WO2021049206A1 - 弾性波フィルタ - Google Patents

弾性波フィルタ Download PDF

Info

Publication number
WO2021049206A1
WO2021049206A1 PCT/JP2020/029725 JP2020029725W WO2021049206A1 WO 2021049206 A1 WO2021049206 A1 WO 2021049206A1 JP 2020029725 W JP2020029725 W JP 2020029725W WO 2021049206 A1 WO2021049206 A1 WO 2021049206A1
Authority
WO
WIPO (PCT)
Prior art keywords
split
resonator
resonators
elastic wave
propagation direction
Prior art date
Application number
PCT/JP2020/029725
Other languages
English (en)
French (fr)
Inventor
岡田 圭司
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202080063139.4A priority Critical patent/CN114365418A/zh
Publication of WO2021049206A1 publication Critical patent/WO2021049206A1/ja
Priority to US17/691,492 priority patent/US20220200570A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/542Filters comprising resonators of piezoelectric or electrostrictive material including passive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02929Means for compensation or elimination of undesirable effects of ageing changes of characteristics, e.g. electro-acousto-migration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02992Details of bus bars, contact pads or other electrical connections for finger electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/566Electric coupling means therefor
    • H03H9/568Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • H03H9/60Electric coupling means therefor
    • H03H9/605Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave filter including a split resonator.
  • Patent Document 1 a technique for forming a resonator group by connecting a plurality of elastic wave resonators in series, that is, a technique for dividing an elastic wave resonator into a plurality of divided resonators connected in series with each other is known (for example). , Patent Document 1). By dividing the elastic wave resonator in this way, the power consumption per unit area can be reduced, and the power resistance of the elastic wave filter is improved.
  • the elastic wave resonator when the elastic wave resonator is divided into three or more divided resonators connected in series, the three or more divided resonators have a divided resonator arranged so as to be sandwiched between other divided resonators. It will exist. Then, the temperature of the elastic wave filter tends to rise due to the interaction between the split resonator and the adjacent split resonator sandwiching the split resonator, and as a result, the power resistance of the elastic wave filter decreases. There is.
  • an object of the present invention is to provide an elastic wave filter capable of effectively improving the power resistance.
  • the elastic wave filter according to one aspect of the present invention includes at least three divided resonators connected in series with each other, and each of the at least three divided resonators has an IDT (InterDigital Transducer) electrode and is made of elastic waves.
  • IDT InterDigital Transducer
  • the center of the IDT electrodes of the adjacent first and second divided resonators of the at least three divided resonators in the elastic wave propagation direction is the elastic wave. It is deviated from the direction orthogonal to the propagation direction.
  • FIG. 1 is a circuit configuration diagram of a filter according to an embodiment.
  • FIG. 2 is a top view showing an example of the layout of the split resonator group according to the embodiment.
  • FIG. 3 is a circuit configuration diagram of a filter according to a comparative example.
  • FIG. 4 is a top view showing a layout example of the split resonator group according to the comparative example.
  • FIG. 5A is a diagram showing the temperature distribution of the piezoelectric substrate forming the filter according to the comparative example.
  • FIG. 5B is a diagram showing the temperature distribution of the piezoelectric substrate forming the filter according to the embodiment.
  • FIG. 6 is a graph showing the power resistance of the filter according to the embodiment and the filter according to the comparative example.
  • FIG. 7A is a diagram showing an example of a layout and a circuit configuration of a split resonator group according to another embodiment.
  • FIG. 7B is a diagram showing an example of a layout and a circuit configuration of a split resonator group according to another embodiment.
  • FIG. 7C is a diagram showing an example of a layout and a circuit configuration of a split resonator group according to another embodiment.
  • FIG. 7D is a diagram showing an example of a layout and a circuit configuration of a split resonator group according to another embodiment.
  • FIG. 7E is a diagram showing an example of a layout and a circuit configuration of a split resonator group according to another embodiment.
  • FIG. 1 is a circuit configuration diagram of the filter 10 according to the embodiment.
  • FIG. 1 also shows an antenna ANT, inductors L2 and L3 connected to the filter 10.
  • the antenna ANT is a multi-band compatible antenna that transmits and receives high-frequency signals and conforms to communication standards such as LTE (Long Term Evolution).
  • the inductor L2 is a matching circuit for impedance matching between the filter 10 and the antenna ANT
  • the inductor L3 is a circuit (for example, an amplifier circuit, a switch or an RFIC (Radio Frequency Integrated Circuit)) connected to the filter 10 and the terminal 20.
  • Etc. is a matching circuit for impedance matching.
  • the filter 10 is an elastic wave filter composed of an elastic wave resonator.
  • Each elastic wave resonator constituting the filter 10 may be either an elastic surface wave resonator or an elastic wave resonator using BAW (Bulk Acoustic Wave).
  • the surface acoustic wave includes, for example, a surface wave, a love wave, a leaky wave, a Rayleigh wave, a boundary wave, a leakage SAW, a pseudo SAW, and a plate wave.
  • the filter 10 includes series arm resonators 11, 12, 13, 14 and 15, parallel arm resonators 16, 17, 18 and 19, and an inductor L1.
  • the series arm resonators 11, 12, 13, 14 and 15, and the parallel arm resonators 16, 17, 18 and 19 form a pass band of the filter 10.
  • the inductor L1 is an element for adjusting the pass band of the filter 10.
  • the filter 10 does not have to include the inductor L1. Further, the filter 10 may be provided with another impedance element (inductor, capacitor, etc.) in order to make the pass band a desired pass band.
  • the series arm resonators 11, 12, 13, 14 and 15 are connected in series with each other on the path connecting the antenna ANT and the terminal 20.
  • the parallel arm resonator 16 is connected between the node on the path between the series arm resonator 11 and the series arm resonator 12 and the ground.
  • the parallel arm resonator 17 is connected between the node on the path between the series arm resonator 12 and the series arm resonator 13 and the ground.
  • the parallel arm resonator 18 is connected between the node on the path between the series arm resonator 13 and the series arm resonator 14 and the ground.
  • the parallel arm resonator 19 is connected between the node on the path between the series arm resonator 14 and the series arm resonator 15 and the ground.
  • series arm resonators 11, 12, 13, 14 and 15 composed of elastic wave resonators are arranged in the series arm path, and are composed of elastic wave resonators in the parallel arm path. Since the parallel arm resonators 16, 17, 18 and 19 are arranged, it is possible to realize a ladder type elastic wave filter having a low loss pass band and a steep transition band from the pass band to the stop band.
  • Each of the series arm resonators 11, 12, 13, 14 and 15, and the parallel arm resonators 16, 17, 18 and 19 are a group of divided resonators composed of a plurality of divided resonators connected in series with each other.
  • the split resonator group refers to an elastic wave resonator in which a connection node between adjacent split resonators connected in series constituting the split resonator group is not connected to other than the adjacent split resonator. ..
  • no other element is connected between adjacent split resonators, and the connection node between adjacent split resonators is not connected to ground or the like.
  • the elastic wave resonator when the elastic wave resonator is divided into three or more divided resonators connected in series, the three or more divided resonators have a divided resonator arranged so as to be sandwiched between other divided resonators. It will exist. Then, the temperature of the elastic wave filter tends to rise due to the interaction between the split resonator and the adjacent split resonator sandwiching the split resonator, and as a result, the power resistance of the elastic wave filter decreases. There is.
  • the filter 10 includes at least three split resonators connected in series to each other as a series arm resonator 11.
  • the at least three split resonators are the split resonators Sa, Sb, Sc and Sd connected in series with each other.
  • Two adjacent split resonators out of at least three split resonators are referred to as a first split resonator and a second split resonator.
  • the first split resonator is composed of at least two split resonators connected in parallel with each other. In other words, the first split resonator is split in parallel into two split resonators.
  • the split resonator Sb becomes the first split resonator and the split resonator Sa becomes the second split resonator.
  • the split resonator Sb and Sc the split resonator Sb becomes the first split resonator and the split resonator Sc becomes the second split resonator.
  • the split resonator Sd becomes the first split resonator and the split resonator Sc becomes the second split resonator.
  • the number of split resonators constituting the first split resonator is different from the number of split resonators constituting the second split resonator.
  • the first split resonator is composed of at least two split resonators
  • the second split resonator is composed of one split resonator.
  • the number of split resonators constituting the split resonator Sa which is the second split resonator
  • the number of split resonators constituting the split resonator Sb which is the first split resonator
  • the number of split resonators constituting the split resonator Sc, which is the second split resonator, is one
  • the number of split resonators constituting the split resonator Sd, which is the first split resonator is one. There are two.
  • the split resonator Sa is composed of one split resonator, and the one split resonator is called the split resonator Sa.
  • the split resonator Sb is composed of split resonators Pb1 and Pb2 connected in parallel to each other, and a set of split resonators Pb1 and Pb2 is called a split resonator Sb.
  • the split resonator Sc is composed of one split resonator, and the one split resonator is called a split resonator Sc.
  • the split resonator Sd is composed of split resonators Pd1 and Pd2 connected in parallel to each other, and a set of split resonators Pd1 and Pd2 is called a split resonator Sd.
  • FIG. 2 is a top view showing an example of the layout of the split resonator group (series arm resonator 11) according to the embodiment.
  • split resonators specifically, split resonators Sa, Sb, Sc and Sd constituting the series arm resonator 11
  • IDT InterDigital Transducer
  • the propagation direction of elastic waves is the left-right direction of the paper surface in FIG. 2, and the direction intersecting the propagation direction of elastic waves is, for example, the direction orthogonal to the propagation direction of elastic waves, and the vertical direction of the paper surface of FIG.
  • the direction intersecting the propagation direction of the elastic wave does not have to be a direction orthogonal to the propagation direction of the elastic wave, and may deviate from the vertical direction of the paper surface of FIG.
  • At least two split resonators (split resonators Pb1 and Pb2 for the split resonator Sb and split resonators Pd1 and Pd2 for the split resonator Sd) in the first split resonator (split resonators Sb and Sd) are elastic. They are arranged in the direction of wave propagation. For example, the split resonators Pb1 and Pb2, and the split resonators Pd1 and Pd2 are in a direction orthogonal to the direction in which the split resonators Sa, Sb, Sc, and Sd are arranged (the paper surface in FIG. 2) (paper surface in FIG. 2). Arranged in the left-right direction).
