WO2019065645A1 - 方向性電磁鋼板 - Google Patents

方向性電磁鋼板 Download PDF

Info

Publication number
WO2019065645A1
WO2019065645A1 PCT/JP2018/035495 JP2018035495W WO2019065645A1 WO 2019065645 A1 WO2019065645 A1 WO 2019065645A1 JP 2018035495 W JP2018035495 W JP 2018035495W WO 2019065645 A1 WO2019065645 A1 WO 2019065645A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
grain
less
magnetic
oriented electrical
Prior art date
Application number
PCT/JP2018/035495
Other languages
English (en)
French (fr)
Inventor
千田 邦浩
渡辺 誠
岡部 誠司
聡一郎 吉▲崎▼
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201880062714.1A priority Critical patent/CN111133118B/zh
Priority to EP18862120.5A priority patent/EP3690067B1/en
Priority to JP2019500613A priority patent/JP6856114B2/ja
Priority to KR1020207008121A priority patent/KR102407899B1/ko
Priority to US16/648,663 priority patent/US11198916B2/en
Priority to CA3075609A priority patent/CA3075609C/en
Priority to MX2020003640A priority patent/MX2020003640A/es
Publication of WO2019065645A1 publication Critical patent/WO2019065645A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention is directed to a grain-oriented electrical steel sheet mainly used as an iron core of a transformer, and in particular, a heat-resistant grained magnetic domain where the effect of reducing iron loss is not impaired even when stress relief annealing is applied. It relates to a steel plate.
  • the core loss is improved by providing the heat distortion region linearly, the non-heat resistant magnetic domain fragmentation method (without heat resistance) in which the core loss improvement allowance is lost by subsequent heating such as annealing; It is a heat-resistant type magnetic domain fragmentation method in which linear grooves having a predetermined depth are provided on the surface of a steel sheet.
  • the latter has the advantage that the magnetic domain refining effect does not disappear even when heat treatment is performed, and the latter is applicable to wound iron cores and the like.
  • the grain-oriented electrical steel sheet obtained by the conventional heat-resistant magnetic domain refining method has reduced core loss compared to the directional magnetic steel sheet obtained by the non-heat-resistant magnetic domain refining method by irradiating laser light or plasma flame. It had the problem that the effect was not enough.
  • Patent Document 1 discloses a method of forming a groove of a proper shape in a steel plate after final finish annealing and annealing in a reducing atmosphere.
  • pressing with a blade is effective to obtain an appropriate groove shape
  • cost increase due to blade wear becomes a problem
  • additional annealing in a reducing atmosphere further increases cost. I have a problem.
  • Patent Document 3 discloses a technique for mirror-finishing the surface.
  • this technology there is no particular synergetic effect in combining the linear grooves and the mirror finish of the surface, and only a plurality of iron loss improving means are used in parallel.
  • the mirror surface treatment of the ground iron interface has a problem in that the cost increases significantly.
  • the present invention solves the above-mentioned problems, and realizes a further reduction in iron loss in a general heat-resistant grain-oriented magnetic steel sheet having a forsterite film on the surface of the steel sheet.
  • the purpose is to propose the way.
  • a heat-resistant grained magnetic domain steel sheet (hereinafter referred to as a heat-resistant magnetic domain-divided steel sheet) subjected to heat-resistant domain division to form a groove on the steel sheet surface, the cross-sectional area of the groove part (steel sheet directly below the groove) is inevitable. Decreases, the magnetic flux density in the groove portion increases. For example, assuming that the average excitation magnetic flux density of the entire steel plate is 1.70 T and the depth of the groove is 10% of the plate thickness, the magnetic flux density at the groove portion reaches 1.89 T.
  • the magnetic flux density is not increased on average over the entire groove portion, but in the surface without grooves It is considered that the magnetic flux density is increased as a result of the increase in the domain wall displacement.
  • the 180 ° domain wall is fixed to pinning sites inside or on the surface of a steel plate, thereby increasing hysteresis loss and making the movement of the domain wall uneven.
  • a pinning site there are nonmagnetic foreign matter inside the ground iron and irregularities on the surface of the steel plate.
  • FIG. 1 domain wall movement under ideal AC magnetization conditions (in the absence of a magnetic pinning site) is shown in FIG. 1 as a system of (0) ⁇ (A1) ⁇ (A2) ⁇ (A3) ⁇ (4)
  • FIG. 1 domain wall movement under ideal AC magnetization conditions (in the absence of a magnetic pinning site) is shown in FIG. 1 as a system of (0) ⁇ (A1) ⁇ (A2) ⁇ (A3) ⁇ (4)
  • the heat-resistant magnetic domain-refined steel plate has a groove on one side (surface) of the steel plate, the amount of domain wall displacement differs between the front side and the back side of the steel plate. For this reason, it is considered that when the movement amount of the domain wall becomes uneven, adjacent magnetic domains come to unite with each other on the back surface having no groove, resulting in an increase in iron loss.
  • non-heat-resistant magnetic domain subdivided steel sheet in the case of the non-heat-resistant oriented magnetic steel sheet subjected to magnetic domain fragmentation (hereinafter referred to as non-heat-resistant magnetic domain subdivided steel sheet), the width of the reflux magnetic domain which is the starting point of magnetic domain fragmentation is thin (narrow And the deep region in the thickness direction, the difference in the displacement of the domain wall between the front and back of the steel plate is small.
  • the present invention is directed to a grain-oriented electrical steel sheet having a forsterite film on its surface, which is currently widely manufactured as a transformer core material. Usually, an insulating tension coating is applied and baked on this forsterite film for use.
  • the present invention in such a directional magnetic steel sheet, in addition to eliminating the inhibition factor of domain wall movement to improve the hysteresis loss, a phenomenon unique to the heat resistant type domain-refined steel sheet (difference between front and back of domain wall movement) The ideal iron loss reduction effect is to be obtained by considering
  • the base iron interface it was advantageous to make the base iron interface a complicated shape to improve the adhesion of the forsterite film, but to reduce the hysteresis loss, it is preferable to make the base iron interface smooth. It has been considered suitable.
  • a technology of forming a linear groove on the surface of the steel sheet after mirror surface making such a product but such a product is not manufactured on a commercial basis because the manufacturing cost becomes excessive. It is the present condition.
  • the core loss improvement method effective for the direction electrical steel sheet having a base film mainly composed of forsterite, which is the main product form at present, is to meet the demand for the improvement of transmission and distribution efficiency worldwide. Even its importance is high.
  • the essential features of the present invention are as follows. 1. It has a coating consisting mainly of forsterite of 0.2 g / m 2 or more in Mg basis weight on front and back surfaces of the steel plate, and the surface of the steel plate has an angle of 45 ° or less with the direction orthogonal to the rolling direction
  • a grain oriented electrical steel sheet having a plurality of grooves extending linearly in a direction transverse to the rolling direction and spaced apart in the rolling direction, The grooves have an average depth of 6% or more of the thickness of the steel plate and a distance between adjacent grooves of 1 to 15 mm.
  • the relative permeability ⁇ r 15/50 is 35,000 or more when AC magnetized at a frequency of 50 Hz and a maximum magnetic flux density of 1.5 T,
  • FIG. 2 is a schematic view showing the vicinity of the interface between the steel plate (base iron) 1 and the coating 2 in a cross section in the rolling orthogonal direction of the steel plate.
  • the forsterite film 2 is a film extending in the rolling orthogonal direction.
  • the portion of the coating continuously extending in the rolling orthogonal direction is referred to as a coating body 20, and the interface of such a portion is referred to as a continuous portion of the coating.
  • a portion of the interface of the coating which is separated from the coating main body 20 and surrounded by steel sheet steel and appears isolated, a portion shown by a to e in FIG.
  • n N / L0 (1)
  • the portions a to e in FIG. 2 observed in the cross section in the rolling orthogonal direction are often connected to the forsterite film main body, but Because of the different structure, the effect of pinning the domain wall movement is high. Therefore, such a portion may be regarded as an isolated portion as shown in FIG. 2 when viewed in a cross section in the rolling orthogonal direction.
  • the steel sheet targeted by the present invention is a mass produced by the usual manufacturing method, in which the direction of secondary recrystallization annealing after applying the annealing separator containing MgO as the main component to the steel sheet surface Magnetic steel sheet. If the iron loss improvement effect can be obtained with a directional electrical steel sheet by such a current manufacturing method, the entire heat resistant domain-divided steel sheet can be obtained without passing through a special step of mirror-finishing the steel sheet surface (base iron). It is possible to improve average iron loss characteristics. Furthermore, there is also an advantage of cost reduction for users of electromagnetic steel sheet products.
  • the present invention is directed to a grain-oriented electrical steel sheet in which a film mainly composed of forsterite (simply referred to as a forsterite film in the present invention) is formed on the steel sheet surface after secondary recrystallization annealing.
  • a film mainly composed of forsterite (simply referred to as a forsterite film in the present invention) is formed on the steel sheet surface after secondary recrystallization annealing.
  • the annealing separating agent which has MgO as a main component should just be a composition which becomes 0.2 g / m ⁇ 2 > or more per Mg steel surface coating amount, for example. More preferably, Ca 2 Sr, Mn, Mo, Fe, Cu, Zn, Ni, which is a conventionally known additive, is added with 1 to 20% by mass of TiO 2 to an annealing separator containing MgO as a main component.
  • One or more selected from oxides, hydroxides, sulfates, carbonates, nitrates, borates, chlorides and sulfides of Al, K and Li may be added.
  • the additive component other than MgO in the annealing separator is preferably 30% by mass or less.
  • Grooves for magnetic domain fragmentation extend linearly in a direction transverse to the rolling direction. Further, the angle between the extending direction of the groove and the rolling orthogonal direction is 45 ° or less. If this value is exceeded, the magnetic domain refinement effect due to the magnetic pole generated on the groove wall surface is not sufficiently generated, and the iron loss characteristic is degraded.
  • the grooves preferably extend continuously in the direction transverse to the rolling direction, but may extend intermittently.
  • the depth of the groove in accordance with the thickness of the steel plate, and it is preferable to make the depth of the groove deeper as the thickness of the steel plate is thicker. This is because the deeper the groove, the higher the magnetic domain refining effect, but if the groove is too deep, the density of the magnetic flux passing through the lower part of the groove increases, leading to deterioration of permeability and iron loss. is there. Therefore, the depth of the grooves should be increased in proportion to the plate thickness. Specifically, if the groove depth is 6% or more of the plate thickness, a sufficient magnetic domain fragmentation effect can be obtained, and iron loss can be sufficiently improved. The proper value of the groove depth varies with the level of magnetic flux density when used as a transformer. Further, the maximum value of the depth of the groove should be approximately 30% of the plate thickness.
  • the magnetic domain refining effect becomes higher as the groove on the surface of the steel sheet is deeper, the iron loss tends to deteriorate when the magnetic flux density to be magnetized is increased. This is because the permeability of the entire steel sheet is lowered to deteriorate the hysteresis loss, and the domain wall movement near the grooved surface is delayed, so the frequency of the magnetic domains adjacent to each other on the grooveless surface side is high.
  • the existence frequency of the isolated portion of the ground iron interface as described later, it is possible to reduce the frequency at which adjacent magnetic domains merge during domain wall movement.
  • an electromagnetic steel sheet with excellent core loss characteristics by appropriately controlling the existence frequency of the isolated part and setting the average depth of the groove to be deeper than the conventional depth, preferably 13% or more of the plate thickness. You can get In particular, it is possible to more effectively improve the core loss at 1.5 T, which is generally used as a design magnetic flux density of a wound core transformer in which a heat resistant type domain-refined steel sheet is used.
  • the distance between adjacent grooves is preferably 15 mm or less.
  • the groove spacing also varies with the level of magnetic flux density of the transformer in which the electrical steel sheet of the present invention is used, but the minimum groove spacing is preferably 1 mm. Because, if the distance is smaller than 1 mm, it may lead to the deterioration of the magnetic properties. It is desirable that the groove spacing be substantially uniform at any part. In the case where the groove spacing changes, variations of up to about ⁇ 50% of the average groove spacing are acceptable because they do not impair the effects of the present invention.
  • the domain wall is likely to be strongly pinned to this portion.
  • the portions a to e in FIG. 2 are not completely isolated but are often connected to the forsterite film main body.
  • the effect of pinning the domain wall movement is strong. Therefore, as an index for quantifying the unevenness of the ground iron interface, in other words, a factor that inhibits uniform domain wall movement, in the present invention, the existence frequency of the isolated part defined by the above-mentioned equation (1) Use n.
  • the domain wall moves in the direction orthogonal to the rolling direction, it is suitable to evaluate the existing frequency n in the thickness cross section in the rolling orthogonal direction.
