WO2019059184A1 - 樹脂組成物、およびこれを用いた立体造形物の製造方法、立体造形物、ならびに対象物把持用アタッチメントおよびこれを用いた産業用ロボット - Google Patents

樹脂組成物、およびこれを用いた立体造形物の製造方法、立体造形物、ならびに対象物把持用アタッチメントおよびこれを用いた産業用ロボット Download PDF

Info

Publication number
WO2019059184A1
WO2019059184A1 PCT/JP2018/034507 JP2018034507W WO2019059184A1 WO 2019059184 A1 WO2019059184 A1 WO 2019059184A1 JP 2018034507 W JP2018034507 W JP 2018034507W WO 2019059184 A1 WO2019059184 A1 WO 2019059184A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
meth
metal
cured product
acrylate
Prior art date
Application number
PCT/JP2018/034507
Other languages
English (en)
French (fr)
Inventor
有由見 米▲崎▼
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to US16/647,273 priority Critical patent/US20200276752A1/en
Priority to EP18858479.1A priority patent/EP3685989B1/en
Priority to JP2019543643A priority patent/JPWO2019059184A1/ja
Priority to CN201880060498.7A priority patent/CN111107975A/zh
Publication of WO2019059184A1 publication Critical patent/WO2019059184A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/12Formation of a green body by photopolymerisation, e.g. stereolithography [SLA] or digital light processing [DLP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/80Plants, production lines or modules
    • B22F12/88Handling of additively manufactured products, e.g. by robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • C08L33/068Copolymers with monomers not covered by C08L33/06 containing glycidyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0094Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with organic materials as the main non-metallic constituent, e.g. resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0856Iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/06Crosslinking by radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a resin composition, a method for producing a three-dimensional object using the same, a three-dimensional object, an attachment for gripping an object, and an industrial robot using the same.
  • Patent Document 2 a large amount of metal particles are added to the resin composition from the viewpoint of controlling the flowability of the resin composition used in the method as described in Patent Document 1 and enhancing the dimensional accuracy of the obtained three-dimensional object.
  • Patent Document 2 a large amount of metal particles are added to the resin composition from the viewpoint of controlling the flowability of the resin composition used in the method as described in Patent Document 1 and enhancing the dimensional accuracy of the obtained three-dimensional object.
  • Patent Document 3 As another method of manufacturing a three-dimensional object, there is also known a method of extruding a heat-melted filament-shaped thermoplastic resin on a stage and forming a three-dimensional object while laminating one layer at a time (Patent Document 3). In addition, a technique is also proposed in which metal particles are added to a filamentous resin composition to impart conductivity to a three-dimensional object obtained (Patent Document 4).
  • Patent Documents 5 and 6 methods for continuously curing a liquid resin composition containing a radically polymerizable compound have been proposed as a new method for producing a three-dimensional object.
  • a buffer region in which the resin composition is not cured even when irradiated with active energy rays, and a region for curing where the resin composition is hardened when irradiated with active energy rays are provided in the modeling tank.
  • the respective areas are formed such that the buffer area is located on the modeling tank bottom side and the hardening area is located on the modeling tank upper side.
  • a carrier serving as a base point of three-dimensional modeling is disposed in the region for curing, and the region for curing is selectively irradiated with active energy rays from the buffer region (bottom of the forming tank) side.
  • active energy rays from the buffer region (bottom of the forming tank) side.
  • a part of the three-dimensional object is formed on the carrier surface.
  • a cured product of the resin composition is continuously formed below the carrier, and a three-dimensional object without joints is formed. Is made.
  • region is an area
  • the polymerization inhibition for inhibiting hardening of the resin composition by an active energy ray normally
  • the agent e.g. oxygen
  • a magnetic body be included in a binding band used in production lines of various manufacturing industries (Patent Document 7). According to the said technique, it is possible to detect the fragment etc. of the binding band mixed in the product by a metal detector.
  • a binding band is formed by injection molding or the like.
  • Patent Document 2 when a large amount of metal particles is contained in the liquid resin composition, the viscosity of the resin composition becomes high, and the resin Air entering the composition is less likely to escape. As a result, there is a problem that a hollow is easily generated in the three-dimensional object to be obtained, and the tensile strength is rather reduced.
  • the amount of metal particles to be added to the resin composition is reduced, the viscosity of the resin composition becomes low, and it becomes difficult to form cavities in the three-dimensional object.
  • the metal particles precipitate or aggregate. As a result, there have been problems such as that the detectability by the metal detector is not sufficient, and it is difficult to sufficiently increase the tensile strength.
  • an object of the present invention is to provide a resin composition having high tensile strength and dimensional accuracy of a three-dimensional object to be obtained, and further having good detectability by a metal detector.
  • the first of the present invention is the following resin composition.
  • a resin composition used in a method for producing a three-dimensional object comprising a cured product of a resin composition by selectively irradiating a liquid resin composition with active energy rays, which is photopolymerization -Containing compound and metal-containing particles detectable by a metal detector and surface-treated with a surface treatment agent, wherein the content of the metal-containing particles is 10% by mass with respect to the solid content of the resin composition % Or more and 55 mass% or less resin composition.
  • a second aspect of the present invention relates to the following three-dimensional structure, an attachment for holding an object including the same, and an industrial robot including the same.
  • a three-dimensional object which is a cured product of the resin composition according to any one of the above [1] to [6].
  • the three-dimensional object according to [7] which does not have a laminated structure.
  • An attachment for gripping an object which includes the three-dimensional object described in the above [7] or [8] and is detachably attached to an arm of an industrial robot.
  • a conveying unit for conveying the object, an arm unit for holding and processing the object conveyed by the conveying unit, and a metal detection unit for inspecting the object processed by the arm unit An industrial robot, wherein the attachment for gripping an object according to [9] is detachably attached to the arm portion.
  • the third of the present invention is a method for producing the following three-dimensional object.
  • a step of selectively irradiating the resin composition filled in the formation tank with active energy rays to form a first formed object layer containing a cured product of the photopolymerizable compound, and the first formed object The step of supplying the resin composition onto the layer, and the resin composition supplied in the step of supplying the resin composition are selectively irradiated with an active energy ray to form the resin composition on the first shaped material layer. Forming a second shaped material layer containing a cured product of the photopolymerizable compound, and repeatedly performing the step of supplying the resin composition and the step of forming the second shaped material layer; [11] The method for producing a three-dimensional object according to [11].
  • the resin composition of the present invention it is possible to produce a three-dimensional object having high tensile strength and dimensional accuracy, and good detection by a metal detector.
  • FIG. 1 is a schematic view of a three-dimensional object manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2A and FIG. 2B are schematic views of a three-dimensional object manufacturing apparatus according to another embodiment of the present invention.
  • FIG. 3 is a schematic view showing a part of an industrial robot according to an embodiment of the present invention.
  • the resin composition of the present invention contains a photopolymerizable compound and metal-containing particles detectable by a metal detector, and the metal-containing particles are modified by a surface modifier. It is done. Therefore, the dispersibility of the metal-containing particles in the resin composition is good, and even if the viscosity of the resin composition is low, sedimentation, aggregation and the like of the metal-containing particles are less likely to occur. Furthermore, when the photopolymerizable compound is a radically polymerizable compound, the polymerization of the radically polymerizable compound may be inhibited by oxygen adhering to the filler surface, but in the present invention, the metal is treated by a treatment with a surface modifier. Since the surface of the contained particles is treated, such oxygen inhibition is also less likely to occur.
  • the amount of metal-containing particles contained in the resin composition is 10% by mass or more and 55% by mass or less based on the total amount of the photopolymerizable compound and the metal-containing particles, the viscosity of the resin composition is excessively increased. In addition, even if air gets into the resin composition, it is easy to escape. On the other hand, since the resin composition contains a certain amount of metal-containing particles, sufficient detectability by the metal detector can be obtained.
  • the resin composition according to an embodiment of the present invention contains a photopolymerizable compound and metal-containing particles.
  • the resin composition usually further contains a polymerization initiator for initiating polymerization of the photopolymerizable compound.
  • the resin composition may further contain, for example, resins other than photopolymerizable compounds such as thermally polymerizable resins, thickeners, various additives, and the like.
  • the photopolymerizable compound contained in the resin composition may be a compound which can be polymerized and cured by irradiation of active energy rays, and may be a monomer or an oligomer, and may be a pre-polymer. It may be a polymer or a mixture of these.
  • the photopolymerizable compound may be a radically polymerizable compound or a cationically polymerizable compound.
  • the photopolymerizable compound Must be a radically polymerizable compound.
  • the resin composition may contain only one type of photopolymerizable compound, or two or more types.
  • active energy rays for curing the photopolymerizable compound include ultraviolet rays, X-rays, electron beams, ⁇ -rays, visible rays and the like.
  • the type of the radically polymerizable compound which is one of the photopolymerizable compounds is not particularly limited as long as it has a radically polymerizable group by irradiation of active energy rays in the presence of a radical polymerization initiator or the like.
  • the below-mentioned unsaturated carboxylic acid ester compound containing one or more unsaturated carboxylic acid ester structures in the molecule or the below-mentioned unsaturated carboxylic acid amide compound containing one or more unsaturated carboxylic acid amide structures in the molecule Is preferred. More specifically, it is particularly preferable to be a (meth) acrylate compound containing a (meth) acryloyl group and / or a (meth) acrylamide compound described later.
  • (meth) acrylic indicates methacryl and / or acrylic
  • description of "(meth) acryloyl” indicates methacryloyl and / or acryloyl
  • (meth) acrylate The description of "represents methacrylate and / or acrylate.
  • Examples of the “compound having an allyl ether group” which is one of the above radical polymerizable compounds include phenyl allyl ether, o-, m-, p-cresol monoallyl ether, biphenyl-2-ol monoallyl ether, biphenyl -4-ol monoallyl ether, butyl allyl ether, cyclohexyl allyl ether, cyclohexane methanol monoallyl ether, phthalic acid diallyl ether, isophthalic acid diallyl ether, dimethanol tricyclodecane diallyl ether, 1,4-cyclohexane dimethanol diallyl ether, Alkylene (2 to 5 carbon atoms) glycol diallyl ether, polyethylene glycol diallyl ether, glycerin diallyl ether, trimethylolpropane diallyl ether, pentaerythritol Allyl ether, polyglycerin (degree of polymer
  • examples of the above-mentioned “compound having a vinyl ether group” include butyl vinyl ether, butyl propenyl ether, butyl butenyl ether, hexyl vinyl ether, 1,4-butanediol divinyl ether, ethylhexyl vinyl ether, phenyl vinyl ether, benzyl vinyl ether, ethyl ethoxy Vinyl ether, acetyl ethoxy ethoxy vinyl ether, cyclohexyl vinyl ether, tricyclodecane vinyl ether, adamantyl vinyl ether, cyclohexane dimethanol divinyl ether, tricyclodecane dimethanol divinyl ether, EO adduct of bisphenol A divinyl ether, cyclohexane diol divinyl ether, cyclopentadiene vinyl ether, Norbornyl dimethanol di Nil ether, divinyl res
  • Examples of the above-mentioned “compound having a maleimide group” include phenyl maleimide, cyclohexyl maleimide, n-hexyl maleimide and the like.
