WO2019059319A1 - 樹脂基板積層体及び電子デバイスの製造方法 - Google Patents

樹脂基板積層体及び電子デバイスの製造方法 Download PDF

Info

Publication number
WO2019059319A1
WO2019059319A1 PCT/JP2018/034926 JP2018034926W WO2019059319A1 WO 2019059319 A1 WO2019059319 A1 WO 2019059319A1 JP 2018034926 W JP2018034926 W JP 2018034926W WO 2019059319 A1 WO2019059319 A1 WO 2019059319A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin substrate
substrate
peeling
release layer
layer
Prior art date
Application number
PCT/JP2018/034926
Other languages
English (en)
French (fr)
Inventor
浩幸 菅原
Original Assignee
ジオマテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジオマテック株式会社 filed Critical ジオマテック株式会社
Priority to CN201880013729.9A priority Critical patent/CN110326086B/zh
Priority to KR1020197024557A priority patent/KR102065901B1/ko
Priority to US16/492,771 priority patent/US20200075861A1/en
Publication of WO2019059319A1 publication Critical patent/WO2019059319A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76846Layer combinations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/584Non-reactive treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76865Selective removal of parts of the layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2379/00Other polymers having nitrogen, with or without oxygen or carbon only, in the main chain
    • B32B2379/08Polyimides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/282Carbides, silicides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/13613Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit the semiconductor element being formed on a first substrate and thereafter transferred to the final cell substrate