  • the split resonators Sb and Sd may be split in parallel so that the area of the IDT electrode portion is the same as when not split in parallel.
  • the area of the IDT electrode portion of the split resonator Sb may be the same as the area of the IDT electrode portion of the split resonator Sa.
  • the split resonator Sb is split in parallel, the sum of the area of the IDT electrode portion of the split resonator Pb1 and the area of the IDT electrode portion of the split resonator Pb2 is the portion of the IDT electrode of the split resonator Sa. It may be the same as the area of.
  • the first split resonator can be split in parallel so that the area does not become large. In that case, the power resistance can be improved without changing the capacity.
  • the same area as when not divided in parallel means that the area is larger than when not divided in parallel because of the gap between the divided resonators divided in parallel and the reflector provided between the divided resonators divided in parallel. Including the case where it becomes a little larger.
  • cross marks are attached to the maximum amplitude points of elastic waves excited by each IDT electrode.
  • the maximum amplitude point of each IDT electrode is the center in the propagation direction of the elastic wave of each IDT electrode. This is because both ends of the IDT electrode serve as vibration nodes of elastic waves, and the center of the vibration nodes at both ends becomes the antinodes of vibration of elastic waves.
  • the maximum amplitude point of the elastic wave excited by the IDT electrode can be rephrased as the center in the propagation direction of the elastic wave of the IDT electrode.
  • the maximum amplitude point of the elastic wave excited by the IDT electrode of the split resonator Sb (specifically, The maximum amplitude point of the elastic wave excited by the IDT electrode of the split resonator Pb1 and the maximum amplitude point of the elastic wave excited by the IDT electrode of the split resonator Pb2) and the elasticity excited by the IDT electrode of the split resonator Sa).
  • the maximum amplitude point of the wave deviates from the direction orthogonal to the propagation direction of the elastic wave.
  • the maximum amplitude point of the elastic wave excited by the IDT electrode of the split resonator Sb (specifically, The maximum amplitude point of the elastic wave excited by the IDT electrode of the split resonator Pb1 and the maximum amplitude point of the elastic wave excited by the IDT electrode of the split resonator Pb2) and the elasticity excited by the IDT electrode of the split resonator Sc).
  • the maximum amplitude point of the wave deviates from the direction orthogonal to the propagation direction of the elastic wave.
  • the maximum amplitude point of the elastic wave excited by the IDT electrode of the split resonator Sd (specifically, The maximum amplitude point of the elastic wave excited by the IDT electrode of the split resonator Pd1 and the maximum amplitude point of the elastic wave excited by the IDT electrode of the split resonator Pd2) and the elasticity excited by the IDT electrode of the split resonator Sc.
  • the maximum amplitude point of the wave deviates from the direction orthogonal to the propagation direction of the elastic wave.
  • the maximum amplitude points of the adjacent first-divided resonator and the second-divided resonator are separated from each other, that is, the adjacent first-divided resonator and the second-divided resonator are less likely to interact with each other.
  • the temperature at which the maximum amplitude point of the elastic wave excited by the IDT electrodes of the adjacent first and second split resonators deviates from the direction orthogonal to the propagation direction of the elastic wave. The extent to which the rise can be suppressed and the power resistance is improved will be described by comparing with a comparative example.
  • FIG. 3 is a circuit configuration diagram of the filter 10a according to the comparative example.
  • the filter 10a according to the comparative example is different from the filter 10 according to the embodiment in that the series arm resonator 11a is provided instead of the series arm resonator 11. Since other points are the same as those in the filter 10 according to the embodiment, the description thereof will be omitted.
  • the series arm resonator 11a is a group of split resonators composed of a plurality of split resonators connected in series with each other.
  • the series arm resonator 11a includes split resonators Saa, Sba, Sca and Sda connected in series with each other.
  • FIG. 4 is a top view showing a layout example of the split resonator group (series arm resonator 11a) according to the comparative example.
  • the split resonators Saa, Sba, Sca and Sda constituting the series arm resonator 11a each have an IDT electrode and are arranged in a direction orthogonal to the propagation direction of the elastic wave.
  • the IDT electrode is represented by a square, and the reflector and the like are not shown.
  • the propagation direction of elastic waves is the left-right direction of the paper surface in FIG. 4, and the direction orthogonal to the propagation direction of elastic waves is the vertical direction of the paper surface of FIG.
  • cross marks are attached to the maximum amplitude points of elastic waves excited by each IDT electrode.
  • the maximum amplitude point of each IDT electrode is the center in the propagation direction of the elastic wave of each IDT electrode.
  • the series arm resonator 11a does not include the split resonators that are split in parallel, and the IDTs of the split resonators Saa, Sba, Sca, and Sda, respectively.
  • the maximum amplitude points of the elastic waves excited by the electrodes overlap when viewed from the direction orthogonal to the propagation direction of the elastic waves.
  • FIG. 5A is a diagram showing the temperature distribution of the piezoelectric substrate forming the filter 10a according to the comparative example.
  • the filter 10a is formed of a piezoelectric substrate
  • FIG. 5A shows the temperature distribution of the piezoelectric substrate around the series arm resonator 11a in the filter 10a.
  • the maximum amplitude points of the elastic waves excited by the IDT electrodes of the split resonators Saa, Sba, Sca and Sda constituting the series arm resonator 11a overlap when viewed from the direction orthogonal to the propagation direction of the elastic waves. Therefore, the temperature around the series arm resonator 11a is high, and the maximum temperature in the portion of the piezoelectric substrate forming the filter 10a shown in FIG. 5A is 148 ° C.
  • FIG. 5B is a diagram showing the temperature distribution of the piezoelectric substrate forming the filter 10 according to the embodiment.
  • the filter 10 is formed of a piezoelectric substrate
  • FIG. 5B shows the temperature distribution of the piezoelectric substrate around the series arm resonator 11 in the filter 10.
  • the maximum amplitude point of the elastic wave excited by the IDT electrodes of the adjacent first-divided resonator and second-divided resonator among the divided resonators Sa, Sb, Sc and Sd constituting the series arm resonator 11 is Since the temperature around the series arm resonator 11 is low because it is deviated from the direction orthogonal to the propagation direction of the elastic wave, the maximum temperature in the portion of the piezoelectric substrate forming the filter 10 shown in FIG. 5B is high. It is 121 ° C.
  • the maximum amplitude points of the adjacent first-divided resonator and the second-divided resonator are separated from each other, and the adjacent first-divided resonator and the second-divided resonator are less likely to interact with each other. It is possible to suppress the local temperature rise.
  • FIG. 6 is a graph showing the power resistance of the filter 10 according to the embodiment and the filter 10a according to the comparative example.
  • the horizontal axis shows the input power input to each filter, and the vertical axis shows the output power output with respect to the input power. The larger the output power, the higher the withstand power.
  • the filter 10 according to the embodiment since the maximum amplitude points are dispersed, the temperature rise is suppressed locally, and the deterioration of the insertion loss and the frequency shift are suppressed. As a result, the output power is improved as shown in FIG. 6, and the power resistance of the filter 10 according to the embodiment is higher than the power resistance of the filter 10a according to the comparative example. Further, as described above, the split resonator (first split resonator) divided in parallel can be divided in parallel while maintaining the area of the IDT electrode portion, so that while suppressing the increase in size of the filter 10, the size of the filter 10 can be suppressed. The power resistance can be effectively improved.
  • the filter 10 includes at least three split resonators connected in series with each other, and each of the at least three split resonators has an IDT electrode in a direction intersecting the propagation direction of the elastic wave.
  • each IDT electrode of the first divided resonator for example, the divided resonator Sb
  • the second divided resonator for example, the divided resonator Sa
  • the center is offset from the direction orthogonal to the propagation direction of the elastic wave.
  • the center of the IDT electrode in the elastic wave propagation direction (that is, the maximum amplitude point of the elastic wave excited by the IDT electrode) is strongly excited and easily generates heat. If such maximum amplitude points overlap when viewed from a direction orthogonal to the propagation direction of elastic waves, the maximum amplitude points of adjacent split resonators will be located close to each other, and the adjacent split resonators will be located close to each other. Due to the interaction, the temperature tends to rise locally and the power resistance of the elastic wave filter decreases.
  • the first and second split resonators adjacent to each other in the direction intersecting the propagation direction of the elastic wave are centered in the elastic wave propagation direction of the IDT electrode (that is, at the IDT electrode).
  • the maximum amplitude point of the excited elastic wave is deviated from the direction orthogonal to the propagation direction of the elastic wave.
  • the maximum amplitude points of the adjacent first-divided resonator and the second-divided resonator are separated from each other, and it becomes difficult for the adjacent first-divided resonator and the second-divided resonator to interact with each other. It is possible to suppress the temperature rise. Therefore, the power resistance can be effectively improved.
  • the first split resonator may be composed of at least two split resonators connected in parallel to each other, and at least two split resonators in the first split resonator may be arranged in the propagation direction of the elastic wave.
  • the first split resonance is seen from the direction orthogonal to the propagation direction of the elastic wave at the maximum amplitude point of the first split resonator. It can be offset from the center of the vessel (the center of the set of at least two split resonators) to the center of each of the at least two split resonators.
  • the maximum amplitude point of the first split resonator can be dispersed from the center of the set of at least two split resonators to both ends of the set.
  • the maximum amplitude points of the adjacent first-divided resonator and the second-divided resonator can be shifted from the direction orthogonal to the propagation direction of the elastic wave.
  • the number of split resonators constituting the first split resonator may be different from the number of split resonators constituting the second split resonator.
  • the second split resonator may be composed of one split resonator.
  • the amplitude of the split resonator in the first split resonator tend to deviate from the direction orthogonal to the propagation direction of the elastic wave.