  • (meth) acrylamide compound examples include (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-hydroxyethyl ( Meta) acrylamide, N-butyl (meth) acrylamide, isobutoxymethyl (meth) acrylamide, diacetone (meth) acrylamide, bis methylene acrylamide, di (ethylene oxy) bis propyl acrylamide, and tri (ethylene oxy) bis propyl acrylamide ( Meta) acryloyl morpholine etc. are included.
  • (meth) acrylate compound examples include isoamyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, octyl (meth) ) Acrylates, isooctyl (meth) acrylates, isononyl (meth) acrylates, decyl (meth) acrylates, isodecyl (meth) acrylates, tridecyl (meth) acrylates, isoamylstil (meth) acrylates, isostearyl (meth) acrylates, dicyclopentenyloxy Ethyl (meth) acrylate, dicyclopentenyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dimethylaminoethyl (me)
  • the “(meth) acrylate compound” may be one obtained by further modifying various (meth) acrylate monomers or their oligomers (modified products).
  • modified products include triethylene glycol diacrylate, polyethylene glycol diacrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, ethylene oxide modified pentaerythritol tetraacrylate, ethylene oxide modified bisphenol A di (meth) acrylate, ethylene Ethylene oxide modified (meth) acrylate monomers such as oxide modified nonylphenol (meth) acrylate; tripropylene glycol diacrylate, polypropylene glycol diacrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified pentaerythritol tetraacrylate, propylene Oxide-denatured glycerin tri (meth) ac Oxide modified (meth) acrylate monomers such as phthalates; caprol
  • the “(meth) acrylate compound” may be a compound obtained by (meth) acrylated various oligomers (hereinafter, also referred to as “modified (meth) acrylate compound”).
  • modified (meth) acrylate compounds include polybutadiene (meth) acrylate compounds, polyisoprene (meth) acrylate compounds, epoxy (meth) acrylate compounds, urethane (meth) acrylate compounds, silicone ( Examples include meta) acrylate compounds, polyester (meth) acrylate compounds, and linear (meth) acrylic compounds.
  • epoxy (meth) acrylate compounds, urethane (meth) acrylate compounds, and silicone (meth) acrylate compounds can be suitably used. If the resin composition contains an epoxy (meth) acrylate compound, a urethane (meth) acrylate compound or a silicone (meth) acrylate compound, this is preferable in that the strength of the resulting three-dimensional object is increased.
  • the epoxy (meth) acrylate compound may be a compound containing one or more epoxy group and one or more (meth) acrylate groups in one molecule, and examples thereof include bisphenol A epoxy (meth) acrylate and bisphenol Novolak type epoxy such as F type epoxy (meth) acrylate, bisphenyl type epoxy (meth) acrylate, triphenolmethane type epoxy (meth) acrylate, cresol novolac type epoxy (meth) acrylate, phenol novolac type epoxy (meth) acrylate Included are (meth) acrylates and the like.
  • the urethane (meth) acrylate compound is obtained by reacting an aliphatic polyisocyanate compound having two isocyanate groups or an aromatic polyisocyanate compound having two isocyanate groups with a (meth) acrylic acid derivative having a hydroxyl group or the like.
  • Compounds having a urethane bond and a (meth) acryloyl group are obtained by reacting an aliphatic polyisocyanate compound having two isocyanate groups or an aromatic polyisocyanate compound having two isocyanate groups.
  • isocyanate compounds as raw materials of the above urethane (meth) acrylate compounds include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4.
  • MDI 4,4'-diisocyanate
  • polymeric MDI 4,4'-diisocyanate
  • XDI xylylene diisocyanate
  • XDI hydrogenated XDI
  • lysine diisocyanate triphenylmethane triisocyanate
  • Isocyanatophenyl tris (Isocyanatophenyl) thiophosphate
  • tetramethyl xylylene diisocyanate 1,6,11-undecanetrichloride Isocyanate and the like.
  • examples of the isocyanate compound as a raw material of the urethane (meth) acrylate compound include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, polycaprolactone diol and the like. Also included are chain extended isocyanate compounds obtained by the reaction of a polyol with an excess of isocyanate compound.
  • examples of (meth) acrylic acid derivatives having a hydroxyl group which are raw materials of the above urethane (meth) acrylate compounds, include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and 2-hydroxy Hydroxyalkyl (meth) acrylates such as butyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, Mono (meth) acrylates of dihydric alcohols such as polyethylene glycol; mono (meth) acrylates and di (meth) acrylates of trihydric alcohols such as trimethylolethane, trimethylolpropane and glycerin; bisphenol A type epoxy acrylate It includes epoxy (meth) acrylate of rates.
  • the urethane (meth) acrylate compounds having the above-mentioned structure may be commercially available, and examples thereof include M-1100, M-1200, M-1210 and M-1600 (all are manufactured by Toagosei Co., Ltd.) ), EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL2290, EBECRYL2220, EBECRYL4227, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402 and an ECECL Ech7 Resin SH-500B, Art resin UN-12 0TPK, ART RESIN UN-1255, ART RESIN UN-3320HB, ART RESIN UN-7100, ART RESIN UN-9000A, ART RESIN UN-9000H (all manufactured by Negami), U-2HA, U-2PHA, U- 3HA, U-4HA, U-6H, U-6HA
  • the urethane (meth) acrylate compound may be a blocked isocyanate obtained by blocking the isocyanate group of polyisocyanate with a blocking agent having a (meth) acrylate group.
  • the polyisocyanate used to obtain the blocked isocyanate may be the above-mentioned "isocyanate compound", or may be a compound obtained by reacting these compounds with a polyol or a polyamine.
  • the polyol include conventionally known polyether polyols, polyester polyols, polymer polyols, vegetable oil polyols, and further flame-retardant polyols such as phosphorus-containing polyols and halogen-containing polyols. These polyols may be contained singly or in combination of two or more in the blocked isocyanate.
  • polyether polyols to be reacted with isocyanate and the like include compounds having at least two or more active hydrogen groups (specifically, polyhydric alcohols such as ethylene glycol, propylene glycol, glycerin, trimethylolpropane, pentaerythritol and the like) Included are compounds prepared by the addition reaction of an amine such as ethylene diamine, an alkanolamine such as ethanolamine and diethanolamine, etc., and an alkylene oxide (specifically, ethylene oxide, propylene oxide etc.).
  • the method of preparing polyether polyols is described, for example, in Gunter Oertel, "Polyurethane Handbook” (1985), Hanser Publishers (Germany), p. It can be the method described in 42-53.
  • polyester polyols examples include condensation reaction products of polyvalent carboxylic acids such as adipic acid and phthalic acid with polyhydric alcohols such as ethylene glycol, 1,4-butanediol and 1,6-hexanediol, and nylon Waste from production, trimethylolpropane, waste of pentaerythritol, waste of phthalic acid-based polyester, polyester polyol treated and derived from waste, etc. are included (for example, Keiji Iwata "Polyurethane resin handbook” (1987) Nikkan Kogyo Shinbun Company p.117)).
  • polymer polyol examples include polymer polyols obtained by reacting the polyether polyol with an ethylenically unsaturated monomer (for example, butadiene, acrylonitrile, styrene or the like) in the presence of a radical polymerization catalyst.
  • the polymer polyol more preferably has a molecular weight of about 5,000 to 12,000.
  • vegetable oil polyols examples include castor oil, vegetable oil containing a hydroxyl group such as coconut oil, and the like.
  • a castor oil derivative polyol obtained using castor oil or hydrogenated castor oil as a raw material can also be suitably used.
  • the castor oil derivative polyols include castor oil polyester, castor oil polyester obtained by reaction of polyvalent carboxylic acid and short chain diol, and alkylene oxide adduct of castor oil and castor oil polyester.
  • flame retardant polyols examples include phosphorus-containing polyols obtained by adding an alkylene oxide to a phosphoric acid compound; halogen-containing polyols obtained by ring-opening polymerization of epichlorohydrin and trichlorobutylene oxide; and active hydrogen compounds having an aromatic ring And aromatic ether polyols obtained by addition of oxides; and aromatic ester polyols obtained by condensation reaction of polyhydric carboxylic acids having polyvalent carboxylic acids having aromatic rings, and the like.
  • the hydroxyl value of the polyol to be reacted with isocyanate or the like is preferably 5 to 300 mg KOH / g, and more preferably 10 to 250 mg KOH / g.
  • the hydroxyl value can be measured by the method defined in JIS-K0070.
  • examples of polyamines to be reacted with isocyanate etc. include ethylenediamine, diethylenetriamine, triethylenetetramine, hexamethylenepentamine, bisaminopropylpiperazine, tris (2-aminoethyl) amine, isophorone diamine, polyoxyalkylene polyamine, diethanolamine , Triethanolamine and the like.
  • any one having a (meth) acryloyl group, which reacts with the isocyanate group and can be released by heating may be used.
  • blocking agents include t-butylaminoethyl methacrylate (TBAEMA), t-pentylaminoethyl methacrylate (TPAEMA), t-hexylaminoethyl methacrylate (THAEMA), t-butylaminopropyl methacrylate (TPAEMA) And t-hexylaminoethyl methacrylate (THAEMA), t-butylaminopropyl methacrylate (TBAPMA) and the like.
  • TAAEMA t-butylaminoethyl methacrylate
  • TPAEMA t-pentylaminoethyl methacrylate
  • TPAEMA t-hexylaminoethyl methacrylate
  • TPAEMA t-butylaminopropyl methacrylate
  • TAPMA t-butylaminopropyl methacrylate
  • the blocking reaction of the polyisocyanate can generally be carried out at -20 to 150.degree. C., preferably 0 to 100.degree. If the temperature is 150 ° C. or less, side reactions can be prevented, and if the temperature is ⁇ 20 ° C. or more, the reaction rate can be set in an appropriate range.
  • the blocking reaction between the polyisocyanate compound and the blocking agent can be carried out with or without the presence of a solvent. When a solvent is used, it is preferable to use a solvent inert to the isocyanate group.