Definitions

  • the present invention relates to a resin substrate laminate and a method of manufacturing an electronic device using the resin substrate laminate.
  • a substrate laminate in which a peeling layer composed of an inorganic substance or an organic substance is formed on a support substrate, and a glass substrate or a resin substrate is peelably laminated on the peeling layer.
  • an electronic component is formed on a glass substrate or a resin substrate of a substrate laminate, and then the glass substrate or the resin substrate with the electronic component is peeled off from the peeling layer to manufacture an electronic device.
  • Patent Document 1 physically uses a glass laminate including a support substrate, a support substrate with an inorganic layer provided with an inorganic layer disposed on the support substrate, and a glass substrate laminated in a peelable manner on the inorganic layer. A method of manufacturing an electronic device for peeling a glass substrate is described.
  • Patent Document 2 forms a resin substrate on a fixed substrate via an amorphous silicon film, forms a TFT element on the resin substrate, and then fixes the amorphous silicon film by irradiating laser light.
  • a method of manufacturing a display device is disclosed in which a resin substrate is peeled off from a substrate.
  • Patent Document 3 describes a release layer formed using a release layer-forming composition containing a polyamic acid in which an anchor group is introduced at the polymer chain end and an organic solvent.
  • Patent No. 5991373 gazette Patent No. 5147794 gazette International publication 2016/158990 gazette
  • the conventional peeling layer needs to be irradiated with high energy ultraviolet rays for a long time when peeling the substrate on the peeling layer.
  • the resin substrate when irradiated with high energy ultraviolet rays, the resin substrate may be denatured by heat.
  • the present invention has been made in view of the above problems, and an object of the present invention is to make it possible to easily peel a resin substrate from a peeling layer by light irradiation treatment for a short time using a low energy laser beam. It is an object of the present invention to provide a resin substrate laminate and an electronic device manufacturing method using the resin substrate laminate.
  • the resin substrate can be easily peeled off from the peeling layer using a low energy laser beam and light irradiation treatment for a short time, so that productivity is improved when used for manufacturing an electronic device and the manufacturing cost It is possible to reduce
  • the composition of the surface of the peeling layer is controlled to an appropriate range, it is possible to improve the peeling property by laser light irradiation and to suppress the damage to the resin substrate by the laser light and the deterioration of the peeling layer. Become.
  • the release layer is preferably in an amorphous state.
  • the release layer when the release layer is in an amorphous (amorphous) state, the release layer can be formed by a simple method such as sputtering, and the release property is improved.
  • the release layer be made of a material that allows the resin substrate to be released from the release layer by irradiating a laser beam having a wavelength of 355 nm.
  • the peeling layer has an absorption band near a wavelength of 355 nm, and a general YAG laser can be used.
  • the release layer is made of a material that allows the resin substrate to be released from the release layer by irradiating a laser beam with a wavelength of 355 nm at an intensity of 60 to 80 mJ / cm 2 .
  • the peeling layer has an absorption band at a wavelength of about 355 nm, and a general YAG laser can be used, and peeling can be appropriately caused even with low energy laser light irradiation. Is possible.
  • the object is to laminate a release layer on a support substrate using a target having a Si: C ratio of 10:90 to 90:10, and A step of laminating a resin substrate on the surface opposite to the support substrate to prepare a resin substrate laminate, and a member forming step of forming a member for an electronic device on the surface of the resin substrate of the resin substrate laminate It solves by performing the peeling process of irradiating a laser beam to the said peeling layer, and peeling the said resin substrate from the said peeling layer.
  • the resin substrate can be easily peeled off from the peeling layer by light irradiation treatment using a low energy laser beam for a short time, productivity at the time of manufacturing the electronic device is improved, and the manufacturing cost is also improved. It is possible to reduce
  • the ratio of Si: C in the target is preferably 30:70 to 90:10.
  • the release layer is preferably in an amorphous state.
  • the release layer can be formed by a simple method such as sputtering, and the release property is improved.
  • the peeling layer has an absorption band near a wavelength of 355 nm, and a general YAG laser can be used. At this time, in the peeling step, it is preferable to irradiate a laser beam with a wavelength of 355 nm at an intensity of 60 to 80 mJ / cm 2. As described above, the peeling layer has an absorption band at a wavelength of about 355 nm, and a general YAG laser can be used, and peeling can be appropriately caused even with low energy laser light irradiation. Is possible.
  • the resin substrate laminate of the present invention can easily peel the resin substrate from the peeling layer by light irradiation treatment using a low energy laser beam for a short time, so that the resin substrate is not damaged. Peeling can be performed. Furthermore, the resin substrate laminate of the present invention makes it possible to reuse the resin substrate laminate by laminating the resin substrate again after peeling the resin substrate.
  • the laminated body with members for electronic devices which concerns on one Embodiment of this invention it is a schematic cross section which shows a mode that an electronic device is peeled from the support substrate with peeling layer.
  • 7 is a graph showing the X-ray diffraction patterns of the resin substrate laminates of Examples 3-1 to 3-5 and Reference Examples 3-1 and 3-2.
  • 21 is a graph showing the measurement results of transmittance at 300 to 400 nm of the resin substrate laminates of Examples 3-1 to 3-5 and Reference Examples 3-1 and 3-2.
  • 13 is a graph showing the measurement results of reflectance at 300 to 400 nm of the resin substrate laminates of Examples 3-1 to 3-5 and Reference Examples 3-1 and 3-2.
  • 21 is a graph showing the measurement results of absorptivity at 300 to 400 nm of the resin substrate laminates of Examples 3-1 to 3-5 and Reference Examples 3-1 and 3-2.
  • 13 is a graph showing the absorptivity of only the peeling layer at 300 to 400 nm of the resin substrate laminates of Examples 3-1 to 3-5 and Reference Examples 3-1 and 3-2.
  • the resin substrate laminate S of the present embodiment has a support substrate 4 with a release layer including the support substrate 1 and the release layer 2, and a resin substrate 3, as shown in a schematic cross-sectional view in FIG. 1.
  • the release layer surface 2a (the surface opposite to the support substrate 1 side) of the release layer 2 of the release substrate with release layer 4 and the first surface 3a of the resin substrate 3;
  • the support substrate 4 with a peeling layer and the resin substrate 3 are laminated in a peelable manner, with In other words, one surface of the release layer 2 is fixed to the support substrate 1, the other surface of the release layer 2 is in contact with the first surface 3 a of the resin substrate 3, and the interface between the release layer 2 and the resin substrate 3 is It is in close contact so as to be removable. That is, the peeling layer 2 has easy peelability to the first surface 3 a of the resin substrate 3.
  • the configuration of the resin substrate laminate S will be described in detail.
  • the release layer-provided support substrate 4 includes a support substrate 1 and a release layer 2 laminated on the surface thereof.
  • the peeling layer 2 is disposed on the outermost side of the supporting layer 4 with a peeling layer so as to be in close contact with the resin substrate 3 described later in a peelable manner. Next, the support substrate 1 and the peeling layer 2 will be described.
  • the support substrate 1 is a substrate having the first surface 1 a and the second surface 1 b and supporting the resin substrate 3 together with the release layer 2 disposed on the first surface 1 a.
  • the laser light is irradiated from the back surface of the support substrate 1 in the peeling process described later, so long as the laser light used in the peeling process is transmitted, for example, a glass plate, a plastic plate, etc. Although it is used, it is not limited to this. It is preferable to use a glass plate as the support substrate 1 because it is easy to handle and inexpensive.
  • quartz glass high silicate glass (96% silica), soda lime glass, lead glass, aluminoborosilicate glass, borosilicate glass (Pyrex (registered trademark)), borosilicate glass (alkali-free), Borosilicate glass (micro sheet), aluminosilicate glass and the like are included.
  • Corning (registered trademark) 7059” or “Corning (registered trademark) 1737” manufactured by Corning, which is a glass for liquid crystal, “EAGLE”, “AN 100” manufactured by Asahi Glass Co., Ltd., “OA 10” manufactured by Nippon Electric Glass Co., “AF 32” manufactured by SCHOTT, “NA 32 SG” manufactured by Avanstraat Co., etc. are preferable.
  • the flat portion of the support substrate 1 be sufficiently flat.
  • the PV value of the surface roughness is 50 nm or less, more preferably 20 nm or less, and still more preferably 5 nm or less. If the value of the surface roughness is large, the adhesion strength between the release layer 2 and the support substrate 1 may be insufficient.
  • the thickness of the support substrate 1 is selected based on the thickness of the resin substrate 3 to be described later, the thickness of the resin substrate 3 and the final thickness of the resin substrate laminate S.
  • the thickness of the support substrate 1 is 10 mm or less in order to provide a property of appropriately bending without cracking when peeling after forming a member for an electronic device.
  • 3 mm or less is more preferable, and 1.3 mm or less is more preferable.
  • the lower limit of the thickness is not particularly limited, but is preferably 0.07 mm or more, more preferably 0.15 mm or more, and still more preferably 0.3 mm or more from the viewpoint of handleability.
  • the area of the supporting substrate 1 is preferably a large area from the viewpoint of the production efficiency and cost of the peeling substrate with a peeling layer 4, the resin substrate laminate S, and the flexible electronic device. Specifically, it is preferably 1000 cm 2 or more, more preferably 1500 cm 2 or more, more preferably 2000 cm 2 or more.
  • the value of y is less than 0.15, generation of ash tends to occur at the time of laser light irradiation, but if the value of y is 0.15 or more, generation of ash is suppressed and the removability is improved. Excellent.
  • the release layer surface 2 a of the release layer 2 refers to the outermost surface of the release layer 2 (the outermost surface on the opposite side to the support substrate 1). More specifically, the release layer surface 2a of the release layer 2 refers to a region up to a distance of 10% from the outermost surface toward the support substrate 1 with the thickness of the release layer 2 being 100%.
  • compositions other than peeling layer surface 2a may differ from the composition of peeling layer surface 2a, and may be the same.
  • a dopant may be added.
  • N nitrogen
  • B boron
  • Al aluminum
  • P phosphorus
  • the absorptivity of the peeling layer 2 in the ultraviolet light region is preferably 50% or more, and more preferably 60% or more.
  • the lower limit of the wavelength of the electromagnetic wave corresponding to visible light is about 360 to 400 nm and the upper limit is about 760 to 830 nm, but in this embodiment, the ultraviolet light region is 400 nm or less, more detailed
  • the term “visible light range” refers to a wavelength range longer than 400 nm and 700 nm or less.
  • the peeling layer 2 When laser light in the ultraviolet region (YAG laser: wavelength 355 nm) is used in the peeling step, the peeling layer 2 sufficiently absorbs the laser light if the absorptivity in the wavelength region of 340 nm or more and 400 nm or less is 50% or more, It becomes possible to peel the resin substrate appropriately.
  • YAG laser wavelength 355 nm
  • the thickness of the peeling layer 2 is preferably about 1 nm to 20 ⁇ m, more preferably about 10 nm to 2 ⁇ m, and still more preferably about 40 nm to 1 ⁇ m.
  • the thickness of the peeling layer 2 is preferably about 1 nm to 20 ⁇ m, more preferably about 10 nm to 2 ⁇ m, and still more preferably about 40 nm to 1 ⁇ m.
  • the peeling layer 2 is illustrated as a single layer in FIG. 1, it is also possible to laminate two or more layers.
  • the release layer 2 is generally laminated over the entire surface of the first surface 1a of the support substrate 1 as shown in FIG. 1, but if it has appropriate releasability, the release layer 2 is on the first surface 1a of the support substrate 1 It may be laminated to a part of For example, the release layer 2 may be provided on the first surface 1 a of the support substrate 1 in an island shape or a stripe shape.
  • the resin constituting the resin substrate 3 may be either a thermoplastic resin or a thermosetting resin, for example, polyethylene (high density, medium density or low density), polypropylene (isotactic type or syndiotactic type) , Polyolefins such as polybutene, ethylene-prepylene copolymer, ethylene-vinyl acetate copolymer (EVA), ethylene-propylene-butene copolymer, cyclic polyolefin, modified polyolefin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide , Polyimides, polyamideimides, polyetherimides, aromatic polyimides such as fluorinated polyimides, polyimide-based resins
  • the resin substrate 3 is preferably a film using a polymer having a heat resistance of 100 ° C. or more, that is, a film using a so-called engineering plastic.
  • the film using the engineering plastic is, for example, preferably an aromatic polyester film, and further, mentions a super engineering plastic film such as an aromatic polyamide film, a polyamideimide film, a polyimide film, etc. whose heat resistance temperature exceeds 150 ° C. Can.
  • heat resistance means glass transition temperature or heat deformation temperature.
  • the thickness of the resin substrate 3 is not particularly limited, but the thickness of the polymer film is preferably 3 ⁇ m or more, more preferably 11 ⁇ m or more, still more preferably 24 ⁇ m or more, and still more preferably 45 ⁇ m or more.
  • the upper limit of the thickness of the polymer film is not particularly limited, but is preferably 250 ⁇ m or less, more preferably 150 ⁇ m or less, and still more preferably 90 ⁇ m or less from the viewpoint of thinning and flexibility of the final electronic device. It is.
  • the resin substrate 3 may use a laminate in which two or more resin layers are laminated.
  • the resin substrate laminate S of the present embodiment has the peeling substrate with the peeling layer, with the peeling layer surface 2a of the peeling substrate with the peeling layer 4 and the first surface 3a of the resin substrate 3 as the laminating surface. It is a laminated body formed by laminating the resin substrate 3 in a peelable manner. That is, it is a laminate in which the peeling layer 2 is interposed between the support substrate 1 and the resin substrate 3.
  • the resin substrate laminate S having such a configuration is used in the manufacture of an electronic device as described later. Specifically, as shown in FIG. 2, in the resin substrate laminate S, an electronic device member P is formed on the surface of the second surface 3 b. Thereafter, as shown in FIG.
  • the support substrate 4 with a release layer is peeled off at the interface with the resin substrate 3, and the support substrate 4 with a release layer is not a member constituting an electronic device.
  • a new resin substrate 3 is stacked on the release layer-provided support substrate 4 from which the resin substrate 3 on which the electronic device member P is formed is separated, and can be reused as the release layer-provided support substrate 4.
  • the resin substrate laminate S of the present invention can be used for various applications, and, for example, displays such as liquid crystal panels (LCDs), organic EL displays (OLEDs), electronic paper, field emission panels, quantum dot LED panels, MEMS shutter panels, etc.
  • displays such as liquid crystal panels (LCDs), organic EL displays (OLEDs), electronic paper, field emission panels, quantum dot LED panels, MEMS shutter panels, etc.
  • LCDs liquid crystal panels
  • OLEDs organic EL displays
  • electronic paper such as a panel for apparatus, a solar cell (PV), a thin film secondary battery, and a semiconductor wafer in which the circuit was formed in the surface, etc. are mentioned.
  • a peeling layer is laminated on a supporting substrate using a target having a Si: C ratio of 10:90 to 90:10, and the supporting substrate of the peeling layer is A step of laminating a resin substrate on the surface on the opposite side to prepare a resin substrate laminate, a member forming step of forming a member for an electronic device on the surface of the resin substrate of the resin substrate laminate, and the peeling layer And a peeling step of peeling the resin substrate from the peeling layer by irradiating a laser beam onto the substrate.
  • Step S1 In the step of preparing a resin substrate laminate (step S1), first, the release layer 2 is stacked on the support substrate 1 to obtain the support substrate 4 with release layer, and the resin substrate 3 on the release substrate with release layer 4 is obtained. Stack up. Specifically, the peeling layer 2 is laminated on the supporting substrate 1 using a target having a Si: C ratio of 10:90 to 90:10 to obtain a supporting substrate 4 with a peeling layer, and the peeling layer is attached. The resin substrate 3 is laminated on the surface 2 a of the support substrate 4 on the opposite side to the support substrate 1 of the release layer 2.
  • the method of forming the release layer 2 on the support substrate 1 may be any method capable of forming a release layer with uniform thickness, and various conditions such as the composition and thickness of the release layer 2 It is possible to select suitably according to.
  • various vapor phase deposition methods such as CVD (MOCCVD, low pressure CVD, ECR-CVD included) method, evaporation, molecular beam deposition (MB), sputtering method, ion plating method, PVD method, Langmuir Bloget (LB And spin coating, spray coating, roll coating, coating methods, various printing methods, transfer methods, ink jet methods, powder jet methods, and the like. Two or more of these methods may be combined.
  • a mixed gas of an inert gas such as Ar and an oxygen atom-containing gas such as O 2 is introduced using a SiC target, and the first surface 1a of the support substrate 1 is formed by vapor deposition, sputtering, CVD or the like.
  • the release layer 2 By providing the release layer 2 thereon, the support substrate 4 with a release layer is manufactured.
