1で示し、比較例1に係る弾性波装置100のインピーダンスの周波数特性を破線C2で示してある。図5に示したインピーダンスの周波数特性は、実測結果である。図5の横軸は、周波数、縦軸は実施形態に係る弾性波装置1及び比較例1に係る弾性波装置100のインピーダンスをZとし、インピーダンスの大きさを|Z|としたときの20log|Z|である。
 図5から分かるように、比較例1に係る弾性波装置100のインピーダンスの周波数特性では共振周波数付近でリップルが発生しているのに対し、実施形態に係る弾性波装置1では、共振周波数付近でのリップルの発生が抑制されている。したがって、実施形態に係る弾性波装置1は、比較例1に係る弾性波装置100と比べて周波数特性が向上している。
 また、実施形態に係る弾性波装置1では、例えば、ラダー型フィルタに適用した場合に、比較例1に係る弾性波装置100をラダー型フィルタに適用する場合と比べて、通過帯域幅の減少を抑制することが可能となる。
 (3)効果
 実施形態に係る弾性波装置1は、基板2と、第1音響インピーダンス層4A及び第2音響インピーダンス層4Bと、圧電体層5と、第1IDT電極7Aと、第2IDT電極7Bと、を備える。第1音響インピーダンス層4A及び第2音響インピーダンス層4Bは、基板2上に形成されている。圧電体層5は、第1音響インピーダンス層4A及び第2音響インピーダンス層4B上に形成されている。第1IDT電極7Aは、圧電体層5上に形成され、圧電体層5の厚さ方向D1からの平面視において、第1音響インピーダンス層4Aと一部重複する。第2IDT電極7Bは、圧電体層5上に形成され、厚さ方向D1からの平面視において、第2音響インピーダンス層4Bと一部重複する。第1IDT電極7A及び第2IDT電極7Bは、互いに共有している共通バスバー70により互いに直列接続されている。第1IDT電極7Aは、対向し合う第1バスバー71及び共通バスバー70と、第1バスバー71に接続され共通バスバー70に向かって延びている複数の電極指81と、共通バスバー70に接続され第1バスバー71に向かって延びている複数の電極指82と、を含む。第2IDT電極7Bは、対向し合う共通バスバー70及び第2バスバー72と、共通バスバー70に接続され第2バスバー72に向かって延びている複数の電極指81と、第2バスバー72に接続され共通バスバー70に向かって延びている複数の電極指82と、を含む。第1音響インピーダンス層4A及び第2音響インピーダンス層4Bの各々は、高音響インピーダンス層41と、高音響インピーダンス層41よりも音響インピーダンスが低い低音響インピーダンス層42と、を有する。第1音響インピーダンス層4A及び第2音響インピーダンス層4Bの各々について、高音響インピーダンス層41が導電層である。第1音響インピーダンス層4Aにおける導電層(高音響インピーダンス層41)の少なくとも一部と第2音響インピーダンス層4Bにおける導電層(高音響インピーダンス層41)の少なくとも一部とが、厚さ方向D1からの平面視において共通バスバー70と重複していない。第1音響インピーダンス層4Aにおける導電層(高音響インピーダンス層41)と第2音響インピーダンス層4Bにおける導電層(高音響インピーダンス層41)とが電気的に絶縁されている。これにより、実施形態に係る弾性波装置1では、周波数特性の低下を抑制しつつ耐電力性をより高めることが可能となる。実施形態に係る弾性波装置1は、第1IDT電極7A及び第2IDT電極7Bを有し、第1IDT電極7A及び第2IDT電極7Bが、互いに共有している共通バスバー70により互いに直列接続されているので、特許文献1に記載された弾性波装置のように1つのIDT電極しか備えていない構成と比べて、耐電力性をより高めることが可能となる。ここにおいて、「共通バスバー70」は、第1IDT電極7Aと第2IDT電極7Bとに共通の構成要素であり、第1IDT電極7Aと第2IDT電極7Bとを別の配線を介して接続することなく第1IDT電極7Aと第2IDT電極7Bとを一体に形成する導電バーである。これにより、第1IDT電極7Aと第2IDT電極7Bとは、共通バスバー70により、電気的に直列接続されている。また、実施形態に係る弾性波装置1では、比較例1のように厚さ方向D1から見た平面視において共通バスバー70の全域に重なる音響インピーダンス層4を備えた弾性波装置100と比べて、周波数特性を向上させることが可能となる。
 ところで、1つの基板上に複数の共振子が存在する構成(共通バスバーを有さず、基板上に導電層を含む音響インピーダンス層が形成され、音響インピーダンス層上に圧電体層が形成され、圧電体層上に複数のIDT電極が互いに離れて形成されている構成)と比べて、比較例1のように共通バスバー70と導電層とが重なる構成では、共通バスバー70と音響インピーダンス層の導電層との間に寄生容量が発生する。このような寄生容量が発生すると、第1共振子及び第2共振子それぞれの両端間が寄生容量を介して容量結合してしまい、帯域幅が狭くなってしまう。これに対して、実施形態に係る弾性波装置1では、帯域幅が狭くなるのを抑制することができる。
 また、実施形態に係る弾性波装置1は、第1音響インピーダンス層4A及び第2音響インピーダンス層4Bの各々における複数の高音響インピーダンス層41が、少なくとも1層の導電層(高音響インピーダンス層41)を含んでいる。これにより、実施形態に係る弾性波装置1では、低音響インピーダンス層42の材料として導電性を有する材料を採用する必要がないので、高音響インピーダンス層41の音響インピーダンスと、低音響インピーダンス層42の音響インピーダンスとの比である音響インピーダンス比を、より大きくすることが可能となる。
 また、実施形態に係る弾性波装置1は、第1IDT電極7Aと圧電体層5と第1音響インピーダンス層4Aとを含んで第1共振子が構成されている。第2IDT電極7Bと圧電体層5と第2音響インピーダンス層4Bとを含んで第2共振子が構成されている。第1共振子及び第2共振子は、第1共振子のインピーダンスと第2共振子のインピーダンスとの合成インピーダンスが、1つのIDT電極と圧電体層と1つの音響インピーダンス層とを含む規定の共振子のインピーダンスと同じとなるように規定の共振子を2つの共振子に分割した分割共振子である。これにより、実施形態に係る弾性波装置1では、第1共振子と第2共振子とを含む領域の面積が規定の共振子の面積よりも大きくなるので、放熱性が高くなり、周波数特性の低下を抑制しつつ耐電力性を高めることが可能となる。
 また、実施形態に係る弾性波装置1では、第1音響インピーダンス層4Aにおける導電層(高音響インピーダンス層41)は、厚さ方向D1からの平面視において第1IDT電極7Aの第1バスバー71と共通バスバー70との間に位置している。また、第2音響インピーダンス層4Bにおける導電層(高音響インピーダンス層41)は、厚さ方向D1からの平面視において第2IDT電極7Bの共通バスバー70と第2バスバー72との間に位置している。これにより、実施形態に係る弾性波装置1では、周波数特性の低下を、より抑制することが可能となる。
 また、実施形態に係る弾性波装置1では、厚さ方向D1からの平面視において、第1IDT電極7Aと第1音響インピーダンス層4Aにおける導電層(高音響インピーダンス層41)との重なる領域の面積(第1面積)と、第2IDT電極7Bと第2音響インピーダンス層4Bにおける導電層(高音響インピーダンス層41)との重なる領域の面積(第2面積)と、が同じである。ここにおいて、「同じ」とは、厳密に同じである場合のみに限定されず、略同じ(例えば、第1面積に対する第2面積の割合が100%±10%)でもよい。これにより、実施形態に係る弾性波装置1では、第1IDT電極7Aと第1音響インピーダンス層4Aにおける導電層との間に発生する寄生容量と、第2IDT電極7Bと第2音響インピーダンス層4Bにおける導電層との間に発生する寄生容量と、の差を低減できる。よって、実施形態に係る弾性波装置1では、インピーダンスの周波数特性においてリップルが発生するのを、より抑制することが可能となる。また、実施形態に係る弾性波装置1では、耐電力性をより高めることができる。
 また、実施形態に係る弾性波装置1では、第1IDT電極7A及び第2IDT電極7Bの電極指ピッチ(2×T1)により定まる弾性波の波長をλとしたときに、圧電体層5の厚さが、1λ以下である。これにより、実施形態に係る弾性波装置1では、板波を励振することができる。