  • a reaction catalyst can be used. Specific examples of reaction catalysts include organic metal salts such as tin, zinc and lead, metal alcoholates, and tertiary amines.
  • the block isocyanate prepared as mentioned above As a radically polymerizable compound, first, an acryloyl group part is polymerized by light irradiation. Thereafter, by removing the blocking agent by heating, the produced isocyanate compound can be newly polymerized with a polyol, a polyamine or the like, and a three-dimensional object containing a polyurethane, a polyurea or a mixture thereof can be obtained.
  • the silicone (meth) acrylate type compound can be made into the compound which added (meth) acrylic acid to the terminal and / or side chain of silicone which has a polysiloxane bond in the principal chain.
  • the silicone used as the raw material of the silicone (meth) acrylate compound is an organopolysiloxane obtained by polymerizing a known monofunctional, bifunctional, trifunctional or tetrafunctional silane compound (such as alkoxysilane) in any combination. Can.
  • silicone acrylate examples include commercially available TEGORad 2500 (trade name: manufactured by Tego Chemie Service GmbH), and an organic having an -OH group such as X-22-4015 (trade name: manufactured by Shin-Etsu Chemical Co., Ltd.)
  • An acid catalyst of esterified modified silicone and acrylic acid KBM 402, KBM 403 (brand name: all manufactured by Shin-Etsu Chemical Co., Ltd.) and reacted with acrylic acid and an organic modified silane compound such as epoxysilane. Included.
  • the type of the cationically polymerizable compound which is another example of the photopolymerizable compound, is not particularly limited as long as it has a cationically polymerizable group by irradiation of active energy rays in the presence of an acid catalyst.
  • the example includes a cyclic hetero compound, and is preferably a compound having a cyclic ether group from the viewpoint of its reactivity and the like.
  • the cationically polymerizable compound include oxirane compounds such as oxirane, methyl oxirane, phenyl oxirane and 1,2-diphenyl oxirane, or a hydrogen atom of an oxirane ring such as glycidyl ether, glycidyl ester and glycidyl amine is methylene bond Epoxy group-containing compound substituted with a group or a methine bonding group; 2- (cyclohexylmethyl) oxirane, 2-ethoxy-3- (cyclohexylmethyl) oxirane, [(cyclohexyloxy) methyl] oxirane, 1,4-bis ( Epoxy-containing compounds having a cycloalkane ring such as oxiranylmethoxymethyl) cyclohexane and the like; 7-oxabicyclo [4.1.0] heptane, 3-methyl-7-oxabicyclo [4.1.0] heptane,
  • the total amount of photopolymerizable compounds contained in the resin composition is preferably 10 to 90% by mass, more preferably 30 to 70% by mass, based on the total mass of the resin composition, and 40 to 60% by mass. More preferably, it is%. When the amount of the photopolymerizable compound is in the above range, a three-dimensional object with high strength is easily obtained.
  • the metal-containing particles contained in the resin composition are particles comprising a metal component that can be detected by a metal detector, and further, the surface is particles modified by a surface modifier.
  • the resin composition may contain only one kind of metal-containing particles, or may contain two or more kinds.
  • Examples of the metal component contained in the metal-containing particles include transition metal magnetic bodies, transition metal alloy magnetic bodies, intermetallic compound magnetic bodies, oxide magnetic bodies, nonmagnetic bodies and the like.
  • Examples of transition metal magnetic materials include metals such as iron, cobalt, nickel, chromium and the like.
  • transition metal alloy magnetic materials include iron-cobalt; iron-nickel; iron-nickel-cobalt-aluminium; manganese-aluminium-carbon magnets; martensitic, ferritic, or austenitic-ferritic stainless steels Etc. are included.
  • stainless steels examples include martensitic stainless steels such as SUS403, 410, 410S, 420J1, 420J2, and 440A; and ferrites such as SUS405, 410L, 429, 430, 434, 436L, 445J1, 445J2, 444, 447J1, and XM27.
  • Stainless steels include austenitic-ferritic stainless steels such as SUS329J1, 329J3L, and 329J4L.
  • oxide magnetic material examples include ⁇ -iron oxide, triiron tetraoxide, maghemite, barium magnet, ferrite magnet and the like.
  • nonmagnetic materials include aluminum, copper and the like.
  • stainless steel iron, iron oxide ( ⁇ -iron oxide or triiron tetraoxide) is preferable, and iron or iron oxide is preferable from the viewpoint of detection by a metal detector. Further, iron or iron oxide is very useful when, for example, the resin composition is used for producing the attachment of an industrial robot described later because it hardly affects the human body.
  • the type of the surface modifier is not particularly limited as long as it is a compound capable of enhancing the dispersibility of particles made of a metal component.
  • the surface modifier is for enhancing the dispersibility to the functional group present on the surface of the metal component or the group capable of adsorbing to the metal component, and to various components (for example, a photopolymerizable compound etc.) in the resin composition. And the following groups. Examples thereof include silane coupling agents, titanium coupling agents, zirconium based coupling agents and the like.
  • the presence or absence of the surface treatment by a surface modifier can be specified by the elemental analysis of the micro area
  • examples of the silane coupling agent include, for example, alkoxysilanes having alkyl groups, silazanes and the like as well as silane compounds having reactive functional groups such as vinyl groups and epoxy groups.
  • Specific examples of the silane coupling agent include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxy Propyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane , 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane
  • titanium coupling agents include n-propyltrimethoxy titanium, i-propyl triethoxy titanium, n-hexyl trimethoxy titanium, cyclohexyl triethoxy titanium, phenyl trimethoxy titanium and the like.
  • zirconium-based coupling agents include tri-n-butoxy ethyl acetoacetate zirconium, di-n-butoxy bis (ethylacetoacetate) zirconium, n-butoxy tris (ethylacetoacetate) zirconium, tetrakis -Propylacetoacetate) Zirconium, tetrakis (acetylacetoacetate) zirconium, tetrakis (ethylacetoacetate) zirconium, di-n-butoxy.bis (acetylacetonato) zirconium and the like are included.
  • the surface of the particle composed of the metal component may be treated with one type of surface modifier, or may be treated with two or more types of surface modifier.
  • the surface modifier is preferably a silane coupling agent, and from the viewpoint of improving the dispersibility of metal-containing particles, compatibility with the photopolymerizable resin, reactivity with the photopolymerizable resin, etc.
  • the method for preparing the metal-containing particles is not particularly limited. For example, after particles made of a metal component are dispersed in an arbitrary solvent, a surface treatment agent is added to the dispersion and stirred. Thereafter, the solvent may be removed by filtration and the like, and the method of heating and drying may be employed. After drying by heating, the obtained particles may be crushed by, for example, a ball mill or the like, if necessary.
  • the shape of the metal-containing particles contained in the resin composition is not particularly limited, and may be, for example, spherical, flat or fibrous, etc., but is spherical from the viewpoint of handleability etc. Is preferred.
  • the average particle diameter measured by the dynamic scattering method is preferably 0.05 ⁇ m or more and 1 ⁇ m or less, more preferably 0.08 ⁇ m to 0.8 ⁇ m, and 0. More preferably, it is 1 ⁇ m to 0.5 ⁇ m.
  • the average particle size of the metal-containing particles is less than 0.05 ⁇ m, the interaction between particles is increased, and aggregates tend to be easily formed.
  • the average particle size is 1 ⁇ m or more, the metal-containing particles tend to be easily sedimented in the resin composition.
  • the measurement of the average particle diameter can be performed, for example, by a fine particle size distribution measuring apparatus (Nanotrac UPA 250 EX, manufactured by Nikkiso Co., Ltd.), and the measurement conditions are, for example, laser wavelength: 780 nm, measurement range: 0.8 to 6000 nm. be able to.
  • the average value of the maximum diameter is preferably in the above range.
  • the aspect ratio (maximum diameter / minimum diameter) is preferably 2 or more and 20 or less.
  • the amount of the metal-containing particles contained in the resin composition is 10% by mass to 55% by mass with respect to the solid content of the resin composition, and more preferably 15% by mass to 50% by mass, and 20 It is more preferable that the content is not less than 30% by mass.
  • solid content refers to the total amount of components remaining when the resin composition is cured, and also includes the amount of components that are liquid in the resin composition.
  • the amount of the metal-containing particles contained in the resin composition is excessively small, it becomes difficult for the three-dimensional object to be detected by the metal detector.
  • the amount of the metal-containing particles is in the above range, the tensile strength of the obtained three-dimensional structure is likely to be increased, and furthermore, the detectability by the metal detector is also improved.
  • the resin composition usually contains a polymerization initiator for initiating the polymerization of the photopolymerizable compound.
  • the type of polymerization initiator is appropriately selected according to the type of photopolymerizable compound, and for example, when the photopolymerizable compound is a radically polymerizable compound, a radical polymerization initiator is included.
  • a cationic polymerization initiator such as a photoacid generator is included.
  • the radical polymerization initiator is not particularly limited as long as it is a compound capable of generating a radical by irradiation of active energy rays, and can be a known radical polymerization initiator.
  • radical polymerization initiators examples include 2-hydroxy-2-methyl-1-phenylpropan-1-one (manufactured by BASF, IRGACURE 1173 (“IRGACURE” is a registered trademark of the same company), etc.), 2-hydroxy-1 - ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl ⁇ -2-methyl-propan-1-one (manufactured by BASF, IRGACURE 127, etc.), 1- [4- (2) -Hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one (manufactured by BASF, IRGACURE 2959, etc.), 2,2-dimethoxy-1,2-diphenylethane-1-one (BASF) Co., Ltd., IRGACURE 651 etc.), benzyl dimethyl ketal, 1- (4-isopropylphenyl) -2-vinyl Roxy-2-methylpropan-1-one,
  • the radical polymerization initiator is preferably contained in an amount of 0.01 to 10% by mass, more preferably 0.1 to 5% by mass, and still more preferably 0.5 to 3% by mass, based on the total amount of the radically polymerizable compounds. It is further preferred that When the radical polymerization initiator is included in the above range, it becomes possible to polymerize the above-mentioned radically polymerizable compound sufficiently efficiently.
  • the cationic polymerization initiator is not particularly limited as long as it is a compound capable of generating an acid and polymerizing a cationically polymerizable compound by irradiation of active energy rays, and known photo acid generators may be used. it can.
  • the photoacid generator include onium salt photoacid generators such as sulfonium salts or iodonium salts.
  • the anion component in the above-mentioned onium salt photoacid generator for example, PF 6 -, PF 4 ( CF 2 CF 3) 2 - phosphoric acid ion such as, SbF 6 - antimonate ion such, trifluoromethanesulfonate, etc.