  • the film formation conditions of the peeling layer 2 may be appropriately selected according to the material to be used and the like.
  • SiC silicon carbide
  • SiCO silicon carbon oxide
  • SiO 2 silicon oxide
  • the method for laminating the resin substrate 3 on the release layer 2 of the release layer-provided support substrate 4 in the resin substrate laminate S is not particularly limited, but a solution of the resin forming the resin substrate 3 or a solution of the resin precursor is used. A method of coating and drying to form a film can be used.
  • Coating of resin solution and resin precursor solution on release layer 2 is, for example, spin coating, doctor blade, applicator, comma coater, screen printing method, slit coating, reverse coating, dip coating, curtain coating, slit die coating, etc.
  • a known solution application method can be used as appropriate.
  • a polyamide acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent is applied onto the peeling layer 2 with a predetermined thickness. It is obtained by performing thermal imidization method to perform dehydration ring closure reaction by high-temperature heat treatment after coating and drying as described above, or chemical imidization method using acetic acid or the like as a dehydrating agent and pyridine or the like as a catalyst. it can.
  • thermoplastic resin film When the resin substrate 3 is a thermoplastic resin film, a thermoplastic resin film can be obtained by melt drawing. Moreover, when it is not a thermoplastic resin, a resin film can be obtained by the solution film forming method.
  • a method of physically laminating a resin film on the release layer 2 can also be used.
  • the contact origin is generated in the overlapping surface by lightly pushing the second surface 3 b of the resin substrate 3 in one place.
  • the method of naturally spreading adhesion from the adhesion origin, the method of expanding adhesion from the adhesion origin by pressure bonding using a roll or a press, etc. are mentioned.
  • pressure bonding using a roll or a press the peeling layer surface 2a of the peeling layer 2 and the first surface 3a of the resin substrate 3 are more closely attached, and air bubbles mixed in between are relatively easily removed. It is preferable because
  • the surfaces on the side where the release layer 2 and the resin substrate 3 are in contact with each other should be sufficiently cleaned and laminated in a highly clean environment.
  • cleaning is not specifically limited, For example, after washing
  • plasma used for plasma processing atmospheric plasma, vacuum plasma, etc. are mentioned, for example.
  • a member for an electronic device is formed on the surface of the resin substrate of the resin substrate laminate. Specifically, as shown in FIG. 2, in the present step, the member P for an electronic device is formed on the second surface 3 b of the resin substrate 3, and the laminated body SP with a member for an electronic device is manufactured. First, the member P for an electronic device used in this process will be described, and then, the process will be described in detail.
  • the electronic device member P is a member that constitutes at least a part of the electronic device D formed on the second surface 3 b of the resin substrate 3 of the resin substrate laminate S.
  • the member P for an electronic device include members used for a panel for a display device such as an OLED, a solar cell, a thin film secondary battery, and an electronic component such as a semiconductor wafer having a circuit formed on the surface. .
  • a TFT element and a drive circuit which are formed by laminating an electrode and an organic substance layer and performing etching can be mentioned.
  • a member for a solar cell in the case of a silicon type, a transparent electrode such as tin oxide of a positive electrode, a silicon layer represented by p layer / i layer / n layer, a metal of a negative electrode, etc. may be mentioned. And various members corresponding to dye-sensitized type, quantum dot type and the like.
  • members for thin film secondary batteries in the lithium ion type, transparent electrodes such as metal or metal oxide of positive electrode and negative electrode, lithium compound of electrolyte layer, metal of current collection layer, resin as sealing layer, etc.
  • various members corresponding to nickel-hydrogen type, polymer type, ceramic electrolyte type, etc. can be mentioned.
  • members for electronic parts in CCDs and CMOSs, metals of conductive parts, silicon oxides and silicon nitrides of insulating parts, etc. may be mentioned.
  • various sensors such as pressure sensors and acceleration sensors, rigid printed circuit boards, flexible printed circuit boards And various members corresponding to rigid flexible printed circuit boards and the like.
  • the manufacturing method of the member-mounted laminate SP for an electronic device is not particularly limited, and the second surface of the resin substrate 3 of the resin substrate laminate S can be obtained using a known method according to the type of the component for the electronic device member P.
  • An electronic device member P is formed on 3b.
  • the electronic device member P may be a part of a member instead of the entire member finally formed on the surface of the second surface 3 b of the resin substrate 3.
  • the resin substrate with partial members can also be made into a resin substrate with all members (corresponding to an electronic device to be described later) in a later step.
  • the member for other electronic devices may be formed in the peeling surface (1st surface 3a) at the resin substrate.
  • the electronic device D can also be manufactured by assembling the whole-member laminated body and thereafter peeling the support substrate 4 with a peeling layer from the resin substrate 3 on which the member P for an electronic device is formed.
  • a transparent electrode is formed.
  • Various layer formations and treatments are performed such as depositing a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, etc., forming a back electrode, sealing using a sealing plate, and the like.
  • Specific examples of the layer formation and the treatment include a film formation treatment, a vapor deposition treatment, an adhesion treatment of a sealing plate, and the like.
  • a general film formation such as a CVD method and a sputtering method is performed using a resist solution on the surface of the second surface 3b of the resin substrate 3 of the resin substrate laminate S.
  • TFT thin film transistor
  • There are various processes such as a CF forming process of forming a color filter (CF) using a liquid for pattern formation, and a laminating process of laminating a TFT-attached device substrate and a CF-attached device substrate.
  • the TFT and the CF are formed on the second surface 3 b of the resin substrate 3 by using a well-known photolithography technique, an etching technique or the like.
  • a resist solution is used as a coating solution for pattern formation.
  • the second surface 3b of the resin substrate 3 may be cleaned, if necessary, before forming the TFT and the CF.
  • a cleaning method known dry cleaning or wet cleaning can be used.
  • a liquid crystal material is injected and stacked between the TFT-equipped stack and the CF-equipped stack.
  • a method of injecting a liquid crystal material for example, there are a pressure drop injection method and a drop injection method.
  • a peeling process In a peeling process (step S3), a laser beam is irradiated to the peeling layer of the laminated body with a member for electronic devices obtained at the said member formation process, the resin substrate is peeled from a peeling layer, The member P for electronic devices and resin An electronic device D including the substrate 3 is obtained. That is, this is a step of separating the laminated body SP with a member for electronic device into the supporting substrate 4 with a peeling layer and the electronic device D.
  • the remaining constituent members may be formed on the resin substrate 3 after peeling.
  • the peeling layer 2 When peeling (separating) the peeling layer surface 2 a of the peeling layer 2 and the first surface 3 a of the resin substrate 3, the peeling layer 2 is irradiated with laser light from the back surface side of the support substrate 1, that is, the second surface 1 b side.
  • Any laser light may be used as long as it causes peeling at the interface between the peeling layer 2 and the resin substrate 3, and a pulse oscillation type or continuous light emission type excimer laser, YAG laser or YVO 4 laser can be used. Since an excimer laser outputs high energy in a short wavelength range, ablation can be generated in the peeling layer in a very short time.
  • the energy density of the laser beam may preferably be 10 ⁇ 100mJ / cm 2 or so, and more preferably, especially 60 ⁇ 80mJ / cm 2 approximately.
  • the irradiation time of the laser light is preferably about 1 to 5000 nanoseconds, more preferably about 1 to 3000 nanoseconds, still more preferably about 1 to 1000 nanoseconds, and further preferably 10 to 100 nanoseconds. Particular preference is given to the degree. In the case where the energy density of the laser light is low or the irradiation time is short, peeling does not occur sufficiently. When the energy density of the laser light is high or when the irradiation time is long, the irradiation light transmitted through the peeling layer 2 may adversely affect the resin substrate 3 and the member P for an electronic device.
  • the fundamental wave (wavelength 1064 nm), the second harmonic (wavelength 532 nm), and the third harmonic (wavelength 355 nm) of a YAG laser.
  • the support substrate 1 of the member-mounted laminate SP for an electronic device is installed on a surface plate with the upper side for the electronic device member P and the lower side for an electronic device, and vacuum adsorption of the electronic device member P side on the surface plate
  • the peeling layer 2 is irradiated with a laser beam from the supporting substrate 1 side.
  • the support substrate 1 side is adsorbed by the plurality of vacuum suction pads, and the vacuum suction pad is raised.
  • the electronic device D can be peeled off from the support substrate 4 with the peeling layer at the interface between the peeling layer 2 and the resin substrate 3.
  • the electronic device D obtained by the above process is suitable for manufacturing a small display used for mobile terminals such as mobile phones, smart phones, PDAs, tablet PCs and the like.
  • the display device is mainly an LCD or an OLED, and the LCD includes TN type, STN type, FE type, TFT type, MIM type, IPS type, VA type and the like.
  • the present invention is basically applicable to both passive drive type and active drive type display devices.
  • Example 1 Sputtering system Carousel type batch type sputtering system Target: SC (silicon carbide), thickness 6.35 mm
  • Sputtering method DC pulse application, magnetron sputtering exhausting device: Turbo molecular pump ultimate pressure: 1.0 ⁇ 10 -4 Pa (7.5 ⁇ 10 -6 Torr)
  • Film thickness 100 ⁇ 10 nm Ar flow rate: 330 sccm
  • Examples 2-1 to 2-5 (SiC) Sputtering system Carousel type batch type sputtering system Target: SiC target, thickness 6.35 mm Si: 23.5 wt%, SiC: 53.9 wt%, C 22.9 wt%
  • Sputtering method DC pulse application, magnetron sputtering exhausting device: Turbo molecular pump ultimate pressure: 1.0 ⁇ 10 -4 Pa (7.5 ⁇ 10 -6 Torr)
  • 200 ° C Sputtering power 2.5 kW / cm 2
  • Film thickness 100 ⁇ 10 nm Ar flow rate: 330 sccm
  • Example 3-1 Si: silicon
  • Sputtering system Carousel type batch type sputtering system
  • Target Si (silicon), thickness 6.35 mm
  • Sputtering method DC pulse application, magnetron sputtering exhausting device: Turbo molecular pump ultimate pressure: 1.0 ⁇ 10 -4 Pa (7.5 ⁇ 10 -6 Torr)
  • Base temperature 200 ° C
  • Sputtering power 2.5 kW / cm 2
  • Film thickness 100 ⁇ 10 nm
  • Ar flow rate 330 sccm
  • Examples 3-2 to 3-6 SiC: silicon carbide
  • Sputtering device Carousel type batch type sputtering device
  • Target Mixed Si (silicon) and C (carbon) in a predetermined ratio, thickness 6.35 mm
  • Sputtering method DC pulse application, magnetron sputtering exhausting device: Turbo molecular pump ultimate pressure: 1.0 ⁇ 10 -4 Pa (7.5 ⁇ 10 -6 Torr)
  • Base temperature 200 ° C
  • Film thickness 100 ⁇ 10 nm Ar flow rate: 330 sccm
  • Example 3-7 (C: carbon) Sputtering device: Carousel type batch type sputtering device Target: C (carbon), thickness 6.35 mm
  • Sputtering method DC pulse application, magnetron sputtering exhausting device: Turbo molecular pump ultimate pressure: 1.0 ⁇ 10 -4 Pa (7.5 ⁇ 10 -6 Torr) Base temperature: 200 ° C Sputtering power: 2.5 kW / cm 2 Film thickness: 100 ⁇ 10 nm Ar flow rate: 330 sccm
  • a polyimide resin substrate (resin substrate) was laminated as follows. Solvent dilution solution of polyimide resin molding material (manufactured by Hitachi Chemical DuPont Microsystems, Inc., Pyralin (registered trademark) PI 2610) using a spin coater (manufactured by Kyowa Riken, K 359 S1), predetermined spinner conditions (initial speed 600 rpm-20 seconds, 2 The solution was applied (target film thickness: 10 ⁇ m) on the release layer of the support substrate with release layer at a speed of 3500 rpm-0.7 seconds). Leveling (horizontal flat placement) was performed for 1 minute for the purpose of homogenizing the substrate surface after application.
  • Prebaking was performed at 130 ° C. for 5 minutes using a hot plate. Next, using an oven, post-baking was performed under conditions of 300 ° C. for 90 minutes to laminate a polyimide resin substrate (100 mm in length, 100 mm in width, 8.4 ⁇ m thickness) to obtain a resin substrate laminate.
  • peeling test (LLO: laser lift off test)> The peeling layer of the resin substrate laminate was irradiated with laser light from the glass substrate side to peel the resin substrate from the peeling layer.
  • the irradiation of the laser light was performed by scanning the irradiation time for 30 minutes using a YAG solid laser (wavelength: 355 nm) and a spot diameter of 25.4 ⁇ m (overlap of 60% in the horizontal axis).
  • the color change (presence or absence) of the release layer was evaluated as follows. The presence or absence of discoloration was judged from an optical microscope image ( ⁇ 500). As a result of XRD analysis, light-colored spots (yellowish color) detect peaks showing crystal structure.
  • Test 1 Examination of material used for peeling layer>
  • materials used for the release layer were examined.
  • Table 1 using a support substrate with a release layer having various release layers (film thickness 100 nm) laminated on a glass substrate (thickness: 0.7 mm) as a support substrate, a glass substrate of the release layer
  • the polyimide substrate (thickness: 8.4 micrometers) as a resin substrate was laminated
  • Each resin substrate laminate is irradiated with light by scanning a spot diameter of 25.4 ⁇ m for 30 minutes at a laser intensity of 80 mJ / cm 2 using a YAG solid laser (wavelength: 355 nm), and after laser light irradiation
  • the peelability and ash of the polyimide substrate were examined. The results are shown in Table 2.
  • the polyimide substrate can be peeled without peeling SiC which is a peeling layer from a glass substrate.
  • GC glassy carbon
  • DLC diamond like carbon
  • ⁇ Test 2 Examination of laser light intensity> In Test 2, the laser light intensity in the peeling step was examined. As shown in Table 3, using a glass substrate (thickness: 0.7 mm) as a supporting substrate and a polyimide substrate (thickness: 8.4 ⁇ m) as a resin substrate, a sample having a SiC peeling layer, and SiC peeling A sample without layers was made.
  • Each sample was scanned using a YAG solid laser (wavelength: 355 nm), spot diameter 25.4 ⁇ m, irradiation time 30 minutes, light irradiation was conducted, and peelability of polyimide substrate after laser light irradiation and ash were examined .
  • the laser light intensity was optimized with the polyimide substrate directly on the glass substrate, and the laser light intensity was lowered by 10% from the optimum value, and the laser light intensity was lowered until the peeling layer became incapable of peeling.
  • Tables 4 and 5 The results are shown in Tables 4 and 5.
  • the polyimide substrate was peeled without resistance by irradiating a laser beam of 60 to 100 mJ / cm 2 , and no ash was generated.
  • the sample of the comparative example although the removability of the polyimide substrate was good, the adhesion between the polyimide substrate and the glass substrate was not ensured.
  • the composition of the glass substrate / SiC film sample was analyzed by XPS (X-ray photoelectron spectroscopy: JPS-90000MC, manufactured by JEOL Ltd.) before and after laser light irradiation. The results are shown in FIG. 5 (before laser beam irradiation) and FIG. 6 (after 100 mJ / cm 2 laser beam irradiation).
  • the composition on the sample surface of the glass substrate / SiC film was not changed, and it was found that the peeling layer was stable to the laser light irradiation.
  • Test 3 Examination of reuse of support substrate with release layer>
  • the samples which had been subjected to peeling of the polyimide substrate by laser irradiation in Test 2 shown in Table 6 were peeled again by laser irradiation under the same conditions to examine whether the supporting substrate with the peeling layer could be reused.
  • the polyimide substrate was laminated again. The laser was irradiated at the same intensity as the laser light intensity irradiated in Test 2. The results are shown in Table 7.
  • the adhesion of the polyimide substrate on the release layer was secured.
  • the polyimide substrate could be easily peeled off by laser light of 70 to 90 mJ / cm 2 .
  • the generation of ash was not confirmed at any laser intensity. From the above, it was found that the support substrate with a release layer according to the present embodiment can be repeatedly used (reused).
  • Test 4 Examination of Composition of Peeling Layer>
  • the composition ratio of Si and C contained in the release layer was changed, and the influence of the composition ratio of Si and C on the release performance was examined.
  • composition analysis by XPS The composition analysis of each sample by XPS (apparatus: JPS-90000MC, manufactured by JEOL Ltd.) was performed under the following conditions.
  • Table 9 shows C (carbon), N (nitrogen), O of each sample at the surface, etching 40 seconds (etch: 40s, etching depth about 20 nm), etching 80 seconds (etch: 80s, etching depth about 40 nm) The atomic concentrations of (oxygen) and Si (silicon) are shown.
  • Table 10 shows carbon (carbon): oxygen (O): Si of each sample at the surface, etching 40 seconds (etch: 40s, etching depth about 20 nm), etching 80 seconds (etch: 80s, etching depth about 40 nm) The ratio of (silicon) is shown.
  • N nitrogen
  • N is contained 0.7 atomic% or less as an unavoidable impurity in the surface of a peeling layer.
  • the absorptance of only the peeling layer in the wavelength range of 340 nm or more and 400 nm or less was 50% or more in Examples 3-1 to 3-5. That is, the peeling layers in Examples 3-1 to 3-5 satisfactorily absorb the ultraviolet light (for example, wavelength: 355 nm) used in the peeling step.
  • the laser light intensity is 70 to 100 mJ / cm 2 and ash Was found not to occur.
  • the laser light intensity is 70 to 80 mJ / cm 2 and ash And it turned out that discoloration of a exfoliation layer does not occur.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)