  • the measurement of the presence frequency is obtained by smoothly polishing a cross section having a width of 60 ⁇ m or more, and observing and observing 10 fields or more with an optical microscope or a scanning electron microscope.
  • the respective views be separated by 1 mm or more. If the number of observation fields is small, only the local state can be evaluated, and the magnetic effect is not clear.
  • the occurrence frequency n is set to 0.3 / ⁇ m or less in order to prevent the disappearance of the magnetic domain in the opposite direction during the alternating current excitation and to suppress the increase of the iron loss. In order to obtain a further lower iron loss, it is preferable to set the existing frequency n to 0.1 piece / ⁇ m or less.
  • the lower limit of the presence frequency n is not particularly limited, but is preferably about 0.02 / ⁇ m from the viewpoint of securing the adhesion of the film.
  • the region width for measuring the presence frequency is preferably set to about the minimum width of the domain wall movement in the AC excitation process. Since the domain wall spacing is usually about 200 to 1000 ⁇ m, the region width is suitably about 50 to 100 ⁇ m. Similarly, it is preferable to set the number of areas for measuring the presence frequency to 10 or more. In addition, it is preferable to perform measurement in the rolling orthogonal direction at a plurality of portions separated by about 1 to 50 ⁇ m in the rolling direction.
  • the standard deviation thus determined is preferably 30% or less (0.3 or less) of the average value.
  • the existence frequency is unevenly distributed in the rolling orthogonal direction, domain wall movement also becomes uneven, and the possibility that a portion where adjacent magnetic domains merge at the vicinity of the maximum magnetic flux density is increased. That is, in the region divided in the rolling orthogonal direction at about the same extent as the magnetic domain width and the domain wall movement width, when there are a plurality of parts where the frequency of occurrence largely differs, parts where the movement amount of the domain wall is large and parts where there are There is a high possibility that the adjacent magnetic domains coalesce, which may accelerate the increase of iron loss.
  • the permeability under the condition that the excitation magnetic flux density is relatively low is not easily affected by the presence or absence of the groove.
  • the index for judging that the secondary recrystallized structure of sufficient degree of integration is developed in the grooved oriented magnetic steel sheet as in the present invention is the permeability (frequency at the maximum magnetic flux density of 1.5 T 50 Hz) is suitable. Therefore, in the present invention, the relative magnetic permeability ⁇ r 15/50 when AC magnetization is performed at 50 Hz and 1.5 T is used as an index of the crystal orientation of the ground iron portion. When this index is used, the steel sheet according to the present invention can realize a relative magnetic permeability ⁇ r 15/50 of 35,000 or more.
  • the manufacturing method of the said electromagnetic steel sheet is not necessarily limited uniquely, it is suitable to manufacture with the following method. That is, the present invention heats a steel material (steel slab) containing C: 0.002 to 0.10% by mass, Si: 2.0 to 8.0% by mass, and Mn: 0.005 to 1.0% by mass, with the balance being Fe and incidental impurities. After that, hot rolling and hot rolled sheet annealing are performed. Next, cold rolling is performed, and cold rolling is performed to a final thickness by one or two or more cold rollings sandwiching intermediate annealing, and after decarburizing annealing, an annealing separator containing MgO as a main component is used.
  • the method for manufacturing a grain-oriented electrical steel sheet is used in which the residual annealing separator is removed and continuous annealing is performed to combine insulating coating baking and planarization.
  • the angle between the steel sheet surface and the direction perpendicular to the rolling direction is 45 ° or less at any stage after cold rolling, after decarburizing annealing, after secondary recrystallization annealing, or after planarization annealing
  • the depth is plate thickness 6% or more of the grooves are formed at an interval of 1 mm or more and 15 mm or less between the grooves.
  • 1 to 20 mass% of TiO 2 is added to MgO having 50 mass% or more of content of particles having a particle size of 0.6 ⁇ m or more as the annealing separating agent, mixed with water and applied as a slurry on the steel sheet surface .
  • TiO 2 in the annealing separator is an additive to MgO effective for promoting forsterite film formation, and if it is less than 1% by mass, formation of forsterite film becomes insufficient and the magnetic properties and appearance are impaired .
  • the addition amount to MgO before the hydration treatment is preferably 1 to 20% by mass.
  • MgO is used as the annealing separator has a number ratio r 0.6 particle size 0.6 ⁇ m or more particles is 50% to 95%, more steel per side after coating and drying of the annealing separator coated on the decarburization annealed sheet
  • the weight per unit area S (g / m 2 ) of H 2 O is preferably 0.02 to 0.4 g / m 2 .
  • the smoothness of the ground iron interface is further improved, and the existence frequency n of the forsterite isolated part is reduced to 0.1 or less. It is preferable because it can be done. It is presumed that this effect is obtained by the concentration of Sr near the ground iron interface.
  • the viscosity of the slurry of the annealing separator is generally determined by the physical properties of MgO. Therefore, the viscosity at the time of application can be determined by measuring the viscosity when a predetermined treatment is performed on MgO to be used. In addition, in order to evaluate viscosity stably, it is preferable to measure after stirring for 30 minutes with the impeller of 100 rpm of rotational speeds, after mixing MgO and water.
  • C 0.002 to 0.10% by mass
  • C is an element useful for generating a Goss nucleus as well as improving the hot-rolled structure by utilizing transformation
  • C is preferably contained in an amount of 0.002% by mass or more.
  • C is preferably in the range of 0.002 to 0.10% by mass. More preferably, it is in the range of 0.010 to 0.080% by mass.
  • C basically does not remain in the base iron component of the product, and is removed in manufacturing processes such as decarburization annealing, but in the product, 50 ppm or less may remain as unavoidable impurities in the base iron is there.
  • Si 2.0 to 8.0 mass%
  • Si is an element effective in increasing the specific resistance of steel and reducing iron loss. The said effect is not enough in less than 2.0 mass%.
  • the Si content is preferably in the range of 2.0 to 8.0% by mass. More preferably, it is in the range of 2.5 to 4.5% by mass.
  • Si is used as a material for forsterite film formation. Therefore, the Si concentration in the base iron of the product is slightly lower than the content in the slab, but this amount is small, and the components in the slab and the components in the base iron may be approximately equal.
  • Mn 0.005 to 1.0% by mass
  • Mn is an element effective to improve the hot workability of steel. The said effect is not enough in less than 0.005 mass%. On the other hand, if it exceeds 1.0% by mass, the magnetic flux density of the product plate will be lowered. Therefore, Mn is preferably in the range of 0.005 to 1.0% by mass. More preferably, it is in the range of 0.02 to 0.20% by mass. Almost all of Mn added to the slab remains in the product ground iron.
  • the components other than Si, C and Mn can be divided into cases where an inhibitor is used and cases where an inhibitor is not used to cause secondary recrystallization.
  • Al and N are each 0.010 to 0.050 mass% of Al and 0.003 to 0.020 mass% of N. It is preferable to contain in the range.
  • MnS ⁇ MnSe type inhibitor it is preferable to contain the aforementioned amount of Mn and one or two of S: 0.002 to 0.030 mass% and Se: 0.003 to 0.030 mass%. preferable. If the addition amount is less than the above lower limit, the inhibitor effect can not be obtained sufficiently.
  • the AlN-based and MnS / MnSe-based inhibitors may be used in combination.
  • the content of Al, N, S and Se which are the above-mentioned inhibitor forming components is reduced as much as possible, Al: less than 0.01% by mass It is preferable to use a steel material reduced to N: less than 0.0050% by mass, S: less than 0.0050% by mass and Se: less than 0.0030% by mass.
  • Al, N, S and Se mentioned above are absorbed in the forsterite film or in the unreacted annealing separator, annealing atmosphere, and removed from the steel in the final finishing annealing for a long time at high temperature, and it is removed from the steel, about 10 ppm or less Remains in steel as an unavoidable impurity component of
  • Cu 0.01 to 0.50 mass%
  • P 0.005 to 0.50 mass%
  • Sb 0.005 to 0.50 mass%
  • Sn 0.005 to 0.50 mass%
  • Bi 0.005 to 0.50 mass%
  • B 0.0002 to 0.0025 mass%
  • Te 0.0005 to 0.0100% by mass
  • Nb 0.0010 to 0.0100% by mass
  • V 0.001 to 0.010% by mass
  • Ta 0.001 to 0.010% by mass
  • a groove for heat-resistant magnetic domain fragmentation on the surface of the steel sheet under the conditions of the range of the present invention.
  • Grooves for this purpose can be provided on the surface of the steel sheet at any stage after final cold rolling, after decarburizing annealing, or after final finish annealing and after planarization annealing.
  • etching, pressing of a convex blade, laser, electron beam processing, or the like can be used as a method of forming the groove.
  • a steel slab containing 0.0095% is charged into a gas furnace, heated to 1230 ° C. and held for 60 minutes, then heated at 1400 ° C. for 30 minutes in an induction furnace and hot rolled by a thickness of 2.5 mm It was a rolled sheet. This hot-rolled sheet is subjected to hot-rolled sheet annealing at 1000 ° C.
  • an annealing separator obtained by adding TiO 2 and other agents to MgO was mixed with water to form a slurry, and the slurry was applied and dried on the surface of a steel sheet and then wound into a coil.
  • the viscosity of the annealing separator slurry before application is adjusted by adjusting the hydration amount and hydration time of the mixture of TiO 2 and these using MgO with different particle diameters, and the application amount on the steel sheet surface is by adjusting, changing the basis weight of the of H 2 O per side (adhesion amount per unit area) on the steel plate front and back surfaces.
  • the basis weight of H 2 O the amount of water contained in the annealing separator after coating and drying was measured, and the basis weight S of H 2 O per one side of the steel sheet was calculated from the coating amount of the annealing separator.
  • the coil was finally finish annealed in a box annealing furnace, and the residual annealing separator was washed away by water, and then an insulating coating composed mainly of magnesium phosphate and colloidal silica and flattening annealing for coating and baking were applied to obtain a product. .
  • a test piece with a width of 30 mm and a length (rolling direction) of 280 mm was cut out, subjected to strain relief annealing in N 2 at 800 ° C. for 2 hours, and the magnetic properties were evaluated by the Epstein test method. .
  • a sample with a rolling orthogonal direction 12 mm and a rolling direction 8 mm is cut out, embedded in resin and polished, and observation of the base iron interface in the rolling orthogonal direction with an optical microscope The area of 100 ⁇ m in width was observed in 15 fields of view to calculate the average value and standard deviation of the occurrence frequency n of the forsterite isolated part.
  • the steel sheet in a state in which the forsterite film was attached to the surface was chemically analyzed to measure the Mg coating weight (per one surface of the steel sheet) of the steel sheet surface.
  • Table 1 describes the respective conditions and the magnetic properties ( ⁇ r 15/50 , W 17/50 , W 15/60 ) of the obtained material.
  • the iron loss of W 17/50 0.73 W / kg or less is stably obtained, and in particular, the steel sheet satisfying the existence frequency of 0.1 or less is W 17
  • the steel loss value of W 17/50 0.68 W / kg or less is stably obtained for a steel plate in which the standard deviation of the frequency of occurrence satisfies 0.3 or less of the average value / 50 : 0.70 W / kg or less.
  • an excellent iron loss value of W 15/60 0.65 W / kg or less is obtained.
  • a steel slab having the component composition described in Table 2-1 and the balance Fe and unavoidable impurities is produced by continuous casting, heated to a temperature of 1380 ° C., and hot rolled to a thickness of 2.0 mm.
  • the hot-rolled sheet was subjected to hot-rolled sheet annealing at 1030 ° C. for 10 seconds, and then cold-rolled to a cold-rolled sheet with a final thickness of 0.20 mm. Thereafter, decarburization annealing was performed. Decarburization annealing, 50vol% H 2 -50vol% N 2, and held 840 ° C. ⁇ 100 seconds under a humid atmosphere with a dew point of 55 ° C..
  • the linear groove space 4 mm, depth: 9% of the plate thickness, rolling orthogonal
  • an insulating coating composed mainly of magnesium phosphate and colloidal silica and flattening annealing for coating and baking were performed to obtain a product.
  • a test piece with a width of 30 mm and a length (rolling direction) of 280 mm was cut out, subjected to strain relief annealing in N 2 at 800 ° C. for 2 hours, and the magnetic properties were evaluated by the Epstein test method. .
  • a sample with 12 mm in the rolling orthogonal direction and 8 mm in the rolling direction is cut out, embedded in resin and then polished, and the base iron interface in the rolling orthogonal direction with a scanning electron microscope.
  • the average value and the standard deviation of the presence frequency n of the formula (1) were calculated by observing (field width 60 ⁇ m ⁇ 20 fields of view).
  • the ground iron portion was chemically analyzed to determine the ground iron component.
  • the analysis results of the ground iron component are shown in Table 2-2.
  • the base iron components were the same regardless of the change of the annealing separator conditions.
  • Table 3-1, Table 3-2 and Table 3-3 describe the annealing separator conditions and the magnetic properties ( ⁇ r 15/50 , W 17/50 ) of the materials obtained under the respective annealing separator conditions. According to the results shown in Tables 3-1, 3-2 and 3-3, W 17/50 : 0.67 W / kg or less is obtained in the steel plate according to the present invention. In particular, as a steel plate satisfying a standard deviation of n of 0.3 or less of the average value, a product of W 17/50 : 0.65 W / kg or less is stably obtained.