  • sulfonium such as aromatic sulfonium
  • iodonium such as aromatic iodonium
  • phosphonium such as aromatic phosphonium
  • sulfoxonium such as aromatic sulfoxonium
  • onium salt photoacid generators examples include sulfonium salts such as aromatic sulfonium salts having an anion component as a counter anion, iodonium salts such as aromatic iodonium salts, and phosphonium salts such as aromatic phosphonium salts Sulfoxonium salts such as aromatic sulfoxonium salts are included.
  • the photoacid generator is preferably contained in an amount of 0.01 to 10% by mass, more preferably 0.1 to 5% by mass, and still more preferably 0.5 to 3% by mass, based on the total amount of the cationically polymerizable compounds. It is further preferred that When the photoacid generator is included in the above range, the above-described cationically polymerizable compound can be polymerized sufficiently efficiently.
  • the resin composition may contain, for example, a thermally polymerizable resin, a thickener, and various additives.
  • thermally polymerizable resin examples include cyanate ester resins, epoxy resins, silicone resins and the like.
  • cyanate ester resin which is a thermally polymerizable resin examples include 1,3- or 1,4-dicyanatobenzene; 1,3,5-tricyanatobenzene; 1,3-, 1,4-, 1,6 -, 1, 8-, 2, 6 or 2, 7-dicyanatonaphthalene; 1, 3, 6-tricyanatonaphthalene; 2, 2'- or 4, 4'-dicyanatobiphenyl; bis (4- Cyanatophenyl) methane; 2,2-bis (4-cyanatophenyl) propane; 2,2-bis (3,5-dichloro-4-cyanatophenyl) propane; 2,2-bis (3-dibromo- 4-dicyanatophenyl) propane; bis (4-cyanatophenyl) ether; bis (4-cyanatophenyl) thioether; bis (4-cyanatophenyl) sulfone; tris (4
  • the epoxy resin which is a thermally polymerizable resin contains the well-known epoxy resin which has one or two or more epoxy groups in a molecule
  • crystalline epoxy resins such as biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, stilbene type epoxy resin, hydroquinone type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, Novolak type epoxy resin such as naphthol novolac type epoxy resin; Phenol aralkyl type epoxy resin such as phenylene skeleton containing phenol aralkyl type epoxy resin, biphenylene skeleton containing phenol aralkyl type epoxy resin, phenylene skeleton containing naphthol aralkyl type epoxy resin; Triphenolmethane type Multifunctional epoxy resin such as epoxy resin, alkyl-modified triphenolmethane epoxy resin, glycidyl amine, tetrafunctional naphthalene epoxy resin Resin
  • the silicone resin which is a thermally polymerizable resin may be any resin having an organopolysiloxane structure, and examples thereof include the following addition-curable silicone resins.
  • a typical addition-curable liquid silicone resin contains, as essential components, a silicone containing a vinylsilyl group, a silicone containing a hydrosilyl group, and an addition reaction catalyst, and when heated, the vinylsilyl group and the hydrosilyl group A cross-linking structure is formed by the addition reaction that occurs between the two to cure.
  • silicones having a vinyl group examples include polydimethylsiloxane in which each terminal silicon atom is substituted with vinyl group, dimethylsiloxane-diphenylsiloxane copolymer in which each terminal silicon atom is substituted with vinyl group, and vinyl group in each terminal silicon atom. And the like. Polyphenylmethylsiloxane substituted with, vinylmethylsiloxane-dimethylsiloxane copolymer having a trimethylsilyl group at each end, and the like are used.
  • silicones containing hydrosilyl groups include methylhydrosiloxane-dimethylsiloxane copolymers having trimethylsilyl groups at each end.
  • polydimethylsiloxane having a hydrogen atom bonded to each end can be used in combination.
  • the addition reaction catalyst may, for example, be platinum black, platinum chloride, chloroplatinic acid, a reaction product of chloroplatinic acid and monohydric alcohol, a complex of chloroplatinic acid and olefins, platinum-based catalyst such as platinum bisacetoacetate, Platinum group metal catalysts such as palladium catalysts and rhodium catalysts are mainly used.
  • the thermally polymerizable resin is preferably contained in an amount of 10 to 90% by mass, more preferably 30 to 70% by mass, still more preferably 40 to 60% by mass, based on the total amount of the resin composition.
  • the thermally polymerizable resin is contained in the above range, the heat resistance and the like of the resulting three-dimensional object can be easily enhanced.
  • the resin composition may contain a curing agent, a curing accelerator and the like together with the thermally polymerizable resin.
  • curing agents and curing accelerators include linear aliphatic diamines having 2 to 20 carbon atoms such as ethylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine, etc., metaphenylene diamine, paraphenylene diamine, paraxylene diamine, 4,4'-Diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylether, 4,4'-diaminodiphenylsulfone, 4,4'-diaminodicyclohexane, bis (4-aminophenyl) Aminos such as phenylmethane, 1,5-diaminonaphthalene, metaxylenediamine, paraxylenediamine, 1,1-bis (4-aminophen
  • Phenol such as phenylene skeleton-containing phenol aralkyl resin, biphenylene skeleton-containing phenol aralkyl resin Aralkyl resins; Phenolic resins having a condensed polycyclic structure such as naphthalene skeleton or anthracene skeleton; polyoxystyrenes such as polyparaoxystyrene; alicyclics such as hexahydrophthalic anhydride (HHPA) and methyltetrahydrophthalic anhydride (MTHPA) Aromatic acids such as acid anhydride, trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenonetetracarboxylic acid (BTDA) Acid anhydrides and the like containing anhydrides; polymercaptan compounds such as polysulfides, thioesters and thioethers; isocyanate compounds such as isocyanate prepolymers and blocked isocyanates; organic
  • a thickener may be contained in the resin composition as long as the objects and effects of the present invention are not impaired.
  • thickeners include clay minerals, cellulose nanofibers, and cellulose nanocrystals.
  • clay minerals include talc, mica, clay, wollastonite, hectorite, saponite, stevensite, hidede, montmorillonite, nontrite, bentonite, Na-type tetrasilastic fluorine mica, Li-type tetrasilastic fluorine mica, Examples thereof include swelling micas such as Na-type fluoroteniolite and Li-type fluoroteniolite, and vermiculite.
  • Cellulose nanofibers include, for example, mechanical disintegration of plant-derived fiber or plant cell walls, biosynthesis by acetic acid bacteria, N-containing 2, 2, 6, 6- tetramethylpiperidine-1-oxyl radical (TEMPO), etc. It can be set as the fiber which has a fibrous nano fibril as a main component obtained by the oxidation by an oxyl compound, the electrospinning method, etc.
  • Cellulose nanocrystals are mainly composed of whisker-like (needle-like) crystallized nanofibrils obtained by mechanical disintegration of plant-derived fibrous or plant cell walls and the like. It can be a crystal.
  • Cellulose nanofibers and cellulose nanocrystals may be mainly composed of cellulose, and may contain lignin, hemicellulose and the like.
  • the resin composition may contain only one thickener, or two or more thickeners.
  • these thickeners are contained in the resin composition, the viscosity of the resin composition is appropriately increased, and sedimentation, aggregation and the like of the metal-containing particles are easily suppressed.
  • the amount of the thickener is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass, and more preferably 1 to 3% by mass, based on the total mass of the resin composition. It is further preferred that
  • a photosensitizer, a polymerization inhibitor, and the like can be used in the resin composition as long as formation of a three-dimensional object by irradiation of an active energy ray is possible and the resulting three-dimensional object does not significantly cause unevenness in strength.
  • Optional additives such as UV absorbers, antioxidants, coloring materials such as dyes and pigments, antifoaming agents and surfactants may be further included.
  • the resin composition of the present invention has a viscosity at 25 ° C. of 0.2 to 100 Pa ⁇ s, which is measured using a rotary viscometer according to the method according to JIS K-7117-1. Is preferable, and 1 to 15 Pa ⁇ s is more preferable.
  • the viscosity of the resin composition is in the above range, it becomes difficult for the metal-containing particles to settle or aggregate, and as a result, the strength of the three-dimensional object tends to be increased.
  • the preparation method of the above-mentioned resin composition is not particularly limited, and, for example, the above-mentioned photopolymerizable compound, metal-containing particles, polymerization initiator, and, if necessary, other components etc. all at once It may be prepared by mixing, or only some of the components may be premixed, and then other components may be mixed and prepared.
  • a well-known apparatus can be used as an apparatus used for mixing of a resin composition.
  • Ultra-Turrax manufactured by IKA Japan
  • TK homomixer manufactured by Primix
  • TK pipeline homomixer manufactured by Primix
  • TK Filmix manufactured by Primix
  • Needlesmix manufactured by Em Technic
  • Medialess stirrers such as Claire SS5 (manufactured by Em Technics Co., Ltd.), cavitron (manufactured by Eurotech Co., Ltd.), Fine Flow Mill (manufactured by Pacific Kiko Co., Ltd.), Visco Mill (manufactured by Imex Co., Ltd.), Apex Mill (manufactured by Shobo Kogyo Co., Ltd.) Star mill (Ashizawa, made by Finetech Co., Ltd.), DCP Super Flow (made by Nippon Eirich Co., Ltd.), MP mill (made by Inoue Seisakusho), spike
  • Ginomashin Inc. manufactured by Starburst (Sugino Machine Limited), Nanomizer (manufactured by Yoshida Kikai), includes a high-pressure impact type dispersing device such as NANO 3000 (manufactured by Bitsubusha).
  • rotation revolution mixers such as Awatori Neritaro (made by Shinky) and Kakuhunter (made by Photographic Chemical)
  • planetary mixers such as Hibismix (made by Primix), Hibis Dispar (made by Primix), etc.
  • Nanoruptor It is also possible to suitably use an ultrasonic dispersion device such as (manufactured by Sonic Bio).
  • liquid resin composition mentioned above selectively irradiates with an active energy ray
  • curing material of the said photopolymerizable compound is three-dimensional molded item Can be used in the manufacturing method of
  • the resin composition is selectively irradiated with an active energy ray to cure the above-described photopolymerizable compound into a desired shape, and a primary cured product is obtained.
  • the active energy ray is not particularly limited as long as it can sufficiently polymerize the photopolymerizable compound, and can be, for example, ultraviolet light, X-ray, electron beam, ⁇ -ray and visible light.
  • a primary cured material can be made into a three-dimensional model.