 また、実施形態に係る弾性波装置1では、弾性波が板波である。これにより、実施形態に係る弾性波装置1では、板波を利用する弾性波装置として使用することが可能となる。
 上記の実施形態は、本発明の様々な実施形態の一つに過ぎない。上記の実施形態は、本発明の目的を達成できれば、設計等に応じて種々の変更が可能である。
 (4)変形例
 (4.1)変形例1
 実施形態の変形例1に係る弾性波装置1bは、図6及び7に示すように、圧電体層5上に複数(5つ)の機能電極6を備えている点で、実施形態に係る弾性波装置1と相違する。変形例1に係る弾性波装置1bに関し、実施形態に係る弾性波装置1と同様の構成要素については、同一の符号を付して説明を省略する。
 変形例1に係る弾性波装置1bは、ラダー型フィルタである。変形例1に係る弾性波装置1bは、入力端子15と、出力端子16と、入力端子15と出力端子16とを結ぶ第1経路上に設けられた直列腕回路12と、第1経路上のノードとグラウンド(グラウンド端子17、18)とを結ぶ第2経路上に設けられた複数(2つ)の並列腕回路13、14と、を備える。直列腕回路12は、複数(3つ)の直列腕共振子S1を有する。複数の並列腕回路13、14の各々は、並列腕共振子P1を有する。グラウンド端子17、18は、1つのグラウンドとして共通化されていてもよい。
 変形例1に係る弾性波装置1bでは、複数の直列腕共振子S1及び複数の並列腕共振子P1の各々が、図1及び2を参照して実施形態で説明した第1IDT電極7Aと第2IDT電極7Bと圧電体層5と第1音響インピーダンス層4Aと第2音響インピーダンス層4Bとを含む共振子で構成されている。これにより、変形例1に係る弾性波装置1bでは、周波数特性の低下を抑制しつつ耐電力性をより高めることが可能となる。
 変形例1に係る弾性波装置1bでは、複数の直列腕共振子S1のうち少なくとも1つの直列腕共振子S1が、第1IDT電極7Aと第2IDT電極7Bと圧電体層5と第1音響インピーダンス層4Aと第2音響インピーダンス層4Bとを含む共振子であれば、実施形態と同様の効果が得られる。また、変形例1に係る弾性波装置1bでは、2つの並列腕回路13、14を備えているが、並列腕回路の数は、2つに限らず、例えば、1つであってもよいし、3つ以上であってもよい。
 (4.2)変形例2
 実施形態の変形例2に係る弾性波装置1cは、図8及び9に示すように、2つの第1IDT電極7Aを備え、2つの第1IDT電極7Aの間に第2IDT電極7Bが位置している点で、実施形態に係る弾性波装置1と相違する。変形例2に係る弾性波装置1cに関し、実施形態に係る弾性波装置1と同様の構成要素については、同一の符号を付して説明を省略する。
 変形例2に係る弾性波装置1cでは、2つの第1IDT電極7A及び1つの第2IDT電極7Bのうち基板2の厚さ方向D1からの平面視において隣り合う第1IDT電極7Aと第2IDT電極7Bとが、互いに共有している共通バスバー70により互いに電気的に接続されている。したがって、変形例2に係る弾性波装置1cは、2つの共通バスバー70を含んでいる。
 変形例2に係る弾性波装置1cでは、図8の上の第1IDT電極7Aと真ん中の第2IDT電極7Bとで1つの共通バスバー70を含んでいる。また、図8の真ん中の第2IDT電極7Bと下の第1IDT電極7Aとで1つの共通バスバー70を含んでいる。
 変形例2に係る弾性波装置1cの周波数特性について説明する前に、比較例2に係る弾性波装置100cについて、図10及び11に基づいて説明する。
 比較例2に係る弾性波装置100cは、変形例2に係る弾性波装置1cとは中間層3における音響インピーダンス層4のパターンが相違する。比較例2に係る弾性波装置100cに関し、変形例2に係る弾性波装置1cと同様の構成要素については、同一の符号を付して説明を省略する。
 比較例2に係る弾性波装置100では、厚さ方向D1からの平面視において、図10に示すように、1つの音響インピーダンス層4が、2つの第1IDT電極7Aと1つの第2IDT電極7Bとに重なり、かつ、2つの共通バスバー70にも重なる大きさに形成されている。
 図12では、変形例2に係る弾性波装置1cのインピーダンスの周波数特性を実線E1で示し、比較例2に係る弾性波装置100cのインピーダンスの周波数特性を破線E2で示してある。図12に示したインピーダンスの周波数特性は、実測結果である。図12の横軸は、周波数、縦軸は変形例2に係る弾性波装置1c及び比較例2に係る弾性波装置100cのインピーダンスをZとし、インピーダンスの大きさを|Z|としたときの20log|Z|である。
 図12から分かるように、比較例2に係る弾性波装置100cのインピーダンスの周波数特性では共振周波数付近でリップルが発生しているのに対し、変形例2に係る弾性波装置1cでは、共振周波数付近でのリップルの発生が抑制されている。したがって、変形例2に係る弾性波装置1cは、比較例2に係る弾性波装置100cと比べて周波数特性が向上している。
 (4.3)その他の変形例
 基板2の厚さ方向D1から見た基板2の平面視形状は、長方形状に限らず、例えば、正方形状であってもよい。また、基板2の材料は、Si(シリコン)に限らず、例えば、LiNbO3(リチウムニオベイト)、LiTaO3(リチウムタンタレート)、水晶、ガラス等であってもよい。
 第1音響インピーダンス層4Aと第2音響インピーダンス層4Bとの各々における高音響インピーダンス層41及び低音響インピーダンス層42それぞれの数は、2つ及び3つに限らず、2つ以上及び3つ以上であってもよい。また、高音響インピーダンス層41の数と低音響インピーダンス層42の数とは異なる場合に限らず、同じであってもよいし低音響インピーダンス層42の数が高音響インピーダンス層41の数よりも1つ少なくてもよい。
 また、複数の高音響インピーダンス層41の材料は、Pt(白金)に限らず、例えば、W(タングステン)等でもよい。
 また、複数の高音響インピーダンス層41は、互いに同じ材料である場合に限らず、例えば、互いに異なる材料であってもよい。また、複数の低音響インピーダンス層42は、互いに同じ材料である場合に限らず、例えば、互いに異なる材料であってもよい。
 圧電体層5の材料は、LiNbO3に限らず、例えば、LiTaO3等でもよい。
 機能電極6、各反射器9及び各反射器10の材料は、Al(アルミニウム)に限らず、Al合金でもよい。また、機能電極6、各反射器9及び各反射器10の材料は、例えば、Cu(銅)、Pt(白金)、Au(金)、Ag(銀)、Ti(チタン)、Ni(ニッケル)、Cr(クロム)、Mo(モリブデン)、W(タングステン)又はこれらの金属のいずれかを主体とする合金等であってもよい。また、機能電極6、各反射器9及び各反射器10は、単層構造に限らず、多層構造であってもよい。
 弾性波装置1、1b及び1cでは、各反射器9及び各反射器10は必須の構成要素ではない。
 また、並列腕回路は、並列腕共振子を有する構成に限らず、例えば、インダクタ、コンデンサ等を有する構成であってもよい。
 弾性波装置1、1b及び1cでは、厚さ方向D1からの平面視において第1IDT電極7Aの規定領域11の全域が第1音響インピーダンス層4Aにおける導電層(高音響インピーダンス層41)に重なる例に限らず、厚さ方向D1からの平面視において規定領域11のうちの一部の領域が導電層(高音響インピーダンス層41)に重なっていてもよい。また、弾性波装置1、1b及び1cでは、厚さ方向D1からの平面視において第2IDT電極7Bの規定領域11の全域が第2音響インピーダンス層4Bにおける導電層(高音響インピーダンス層41)に重なる例に限らず、厚さ方向D1からの平面視において規定領域11のうちの一部の領域が導電層(高音響インピーダンス層41)に重なっていてもよい。また、第1音響インピーダンス層4A及び第2音響インピーダンス層4Bの各々は、高音響インピーダンス層41が導電層である例に限らず、低音響インピーダンス層42が導電層であってもよい。いずれにしても、基板2の厚さ方向D1からの平面視において、第1IDT電極7Aに重なる第1音響インピーダンス層4Aにおける導電層の少なくとも一部と、第2IDT電極7Bに重なる第2音響インピーダンス層4Bにおける導電層の少なくとも一部とが共通バスバー70と重複しておらず、第1音響インピーダンス層4Aにおける導電層と第2音響インピーダンス層4Bにおける導電層とが電気的に絶縁されていればよい。言い換えれば、第1音響インピーダンス層4Aにおける導電層と第2音響インピーダンス層4Bにおける導電層とが電気的に絶縁されていれば、基板2の厚さ方向D1からの平面視において、共通バスバー70の一部に第1音響インピーダンス層4Aにおける導電層と第2音響インピーダンス層4Bにおける導電層との少なくとも一方が重複していてもよい。