Abstract

本発明に従い、鋼板の表裏面に所定のフォルステライトを主成分とする被膜を有し、前記鋼板の表面に、複数本の溝を有する方向性電磁鋼板について、前記溝は、平均深さが前記鋼板の厚みの6%以上および溝相互間の距離が1~15mmであり、周波数50Hzおよび最大磁束密度1.5Tで交流磁化させたときの比透磁率μr15/50が35000以上であり、前記鋼板の圧延方向と直交する断面の、前記鋼板と前記被膜との界面において前記被膜の連続部分から離間して孤立する部分の存在頻度を0.3個/μm以下とすることによって、方向性電磁鋼板の更なる低鉄損化を実現することができる。

Description

方向性電磁鋼板
 本発明は、主として変圧器の鉄心として使用される方向性電磁鋼板、特に歪取り焼鈍を施しても鉄損の低減効果が損なわれることのない、耐熱型の磁区細分化を施した方向性電磁鋼板に関するものである。
 方向性電磁鋼板の磁区幅を狭くして鉄損を改善する手法としては、主に以下の二通りの磁区細分化方法が挙げられる。
 すなわち、熱歪領域を線状に設けることによって鉄損が改善されるものの、その後の焼鈍等の加熱によって鉄損改善代が失われる(耐熱性のない)非耐熱型の磁区細分化方法と、鋼板表面に所定深さの線状の溝を設ける耐熱型の磁区細分化方法とである。
 特に、後者は、熱処理を行っても磁区細分化効果が消失せず、巻き鉄心などにも適用可能であるという利点を有する。しかしながら、従来の耐熱型の磁区細分化方法で得られる方向性電磁鋼板は、レーザ光やプラズマ炎の照射による非耐熱型の磁区細分化方法で得られる方向性電磁鋼板に比べて、鉄損低減効果が十分でないという問題を有していた。
 かかる耐熱型の磁区細分化による電磁鋼板の鉄損特性を改善するために、従来、数多くの提案がなされている。例えば、特許文献1には、最終仕上げ焼鈍後の鋼板に適正な形状の溝を形成させた後、還元性雰囲気で焼鈍する方法が開示されている。しかしながら、適正な溝形状を得るには、刃物による押圧処理が有効であるものの、刃物の摩耗によるコスト増加が問題になり、また還元性雰囲気での焼鈍を追加するため、さらにコストが増加するという問題を有している。
 また、特許文献2にも溝の形状を適正に制御することによって、耐熱型の磁区細分化による方向性電磁鋼板の鉄損を改善しようとした技術が提案されている。しかしながら、溝形状を精度よく制御するためにはレーザ光の照射に頼る必要があり、設備コストの増加が不可避であるとともに、レーザ光照射による溝形成は生産性の点で問題がある。
 以上のように、耐熱型の磁区細分化の技術は、磁区細分化のための溝自体に着眼した改善策が一般的であった。
 一方で、特許文献3には、鋼板表面に溝を形成することに加えて、表面を鏡面化する技術が開示されている。この技術では、線状の溝と表面の鏡面化とを複合させることに特段の相乗効果があるわけではなく、単に複数の鉄損改善手段を並列的に用いているに過ぎない。また、地鉄界面の鏡面化処理には、多大なコストの増加をもたらす点が問題になる。
特開平6-158166号公報 特表2013-510239号公報 特開平5-202450号公報
 本発明は、上記の問題を解消し、鋼板の表面にフォルステライト被膜を有する、一般的な耐熱型の磁区細分化を施した方向性電磁鋼板において、更なる低鉄損化を実現するための方途について提案することを目的とする。
 鋼板表面に溝を形成する耐熱型の磁区細分化を施した方向性電磁鋼板(以下、耐熱型磁区細分化鋼板と示す)では、必然的に溝の部分(溝直下の鋼板部分)の断面積が減少することから、溝の部分の磁束密度が増大する。例えば、鋼板全体の平均の励磁磁束密度が1.70Tとし、溝の深さが板厚の10%とすると、溝の部分での磁束密度は1.89Tに達する。ここで、方向性電磁鋼板の磁区構造が180°磁壁から構成されていることを考慮すると、溝の部分全体で平均的に磁束密度が増加しているわけではなく、溝のない面の方で磁壁移動量が大きくなる結果、磁束密度が増加している、と考えられる。
 一方、180°磁壁は、鋼板の内部や表面のピンニングサイトに固着されることによって、ヒステリシス損が増加するとともに、かかる磁壁の移動が不均一化することが知られている。このようなピンニングサイトとして、地鉄内部の非磁性異物や鋼板表面の凹凸がある。
 ここで、180°磁壁の移動について、図1を参照して説明する。まず、理想的な交流磁化条件(磁気的なピンニングサイトの無い場合)における磁壁移動については、図1に(0)→(A1)→(A2)→(A3)→(4)の系統で示すように、多数存在する180°磁壁が同じ速度で同じ量だけ往復運動する。そのため、交流磁化における最大磁束密度が飽和磁化よりもある程度低ければ、隣接する磁区同士が合体することはない。
 ところが、磁壁移動が不均一な場合(磁気的なピンニングサイトがある場合)における磁壁移動については、図1に(0)→(B1)→(B2)→(B3)→(4)の系統で示すように、磁壁移動が不均一になる。すると、部分的に大きな移動量となる磁壁が生じ、平均の磁束密度が比較的低い条件でも、隣接する磁区が合体するようになる(図1(B2))。この場合、交流磁化中、磁束密度が低下しつつある時間帯に、図1の(B3)に磁区cとして示す反対向きの新たな磁区が生成する必要がある。しかし、新たな磁区の生成には駆動エネルギーが必要なため、反対向きの磁区が残っている場合に比べて、反対向きの磁化成分の増加が遅れることになる。このように磁壁移動量が不均等な場合は、磁壁移動量が均等で最大磁束密度付近でも反対向きの磁区が残っている理想的な交流磁化の場合に比べて、磁束密度の変化(位相)が遅れる結果、鉄損が増加する。
 前記のように、耐熱型磁区細分化鋼板は鋼板の片面(表面)に溝を有することから、磁壁移動量が鋼板の表面側と裏面側とで異なる。このため、磁壁の移動量が不均一になると、溝がない方の裏面で隣接する磁区同士が合体するようになり、鉄損の増加が生じると考えられる。
 この点、前記した非耐熱型の磁区細分化を施した方向性電磁鋼板(以下、非耐熱型磁区細分化鋼板と示す)の場合、磁区細分化の起点となる還流磁区の幅が薄く(狭く)、かつ板厚方向の深い領域まで存在しているため、鋼板表裏の磁壁移動量の差は小さい。
 一方、鋼板の表面に溝を有している、通常の耐熱型磁区細分化鋼板では、溝のある面での磁壁の移動量が小さいために溝の無い面の近傍では磁壁が大きく移動する必要がある。このように、耐熱型磁区細分化鋼板は、磁壁移動量の表裏面での差が大きいため、部分的に隣接磁区の合体が生じていると推定される。このような差が非耐熱型磁区細分化鋼板と耐熱型磁区細分化鋼板との鉄損差の原因となっていると考えられる。
 そこで、発明者らは、耐熱型磁区細分化鋼板の鉄損改善方策を鋭意検討した。その結果、鋼板の表面に溝を有する耐熱型磁区細分化鋼板においては、交流励磁の過程において個々の磁壁の移動量を均一化させることが重要であり、このためには磁気的なピンニングサイトを極力低減することが重要であるとの結論に達した。また、このような溝を用いた耐熱型磁区細分化鋼板のフォルステライト被膜と鋼板との界面(以下、地鉄界面ともいう)において、圧延方向と直交する方向(以下、圧延直交方向という)の地鉄界面付近の断面を観察した。その結果、実用的に有効な磁気的平滑度を得るためには、フォルステライト被膜本体から孤立する被膜の部分(本発明において、単に、孤立する部分という)の個数頻度を低減することが有効であることを見出し、本発明を完成するに到った。
 本発明では、現在、変圧器用鉄心材料として多く製造されている、表面にフォルステライト被膜を有する方向性電磁鋼板を対象とする。なお、通常、このフォルステライト被膜の上に絶縁張力コーティングを塗布・焼き付けして使用に供している。
 本発明は、かかる方向性電磁鋼板において、磁壁移動の阻害要因を排除してヒステリシス損を改善することに加えて、耐熱型磁区細分化鋼板に特有の現象(磁壁移動の表裏面での差)を考慮することにより、理想的な鉄損低減効果を得ようとするものである。
 従来、フォルステライト被膜の密着性向上のためには、地鉄界面を複雑な形状にするのが有利とされている一方で、ヒステリシス損低減のためには、地鉄界面を平滑にするのが適しているとされてきた。
 ちなみに、鋼板表面を鏡面化したうえで該表面に線状の溝を設ける技術も提案されているが、このような製品は製造コストが過大になるため、商業ベースでの製造に至っていないのが現状である。このため、現在の主要な製品形態である、フォルステライトを主体とする下地被膜を有する方向性電磁鋼板に有効である鉄損改善方法は、全世界的な送配電効率向上の要求に応えるためにも、その重要性は高い。
 本発明の要旨構成は次のとおりである。
1.鋼板の表裏面にMg目付量にして0.2g/m2以上のフォルステライトを主成分とする被膜を有し、前記鋼板の表面に、圧延方向に直交する方向とのなす角度が45°以下で圧延方向を横切る向きに線状に延びかつ圧延方向に間隔を置いて並ぶ、複数本の溝を有する方向性電磁鋼板であって、
 前記溝は、平均深さが前記鋼板の厚みの6%以上および隣り合う溝相互間の距離が1~15mmの範囲であり、
 周波数50Hzおよび最大磁束密度1.5Tで交流磁化させたときの比透磁率μr15/50が35000以上であり、