  • the first split resonator is composed of at least two split resonators
  • the second split resonator is composed of one split resonator, so that the maximum amplitude point in the first split resonator is the first split resonator.
  • the maximum amplitude point in the second split resonator is located in the center in the propagation direction of the elastic wave of the second split resonator.
  • the maximum amplitude points of the split resonator and the second split resonator can be shifted from the direction orthogonal to the propagation direction of the elastic wave.
  • the elastic wave filter according to the present invention has been described above with reference to embodiments, the present invention is not limited to the above embodiments. Another embodiment realized by combining arbitrary components in the above embodiment, or modifications obtained by subjecting the above embodiment to various modifications that can be conceived by those skilled in the art within a range that does not deviate from the gist of the present invention. Examples and various devices incorporating the elastic wave filter according to the present invention are also included in the present invention.
  • the elastic wave filter according to the present invention includes at least three split resonators connected in series with each other, and each of the adjacent first split resonator and second split resonator among the at least three split resonators.
  • the maximum amplitude point of the elastic wave excited by the IDT electrode of is deviated from the direction orthogonal to the propagation direction of the elastic wave, but the method of shifting the maximum amplitude point is not particularly limited.
  • the maximum amplitude point may be shifted.
  • FIGS. 7A to 7E are diagrams showing an example of the layout and circuit configuration of the split resonator group according to other embodiments.
  • the layout of the split resonator group is shown on the left side of each figure, and the circuit configuration of the split resonator group is shown on the right side.
  • an example of a split resonator group including three split resonators Sa, Sb, and Sc connected in series in the order of the split resonators Sa, Sb, and Sc is shown in FIGS. 7A to 7E. In FIGS.
  • the split resonator Sa is the second split resonator and the split resonator Sb is the first split resonator, and the adjacent split resonators Sa and Sb are adjacent to each other.
  • the split resonator Sb is a first split resonator and the split resonator Sc is a second split resonator.
  • the split resonator Sa is the first split resonator
  • the split resonator Sb is the second split resonator
  • the adjacent split resonators Sb and Sc are the split resonators.
  • Sb is a second split resonator
  • the split resonator Sc is a first split resonator.
  • the IDT electrode is represented by a square, and the reflector and the like are not shown. Further, on the left side of FIGS. 7A to 7E, a cross mark is attached to the maximum amplitude point of the elastic wave excited by each IDT electrode. The maximum amplitude point of each IDT electrode is the center in the propagation direction of the elastic wave of each IDT electrode.
  • the split resonator Sb sandwiched between the split resonator Sa and the split resonator Sc is divided in parallel and connected in parallel to each other. It may be composed of the split resonators Pb1 and Pb2. That is, in the split resonator group, it is composed of a second split resonator composed of one split resonator, a first split resonator composed of two split resonators connected in parallel to each other, and one split resonator. The split resonators may be connected in series in the order of the second split resonators.
  • split resonators Sb and Sc are divided in parallel and connected to each other in parallel (for the split resonator Sb, the split resonators Sb are connected in parallel to each other.
  • the split resonators Pb1 and Pb2 and the split resonator Sc may be composed of the split resonators Pc1 and Pc2). That is, in the divided resonator group, a second divided resonator composed of one divided resonator, a first divided resonator composed of two divided resonators connected in parallel to each other, and two divided resonators connected in parallel to each other.
  • the split resonators may be connected in series in the order of the second split resonator composed of the split resonators.
  • the split resonators Pb1 and Pb2 in the split resonator Sb which is the first split resonator
  • the split resonators Pc1 and Pc2 in the split resonator Sc which is the second split resonator
  • the IDT electrodes having the IDT electrodes may be arranged in the propagation direction of the elastic wave.
  • the ratio of the lengths of the IDT electrodes of the split resonators Pb1 and Pb2 in the split resonator Sb, which is the first split resonator, in the propagation direction of the elastic wave, and the split resonator Sc, which is the second split resonator The ratio of the lengths of the IDT electrodes of the split resonators Pc1 and Pc2 in the propagation direction of each elastic wave may be different.
  • the ratio of the lengths of the IDT electrodes of the split resonators Pb1 and Pb2 in the split resonator Sb in the propagation direction of the elastic wave is 1: 1 and the split resonators Pc1 and Pc2 of the split resonator Sc have.
  • the ratio of the lengths of the IDT electrodes in the propagation direction of each elastic wave is 1: 2.
  • the divided resonators Sa and Sc sandwiching the divided resonator Sb are divided in parallel and connected in parallel to each other (divided resonator Sa).
  • the split resonator Sc may be composed of the split resonators Pc1 and Pc2). That is, in the split resonator group, a first split resonator composed of two split resonators connected in parallel to each other, a second split resonator composed of one split resonator, and two split resonators connected in parallel to each other.
  • the split resonators may be connected in series in the order of the first split resonator composed of the split resonators.
  • split resonators Sa, Sb and Sc adjacent split resonators Sa and Sb are divided in parallel and connected in parallel to each other (for the split resonator Sa, the split resonator Sa).
  • the split resonators Pa1 and Pa2 and the split resonator Sb may be composed of the split resonators Pb1 and Pb2). That is, in the split resonator group, a second split resonator composed of two split resonators connected in parallel to each other, a first split resonator composed of two split resonators connected in parallel to each other, and one.
  • the split resonators may be connected in series in the order of the second split resonator composed of the split resonators.
  • the split resonators Pa1 and Pa2 in the split resonator Sa which is the second split resonator
  • the split resonators Pb1 and Pb2 in the split resonator Sb which is the first split resonator
  • the IDT electrodes having the IDT electrodes may be arranged in the propagation direction of the elastic wave. Further, the ratio of the lengths of the IDT electrodes of the split resonators Pa1 and Pa2 in the split resonator Sa, which is the second split resonator, in the propagation direction of the elastic wave, and the split resonator Sb, which is the first split resonator.
  • the ratio of the lengths of the IDT electrodes of the split resonators Pb1 and Pb2 in the propagation direction of each elastic wave may be different.
  • the ratio of the lengths of the IDT electrodes of the IDT electrodes Pa1 and Pa2 in the split resonator Sa in the propagation direction of the elastic wave is 1: 2
  • the split resonators Pb1 and Pb2 in the split resonator Sb have.
  • the ratio of the lengths of the IDT electrodes in the propagation direction of each elastic wave is 1: 1.
  • all three split resonators Sa, Sb and Sc are divided in parallel and connected in parallel to each other (for the split resonator Sa, the split resonators Pa1 and Pa2 are split.
  • the resonator Sb may be composed of the split resonators Pb1 and Pb2, and the split resonator Sc may be composed of the split resonators Pc1 and Pc2). That is, in the split resonator group, the second split resonator composed of two split resonators connected in parallel to each other, the first split resonator composed of two split resonators connected in parallel to each other, and parallel to each other.
  • the split resonators may be connected in series in the order of the second split resonator composed of the two connected split resonators.
  • the IDT electrodes of the split resonators Pc1 and Pc2 in the split resonator Sc, which is the second split resonator, may be arranged in the propagation direction of the elastic wave.
  • the ratio of the lengths of the IDT electrodes of the split resonators Pb1 and Pb2 in the propagation direction of each elastic wave may be different.
  • the ratio of the lengths of the IDT electrodes of the IDT electrodes Pa1 and Pa2 in the split resonator Sa in the propagation direction of the elastic wave is 1: 1 and the split resonators Pb1 and Pb2 in the split resonator Sb have.
  • the ratio of the lengths of the IDT electrodes in the propagation direction of each elastic wave is 1: 2.
  • the ratio of the lengths of the IDT electrodes of the split resonators Pc1 and Pc2 in the propagation direction of each elastic wave may be different.
  • the ratio of the lengths of the IDT electrodes of the split resonators Pb1 and Pb2 in the split resonator Sb in the propagation direction of the elastic wave is 1: 2
  • the split resonators Pc1 and Pc2 of the split resonator Sc have.
  • the ratio of the lengths of the IDT electrodes in the propagation direction of each elastic wave is 2: 1.
  • the second split resonator does not have to be composed of one split resonator, but is composed of at least two split resonators connected in parallel with each other. May be good. Further, at least two split resonators in the second split resonator are arranged in the propagation direction of the elastic wave, and in the propagation direction of each elastic wave of the IDT electrode of the at least two split resonators in the first split resonator. The ratio of the lengths may be different from the ratio of the lengths of the IDT electrodes of at least two split resonators in the second split resonator in the propagation direction of each elastic wave.
  • the ratio of the lengths of the IDT electrodes of the divided resonators provided by each in the propagation direction of the elastic wave is made different, so that the first division is performed.
  • the maximum amplitude point of each of the split resonators in the resonator and the maximum amplitude point of each of the split resonators in the second split resonator are likely to deviate from the direction orthogonal to the propagation direction of the elastic wave.
  • the number of split resonators constituting the first split resonator and the number of split resonators constituting the second split resonator may be the same, and even in such a case, the length is as described above. By different ratios of, the maximum amplitude point can be shifted.
  • the split resonator does not have to be composed of at least two split resonators divided in parallel.
  • each of the adjacent first and second split resonators of at least three split resonators connected in series with each other included in the elastic wave filter may be composed of one split resonator.
  • the length of the IDT electrode in the propagation direction of the elastic wave may be different for each split resonator.
  • the number of at least three split resonators included in the elastic wave filter is not particularly limited as long as it is three or more.
  • first split resonator and the second split resonator are composed of at least two split resonators connected in parallel to each other
  • first split resonator and the second split resonator are not limited to the two split resonators connected in parallel to each other, but are connected in parallel to each other. It may be composed of three or more split resonators.
  • the present invention can be widely used in communication devices such as mobile phones having an elastic wave filter provided with a split resonator.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