 また、機能電極6は、第1IDT電極7A及び第2IDT電極7Bの他に2つ以上のIDT電極を備えていてもよい。
 弾性波装置1bは、複数の共振子のうち少なくとも2つの共振子(例えば、第1IDT電極7Aと第2IDT電極7Bと圧電体層5と第1音響インピーダンス層4Aと第2音響インピーダンス層4Bとを含む直列腕共振子S1)に関して、図13に示す変形例3に係る弾性波装置1bのように、それぞれの共振子の伝搬方位を異ならせてもよい。すなわち、図13中の上の共振子における弾性波の伝搬方位をX1とし、図13中の下の共振子における弾性波の伝搬方位をX2とすると、伝搬方位X2は、伝搬方位X1に対してβの角度をなしている。圧電体層5のオイラー角(φ,θ,ψ)において伝搬方位に相当するψは0°以上90°未満とすることができる。これにより、弾性波装置1bでは、帯域幅を調整することができる。伝搬方位を異ならせる少なくとも2つの共振子は、伝搬方位が異なっていればよく、伝搬方位以外の他の構成が同じ共振子であっても構わないし、伝搬方位以外の他の構成が異なる共振子であっても構わない。
 弾性波装置1は、図14に示す変形例4に係る弾性波装置1のように、弾性波の伝搬方向ψに対し、複数の電極指81の先端を結ぶ方向がνの傾斜角度をなしていてもよい。ここにおいて、弾性波の伝搬方向ψは、第1IDT電極7A又は第2IDT電極7Bにより励振される弾性波の伝搬方向であり、圧電体層5のオイラー角(φ,θ,ψ)により規定される。複数の電極指82の先端を結ぶ方向は、複数の電極指81の先端を結ぶ方向と平行である。νは例えば、2°,4°,6°,8°,10°,12°,14°,16°,18°,20°,22°,24°,26°,28°,30°,32°,34°,36°,38°,40°,42°,44°,46°,48°,50°の中から任意の角度に設定できる。
 弾性波装置1は、図15に示す変形例5に係る弾性波装置1のように第1IDT電極7A及び第2IDT電極7Bと圧電体層5との間に酸化ケイ素からなる誘電体層19が設けられていてもよい。この場合は帯域幅を調整できる。
 弾性波装置1は、図16に示す変形例6に係る弾性波装置1のように第1IDT電極7A及び第2IDT電極7Bがピストンモードを形成できるように構成されていてもよい。以下、変形例6に係る弾性波装置1について説明する。
 第1IDT電極7Aでは、第1バスバー71から電極指81の延びる方向と直交する方向を電極指81の幅方向としたときに、電極指81の先端部81aが、中央部81cに比べて幅方向寸法が大きい太幅部812を含み、電極指81の基端部81bが中央部81cに比べて幅方向寸法が大きい太幅部811を含む。第1IDT電極7Aでは、電極指81と共通バスバー70との間にギャップ85が形成されている。
 また、第1IDT電極7Aでは、共通バスバー70から電極指82の延びる方向と直交する方向を電極指82の幅方向としたときに、電極指82の先端部82aが、中央部82cに比べて幅方向寸法が大きい太幅部822を含み、電極指82の基端部82bが中央部82cに比べて幅方向寸法が大きい太幅部821を含む。第1IDT電極7Aでは、電極指82と第1バスバー71との間にギャップ86が形成されている。
 また、第1IDT電極7Aでは、第1バスバー71が、第1バスバー71の長さ方向に沿って並んでいる複数の開口部711を有する。ここにおいて、第1バスバー71は、内側バスバー部713と、中央バスバー部714と、外側バスバー部712と、を有する。内側バスバー部713は、開口部711よりも電極指81側に位置している。中央バスバー部714は、上述の複数の開口部711を有する。外側バスバー部712は、内側バスバー部713に対して、中央バスバー部714を挟んで反対側に位置している。
 また、第1IDT電極7Aでは、共通バスバー70が、複数の開口部701Aを有する。複数の開口部701Aは、共通バスバー70の長手方向に沿って並んでいる。ここにおいて、共通バスバー70は、第1IDT電極7Aの内側バスバー部703Aと、中央バスバー部704Aと、外側バスバー部702Aと、を含む。
 また、第2IDT電極7Bでは、共通バスバー70から電極指81の延びる方向と直交する方向を電極指81の幅方向としたときに、電極指81の先端部81aが、中央部81cに比べて幅方向寸法が大きい太幅部812を含み、電極指81の基端部81bが中央部81cに比べて幅方向寸法が大きい太幅部811を含む。第2IDT電極7Bでは、電極指81と第2バスバー72との間にギャップ87が形成されている。
 また、第2IDT電極7Bでは、第2バスバー72から電極指82の延びる方向と直交する方向を電極指82の幅方向としたときに、電極指82の先端部82aが、中央部82cに比べて幅方向寸法が大きい太幅部822を含み、電極指82の基端部82bが中央部82cに比べて幅方向寸法が大きい太幅部821を含む。第2IDT電極7Bでは、電極指82と共通バスバー70との間にギャップ88が形成されている。
 また、第2IDT電極7Bでは、第2バスバー72が、第2バスバー72の長さ方向に沿って並んでいる複数の開口部721を有する。ここにおいて、第2バスバー72は、内側バスバー部723と、中央バスバー部724と、外側バスバー部722と、を有する。内側バスバー部723は、開口部721よりも電極指82側に位置している。中央バスバー部724は、上述の複数の開口部721を有する。外側バスバー部722は、内側バスバー部723に対して、中央バスバー部724を挟んで反対側に位置している。
 また、第2IDT電極7Bでは、共通バスバー70が、複数の開口部701Bを有する。複数の開口部701Bは、共通バスバー70の長手方向に沿って並んでいる。ここにおいて、共通バスバー70は、第2IDT電極7Bの内側バスバー部703Bと、中央バスバー部704Bと、外側バスバー部702Bと、を含む。
 図16では、弾性波装置1の厚さ方向からの平面視で、第1IDT電極7Aに関連する11個の領域A1~A11及び第2IDT電極7Bに関連する11個の領域B1~B11を含んでいる。ただし、領域A11と領域B11とは共通の領域である。11個の領域A1~A11は、圧電体層5及び第1IDT電極7Aそれぞれにおいて互いに異なる部分を含んでいる。10個の領域B1~B10は、圧電体層5及び第2IDT電極7Bそれぞれにおいて互いに異なる部分を含んでいる。図16の右側には、各領域A1~A11、B1~B10それぞれを伝搬する弾性波の速度(音速)を模式的に示してある。
 変形例6に係る弾性波装置1では、上述の11個の領域A1~A11のうち第2方向D2において中央に位置する領域A6が、第1中央領域を構成している。第1中央領域は、複数の電極指81の中央部81cと複数の電極指82の中央部82cとを含む。第1中央領域は、複数の電極指81の中央部81cと複数の電極指82の中央部82cとが第3方向D3において重なる領域である。
 変形例6に係る弾性波装置1では、上述の11個の領域A1~A11のうち第2方向D2の両端それぞれに位置する領域A1、A11が、第1外側バスバー領域を構成している。領域A1は、第1バスバー71の外側バスバー部712を含む。領域A11は、共通バスバー70の外側バスバー部702Aを含む。第1外側バスバー領域では、第1中央領域よりも弾性波の音速が遅くなる。
 変形例6に係る弾性波装置1では、上述の11個の領域A1~A11のうち第2方向D2の両端それぞれから数えて2番目に位置する領域A2、A10が、第1連結領域を構成している。領域A2は、第1バスバー71の複数の開口部711を含む。領域A10は、共通バスバー70の複数の開口部701Aを含む。第1連結領域では、第1外側バスバー領域及び第1中央領域よりも弾性波の音速が速くなる。