  • the resin composition contains a component other than the photopolymerizable compound (for example, a thermally polymerizable resin) as the polymerizable component
  • a component other than the photopolymerizable compound for example, a thermally polymerizable resin
  • the thermal content contained in the primary cured product is cured (polymerized) by any method to obtain a three-dimensional object.
  • FIG. 1 is a schematic diagram which shows an example of the apparatus (manufacturing apparatus of a three-dimensional molded item) for producing a primary cured material by the lamination-modeling method.
  • the manufacturing apparatus 500 supports a modeling tank 510 capable of storing the liquid resin composition 550, a modeling stage 520 capable of reciprocating in the vertical direction (depth direction) inside the modeling tank 510, and the modeling stage 520. It has a base 521, a light source 530 of active energy rays, and a galvano mirror 531 or the like for guiding the active energy rays into the interior of the modeling tank 510.
  • the shaping tank 510 may have a size that can accommodate the primary cured product to be manufactured.
  • the light source 530 for emitting active energy rays known ones can be used.
  • examples of the light source 530 for emitting ultraviolet light include a semiconductor laser, a metal halide lamp, a mercury arc lamp, a xenon arc lamp, a fluorescent lamp, a carbon arc lamp, a tungsten-halogen copying lamp, and sunlight.
  • the resin composition 550 is filled in the shaping tank 510. Further, at this time, the forming stage 520 is disposed below the liquid surface of the resin composition 550 by the thickness of the formed object layer (first formed object layer) to be produced. In this state, the active energy ray emitted from the light source 530 is guided by the galvano mirror 531 or the like and scanned, and the resin composition 550 on the shaping stage 520 is irradiated. At this time, the first shaped object layer is formed in a desired shape by selectively irradiating the active energy ray only to the region for forming the first shaped object layer.
  • the modeling stage 520 is lowered (moved in the depth direction) by the thickness of one layer (the thickness of the second modeling object layer to be manufactured next) to move the first modeling object layer into the resin composition 550. Sink. Thereby, a resin composition is supplied on the said 1st modeling thing layer.
  • the active energy ray emitted from the light source 530 is guided by the galvano mirror 531 or the like, and the resin composition 550 located above the first model layer is irradiated. Also at this time, the active energy ray is selectively irradiated only to the region for forming the second shaped object layer. Thereby, the second shaped object layer is laminated on the above-mentioned first shaped object layer.
  • the primary curing product is formed in a desired shape by repeating the lowering of the shaping stage 520 (supply of the resin composition) and the irradiation of the active energy ray.
  • the shape of the primary cured product produced by the above method is the same as the shape of the three-dimensional object produced finally.
  • a polymerizable compound other than the photopolymerizable compound contained in the primary cured product is cured by various methods to obtain a three-dimensional object.
  • the method of curing the second polymerizable compound is appropriately selected according to the type (polymerization method) of the second polymerizable compound. For example, it may be a method of heating a primary cured product, or may be a method of irradiating a microwave or actinic radiation. In addition, a method of immersing in water, an acid, a base or the like to cause reaction with these may be used.
  • the method of heating the primary cured product is preferable.
  • transform for example, it is preferable to set it as temperature lower than Tg of the hardened
  • FIG. 2A and FIG. 2B are schematic views showing an example of an apparatus (manufacturing apparatus of a three-dimensional object) for producing a primary cured product by a continuous formation method.
  • the manufacturing apparatus 600 irradiates a modeling tank 610 capable of storing a liquid resin composition, a stage 620 capable of reciprocating in the vertical direction (depth direction), and an active energy ray. And the like.
  • the modeling tank 610 has a window 615 at its bottom, which does not transmit the resin composition and transmits the actinic ray and the polymerization inhibitor (oxygen in this embodiment).
  • the modeling tank 610 has a width
  • the light source 630 for irradiating active energy rays known ones can be used, and examples of the light source 630 for irradiating ultraviolet light include a semiconductor laser, a metal halide lamp, a mercury arc lamp, a xenon arc lamp, a fluorescent lamp, Included are carbon arc lamps, tungsten-halogen copying lamps, and sunlight. Also, by using an SLM projection optical system having a spatial light modulator (SLM) such as a liquid crystal panel or a digital mirror device (DMD) as the light source 630, surface irradiation of active energy rays to a desired area is performed.
  • SLM spatial light modulator
  • DMD digital mirror device
  • the shaping tank 610 is filled with the resin composition 650 described above.
  • the photopolymerizable compound contained in the resin composition 650 used in the method is a radically polymerizable compound.
  • oxygen is introduced from the window portion 615 provided at the bottom of the modeling tank 610 to the bottom of the modeling tank 610.
  • the method for introducing oxygen is not particularly limited.
  • the outside of the modeling tank 610 may be an atmosphere having a high oxygen concentration, and pressure may be applied to the atmosphere.
  • the oxygen concentration increases in the region on the window portion 615 side, and a buffer region in which the photopolymerizable compound is not cured even when irradiated with active energy rays. 642 are formed.
  • the concentration of oxygen is sufficiently lower than that of the buffer region 642 and becomes a curing region 644 in which the photopolymerizable compound can be cured by irradiation with active energy rays.
  • active energy rays are selectively irradiated from the buffer region side 642 to form a cured product of the photopolymerizable compound in the curing region 644.
  • a stage 620 which is a base point for producing the primary cured product, is disposed in the vicinity of the interface between the curing region 644 and the buffer region 642.
  • the bottom surface side of the stage 620 is selectively irradiated with active energy rays from the light source 630 disposed on the buffer region 642 side.
  • the photopolymerizable compound in the resin composition in the vicinity of the bottom surface (the curing area 644) of the stage 620 is cured to form the top of the primary cured product.
  • the stage 620 is raised (moved away from the buffer area 642).
  • the uncured resin composition 650 is newly supplied to the curing region 644 on the bottom side of the shaping tank 610 from the cured product 651.
  • the active energy ray is irradiated from the light source 630 continuously and selectively (area to be cured).
  • a cured product is continuously formed from the bottom of the stage 620 to the bottom side of the modeling tank 610, and a seamless, high-strength primary molded article is manufactured.
  • the shape of the primary cured product is the same as the shape of the three-dimensional object to be finally produced.
  • the method of curing the second polymerizable compound is appropriately selected according to the type of the second polymerizable compound (polymerization method) and the like, and is the same as the curing method of the second polymerizable compound in the above-described lamination molding method (SLA method) It can be done.
  • the method is not limited to this method, and the polymerization inhibitor may be a known polymerization inhibitor or the like which inhibits the polymerization of the photopolymerizable compound.
  • the polymerization inhibitor is a known polymerization inhibitor
  • a storage tank for storing the polymerization inhibitor is provided on the outside of the modeling tank 610 and in contact with the window 615, and the window from the storage tank to the polymerization inhibitor is provided. 615 may be permeated and supplied to the bottom side of the shaping tank.
  • the three-dimensional object obtained from the above-described resin composition has high dimensional accuracy and tensile strength, and also has detectability by a metal detector. Therefore, as an example of the application of the three-dimensional object, an attachment for gripping an object (hereinafter, also simply referred to as “attachment”) removably attached to the tip of an industrial robot is mentioned.
  • the attachment is, for example, a component for performing an operation such as gripping and moving a product, an intermediate, a raw material or the like, or gripping and changing the direction.
  • FIG. 3 A schematic view of a part of an industrial robot to which such an attachment is applicable is shown in FIG.
  • the industrial robot 300 is configured to convey the object 310, the arm unit 330 to process the object 310 conveyed by the conveyance unit 320, and the object 310 processed by the arm unit 330.
  • metal detection means 340 for checking whether or not the metal compound is contained.
  • the above-mentioned attachment 331 is attached to the tip of arm section 330.
  • the type of the object 310 to be subjected to various types of processing by the industrial robot 300 is not particularly limited, and is not particularly limited as long as it is not detected by the metal detection means, such as food and resin products.
  • the transport means 320 in the industrial robot 300 is not particularly limited as long as it is a means capable of moving the object 310 continuously or intermittently, for example, similar to the transport means of a general industrial robot. can do.
  • the arm unit 330 is detachably attached with an attachment 331 for gripping the object 310, and performs predetermined processing (for example, processing, movement, sorting, etc. of the object 310) on the object 310. It is a means to do.
  • the attachment 331 performs predetermined processing while gripping the object 310.
  • a processing arm unit (not shown) for performing processing (for example, processing of the object 310) different from that of the arm unit 330 may be further disposed.
  • the shape of the attachment 331 is not particularly limited, and is appropriately selected in accordance with the shape of the object 310.
  • the metal detection means 340 is a means for determining whether or not the object 310 processed by the arm unit 330 contains a metal component.
  • means (not shown) for moving or marking the object 310 may be provided downstream of the metal detection means 340. .
  • the metal detection means 340 is only required to detect a metal component, and may be an alternating current metal detection means (hereinafter also referred to as “AC type MD”).
  • AC type MD alternating current metal detection means
  • DC current detection May also be referred to as “type MD”.
  • the metal detection means 340 is an alternating current MD, detection of all metals is possible.
  • the alternating current type MD when detecting a ferromagnetic substance such as iron, nickel, or cobalt, a change in magnetic lines of force due to metal is detected to determine the presence or absence of a metal component.
  • a nonmagnetic material such as stainless steel, aluminum or copper
  • an alternating current magnetic field generates an eddy current in the vicinity of the metal component to generate a magnetic field. And the change of this magnetic field is detected, and the presence or absence of a metal component is determined.
  • the metal detection means 340 is a direct current type MD, it is possible to inspect food etc. using aluminum foil.
  • the direct current type MD the metal component is magnetized by the ferromagnetic body of the metal detection means 340, and the electromotive force (voltage) generated thereby is detected to determine the presence or absence of the metal component.
  • the minimum detectable volume of the specimen by the metal detector means 340 is preferably less than 40 mm 3, preferably less than 32 mm 3, further to be less than 24 mm 3 preferable. If such small test pieces can also be detected, more reliable products can be manufactured.
  • the improvement of detectability can be realized by enhancing the dispersibility of the metal-containing particles in the above-mentioned resin composition.
  • Metal-containing particles Stainless steel particle A (average particle size: 0.02 ⁇ m) Stainless steel particle B (average particle size: 0.1 ⁇ m) Stainless steel particle C (average particle size: 3 ⁇ m) Stainless steel particle D (average particle size: 0.05 ⁇ m) Stainless steel particle E (average particle size: 1 ⁇ m) Iron oxide particles (average particle size: 0.1 ⁇ m) Iron particles (average particle size: 0.1 ⁇ m)
  • a photocurable resin manufactured by Daicel Ornex Co., EBECRYL 600; bisphenol A type epoxy acrylate
  • 21 g of n-propyltrimethoxysilane modified stainless steel particles 21 g
  • a photopolymerization initiator IRGACURE TPO: diphenyl (2,4
  • a resin composition was prepared by mixing 2.5 g of (6-trimethylbenzoyl) phosphine oxide).