弾性波フィルタは、互いに直列接続された少なくとも3つの分割共振器(Sa、Sb、Sc、Sd)を備え、少なくとも3つの分割共振器(Sa、Sb、Sc、Sd)は、それぞれ、IDT(InterDigital Transducer)電極を有し、弾性波の伝搬方向と交差する方向に並べられ、少なくとも3つの分割共振器(Sa、Sb、Sc、Sd)のうちの隣り合う第1分割共振器(Sb)および第2分割共振器(Sa)のそれぞれのIDT電極の弾性波伝搬方向における中央は、弾性波の伝搬方向と直交する方向から見てずれている。

Description

弾性波フィルタ
 本発明は、分割共振器を備える弾性波フィルタに関する。
 従来、複数の弾性波共振子を直列に接続することにより共振子群を構成する技術、すなわち弾性波共振子を互いに直列接続された複数の分割共振子に分割する技術が知られている(例えば、特許文献1)。このように弾性波共振子を分割することにより、単位面積当たりの消費電力を低減させることができ、弾性波フィルタの耐電力性が向上する。
特開2001-156588号公報
 しかしながら、弾性波共振子を、直列接続された3つ以上の分割共振子に分割する場合、3つ以上の分割共振子には他の分割共振子に挟まれるように配置される分割共振子が存在することになる。そして、当該分割共振子と、当該分割共振子を挟む隣り合う分割共振子との相互作用により弾性波フィルタの温度が上昇しやすくなり、その結果、弾性波フィルタの耐電力性が低下するという問題がある。
 そこで、本発明は、耐電力性を効果的に向上させることができる弾性波フィルタを提供することを目的とする。
 本発明の一態様に係る弾性波フィルタは、互いに直列接続された少なくとも3つの分割共振器を備え、前記少なくとも3つの分割共振器は、それぞれ、IDT(InterDigital Transducer)電極を有し、弾性波の伝搬方向と交差する方向に並べられ、前記少なくとも3つの分割共振器のうちの隣り合う第1分割共振器および第2分割共振器のそれぞれのIDT電極の弾性波伝搬方向における中央は、弾性波の伝搬方向と直交する方向から見てずれている。
 本発明によれば、耐電力性を効果的に向上させることができる弾性波フィルタを提供できる。
図1は、実施の形態に係るフィルタの回路構成図である。 図2は、実施の形態に係る分割共振器群のレイアウトの一例を示す上面図である。 図3は、比較例に係るフィルタの回路構成図である。 図4は、比較例に係る分割共振器群のレイアウト例を示す上面図である。 図5Aは、比較例に係るフィルタを形成する圧電基板の温度分布を示す図である。 図5Bは、実施の形態に係るフィルタを形成する圧電基板の温度分布を示す図である。 図6は、実施の形態に係るフィルタおよび比較例に係るフィルタの耐電力性を示すグラフである。 図7Aは、その他の実施の形態に係る分割共振器群のレイアウトおよび回路構成の一例を示す図である。 図7Bは、その他の実施の形態に係る分割共振器群のレイアウトおよび回路構成の一例を示す図である。 図7Cは、その他の実施の形態に係る分割共振器群のレイアウトおよび回路構成の一例を示す図である。 図7Dは、その他の実施の形態に係る分割共振器群のレイアウトおよび回路構成の一例を示す図である。 図7Eは、その他の実施の形態に係る分割共振器群のレイアウトおよび回路構成の一例を示す図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する場合がある。また、以下の実施の形態において、「接続」されるとは、直接接続される場合だけでなく、他の素子等を介して電気的に接続される場合も含まれる。
 (実施の形態)
 実施の形態に係る弾性波フィルタの構成について図1を用いて説明する。
 図1は、実施の形態に係るフィルタ10の回路構成図である。図1には、フィルタ10に接続されたアンテナANT、インダクタL2およびL3も図示されている。アンテナANTは、高周波信号を送受信する、例えばLTE(Long Term Evolution)等の通信規格に準拠したマルチバンド対応のアンテナである。インダクタL2は、フィルタ10とアンテナANTとのインピーダンス整合を取るための整合回路であり、インダクタL3は、フィルタ10と、端子20に接続される回路(例えば増幅回路、スイッチまたはRFIC(Radio Frequency Integrated Circuit)等)とのインピーダンス整合を取るための整合回路である。
 フィルタ10は、弾性波共振子から構成される弾性波フィルタである。フィルタ10を構成する各弾性波共振子は、弾性表面波共振子、および、BAW(Bulk Acoustic Wave)を用いた弾性波共振子のいずれかであってもよい。なお、弾性表面波には、例えば、表面波、ラブ波、リーキー波、レイリー波、境界波、漏れSAW、疑似SAW、板波も含まれる。
 フィルタ10は、直列腕共振子11、12、13、14および15、並列腕共振子16、17、18および19、ならびに、インダクタL1を備える。直列腕共振子11、12、13、14および15、ならびに、並列腕共振子16、17、18および19は、フィルタ10の通過帯域を形成する。インダクタL1は、フィルタ10の通過帯域を調整するための素子である。なお、フィルタ10は、インダクタL1を備えていなくてもよい。また、フィルタ10は、通過帯域を所望の通過帯域とするために他のインピーダンス素子(インダクタまたはキャパシタ等)を備えていてもよい。
 直列腕共振子11、12、13、14および15は、アンテナANTと端子20とを結ぶ経路上において互いに直列接続されている。並列腕共振子16は、直列腕共振子11と直列腕共振子12との間の上記経路上のノードとグランドとの間に接続されている。並列腕共振子17は、直列腕共振子12と直列腕共振子13との間の上記経路上のノードとグランドとの間に接続されている。並列腕共振子18は、直列腕共振子13と直列腕共振子14との間の上記経路上のノードとグランドとの間に接続されている。並列腕共振子19は、直列腕共振子14と直列腕共振子15との間の上記経路上のノードとグランドとの間に接続されている。
 フィルタ10の上記構成によれば、直列腕経路に弾性波共振子で構成された直列腕共振子11、12、13、14および15が配置され、並列腕経路に弾性波共振子で構成された並列腕共振子16、17、18および19が配置されているので、低損失な通過帯域を有し、通過帯域から阻止帯域における遷移帯域が急峻なラダー型の弾性波フィルタを実現できる。
 直列腕共振子11、12、13、14および15、ならびに、並列腕共振子16、17、18および19のそれぞれは、互いに直列接続された複数の分割共振器からなる分割共振器群である。分割共振器群とは、分割共振器群を構成する直列接続された隣り合う分割共振器の間における接続ノードが当該隣り合う分割共振器以外には接続されていない弾性波共振子のことを言う。例えば、隣り合う分割共振器の間には他の素子が接続されておらず、また、隣り合う分割共振器の間における接続ノードは、グランド等に接続されていない。このように弾性波共振子を分割することにより、単位面積当たりの消費電力を低減させることができ、フィルタ10の耐電力性が向上する。
 しかしながら、弾性波共振子を、直列接続された3つ以上の分割共振子に分割する場合、3つ以上の分割共振子には他の分割共振子に挟まれるように配置される分割共振子が存在することになる。そして、当該分割共振子と、当該分割共振子を挟む隣り合う分割共振子との相互作用により弾性波フィルタの温度が上昇しやすくなり、その結果、弾性波フィルタの耐電力性が低下するという問題がある。
 以下では、このような問題を解決するために本発明が適用された直列腕共振子11に着目して説明する。
 フィルタ10は、直列腕共振子11として互いに直列接続された少なくとも3つの分割共振器を備える。ここでは、少なくとも3つの分割共振器は、互いに直列接続された分割共振器Sa、Sb、ScおよびSdである。少なくとも3つの分割共振器のうちの隣り合う2つの分割共振器を第1分割共振器および第2分割共振器と呼ぶ。ここで、第1分割共振器は、互いに並列接続された少なくとも2つの分割共振子から構成される。言い換えると、第1分割共振器は、2つの分割共振子に並列分割されている。例えば、分割共振器SaおよびSbに着目すると、分割共振器Sbが第1分割共振器となり、分割共振器Saが第2分割共振器となる。例えば、分割共振器SbおよびScに着目すると、分割共振器Sbが第1分割共振器となり、分割共振器Scが第2分割共振器となる。例えば、分割共振器ScおよびSdに着目すると、分割共振器Sdが第1分割共振器となり、分割共振器Scが第2分割共振器となる。