 変形例6に係る弾性波装置1では、上述の11個の領域A1~A11のうち第2方向D2の両端それぞれから数えて3番目に位置する領域A3、A9が、第1内側バスバー領域を構成している。領域A3は、第1バスバー71の内側バスバー部713を含む。領域A9は、共通バスバー70の内側バスバー部703Aを含む。第1内側バスバー領域では、第1中央領域よりも弾性波の音速が遅くなる。
 変形例6に係る弾性波装置1では、上述の11個の領域A1~A11のうち第2方向D2の両端それぞれから数えて4番目に位置する領域A4、A8が、第1ギャップ領域を構成している。領域A4は、複数の電極指81の基端部81bと複数のギャップ86とを含む。領域A8は、複数の電極指82の基端部82bと複数のギャップ85とを含む。第1ギャップ領域では、第1内側バスバー領域及び第1中央領域よりも弾性波の音速が速くなる。
 変形例6に係る弾性波装置1では、上述の11個の領域A1~A11のうち第2方向D2の両端それぞれから数えて5番目に位置する領域A5、A7が、第1太幅領域を構成している。領域A5は、複数の電極指81の基端部81bの太幅部811と複数の電極指82の先端部82aの太幅部822とを含む。領域A7は、複数の電極指81の先端部81aの太幅部812と複数の電極指82の基端部82bの太幅部821とを含む。第1太幅領域では、第1中央領域よりも弾性波の音速が遅くなる。
 変形例6に係る弾性波装置1では、第1IDT電極7Aが上記のように構成されているため、第1中央領域(領域A6)の外側に低音速の領域(領域A5及び領域A7)が存在し、低音速の領域の外側に高音速の領域A2及び領域A10が存在している。したがって、弾性波装置1では、ピストンモードを形成することが可能となり、横モードリップルを効果的に抑制することができる。
 上述の11個の領域B1~B11のうち第2方向D2において中央に位置する領域B6が、第2中央領域を構成している。第2中央領域は、複数の電極指81の中央部81cと複数の電極指82の中央部82cとを含む。第2中央領域は、複数の電極指81の中央部81cと複数の電極指82の中央部82cとが第3方向D3において重なる領域である。
 変形例6に係る弾性波装置1では、上述の11個の領域B1~B11のうち第2方向D2の両端それぞれに位置する領域B1、B11が、第2外側バスバー領域を構成している。領域B1は、第2バスバー72の外側バスバー部722を含む。領域B11は、共通バスバー70の外側バスバー部702Bを含む。第2外側バスバー領域では、第2中央領域よりも弾性波の音速が遅くなる。
 変形例6に係る弾性波装置1では、上述の11個の領域B1~B11のうち第2方向D2の両端それぞれから数えて2番目に位置する領域B2、B10が、第2連結領域を構成している。領域B2は、第2バスバー72の複数の開口部721を含む。領域B10は、共通バスバー70の複数の開口部701Bを含む。第2連結領域では、第2外側バスバー領域及び第2中央領域よりも弾性波の音速が速くなる。
 変形例6に係る弾性波装置1では、上述の11個の領域B1~B11のうち第2方向D2の両端それぞれから数えて3番目に位置する領域B3、B9が、第2内側バスバー領域を構成している。領域B3は、第2バスバー72の内側バスバー部723を含む。領域B9は、共通バスバー70の内側バスバー部703Bを含む。第2内側バスバー領域では、第2中央領域よりも弾性波の音速が遅くなる。
 変形例6に係る弾性波装置1では、上述の11個の領域B1~B11のうち第2方向D2の両端それぞれから数えて4番目に位置する領域B4、B8が、第2ギャップ領域を構成している。領域B4は、複数の電極指81の基端部81bと複数のギャップ87とを含む。領域B8は、複数の電極指82の基端部82bと複数のギャップ88とを含む。第2ギャップ領域では、第2内側バスバー領域及び第2中央領域よりも弾性波の音速が速くなる。
 変形例6に係る弾性波装置1では、上述の11個の領域B1~B11のうち第2方向D2の両端それぞれから数えて5番目に位置する領域B5、B7が、第2太幅領域を構成している。領域B5は、複数の電極指81の基端部81bの太幅部811と複数の電極指82の先端部82aの太幅部822とを含む。領域B7は、複数の電極指81の先端部81aの太幅部812と複数の電極指82の基端部82bの太幅部821とを含む。第2太幅領域では、第2中央領域よりも弾性波の音速が遅くなる。
 変形例6に係る弾性波装置1では、第2IDT電極7Bが上記のように構成されているため、第2中央領域(領域B6)の外側に低音速の領域(領域B5及び領域B7)が存在し、低音速の領域の外側に高音速の領域B2及び領域B10が存在している。したがって、弾性波装置1では、ピストンモードを形成することが可能となり、横モードリップルを効果的に抑制することができる。
 変形例6に係る弾性波装置1では、第1音響インピーダンス層4Aにおける導電層(高音響インピーダンス層41)と第2音響インピーダンス層4Bにおける導電層(高音響インピーダンス層41)との各々の少なくとも一部が、基板2(図2参照)の厚さ方向D1(図2参照)からの平面視において共通バスバー70と重複していない。ここにおいて、弾性波装置1では、第1音響インピーダンス層4Aにおける導電層(高音響インピーダンス層41)が、基板2(図2参照)の厚さ方向D1(図2参照)からの平面視において、領域A1の一部、領域A2~A10、領域A11の一部に重複している。また、第2音響インピーダンス層4Bにおける導電層(高音響インピーダンス層41)が、基板2(図2参照)の厚さ方向D1(図2参照)からの平面視において、領域B1の一部、領域B2~B10、領域B11の一部に重複している。図16に示した弾性波装置1では、音響エネルギをより効率的に圧電体層5の主面近傍に閉じ込めることができる。
 これに対して、図17に示す変形例7に係る弾性波装置1では、第1音響インピーダンス層4Aにおける導電層(高音響インピーダンス層41)が、基板2(図2参照)の厚さ方向D1(図2参照)からの平面視において、領域A2の一部、領域A3~A9、領域A10の一部に重複している。また、第2音響インピーダンス層4Bにおける導電層(高音響インピーダンス層41)が、基板2(図2参照)の厚さ方向D1(図2参照)からの平面視において、領域B2の一部、領域B3~B9、領域B10の一部に重複している。変形例7に係る弾性波装置1では、音響エネルギを効率的に圧電体層5の主面近傍に閉じ込めることができ、かつ、変形例6に係る弾性波装置1よりも寄生容量の影響を適度に抑制することができる。
 また、図18に示す変形例8に係る弾性波装置1では、第1音響インピーダンス層4Aにおける導電層(高音響インピーダンス層41)が、基板2(図2参照)の厚さ方向D1(図2参照)からの平面視において、領域A3の一部、領域A4~A8、領域A9の一部に重複している。また、第2音響インピーダンス層4Bにおける導電層(高音響インピーダンス層41)が、基板2(図2参照)の厚さ方向D1(図2参照)からの平面視において、領域B3の一部、領域B4~B8、領域B9の一部に重複している。変形例8に係る弾性波装置1では、音響エネルギを適度に圧電体層5の主面近傍に閉じ込めることができ、かつ、変形例7に係る弾性波装置1よりも寄生容量の影響を抑制することができる。
 また、図19に示す変形例9に係る弾性波装置1では、第1音響インピーダンス層4Aにおける導電層(高音響インピーダンス層41)が、基板2(図2参照)の厚さ方向D1(図2参照)からの平面視において、領域A4の一部、領域A5~A7、領域A8の一部に重複している。また、第2音響インピーダンス層4Bにおける導電層(高音響インピーダンス層41)が、基板2(図2参照)の厚さ方向D1(図2参照)からの平面視において、領域B4の一部、領域B5~B7、領域B8の一部に重複している。変形例9に係る弾性波装置1では、音響エネルギを必要最低限、圧電体層5の主面近傍に閉じ込めることができ、かつ、変形例8に係る弾性波装置1よりも寄生容量の影響を抑制することができる。