Abstract

低エネルギーのレーザー光を用い、短時間の光照射処理で、樹脂基板を剥離層から容易に剥離可能なものとする樹脂基板積層体及び樹脂基板積層体を用いた電子デバイスの製造方法を提供する。支持基板1と、支持基板1の上に積層された剥離層2と、を有する剥離層付き支持基板4と、剥離層2の支持基板1とは反対側の表面の上に剥離可能に積層された樹脂基板3と、を備え、剥離層2の表面の組成が、SixCyOz(0.05≦x≦0.49,0.15≦y≦0.73,0.22≦z≦0.36,x+y+z=1)であることを特徴とする樹脂基板積層体により解決される。

Description

樹脂基板積層体及び電子デバイスの製造方法
 本発明は、樹脂基板積層体及び樹脂基板積層体を用いた電子デバイスの製造方法に関する。
 近年、有機ELディスプレイ(OLED)、液晶パネル(LCD)、太陽電池(PV)などの電子デバイスの薄型化、軽量化が進んでいる。さらに、これらの電子デバイスに対して、曲げるという機能性、つまりフレキシブルを付与することが望まれている。そのような背景の下、従来の重くて曲げることができないガラス基板に代わって、軽量かつ柔軟な樹脂基板が用いられている。
 これらの電子デバイスの製造工程では、支持基板の上に無機物や有機物からなる剥離層を形成し、剥離層の上にガラス基板や樹脂基板を剥離可能に積層した基板積層体が用いられている。具体的には、基板積層体のガラス基板や樹脂基板の上に電子部品を形成し、その後に電子部品付のガラス基板や樹脂基板を剥離層から剥離して、電子デバイスが製造されている。
 特許文献1は、支持基板と、支持基板上に配置された無機層を備える無機層付き支持基板と、無機層上に剥離可能に積層されたガラス基板を備えるガラス積層体を用い、物理的にガラス基板を剥離する電子デバイスの製造方法が記載されている。
 特許文献2は、固定基板上に非晶質シリコン膜を介して樹脂基板を形成して、その樹脂基板上にTFT素子を形成した後に、非晶質シリコン膜にレーザー光を照射することによって固定基板から樹脂基板を剥離する表示装置の作製方法が記載されている。
 特許文献3は、その重合体鎖末端にアンカー基を導入したポリアミック酸と有機溶媒を含む剥離層形成用組成物を用いて形成された剥離層が記載されている。
特許第5991373号公報 特許第5147794号公報 国際公開2016/158990号公報
 従来の剥離層は、剥離層の上の基板を剥離する際に、高エネルギーの紫外線を長時間照射する必要があった。また、樹脂基板を用いる場合、高エネルギーの紫外線を照射すると、樹脂基板が熱によって変性してしまうことがあった。
 本発明は、上記課題に鑑みてなされたものであり、本発明の目的は、低エネルギーのレーザー光を用い、短時間の光照射処理で、樹脂基板を剥離層から容易に剥離可能なものとする樹脂基板積層体及び樹脂基板積層体を用いた電子デバイスの製造方法を提供することにある。
 前記課題は、本発明の樹脂基板積層体によれば、支持基板と、前記支持基板の上に積層された剥離層と、を有する剥離層付き支持基板と、前記剥離層の前記支持基板とは反対側の表面の上に剥離可能に積層された樹脂基板と、を備え、前記剥離層の表面の組成が、Si(0.05≦x≦0.49,0.15≦y≦0.73,0.22≦z≦0.36,x+y+z=1)であること、により解決される。
 上記構成により、低エネルギーのレーザー光を用い、短時間の光照射処理で、樹脂基板を剥離層から容易に剥離可能となるため、電子デバイスの製造に利用すると生産性が向上するとともに、製造コストを削減することが可能となる。
 このとき、前記剥離層の表面の組成が、Si(0.05≦x≦0.43,0.27≦y≦0.73,0.22≦z≦0.30,x+y+z=1)であると好適である。
 このように、剥離層の表面の組成を適切な範囲に制御することで、レーザー光照射による剥離性を向上させるとともに、レーザー光による樹脂基板の損傷や剥離層の劣化を抑制することが可能となる。
 このとき、前記剥離層は、アモルファス状態であると好適である。
 このように、剥離層がアモルファス(非晶質)状態であると、剥離層をスパッタリングなどの簡便な方法で成膜することが可能となるとともに、剥離性が向上する。
 このとき、前記剥離層は、波長355nmのレーザー光を照射することにより前記樹脂基板が前記剥離層から剥離可能となる材料で構成されていると好適である。
 このように、剥離層は波長355nm付近に吸収帯を有しており、一般的なYAGレーザーを用いることが可能である。
 このとき、前記剥離層は、波長355nmのレーザー光を強度60~80mJ/cmで照射することにより前記樹脂基板が前記剥離層から剥離可能となる材料で構成されていると好適である。
 このように、剥離層は波長355nm付近に吸収帯を有しており、一般的なYAGレーザーを用いることが可能であるとともに、低エネルギーのレーザー光照射であっても適切に剥離を生じさせることが可能となる。
 前記課題は、本発明の電子デバイスの製造方法によれば、Si:Cの比が10:90~90:10であるターゲットを用いて剥離層を支持基板上に積層し、前記剥離層の前記支持基板とは反対側の表面上に樹脂基板を積層して樹脂基板積層体を用意する工程と、前記樹脂基板積層体の前記樹脂基板の表面上に電子デバイス用部材を形成する部材形成工程と、前記剥離層にレーザー光を照射して前記剥離層から前記樹脂基板を剥離する剥離工程と、を行うこと、により解決される。
 このように、低エネルギーのレーザー光を用い、短時間の光照射処理で、樹脂基板を剥離層から容易に剥離可能となるため、電子デバイスの製造する際の生産性が向上するとともに、製造コストを削減することが可能となる。
 このとき、前記ターゲットにおけるSi:Cの比が30:70~90:10であると好適である。
 このように、剥離層の表面の組成を適切な範囲に制御することで、レーザー光照射による剥離性を向上させるとともに、レーザー光による樹脂基板の損傷や剥離層の劣化を抑制することが可能となる。
 このとき、前記剥離層は、アモルファス状態であると好適である。
 このように、剥離層がアモルファス(非晶質)状態であると、剥離層をスパッタリングなどの簡便な方法で成膜することが可能となるとともに、剥離性が向上する。
 このとき、前記剥離工程では、波長355nmのレーザー光を照射すると好適である。
 このように、剥離層は波長355nm付近に吸収帯を有しており、一般的なYAGレーザーを用いることが可能である。
 このとき、前記剥離工程では、波長355nmのレーザー光を強度60~80mJ/cm2で照射を照射すると好適である。
 このように、剥離層は波長355nm付近に吸収帯を有しており、一般的なYAGレーザーを用いることが可能であるとともに、低エネルギーのレーザー光照射であっても適切に剥離を生じさせることが可能となる。
 本発明の樹脂基板積層体は、剥離層がSi(0.05≦x≦0.49,0.15≦y≦0.73,0.22≦z≦0.36,x+y+z=1)で形成されているため、低エネルギーのレーザー光を用い、短時間の光照射処理で、樹脂基板を剥離層から容易に剥離可能となる。従って、本発明の樹脂基板積層体を電子デバイスの製造に利用すると、生産性が向上するとともに、製造コストを削減することが可能となる。
 また、本発明の樹脂基板積層体は、低エネルギーのレーザー光を用い、短時間の光照射処理で、樹脂基板を剥離層から容易に剥離可能であるため、樹脂基板に損傷を与えることなく、剥離を行うことができる。
 さらに、本発明の樹脂基板積層体は、樹脂基板を剥離後に、樹脂基板を再度積層することで、樹脂基板積層体を再利用することが可能となる。
本発明の一実施形態に係る樹脂基板積層体を示す模式的断面図である。 本発明の一実施形態に係る樹脂基板積層体に電子デバイス用部材を形成した電子デバイス用部材付き積層体を示す模式的断面図である。 本発明の一実施形態に係る電子デバイス用部材付き積層体において、剥離層付き支持基板から電子デバイスを剥離する様子を示す模式的断面図である。 本発明の一実施形態に係る電子デバイスの製造方法のフロー図である。 レーザー光照射前のガラス基板/SiC膜の組成分析の結果を示すグラフである。 レーザー光(100mJ)を照射後のガラス基板/SiC膜の組成分析の結果を示すグラフである。 実施例3-1~3-5、参考例3-1及び3-2の樹脂基板積層体のX線回折パターンを示すグラフである。 実施例3-1~3-5、参考例3-1及び3-2の樹脂基板積層体の300~400nmにおける透過率の測定結果を示すグラフである。 実施例3-1~3-5、参考例3-1及び3-2の樹脂基板積層体の300~400nmにおける反射率の測定結果を示すグラフである。 実施例3-1~3-5、参考例3-1及び3-2の樹脂基板積層体の300~400nmにおける吸収率の測定結果を示すグラフである。 実施例3-1~3-5、参考例3-1及び3-2の樹脂基板積層体の300~400nmにおける剥離層のみの吸収率を示すグラフである。
 以下、本発明の一実施形態(本実施形態)に係る樹脂基板積層体、該樹脂基板積層体を用いた電子デバイスの製造方法について図1乃至11を参照して説明する。
<樹脂基板積層体S>
 本実施形態の樹脂基板積層体Sは、図1に模式的断面図を示すように、支持基板1および剥離層2を含む剥離層付き支持基板4と、樹脂基板3とを有する。
 本実施形態の樹脂基板積層体Sにおいて、剥離層付き支持基板4の剥離層2の剥離層表面2a(支持基板1側とは反対側の表面)と、樹脂基板3の第一面3aと、を積層面として、剥離層付き支持基板4と樹脂基板3とが剥離可能に積層している。
 換言すると、剥離層2の一方の面が支持基板1に固定されると共に、剥離層2の他方の面が樹脂基板3の第一面3aに接し、剥離層2と樹脂基板3との界面は剥離可能に密着されている。つまり、剥離層2は、樹脂基板3の第一面3aに対して易剥離性を具備する。
 以下、樹脂基板積層体Sの構成について詳述する。
(剥離層付き支持基板4)
 剥離層付き支持基板4は、支持基板1と、その表面上に積層された剥離層2とを備えている。剥離層2は、後述する樹脂基板3と剥離可能に密着するように、剥離層付き支持基板4における最も外側に配置されている。
 次に、支持基板1および剥離層2について説明する。
(支持基板1)
 支持基板1は、第一面1aと第二面1bとを有し、第一面1a上に配置された剥離層2と共に、樹脂基板3を支持する基板である。
 支持基板1としては、後述する剥離工程において、支持基板1の裏面からレーザー光が照射されるため、剥離工程で用いるレーザー光が透過するものであればよく、例えば、ガラス板、プラスチック板などが用いられるがこれに限定されるものではない。取扱いが容易であり、安価であることから支持基板1として、ガラス板を用いることが好ましい。
 前記ガラス板としては、石英ガラス、高ケイ酸ガラス(96%シリカ)、ソーダ石灰ガラス、鉛ガラス、アルミノホウケイ酸ガラス、ホウケイ酸ガラス(パイレックス(登録商標))、ホウケイ酸ガラス(無アルカリ)、ホウケイ酸ガラス(マイクロシート)、アルミノケイ酸塩ガラス等が含まれる。これらの中でも、線膨張係数が5ppm/K以下のものが望ましく、市販品であれば、液晶用ガラスであるコーニング社製の「コーニング(登録商標)7059」や「コーニング(登録商標)1737」、「EAGLE」、旭硝子社製の「AN100」、日本電気硝子社製の「OA10」、SCHOTT社製の「AF32」、アヴァンストレート社製の「NA32SG」などが望ましい。
 支持基板1の平面部分は、充分に平坦である事が望ましい。具体的には、表面粗さのP-V値が50nm以下、より好ましくは20nm以下、さらに好ましくは5nm以下である。表面粗さの値が大きいと、剥離層2と支持基板1の接着強度が不充分となる場合がある。
 支持基板1の厚さは、後述する樹脂基板3の厚さ、樹脂基板3の厚さ、および最終的な樹脂基板積層体S厚さに基づいて、選択される。支持基板1としてガラス板を用いる場合、支持基板1の厚さは、電子デバイス用部材を形成した後に剥離する際に、割れずに適度に撓む性質を備えるために、10mm以下の厚さが好ましく、3mm以下がより好ましく、1.3mm以下がさらに好ましい。厚さの下限については特に制限されないが、取り扱い性の観点から、好ましくは0.07mm以上、より好ましくは0.15mm以上、さらに好ましくは0.3mm以上である。
 支持基板1の面積は、剥離層付き支持基板4や樹脂基板積層体S、フレキシブル電子デバイスの生産効率・コストの観点より、大面積であることが好ましい。具体的には、1000cm以上であることが好ましく、1500cm以上であることがより好ましく、2000cm以上であることがさらに好ましい。