 このとき、第1分割共振器を構成する分割共振子の数と、第2分割共振器を構成する分割共振子の数とは異なる。例えば、第1分割共振器は少なくとも2つの分割共振子から構成され、第2分割共振器は1つの分割共振子から構成される。具体的には、第2分割共振器である分割共振器Saを構成する分割共振子の数は1つであり、第1分割共振器である分割共振器Sbを構成する分割共振子の数は2つであり、第2分割共振器である分割共振器Scを構成する分割共振子の数は1つであり、第1分割共振器である分割共振器Sdを構成する分割共振子の数は2つである。
 すなわち、分割共振器Saは、1つの分割共振子から構成され、当該1つの分割共振子を分割共振器Saと呼んでいる。分割共振器Sbは、互いに並列接続された分割共振子Pb1およびPb2から構成され、分割共振子Pb1およびPb2の集合を分割共振器Sbと呼んでいる。分割共振器Scは、1つの分割共振子から構成され、当該1つの分割共振子を分割共振器Scと呼んでいる。分割共振器Sdは、互いに並列接続された分割共振子Pd1およびPd2から構成され、分割共振子Pd1およびPd2の集合を分割共振器Sdと呼んでいる。
 次に、直列腕共振子11のレイアウトについて図2を用いて説明する。
 図2は、実施の形態に係る分割共振器群(直列腕共振子11)のレイアウトの一例を示す上面図である。例えば、少なくとも3つの分割共振器(具体的には直列腕共振子11を構成する分割共振器Sa、Sb、ScおよびSd)は、それぞれ、IDT(InterDigital Transducer)電極を有し、弾性波の伝搬方向と交差する方向に並べられる。図2では、IDT電極を四角で表現し、反射器等の図示を省略している。
 弾性波の伝搬方向は、図2の紙面左右方向であり、弾性波の伝搬方向と交差する方向は、例えば、弾性波の伝搬方向と直交する方向であり、図2の紙面上下方向である。なお、弾性波の伝搬方向と交差する方向は、弾性波の伝搬方向と直交する方向でなくてもよく、図2の紙面上下方向からずれていてもよい。
 第1分割共振器(分割共振器SbおよびSd)における少なくとも2つの分割共振子(分割共振器Sbについては分割共振子Pb1およびPb2、分割共振器Sdについては分割共振子Pd1およびPd2)は、弾性波の伝搬方向に並べられる。例えば、分割共振子Pb1およびPb2、ならびに、分割共振子Pd1およびPd2は、分割共振器Sa、Sb、ScおよびSdが並べられる方向(図2の紙面上下方向)と直交する方向(図2の紙面左右方向)に並べられる。
 分割共振器SbおよびSdは、IDT電極の部分の面積が、並列分割されないときと同じになるように並列分割してもよい。例えば、分割共振器Sbが並列分割されない場合、分割共振器SbのIDT電極の部分の面積は、分割共振器SaのIDT電極の部分の面積と同じになるようにしてもよい。そして、分割共振器Sbが並列分割された場合、分割共振子Pb1のIDT電極の部分の面積と分割共振子Pb2のIDT電極の部分の面積との和が、分割共振器SaのIDT電極の部分の面積と同じになるようにしてもよい。つまり、第1分割共振器を面積が大きくならないように並列分割することができる。その場合、容量を変えずに耐電力性を向上させることができる。なお、並列分割されないときと面積が同じとは、並列分割された分割共振子間のギャップ、また、並列分割された分割共振子間に設けられる反射器の分、並列分割されないときよりも面積が多少大きくなる場合も含む。
 図2には、各IDT電極で励振される弾性波の振幅最大点にクロス印を付している。各IDT電極の振幅最大点は、各IDT電極の弾性波の伝搬方向における中央となる。IDT電極の両端が弾性波の振動の節となり、両端の振動の節と節との中央が弾性波の振動の腹となるためである。なお、IDT電極で励振される弾性波の振幅最大点は、IDT電極の弾性波の伝搬方向における中央と言い換えることができる。
 図2に示されるように、分割共振器Sa、Sb、ScおよびSdのうちの弾性波の伝搬方向と交差する方向において隣り合う第1分割共振器および第2分割共振器のそれぞれのIDT電極で励振される弾性波の振幅最大点は、弾性波の伝搬方向と直交する方向から見てずれている。例えば、隣り合う第1分割共振器および第2分割共振器として、分割共振器SbおよびSaに着目すると、分割共振器SbのIDT電極で励振される弾性波の振幅最大点(具体的には、分割共振子Pb1のIDT電極で励振される弾性波の振幅最大点および分割共振子Pb2のIDT電極で励振される弾性波の振幅最大点)と、分割共振器SaのIDT電極で励振される弾性波の振幅最大点とは、弾性波の伝搬方向と直交する方向から見てずれている。例えば、隣り合う第1分割共振器および第2分割共振器として、分割共振器SbおよびScに着目すると、分割共振器SbのIDT電極で励振される弾性波の振幅最大点(具体的には、分割共振子Pb1のIDT電極で励振される弾性波の振幅最大点および分割共振子Pb2のIDT電極で励振される弾性波の振幅最大点)と、分割共振器ScのIDT電極で励振される弾性波の振幅最大点とは、弾性波の伝搬方向と直交する方向から見てずれている。例えば、隣り合う第1分割共振器および第2分割共振器として、分割共振器SdおよびScに着目すると、分割共振器SdのIDT電極で励振される弾性波の振幅最大点(具体的には、分割共振子Pd1のIDT電極で励振される弾性波の振幅最大点および分割共振子Pd2のIDT電極で励振される弾性波の振幅最大点)と、分割共振器ScのIDT電極で励振される弾性波の振幅最大点とは、弾性波の伝搬方向と直交する方向から見てずれている。
 これにより、隣り合う第1分割共振器および第2分割共振器のそれぞれの振幅最大点が遠ざけられることになり、すなわち、隣り合う第1分割共振器および第2分割共振器が相互作用しにくくなり、局所的に温度が上昇することを抑制できる。隣り合う第1分割共振器および第2分割共振器のそれぞれのIDT電極で励振される弾性波の振幅最大点が、弾性波の伝搬方向と直交する方向から見てずれることで、どの程度の温度上昇を抑制でき、どの程度耐電力性が向上するかを比較例と比較しながら説明する。
 図3は、比較例に係るフィルタ10aの回路構成図である。
 比較例に係るフィルタ10aは、直列腕共振子11の代わりに直列腕共振子11aを備える点が実施の形態に係るフィルタ10と異なる。その他の点は、実施の形態に係るフィルタ10におけるものと同じであるため、説明は省略する。
 直列腕共振子11aは、互いに直列接続された複数の分割共振器からなる分割共振器群である。ここでは、直列腕共振子11aは、互いに直列接続された分割共振器Saa、Sba、ScaおよびSdaを備える。
 図4は、比較例に係る分割共振器群(直列腕共振子11a)のレイアウト例を示す上面図である。直列腕共振子11aを構成する分割共振器Saa、Sba、ScaおよびSdaは、それぞれ、IDT電極を有し、弾性波の伝搬方向と直交する方向に並べられる。図4では、IDT電極を四角で表現し、反射器等の図示を省略している。
 弾性波の伝搬方向は、図4の紙面左右方向であり、弾性波の伝搬方向と直交する方向は、図4の紙面上下方向である。
 図4には、各IDT電極で励振される弾性波の振幅最大点にクロス印を付している。各IDT電極の振幅最大点は、各IDT電極の弾性波の伝搬方向における中央となる。図3および図4に示されるように、比較例では、直列腕共振子11aは、並列分割されている分割共振器を備えておらず、分割共振器Saa、Sba、ScaおよびSdaのそれぞれのIDT電極で励振される弾性波の振幅最大点は、弾性波の伝搬方向と直交する方向から見て重なっている。
 図5Aは、比較例に係るフィルタ10aを形成する圧電基板の温度分布を示す図である。例えば、フィルタ10aは、圧電基板により形成され、図5Aでは、フィルタ10aにおける直列腕共振子11a周辺の圧電基板の温度分布を示す。
 直列腕共振子11aを構成する分割共振器Saa、Sba、ScaおよびSdaのそれぞれのIDT電極で励振される弾性波の振幅最大点が、弾性波の伝搬方向と直交する方向から見て重なっているため、直列腕共振子11a周辺の温度は高くなっており、フィルタ10aを形成する圧電基板の図5Aに示される部分における最大温度は148°Cとなっている。