 変形例10に係る弾性波装置1は、図20に示すように、複数(図示例では2つ)の配線層33A、33Bと、絶縁層34と、スペーサ層(支持層)35と、カバー部材36と、を更に備えてもよい。変形例10に係る弾性波装置1では、第1IDT電極7A、第2IDT電極7B、圧電体層5及び中間層3が、基板2と絶縁層34とスペーサ層35とカバー部材36とを含むパッケージPA1に収容されていてもよい。配線層33Aは、第1IDT電極7Aの第1バスバー71に電気的に接続されている。配線層33Bは、第2IDT電極7Bの第2バスバー72に電気的に接続されている。絶縁層34は、基板2の第1主面21上に形成されている。絶縁層34は、中間層3及び圧電体層5を囲んでいる。スペーサ層35は、少なくとも一部が絶縁層34上に形成されている。スペーサ層35は、基板2の厚さ方向D1からの平面視において中間層3及び圧電体層5を囲んでいる。カバー部材36は、スペーサ層35上に配置されている。弾性波装置1では、スペーサ層35が、絶縁層34とカバー部材36の周部との間に介在している。カバー部材36は、厚さ方向D1において第1IDT電極7A及び第2IDT電極7Bから離れている。
 変形例10に係る弾性波装置1は、カバー部材36と、スペーサ層35と、絶縁層34と、基板2上の積層体(中間層3と圧電体層5とを含む積層体)と、で囲まれた空間SP1を有する。
 絶縁層34は、電気絶縁性を有する。絶縁層34は、基板2の第1主面21上において基板2の外周に沿って形成されている。絶縁層34は、中間層3の側面及び圧電体層5の側面を囲んでいる。ここにおいて、絶縁層34の一部は、圧電体層5の周部に重なっている。中間層3の側面及び圧電体層5の側面は、絶縁層34により覆われている。絶縁層34の材料は、例えば、エポキシ樹脂、ポリイミド等の合成樹脂である。
 配線層33Aは、基板2の厚さ方向D1において、第1IDT電極7Aの一部と圧電体層5の一部と絶縁層34の一部とに重なっている。配線層33Bは、基板2の厚さ方向D1において、第2IDT電極7Bの一部と圧電体層5の一部と絶縁層34の一部とに重なっている。
 スペーサ層35は、平面視において、圧電体層5を囲んでいる。スペーサ層35は、基板2の厚さ方向D1において絶縁層34に重なっている。スペーサ層35の一部は、配線層33A、33Bそれぞれにおいて絶縁層34上に形成されている部分も覆っている。要するに、スペーサ層35は、絶縁層34上に直接形成されている第1部分と、絶縁層34上に配線層33A、33Bの一部を介して間接的に形成されている第2部分と、を含む。
 スペーサ層35は、電気絶縁性を有する。スペーサ層35の材料は、例えば、エポキシ樹脂、ポリイミド等の合成樹脂である。スペーサ層35の材料は、絶縁層34の材料と主成分が同じであるのが好ましく、同じ材料であるのがより好ましい。
 カバー部材36は、平板状である。カバー部材36は、厚さ方向D1において第1IDT電極7A及び第2IDT電極7Bから離れている。
 また、変形例10に係る弾性波装置1は、複数(図示例では、2つ)の外部接続電極37A、37Bを有する。外部接続電極37Aは、第1IDT電極7Aの第1バスバー71に電気的に接続されている。上述の配線層33Aは、外部接続電極37Aと第1IDT電極7Aとを電気的に接続している。外部接続電極37Bは、第2IDT電極7Bの第2バスバー72に電気的に接続されている。上述の配線層33Bは、外部接続電極37Bと第2IDT電極7Bとを電気的に接続している。
 外部接続電極37A、37Bは、基板2の厚さ方向D1においてスペーサ層35とカバー部材36とを貫通している貫通電極部38A、38Bと、貫通電極部38A、38B上に形成されている39A、39Bと、を含む。
 変形例10に係る弾性波装置1では、スペーサ層35が絶縁層34上に形成されているが、これに限らず、スペーサ層35が基板2の第1主面21上に形成されて圧電体層5を囲んでいてもよい。変形例10に係る弾性波装置1のパッケージPA1の構成を適宜変更して変形例1に係る弾性波装置1bに適用してもよい。
 また、変形例11に係る弾性波装置1では、図21に示すように、スペーサ層35が基板2の第1主面21上及び配線層33B上に形成されて圧電体層5を囲んでおり、スペーサ層35の外面351に凹部353を有していている。図21の構成では、基板2は、電気絶縁性を有する。ここにおいて、基板2の材料は、例えば、LiNbO3(リチウムニオベイト)、LiTaO3(リチウムタンタレート)、水晶、ガラス等である。
 また、変形例12に係る弾性波装置1は、スペーサ層35(第1スペーサ層)の内側においてカバー部材36と基板2との間に位置する1又は複数の中間支持層(第2スペーサ層)を有している。
 また、弾性波装置として、複数の弾性波装置1を有し、複数の弾性波装置1で1枚の基板2を共用しており、隣り合う弾性波装置1のスペーサ層35間をつなぐ樹脂層を有してもよい。樹脂層は、スペーサ層35と同じ材料であり、スペーサ層35と一体に形成されている。また、弾性波装置1は、基板2の厚さ方向D1からの平面視において、矩形状の基板2の外周よりも内側に位置するスペーサ層35から基板2のコーナー部に至る樹脂層を備えていてもよい。 
 (まとめ)
 以上説明した実施形態等から以下の態様が開示されている。
 第1の態様に係る弾性波装置(1;1b;1c)は、基板(2)と、第1音響インピーダンス層(4A)及び第2音響インピーダンス層(4B)と、圧電体層(5)と、第1IDT電極(7A)と、第2IDT電極(7B)と、を備える。第1音響インピーダンス層(4A)及び第2音響インピーダンス層(4B)は、基板(2)上に形成されている。圧電体層(5)は、第1音響インピーダンス層(4A)及び第2音響インピーダンス層(4B)上に形成されている。第1IDT電極(7A)は、圧電体層(5)上に形成され、圧電体層(5)の厚さ方向(D1)からの平面視において、第1音響インピーダンス層(4A)と一部重複する。第2IDT電極(7B)は、圧電体層(5)上に形成され、厚さ方向(D1)からの平面視において、第2音響インピーダンス層(4B)と一部重複する。第1IDT電極(7A)及び第2IDT電極(7B)は、互いに共有している共通バスバー(70)により互いに直列接続されている。第1IDT電極(7A)は、対向し合う第1バスバー(71)及び共通バスバー(70)と、第1バスバー(71)に接続され共通バスバー(70)に向かって延びている複数の電極指(81)と、共通バスバー(70)に接続され第1バスバー(71)に向かって延びている複数の電極指(82)と、を含む。第2IDT電極(7B)は、対向し合う共通バスバー(70)及び第2バスバー(72)と、共通バスバー(70)に接続され第2バスバー(72)に向かって延びている複数の電極指(81)と、第2バスバー(72)に接続され共通バスバー(70)に向かって延びている複数の電極指(82)と、を含む。第1音響インピーダンス層(4A)及び第2音響インピーダンス層(4B)の各々は、少なくとも1つの高音響インピーダンス層(41)と、少なくとも1つの高音響インピーダンス層(41)よりも音響インピーダンスが低い少なくとも1つの低音響インピーダンス層(42)と、を有する。第1音響インピーダンス層(4A)及び第2音響インピーダンス層(4B)の各々について、少なくとも1つの高音響インピーダンス層(41)及び少なくとも1つの低音響インピーダンス層(42)の少なくとも1つが導電層である。第1音響インピーダンス層(4A)における導電層(高音響インピーダンス層41)と第2音響インピーダンス層(4B)における導電層(高音響インピーダンス層41)との各々の少なくとも一部が、厚さ方向(D1)からの平面視において共通バスバー(70)と重複していない。第1音響インピーダンス層(4A)における導電層(高音響インピーダンス層41)と第2音響インピーダンス層(4B)における導電層(高音響インピーダンス層41)とが電気的に絶縁されている。
 第1の態様に係る弾性波装置(1;1b;1c)では、周波数特性の低下を抑制しつつ耐電力性をより高めることが可能となる。
 第2の態様に係る弾性波装置(1;1b;1c)は、第1の態様において、少なくとも1つの高音響インピーダンス層(41)は、複数の高音響インピーダンス層(41)を含む。少なくとも1つの低音響インピーダンス層(42)は、複数の低音響インピーダンス層(42)を含む。複数の高音響インピーダンス層(41)と複数の低音響インピーダンス層(42)とが厚さ方向(D1)において一層ごとに交互に並んでいる。