 前記鋼板の圧延方向と直交する断面の、前記鋼板と前記被膜との界面において前記被膜の連続部分から離間して孤立する部分の存在頻度が0.3個/μm以下である方向性電磁鋼板。
2.前記孤立する部分の存在頻度が0.1個/μm以下である前記1に記載の方向性電磁鋼板。
3.前記孤立する部分の存在頻度の圧延方向と直交する方向の分布における標準偏差が平均値の30%以下である前記1または2記載の方向性電磁鋼板。
4.前記溝の平均深さが前記鋼板の厚みの13%以上である前記1から3のいずれかに記載の方向性電磁鋼板。
 前記孤立する部分について、図2を参照して詳しく説明する。図2は、鋼板の圧延直交方向の断面における、鋼板(地鉄)1と被膜2との界面付近を示す模式図である。ここで、図示の断面において、フォルステライト被膜2は圧延直交方向に延びる膜である。この圧延直交方向に連続して延びる被膜の部分を被膜本体20とし、かかる部分の界面を被膜の連続部分という。図2に示す断面図(断面写真)において、この被膜本体20から離間して周囲を鋼板地鉄に囲まれて孤立してみえる被膜の界面の部分、図2においてa~eで示す部分が被膜の孤立部分(すなわち、本発明における孤立する部分)となる。そして、この孤立する部分の個数N(個)、例えば図2ではa~eの5個がNとなる。そして、この領域の圧延直交方向の幅をL0(μm)とするとき、次式で求められるnを孤立する部分の存在頻度という。
  n=N/L0   …(1)
 ここで、フォルステライト被膜を三次元的にみると、圧延直交方向断面で観察される図2のa~eの部分はフォルステライト被膜本体と繋がっている場合が多いが、被膜本体から複雑に張り出した構造のため、磁壁移動をピンニングする効果が高い。よって、かような部分は、圧延直交方向断面でみたとき、図2に示すように孤立した部分とみなして良い。
 本発明によれば、耐熱型の磁区細分化を施した方向性電磁鋼板において、更なる低鉄損化を安定して実現することができる。
磁壁移動を示す模式図である。 地鉄界面のフォルステライト被膜の連続部分と孤立する部分とを示す模式図である。
 以下、本発明の各構成要件について、具体的に述べる。
[フォルステライトを主成分とする被膜]
 上述のとおり、本発明で対象とする鋼板は、通常の製造方法で大量生産されている、MgOを主成分とする焼鈍分離剤を鋼板表面に塗布してから二次再結晶焼鈍を施した方向性電磁鋼板である。このような現状の製造方法による方向性電磁鋼板で鉄損の改善効果が得られれば、鋼板表面(地鉄)を鏡面化する特殊な工程を経ることなしに、耐熱型磁区細分化鋼板全体の平均的な鉄損特性を改善することが可能になる。しかも、電磁鋼板製品の使用者にとってはコスト削減という利点もある。このため、二次再結晶焼鈍後に鋼板表面にフォルステライトを主成分とする被膜(本発明において、単に、フォルステライト被膜という)が形成されている、方向性電磁鋼板を対象とする。その際、鋼板の表裏面のMg目付量を、片面当たり0.2g/m2以上とすることが好ましい。なぜなら、MgO目付量がこの値を下回ると、フォルステライト被膜上に塗布する絶縁張力コーティング(通常、リン酸塩系ガラス質)と鋼板表裏面(地鉄)とのバインダ効果が十分に確保されず、絶縁張力コーティングが剥離したり、被膜が鋼板表裏面(地鉄)に与える張力が不足したりするためである。なお、MgOを主成分とする焼鈍分離剤は、Mg目付量が例えば鋼板片面当たり0.2g/m2以上となる組成であればよい。より好ましくは、MgOを主成分とする焼鈍分離剤に、TiO2を1~20質量%添加するとともに、従来公知の添加物である、Ca、Sr、Mn、Mo、Fe、Cu、Zn、Ni、Al、KおよびLiの酸化物、水酸化物、硫酸塩、炭酸塩、硝酸塩、ホウ酸塩、塩化物および硫化物等から選んだ1種または複数種を添加すればよい。ここで、焼鈍分離剤中のMgO以外の添加成分は30質量%以下とすることが好ましい。
[圧延方向を横切る向きに線状に延びかつ圧延方向に間隔を置いて並ぶ、複数本の溝]
 磁区細分化のための溝は、圧延方向を横切る向きに線状に延びるものとする。さらには、溝の延びる方向が圧延直交方向となす角度を45°以下とする。この値を上回ると、溝壁面に生じる磁極による磁区細分化効果が十分に生じず、鉄損特性が劣化することになる。なお、溝は圧延方向を横切る向きに、連続して延びることが好ましいが、断続して延びていてもよい。
 また、溝の深さは、鋼板の板厚に応じて設定するのが適当であり、鋼板の厚みが厚いほど、溝の深さを深くすることが好ましい。これは、溝を深くするほど磁区細分化効果は高くなるが、溝を深くしすぎると溝より下の部分を通過する磁束の密度が増加して、透磁率および鉄損の劣化を招くからである。従って、溝の深さは板厚に比例して増加させるのがよい。具体的には、溝の深さを板厚の6%以上にすれば、十分な磁区細分化効果が得られ、鉄損の改善が十分になされる。なお、溝の深さの適正値は、変圧器として使用されるときの磁束密度の水準によって変化する。また、溝の深さの最大値は概ね板厚の30%とするのがよい。
 ここで、耐熱型磁区細分化鋼板は、鋼板表面の溝を深くするほど磁区細分化効果は高くなるものの、磁化させる磁束密度を高くしたときの鉄損は劣化する傾向にある。これは、鋼板全体の透磁率が低下してヒステリシス損が劣化するとともに、溝のある面の近傍の磁壁移動が遅滞するため、溝のない面の側で隣接した磁区同士が合体する頻度が高くなるためである。これに対し、後述のとおり地鉄界面の孤立した部分の存在頻度を適正に制御することにより、磁壁移動中に隣接する磁区が合体する頻度を低下することができる。そのため、鋼板片面に設ける溝を深くした場合でもヒステリシス損の劣化を防止することができ、有効に鉄損を低減することができる。また、孤立する部分の存在頻度を適正に制御したうえで、溝の平均深さを従来の深さよりも深く、好ましくは板厚の13%以上とすることにより、優れた鉄損特性の電磁鋼板を得ることができる。特に、耐熱型磁区細分化鋼板が使用される巻鉄心変圧器の設計磁束密度として一般的な1.5Tでの鉄損をより有効に改善することができる。
 上記条件に従う溝は、圧延方向へ間隔を置いて複数本設ける。その際、隣り合う溝相互間の距離(溝間隔ともいう)は、15mm以下とすることが好ましい。上記溝間隔を15mm以下とすることによって、十分な磁区細分化効果が得られ鉄損が改善する。この溝間隔についても、本発明の電磁鋼板が使用される変圧器の磁束密度の水準によって変化するが、溝間隔の最小値は1mmとすることが好ましい。なぜなら、1mmよりも間隔が狭いと磁気特性の劣化に繋がる可能性がある。
 なお、溝間隔はいずれの部分でも概ね均等であることが望ましい。溝間隔が変化する場合は、平均の溝間隔の±50%程度までの変動があっても本発明の効果を損なうものではないので許容される。
[被膜の連続部分から離間して孤立する部分の存在頻度が0.3個/μm以下]
 前記のように、地鉄界面の凹凸が大きいと磁壁移動の際に移動距離が大きい磁壁と小さい磁壁とが発生し、反対向きの磁区が消滅する可能性が高まる。このような場合、反対向きの磁化が増加しつつあるときには、反対向きの磁区が新たに生成する必要があるが、新しい磁区生成のタイミングが遅れることから鉄損の増加を招く。とくに、溝を有する表面と反対側の裏面とは磁壁が大きく移動する必要がある。そのため、(鋼板片面の)溝付きの耐熱型磁区細分化鋼板では、鋼板表面での凹凸が激しい場合、磁壁移動がより不均一となって、最大磁束密度付近で反対向きの磁区が消失しやすくなり、鉄損の増加を招きやすい。このため、特に耐熱型磁区細分化鋼板の鉄損を改善するためには、溝を有していない通常の電磁鋼板よりも地鉄界面の凹凸度、とりわけ被膜下面の凹凸形態を適正化するのが重要であることを新規に知見し本発明を完成した。
 すなわち、鋼板表面の圧延直交方向断面において、図2のa~eのような孤立する部分があると、この部分に磁壁が強くピンニングされやすい。ここで、フォルステライト被膜を三次元的にみると、図2のa~eの部分は完全に孤立していないでフォルステライト被膜本体と繋がっている場合が多い。しかしながら、被膜本体から複雑に張り出した構造であるため、磁壁移動をピンニングする作用は強い。従って、地鉄界面の凹凸度、換言すると、均一な磁壁移動を阻害する因子を定量化するための指標として、本発明では、上記した式(1)で定義される、孤立する部分の存在頻度nを用いる。
 ここで、磁壁は圧延方向と直交する方向に移動するため、存在頻度nは圧延直交方向の厚み断面で評価するのが適している。また、存在頻度の測定は、幅60μm以上の断面を、平滑に研磨した後、光学顕微鏡や走査型電子顕微鏡により10視野以上観察して求めることが好ましい。また、鋼板の平均的な情報を得る観点から各視野は互いに1mm以上離れていることが望ましい。観察視野数が少ないと、局部的な状態しか評価できず、磁気的な影響が明らかでないからである。
 存在頻度nは、交流励磁途中の反対向きの磁区の消失を防止して鉄損の増加を抑止するために、0.3個/μm以下とする。さらに低い鉄損を得るためには、存在頻度nを0.1個/μm以下とすることが好ましい。