 図5Bは、実施の形態に係るフィルタ10を形成する圧電基板の温度分布を示す図である。例えば、フィルタ10は、圧電基板により形成され、図5Bでは、フィルタ10における直列腕共振子11周辺の圧電基板の温度分布を示す。
 直列腕共振子11を構成する分割共振器Sa、Sb、ScおよびSdのうちの隣り合う第1分割共振器および第2分割共振器のそれぞれのIDT電極で励振される弾性波の振幅最大点が、弾性波の伝搬方向と直交する方向から見てずれているため、直列腕共振子11周辺の温度は低くなっており、フィルタ10を形成する圧電基板の図5Bに示される部分における最大温度が121°Cとなっている。
 このように、隣り合う第1分割共振器および第2分割共振器のそれぞれの振幅最大点が遠ざけられることになり、隣り合う第1分割共振器および第2分割共振器が相互作用しにくくなり、局所的に温度が上昇することを抑制できる。
 図6は、実施の形態に係るフィルタ10および比較例に係るフィルタ10aの耐電力性を示すグラフである。横軸が各フィルタに入力される入力電力を示し、縦軸が入力電力に対して出力される出力電力を示す。出力電力が大きいほど耐電力性が高いことを示している。
 実施の形態に係るフィルタ10は、振幅最大点が分散されるため、局所的に温度が上昇することが抑制され挿入損失の劣化および周波数シフトが抑制される。これにより、図6に示されるように出力電力が改善され、実施の形態に係るフィルタ10の耐電力性は、比較例に係るフィルタ10aの耐電力性よりも向上している。また、上述したように、並列分割された分割共振器(第1分割共振器)は、IDT電極部分の面積を維持したまま並列分割することができるため、フィルタ10の大型化を抑制しつつ、耐電力性を効果的に向上させることができる。
 以上説明したように、フィルタ10は、互いに直列接続された少なくとも3つの分割共振器を備え、少なくとも3つの分割共振器は、それぞれ、IDT電極を有し、弾性波の伝搬方向と交差する方向に並べられ、少なくとも3つの分割共振器のうちの隣り合う第1分割共振器(例えば分割共振器Sb)および第2分割共振器(例えば分割共振器Sa)のそれぞれのIDT電極の弾性波伝搬方向における中央は、弾性波の伝搬方向と直交する方向から見てずれている。
 各分割共振器について、IDT電極の弾性波伝搬方向における中央(すなわちIDT電極で励振される弾性波の振幅最大点)は、励振が強く発熱しやすい。弾性波の伝搬方向と直交する方向から見てそのような振幅最大点が重なっていると、隣り合う分割共振器のそれぞれの振幅最大点が近くに位置することになり、隣り合う分割共振器の相互作用により局所的に温度が上昇しやすく弾性波フィルタの耐電力性が低下する。これに対して、本態様によれば、弾性波の伝搬方向と交差する方向において隣り合う第1分割共振器および第2分割共振器について、IDT電極の弾性波伝搬方向における中央(すなわちIDT電極で励振される弾性波の振幅最大点)が弾性波の伝搬方向と直交する方向から見てずれている。このため、隣り合う第1分割共振器および第2分割共振器のそれぞれの振幅最大点が遠ざけられることになり、隣り合う第1分割共振器および第2分割共振器が相互作用しにくくなり、局所的に温度が上昇することを抑制できる。したがって、耐電力性を効果的に向上させることができる。
 また、第1分割共振器は、互いに並列接続された少なくとも2つの分割共振子から構成され、第1分割共振器における少なくとも2つの分割共振子は、弾性波の伝搬方向に並べられるとしてもよい。
 このように、第1分割共振器を少なくとも2つの分割共振子に並列分割することで、第1分割共振器の振幅最大点を、弾性波の伝搬方向と直交する方向から見て第1分割共振器の中央(少なくとも2つの分割共振子の集合の中央)から、分割された少なくとも2つの分割共振子のそれぞれの中央にずらすことができる。言い換えると、第1分割共振器の振幅最大点を、少なくとも2つの分割共振子の集合の中央から、当該集合の両端側へ分散することができる。これにより、隣り合う第1分割共振器および第2分割共振器のそれぞれの振幅最大点を、弾性波の伝搬方向と直交する方向から見てずらすことができる。
 また、第1分割共振器を構成する分割共振子の数と、第2分割共振器を構成する分割共振子の数とは異なるとしてもよい。例えば、第2分割共振器は、1つの分割共振子から構成されるとしてもよい。
 このように、第1分割共振器を構成する分割共振子の数と、第2分割共振器を構成する分割共振子の数とを異ならせることで、第1分割共振器における分割共振子の振幅最大点と、第2分割共振器における分割共振子の振幅最大点とが、弾性波の伝搬方向と直交する方向から見てずれやすくなる。例えば、第1分割共振器が少なくとも2つの分割共振子から構成され、第2分割共振器が1つの分割共振子から構成されることで、第1分割共振器における振幅最大点は、第1分割共振器の弾性波の伝搬方向における中央から両端側へ分散し、第2分割共振器における振幅最大点は、第2分割共振器の弾性波の伝搬方向における中央に位置するため、隣り合う第1分割共振器および第2分割共振器のそれぞれの振幅最大点を、弾性波の伝搬方向と直交する方向から見てずらすことができる。
 (その他の実施の形態)
 以上、本発明に係る弾性波フィルタについて、実施の形態を挙げて説明したが、本発明は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る弾性波フィルタを内蔵した各種機器も本発明に含まれる。
 例えば、本発明に係る弾性波フィルタは、互いに直列接続された少なくとも3つの分割共振器を備え、当該少なくとも3つの分割共振器のうちの隣り合う第1分割共振器および第2分割共振器のそれぞれのIDT電極で励振される弾性波の振幅最大点は、弾性波の伝搬方向と直交する方向から見てずれているが、振幅最大点のずらし方は特に限定されない。
 例えば、図7Aから図7Eに示されるように、振幅最大点をずらしてもよい。
 図7Aから図7Eは、その他の実施の形態に係る分割共振器群のレイアウトおよび回路構成の一例を示す図である。各図の左側に分割共振器群のレイアウトを示し、右側に分割共振器群の回路構成を示す。ここでは、分割共振器Sa、Sb、Scの順に直列に接続された3つの分割共振器Sa、SbおよびScからなる分割共振器群の例を図7Aから図7Eに示している。図7A、図7B、図7Dおよび図7Eでは、隣り合う分割共振器SaおよびSbについて、分割共振器Saを第2分割共振器、分割共振器Sbを第1分割共振器とし、隣り合う分割共振器SbおよびScについて、分割共振器Sbを第1分割共振器、分割共振器Scを第2分割共振器としている。図7Cでは、隣り合う分割共振器SaおよびSbについて、分割共振器Saを第1分割共振器、分割共振器Sbを第2分割共振器とし、隣り合う分割共振器SbおよびScについて、分割共振器Sbを第2分割共振器、分割共振器Scを第1分割共振器としている。図7Aから図7Eの左側では、IDT電極を四角で表現し、反射器等の図示を省略している。また、図7Aから図7Eの左側には、各IDT電極で励振される弾性波の振幅最大点にクロス印を付している。各IDT電極の振幅最大点は、各IDT電極の弾性波の伝搬方向における中央となる。
 図7Aに示されるように、3つの分割共振器Sa、SbおよびScのうち分割共振器Saと分割共振器Scとの間に挟まれた分割共振器Sbが並列分割されて互いに並列接続された分割共振子Pb1およびPb2から構成されていてもよい。つまり、分割共振器群において、1つの分割共振子から構成される第2分割共振器、互いに並列接続された2つの分割共振子から構成される第1分割共振器、1つの分割共振子から構成される第2分割共振器の順に分割共振器が直列接続されていてもよい。
 図7Bに示されるように、3つの分割共振器Sa、SbおよびScのうち隣り合う分割共振器SbおよびScが、それぞれ並列分割されて互いに並列接続された分割共振子(分割共振器Sbについては分割共振子Pb1およびPb2、分割共振器Scについては分割共振子Pc1およびPc2)から構成されていてもよい。つまり、分割共振器群において、1つの分割共振子から構成される第2分割共振器、互いに並列接続された2つの分割共振子から構成される第1分割共振器、互いに並列接続された2つの分割共振子から構成される第2分割共振器の順に分割共振器が直列接続されていてもよい。