 第2の態様に係る弾性波装置(1;1b;1c)では、共振特性を向上させることが可能となる。
 第3の態様に係る弾性波装置(1;1b;1c)は、第2の態様において、第1音響インピーダンス層(4A)及び第2音響インピーダンス層(4B)の各々における複数の高音響インピーダンス層(41)が、導電層(高音響インピーダンス層41)を含む。
 第3の態様に係る弾性波装置(1;1b;1c)では、低音響インピーダンス層(42)の材料として導電性を有する材料を採用する必要がないので、高音響インピーダンス層(41)の音響インピーダンスと、低音響インピーダンス層(42)の音響インピーダンスとの比である音響インピーダンス比を、より大きくすることが可能となる。
 第4の態様に係る弾性波装置(1;1b;1c)は、第1~3の態様のいずれか一つにおいて、第1IDT電極(7A;7AA)と圧電体層(5)と第1音響インピーダンス層(4A)とを含んで第1共振子が構成されている。第2IDT電極(7B;7BB)と圧電体層(5)と第2音響インピーダンス層(4B)とを含んで第2共振子が構成されている。第1共振子及び第2共振子は、第1共振子のインピーダンスと第2共振子のインピーダンスとの合成インピーダンスが、1つのIDT電極と圧電体層と1つの音響インピーダンス層とを含む規定の共振子のインピーダンスと同じとなるように規定の共振子を2つの共振子に分割した分割共振子である。
 第4の態様に係る弾性波装置(1;1b;1c)では、第1共振子と第2共振子とを含む領域の面積が規定の共振子の面積よりも大きくなるので、放熱性が高くなり、周波数特性の低下を抑制しつつ耐電力性を高めることが可能となる。
 第5の態様に係る弾性波装置(1;1b;1c)は、第1~4の態様のいずれか一つにおいて、第1音響インピーダンス層(4A)における導電層(高音響インピーダンス層41)は、厚さ方向(D1)からの平面視において第1IDT電極(7A;7AA)の第1バスバー(71)と共通バスバー(70)との間に位置している。また、第2音響インピーダンス層(4B)における導電層(高音響インピーダンス層41)は、厚さ方向(D1)からの平面視において第2IDT電極(7B;7BB)の共通バスバー(70)と第2バスバー(72)との間に位置している。
 第5の態様に係る弾性波装置(1;1b;1c)では、周波数特性の低下を、より抑制することが可能となる。
 第6の態様に係る弾性波装置(1;1b;1c)は、第1~5の態様のいずれか一つにおいて、厚さ方向(D1)からの平面視において、第1IDT電極(7A;7AA)と第1音響インピーダンス層(4A)における導電層(高音響インピーダンス層41)との重なる領域の面積と、第2IDT電極(7B;7BB)と第2音響インピーダンス層(4B)における導電層(高音響インピーダンス層41)との重なる領域の面積と、が同じである。
 第6の態様に係る弾性波装置(1;1b;1c)では、インピーダンスの周波数特性においてリップルが発生するのを、より抑制することが可能となる。
 第7の態様に係る弾性波装置(1b)は、第1~6の態様のいずれか一つにおいて、入力端子(15)と出力端子(16)とを結ぶ第1経路に設けられた直列腕回路(12)と、第1経路上のノードとグラウンドとを結ぶ第2経路上に設けられた並列腕回路(13、14)と、を備える。直列腕回路(12)は、複数の直列腕共振子(S1)を有する。複数の直列腕共振子(S1)のうち少なくとも1つの直列腕共振子(S1)が、第1IDT電極(7A)と第2IDT電極(7B)と圧電体層(5)と第1音響インピーダンス層(4A)と第2音響インピーダンス層(4B)を含む共振子である。
 第7の態様に係る弾性波装置(1b)では、周波数特性の低下を抑制しつつ耐電力性をより高めることが可能となる。
 第8の態様に係る弾性波装置(1b)は、第7の態様において、並列腕回路(13、14)は、並列腕共振子(P1)を有する。
 第9の態様に係る弾性波装置(1;1b;1c)は、第1~8の態様のいずれか一つにおいて、第1IDT電極(7A)及び第2IDT電極(7B)の電極指ピッチ(2×T1)により定まる弾性波の波長をλとしたときに、圧電体層(5)の厚さが、1λ以下である。
 第9の態様に係る弾性波装置(1;1b;1c)では、板波を励振することができる。
 第10の態様に係る弾性波装置(1;1b;1c)は、第9の態様において、弾性波が板波である。
 第10の態様に係る弾性波装置(1;1a;1b)では、板波を利用する弾性波装置として使用することが可能となる。
 1、1b、1c 弾性波装置
 100、100c 弾性波装置
 2 基板
 21 第1主面
 22 第2主面
 3 中間層
 4A 第1音響インピーダンス層
 4B 第2音響インピーダンス層
 41 高音響インピーダンス層(導電層)
 42 低音響インピーダンス層
 5 圧電体層
 6 機能電極
 7A 第1IDT電極
 7B 第2IDT電極
 70 共通バスバー
 701A 開口部
 701B 開口部
 702A、702B 外側バスバー部
 703A、703B 内側バスバー部
 704A、704B 中央バスバー部
 71 第1バスバー
 711 開口部
 712 外側バスバー部
 713 内側バスバー部
 714 中央バスバー部
 72 第2バスバー
 721 開口部
 722 外側バスバー部
 723 内側バスバー部
 724 中央バスバー部
 81 電極指
 81a 先端部
 81b 基端部
 81c 中央部
 811、812 太幅部
 82 電極指
 82a 先端部
 82b 基端部
 82c 中央部
 821、822 太幅部
 85、86、87、88 ギャップ
 9 反射器
 10 反射器
 11 規定領域
 12 直列腕回路
 13 並列腕回路
 14 並列腕回路
 15 入力端子
 16 出力端子
 17 グラウンド端子(グラウンド)
 18 グラウンド端子(グラウンド)
 19 誘電体層
 33A、33B 配線層
 34 絶縁層
 35 スペーサ層
 351 外面
 353 凹部
 36 カバー部材
 A1~A11 領域
 B1~B11 領域
 T1 距離
 T2 電極指幅
 D1 厚さ方向(第1方向)
 D2 第2方向
 D3 第3方向
 PA1 パッケージ
 SP1 空間
 S1 直列腕共振子
 P1 並列腕共振子

Claims (10)

  1.  基板と、
     前記基板上に形成された、第1音響インピーダンス層及び第2音響インピーダンス層と、
     前記第1音響インピーダンス層及び前記第2音響インピーダンス層上に形成された圧電体層と、
     前記圧電体層上に形成され、前記圧電体層の厚さ方向からの平面視において、前記第1音響インピーダンス層と一部重複する第1IDT電極と、
     前記圧電体層上に形成され、前記厚さ方向からの平面視において、前記第2音響インピーダンス層と一部重複する第2IDT電極と、
     を備え、
     前記第1IDT電極及び前記第2IDT電極は、互いに共有している共通バスバーにより互いに直列接続されており、
     前記第1IDT電極は、
      対向し合う第1バスバー及び前記共通バスバーと、
      前記第1バスバーに接続され前記共通バスバーに向かって延びている複数の電極指と、
      前記共通バスバーに接続され前記第1バスバーに向かって延びている複数の電極指と、
     を含み、 
     前記第2IDT電極は、
      対向し合う前記共通バスバー及び第2バスバーと、
      前記共通バスバーに接続され前記第2バスバーに向かって延びている複数の電極指と、
      前記第2バスバーに接続され前記共通バスバーに向かって延びている複数の電極指と、
     を含み、
     前記第1音響インピーダンス層及び前記第2音響インピーダンス層の各々は、
      少なくとも1つの高音響インピーダンス層と、
      前記少なくとも1つの高音響インピーダンス層よりも音響インピーダンスが低い少なくとも1つの低音響インピーダンス層と、
     を有し、
     前記第1音響インピーダンス層及び前記第2音響インピーダンス層の各々について、前記少なくとも1つの高音響インピーダンス層及び前記少なくとも1つの低音響インピーダンス層の少なくとも1つが導電層であり、