 また、上記存在頻度nの下限は、特に限定されないが、被膜の密着性を確保する観点から、0.02個/μm程度が好ましい。
[存在頻度nの圧延直交方向における分布の標準偏差が平均値の30%以下]
 まず、存在頻度nの圧延直交方向における分布の標準偏差とは、鋼板の圧延直交方向に、例えば、幅100μmごとに区切った領域内での存在頻度を計測し、この幅100μmの領域での計測を圧延直交方向に、例えば、10の領域において行って得た、全計測結果に基づくものとする。なお、前記存在頻度を測定する領域幅は、交流励磁過程における磁壁移動の最小幅程度とするのがよい。通常、磁壁間隔は200~1000μm程度であることから、前記領域幅は50~100μm程度が適している。同様に、存在頻度を測定する領域数は、10以上とすることが好ましい。また、圧延直交方向の測定部位は、圧延方向に1~50μm程度の間隔をおいた複数の部位で行うことが好ましい。
 かくして求めた標準偏差は平均値の30%以下(0.3以下)であることが好ましい。ここで、前記存在頻度が圧延直交方向で不均一に分布していると磁壁移動も不均一となり、最大磁束密度付近にて隣接した磁区同士が合体する部分が生じる可能性が高まる。すなわち、磁区幅および磁壁移動幅と同程度で圧延直交方向に区切った領域において、前記存在頻度が大きく異なる部分が複数存在すると、磁壁の移動量が大きい部分と小さい部分が生じて、交流磁化中に隣接する磁区が合体する可能性が高まり、鉄損の増加が促進される可能性が生じる。そこで、前記存在頻度の圧延直交方向の分布を標準偏差として整理したところ、この標準偏差が平均値の30%以下(0.3以下)であれば、磁壁移動の不均一化による鉄損の増加を防止し得ることを知見した。より好ましくは、15%以下(0.15以下)である。
[50Hzおよび1.5Tで交流磁化させたときの比透磁率μr15/50が35000以上]
 磁区細分化処理済の方向性電磁鋼板が十分に低い鉄損値に到達するためには、二次再結晶組織の方位が、高い集積度でゴス(GOSS)方位に揃っている必要がある。
 通常、方向性電磁鋼板の方位集積度に関する磁気的な指標は、磁界の強さ800A/mで磁化されたときの磁束密度であるB8が用いられる。ただし、鋼板の表面に溝を有する場合、B8は方位集積度とは別に溝の深さに影響を受ける。一方、励磁磁束密度が比較的低い条件での透磁率は溝の有無の影響を受けにくい。そこで、本発明のような溝付きの方向性電磁鋼板で十分な集積度の二次再結晶組織が発達していることを判断するための指標は、最大磁束密度1.5Tでの透磁率(周波数50Hz)が適している。そこで、本発明では、50Hzおよび1.5Tで交流磁化させたときの比透磁率μr15/50を地鉄部分の結晶方位の指標とした。
 この指標を用いると、本発明に従う鋼板は、比透磁率μr15/50が35000以上を実現できる。
 次に、上記電磁鋼板の製造方法については、必ずしも一意に限定されないが、以下の方法によって製造することが好適である。
 すなわち、本発明は、C:0.002~0.10質量%、Si:2.0~8.0質量%およびMn:0.005~1.0質量%を含有し、残部がFeおよび不可避的不純物からなる鋼素材(鋼スラブ)を加熱後、熱間圧延し、熱延板焼鈍する。ついで、冷間圧延を施し、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とした後、脱炭焼鈍してからMgOを主成分とする焼鈍分離剤を塗布し、二次再結晶とフォルステライト被膜形成と純化とを兼ねる最終仕上げ焼鈍を施す。さらに、残留した焼鈍分離剤を除去し、絶縁コーティング焼付けと平坦化を兼ねる連続焼鈍を施す方向性電磁鋼板の製造方法を用いる。特に本発明では、冷間圧延後または脱炭焼鈍後または二次再結晶焼鈍後または平坦化焼鈍後のいずれかの段階で鋼板表面に圧延直交方向となす角度45°以下、深さが板厚の6%以上の溝を溝間の間隔1mm以上15mm以下にて形成する。
 前記焼鈍分離剤として、粒径0.6μm以上の粒子の含有率が50質量%以上のMgOに対し、TiO2を1~20質量%添加し、水と混合させてスラリー状として鋼板表面に塗布する。その際、塗布・乾燥後の鋼板の単位面積当たりの焼鈍分離剤中のH2Oの目付量(水分量)S(g/m2)を0.4g/m2以下とするのが好ましい。さらに、上記方法において焼鈍分離剤中にSr化合物をSr換算で0.2~5質量%添加するのがよい。さらに望ましくは、脱炭焼鈍板の鋼板表面に塗布する際の焼鈍分離剤の粘度を2~40cPとするのがよい。
 すなわち、焼鈍分離剤におけるTiO2は、フォルステライト被膜形成促進に有効なMgOへの添加剤であり、1質量%を下回るとフォルステライト被膜の形成が不十分となって磁気特性と外観が損なわれる。一方、20質量%を超えて添加すると、二次再結晶が不安定となって磁気特性が損なわれるため、水和処理前のMgOに対する添加量は1~20質量%とするのが好ましい。
 また、焼鈍分離剤として用いるMgOは、粒径0.6μm以上の粒子の個数比率r0.6を50%~95%とし、さらに脱炭焼鈍板に塗布した焼鈍分離剤の塗布・乾燥後の鋼板片面あたりのH2Oの目付量S(g/m2)を0.02~0.4g/m2とするとするのがよい。r0.6を50%以上としSを0.4g/m2以下とすることにより、最終仕上げ焼鈍中に地鉄界面付近のシリカの浮上が促進されて、フォルステライト被膜下部の凹凸の発達が抑制される。その結果、地鉄界面のフォルステライト被膜の孤立部分の存在頻度nを0.3以下に抑制することが可能となる。一方、r0.6が95%を超えたり、Sが0.02 g/m2を下回ったりする場合には、フォルステライト被膜の形成が不良となり、磁気特性と外観が損なわれるため、これらの範囲は好ましくない。
 さらに、焼鈍分離剤中にSr化合物をSr換算で0.2~5質量%添加することにより、地鉄界面の平滑度がさらに向上し、フォルステライト孤立部分の存在頻度nを0.1以下まで低減することができるので好ましい。この効果はSrが地鉄界面付近に濃化することにより得られるものと推定される。
 脱炭焼鈍板に塗布する際の焼鈍分離剤の粘度を2~40cPの範囲とすることは、圧延直交方向での存在頻度分布の標準偏差を平均値の30%以下とするのに有効である。この理由については明確ではないが、粘度が高い焼鈍分離剤を塗布した場合、鋼板の幅方向に位置的なムラが生じ、最終仕上げ焼鈍中に鋼板表面付近でシリカが浮上する挙動が位置的に変化するためと考えられる。また、粘度が2cPを下回るような場合は、焼鈍分離剤の安定的な塗布が行えず、フォルステライト被膜の不良が生じて製品の外観が損なわれるので、この範囲が好ましい。
 焼鈍分離剤のスラリーの粘度は、概ねMgOの物性により決定されている。従って、使用されるMgOに対して所定の処理を行ったときの粘度を測定することで塗布時の粘度を決定することができる。なお、粘度を安定的に評価するには、MgOと水とを混合後、回転速度100rpmのインペラで30分撹拌後に測定を行うことが好ましい。
 次に、本発明に用いて好適な鋼素材の成分組成について説明する。
C:0.002~0.10質量%
 Cは、変態を利用して熱延組織を改善するとともに、ゴス核を発生させるのに有用な元素であり、Cは0.002質量%以上含有させることが好ましい。一方、0.10質量%を超えると、脱炭焼鈍で磁気時効の起こらない0.005質量%以下に低減することが困難となる。よって、Cは0.002~0.10質量%の範囲とするのが好ましい。より好ましくは0.010~0.080質量%の範囲である。なお、Cは基本的には製品の地鉄成分中に残留しないこと望ましく、脱炭焼鈍などの製造工程で除去されるが、製品では地鉄中に不可避的不純物として50ppm以下が残留することがある。
Si:2.0~8.0質量%
 Siは、鋼の比抵抗を高め、鉄損を低減するのに有効な元素である。上記効果は、2.0質量%未満では十分ではない。一方、8.0質量%を超えると、加工性が低下し、圧延して製造すること困難となる。よって、Siは2.0~8.0質量%の範囲とするのが好ましい。より好ましくは2.5~4.5質量%の範囲である。
 なお、Siは、フォルステライト被膜形成の材料として使用される。そのため、製品の地鉄中のSi濃度はスラブ中の含有量よりも若干低下するがこの量は僅かであり、スラブ中の成分と製品地鉄中の成分はほぼ等しいとしてよい。
Mn:0.005~1.0質量%
 Mnは、鋼の熱間加工性を改善するために有効な元素である。上記効果は、0.005質量%未満では十分ではない。一方、1.0質量%を超えると、製品板の磁束密度が低下するようになる。よって、Mnは0.005~1.0質量%の範囲とするのが好ましい。より好ましくは0.02~0.20質量%の範囲である。なお、Mnはスラブ中に添加されたほぼ全量が製品地鉄中に残留する。
 上記Si、CおよびMn以外の成分については、二次再結晶を生じさせるために、インヒビターを利用する場合と、しない場合とに分けられる。
 まず、二次再結晶を生じさせるためにインヒビターを利用する場合で、例えば、AlN系インヒビターを利用するときには、AlおよびNを、それぞれAl:0.010~0.050質量%、N:0.003~0.020質量%の範囲で含有させるのが好ましい。また、MnS・MnSe系インヒビターを利用する場合には、前述した量のMnと、S:0.002~0.030質量%およびSe:0.003~0.030質量%のうちの1種または2種とを含有させることが好ましい。それぞれ添加量が、上記下限値より少ないと、インヒビター効果が十分に得られない。一方、上限値を超えると、インヒビター成分がスラブ加熱時に未固溶で残存し、磁気特性の低下をもたらす。なお、AlN系とMnS・MnSe系のインヒビターは併用して用いてもよい。
 一方、二次再結晶を生じさせるために上記インヒビター元素を利用しない場合には、上述したインヒビター形成成分であるAl、N、SおよびSeの含有量を極力低減し、Al:0.01質量%未満、N:0.0050質量%未満、S:0.0050質量%未満およびSe:0.0030質量%未満に低減した鋼素材を用いるのが好ましい。
 上記で述べたAl、N、SおよびSeは高温長時間の最終仕上げ焼鈍においてフォルステライト被膜中あるいは未反応焼鈍分離剤、焼鈍雰囲気中に吸収されて、鋼中から除去され、製品では10ppm以下程度の不可避的不純物成分として鋼中に残留する。
 以上に加えてスラブ鋼中に添加可能な元素としては、以下の元素が挙げられる。
 Cu:0.01~0.50質量%、P:0.005~0.50質量%、Sb:0.005~0.50質量%、Sn:0.005~0.50質量%、Bi:0.005~0.50質量%、B:0.0002~0.0025質量%、Te:0.0005~0.0100質量%、Nb:0.0010~0.0100質量%、V:0.001~0.010質量%およびTa:0.001~0.010質量%
 これらはいずれも、粒界に偏析するか、補助的な析出物分散型のインヒビター元素であるが、これらの補助的インヒビター元素を添加することによって粒成長抑制力がさらに強化され、磁束密度の安定性を高めることができる。いずれの元素についても、含有量が下限値を下回ると粒成長抑制力を補助する効果が十分に得られず、一方上限値を超えて添加すると飽和磁束密度の低下やAlNなどの主インヒビターの析出状態を変化させて磁気特性の劣化を招くので、それぞれ上記の範囲で含有させることが好ましい。
 なお、これら添加元素の全量または一部は製品の鋼中に残留する。
 また、Cr:0.01~0.50質量%、Ni:0.010~1.50質量%およびMo:0.005~0.100質量%の添加は、鋼の強度やγ変態挙動を適正にすることで、製品の磁気特性や表面性状の改善に寄与する。なお、これら添加元素の全量または一部は製品の鋼中に残留する。
 また、耐熱型の磁区細分化のための溝は鋼板表面に本発明範囲の条件にて設ける必要がある。このための溝は、最終の冷間圧延後、あるいは脱炭焼鈍後、あるいは最終仕上げ焼鈍後、平坦化焼鈍後のいずれかの段階において鋼板表面に設けることが可能である。また、溝の形成方法としては、エッチングや凸型刃の押圧、レーザおよび電子ビーム加工などを用いることができる。
 質量%で、C:0.06%、Si:3.3%、Mn:0.06%、P:0.002%、S:0.002%、Al:0.025%、Se:0.020%、Sb:0.030%、Cu:0.05%およびN:0.0095%を含有する鋼スラブをガス炉に装入し、1230℃まで加熱してから60分保持した後、誘導加熱炉で1400℃、30分加熱し熱間圧延により厚さ2.5mmの熱延板とした。この熱延板に1000℃で1分の熱延板焼鈍を施してから酸洗し、1次冷間圧延を施して厚さ1.7mmとした後、1050℃、1分間の中間焼鈍を施してから、酸洗後、二次冷間圧延により0.23mmの最終板厚とし、続いて水素、窒素、水蒸気を混合させた酸化性雰囲気中にて850℃×100秒間で脱炭焼鈍した。さらに、MgOにTiO2およびその他の薬剤を添加した焼鈍分離剤を水と混合してスラリー状にした後、鋼板表面に塗布・乾燥してからコイル状に巻き取った。このとき、粒径が種々異なるMgOを用い、これらとTiO2の混合物の水和量と水和時間の調整により塗布前の焼鈍分離剤スラリーの粘度を調整するとともに、鋼板表面への塗布量を調整することにより、鋼板表裏面に片面あたりのH2Oの目付量(単位面積あたりの付着量)を変化させた。H2Oの目付量は、塗布乾燥後の焼鈍分離剤中に含まれる水分量を測定し、焼鈍分離剤の塗布量から鋼板片面当たりのH2Oの目付量Sを算出した。
 上記コイルを箱型焼鈍炉で最終仕上げ焼鈍し、残留した焼鈍分離剤を水洗除去してから、燐酸マグネシウムとコロイダルシリカを主成分とする絶縁コーティングと塗布・焼き付けする平坦化焼鈍を施し製品とした。
 上記で得られた製品から、幅30mmおよび長さ(圧延方向)280mmの試験片を切り出し、800℃×2h、N2中での歪取り焼鈍を施してからエプスタイン試験法により磁気特性を評価した。また、圧延方向と直交する方向の地鉄界面を調査するため、圧延直交方向12mm、圧延方向8mmのサンプルを切り出し、樹脂に埋め込んでから研磨し、光学顕微鏡で圧延直交方向の地鉄界面の観察を行い、幅100μmの領域を15視野観察してフォルステライト孤立部分の存在頻度nの平均値および標準偏差を算出した。
 また、加熱した水酸化ナトリウムにより絶縁張力コーティングを除去した後、表面にフォルステライト被膜が付着した状態の鋼板を化学分析することにより、鋼板表面のMg目付量(鋼板片面当たり)を測定した。
 表1に各条件および得られた材料の磁気特性(μr15/50、W17/50、W15/60)を記載する。表1に示す結果によれば、本発明に従う鋼板はW17/50:0.73W/kg以下の鉄損が安定的に得られており、特に、存在頻度が0.1以下を満足する鋼板はW17/50:0.70 W/kg以下が、存在頻度の標準偏差が平均値の0.3以下を満足する鋼板はW17/50:0.68 W/kg以下の鉄損値が安定的に得られている。また、溝の深さが板厚の13%以上を満足する鋼板はW15/60:0.65W/kg以下の優れた鉄損値が得られている。
Figure JPOXMLDOC01-appb-T000001
 表2-1に記載の成分組成を有し、残部がFeおよび不可避的不純物からなる鋼スラブを連続鋳造法で製造し、1380℃の温度に加熱した後、熱間圧延して板厚2.0mmの熱延板とし、1030℃×10秒の熱延板焼鈍を施した後、冷間圧延して最終板厚が0.20mmの冷延板に仕上げた。その後、脱炭焼鈍を施した。脱炭焼鈍は、50vol%H2-50vol%N2、露点55℃の湿潤雰囲気下で840℃×100秒保持した。ついで、(A)MgOのr0.6=65%、粘度(100rpmインペラ30分攪拌後)30cPのMgOを主成分とし、TiO2を10%添加した焼鈍分離剤スラリーまたは、(B)MgOのr0.6=65%、粘度(100rpmインペラ30分攪拌後)50cPのMgOを主成分とし、TiO2を10%添加した焼鈍分離剤スラリー、(C)MgOのr0.6=40%、粘度(100rpmインペラ30分攪拌後)50cPのMgOを主成分とし、TiO2を10%添加した焼鈍分離剤スラリーの3種のスラリーをそれぞれの材料に塗布した。ついで最終仕上げ焼鈍を施してから、未反応の焼鈍分離剤の除去後、線状の突起付きのロールで押圧することにより線状の溝(間隔4mm、深さ:板厚の9%、圧延直交方向との角度5°)を形成してから、燐酸マグネシウムとコロイダルシリカを主成分とする絶縁コーティングと塗布・焼き付けする平坦化焼鈍を施し製品とした。
 上記で得られた製品から、幅30mmおよび長さ(圧延方向)280mmの試験片を切り出し、800℃×2h、N2中での歪取り焼鈍を施してからエプスタイン試験法により磁気特性を評価した。また、圧延方向と直交する方向の地鉄界面を調査するため、圧延直交方向12mm、圧延方向8mmのサンプルを切り出し、樹脂に埋め込んでから研磨し、走査型電子顕微鏡で圧延直交方向の地鉄界面を観察(幅60μm×20視野)することにより、式(1)の存在頻度nの平均値と標準偏差を算出した。
 また、加熱した水酸化ナトリウムにより絶縁張力コーティングを除去した後、表面にフォルステライト被膜が付着した状態の鋼板を化学分析することにより、鋼板表面のMg目付量(鋼板片面当たり)を測定したところ、いずれの鋼板も鋼板の片面当たり0.35~0.65g/m2の範囲のMg目付量であった。
 また、製品の絶縁コーティングおよびフォルステライト被膜を除去してから、地鉄部分を化学分析して地鉄成分を確定させた。地鉄成分の分析結果を表2-2に示す。焼鈍分離剤条件の変更によらず地鉄成分は同等であった。
 表3-1、表3-2および表3-3に、焼鈍分離剤条件およびそれぞれの焼鈍分離剤条件で得られた材料の磁気特性(μr15/50、W17/50)を記載する。表3-1、表3-2および表3-3に示す結果によれば、本発明に従う鋼板においてW17/50:0.67W/kg以下が得られている。特に、nの標準偏差が平均値の0.3以下を満足する鋼板はW17/50:0.65W/kg以下の製品が安定的に得られている。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
1 鋼板(地鉄)
2 フォルステライト被膜
20 被膜本体
a~e 被膜の孤立部分(本発明における孤立する部分)

Claims (4)

  1.  鋼板の表裏面にMg目付量にして0.2g/m2以上のフォルステライトを主成分とする被膜を有し、前記鋼板の表面に、圧延方向に直交する方向とのなす角度が45°以下で圧延方向を横切る向きに線状に延びかつ圧延方向に間隔を置いて並ぶ、複数本の溝を有する方向性電磁鋼板であって、
     前記溝は、平均深さが前記鋼板の厚みの6%以上および隣り合う溝相互間の距離が1~15mmの範囲であり、
     周波数50Hzおよび最大磁束密度1.5Tで交流磁化させたときの比透磁率μr15/50が35000以上であり、
     前記鋼板の圧延方向と直交する断面の、前記鋼板と前記被膜との界面において前記被膜の連続部分から離間して孤立する部分の存在頻度が0.3個/μm以下である方向性電磁鋼板。
  2.  前記孤立する部分の存在頻度が0.1個/μm以下である請求項1に記載の方向性電磁鋼板。
  3.  前記孤立する部分の存在頻度の圧延方向と直交する方向の分布における標準偏差が平均値の30%以下である請求項1または2記載の方向性電磁鋼板。
  4.  前記溝の平均深さが前記鋼板の厚みの13%以上である請求項1から3のいずれか1項に記載の方向性電磁鋼板。
PCT/JP2018/035495 2017-09-28 2018-09-25 方向性電磁鋼板 WO2019065645A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201880062714.1A CN111133118B (zh) 2017-09-28 2018-09-25 方向性电磁钢板
EP18862120.5A EP3690067B1 (en) 2017-09-28 2018-09-25 Grain-oriented electrical steel sheet
JP2019500613A JP6856114B2 (ja) 2017-09-28 2018-09-25 方向性電磁鋼板
KR1020207008121A KR102407899B1 (ko) 2017-09-28 2018-09-25 방향성 전기 강판
US16/648,663 US11198916B2 (en) 2017-09-28 2018-09-25 Grain-oriented electrical steel sheet
CA3075609A CA3075609C (en) 2017-09-28 2018-09-25 Grain-oriented electrical steel sheet
MX2020003640A MX2020003640A (es) 2017-09-28 2018-09-25 Lamina de acero electrico de grano orientado.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017188734 2017-09-28
JP2017-188734 2017-09-28

Publications (1)

Publication Number Publication Date
WO2019065645A1 true WO2019065645A1 (ja) 2019-04-04

Family

ID=65902956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035495 WO2019065645A1 (ja) 2017-09-28 2018-09-25 方向性電磁鋼板

Country Status (8)

Country Link
US (1) US11198916B2 (ja)
EP (1) EP3690067B1 (ja)
JP (1) JP6856114B2 (ja)
KR (1) KR102407899B1 (ja)
CN (1) CN111133118B (ja)
CA (1) CA3075609C (ja)
MX (1) MX2020003640A (ja)
WO (1) WO2019065645A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11685962B2 (en) * 2018-09-27 2023-06-27 Posco Co., Ltd Annealing separator composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102133909B1 (ko) * 2018-12-19 2020-07-14 주식회사 포스코 방향성 전기강판 및 그의 제조 방법
EP4155423A4 (en) * 2020-05-19 2023-10-11 JFE Steel Corporation GRAIN-ORIENTED ELECTROMAGNETIC STEEL SHEET AND METHOD FOR MANUFACTURING SAME

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202450A (ja) 1992-01-27 1993-08-10 Nippon Steel Corp 超低鉄損一方向性電磁鋼板およびその製造方法
JPH06158166A (ja) 1992-11-17 1994-06-07 Nippon Steel Corp 極めて低い鉄損をもつ一方向性電磁鋼板及びその製造方法
JPH06200325A (ja) * 1992-12-28 1994-07-19 Nippon Steel Corp 高磁性の珪素鋼板の製造法
JPH11229036A (ja) * 1998-02-17 1999-08-24 Nippon Steel Corp 超高磁束密度一方向性電磁鋼板の製造方法
JP2002194445A (ja) * 2000-12-27 2002-07-10 Kawasaki Steel Corp 被膜特性に優れた高磁束密度方向性電磁鋼板の製造方法
JP2004162112A (ja) * 2002-11-12 2004-06-10 Jfe Steel Kk 磁気特性および被膜特性に優れた方向性電磁鋼板の製造方法並びにこの方法に用いる焼鈍分離剤
JP2011099155A (ja) * 2009-11-09 2011-05-19 Nippon Steel Corp 薄手方向性電磁鋼板及び張力絶縁膜被覆薄手方向性電磁鋼板
JP2012126973A (ja) * 2010-12-16 2012-07-05 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2013510239A (ja) 2009-12-04 2013-03-21 ポスコ 低鉄損高磁束密度の方向性電気鋼板
WO2013160955A1 (ja) * 2012-04-26 2013-10-31 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3473679D1 (en) 1983-10-27 1988-09-29 Kawasaki Steel Co Grain-oriented silicon steel sheet having a low iron loss free from deterioration due to stress-relief annealing and a method of producing the same
US5173129A (en) * 1983-10-27 1992-12-22 Kawasaki Steel Corporation Grain-oriented silicon steel sheet having a low iron loss free from deterioration due to stress-relief annealing and a method of producing the same
JPH06220541A (ja) 1993-01-27 1994-08-09 Nippon Steel Corp 磁気鉄損の優れた高磁束密度方向性珪素鋼板およびその製造法
DE69840740D1 (de) 1997-04-16 2009-05-28 Nippon Steel Corp Unidirektionales elektromagnetisches stahlblech mit hervorragenden film- und magnetischen eigenschaften, herstellungsverfahren und entkohlungsglühungskonfiguration dafür
EP0892072B1 (en) 1997-07-17 2003-01-22 Kawasaki Steel Corporation Grain-oriented electrical steel sheet excellent in magnetic characteristics and production process for same
US6309473B1 (en) 1998-10-09 2001-10-30 Kawasaki Steel Corporation Method of making grain-oriented magnetic steel sheet having low iron loss
JP5853352B2 (ja) * 2010-08-06 2016-02-09 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP5754097B2 (ja) * 2010-08-06 2015-07-22 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
KR101309346B1 (ko) 2010-08-06 2013-09-17 제이에프이 스틸 가부시키가이샤 방향성 전기 강판 및 그 제조 방법
WO2012032792A1 (ja) * 2010-09-10 2012-03-15 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
CN104024455B (zh) * 2011-12-28 2016-05-25 杰富意钢铁株式会社 方向性电磁钢板及其铁损改善方法
US10629346B2 (en) 2012-04-26 2020-04-21 Jfe Steel Corporation Method of manufacturing grain-oriented electrical steel sheet
WO2016105053A1 (ko) 2014-12-24 2016-06-30 주식회사 포스코 방향성 전기강판 및 그 제조방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202450A (ja) 1992-01-27 1993-08-10 Nippon Steel Corp 超低鉄損一方向性電磁鋼板およびその製造方法
JPH06158166A (ja) 1992-11-17 1994-06-07 Nippon Steel Corp 極めて低い鉄損をもつ一方向性電磁鋼板及びその製造方法
JPH06200325A (ja) * 1992-12-28 1994-07-19 Nippon Steel Corp 高磁性の珪素鋼板の製造法
JPH11229036A (ja) * 1998-02-17 1999-08-24 Nippon Steel Corp 超高磁束密度一方向性電磁鋼板の製造方法
JP2002194445A (ja) * 2000-12-27 2002-07-10 Kawasaki Steel Corp 被膜特性に優れた高磁束密度方向性電磁鋼板の製造方法
JP2004162112A (ja) * 2002-11-12 2004-06-10 Jfe Steel Kk 磁気特性および被膜特性に優れた方向性電磁鋼板の製造方法並びにこの方法に用いる焼鈍分離剤
JP2011099155A (ja) * 2009-11-09 2011-05-19 Nippon Steel Corp 薄手方向性電磁鋼板及び張力絶縁膜被覆薄手方向性電磁鋼板
JP2013510239A (ja) 2009-12-04 2013-03-21 ポスコ 低鉄損高磁束密度の方向性電気鋼板
JP2012126973A (ja) * 2010-12-16 2012-07-05 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
WO2013160955A1 (ja) * 2012-04-26 2013-10-31 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3690067A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11685962B2 (en) * 2018-09-27 2023-06-27 Posco Co., Ltd Annealing separator composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
CA3075609C (en) 2022-06-21
JPWO2019065645A1 (ja) 2019-11-14
JP6856114B2 (ja) 2021-04-07
EP3690067A4 (en) 2020-08-05
US20200283863A1 (en) 2020-09-10
MX2020003640A (es) 2020-07-29
CN111133118B (zh) 2021-10-12
KR102407899B1 (ko) 2022-06-10
CA3075609A1 (en) 2019-04-04
EP3690067B1 (en) 2024-04-24
EP3690067A1 (en) 2020-08-05
US11198916B2 (en) 2021-12-14
KR20200043440A (ko) 2020-04-27
CN111133118A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
KR100885145B1 (ko) 철손이 적은 방향성 전자강판 및 그 제조방법
JP5754097B2 (ja) 方向性電磁鋼板およびその製造方法
KR101498404B1 (ko) 방향성 전기 강판의 제조 방법
KR20130037216A (ko) 방향성 전기 강판 및 그 제조 방법
JP2011174138A (ja) 方向性電磁鋼板の製造方法
KR101683693B1 (ko) 방향성 전자 강판의 제조 방법
JP6436316B2 (ja) 方向性電磁鋼板の製造方法
WO2012001952A1 (ja) 方向性電磁鋼板およびその製造方法
WO2012001953A1 (ja) 方向性電磁鋼板およびその製造方法
WO2019065645A1 (ja) 方向性電磁鋼板
CN110300808B (zh) 取向性电磁钢板
CN113302336A (zh) 方向性电磁钢板的制造方法
WO2023195466A1 (ja) 方向性電磁鋼板及びその製造方法
JP4192399B2 (ja) 方向性電磁鋼板およびその製造方法
JP2009209428A (ja) 著しく磁束密度が高い方向性電磁鋼板の製造方法
JP5845848B2 (ja) 方向性電磁鋼板の製造方法
JP6947248B1 (ja) 方向性電磁鋼板
JP6879439B1 (ja) 方向性電磁鋼板
JP4876799B2 (ja) 方向性電磁鋼板
JP7010321B2 (ja) 方向性電磁鋼板およびその製造方法
WO2022255259A1 (ja) 方向性電磁鋼板の製造方法
JP2011208196A (ja) 著しく鉄損が低い方向性電磁鋼板の製造方法
WO2022255258A1 (ja) 方向性電磁鋼板の製造方法
JP2011111653A (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019500613

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862120

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3075609

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20207008121

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018862120

Country of ref document: EP

Effective date: 20200428