 また、図7Bに示されるように、第1分割共振器である分割共振器Sbにおける分割共振子Pb1およびPb2、ならびに、第2分割共振器である分割共振器Scにおける分割共振子Pc1およびPc2が有するIDT電極は、弾性波の伝搬方向に並べられていてもよい。また、第1分割共振器である分割共振器Sbにおける分割共振子Pb1およびPb2が有するIDT電極のそれぞれの弾性波の伝搬方向における長さの比と、第2分割共振器である分割共振器Scにおける分割共振子Pc1およびPc2が有するIDT電極のそれぞれの弾性波の伝搬方向における長さの比とは異なっていてもよい。例えば、分割共振器Sbにおける分割共振子Pb1およびPb2が有するIDT電極のそれぞれの弾性波の伝搬方向における長さの比は1:1であり、分割共振器Scにおける分割共振子Pc1およびPc2が有するIDT電極のそれぞれの弾性波の伝搬方向における長さの比は1:2である。
 図7Cに示されるように、3つの分割共振器Sa、SbおよびScのうち分割共振器Sbを挟む分割共振器SaおよびScが並列分割されて互いに並列接続された分割共振子(分割共振器Saについては分割共振子Pa1およびPa2、分割共振器Scについては分割共振子Pc1およびPc2)から構成されていてもよい。つまり、分割共振器群において、互いに並列接続された2つの分割共振子から構成される第1分割共振器、1つの分割共振子から構成される第2分割共振器、互いに並列接続された2つの分割共振子から構成される第1分割共振器の順に分割共振器が直列接続されていてもよい。
 図7Dに示されるように、3つの分割共振器Sa、SbおよびScのうち隣り合う分割共振器SaおよびSbが、それぞれ並列分割されて互いに並列接続された分割共振子(分割共振器Saについては分割共振子Pa1およびPa2、分割共振器Sbについては分割共振子Pb1およびPb2)から構成されていてもよい。つまり、分割共振器群において、互いに並列接続された2つの分割共振子から構成される第2分割共振器、互いに並列接続された2つの分割共振子から構成される第1分割共振器、1つの分割共振子から構成される第2分割共振器の順に分割共振器が直列接続されていてもよい。
 また、図7Dに示されるように、第2分割共振器である分割共振器Saにおける分割共振子Pa1およびPa2、ならびに、第1分割共振器である分割共振器Sbにおける分割共振子Pb1およびPb2が有するIDT電極は、弾性波の伝搬方向に並べられていてもよい。また、第2分割共振器である分割共振器Saにおける分割共振子Pa1およびPa2が有するIDT電極のそれぞれの弾性波の伝搬方向における長さの比と、第1分割共振器である分割共振器Sbにおける分割共振子Pb1およびPb2が有するIDT電極のそれぞれの弾性波の伝搬方向における長さの比とは異なっていてもよい。例えば、分割共振器Saにおける分割共振子Pa1およびPa2が有するIDT電極のそれぞれの弾性波の伝搬方向における長さの比は1:2であり、分割共振器Sbにおける分割共振子Pb1およびPb2が有するIDT電極のそれぞれの弾性波の伝搬方向における長さの比は1:1である。
 図7Eに示されるように、3つの分割共振器Sa、SbおよびScの全てが、それぞれ並列分割されて互いに並列接続された分割共振子(分割共振器Saについては分割共振子Pa1およびPa2、分割共振器Sbについては分割共振子Pb1およびPb2、分割共振器Scについては分割共振子Pc1およびPc2)から構成されていてもよい。つまり、分割共振器群において、互いに並列接続された2つの分割共振子から構成される第2分割共振器、互いに並列接続された2つの分割共振子から構成される第1分割共振器、互いに並列接続された2つの分割共振子から構成される第2分割共振器の順に分割共振器が直列接続されていてもよい。
 また、図7Eに示されるように、第2分割共振器である分割共振器Saにおける分割共振子Pa1およびPa2、第1分割共振器である分割共振器Sbにおける分割共振子Pb1およびPb2、ならびに、第2分割共振器である分割共振器Scにおける分割共振子Pc1およびPc2が有するIDT電極は、弾性波の伝搬方向に並べられていてもよい。また、第2分割共振器である分割共振器Saにおける分割共振子Pa1およびPa2が有するIDT電極のそれぞれの弾性波の伝搬方向における長さの比と、第1分割共振器である分割共振器Sbにおける分割共振子Pb1およびPb2が有するIDT電極のそれぞれの弾性波の伝搬方向における長さの比とは異なっていてもよい。例えば、分割共振器Saにおける分割共振子Pa1およびPa2が有するIDT電極のそれぞれの弾性波の伝搬方向における長さの比は1:1であり、分割共振器Sbにおける分割共振子Pb1およびPb2が有するIDT電極のそれぞれの弾性波の伝搬方向における長さの比は1:2である。
 さらに、第1分割共振器である分割共振器Sbにおける分割共振子Pb1およびPb2が有するIDT電極のそれぞれの弾性波の伝搬方向における長さの比と、第2分割共振器である分割共振器Scにおける分割共振子Pc1およびPc2が有するIDT電極のそれぞれの弾性波の伝搬方向における長さの比とは異なっていてもよい。例えば、分割共振器Sbにおける分割共振子Pb1およびPb2が有するIDT電極のそれぞれの弾性波の伝搬方向における長さの比は1:2であり、分割共振器Scにおける分割共振子Pc1およびPc2が有するIDT電極のそれぞれの弾性波の伝搬方向における長さの比は2:1である。なお、ここでは、1:2と2:1とは異なるとしている。
 図7B、図7Dおよび図7Eに示されるように、第2分割共振器は、1つの分割共振子から構成されなくてもよく、互いに並列接続された少なくとも2つの分割共振子から構成されていてもよい。また、第2分割共振器における少なくとも2つの分割共振子は、弾性波の伝搬方向に並べられ、第1分割共振器における少なくとも2つの分割共振子が有するIDT電極のそれぞれの弾性波の伝搬方向における長さの比と、第2分割共振器における少なくとも2つの分割共振子が有するIDT電極のそれぞれの弾性波の伝搬方向における長さの比とは異なるとしてもよい。
 これによれば、第1分割共振器および第2分割共振器について、それぞれが備える分割共振子が有するIDT電極のそれぞれの弾性波の伝搬方向における長さの比を異ならせることで、第1分割共振器における分割共振子のそれぞれの振幅最大点と、第2分割共振器における分割共振子のそれぞれの振幅最大点とが、弾性波の伝搬方向と直交する方向から見てずれやすくなる。特に、第1分割共振器を構成する分割共振子の数と、第2分割共振器を構成する分割共振子の数とが同じであってもよく、このような場合であっても上記長さの比が異なることで、振幅最大点をずらすことができる。
 また、例えば、振幅最大点をずらすために、分割共振器を並列分割された少なくとも2つの分割共振子から構成しなくてもよい。例えば、弾性波フィルタが備える互いに直列接続された少なくとも3つの分割共振器のうちの隣り合う第1分割共振器および第2分割共振器のそれぞれが1つの分割共振子から構成されていてもよく、それぞれの分割共振子についてIDT電極の弾性波の伝搬方向における長さを異ならせてもよい。第1分割共振器と第2分割共振器とでIDT電極の弾性波の伝搬方向における長さを異ならせることで、それぞれの振幅最大点(すなわちそれぞれのIDT電極の弾性波の伝搬方向における中央)が弾性波の伝搬方向と直交する方向から見てずれることになるためである。
 また、例えば、弾性波フィルタが備える少なくとも3つの分割共振器の数は、3つ以上であれば特に限定されない。
 また、第1分割共振器および第2分割共振器は、互いに並列接続された少なくとも2つの分割共振子から構成される場合、互いに並列接続された2つの分割共振子に限らず、互いに並列接続された3つ以上の分割共振子から構成されていてもよい。
 本発明は、分割共振器を備える弾性波フィルタを有する携帯電話等の通信機器に広く利用できる。
 10、10a フィルタ
 11、11a、12、13、14、15 直列腕共振子
 16、17、18、19 並列腕共振子
 20 端子
 ANT アンテナ
 L1、L2、L3 インダクタ
 Pa1、Pa2、Pb1、Pb2、Pc1、Pc2、Pd1、Pd2 分割共振子
 Sa、Sb、Sc、Sd、Saa、Sba、Sca、Sda 分割共振器