     前記第1音響インピーダンス層における前記導電層の少なくとも一部と前記第2音響インピーダンス層における前記導電層の少なくとも一部とが、前記厚さ方向からの平面視において前記共通バスバーと重複しておらず、
     前記第1音響インピーダンス層における前記導電層と前記第2音響インピーダンス層における前記導電層とが電気的に絶縁されている、
     弾性波装置。
  2.  前記少なくとも1つの高音響インピーダンス層は、複数の高音響インピーダンス層を含み、
     前記少なくとも1つの低音響インピーダンス層は、複数の低音響インピーダンス層を含み、
     前記複数の高音響インピーダンス層と前記複数の低音響インピーダンス層とが前記厚さ方向において一層ごとに交互に並んでいる、
     請求項1に記載の弾性波装置。
  3.  前記第1音響インピーダンス層及び前記第2音響インピーダンス層の各々における前記複数の高音響インピーダンス層が、前記導電層を含む、
     請求項2に記載の弾性波装置。
  4.  前記第1IDT電極と前記圧電体層と前記第1音響インピーダンス層とを含んで第1共振子が構成され、
     前記第2IDT電極と前記圧電体層と前記第2音響インピーダンス層とを含んで第2共振子が構成され、
     前記第1共振子及び前記第2共振子は、前記第1共振子のインピーダンスと前記第2共振子のインピーダンスとの合成インピーダンスが、1つのIDT電極と圧電体層と1つの音響インピーダンス層とを含む規定の共振子のインピーダンスと同じとなるように前記規定の共振子を2つの共振子に分割した分割共振子である
     請求項1~3のいずれか一項に記載の弾性波装置。
  5.  前記第1音響インピーダンス層における前記導電層は、前記厚さ方向からの平面視において前記第1IDT電極の前記第1バスバーと前記共通バスバーとの間に位置し、
     前記第2音響インピーダンス層における前記導電層は、前記厚さ方向からの平面視において前記第2IDT電極の前記共通バスバーと前記第2バスバーとの間に位置している、
     請求項1~4のいずれか一項に記載の弾性波装置。
  6.  前記厚さ方向からの平面視において、前記第1IDT電極と前記第1音響インピーダンス層における前記導電層との重なる領域の面積と、前記第2IDT電極と前記第2音響インピーダンス層における前記導電層との重なる領域の面積と、が同じである、
     請求項1~5のいずれか一項に記載の弾性波装置。
  7.  入力端子と出力端子とを結ぶ第1経路上に設けられた直列腕回路と、
     前記第1経路上のノードとグラウンドとを結ぶ第2経路上に設けられた並列腕回路と、を備え、
     前記直列腕回路は、複数の直列腕共振子を有し、
     前記複数の直列腕共振子のうち少なくとも1つの直列腕共振子が、前記第1IDT電極と前記第2IDT電極と前記圧電体層と前記第1音響インピーダンス層と前記第2音響インピーダンス層とを含む共振子である、
     請求項1~6のいずれか一項に記載の弾性波装置。
  8.  前記並列腕回路は、並列腕共振子を有する、
     請求項7に記載の弾性波装置。
  9.  前記第1IDT電極及び前記第2IDT電極の電極指ピッチにより定まる弾性波の波長をλとしたときに、前記圧電体層の厚さが、1λ以下である、
     請求項1~8のいずれか一項に記載の弾性波装置。
  10.  前記弾性波が板波である、
     請求項9に記載の弾性波装置。
PCT/JP2018/035552 2017-09-27 2018-09-26 弾性波装置 WO2019065666A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019545148A JP6747604B2 (ja) 2017-09-27 2018-09-26 弾性波装置
CN201880062758.4A CN111149294B (zh) 2017-09-27 2018-09-26 弹性波装置
KR1020207006824A KR102329740B1 (ko) 2017-09-27 2018-09-26 탄성파 장치
US16/823,440 US11509281B2 (en) 2017-09-27 2020-03-19 Acoustic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-186734 2017-09-27
JP2017186734 2017-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/823,440 Continuation US11509281B2 (en) 2017-09-27 2020-03-19 Acoustic wave device

Publications (1)

Publication Number Publication Date
WO2019065666A1 true WO2019065666A1 (ja) 2019-04-04

Family

ID=65900899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035552 WO2019065666A1 (ja) 2017-09-27 2018-09-26 弾性波装置

Country Status (5)

Country Link
US (1) US11509281B2 (ja)
JP (1) JP6747604B2 (ja)
KR (1) KR102329740B1 (ja)
CN (1) CN111149294B (ja)
WO (1) WO2019065666A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049206A1 (ja) * 2019-09-13 2021-03-18 株式会社村田製作所 弾性波フィルタ
WO2021060510A1 (ja) * 2019-09-27 2021-04-01 株式会社村田製作所 弾性波装置
WO2021060509A1 (ja) * 2019-09-27 2021-04-01 株式会社村田製作所 弾性波装置
WO2021117581A1 (ja) * 2019-12-09 2021-06-17 株式会社村田製作所 弾性波装置
WO2021153736A1 (ja) * 2020-01-31 2021-08-05 株式会社村田製作所 弾性波デバイスおよびそれを備えたラダー型フィルタ
WO2021187537A1 (ja) * 2020-03-18 2021-09-23 株式会社村田製作所 弾性波装置
WO2021200677A1 (ja) * 2020-03-31 2021-10-07 株式会社村田製作所 弾性波装置
WO2022045307A1 (ja) * 2020-08-28 2022-03-03 京セラ株式会社 弾性波素子及び通信装置
WO2022075138A1 (ja) * 2020-10-06 2022-04-14 株式会社村田製作所 弾性波装置
WO2022075415A1 (ja) * 2020-10-08 2022-04-14 株式会社村田製作所 弾性波装置
WO2022211056A1 (ja) * 2021-03-31 2022-10-06 株式会社村田製作所 弾性波装置
WO2023002824A1 (ja) * 2021-07-20 2023-01-26 株式会社村田製作所 弾性波装置
US20230053722A1 (en) * 2020-04-29 2023-02-23 Murata Manufacturing Co., Ltd. Elastic wave device and ladder filter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7205551B2 (ja) * 2018-12-06 2023-01-17 株式会社村田製作所 弾性波装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052129A1 (ja) * 2014-09-30 2016-04-07 株式会社村田製作所 弾性波装置及びその製造方法