  • Example 2 Similar to sample 1, n-propyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 140 g of a photocurable resin (EBECRYL 600), 62 g of n-propyltrimethoxysilane modified stainless steel particles, and 2.5 g of a photopolymerization initiator (IRGACURE TPO) were mixed to prepare a resin composition.
  • EBECRYL 600 photocurable resin
  • 62 g of n-propyltrimethoxysilane modified stainless steel particles 62 g of n-propyltrimethoxysilane modified stainless steel particles
  • IRGACURE TPO a photopolymerization initiator
  • Example 3 Similar to sample 1, n-propyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 100 g of a photocurable resin (EBECRYL 600), 103 g of n-propyltrimethoxysilane modified stainless steel particles, and 2.5 g of a photopolymerization initiator (IRGACURE TPO) were mixed to prepare a resin composition.
  • EBECRYL 600 photocurable resin
  • IRGACURE TPO a photopolymerization initiator
  • Example 4 30 g of stainless steel particles B with an average particle size of 0.1 ⁇ m, 0.3 g of n-propyltrimethoxysilane (Shin-Etsu Silicone Co., Ltd., KBM-3033) as a surface modifier, 0.5 g of hydrochloric acid (concentration 35%) It was added to 20 g of aqueous solution and stirred at room temperature for 30 minutes. After stirring, the reaction solution was filtered, spread on a shallow tray or the like, and dried at 120 ° C. for 90 minutes. After drying, it was crushed in a ball mill.
  • a photocurable resin (EBECRYL 600), 21 g of n-propyltrimethoxysilane modified stainless steel particles, and 2.5 g of a photopolymerization initiator (IRGACURE TPO) were mixed to prepare a resin composition.
  • Example 5 Similar to sample 4, n-propyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 140 g of a photocurable resin (EBECRYL 600), 62 g of n-propyltrimethoxysilane modified stainless steel particles, and 2.5 g of a photopolymerization initiator (IRGACURE TPO) were mixed to prepare a resin composition.
  • EBECRYL 600 photocurable resin
  • 62 g of n-propyltrimethoxysilane modified stainless steel particles 62 g of n-propyltrimethoxysilane modified stainless steel particles
  • IRGACURE TPO a photopolymerization initiator
  • n-propyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 100 g of a photocurable resin (EBECRYL 600), 103 g of n-propyltrimethoxysilane modified stainless steel particles, and 2.5 g of a photopolymerization initiator (IRGACURE TPO) were mixed to prepare a resin composition.
  • EBECRYL 600 photocurable resin
  • IRGACURE TPO a photopolymerization initiator
  • Example 7 30 g of stainless steel particles C with an average particle diameter of 3 ⁇ m, 0.3 g of n-propyltrimethoxysilane (Shin-Etsu Silicone Co., Ltd., KBM-3033) as a surface modifier, 0.5 g of hydrochloric acid (35% concentration) in 20 g of aqueous ethanol solution And stirred for 30 minutes at room temperature. After stirring, the reaction solution was filtered, spread on a shallow tray or the like, and dried at 120 ° C. for 90 minutes. After drying, it was crushed in a ball mill.
  • a photocurable resin (EBECRYL 600), 21 g of n-propyltrimethoxysilane modified stainless steel particles, and 2.5 g of a photopolymerization initiator (IRGACURE TPO) were mixed to prepare a resin composition.
  • Example 8 Similar to sample 7, n-propyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 140 g of a photocurable resin (EBECRYL 600), 62 g of n-propyltrimethoxysilane modified stainless steel particles, and 2.5 g of a photopolymerization initiator (IRGACURE TPO) were mixed to prepare a resin composition.
  • EBECRYL 600 photocurable resin
  • 62 g of n-propyltrimethoxysilane modified stainless steel particles 62 g of n-propyltrimethoxysilane modified stainless steel particles, and 2.5 g of a photopolymerization initiator (IRGACURE TPO) were mixed to prepare a resin composition.
  • IRGACURE TPO a photopolymerization initiator
  • Example 9 Similar to sample 7, n-propyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 100 g of a photocurable resin (EBECRYL 600), 103 g of n-propyltrimethoxysilane modified stainless steel particles, and 2.5 g of a photopolymerization initiator (IRGACURE TPO) were mixed to prepare a resin composition.
  • EBECRYL 600 photocurable resin
  • IRGACURE TPO a photopolymerization initiator
  • Example 10 30 g of stainless steel particles A having an average particle diameter of 0.02 ⁇ m, 0.3 g of 3-acryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicone Co., Ltd., KBM-5103) as a surface modifier, 0.5 g of hydrochloric acid (concentration 35%) was added to 20 g of aqueous ethanol and stirred at room temperature for 30 minutes. After stirring, the reaction solution was filtered, spread on a shallow tray or the like, and dried at 120 ° C. for 90 minutes. After drying, it was crushed in a ball mill.
  • Example 11 Similar to sample 10, 3-acryloxypropyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 140 g of a photocurable resin (EBECRYL 600), 62 g of n-propyltrimethoxysilane modified stainless steel particles, and 2.5 g of a photopolymerization initiator (IRGACURE TPO) were mixed to prepare a resin composition.
  • EBECRYL 600 photocurable resin
  • IRGACURE TPO a photopolymerization initiator
  • Example 12 Similar to sample 10, 3-acryloxypropyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 100 g of a photocurable resin (EBECRYL 600), 103 g of n-propyltrimethoxysilane modified stainless steel particles, and 2.5 g of a photopolymerization initiator (IRGACURE TPO) were mixed to prepare a resin composition.
  • EBECRYL 600 photocurable resin
  • IRGACURE TPO a photopolymerization initiator
  • Example 13 30 g of stainless steel particles B having an average particle size of 0.1 ⁇ m, 0.3 g of 3-acryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicone Co., Ltd., KBM-5103) as a surface modifier, 0.5 g of hydrochloric acid (concentration 35%) was added to 20 g of aqueous ethanol and stirred at room temperature for 30 minutes. After stirring, the reaction solution was filtered, spread on a shallow tray or the like, and dried at 120 ° C. for 90 minutes. After drying, it was crushed in a ball mill.
  • Example 16 30 g of stainless steel particles C with an average particle size of 3 ⁇ m, 0.3 g of 3-acryloxypropyltrimethoxysilane (Shin-Etsu Silicone Co., Ltd., KBM-5103) as a surface modifier, 0.5 g of hydrochloric acid (concentration 35%) It was added to 20 g of aqueous solution and stirred at room temperature for 30 minutes. After stirring, the reaction solution was filtered, spread on a shallow tray or the like, and dried at 120 ° C. for 90 minutes. After drying, it was crushed in a ball mill.
  • Example 17 Similar to sample 16, 3-acryloxypropyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 140 g of a photocurable resin (EBECRYL 600), 62 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles, and 2.5 g of a photopolymerization initiator (IRGACURE TPO) were mixed to prepare a resin composition.
  • EBECRYL 600 photocurable resin
  • 62 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles 62 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles, and 2.5 g of a photopolymerization initiator (IRGACURE TPO) were mixed to prepare a resin composition.
  • IRGACURE TPO a photopolymerization initiator
  • Example 19 Similar to sample 10, 3-acryloxypropyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 180 g of a photocurable resin (EBECRYL 600), 21 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles, cellulose nanofiber solution (cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m) 10 g of a photopolymerization initiator (IRGACURE TPO) 2.5 g was mixed to prepare a resin composition.
  • EBECRYL 600 photocurable resin
  • cellulose nanofiber solution cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m
  • IRGACURE TPO photopolymerization initiator
  • Example 20 Similar to sample 10, 3-acryloxypropyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 140 g of a photocurable resin (EBECRYL 600), 62 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles, cellulose nanofiber solution (cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m) 10 g of a photopolymerization initiator (IRGACURE TPO) 2.5 g was mixed to prepare a resin composition.
  • a photocurable resin EBECRYL 600
  • 62 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles cellulose nanofiber solution (cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m)
  • IRGACURE TPO photopolymerization initiator
  • Example 21 Similar to sample 10, 3-acryloxypropyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 100 g of a photocurable resin (EBECRYL 600), 103 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles, cellulose nanofiber solution (cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m) 10 g of a photopolymerization initiator (IRGACURE TPO) 2.5 g was mixed to prepare a resin composition.
  • a photocurable resin EBECRYL 600
  • cellulose nanofiber solution cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m
  • IRGACURE TPO photopolymerization initiator
  • Example 22 30 g of stainless steel particles D having an average particle diameter of 0.05 ⁇ m, 0.3 g of 3-acryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicone Co., Ltd., KBM-5103) as a surface modifier, 0.5 g of hydrochloric acid (concentration 35%) was added to 20 g of aqueous ethanol and stirred at room temperature for 30 minutes. After stirring, the reaction solution was filtered, spread on a shallow tray or the like, and dried at 120 ° C. for 90 minutes. After drying, it was crushed in a ball mill.
  • a photocurable resin (EBECRYL 600), 21 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles, cellulose nanofiber solution (cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m) 10 g of a photopolymerization initiator (IRGACURE TPO) 2.5 g was mixed to prepare a resin composition.
  • a photocurable resin EBECRYL 600
  • cellulose nanofiber solution cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m
  • IRGACURE TPO photopolymerization initiator
  • Example 23 Similar to sample 22, 3-acryloxypropyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 140 g of a photocurable resin (EBECRYL 600), 62 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles, cellulose nanofiber solution (cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m) 10 g of a photopolymerization initiator (IRGACURE TPO) 2.5 g was mixed to prepare a resin composition.
  • a photocurable resin EBECRYL 600
  • 62 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles cellulose nanofiber solution (cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m)
  • IRGACURE TPO photopolymerization initiator
  • Example 24 Similar to sample 22, 3-acryloxypropyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 100 g of a photocurable resin (EBECRYL 600), 103 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles, cellulose nanofiber solution (cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m) 10 g of a photopolymerization initiator (IRGACURE TPO) 2.5 g was mixed to prepare a resin composition.
  • a photocurable resin EBECRYL 600
  • cellulose nanofiber solution cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m
  • IRGACURE TPO photopolymerization initiator
  • Example 25 Similar to sample 13, 3-acryloxypropyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 180 g of a photocurable resin (EBECRYL 600), 21 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles, cellulose nanofiber solution (cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m) 10 g of a photopolymerization initiator (IRGACURE TPO) 2.5 g was mixed to prepare a resin composition.