(剥離層2)
 剥離層2は、支持基板1の第一面1a上に積層され、樹脂基板3の第一面3aと接する層であり、剥離層表面2aの組成が、Si(0.05≦x≦0.49,0.15≦y≦0.73,0.22≦z≦0.36,x+y+z=1)である。
 ここで、yの値が0.15未満であるとレーザー光照射時にアッシュの発生が生じ易くなるが、yの値が0.15以上であれば、アッシュの発生が抑制されると共に剥離性が優れる。
 なお、yの値が0.73より大きいとレーザー光照射時にアッシュの発生が生じ易くなるが、yの値が0.73以下であれば、アッシュの発生が抑制されると共に剥離性が優れる。
 剥離層2の剥離層表面2aとは、剥離層2の最表面(支持基板1とは反対側の最表面)のことをいう。より詳細には、剥離層2の剥離層表面2aは、剥離層2の厚さを100%として最表面から支持基板1側に向けて10%の距離までの領域をいう。
 剥離層2における剥離層表面2aおよびそれ以外の組成は、X線光電子分光法(XPS)により測定できる。なお、剥離層2において、剥離層表面2a以外の組成は、剥離層表面2aの組成と異なっていてもよく、同一であってもよい。
 剥離層2は、Si(0.05≦x≦0.49,0.15≦y≦0.73,0.22≦z≦0.36,x+y+z=1)が主成分として含まれていることが好ましい。ここで、主成分とは、剥離層2の全体を100質量%としたときに、Si(0.05≦x≦0.49,0.15≦y≦0.73,0.22≦z≦0.36,x+y+z=1)の総含有量が90質量%以上であることを意味し、95質量%以上であることが好ましく、99質量%以上であることがより好ましい。
 剥離層2には、主成分であるSi(0.05≦x≦0.49,0.15≦y≦0.73,0.22≦z≦0.36,x+y+z=1)以外に、ドーパントが添加されていてもよい。
 ドーパントとしては、例えば、N(窒素)やB(ホウ素)、Al(アルミニウム)、P(リン)などが挙げられるが、これらに限定されるものではない。
 主成分であるSi(0.05≦x≦0.49,0.15≦y≦0.73,0.22≦z≦0.36,x+y+z=1)に対するドーパントの含有割合は、10原子%以下であることが好ましい。ドーパントの含有割合が上記範囲内であることにより、良好な剥離性及び紫外光領域における光吸収を実現することができる。
 剥離層2の紫外光領域の吸収率は、50%以上であることが好ましく、より好ましくは、60%以上であるとよい。JIS Z8120の定義によれば、可視光線に相当する電磁波の波長の下限は約360~400nm、上限はおおよそ760~830nmであるが、本実施形態において、紫外光領域とは、400nm以下、より詳細には10nm以上400nm以下の波長領域を言い、可視光領域とは、400nmより長く700nm以下の波長領域を言う。
 剥離工程において紫外領域のレーザー光(YAGレーザー:波長355nm)を用いる場合、波長340nm以上400nm以下の波長領域の吸収率が50%以上であると、剥離層2がレーザー光を十分に吸収し、樹脂基板を適切に剥離することが可能となる。
 剥離層2の厚さは、1nm~20μm程度であるのが好ましく、10nm~2μm程度であるのがより好ましく、40nm~1μm程度であるのがさらに好ましい。剥離層2の厚みが薄すぎると、形成された膜厚の均一性が失われて剥離にむらが生ずる可能性がある。また剥離層2の厚みが厚すぎると、剥離に必要とされる照射レーザー光のエネルギー(光量)を大きくする必要がある。
 剥離層2は、図1では単層として図示されているが、2層以上を積層して構成することも可能である。
 また、剥離層2は、通常、図1に示すように支持基板1の第一面1aの全面にわたって積層されるが、適切な剥離性を有するのであれば、支持基板1の第一面1a上の一部に積層されていてもよい。例えば、剥離層2を、支持基板1の第一面1a上に、島状や、ストライプ状に設けられていてもよい。
(樹脂基板3)
 樹脂基板3は、第一面3aが剥離層2と接し、剥離層2側とは反対側の第二面3bに後述する電子デバイス用部材Pが設けられる。
 樹脂基板3を構成する樹脂としては、熱可塑性樹脂又は熱硬化性樹脂のいずれでもよく、例えば、ポリエチレン(高密度、中密度又は低密度)、ポロプロピレン(アイソタクチック型又はシンジオタクチック型)、ポリブテン、エチレン-プレピレン共重合体、エチレン-酢酸ビニル共重合体(EVA)、エチレン-プロピレン-ブテン共重合体等のポリオレフィン、環状ポリオレフィン、変性ポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、フッ素化ポリイミドといった芳香族ポリイミド、脂環族ポリイミドなどのポリイミド系樹脂、ポリカーボネート、ポリビニルアルコール、ポリエチレンビニルアルコール、ポリ-(4-メチルベンテン-1)、アイオノマー、アクリル系樹脂、ポリメチルメタクリレート、ポリブチル(メタ)アクリレート、メチル(メタ)アクリレート-ブチル(メタ)アクリレート共重合体、メチル(メタ)アクリレート-スチレン共重合体、アクリル-スチレン共重合体(AS樹脂)、ブタジエン-スチレン共重合体、エチレンビニルアルコール共重合体(EVOH)、ポリエチレンテレフタレート(PET)、ポリプチレンテレフタレート(PBT)、エチレン-テレフタレート-イソフタレート共重合体、ポリエチレンナフタレート、プリシクロヘキサンテレフタレート(PCT)等のポリエステル、ポリエーテル、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド、ポリアセタール(POM)、ポリフェニレンオキシド、変性ポリフェニレンオキシド、ポリアリレート、芳香族ポリエステル、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン、その他フッ素系樹脂、スチレン系、ポリオレフィン系、ポリ塩化ビニル系、ポリウレタン系、フッ素ゴム系、塩素化ポリエチレン系等の各種熱可塑性エラストマー、エボキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル、シリコーン樹脂、ポリウレタン、ナイロン、ニトロセルロース、酢酸セルロース、セルロースアセテートプロピオネート等のセルロース系樹脂等、又はこれらを主とする共重合体、ブレンド体、ポリマーアロイ等が挙げられ、これらのうちの1種又は2種以上を組み合わせて(例えば2層以上の積層体として)用いることができる。
 樹脂基板3として、耐熱性が100℃以上の高分子を用いたフィルム、所謂エンジニアリングプラスチックを用いたフィルムであることが好ましい。エンジニアリングプラスチックを用いたフィルムとは、例えば、芳香族ポリエステルフィルムであることが好ましく、さらには耐熱温度が150℃を越える芳香族ポリアミドフィルム、ポリアミドイミドフィルム、ポリイミドフィルムなどのスーパーエンプラフィルムなどを挙げることができる。ここに耐熱性とはガラス転移温度ないしは熱変形温度をいう。
 樹脂基板3の厚さは、特に限定されないが、高分子フィルムの厚さは3μm以上が好ましく、より好ましくは11μm以上であり、さらに好ましくは24μm以上であり、より一層好ましくは45μm以上である。高分子フィルムの厚さの上限は特に制限されないが、最終的な電子デバイスの薄型化、フレキシブル化の観点から、250μm以下であることが好ましく、より好ましくは150μm以下であり、さらに好ましくは90μm以下である。なお、樹脂基板3は樹脂層を2層以上積層したラミネート体を用いてもよい。
(樹脂基板積層体Sの用途について)
 以上のように、本実施形態の樹脂基板積層体Sは、上述した剥離層付き支持基板4の剥離層表面2aと樹脂基板3の第一面3aを積層面として、剥離層付き支持基板4と樹脂基板3を剥離可能に積層してなる積層体である。つまり、支持基板1と樹脂基板3との間に、剥離層2が介在する積層体である。
 このような構成の樹脂基板積層体Sは、後述するように電子デバイスの製造において使用される。具体的には、図2に示すように、樹脂基板積層体Sは、第二面3bの表面上に電子デバイス用部材Pが形成される。その後、図3に示すように、剥離層付き支持基板4は、樹脂基板3との界面で剥離され、剥離層付き支持基板4は電子デバイスを構成する部材とはならない。電子デバイス用部材Pが形成された樹脂基板3が分離された剥離層付き支持基板4には、新たな樹脂基板3が積層され、剥離層付き支持基板4として再利用できる。
 本発明の樹脂基板積層体Sは、種々の用途に使用でき、例えば、液晶パネル(LCD)、有機ELディスプレイ(OLED)、電子ペーパー、フィールドエミッションパネル、量子ドットLEDパネル、MEMSシャッターパネル等の表示装置用パネル、太陽電池(PV)、薄膜2次電池、表面に回路が形成された半導体ウェハ等の電子デバイスを製造する用途などが挙げられる。
<電子デバイスDの製造方法>
 本実施の形態の電子デバイスの製造方法は、Si:Cの比が10:90~90:10であるターゲットを用いて剥離層を支持基板上に積層し、前記剥離層の前記支持基板とは反対側の表面上に樹脂基板を積層して樹脂基板積層体を用意する工程と、前記樹脂基板積層体の前記樹脂基板の表面上に電子デバイス用部材を形成する部材形成工程と、前記剥離層にレーザー光を照射して前記剥離層から前記樹脂基板を剥離する剥離工程と、を行うことを特徴とする。
 以下、各工程について図4を参照して詳細に説明する。
(樹脂基板積層体を用意する工程)
 樹脂基板積層体を用意する工程(ステップS1)では、まず、支持基板1に剥離層2を積層し、剥離層付き支持基板4を得て、該剥離層付き支持基板4の上に樹脂基板3を積層する。
 具体的には、Si:Cの比が10:90~90:10であるターゲットを用いて剥離層2を支持基板1上に積層し、剥離層付き支持基板4を得て、該剥離層付き支持基板4における剥離層2の支持基板1とは反対側の表面2a上に樹脂基板3を積層する。
 剥離層付き支持基板4において、支持基板1上に剥離層2を形成方する法は、均一な厚みで剥離層を形成可能な方法であればよく、剥離層2の組成や厚み等の諸条件に応じて適宜選択することが可能である。例えば、CVD(MOCCVD、低圧CVD、ECR―CVD含む)法、蒸着、分子線蒸着(MB)、スパッタリング法、イオンプレーティング法、PVD法等の各種気相成膜法、ラングミュア・ブロジェット(LB)法、スピンコート、スプレーコート法、ロールコート法等の塗布法、各種印刷法、転写法、インクジェット法、粉末ジェット法等に適用できる。これらのうち2種以上の方法を組み合わせてもよい。
 例えば、SiCターゲットを用いて、Ar等の不活性ガスとO等の酸素原子含有ガスの混合ガスを導入して、蒸着法、スパッタリング法、CVD法などにより、支持基板1の第一面1a上に、剥離層2を設けることで剥離層付き支持基板4が製造される。このとき、ターゲットの組成や、混合ガス中の酸素原子含有ガスの量を調整することで、剥離層2の剥離層表面2aの酸素量(zの値)を制御することが可能である。なお、剥離層2の成膜条件は、用いる材料等に応じて、適宜選択すればよい。
 剥離層2を成膜する際に用いるターゲットとしては、Si:Cの比が10:90~90:10となるように、SiC(炭化ケイ素)、SiCO(silicon carbon oxide)、SiO(酸化ケイ素)、Si(ケイ素)などの物質を、単独又は組み合わせて用いることが可能である。このとき、ターゲットのSi:Cの比を調整することで、剥離層2の剥離層表面2aのケイ素量(xの値)及び炭素量(yの値)を制御することが可能である。
 剥離層2を成膜する際に用いるターゲットにおけるSi:Cの比は、Si:C=10:90~90:10であればよく、Si:C=10:90~30:70であることがより好ましく、Si:C=10:90~50:50であることが特に好ましい。
 樹脂基板積層体Sにおいて、剥離層付き支持基板4の剥離層2上に樹脂基板3を積層する方法は、特に限定されないが、樹脂基板3を構成する樹脂の溶液や、樹脂前駆体の溶液を塗布・乾燥してフィルム化する手法を用いることができる。
 剥離層2上への樹脂の溶液や樹脂前駆体溶液の塗布は、例えば、スピンコート、ドクターブレード、アプリケーター、コンマコーター、スクリーン印刷法、スリットコート、リバースコート、ディップコート、カーテンコート、スリットダイコート等、公知の溶液の塗布手段を適宜用いることができる。
 例えば、樹脂基板3がポリイミド系樹脂フィルムである場合は、溶媒中でジアミン類とテトラカルボン酸類とを反応させて得られるポリアミド酸(ポリイミド前駆体)溶液を剥離層2の上に所定の厚さとなるように塗布し、乾燥した後に、高温熱処理して脱水閉環反応を行わせる熱イミド化法又は無水酢酸等を脱水剤とし、ピリジン等を触媒として用いる化学イミド化法を行うことによって得ることができる。