WO2016063718A1 (ja) * 2014-10-21 2016-04-28 株式会社村田製作所 弾性波共振子及びラダー型フィルタ
WO2016147986A1 (ja) * 2015-03-16 2016-09-22 株式会社村田製作所 弾性波装置及びその製造方法
WO2016208427A1 (ja) * 2015-06-25 2016-12-29 株式会社村田製作所 弾性波装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3622758B2 (ja) * 2003-03-28 2005-02-23 松下電器産業株式会社 弾性表面波共振器、弾性表面波フィルタ、及びアンテナ共用器
JP2009088999A (ja) * 2007-09-28 2009-04-23 Nippon Dempa Kogyo Co Ltd 弾性波フィルタ
US8610333B2 (en) * 2010-09-24 2013-12-17 Wei Pang Acoustic wave devices
CN103283147B (zh) 2010-12-24 2016-09-21 株式会社村田制作所 弹性波装置及其制造方法
JP2013223025A (ja) * 2012-04-13 2013-10-28 Taiyo Yuden Co Ltd フィルタ装置、フィルタ装置の製造方法及びデュプレクサ
WO2015119025A1 (ja) * 2014-02-04 2015-08-13 株式会社村田製作所 弾性波装置
US10097158B2 (en) * 2014-10-16 2018-10-09 Taiyo Yuden Co., Ltd. Acoustic wave device, filter, and duplexer
JP6411295B2 (ja) * 2014-10-16 2018-10-24 太陽誘電株式会社 弾性波デバイス、フィルタ、及び分波器
WO2016098526A1 (ja) * 2014-12-18 2016-06-23 株式会社村田製作所 弾性波装置及びその製造方法
WO2018151218A1 (ja) * 2017-02-20 2018-08-23 株式会社村田製作所 フィルタ装置、マルチプレクサ、高周波フロントエンド回路、および通信装置
US11677378B2 (en) * 2017-11-29 2023-06-13 Murata Manufacturing Co., Ltd. Elastic wave device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052129A1 (ja) * 2014-09-30 2016-04-07 株式会社村田製作所 弾性波装置及びその製造方法
WO2016063718A1 (ja) * 2014-10-21 2016-04-28 株式会社村田製作所 弾性波共振子及びラダー型フィルタ
WO2016147986A1 (ja) * 2015-03-16 2016-09-22 株式会社村田製作所 弾性波装置及びその製造方法
WO2016208427A1 (ja) * 2015-06-25 2016-12-29 株式会社村田製作所 弾性波装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049206A1 (ja) * 2019-09-13 2021-03-18 株式会社村田製作所 弾性波フィルタ
WO2021060510A1 (ja) * 2019-09-27 2021-04-01 株式会社村田製作所 弾性波装置
WO2021060509A1 (ja) * 2019-09-27 2021-04-01 株式会社村田製作所 弾性波装置
WO2021117581A1 (ja) * 2019-12-09 2021-06-17 株式会社村田製作所 弾性波装置
JP7472918B2 (ja) 2020-01-31 2024-04-23 株式会社村田製作所 弾性波デバイスおよびそれを備えたラダー型フィルタ
WO2021153736A1 (ja) * 2020-01-31 2021-08-05 株式会社村田製作所 弾性波デバイスおよびそれを備えたラダー型フィルタ
WO2021187537A1 (ja) * 2020-03-18 2021-09-23 株式会社村田製作所 弾性波装置
WO2021200677A1 (ja) * 2020-03-31 2021-10-07 株式会社村田製作所 弾性波装置
US20230053722A1 (en) * 2020-04-29 2023-02-23 Murata Manufacturing Co., Ltd. Elastic wave device and ladder filter
WO2022045307A1 (ja) * 2020-08-28 2022-03-03 京セラ株式会社 弾性波素子及び通信装置
WO2022075138A1 (ja) * 2020-10-06 2022-04-14 株式会社村田製作所 弾性波装置
WO2022075415A1 (ja) * 2020-10-08 2022-04-14 株式会社村田製作所 弾性波装置
WO2022211056A1 (ja) * 2021-03-31 2022-10-06 株式会社村田製作所 弾性波装置
WO2023002824A1 (ja) * 2021-07-20 2023-01-26 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
CN111149294A (zh) 2020-05-12
KR20200036016A (ko) 2020-04-06
CN111149294B (zh) 2023-04-25
JPWO2019065666A1 (ja) 2020-07-02
US20200220518A1 (en) 2020-07-09
US11509281B2 (en) 2022-11-22
JP6747604B2 (ja) 2020-08-26
KR102329740B1 (ko) 2021-11-22

Similar Documents

Publication Publication Date Title
JP6747604B2 (ja) 弾性波装置
JP7014319B2 (ja) 弾性波装置
US11799443B2 (en) Acoustic wave device
WO2012132877A1 (ja) 弾性波素子およびそれを用いた弾性波装置
US20200212889A1 (en) Acoustic wave filter device
US11689180B2 (en) Acoustic wave device
WO2021060509A1 (ja) 弾性波装置
US20220345108A1 (en) Acoustic wave device
WO2021060510A1 (ja) 弾性波装置
US20230261634A1 (en) Acoustic wave device and ladder filter
WO2021200677A1 (ja) 弾性波装置
JP6725083B2 (ja) 弾性波装置及び弾性波装置の製造方法
WO2021177340A1 (ja) 弾性波装置
JP4761192B2 (ja) 弾性表面波素子片、弾性表面波デバイスおよび電子機器
WO2022211087A1 (ja) 弾性波装置
KR20230147700A (ko) 탄성파 장치
KR20230148243A (ko) 탄성파 장치
JP2012109671A (ja) 弾性波素子及びラダー型フィルタ
JP2007027878A (ja) 弾性表面波素子片および弾性表面波デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207006824

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019545148

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862347

Country of ref document: EP

Kind code of ref document: A1