  • a photocurable resin EBECRYL 600
  • cellulose nanofiber solution cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m
  • IRGACURE TPO photopolymerization initiator
  • Example 26 Similar to sample 13, 3-acryloxypropyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 140 g of a photocurable resin (EBECRYL 600), 62 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles, cellulose nanofiber solution (cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m) 10 g of a photopolymerization initiator (IRGACURE TPO) 2.5 g was mixed to prepare a resin composition.
  • a photocurable resin EBECRYL 600
  • 62 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles cellulose nanofiber solution (cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m)
  • IRGACURE TPO photopolymerization initiator
  • Example 27 Similar to sample 13, 3-acryloxypropyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 100 g of a photocurable resin (EBECRYL 600), 103 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles, cellulose nanofiber solution (cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m) 10 g of a photopolymerization initiator (IRGACURE TPO) 2.5 g was mixed to prepare a resin composition.
  • a photocurable resin EBECRYL 600
  • cellulose nanofiber solution cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m
  • IRGACURE TPO photopolymerization initiator
  • Example 28 30 g of stainless steel particles E with an average particle size of 1 ⁇ m, 0.3 g of 3-acryloxypropyltrimethoxysilane (Shin-Etsu Silicone Co., Ltd., KBM-5103) as a surface modifier, 0.5 g of hydrochloric acid (concentration 35%) It was added to 20 g of aqueous solution and stirred at room temperature for 30 minutes. After stirring, the reaction solution was filtered, spread on a shallow tray or the like, and dried at 120 ° C. for 90 minutes. After drying, it was crushed in a ball mill.
  • a photocurable resin (EBECRYL 600), 21 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles, cellulose nanofiber solution (cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m) 10 g of a photopolymerization initiator (IRGACURE TPO) 2.5 g was mixed to prepare a resin composition.
  • a photocurable resin EBECRYL 600
  • cellulose nanofiber solution cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m
  • IRGACURE TPO photopolymerization initiator
  • Example 29 Similar to sample 28, 3-acryloxypropyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 140 g of a photocurable resin (EBECRYL 600), 62 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles, cellulose nanofiber solution (cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m) 10 g of a photopolymerization initiator (IRGACURE TPO) 2.5 g was mixed to prepare a resin composition.
  • a photocurable resin EBECRYL 600
  • 62 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles cellulose nanofiber solution (cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m)
  • IRGACURE TPO photopolymerization initiator
  • Example 30 Similar to sample 28, 3-acryloxypropyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 100 g of a photocurable resin (EBECRYL 600), 103 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles, cellulose nanofiber solution (cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m) 10 g of a photopolymerization initiator (IRGACURE TPO) 2.5 g was mixed to prepare a resin composition.
  • a photocurable resin EBECRYL 600
  • cellulose nanofiber solution cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m
  • IRGACURE TPO photopolymerization initiator
  • Example 31 Similar to sample 16, 3-acryloxypropyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 180 g of a photocurable resin (EBECRYL 600), 21 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles, cellulose nanofiber solution (cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m) 10 g of a photopolymerization initiator (IRGACURE TPO) 2.5 g was mixed to prepare a resin composition.
  • a photocurable resin EBECRYL 600
  • cellulose nanofiber solution cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m
  • IRGACURE TPO photopolymerization initiator
  • Example 32 Similar to sample 16, 3-acryloxypropyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 140 g of a photocurable resin (EBECRYL 600), 62 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles, cellulose nanofiber solution (cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m) 10 g of a photopolymerization initiator (IRGACURE TPO) 2.5 g was mixed to prepare a resin composition.
  • a photocurable resin EBECRYL 600
  • 62 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles cellulose nanofiber solution (cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m)
  • IRGACURE TPO photopolymerization initiator
  • Example 33 Similar to sample 16, 3-acryloxypropyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 100 g of a photocurable resin (EBECRYL 600), 103 g of 3-acryloxypropyltrimethoxysilane modified stainless steel particles, cellulose nanofiber solution (cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m) 10 g of a photopolymerization initiator (IRGACURE TPO) 2.5 g was mixed to prepare a resin composition.
  • a photocurable resin EBECRYL 600
  • cellulose nanofiber solution cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m
  • IRGACURE TPO photopolymerization initiator
  • Example 34 A resin composition was prepared in the same manner as in Sample 19, except that stainless steel particles were changed to iron oxide particles having an average particle size of 0.1 ⁇ m.
  • Example 35 A resin composition was prepared in the same manner as in Sample 20, except that stainless steel particles were changed to iron oxide particles having an average particle size of 0.1 ⁇ m.
  • Example 36 A resin composition was prepared in the same manner as in Sample 21 except that stainless steel particles were changed to iron oxide particles having an average particle diameter of 0.1 ⁇ m.
  • Example 37 A resin composition was prepared in the same manner as Sample 19 except that stainless steel particles were changed to iron particles having an average particle diameter of 0.1 ⁇ m.
  • Example 38 A resin composition was prepared in the same manner as in Sample 20, except that stainless steel particles were changed to iron particles having an average particle size of 0.1 ⁇ m.
  • Example 39 A resin composition was prepared in the same manner as in Sample 21 except that stainless steel particles were changed to iron particles having an average particle size of 0.1 ⁇ m.
  • Example 40 Similar to sample 34, 3-acryloxypropyltrimethoxysilane modified iron oxide particles were produced. Thereafter, 90 g of a photocurable resin (EBECRYL 600), 90 g of a thermally polymerizable resin (YD-127; bisphenol A epoxy resin manufactured by Nippon Steel Sumikin Chemical Co., Ltd.), 21 g of 3-acryloxypropyltrimethoxysilane modified iron oxide particles, cellulose 10 g of nanofiber solution (cellulose nanofiber concentration: 2%, fiber diameter: 50 nm, fiber length: 5 ⁇ m), 1.5 g of photopolymerization initiator (IRGACURE TPO), curing agent (4,4'-diaminodiphenyl sulfone) 1
  • the resin composition was prepared by mixing .5g.
  • Example 41 Similar to sample 34, 3-acryloxypropyltrimethoxysilane modified iron oxide particles were produced. After that, 70 g of a photocurable resin (EBECRYL 600), 70 g of a thermally polymerizable resin (YD-127), 62 g of 3-acryloxypropyltrimethoxysilane modified iron oxide particles, cellulose nanofiber solution (cellulose nanofiber concentration: 2% A resin composition was prepared by mixing 10 g of fiber diameter: 50 nm, fiber length 5 ⁇ m, 1.5 g of photopolymerization initiator (IRGACURE TPO), and 1.5 g of curing agent (4,4'-diaminodiphenyl sulfone). .
  • a photocurable resin EBECRYL 600
  • YD-127 thermally polymerizable resin
  • 62 g 3-acryloxypropyltrimethoxysilane modified iron oxide particles
  • cellulose nanofiber solution cellulose nanofiber concentration: 2%
  • a resin composition was prepared by mixing 10
  • Example 42 Similar to sample 34, 3-acryloxypropyltrimethoxysilane modified iron oxide particles were produced. After that, 50 g of a photocurable resin (EBECRYL 600), 50 g of a thermally polymerizable resin (YD-127), 104 g of 3-acryloxypropyltrimethoxysilane modified iron oxide particles, cellulose nanofiber solution (cellulose nanofiber concentration: 2% A resin composition was prepared by mixing 10 g of fiber diameter: 50 nm, fiber length 5 ⁇ m, 1.5 g of photopolymerization initiator (IRGACURE TPO), and 1.5 g of curing agent (4,4'-diaminodiphenyl sulfone). .
  • a photocurable resin EBECRYL 600
  • YD-127 thermally polymerizable resin
  • 104 g 3-acryloxypropyltrimethoxysilane modified iron oxide particles
  • cellulose nanofiber solution cellulose nanofiber concentration: 2%
  • a resin composition was prepared by mixing 10
  • a resin composition was prepared by mixing 190 g of a photocurable resin (EBECRYL 600), 11 g of stainless steel particles A, and 2.5 g of a photopolymerization initiator (IRGACURE TPO).
  • EBECRYL 600 a photocurable resin
  • IRGACURE TPO a photopolymerization initiator
  • a resin composition was prepared by mixing 180 g of a photocurable resin (EBECRYL 600), 21 g of stainless steel particles A, and 2.5 g of a photopolymerization initiator (IRGACURE TPO).
  • EBECRYL 600 a photocurable resin
  • IRGACURE TPO a photopolymerization initiator
  • a resin composition was prepared by mixing 140 g of a photocurable resin (EBECRYL 600), 62 g of stainless steel particles A, and 2.5 g of a photopolymerization initiator (IRGACURE TPO).
  • EBECRYL 600 a photocurable resin
  • 62 g of stainless steel particles A a photopolymerization initiator
  • IRGACURE TPO a photopolymerization initiator
  • a resin composition was prepared by mixing 100 g of a photocurable resin (EBECRYL 600), 103 g of stainless steel particles A, and 2.5 g of a photopolymerization initiator (IRGACURE TPO).
  • EBECRYL 600 a photocurable resin
  • IRGACURE TPO a photopolymerization initiator
  • a resin composition was prepared by mixing 80 g of a photocurable resin (EBECRYL 600), 125 g of stainless steel particles A, and 2.0 g of a photopolymerization initiator (IRGACURE TPO).
  • EBECRYL 600 a photocurable resin
  • IRGACURE TPO a photopolymerization initiator
  • Example 48 A resin composition was prepared in the same manner as in Sample 43, except that stainless steel particle A was changed to stainless steel particle B.
  • Example 49 A resin composition was prepared in the same manner as in Sample 44 except that stainless steel particle A was changed to stainless steel particle B.
  • Example 50 A resin composition was prepared in the same manner as in Sample 45, except that stainless steel particle A was changed to stainless steel particle B.
  • Example 51 A resin composition was prepared in the same manner as in Sample 46 except that stainless steel particle A was changed to stainless steel particle B.
  • Example 52 A resin composition was prepared in the same manner as in Sample 47, except that stainless steel particle A was changed to stainless steel particle B.
  • Example 53 A resin composition was prepared in the same manner as in Sample 43, except that stainless steel particle A was changed to stainless steel particle C.
  • Example 54 A resin composition was prepared in the same manner as in Sample 44 except that stainless steel particle A was changed to stainless steel particle C.
  • Example 55 A resin composition was prepared in the same manner as in Sample 45 except that stainless steel particle A was changed to stainless steel particle C.
  • Example 56 A resin composition was prepared in the same manner as in Sample 46 except that stainless steel particle A was changed to stainless steel particle C.