 また、樹脂基板3が熱可塑性樹脂フィルムである場合は、溶融延伸法により熱可塑性樹脂フィルムを得ることが出来る。また、熱可塑性樹脂でない場合は、溶液製膜法により樹脂フィルムを得ることが出来る。
 さらに、樹脂の種類によっては、剥離層2上に樹脂フィルムを物理的に積層する手法を用いることもできる。例えば、常圧環境下で剥離層付き支持基板4と樹脂基板3とを重ねた後に、樹脂基板3の第二面3bを軽く一か所押すことにより、重ね合わせ面内に密着起点を発生させ、その密着起点から密着を自然に広げる方法や、ロールやプレスを用いて圧着することで、密着起点からの密着を広げる方法などが挙げられる。ロールやプレスを用いて圧着する場合、剥離層2の剥離層表面2aと樹脂基板3の第一面3aとがより密着するうえ、両者の間に混入している気泡が比較的容易に除去されるので好ましい。
 なお、真空ラミネート法や真空プレス法により剥離層2と樹脂基板3を圧着すると、気泡の混入の抑制や良好な密着の確保が好ましく行われるのでより好ましい。真空下で圧着することにより、微小な気泡が残存した場合でも、加熱により気泡が成長することがなく、ゆがみ欠陥につながりにくいという利点もある。
 剥離層付き支持基板4と樹脂基板3とを剥離可能に密着させる際には、剥離層2および樹脂基板3が互いに接触する側の面を十分に洗浄し、清浄度の高い環境で積層することが好ましい。洗浄の方法は特に限定されないが、例えば、剥離層2や樹脂基板3の表面をアルカリ水溶液で洗浄した後、さらに水を用いて洗浄する方法が挙げられる。
 さらに、良好な積層状態を得るためには、剥離層2および樹脂基板3の互いに接触する側の面を洗浄後にプラズマ処理を施してから、積層することが好ましい。プラズマ処理に用いるプラズマとしては、例えば、大気プラズマ、真空プラズマ等が挙げられる。
(部材形成工程)
 部材形成工程(ステップS2)では、樹脂基板積層体の樹脂基板の表面上に電子デバイス用部材を形成する。
 具体的には、図2に示すように、本工程において、樹脂基板3の第二面3b上に電子デバイス用部材Pが形成され、電子デバイス用部材付き積層体SPが製造される。
 まず、本工程で使用される電子デバイス用部材Pについて説明し、次に、本工程について詳述する。
 電子デバイス用部材Pは、樹脂基板積層体Sの樹脂基板3の第二面3b上に形成される電子デバイスDの少なくとも一部を構成する部材である。具体的には、電子デバイス用部材Pとしては、OLEDなどの表示装置用パネル、太陽電池、薄膜2次電池、表面に回路が形成された半導体ウェハ等の電子部品などに用いられる部材が挙げられる。
 例えば、OLED用部材としては、電極や、有機物層を積層してエッチングを行って形成したTFT素子や駆動回路などを挙げることができる。
 また、太陽電池用部材としては、シリコン型では、正極の酸化スズなど透明電極、p層/i層/n層で表されるシリコン層、および負極の金属等が挙げられ、その他に、化合物型、色素増感型、量子ドット型などに対応する各種部材等を挙げることができる。
 また、薄膜2次電池用部材としては、リチウムイオン型では、正極および負極の金属または金属酸化物等の透明電極、電解質層のリチウム化合物、集電層の金属、封止層としての樹脂等が挙げられ、その他に、ニッケル水素型、ポリマー型、セラミックス電解質型などに対応する各種部材等を挙げることができる。
 また、電子部品用部材としては、CCDやCMOSでは、導電部の金属、絶縁部の酸化ケイ素や窒化珪素等が挙げられ、その他に圧力センサ・加速度センサなど各種センサやリジッドプリント基板、フレキシブルプリント基板、リジッドフレキシブルプリント基板などに対応する各種部材等を挙げることができる。
 電子デバイス用部材付き積層体SPの製造方法は特に限定されず、電子デバイス用部材Pの構成部材の種類に応じて公知の方法を用いて、樹脂基板積層体Sの樹脂基板3の第二面3bの上に、電子デバイス用部材Pを形成する。
 なお、電子デバイス用部材Pは、樹脂基板3の第二面3bの表面上に最終的に形成される部材の全部ではなく、部材の一部であってもよい。部分部材付き樹脂基板を、その後の工程で全部材付き樹脂基板(後述する電子デバイスに相当)とすることもできる。また、樹脂基板には、その剥離面(第一面3a)に他の電子デバイス用部材が形成されてもよい。また、全部材付き積層体を組み立て、その後、電子デバイス用部材Pが形成された樹脂基板3から剥離層付き支持基板4を剥離して、電子デバイスDを製造することもできる。
 例えば、OLEDを製造する場合、樹脂基板積層体Sの樹脂基板3の第二面3bの表面上に有機EL構造体を形成するために、透明電極を形成する、さらに透明電極を形成した面上にホール注入層・ホール輸送層・発光層・電子輸送層等を蒸着する、裏面電極を形成する、封止板を用いて封止する、等の各種の層形成や処理が行われる。これらの層形成や処理として、具体的には、成膜処理、蒸着処理、封止板の接着処理等が挙げられる。
 また、例えば、TFT-LCDを製造する場合は、樹脂基板積層体Sの樹脂基板3の第二面3bの表面上に、レジスト液を用いて、CVD法およびスパッタ法など、一般的な成膜法により形成される金属膜および金属酸化膜等にパターン形成して薄膜トランジスタ(TFT)を形成するTFT形成工程と、別の樹脂基板積層体Sの樹脂基板3の第二面3bの上に、レジスト液をパターン形成に用いてカラーフィルタ(CF)を形成するCF形成工程と、TFT付きデバイス基板とCF付きデバイス基板とを積層する、貼り合わせ工程等の各種工程を有する。
 TFT形成工程やCF形成工程では、周知のフォトリソグラフィ技術やエッチング技術等を用いて、樹脂基板3の第二面3bにTFTやCFを形成する。この際、パターン形成用のコーティング液としてレジスト液が用いられる。なお、TFTやCFを形成する前に、必要に応じて、樹脂基板3の第二面3bを洗浄してもよい。洗浄方法としては、周知のドライ洗浄やウェット洗浄を用いることができる。貼り合わせ工程では、TFT付き積層体と、CF付き積層体との間に液晶材を注入して積層する。液晶材を注入する方法としては、例えば、減圧注入法、滴下注入法がある。
(剥離工程)
 剥離工程(ステップS3)では、前記部材形成工程で得られた電子デバイス用部材付き積層体の剥離層にレーザー光を照射して剥離層から樹脂基板を剥離して、電子デバイス用部材Pおよび樹脂基板3を含む電子デバイスDを得る。つまり、電子デバイス用部材付き積層体SPを、剥離層付き支持基板4と電子デバイスDとに分離する工程である。
 剥離後の樹脂基板3上の電子デバイス用部材Pが最終的な全構成部材の一部である場合には、剥離後、残りの構成部材を樹脂基板3上に形成すればよい。
 剥離層2の剥離層表面2aと樹脂基板3の第一面3aとを剥離(分離)する際には、支持基板1の裏面側、つまり第二面1b側から剥離層2にレーザー光を照射する。
 レーザー光としては、剥離層2と樹脂基板3の界面に剥離を起こさせるものであればよく、パルス発振型または連続発光型のエキシマレーザーや、YAGレーザーや、YVOレーザーを用いることができる。エキシマレーザーは、短波長域で高エネルギーを出力するため、極めて短時間で剥離層にアブレーションを生じさせることができる。
 レーザー光のエネルギー密度は、10~100mJ/cm程度とするのが好ましく、特に60~80mJ/cm程度とするのがより好ましい。
 レーザー光の照射時間は、1~5000ナノ秒程度とするのが好ましく、1~3000ナノ秒程度とするのがより好ましく、1~1000ナノ秒程度とするのが更に好ましく、10~100ナノ秒程度とするのが特に好ましい。
 レーザー光のエネルギー密度が低い場合や照射時間が短い場合、剥離が十分に生じない。また、レーザー光のエネルギー密度が高い場合や、照射時間が長い場合、剥離層2を透過した照射光により、樹脂基板3や電子デバイス用部材Pに悪影響を及ぼすことがある。
 支持基板1としてガラス基板を用いる場合、YAGレーザーの基本波(波長1064nm)、第2高調波(波長532nm)、第3高調波(波長355nm)を用いることが好ましい。剥離層2を構成する材料は、Si(0.05≦x≦0.49,0.15≦y≦0.73,0.22≦z≦0.36,x+y+z=1)が主成分であり、紫外領域に吸収帯を有するため、第3高調波(波長355nm)を用いて、支持基板1を透過させて剥離層2を照射すればよい。
 好ましくは、電子デバイス用部材付き積層体SPの支持基板1が上側、電子デバイス用部材P側が下側となるように定盤上に設置し、電子デバイス用部材P側を定盤上に真空吸着し、この状態で、レーザー光を支持基板1側から剥離層2に対して照射する。そして、その後に支持基板1側を複数の真空吸着パッドで吸着し、真空吸着パッドを上昇させる。そうすると剥離層2と樹脂基板3との界面において、電子デバイスDを剥離層付き支持基板4から剥離できる。
 上記工程によって得られた電子デバイスDは、携帯電話、スマートフォン、PDA、タブレット型PCなどのモバイル端末に使用される小型の表示装置の製造に好適である。表示装置は主としてLCDまたはOLEDであり、LCDとしては、TN型、STN型、FE型、TFT型、MIM型、IPS型、VA型等を含む。基本的にパッシブ駆動型、アクティブ駆動型のいずれの表示装置の場合でも適用できる。
 本実施形態では、主として本発明に係る樹脂基板積層体および樹脂基板積層体を用いた電子デバイスの製造方法について説明した。
 ただし、上記の実施形態は、本発明の理解を容易にするための一例に過ぎず、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることは勿論である。
 以下、本発明の樹脂基板積層体及び樹脂基板積層体を用いた電子デバイスの製造方法の具体的実施例について説明するが、本発明は、これに限定されるものではない。
<A.実施例及び比較例に係る樹脂基板積層体の形成>
(A-1.剥離層形成工程)
 以下の条件で、支持基板としてガラス板(縦100mm、横100mm、板厚0.7mm、アヴァンストレート社製、商品名「NA32SG」)に実施例および比較例に係る剥離層を積層し、剥離層付き支持基板を作製した。剥離層付き支持基板に対して、中性洗剤1層、純水2層、純水引き上げ層の4層バッチ式洗浄を実施した。
・比較例1-1(GC:グラッシーカーボン)
 スパッタ装置 :カルーセル型バッチ式スパッタ装置
 ターゲット  :GC(グラッシーカーボン)、厚さ6.35mm
 スパッタ方式 :DCパルス印加、マグネトロンスパッタ
 排気装置   :ターボ分子ポンプ
 到達真空度  :1.0×10-4Pa(7.5×10-6Torr)
 基材温度   :200℃
 スパッタ電力 :2.5kW/cm
 膜厚     :100±10nm
 Ar流量   :330sccm
・比較例1-2(DLC:ダイアモンドライクカーボン)
 スパッタ装置 :カルーセル型バッチ式スパッタ装置
 ターゲット  :C(カーボン)、厚さ6.35mm
 スパッタ方式 :DCパルス印加、マグネトロンスパッタ
 排気装置   :ターボ分子ポンプ
 到達真空度  :1.0×10-4Pa(7.5×10-6Torr)
 基材温度   :200℃
 スパッタ電力 :2.5kW/cm
 膜厚     :100±10nm
 Ar流量   :330sccm
・比較例1-3(TiO
 スパッタ装置 :カルーセル型バッチ式スパッタ装置
 ターゲット  :Ti(チタン)、厚さ6.35mm
 スパッタ方式 :DCマグネトロンスパッタ
 排気装置   :ターボ分子ポンプ
 到達真空度  :1.0×10-4Pa(7.5×10-6Torr)
 基材温度   :200℃
 スパッタ電力 :2.5kW/cm
 膜厚     :100±10nm
 Ar流量   :240sccm
 O流量   :60sccm
・実施例1
 スパッタ装置 :カルーセル型バッチ式スパッタ装置
 ターゲット  :SC(炭化ケイ素)、厚さ6.35mm
 スパッタ方式 :DCパルス印加、マグネトロンスパッタ
 排気装置   :ターボ分子ポンプ
 到達真空度  :1.0×10-4Pa(7.5×10-6Torr)
 基材温度   :25℃(室温)、200℃
 スパッタ電力 :2.5kW/cm
 膜厚     :100±10nm
 Ar流量   :330sccm
・実施例2-1~2-5(SiC)
 スパッタ装置 :カルーセル型バッチ式スパッタ装置
 ターゲット  :SiCターゲット、厚さ6.35mm
         Si:23.5wt%、SiC:53.9wt%、C22.9wt%
 スパッタ方式 :DCパルス印加、マグネトロンスパッタ
 排気装置   :ターボ分子ポンプ
 到達真空度  :1.0×10-4Pa(7.5×10-6Torr)
 基材温度   :25℃(室温)、200℃
 スパッタ電力 :2.5kW/cm
 膜厚     :100±10nm
 Ar流量   :330sccm
・実施例3-1(Si:ケイ素)
 スパッタ装置 :カルーセル型バッチ式スパッタ装置
 ターゲット  :Si(ケイ素)、厚さ6.35mm
 スパッタ方式 :DCパルス印加、マグネトロンスパッタ
 排気装置   :ターボ分子ポンプ
 到達真空度  :1.0×10-4Pa(7.5×10-6Torr)
 基材温度   :200℃
 スパッタ電力 :2.5kW/cm
 膜厚     :100±10nm
 Ar流量   :330sccm
・実施例3-2~3-6(SiC:炭化ケイ素)
 スパッタ装置 :カルーセル型バッチ式スパッタ装置
 ターゲット  :Si(ケイ素)とC(炭素)を所定比率で混合、厚さ6.35mm
 スパッタ方式 :DCパルス印加、マグネトロンスパッタ
 排気装置   :ターボ分子ポンプ
 到達真空度  :1.0×10-4Pa(7.5×10-6Torr)
 基材温度   :200℃
 スパッタ電力 :0.6~2.5kW/cm(SiとCの比率に応じて値を設定)
 膜厚     :100±10nm
 Ar流量   :330sccm
・実施例3-7(C:炭素)
 スパッタ装置 :カルーセル型バッチ式スパッタ装置
 ターゲット  :C(炭素)、厚さ6.35mm
 スパッタ方式 :DCパルス印加、マグネトロンスパッタ
 排気装置   :ターボ分子ポンプ
 到達真空度  :1.0×10-4Pa(7.5×10-6Torr)
 基材温度   :200℃
 スパッタ電力 :2.5kW/cm
 膜厚     :100±10nm
 Ar流量   :330sccm
(A-2.樹脂基板積層工程)
 以下のとおり、ポリイミド樹脂基板(樹脂基板)を積層した。ポリイミド樹脂成形材料の溶媒希釈溶液(日立化成デュポンマイクロシステムズ株式会社製、Pyralin(登録商標)PI2610)をスピンコーター(共和理研製、K359S1)用いて、所定のスピンナー条件(初速600rpm-20秒、2速3500rpm-0.7秒)で、剥離層付き支持基板の剥離層の上に塗布(目標膜厚10μm)した。塗布後の基板面内の均一化を目的として、レベリング(水平平置き)を1分実施した。ホットプレートを用いて130℃-5分の条件でプレベークした。次に、オーブンを用いて300℃-90分の条件でポストベークし、ポリイミド樹脂基板(縦100mm、横100mm、厚さ8.4μm)を積層し、樹脂基板積層体を得た。
<B.剥離試験(LLO:レーザーリフトオフ試験)>
 樹脂基板積層体の剥離層にガラス基板側からレーザー光を照射して剥離層から樹脂基板を剥離した。ここで、レーザー光の照射は、YAG固体レーザー(波長:355nm)を用いて、スポット径25.4μm(横軸60%をオーバーラップ)、照射時間30分間スキャンすることで行った。
 レーザー光照射後、100×100mmの樹脂基板積層体の外周から2mm内側の4辺を鋭利なカッターで切り込みを入れ、ピンセットを用いて四隅のうち1カ所をつまみ、ゆっくりと一定の速度で剥離層から樹脂基板(ポリイミド基板)引き剥がして、剥離層と樹脂基板の付着力についての官能評価を実施した。
 剥離性は以下のように評価した。
 ◎:全く抵抗無く剥がれる
 ○:ごく僅かな抵抗はあるが剥がれる
 △:抵抗はあるが剥がれる
 ×:剥がれない、もしくは破れる
 剥離層の変色(有り・無し)は以下のように評価した。
 変色の有無は、光学顕微鏡画像(×500)から判断した。
 XRD分析の結果、色が薄い箇所(黄色み)は結晶構造を示すピークを検出。
 アッシュ(Ash:レーザー照射による発熱が起因して発生する灰,或いはスス状の微粒子)の有無は、布製ワイパーで剥離層を擦った際、ワイパー側への転写の有無で判断した。
<試験1:剥離層に用いる材料の検討>
 試験1では、剥離層に用いる材料を検討した。
 表1に示すように、支持基板としてのガラス基板(厚さ:0.7mm)の上に積層された各種剥離層(膜厚100nm)を有する剥離層付き支持基板を用い、剥離層のガラス基板とは反対側の表面の上に樹脂基板としてのポリイミド基板(厚さ:8.4μm)を積層して樹脂基板積層体を作製した。
Figure JPOXMLDOC01-appb-T000001
 各樹脂基板積層体にYAG固体レーザー(波長:355nm)を用いて、80mJ/cmのレーザー強度で、スポット径25.4μm、照射時間30分間スキャンすることで光照射を行い、レーザー光照射後のポリイミド基板の剥離性およびアッシュについて検討を行った。
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 剥離層としてSiCを用いた場合、剥離層であるSiCがガラス基板から剥離することなく、ポリイミド基板を剥離出来ることがわかった。
 また、剥離層としてグラッシーカーボン(GC)やダイアモンドライクカーボン(DLC)を用いた場合、ポリイミド基板と共に剥離層も剥離してしまうことがわかった。
 なお、剥離層にTiOを用いた場合、ポリイミド基板と剥離層が張り付いてしまうことがわかった。
<試験2:レーザー光強度の検討>
 試験2では、剥離工程におけるレーザー光強度の検討を行った。
 表3に示すように、支持基板としてのガラス基板(厚さ:0.7mm)を、樹脂基板としてのポリイミド基板(厚さ:8.4μm)を用い、SiC剥離層を有する試料と、SiC剥離層を有しない試料を作製した。
Figure JPOXMLDOC01-appb-T000003
 各試料にYAG固体レーザー(波長:355nm)を用いて、スポット径25.4μm、照射時間30分間スキャンして光照射を行い、レーザー光照射後のポリイミド基板の剥離性およびアッシュについて検討を行った。
 具体的には、ガラス基板直上ポリイミド基板でレーザー光強度を最適化し、最適値からレーザー光強度を10%ずつ下げ、剥離層が剥離不能となるまでレーザー光強度を低下させた。結果を表4及び表5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例の試料については、60~100mJ/cmのレーザー光を照射することでポリイミド基板が抵抗無く剥がれ、アッシュの発生もなかった。比較例の試料では、ポリイミド基板の剥離性は良いが、ポリイミド基板とガラス基板の密着性が確保されていなかった。
 ガラス基板/SiC膜の試料について、レーザー光照射前後でXPS(X線光電子分光法:日本電子製、JPS-90000MC)による組成分析を行った。
 結果を図5(レーザー光照射前)及び図6(100mJ/cmのレーザー光照射後)に示す。
 レーザー光の照射前後で、ガラス基板/SiC膜の試料表面における組成は変化しておらず、剥離層がレーザー光の照射に対して安定であることがわかった。
<試験3:剥離層付き支持基板の再利用の検討>
 試験3では、表6に示す試験2でレーザー照射によるポリイミド基板の剥離を行った試料について、再度同条件でレーザー照射による剥離を行い、剥離層付き支持基板が再利用可能であるかを検討した。
 試験2でポリイミド基板を剥離した後、再度ポリイミド基板を積層した。試験2において照射したレーザー光強度と同じ強度でレーザーを照射した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 試験2と同様に、再利用した場合であっても、剥離層上のポリイミド基板の密着力は確保された。70~90mJ/cmのレーザー光でポリイミド基板を容易に剥離することができた。いずれのレーザー強度においてもアッシュの発生は確認されなかった。以上のことから、本実施形態に係る剥離層付き支持基板は、繰り返し使用(リユース)することが可能であることがわかった。
<試験4:剥離層の組成の検討>
 試験4では、剥離層に含まれるSiとCの組成比を変化させ、SiとCの組成比が剥離性能に与える影響を検討した。
(1.試料の作製)
 二元スパッタ成膜を行い、表8に示す試料を作製した。
Figure JPOXMLDOC01-appb-T000008
(2.XPSによる組成分析)
 各試料について、XPS(装置:日本電子製、JPS-90000MC)による組成分析を、以下の条件で行った。
・分析条件
 X線源    :MgKα
 X線出力   :10kV×10mA(100W)
 EPass  :10eV
 Step   :0.1eV
 Dwell time×積算回数:100mS×8
 測定元素   :C,N,O,Si
 結果を表9及び表10に示す。
 表9は、表面、エッチング40秒(etch:40s、エッチング深さ約20nm)、エッチング80秒(etch:80s、エッチング深さ約40nm)における各試料のC(炭素)、N(窒素)、O(酸素)、Si(ケイ素)の原子濃度を示している。
 表10は、表面、エッチング40秒(etch:40s、エッチング深さ約20nm)、エッチング80秒(etch:80s、エッチング深さ約40nm)における各試料のC(炭素):酸素(O):Si(ケイ素)の割合を示している。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 XPSによる組成分析の結果、Si:Cの比がSi:C=90:10~10:90であるターゲットを用いて成膜した、実施例3-1~3-5の試料における剥離層の表面の組成がSi(0.05≦x≦0.49,0.15≦y≦0.73,0.22≦z≦0.36,x+y+z=1)であることがわかった。また、剥離層の表面において、N(窒素)が不可避的不純物として0.7at%以下含まれることがわかった。
(3.X線回折パターンの測定)
 表11に示す装置及び条件に従い、各試料のX線回折(XRD)パターンを測定した。結果を図7に示す。ここで、参照として実施例2-1のポリイミド基板付の樹脂積層体を用いた。いずれの試料においても、回折パターンはブロードなピークを示し、剥離層の結晶状態がアモルファス(非晶質)状態であることがわかった。
Figure JPOXMLDOC01-appb-T000011
(4.分光特性の測定)
 各試料の透過率、反射率、吸収率を測定し、剥離層のみの吸収率を算出した。分光特性の測定は、分光光度計(日立製作所製、U-4100)を用い、入射角θ=12°、300nmから400nmの波長領域で測定した。
 結果を図8(透過率)、図9(反射率)、図10(吸収率)及び図11(剥離層のみの吸収率)に示す。
 分光特性の測定の結果、実施例3-1~3-5に関し、波長340nm以上400nm以下の波長領域における剥離層のみの吸収率が50%以上であることがわかった。つまり、実施例3-1~3-5における剥離層は、剥離工程で用いられる紫外光(例えば波長:355nm)を良好に吸収する。
(5.レーザー光照射による剥離試験)
 各試料を用いて、レーザー光強度を変化させて、剥離試験を行った結果を表12に示す。
Figure JPOXMLDOC01-appb-T000012
 この結果から、剥離層を成膜する際のターゲットにおけるSi:Cの比が、Si:C=10:90~90:10の範囲であり、剥離層の組成比がSi(0.05≦x≦0.49,0.15≦y≦0.73,0.22≦z≦0.36,x+y+z=1)の範囲であると、レーザー光強度が70~100mJ/cmという低エネルギーで、樹脂基板に損傷を与えることなく、良好に剥離を行うことができることがわかった。
 また、剥離層を成膜する際のターゲットにおけるSi:Cの比が、Si:C=10:90~30:70の範囲であり、剥離層の組成比がSi(0.05≦x≦0.43,0.27≦y≦0.73,0.22≦z≦0.30,x+y+z=1)の範囲であると、レーザー光強度が70~100mJ/cmでアッシュが発生しないことがわかった。
 さらに、剥離層を成膜する際のターゲットにおけるSi:Cの比が、Si:C=10:90~50:50の範囲であり、剥離層の組成比がSi(0.05≦x≦0.35,0.43≦y≦0.73,0.22≦z≦0.23,x+y+z=1)の範囲であると、レーザー光強度が70~80mJ/cmでアッシュ及び剥離層の変色が発生しないことがわかった。
S 樹脂基板積層体
 1 支持基板
  1a 第一面
  1b 第二面
 2 剥離層
  2a 剥離層表面
 3 樹脂基板
  3a 第一面
  3b 第二面
 4 剥離層付き支持基板
 P 電子デバイス用部材
SP 電子デバイス用部材付き積層体
D 電子デバイス