Claims (5)

  1.  互いに直列接続された少なくとも3つの分割共振器を備え、
     前記少なくとも3つの分割共振器は、それぞれ、IDT(InterDigital Transducer)電極を有し、弾性波の伝搬方向と交差する方向に並べられ、
     前記少なくとも3つの分割共振器のうちの隣り合う第1分割共振器および第2分割共振器のそれぞれのIDT電極の弾性波伝搬方向における中央は、弾性波の伝搬方向と直交する方向から見てずれている、
     弾性波フィルタ。
  2.  前記第1分割共振器は、互いに並列接続された少なくとも2つの分割共振子から構成され、
     前記第1分割共振器における前記少なくとも2つの分割共振子は、弾性波の伝搬方向に並べられる、
     請求項1に記載の弾性波フィルタ。
  3.  前記第1分割共振器を構成する分割共振子の数と、前記第2分割共振器を構成する分割共振子の数とは異なる、
     請求項2に記載の弾性波フィルタ。
  4.  前記第2分割共振器は、1つの分割共振子から構成される、
     請求項3に記載の弾性波フィルタ。
  5.  前記第2分割共振器は、互いに並列接続された少なくとも2つの分割共振子から構成され、
     前記第2分割共振器における前記少なくとも2つの分割共振子は、弾性波の伝搬方向に並べられ、
     前記第1分割共振器における前記少なくとも2つの分割共振子が有するIDT電極のそれぞれの弾性波の伝搬方向における長さの比と、前記第2分割共振器における前記少なくとも2つの分割共振子が有するIDT電極のそれぞれの弾性波の伝搬方向における長さの比とは異なる、
     請求項2または3に記載の弾性波フィルタ。
PCT/JP2020/029725 2019-09-13 2020-08-03 弾性波フィルタ WO2021049206A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080063139.4A CN114365418A (zh) 2019-09-13 2020-08-03 弹性波滤波器
US17/691,492 US20220200570A1 (en) 2019-09-13 2022-03-10 Acoustic wave filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-166855 2019-09-13
JP2019166855 2019-09-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/691,492 Continuation US20220200570A1 (en) 2019-09-13 2022-03-10 Acoustic wave filter

Publications (1)

Publication Number Publication Date
WO2021049206A1 true WO2021049206A1 (ja) 2021-03-18

Family

ID=74865857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029725 WO2021049206A1 (ja) 2019-09-13 2020-08-03 弾性波フィルタ

Country Status (3)

Country Link
US (1) US20220200570A1 (ja)
CN (1) CN114365418A (ja)
WO (1) WO2021049206A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042835A1 (ja) * 2021-09-14 2023-03-23 株式会社村田製作所 弾性波フィルタ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115664370A (zh) * 2022-10-11 2023-01-31 中国科学院上海微系统与信息技术研究所 一种多传输零点的板波滤波器及信号处理电路

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51113343U (ja) * 1975-03-11 1976-09-14
WO2009063559A1 (ja) * 2007-11-15 2009-05-22 Fujitsu Limited 弾性波デバイス、それを用いたデュープレクサおよびそのデュープレクサを用いた通信機
JP2011040817A (ja) * 2009-08-06 2011-02-24 Taiyo Yuden Co Ltd 分波器
JP2011172191A (ja) * 2010-02-22 2011-09-01 Kyocera Corp 弾性表面波装置
WO2014133084A1 (ja) * 2013-02-27 2014-09-04 京セラ株式会社 弾性波素子、分波器および通信モジュール
WO2018123775A1 (ja) * 2016-12-26 2018-07-05 株式会社村田製作所 弾性表面波装置および弾性表面波フィルタ
WO2019065666A1 (ja) * 2017-09-27 2019-04-04 株式会社村田製作所 弾性波装置
JP2019186726A (ja) * 2018-04-09 2019-10-24 太陽誘電株式会社 マルチプレクサ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51113343U (ja) * 1975-03-11 1976-09-14
WO2009063559A1 (ja) * 2007-11-15 2009-05-22 Fujitsu Limited 弾性波デバイス、それを用いたデュープレクサおよびそのデュープレクサを用いた通信機
JP2011040817A (ja) * 2009-08-06 2011-02-24 Taiyo Yuden Co Ltd 分波器
JP2011172191A (ja) * 2010-02-22 2011-09-01 Kyocera Corp 弾性表面波装置
WO2014133084A1 (ja) * 2013-02-27 2014-09-04 京セラ株式会社 弾性波素子、分波器および通信モジュール
WO2018123775A1 (ja) * 2016-12-26 2018-07-05 株式会社村田製作所 弾性表面波装置および弾性表面波フィルタ
WO2019065666A1 (ja) * 2017-09-27 2019-04-04 株式会社村田製作所 弾性波装置
JP2019186726A (ja) * 2018-04-09 2019-10-24 太陽誘電株式会社 マルチプレクサ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042835A1 (ja) * 2021-09-14 2023-03-23 株式会社村田製作所 弾性波フィルタ
KR20240042516A (ko) 2021-09-14 2024-04-02 가부시키가이샤 무라타 세이사쿠쇼 탄성파 필터

Also Published As

Publication number Publication date
CN114365418A (zh) 2022-04-15
US20220200570A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
KR101986022B1 (ko) 멀티플렉서
KR100503954B1 (ko) 탄성표면파 장치 및 통신 장치
US7049908B2 (en) Surface acoustic wave device and communication apparatus
US10305445B2 (en) Elastic wave resonators and filters
KR100688885B1 (ko) 탄성 표면파 필터, 분파기, 통신기
JP2013247466A (ja) フィルタ、分波器及び通信モジュール
KR20050089953A (ko) 탄성표면파 필터와 그 탄성표면파 필터를 이용하는 안테나듀플렉서 및 통신장치
US10727812B2 (en) Multiplexer
KR20100130602A (ko) 탄성파 필터 및 이를 이용한 듀플렉서 및 전자 기기
JP2015012397A (ja) 分波器
JP2007074459A (ja) 共振器型フィルタ
JP2011146768A (ja) ラダー型弾性波フィルタと、これを用いたアンテナ共用器
WO2021049206A1 (ja) 弾性波フィルタ
JP2013081068A (ja) ワンチップ漏洩表面弾性波装置
WO2021002321A1 (ja) 弾性波フィルタおよびマルチプレクサ
US11811393B2 (en) Multiplexer, radio frequency front-end circuit, and communication device
US10979029B2 (en) Multiplexer
US6919781B2 (en) Surface wave filter comprising reactance elements
JP5850209B1 (ja) 弾性波装置
US11362643B2 (en) Multiplexer
EP2017961A1 (en) Elastic wave filter device and duplexer
US6963156B2 (en) Surface acoustic wave device and communication device incorporating same
KR20030063207A (ko) 탄성 표면파 장치 및 그것을 갖는 통신 장치
JP7377450B2 (ja) フィルタ回路及び複合フィルタ装置
EP3622624A1 (en) Saw device with suppressed parasitic signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20863597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP