JPH06220541A - 磁気鉄損の優れた高磁束密度方向性珪素鋼板およびその製造法 - Google Patents

磁気鉄損の優れた高磁束密度方向性珪素鋼板およびその製造法

Info

Publication number
JPH06220541A
JPH06220541A JP1205293A JP1205293A JPH06220541A JP H06220541 A JPH06220541 A JP H06220541A JP 1205293 A JP1205293 A JP 1205293A JP 1205293 A JP1205293 A JP 1205293A JP H06220541 A JPH06220541 A JP H06220541A
Authority
JP
Japan
Prior art keywords
steel sheet
recrystallization annealing
grain
flux density
oriented silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1205293A
Other languages
English (en)
Inventor
Katsuro Kuroki
克郎 黒木
Hiroaki Masui
浩昭 増井
Osamu Tanaka
収 田中
Isao Iwanaga
功 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1205293A priority Critical patent/JPH06220541A/ja
Publication of JPH06220541A publication Critical patent/JPH06220541A/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

(57)【要約】 【目的】 一次被膜の良好な高磁束密度低鉄損の方向性
珪素鋼板およびその製造法を提供する。 【構成】 Si:1〜7%、P:0.03〜0.15%
を含み、鋼板表面に最大部の深さの平均が2〜50μm
の溝を、鋼板の圧延の長手方向から、45〜90度の方
向に有し、平均二次再結晶断面粒径D(mm)の20%
以下の断面粒径を有する微細結晶粒を総面積比率で15
%以下を有し、かつ溝ピッチP0(mm)に対してP0
/Dが0.02〜2であり、かつフォルステライトを主
成分とする一次被膜の平均の厚みが0.3μm以下であ
ることを特徴とする磁気鉄損の優れた高磁束密度方向性
珪素鋼板。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は磁気特性に優れた高磁束
密度方向性珪素鋼板およびその製造法に関するものであ
る。トランス用等の磁気特性に優れた1〜7%のSiを
含んだ方向性珪素鋼板を製造するに際して、絶縁特性の
確保と鋼板表面に張力を与えトランスの性能向上に必要
な磁気特性を向上させ、かつ鋼板との密着性が良好な一
次被膜を形成させることは従来技術においては方向性珪
素鋼板の一つの重要な課題であった。すなわち、通常の
技術では脱炭を伴う一次焼鈍後に鋼板にマグネシアと呼
ばれる酸化マグネシウム(MgO)の微粉末を水溶させ
たスラリー状のものを塗り、必要に応じて乾燥した後、
二次再結晶焼鈍工程で焼成し、鋼板中のSiO2 やSi
との反応でフォルステライト(Mg2 SiO4 )と呼ば
れるセラミックス質状の絶縁性の一次被膜を形成させ
る。これが鋼板に張力を与え、磁気特性、とりわけ鉄損
と呼ばれるトランスの効率を支配する特性値を向上させ
るのに有効である。しかも、このフォルステライト形成
の状態が、二次再結晶で鋼板の結晶方位を通称GOSS
方位と呼ばれ、透磁率や磁束密度の向上に不可欠な鋼板
長手方向(圧延方向)に対して{110}<001>の
結晶方位を有するやや粗大な二次再結晶粒を成長させる
のにも重要な役割を果たしていることもよく知られてい
る。逆に、二次再結晶焼鈍昇温過程中に十分緻密な被膜
が形成されないまま二次再結晶させようとしても鋼板内
のインヒビターと呼ばれる微細な窒化物や硫化物等がそ
のままの状態で、あるいは分解して早く鋼板外に抜けで
てしまう。このため、昇温中にGOSS方位粒を優先的
に成長させ、他の方位粒の成長を抑制させる役目のイン
ヒビター効果が発揮できず、通称、細粒と呼ばれ、GO
SS方位粒の二次再結晶粒の成長が部分的あるいは全面
的に行われない、極めて磁気特性の劣る鋼板を生み出す
ことになる。なお、このMgOの中に酸化チタン(Ti
2 等)やその他の化合物を添加させ、さらに緻密な一
次被膜を形成させることも行われる。
【0002】しかるに、近年アモルファスの登場に見ら
れるように、エネルギー節減のためトランスのエネルギ
ー変換効率に影響の大きい方向性珪素鋼板の鉄損低減へ
の要求は大きく、上記の従来技術の延長ではこの要望に
応えることは困難となってきた。従来技術においては上
記の方法以外にも二次再結晶後のいわゆる製品鋼板表面
に機械的あるいはレーザー等のエネルギー照射的な方法
で溝あるいはなんらかの損傷を意図的に与え、磁区細分
化を行い、鉄損を向上せしめる方法が行われている。し
かしながら、この方法をもってしてもまだアモルファス
に対抗できるような低鉄損は実現困難であった。一方、
フォルステライトを主成分とする一次被膜は硬質な固形
物質なるがゆえに製品のせん断等の加工性に難点があ
り、工具寿命の低下をもたらしていた。
【0003】
【発明が解決しようとする課題】本発明はこのような問
題点に鑑み、以下のような骨子に示される技術的知見か
ら一次被膜とよばれるフォルステライトを主成分とする
固形物質の形成を極力抑え、かつ極めて低鉄損の方向性
珪素鋼板を得るべく新たな製品開発技術を提供すること
を目的とする。
【0004】以下にその内容を説明する。
【0005】
【課題を解決するための手段】本発明の要旨とするとこ
ろは下記のとおりである。 (1) Si:1〜7%、P:0.045%超〜0.2
0%を含む鋼を溶製し、熱間圧延、冷間圧延、一次再結
晶焼鈍および二次再結晶焼鈍を基本工程とする方向性珪
素鋼板の製造において、一次再結晶焼鈍後の鋼板表面に
最大部の深さの平均が2〜50μmの溝を鋼板の長手方
向から45度〜90度の方向に間隔を開けて付与し、次
いで鋼板表面に塩化物および硫化物の少なくとも1種類
以上を含むMgO主体の物質を塗布した後、二次再結晶
焼鈍を行うことを特徴とする磁気鉄損の優れた高磁束密
度方向性珪素鋼板の製造法。
【0006】(2) Si:1〜7%、P:0.045
%超〜0.20%、Sn:0.02〜0.20%を含む
鋼を溶製し、熱間圧延、冷間圧延、一次再結晶焼鈍およ
び二次再結晶焼鈍を基本工程とする方向性珪素鋼板の製
造において、一次再結晶焼鈍後の鋼板表面に最大部の深
さの平均が2〜50μmの溝を機械的、化学的、光学
的、熱的、電気的その他のエネルギー照射的な方法で規
則的な配列で付与し、次いで鋼板表面に塩化物および硫
化物の少なくとも1種類以上を含むMgO主体の物質を
塗布した後、二次再結晶焼鈍を行うことを特徴とする磁
気鉄損の優れた高磁束密度方向性珪素鋼板の製造法。
【0007】(3) 一次再結晶焼鈍後に付与する溝の
間隔(ピッチ)を2〜20mmの間とすることを特徴と
する前項1または2記載の磁気鉄損の優れた高磁束密度
方向性珪素鋼板の製造法。 (4) 一次再結晶焼鈍時または後に窒化を行うことを
特徴とする前項1〜3のいずれか1項に記載の磁気鉄損
の優れた高磁束密度方向性珪素鋼板の製造法。
【0008】(5) 塩化物として塩化カルシウム、硫
化物として硫化カリウムを添加することを特徴とする前
項1〜4のいずれか1項に記載の磁気鉄損の優れた高磁
束密度方向性珪素鋼板の製造法。 (6) 二次再結晶焼鈍時の昇温速度を毎時30℃以
下、また雰囲気ガス中の窒素分圧を30%以上とするこ
とを特徴とする前項1〜5のいずれか1項に記載の磁気
鉄損の優れた高磁束密度方向性珪素鋼板の製造法。
【0009】(7) Si:1〜7%、P:0.03〜
0.15%を含み、鋼板表面に最大部の深さの平均が2
〜50μmの溝を、鋼板の圧延の長手方向から、45〜
90度の方向に有し、平均二次再結晶断面粒径D(m
m)の20%以下の断面粒径を有する微細結晶粒を総面
積比率で15%以下を有し、かつ溝ピッチP0(mm)
に対してP0 /Dが0.02〜2であり、かつフォルス
テライトを主成分とする一次被膜の平均の厚みが0.3
μm以下であることを特徴とする磁気鉄損の優れた高磁
束密度方向性珪素鋼板。
【0010】(8) Si:1〜7%、P:0.03〜
0.15%、Sn:0.02〜0.2%を含み、鋼板表
面に最大部の深さの平均が2〜50μmの溝を、鋼板の
圧延の長手方向から、45〜90度の方向に有し、平均
二次再結晶断面粒径D(mm)の20%以下の断面粒径
を有する微細結晶粒を総面積比率で15%以下を有し、
かつ溝ピッチP0(mm)に対してP0 /Dが0.02
〜2であり、かつフォルステライトを主成分とする一次
被膜の平均の厚みが0.3μm以下であることを特徴と
する磁気鉄損の優れた高磁束密度方向性珪素鋼板。
【0011】(9) 溝底部の一部にフォルステライト
を主成分とする固形物質を有することを特徴とする前項
7または8記載の磁気鉄損の優れた高磁束密度方向性珪
素鋼板。以下に本発明を詳細に説明する。方向性珪素鋼
板の二次再結晶はGOSS方位と呼ばれる{110}<
001>方位の粒を二次再結晶焼鈍(仕上焼鈍とも呼ば
れる)時に十分成長させることが肝要である。これは一
次再結晶焼鈍(以下、一次焼鈍と呼ぶ)の中のある特定
粒のみを粗大再結晶させるもので、この時にインヒビタ
ー(Inhibitor)と呼ばれるAlN等の微細析
出物を仕上焼鈍前に十分作っておくことが技術上必要で
あることがよく知られている。そして、このために必要
な窒素を鋼溶製時または一次焼鈍後または他の工程中に
添加することが行われる。本発明の目的からはむしろ一
次焼鈍後に窒素を添加する方法が最適な窒素の添加法で
あることもわかった。もし、一次焼鈍中または直後に窒
素添加する場合は、通常、窒化反応を行う設備を脱炭反
応も行われる一次焼鈍設備の一部に内設するかあるいは
同一次焼鈍設備に近接して設置し、一次焼鈍後またはそ
れと平行させて窒化反応させる方法も有効である。鋼溶
製時に十分低炭化した鋼では脱炭機能よりも一次焼鈍後
の表面層の酸化物層を変えて、被膜反応に有利な形にす
ることがむしろ重要な役割となる。
【0012】本発明はSi:1〜7%を含む鋼を溶製
し、熱間圧延、冷間圧延、一次再結晶焼鈍および二次再
結晶焼鈍を基本工程とする方向性珪素鋼板の製造におい
て、一次再結晶焼鈍後の鋼板表面に最大部の深さの平均
が2〜50μmの溝を、機械的、化学的、光学的、熱
的、電気的その他のエネルギー照射的な方法で規則的な
配列で付与し、その後に鋼板表面に塩化物および硫化物
の少なくとも1種類以上を含む物質を鋼板表面に塗布
し、その後に二次再結晶焼鈍を行うことからなる、二次
再結晶焼鈍時に生成されるフォルステライトを主成分と
する一次被膜の平均の厚みが0.3μm以下の極めて鉄
損の優れた方向性珪素鋼板の製造法であり、かくして著
しく鉄損の優れた製品を得ることができる。これはこの
溝によって製品の磁区細分化をより細かくすることが可
能で、これが鉄損低減に寄与するからである。
【0013】この溝の付与の仕方は溝付きロール、溝付
きまたは刃型プレス等の機械的方法、レーザー、プラズ
マ等のエネルギー照射的な方法、水、油等を高圧で吹き
付ける方法、酸等による化学的腐食、電気的腐食による
方法、あるいはそれらを組み合わせた方法等、基本的に
手段はどれでもよく、要は上記の溝の要件を満たしてい
れば効果が認められる。しかし、これだけでは本発明の
狙いとする低鉄損は得られない。
【0014】本発明で最も重要な技術的な要件は鋼板表
面のフォルステライトを主成分とする一次被膜の平均厚
みと溝との組み合わせである。この厚みが0.3μm以
下の時、溝との組み合わせで著しく磁気特性が向上する
ことがわかった。この理由は必ずしもわかっていない
が、この一次被膜は厚いと鋼板の磁束の流れを妨げ、と
りわけ被膜に凹凸が多い場合や、フォルステライト直下
にスピネル(MgO・Al2 3 )等の酸化物が多い場
合はその傾向が大きいことは容易に想像できる。したが
って表面の一次被膜を極力減らし薄くするか、あるいは
完全になくしてしまい、そのかわりに、規則的な溝を形
成させれば磁束は規則的に円滑に流れる。この結果、鉄
損も十分に低減できることになる。当然ながら溝の深さ
とピッチには制約がつくことになる。
【0015】本発明での重要な点はさらに次の点にあ
る。従来技術において、いわゆる一次被膜を形成した後
のいわば製品に近いものに溝をつけて磁区細分化する方
法が行われている。これは同じく従来技術にある、中間
工程で溝をつけた方法よりも磁区制御効果が大きく出易
いためである。しかしながら、本発明で明らかになった
ことは、一次被膜厚みが極端に少ないか、あるいは一次
被膜がない場合はコスト的にも安価な一次再結晶焼鈍中
またはその前後に溝をつける方法でも十分な磁区細分化
効果が発揮されるという事実を見出した点である。
【0016】表1の化学成分(但しR1は一次再結晶焼
鈍後に窒化し、Nは0.0077%となった)を有する
方向性珪素鋼板を熱延、熱延焼鈍後0.23mmに冷間
圧延し、一次再結晶焼鈍直後の鋼板にロールで深さ15
μm、ピッチ5mmの溝をつけて、冷却後、この鋼板に
MgOパウダーに添加物を種々変えて仕上焼鈍を行い、
一次被膜の平均厚みを変えて、さらに張力を有する絶縁
コーティングを塗布したサンプルの鉄損を調べたのが図
1である。これをみても明らかなように一次被膜の厚み
が小さくなるほど鉄損の低減(向上)が見られ、とりわ
け0.3μm以下でそれが顕著であることがわかる。こ
れは、溝を一次再結晶焼鈍直後という中間工程でつける
ため、溝の中に後工程でフォルステライト等が詰まって
磁区制御効果が劣化しても鋼板表面の一次被膜の平均厚
みが少ないか、一次被膜がない場合は十分磁区細分化さ
れることを示している。
【0017】
【表1】
【0018】さらに本発明で重要な点は一次再結晶焼鈍
後に鋼板に溝をつけるという点である。表2の化学成分
(Nは一次再結晶焼鈍後に窒化した値)の鋼の一次再結
晶焼鈍後の鋼板(板厚0.23mm)を常温(25℃)
でロール法で(イ)溝深さ20μm、溝ピッチP0 が3
mmの溝、(ロ)溝深さ40μm、溝ピッチP0 が30
mmの溝をつけたが、二次再結晶の焼鈍条件が(1)昇
温速度が毎時50℃、雰囲気ガスの窒素分圧が10%の
場合、(2)昇温速度が毎時20℃、雰囲気ガスの窒素
分圧が40%の場合、のそれぞれについてパウダーを本
発明の塩化物を使用し、二次再結晶させた結果は以下の
ようであった。
【0019】まずフォルステライトの厚みは0.1μm
以下であった。はっきり云えることは、(1)、(2)
の場合とも溝の周辺に微細結晶粒が発生するが、平均二
次再結晶粒径の20%以下の粒径を有する微細結晶粒の
総面積比率およびP0 /Dの値は(1)(イ)で16%
および0.6、(1)(ロ)で20%および6.0、
(2)(イ)で3%および0.08、(2)(ロ)で1
2%および0.8であった。そして、このときの製品の
鉄損W17/50(ワット/kg)はそれぞれ、(1)
(イ)では0.95、(1)(ロ)では1.06、
(2)(イ)では0.75、(2)(ロ)では0.74
であった。
【0020】
【表2】
【0021】すなわち本発明の骨子をなす平均二次再結
晶粒径の20%以下の粒径を有する微細結晶粒の総面積
比率が15%超のとき、あるいはP0 /Dの値が0.0
2未満であるか、あるいは2を超えるとき、のいずれか
一方または両方を満たす場合は鉄損は著しく劣化すると
いえる。これに対し、平均二次再結晶粒径の20%以下
の粒径を有する微細結晶粒の総面積比率が15%以下の
とき、およびP0 /Dの値が0.02〜2の両方を満た
すときは鉄損は著しく良好である。
【0022】この理由は以下のように考えられる。上記
の定義の微細結晶粒は二次再結晶粒の中においては方位
もいわゆるGOSS方位とずれていることが多く、鉄損
に寄与しないばかりか、むしろこれを劣化させ、いわゆ
る磁区制御のための溝の周辺に出現することが多く、従
って歪の不均一性によりGOSS方位の二次再結晶粒の
生成に好ましい一次再結晶集合組織になっていないため
と考えられ、平均二次再結晶粒径の20%以下の粒径を
有する微細結晶粒の総面積比率が15%以下が好ましい
ことは理解される。図2に二次再結晶焼鈍後の代表的な
溝周辺に発生した微細結晶粒の例を示す。
【0023】ところで、従来技術では仮に上記の定義の
微細結晶粒を15%以下にしても磁性の劣化は大きいも
のがあり、工程的に簡素化されるという利点はあるもの
の実用に耐えられない方法と考えられていた。本発明に
おける新たな知見は、このような微細結晶粒がある場合
でも二次再結晶の平均粒径(断面粒径)Dと溝のピッチ
0 との関係がある範囲内であり、かつ一次被膜の厚み
に制約を加えることで実用に耐える十分な磁性が得られ
るということである。すなわち、溝の間隔(ピッチ)を
2〜20mmの間の任意の値とし、溝ピッチ(P0 (m
m))の間に平均二次再結晶粒径(断面粒径、D(m
m))の20%以下の粒径(断面粒径)を有する微細結
晶粒が総面積比率で15%以下を有し、かつP0 /Dが
0.02〜2となり、かつフォルステライトを主成分と
する一次被膜の平均の厚みが0.3μm以下を満たすと
きは十分な鉄損を示していることを確かめた。
【0024】この理由は必ずしも明らかではないが以下
のように考えている。磁区制御材の180°磁区の細分
化機構を考えると溝ピッチ間で180°磁区はそれぞれ
仕切られていて一つの磁区群としてヒステリシスの変化
を磁区移動で行うことが知られている。もちろんこのた
めには溝の周囲には90°磁区が発生し、これが結果的
にこの180°磁区の細分化をもたらすことになるが、
二次再結晶粒径が溝ピッチに対して十分大きいときは、
その一個または数個の粒内での方位性は十分高く保たれ
るので、仮に溝の周囲に微細結晶粒が発生してもそれが
総面積比率で15%以下であれば全体として十分な磁化
特性は得られ、ひいては鉄損を十分低く保持することが
できる。すなわち、本発明に従い、P0 /D≦2のとき
に十分良好な鉄損値が得られることがわかった。ここで
0 /Dが1以下でなく2以下という点が本発明の重要
な知見である。本発明ではフォルステライト被膜を0.
3μm以下にしており、磁区の移動が容易であり、この
点がP0 /Dの上限を広げていると考えられる。
【0025】ところで、P0 /Dは小さければよいとい
っても限度がある。それは溝ピッチ内の180°磁区
は、もとより溝近傍にできる90°磁区が起点となって
発生するので、この90°磁区を十分確保するのに必要
な最低の溝ピッチ間隔というものがあり、とりわけ本発
明における如く、溝の周辺に15%以下の微細結晶粒を
有することを要件とする場合には、さらにP0 の下限に
制約がつくことになる。さらに、優れた鉄損を得るため
にはP0 の下限はDが大きいほど高くなる傾向があり、
結果的にP0 /Dに下限をもつことになる。
【0026】この理由は次のように考えられる。すなわ
ち、一次再結晶焼鈍後の鋼板に溝をつけてから二次再結
晶焼鈍をするため、この溝の抵抗に打ち勝って、つまり
いくつかの溝を乗り超えてさらに十分な方位の二次再結
晶粒が成長するには限度があり、P0 に対してあまりに
Dが大き過ぎるときは方位性のやや劣る二次再結晶粒と
なり、本発明の狙いとする鉄損の優れた製品が得られに
くいことがわかった。つまりP0 /Dに下限があること
が明らかとなった。とりわけ溝の周囲に微細結晶粒が1
5%以下存在するように規定される本発明ではこの傾向
があるが、本発明に従いP0 /D≧0.02を満たすと
きに十分鉄損の優れた製品が得られることが明らかとな
った。
【0027】次に、二次再結晶を行う際に、出発材にA
lを添加している場合はインヒビターとしてAlNやS
3 4 を主体に使うが、ここで本発明の方法の一つと
して一次焼鈍中か後に鋼板を窒化する方法の方がより本
発明の目的達成に好ましいことがわかった。これは以下
の理由による。鋼溶製時に窒素を多く添加する場合と異
なり、後で鋼板を窒化する方がAlN、Si3 4 の最
適量を制御しやすく、二次再結晶焼鈍時に、本発明のよ
うにフォルステライト等の一次被膜が薄くなるかあるい
は消失しても雰囲気中の窒素分圧(PN2)を調節するこ
とで最適窒素量を確保しやすいからである。
【0028】次に、仕上焼鈍時の一次被膜を極力少なく
するか、あるいは一次被膜をなくするために、本発明で
は一次焼鈍後の鋼板表面に塩化物、硫化物を通常のマグ
ネシア(MgO)パウダーに混ぜて添加することが有効
であることがわかった。この中でもとりわけ塩化カルシ
ウム(CaCl2 )、硫化カリウム(K2 S)は有効で
ある。なお、通常法でもMgO以外にTiO2 やアンチ
モン系の化合物(Sb 2 (SO4 3 )やボロン系の化
合物(Na2 (BO4 3 )、ストロンチウム・バリウ
ム系化合物、炭・窒化物系化合物等を添加して反応を容
易にすることが行われるが、本発明でもこれらの添加物
の効果は発揮されるので、これらを添加しても本発明の
本質を変えるものではない。
【0029】表3にPの量のみを変えた鋼の一次再結晶
後のX線による結晶方位の{111}の面指数強度を示
す。これを一次再結晶後窒化し、二次再結晶させた鋼板
の磁束密度を同表に示す。明らかに、Pの量と共にこれ
らの値は変化していることがわかる。一方、Pと共存し
てSnが添加されると0.06%P−3%Si鋼の例の
図3のように鉄損までも低減され好ましい。これはSn
による製品の細粒化効果と考えられる。
【0030】
【表3】
【0031】次に、本発明が適用される珪素鋼板の製造
法についで述べる。前述のように本発明の適用が可能な
珪素鋼板はSi以外に必要に応じてAlを含有し、Si
3 4 あるいはAlN、および鋼中のSが多いばあいは
MnSを主要インヒビターとする鋼に限定される。もち
ろんSi、Al、P、Sn以外に、Se、Sb、Cu、
B、Nb、Ti、V、Ni、Cr等の他の添加元素を付
加的に添加させ、磁気特性の向上を図ることは本発明の
基本を変えるものではない。
【0032】AlNあるいはSi3 4 、MnSをイン
ヒビターとする珪素鋼板は公知であり、そのいずれの場
合においても本発明を適用することが可能である。しか
しながら、本発明の特徴をより一層発揮させるにはとり
わけ以下に示す製造法が最適である。すなわち、Siを
1〜7%含み、必要に応じAlを鋼溶製時に0.1%以
下添加してなる鋼を出発材とし、方向性珪素鋼板製造工
程における冷延後の一次焼鈍中の脱炭焼鈍中または後、
あるいは仕上焼鈍(二次再結晶焼鈍)の二次再結晶開始
の1000℃前後までの任意の工程において鋼板に直接
窒化反応を介してNを強制的に添加せしめて、二次再結
晶焼鈍前にNを30〜600ppmに含ませることから
なる製造法を用いる。
【0033】Siは本発明においては上記のようにフォ
ルステライト形成のために最低1%は必要である。一
方、7%を超えると加工性が極端に劣化し、工業生産に
適さない。AlはAlNインヒビター形成に有効であ
る。しかし0.1%を超えるとAl 2 3 生成量が多く
なり健全な鋼の清浄度を損ない、ひいては磁気特性に悪
影響をもたらす。
【0034】NはSi3 4 インヒビターを形成するの
に不可欠であり、本発明においては一次焼鈍後、つまり
仕上焼鈍前、厳密には仕上焼鈍の二次再結晶開始前の1
000℃前後で最低30ppmは必要である。一方、A
lを意図的に使う場合にはAlNの量確保の点で60p
pm以上は必要である。ただし、600ppmを超える
とAlやSiを食いすぎて好ましくない。
【0035】Sはこれを積極的に利用する場合は鋼溶製
時に最低0.01%はMnSをインヒビターとして有効
に使うのに必要である。一方、0.05%超では凝集し
て好ましくはない。Pは本発明では重要である。鋼溶製
時に0.045%以下では磁束密度を高くする効果は薄
く、一方0.20%超では脆性が大きくなり、冷間圧延
が困難である。
【0036】なお、製品中のPの量は本発明では重要で
ある。Pは鉄に固溶し、また、一部析出して存在する
が、製品中の鉄損低減に極めて有効であり、最低0.0
3%存在しないとその効果は発揮できない。一方、0.
15%超も存在すると製品の脆化をもたらし、例えば製
品の加工性、打抜き性を損ない、使用に耐えない。この
他の元素は本発明では従来の鋼に較べて特に特徴的では
ないが以下に制約することが好ましい。
【0037】Cは鋼溶製中に十分低くするかまたは一次
焼鈍の脱炭焼鈍時に十分低くする必要があり、二次再結
晶焼鈍開始時には0.03%以下とすることが好まし
い。Mnは0.5%以下ならばSと反応してMnSイン
ヒビターを形成する。0.15%以下だとさらに磁束密
度の向上に好ましい。Oは鋼溶製後に0.05%以下で
あればAl2 3 を多量に作りすぎず清浄度的に好まし
い。
【0038】Snは本発明ではPと共存する場合に特に
鉄損を下げて有効である。その場合、0.02%未満で
は鉄損低減の効果はなく、一方0.20%超では窒化が
十分できず、インヒビターが弱くなり、一また一次被膜
も十分できず特性は劣化する。次に化学成分以外の本発
明の製造法について述べる。
【0039】鋼を転炉または電気炉等で出鋼し、必要に
応じて精錬工程を加えて成分調整を行った溶鋼を連続鋳
造法、造塊分塊圧延法、あるいは熱延工程省略のための
薄スラブ連続鋳造法等により、厚さ30〜400mm
(薄スラブ連続鋳造法では50mm以下)のスラブとす
る。ここで厚さ30mmは生産性の下限であり、400
mmは中心偏析でAl2 3 等の分布が異常になること
を防ぐための上限である。また薄スラブ連続鋳造法での
厚さ50mmは冷速が小さくなって粗大粒が出てくるこ
とを抑制するための上限である。
【0040】該スラブをガス加熱、電気利用加熱等によ
り1000〜1400℃に再加熱を行い、引き続き熱間
圧延を行って厚さ10mm以下のホットコイルとする。
ここで1000℃はAlN溶解の下限であり、1400
℃は表面肌あれと材質劣化防止のための上限である。ま
た10mmは適正な析出物を生成する冷速を得るための
上限である。なお、薄スラブ連続鋳造法では直接コイル
状にすることも可能であり、そのためには10mm以下
が好ましい。
【0041】このようにして作ったホットコイルを再び
800〜1250℃で焼鈍し、磁性向上をはかることも
しばしば行われる。ここで800℃はAlN再溶解の下
限であり、1250℃はAlN粗粒化防止のための上限
である。かかる処理工程の後、ホットコイルを直接また
はバッチ的に酸洗後冷間圧延を行う。冷間圧延は圧下率
60〜95%で行うが、60%は本発明で再結晶可能な
限界であり、好ましくは70%以上が一次焼鈍で{11
1}<112>方位粒を多くして、二次再結晶焼鈍時の
GOSS方位粒の生成を促進させるための下限であり、
一方95%超では二次再結晶焼鈍で首振りGOSS粒と
称するGOSS方位粒が板面内回転した磁気特性に好ま
しくない粒が生成される。
【0042】以上はいわゆる一回冷延法で製造する場合
だが、二回冷延法と称して冷延−焼鈍−冷延を行う場合
は、一回目の圧下率は10〜80%、二回目の圧下率は
50〜95%となる。ここで10%は再結晶に必要な最
低圧下率、80%と95%はそれぞれ二次再結晶時に適
正なGOSS方位粒を生成させるための上限圧下率、ま
た50%は二回冷延法においては一次焼鈍時の{11
1}<112>方位粒を適正に残すための下限圧下率で
ある。
【0043】なお、通称パス間エージングと称し、冷間
圧延の途中で鋼板を適当な方法で100〜400℃の範
囲で加熱することも磁気特性の向上に有効である。10
0℃未満ではエージングの効果がなく、一方400℃超
では転位が回復してしまう。次に一次再結晶焼鈍を行
い、次に溝形成を行い、さらにパウダーを塗布し、二次
再結晶焼鈍を行う。
【0044】このようにして作られた溝が仕上焼鈍後に
残り、フォルステライトを主成分とする一次被膜を平均
0.3μm以下と極めて少なくする方法との組み合わせ
で従来にみられない低鉄損が得られるわけである。被膜
厚0.3μmの上限限定理由は前述の通りであり、これ
よりも厚いと、本発明の中間工程で溝をつける方法では
十分な低鉄損が得られない。
【0045】溝の形成方法は前述の通りであるが、溝の
最大部の平均の深さが2μm未満では磁区細分化効果が
ない。一方、50μm超では深すぎて磁束の円滑な流れ
を妨げてかえって鉄損も悪くなる。好ましくは5〜30
μmが良い。溝は規則的に配列されている方が良い。こ
れは、磁区細分化が規則的に行われるからである。通常
鋼板長手方向に対し45度から直角までの角度を有する
ほぼ一定のピッチで刻まれることが好ましい。45度未
満では磁区細分化の方向が磁性に好ましい結晶学的方位
と合わないからである。
【0046】また、溝のピッチは2〜20mmが好まし
い。2mm未満では磁区細分化が進みすぎて90°磁区
が増え、鉄損も磁歪も悪い。一方、20mm超では磁区
細分化の効果がでない。なお、二回冷間圧延法において
は一回目、二回目のいずれの焼鈍後ででも溝を形成する
ことは可能であり、さらにその両者で分割して行うこと
も可能である。もちろん二回目の焼鈍後の方が溝の効果
は出やすい。一次再結晶焼鈍中または引き続いて直後に
必要に応じて窒化を行う。窒化は溝形成前でも後でもよ
い。
【0047】なお、一回冷延法でも二回冷延法でも一次
焼鈍を行うわけであるが、この焼鈍で脱炭を行うことは
有効である。前述のようにCは二次再結晶粒の成長に好
ましくないばかりか、不純物として残ると鉄損の劣化を
招く。なお、鋼の溶製時にCを下げておくと一次再結晶
焼鈍の脱炭工程が短縮化されるばかりか{111}<1
12>方位粒も増やすので好ましい。なお、この脱炭焼
鈍工程で適正な露点を設定することで、後の一次被膜生
成に必要な酸化層の確保が行われる。
【0048】一次焼鈍温度は700〜950℃が好まし
い。ここで700℃は再結晶可能な下限温度であり、9
50℃は一次再結晶の粗大粒の発生を抑制する上限温度
である。さらに、AlNやSi3 4 インヒビターのN
をこの一次焼鈍時またはその後に窒化法等で強制添加す
る本発明においては、上記の一次焼鈍中またはその直後
に引き続きアンモニア(NH3 )等で窒化法により窒化
することがしばしば行われる。この場合の窒化法の温度
は600〜950℃が好ましい。ここで600℃は窒化
反応を起こす下限であり、一方950℃は粗大粒発生を
抑えるための上限である。
【0049】本発明においては窒化は一次再結晶焼鈍後
に行うのが好ましいが、工業的には同じ炉内の後面に仕
切りを設けて雰囲気を必要に応じて多少変えて、NH3
ガスを流すか、近接した設備で行うため一次再結晶と平
行して窒化されることもしばしばある。その際前述のよ
うにN2 分圧が低い方が窒化量は大きく、窒素と水素の
分圧比PN2/PH2は0.5以下が好ましい。
【0050】一次焼鈍の昇温開始から冷却終了までの
間、また、上記窒化法を行う場合は一次再結晶後に鋼板
表面に最大部の深さの平均が2〜50μmの溝を機械
的、化学的、光学的、熱的、電気的その他のエネルギー
照射的な方法で規則的な配列で付与せしめる。溝の形成
方法は前述の通りであるが、溝の最大部の平均の深さが
2μm未満では磁区細分化効果がない。一方、50μm
超では深すぎて磁束の円滑な流れを妨げてかえって鉄損
も悪くなる。好ましくは5〜30μmがよい。
【0051】溝は規則的に配列されている方がよい。こ
れは、磁区細分化が規則的に行われるからである。通常
鋼板長手方向に対し45度から直角までの角度を有する
ほぼ一定のピッチで刻まれることが好ましい。45度未
満では磁区細分化の方向が磁性に好ましい結晶学的方位
と合わないからである。また、溝のピッチは2〜20m
mが好ましい。2mm未満では磁区細分化が進みすぎて
90°磁区が増え、鉄損も磁歪も悪い。一方、20mm
超では磁区細分化の効果がでない。
【0052】一次焼鈍あるいは必要に応じて上記窒化法
を行い、その後、酸化マグネシウム(MgOを主成分と
する。以下MgOと呼ぶ)パウダーを水または水を主成
分とする水溶液に溶かし、スラリー状にして鋼板に塗布
する。その際、後の二次再結晶焼鈍時にMgOパウダー
の溶融を容易にさせ、フォルステライト生成反応を促進
させる目的で、適当な化合物を微量添加することも行わ
れる。
【0053】TiO2 を添加する場合は1〜15%が好
ましいが、ここで1%はフォルステライト反応促進効果
を発揮する下限であり、15%超ではMgOが少なくな
ってかえってフォルステライト反応が進まない。Sb2
(SO4 3 等のアンチモン系の化合物はMgOを比較
的低温で溶融させるのに効果があり、添加を行う場合は
0.05〜5%が好ましい。ここで、0.05%は上記
低温溶融を起こす下限であり、一方5%を超える場合は
多すぎてMgOのフォルステライトの本来の反応を不活
性化する。
【0054】Na2 4 7 等のボロン系の化合物およ
びそれと同様の作用を持つストロンチウム・バリウム
系、炭・窒化物系、硫化物系、塩化物系の化合物はアン
チモン系化合物よりは比較的高温でMgOを溶融させる
のに効果があり、添加する場合は0.05〜5%が好ま
しい。ここで、0.05%は上記の効果を発揮する下限
であり、一方5%超ではやはりMgOのフォルステライ
トの本来の反応を不活性化するので好ましくない。なお
これらの化合物は互いに複合して添加することも可能で
ある。
【0055】なお、ここで添加する化合物の%はMgO
の重量を100%としたときの重量比を%で示してあ
る。本発明においては、さらにMgOパウダーに前述の
塩化物あるいは硫化物の1種類以上を添加すると、仕上
焼鈍後の一次被膜厚みを平均0.3μm以下にでき、か
つ十分な二次再結晶方位が得られるが、これらの中でも
とりわけ塩化カルシウム(CaCl2 )、硫化カリウム
(K2 S)は有効である。これらは最低0.5%(Mg
O重量を100としたときの重量割合)以上あると効果
的である。20%超ではかえって二被膜形成過程が不安
定となる。
【0056】二次再結晶焼鈍は最高到達温度を1100
〜1300℃で行うのが好ましい。1100℃は二次再
結晶が行われる下限の温度であり、一方1300℃超で
は結晶粒が粗大化し過ぎて鉄損の劣化を招く。この二次
再結晶焼鈍で重要な点は以下の通りである。本発明では
MgOパウダーへ添加する特殊添加物の効果でフォルス
テライトを主成分とする一次被膜が極端に少なくなる
か、あるいは一次被膜がなくなるので、焼鈍中に二次再
結晶に必要な窒素系のインヒビター(AlN、Si3
4 等)も仕上焼鈍中に逃げ易い傾向があり、このため仕
上焼鈍の雰囲気ガス中の窒素分圧(PN2)を30%以上
とすることでこれを防ぐことができ、安定した二次再結
晶を得ることが可能である。さらに二次再結晶焼鈍の昇
温速度があまり大きすぎると、十分な二次再結晶を起こ
す前にインヒビターが逃げ易いので、むしろ昇温速度を
毎時30℃以下に抑えた方が安定した磁気特性が得られ
る。なお、前述のように、この二次再結晶焼鈍中の比較
的前段階で雰囲気等より窒素を追加添加する窒化法が行
われることもある。
【0057】以上が本発明の方向性珪素鋼板の製造法で
の重要な部分であるが、工業的にはさらに絶縁特性や磁
気特性を向上させる目的で二次再結晶後の鋼板に有機質
や無機質による絶縁被膜を有する高張力被膜(コーティ
ングやゾルゲール法)を熱処理等と組み合わせて塗布す
ることがとりわけ重要である。この理由は、本発明では
フォルステライト等の高張力特性を有する一次被膜が極
端に少ないか、あるいは一次被膜がないために、それを
補完すべく高張力特性を有する絶縁被膜を塗布すること
が効果的であるからである。
【0058】
【実施例】表4に示す化学成分の鋼を転炉で溶製し、表
5(表4のつづき−1)〜表7(表4のつづき−3)に
示す条件で製造した。熱延板焼鈍を一部行ったが、その
条件は1120℃×30秒間である。また冷間圧延時の
パス間エージングをB以外は行ったが、その条件は25
0℃である。
【0059】なお、ここで本発明にとりわけ重要な一次
再結晶焼鈍に引き続く窒化は、同一炉内に仕切りを設け
た炉内部分で同一ガス組成で雰囲気をドライにし、NH
3 ガスを一定量流して行ったものである。かかる一次焼
鈍後の窒化量(窒素量)を同表に示す。さらにこの鋼板
にパウダーを塗布したが、パウダーを水に溶解し、スラ
リー状にして塗布後、350℃で乾燥した。ここで、%
はMgOの重量を100%としたときの重量比率であ
る。しかる後に、800℃〜最高到達温度の平均昇温速
度を種々変えて二次再結晶焼鈍を行った。最高到達温度
は1200℃である。さらにリン酸系の高張力の絶縁被
膜(二次被膜)を加熱塗布した後、板取りし、歪取焼鈍
を850℃×4時間(N2 90−H2 10、Dry)行
い、磁気測定試験を行った。表7にその結果を示す。な
お、溝の最大深さ、ピッチおよび圧延方向との角度はい
ずれも二次再結晶焼鈍後の製品での測定である。
【0060】磁気測定は60×300mmの単板のSS
T試験法で測定し、B8 (800A/mの磁束密度、単
位はテスラ)およびW17/50 (50Hzで1.7テスラ
のときの鉄損、単位はワット/kg)、W13/50 (50
Hzで1.3テスラのときの鉄損)を測定した。表7に
示すように、本発明範囲のものは鉄損が十分低く、本発
明の目的範囲に入っていることがわかる。
【0061】
【表4】
【0062】
【表5】
【0063】
【表6】
【0064】
【表7】
【0065】
【発明の効果】本発明によれば、 超低鉄損の一方向性
珪素鋼板を得ることができる。
【図面の簡単な説明】
【図1】一次被膜の平均厚みと鉄損の関係を示す図であ
る。
【図2】磁区制御後、二次再結晶焼鈍を施した方向性珪
素鋼板の金属顕微鏡組織写真である。
【図3】0.06%P−3%Si鋼製品の諸特牲に及ぼ
すSn%の影響を示す図である。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩永 功 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内

Claims (9)

    【特許請求の範囲】
  1. 【請求項1】 Si:1〜7%、P:0.045%超〜
    0.20%を含む鋼を溶製し、熱間圧延、冷間圧延、一
    次再結晶焼鈍および二次再結晶焼鈍を基本工程とする方
    向性珪素鋼板の製造において、一次再結晶焼鈍後の鋼板
    表面に最大部の深さの平均が2〜50μmの溝を鋼板の
    長手方向から45度〜90度の方向に間隔を開けて付与
    し、次いで鋼板表面に塩化物および硫化物の少なくとも
    1種類以上を含むMgO主体の物質を塗布した後、二次
    再結晶焼鈍を行うことを特徴とする磁気鉄損の優れた高
    磁束密度方向性珪素鋼板の製造法。
  2. 【請求項2】 Si:1〜7%、P:0.045%超〜
    0.20%、Sn:0.02〜0.20%を含む鋼を溶
    製し、熱間圧延、冷間圧延、一次再結晶焼鈍および二次
    再結晶焼鈍を基本工程とする方向性珪素鋼板の製造にお
    いて、一次再結晶焼鈍後の鋼板表面に最大部の深さの平
    均が2〜50μmの溝を機械的、化学的、光学的、熱
    的、電気的その他のエネルギー照射的な方法で規則的な
    配列で付与し、次いで鋼板表面に塩化物および硫化物の
    少なくとも1種類以上を含むMgO主体の物質を塗布し
    た後、二次再結晶焼鈍を行うことを特徴とする磁気鉄損
    の優れた高磁束密度方向性珪素鋼板の製造法。
  3. 【請求項3】 一次再結晶焼鈍後に付与する溝の間隔
    (ピッチ)を2〜20mmの間とすることを特徴とする
    請求項1または2記載の磁気鉄損の優れた高磁束密度方
    向性珪素鋼板の製造法。
  4. 【請求項4】 一次再結晶焼鈍時または後に窒化を行う
    ことを特徴とする請求項1〜3のいずれか1項に記載の
    磁気鉄損の優れた高磁束密度方向性珪素鋼板の製造法。
  5. 【請求項5】 塩化物として塩化カルシウム、硫化物と
    して硫化カリウムを添加することを特徴とする請求項1
    〜4のいずれか1項に記載の磁気鉄損の優れた高磁束密
    度方向性珪素鋼板の製造法。
  6. 【請求項6】 二次再結晶焼鈍時の昇温速度を毎時30
    ℃以下、また雰囲気ガス中の窒素分圧を30%以上とす
    ることを特徴とする請求項1〜5のいずれか1項に記載
    の磁気鉄損の優れた高磁束密度方向性珪素鋼板の製造
    法。
  7. 【請求項7】 Si:1〜7%、P:0.03〜0.1
    5%を含み、鋼板表面に最大部の深さの平均が2〜50
    μmの溝を、鋼板の圧延の長手方向から、45〜90度
    の方向に有し、平均二次再結晶断面粒径D(mm)の2
    0%以下の断面粒径を有する微細結晶粒を総面積比率で
    15%以下を有し、かつ溝ピッチP0(mm)に対して
    0 /Dが0.02〜2であり、かつフォルステライト
    を主成分とする一次被膜の平均の厚みが0.3μm以下
    であることを特徴とする磁気鉄損の優れた高磁束密度方
    向性珪素鋼板。
  8. 【請求項8】 Si:1〜7%、P:0.03〜0.1
    5%、Sn:0.02〜0.2%を含み、鋼板表面に最
    大部の深さの平均が2〜50μmの溝を、鋼板の圧延の
    長手方向から、45〜90度の方向に有し、平均二次再
    結晶断面粒径D(mm)の20%以下の断面粒径を有す
    る微細結晶粒を総面積比率で15%以下を有し、かつ溝
    ピッチP0(mm)に対してP0 /Dが0.02〜2で
    あり、かつフォルステライトを主成分とする一次被膜の
    平均の厚みが0.3μm以下であることを特徴とする磁
    気鉄損の優れた高磁束密度方向性珪素鋼板。
  9. 【請求項9】 溝底部の一部にフォルステライトを主成
    分とする固形物質を有することを特徴とする請求項7ま
    たは8記載の磁気鉄損の優れた高磁束密度方向性珪素鋼
    板。
JP1205293A 1993-01-27 1993-01-27 磁気鉄損の優れた高磁束密度方向性珪素鋼板およびその製造法 Withdrawn JPH06220541A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1205293A JPH06220541A (ja) 1993-01-27 1993-01-27 磁気鉄損の優れた高磁束密度方向性珪素鋼板およびその製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1205293A JPH06220541A (ja) 1993-01-27 1993-01-27 磁気鉄損の優れた高磁束密度方向性珪素鋼板およびその製造法

Publications (1)

Publication Number Publication Date
JPH06220541A true JPH06220541A (ja) 1994-08-09

Family

ID=11794835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1205293A Withdrawn JPH06220541A (ja) 1993-01-27 1993-01-27 磁気鉄損の優れた高磁束密度方向性珪素鋼板およびその製造法

Country Status (1)

Country Link
JP (1) JPH06220541A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126980A (ja) * 2010-12-17 2012-07-05 Jfe Steel Corp 電磁鋼板およびその製造方法
WO2019151399A1 (ja) * 2018-01-31 2019-08-08 Jfeスチール株式会社 方向性電磁鋼板およびこれを用いてなる変圧器の巻鉄心並びに巻鉄心の製造方法
WO2019245044A1 (ja) * 2018-06-21 2019-12-26 日本製鉄株式会社 磁気特性が優れた方向性電磁鋼板
CN111133118A (zh) * 2017-09-28 2020-05-08 杰富意钢铁株式会社 方向性电磁钢板

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126980A (ja) * 2010-12-17 2012-07-05 Jfe Steel Corp 電磁鋼板およびその製造方法
CN111133118A (zh) * 2017-09-28 2020-05-08 杰富意钢铁株式会社 方向性电磁钢板
US11198916B2 (en) 2017-09-28 2021-12-14 Jfe Steel Corporation Grain-oriented electrical steel sheet
WO2019151399A1 (ja) * 2018-01-31 2019-08-08 Jfeスチール株式会社 方向性電磁鋼板およびこれを用いてなる変圧器の巻鉄心並びに巻鉄心の製造方法
JPWO2019151399A1 (ja) * 2018-01-31 2020-12-03 Jfeスチール株式会社 方向性電磁鋼板およびこれを用いてなる変圧器の巻鉄心並びに巻鉄心の製造方法
RU2741403C1 (ru) * 2018-01-31 2021-01-25 ДжФЕ СТИЛ КОРПОРЕЙШН Текстурированный лист из электротехнической стали, ленточный сердечник трансформатора из текстурированного листа из электротехнической стали и способ изготовления ленточного сердечника
US11984249B2 (en) 2018-01-31 2024-05-14 Jfe Steel Corporation Grain-oriented electrical steel sheet, wound transformer core using the same, and method for producing wound core
WO2019245044A1 (ja) * 2018-06-21 2019-12-26 日本製鉄株式会社 磁気特性が優れた方向性電磁鋼板
JPWO2019245044A1 (ja) * 2018-06-21 2021-06-17 日本製鉄株式会社 磁気特性が優れた方向性電磁鋼板

Similar Documents

Publication Publication Date Title
US20010030001A1 (en) Method of making grain-oriented magnetic steel sheet having low iron loss
JP2019501282A (ja) 方向性電磁鋼板及びその製造方法
JP2014508858A (ja) 低鉄損高磁束密度方向性電気鋼板及びその製造方法
CN110100023B (zh) 取向电工钢板及其制造方法
JP3357611B2 (ja) 鉄損の極めて低い高磁束密度方向性電磁鋼板の製造方法
KR960010595B1 (ko) 1차 막이 최소화되고 자성이 뛰어나며 운용성이 우수한 배향 전기 강판의 제조방법
JP4206665B2 (ja) 磁気特性および被膜特性の優れた方向性電磁鋼板の製造方法
JP2004332071A (ja) 高磁束密度方向性電磁鋼板の製造方法
JPH06220541A (ja) 磁気鉄損の優れた高磁束密度方向性珪素鋼板およびその製造法
JP4258185B2 (ja) 方向性電磁鋼板およびその製造方法
CN113195770B (zh) 取向电工钢板及其制造方法
JP2014208895A (ja) 方向性電磁鋼板の製造方法
JPH06100937A (ja) グラス被膜を有しない極めて鉄損の優れた珪素鋼板の製造法
JP2014208907A (ja) 方向性電磁鋼板の製造方法
JPH06136552A (ja) 磁気鉄損の優れた方向性電磁鋼板およびその製造法
JPH06220540A (ja) 磁区制御後の磁気特性に優れた高磁束密度方向性珪素鋼板およびその製造方法
JPH06100997A (ja) グラス被膜を有しない磁気特性の優れた珪素鋼板及びその製造法
JPH06158167A (ja) 高磁束密度方向性電磁鋼板およびその製造法
JPH06188116A (ja) 極めて鉄損の優れた高磁束密度方向性珪素鋼板およびその製造法
JP7221480B6 (ja) 方向性電磁鋼板およびその製造方法
JPH0610051A (ja) 鉄損の優れた珪素鋼板及びその製造法
JPH06136446A (ja) グラス被膜を有しない鉄損の優れた方向性電磁鋼板の製造法
JPH08199239A (ja) 高磁束密度方向性電磁鋼板の製造法
JPH05320767A (ja) 極めて鉄損の優れた珪素鋼板及びその製造方法
JPH06220542A (ja) 鉄損の優れた高磁束密度珪素鋼板の製造法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000404