Claims (10)

  1.  支持基板と、
     前記支持基板の上に積層された剥離層と、を有する剥離層付き支持基板と、
     前記剥離層の前記支持基板とは反対側の表面の上に剥離可能に積層された樹脂基板と、を備え、
     前記剥離層の表面の組成が、Si(0.05≦x≦0.49,0.15≦y≦0.73,0.22≦z≦0.36,x+y+z=1)であることを特徴とする樹脂基板積層体。
  2.  前記剥離層の表面の組成が、Si(0.05≦x≦0.43,0.27≦y≦0.73,0.22≦z≦0.30,x+y+z=1)であることを特徴とする請求項1に記載の樹脂基板積層体。
  3.  前記剥離層は、アモルファス状態であることを特徴とする請求項1又は2に記載の樹脂基板積層体。
  4.  前記剥離層は、波長355nmのレーザー光を照射することにより前記樹脂基板が前記剥離層から剥離可能となる材料で構成されていることを特徴とする請求項1乃至3の何れか一項に記載の樹脂基板積層体。
  5.  前記剥離層は、波長355nmのレーザー光を強度60~80mJ/cmで照射することにより前記樹脂基板が前記剥離層から剥離可能となる材料で構成されていることを特徴とする請求項1乃至4の何れか一項に記載の樹脂基板積層体。
  6.  Si:Cの比が10:90~90:10であるターゲットを用いて剥離層を支持基板上に積層し、前記剥離層の前記支持基板とは反対側の表面上に樹脂基板を積層して樹脂基板積層体を用意する工程と、
     前記樹脂基板積層体の前記樹脂基板の表面上に電子デバイス用部材を形成する部材形成工程と、
     前記剥離層にレーザー光を照射して前記剥離層から前記樹脂基板を剥離する剥離工程と、
     を行うことを特徴とする電子デバイスの製造方法。
  7.  前記ターゲットにおけるSi:Cの比が30:70~90:10であることを特徴とする請求項6に記載の電子デバイスの製造方法。
  8.  前記剥離層は、アモルファス状態であることを特徴とする請求項6又は7に記載の電子デバイスの製造方法。
  9.  前記剥離工程では、波長355nmのレーザー光を照射することを特徴とする請求項6に記載の電子デバイスの製造方法。
  10.  前記剥離工程では、波長355nmのレーザー光を強度60~80mJ/cmで照射を照射することを特徴とする請求項6又は9に記載の電子デバイスの製造方法。
PCT/JP2018/034926 2017-09-22 2018-09-20 樹脂基板積層体及び電子デバイスの製造方法 WO2019059319A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880013729.9A CN110326086B (zh) 2017-09-22 2018-09-20 树脂基板层叠体及电子设备的制造方法
KR1020197024557A KR102065901B1 (ko) 2017-09-22 2018-09-20 수지기판 적층체 및 전자 디바이스의 제조방법
US16/492,771 US20200075861A1 (en) 2017-09-22 2018-09-20 Resin substrate laminate and manufacturing method for electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-182893 2017-09-22
JP2017182893A JP6492140B1 (ja) 2017-09-22 2017-09-22 樹脂基板積層体及び電子デバイスの製造方法

Publications (1)

Publication Number Publication Date
WO2019059319A1 true WO2019059319A1 (ja) 2019-03-28

Family

ID=65811362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034926 WO2019059319A1 (ja) 2017-09-22 2018-09-20 樹脂基板積層体及び電子デバイスの製造方法

Country Status (6)

Country Link
US (1) US20200075861A1 (ja)
JP (1) JP6492140B1 (ja)
KR (1) KR102065901B1 (ja)
CN (1) CN110326086B (ja)
TW (1) TWI676607B (ja)
WO (1) WO2019059319A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021054476A1 (ja) * 2019-09-20 2021-03-25 宇部興産株式会社 フレキシブル電子デバイスの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194737A1 (ja) * 2019-03-28 2020-10-01 シャープ株式会社 電子デバイスの製造方法および電子デバイス
JP2021002622A (ja) * 2019-06-24 2021-01-07 Agc株式会社 電子デバイスの製造方法
CN111534270B (zh) * 2020-05-18 2023-08-01 深圳市化讯半导体材料有限公司 一种激光剥离材料及其制备方法和应用
JP2022049603A (ja) 2020-09-16 2022-03-29 キオクシア株式会社 半導体装置の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004171001A (ja) * 1996-11-22 2004-06-17 Seiko Epson Corp アクティブマトリクス基板および液晶表示装置
JP2008177182A (ja) * 2007-01-16 2008-07-31 Seiko Epson Corp 薄膜デバイスの製造方法
JP2015093405A (ja) * 2013-11-11 2015-05-18 旭硝子株式会社 ガラス積層体および電子デバイスの製造方法
JP2017050322A (ja) * 2015-08-31 2017-03-09 Jsr株式会社 基材の処理方法、半導体装置およびその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147794A (ja) 1974-10-22 1976-04-23 Hitachi Shipbuilding Eng Co Baratsumikamotsunpansenno okakuheki
JPS5991373A (ja) 1982-11-17 1984-05-26 Ulvac Corp 分周点弧方式の負荷電力測定装置
JP4126747B2 (ja) * 1998-02-27 2008-07-30 セイコーエプソン株式会社 3次元デバイスの製造方法
DE10353756A1 (de) * 2003-11-17 2005-06-30 Bio-Gate Bioinnovative Materials Gmbh Schichtmaterial
US7465674B2 (en) * 2005-05-31 2008-12-16 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8536629B2 (en) * 2009-02-24 2013-09-17 Nec Corporation Semiconductor device and method for manufacturing the same
JP5147794B2 (ja) * 2009-08-04 2013-02-20 株式会社半導体エネルギー研究所 表示装置の作製方法及び電子書籍の作製方法
EP2479151B1 (en) * 2009-09-18 2020-10-28 Nippon Electric Glass Co., Ltd. Method for producing glass film, method for processing glass film, and glass film laminate
TWI523758B (zh) * 2011-06-21 2016-03-01 住友化學股份有限公司 層合薄膜及電子裝置
JP2013184346A (ja) * 2012-03-07 2013-09-19 Asahi Glass Co Ltd ガラス積層体、電子デバイスの製造方法
JP6119567B2 (ja) * 2013-11-11 2017-04-26 旭硝子株式会社 ガラス積層体の製造方法および電子デバイスの製造方法
US9754823B2 (en) * 2014-05-28 2017-09-05 International Business Machines Corporation Substrate including selectively formed barrier layer
JP6412727B2 (ja) * 2014-06-30 2018-10-24 東京応化工業株式会社 樹脂基板の製造方法および表示デバイスの製造方法
CN107073883A (zh) * 2014-09-19 2017-08-18 尤尼吉可株式会社 层叠体及柔性器件的制造方法
JP2016158990A (ja) 2015-03-04 2016-09-05 京楽産業.株式会社 遊技機
KR102138676B1 (ko) * 2015-04-28 2020-07-28 미쓰이금속광업주식회사 표면 처리 구리박 및 그 제조 방법, 프린트 배선판용 동장 적층판, 및 프린트 배선판

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004171001A (ja) * 1996-11-22 2004-06-17 Seiko Epson Corp アクティブマトリクス基板および液晶表示装置
JP2008177182A (ja) * 2007-01-16 2008-07-31 Seiko Epson Corp 薄膜デバイスの製造方法
JP2015093405A (ja) * 2013-11-11 2015-05-18 旭硝子株式会社 ガラス積層体および電子デバイスの製造方法
JP2017050322A (ja) * 2015-08-31 2017-03-09 Jsr株式会社 基材の処理方法、半導体装置およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021054476A1 (ja) * 2019-09-20 2021-03-25 宇部興産株式会社 フレキシブル電子デバイスの製造方法
JPWO2021054476A1 (ja) * 2019-09-20 2021-03-25
JP7215588B2 (ja) 2019-09-20 2023-01-31 Ube株式会社 フレキシブル電子デバイスの製造方法

Also Published As

Publication number Publication date
TW201914977A (zh) 2019-04-16
KR20190101496A (ko) 2019-08-30
CN110326086B (zh) 2021-02-12
KR102065901B1 (ko) 2020-01-13
TWI676607B (zh) 2019-11-11
US20200075861A1 (en) 2020-03-05
JP6492140B1 (ja) 2019-03-27
CN110326086A (zh) 2019-10-11
JP2019061975A (ja) 2019-04-18

Similar Documents

Publication Publication Date Title
JP6492140B1 (ja) 樹脂基板積層体及び電子デバイスの製造方法
JP6176067B2 (ja) ガラス積層体および電子デバイスの製造方法
JP6733544B2 (ja) シランカップリング剤層積層ポリイミドフィルム
JP6447135B2 (ja) 積層体、積層体の製造方法、およびフレキシブル電子デバイスの製造方法
TWI577552B (zh) 積層體及其製造方法以及使用該積層體的裝置結構體的製造方法
JP6003883B2 (ja) 積層体とその製造方法及びそれを用いたデバイス構造体の製造方法
JP6181984B2 (ja) 高分子フィルム積層基板
JP6119567B2 (ja) ガラス積層体の製造方法および電子デバイスの製造方法
JPWO2016031746A6 (ja) シランカップリング剤層積層高分子フィルム
WO2015163134A1 (ja) ガラス積層体および電子デバイスの製造方法
JP7136275B2 (ja) 積層体、電子デバイスの製造方法、積層体の製造方法
JP2015178237A (ja) 積層無機基板、積層体、積層体の製造方法、およびフレキシブル電子デバイスの製造方法
JP2013184346A (ja) ガラス積層体、電子デバイスの製造方法
JP6210201B2 (ja) フレキシブル電子デバイスの製造方法
KR102476038B1 (ko) 고분자 필름 적층 기판 및 플렉시블 전자 디바이스의 제조 방법
JP2015108735A (ja) 電子デバイスの製造方法
JP2018126922A (ja) 積層体
JP2021171954A (ja) 樹脂基板積層体及び電子デバイスの製造方法
WO2016017649A1 (ja) ガラス積層体、無機層付き支持基板、電子デバイスの製造方法及び、無機層付き支持基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197024557

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859134

Country of ref document: EP

Kind code of ref document: A1