  • Example 57 A resin composition was prepared in the same manner as in Sample 47, except that stainless steel particle A was changed to stainless steel particle C.
  • Example 58 Similar to sample 1, n-propyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 190 g of a photocurable resin (EBECRYL 600), 11 g of n-propyltrimethoxysilane modified stainless steel particles, and 2.5 g of a photopolymerization initiator (IRGACURE TPO) were mixed to prepare a resin composition.
  • EBECRYL 600 photocurable resin
  • IRGACURE TPO a photopolymerization initiator
  • n-propyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 80 g of a photocurable resin (EBECRYL 600), 122 g of n-propyltrimethoxysilane modified stainless steel particles, and 2.0 g of a photopolymerization initiator (IRGACURE TPO) were mixed to prepare a resin composition.
  • EBECRYL 600 photocurable resin
  • 122 g of n-propyltrimethoxysilane modified stainless steel particles 122 g of n-propyltrimethoxysilane modified stainless steel particles
  • IRGACURE TPO a photopolymerization initiator
  • Example 60 Similar to sample 4, n-propyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 190 g of a photocurable resin (EBECRYL 600), 11 g of n-propyltrimethoxysilane modified stainless steel particles, and 2.5 g of a photopolymerization initiator (IRGACURE TPO) were mixed to prepare a resin composition.
  • EBECRYL 600 photocurable resin
  • IRGACURE TPO a photopolymerization initiator
  • Example 61 Similar to sample 4, n-propyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 80 g of a photocurable resin (EBECRYL 600), 122 g of n-propyltrimethoxysilane modified stainless steel particles, and 2.0 g of a photopolymerization initiator (IRGACURE TPO) were mixed to prepare a resin composition.
  • EBECRYL 600 photocurable resin
  • 122 g of n-propyltrimethoxysilane modified stainless steel particles 122 g of n-propyltrimethoxysilane modified stainless steel particles
  • IRGACURE TPO a photopolymerization initiator
  • Example 62 Similar to sample 7, n-propyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 190 g of a photocurable resin (EBECRYL 600), 11 g of n-propyltrimethoxysilane modified stainless steel particles, and 2.5 g of a photopolymerization initiator (IRGACURE TPO) were mixed to prepare a resin composition.
  • EBECRYL 600 photocurable resin
  • IRGACURE TPO a photopolymerization initiator
  • Example 63 Similar to sample 7, n-propyltrimethoxysilane modified stainless steel particles were prepared. Thereafter, 80 g of a photocurable resin (EBECRYL 600), 122 g of n-propyltrimethoxysilane modified stainless steel particles, and 2.0 g of a photopolymerization initiator (IRGACURE TPO) were mixed to prepare a resin composition.
  • EBECRYL 600 photocurable resin
  • 122 g of n-propyltrimethoxysilane modified stainless steel particles 122 g of n-propyltrimethoxysilane modified stainless steel particles, and 2.0 g of a photopolymerization initiator (IRGACURE TPO) were mixed to prepare a resin composition.
  • IRGACURE TPO a photopolymerization initiator
  • the primary cured product was a three-dimensional object.
  • the primary cured product prepared using samples 40 to 42 was washed with isopropyl alcohol and then heated in an oven at 100 ° C. for 1 hour, 150 ° C. for 1 hour and 180 ° C. for 1 hour.
  • the thermally polymerizable resin contained in was cured.
  • a resin composition (samples 40 to 42) 650 was placed in the formation tank 610 of the production apparatus 600 shown in FIG. 2A.
  • the buffer region 642 containing the resin composition 650 and oxygen is formed on the bottom side of the modeling tank 610, and the curing region 644 having an oxygen concentration lower than that of the buffer region is formed above the buffer region 642.
  • the stage 620 was raised while planarly emitting light from an ultraviolet light source: LED projector (DLP manufactured by Texas Instruments (VISITECH LE4910H UV-388)).
  • LED projector DLP manufactured by Texas Instruments (VISITECH LE4910H UV-388)
  • the irradiation intensity of ultraviolet rays was 5 mW / cm 2 .
  • the pulling speed of the stage 620 was 50 mm / hr.
  • a primary cured product having a test piece shape of JIS K7161-2 (ISO 527-2) type 1A was produced.
  • the longitudinal direction of the tensile test piece was made to be the modeling direction (the pulling direction of the stage 620).
  • the obtained primary cured product is washed with isopropyl alcohol and then heated in an oven at 100 ° C. for 1 hour, 150 ° C. for 1 hour and 180 ° C. for 1 hour to cure the thermally polymerizable resin contained in the primary cured product I did.
  • Modeling accuracy The modeling accuracy of the three-dimensional object was evaluated by measuring the dimensions of each three-dimensional object. Specifically, the absolute value of the lateral dimension difference of the width (b2) of the grip portion of the test piece of JIS K7161-2 (ISO 527-2) type 1A is B, and the lateral dimension of the thickness (h) of the grip portion The absolute value of the difference was taken as H and evaluated as follows.
  • the detectability of a three-dimensional object by a metal detector is determined by passing a three-dimensional object of different volume through a metal detector (KDS 8113BW manufactured by Anri Twin Fivis) and detecting the volume of the three-dimensional object of the smallest size detected. According to the following criteria.
  • When the minimum detection volume by the metal detector is less than 16 mm 3 :: When the minimum detection volume by the metal detector is 16 mm 3 or more and less than 24 mm 3 ⁇ : The minimum detection volume by the metal detector is 24 mm 3 or more 32 mm 3 When less than ⁇ : When the minimum detection volume by the metal detector is 32 mm 3 or more and less than 40 mm 3 : When the minimum detection volume by the metal detector is 40 mm 3 or more
  • Tensile strength A tensile test was carried out in accordance with JIS K7161. Specifically, the tensile strength was specified using a tensile tester Tensilon RTC-1250 manufactured by A & D, and was evaluated as follows. ⁇ : When the tensile strength is 60 MPa or more :: When the tensile strength is 50 MPa or more and less than 60 MPa :: When the tensile strength is 30 MPa or more and less than 50 MPa ⁇ : When the tensile strength is 10 MPa or more and less than 30 MPa ⁇ : The tensile strength is less than 10 MPa in the case of
  • the amount of the metal-containing particles is very small (Samples 58, 60, And 62), in the three-dimensional object, the region free of metal-containing particles was increased, and the detectability by the metal detector was reduced.
  • the amount of metal-containing particles is very large (Samples 59, 61, and 63), although the metal detectability is improved, air is easily mixed in the resin composition due to the increase in viscosity of the resin composition. And the forming accuracy was lowered, and the tensile strength was lowered.
  • the photopolymerizable compound and the metal-containing particle are contained, and the metal-containing particle is surface-treated with a surface modifier, and the amount of the metal-containing particle is 10 to 50% by mass based on the amount of the photopolymerizable compound.
  • a three-dimensional object was obtained that combines the detectability with a metal detector, the modeling accuracy, and the tensile strength (Samples 1-42).
  • the viscosity of the resin composition may be appropriately increased, or the cellulose nanofibers dispersed in the resin composition may interact with the metal-containing particles. The dispersibility of the metal-containing particles was enhanced, and the metal detectability was significantly improved (Samples 19 to 42).
  • the detectability by the metal detector was significantly improved (Samples 34 to 42).
  • the thermosetting resin is contained together with the photocurable resin, the tensile strength and the formation accuracy when the three-dimensional object is produced by the CLIP method are enhanced (Samples 40 to 42).
  • the resin composition of the present invention it is possible to produce a three-dimensional object having high tensile strength and dimensional accuracy, and easy detection by a metal detector. Therefore, the present invention is expected to expand the range of application of a three-dimensional object using a resin composition and to contribute to the development and spread of the technology in the field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Dispersion Chemistry (AREA)
  • Metallurgy (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

得られる立体造形物の引張強度および寸法精度が高く、さらには金属探知機による検知性が良好な樹脂組成物の提供を目的とする。 樹脂組成物は、液液体状の樹脂組成物に活性エネルギー線を選択的に照射して、前記樹脂組成物の硬化物からなる立体造形物を製造する方法に使用される。当該樹脂組成物は、光重合性化合物と、金属探知機により検出可能であり、かつ表面処理剤で表面処理された金属含有粒子と、を含み、前記金属含有粒子の含有量が、樹脂の固形分に対して10質量%以上55質量%以下である。

Description

樹脂組成物、およびこれを用いた立体造形物の製造方法、立体造形物、ならびに対象物把持用アタッチメントおよびこれを用いた産業用ロボット
 本発明は、樹脂組成物、およびこれを用いた立体造形物の製造方法、立体造形物、ならびに対象物把持用アタッチメントおよびこれを用いた産業用ロボットに関する。
 近年、複雑な形状の立体造形物を比較的容易に製造できる様々な方法が開発されている。立体造形物を製造する方法の一つとして、活性エネルギー線硬化性化合物を含む液体状の樹脂組成物に活性エネルギー線を選択的に照射して、所望の形状に樹脂組成物を硬化させる方法が知られている(例えば特許文献1)。特許文献1に記載の方法では、まず、樹脂組成物に活性エネルギー線を照射して、立体造形物を厚さ方向に微分割した硬化物(層)を形成する。その後、当該硬化物上に、液体状の樹脂組成物からなる層をさらに形成し、活性エネルギー線を照射することで所望の形状に硬化させる。そして、液体状の樹脂組成物からなる層の形成、およびその硬化を繰り返すことにより、所望の形状の立体造形物を形成する。
 ここで、上記特許文献1のような方法に用いられる樹脂組成物の流動性を制御し、得られる立体造形物の寸法精度を高めるとの観点から、樹脂組成物に多量の金属粒子を添加することが提案されている(特許文献2)。
 一方、立体造形物の製造方法の別の方法として、加熱溶融したフィラメント形状の熱可塑性樹脂をステージ上に押出し、1層ずつ積層しながら立体造形物を形成する方法も知られている(特許文献3)。また、フィラメント状の樹脂組成物に金属粒子を添加し、得られる立体造形物に導電性を付与する技術も提案されている(特許文献4)。
 ここで近年、新たな立体造形物の製造方法として、ラジカル重合性化合物を含む液体状の樹脂組成物を連続的に硬化させる方法が提案されている(特許文献5および6)。当該方法では、まず、活性エネルギー線を照射しても樹脂組成物が硬化しないバッファ領域と、活性エネルギー線の照射によって樹脂組成物が硬化する硬化用領域とを、造形槽内に設ける。このとき、バッファ領域が造形槽底部側、硬化用領域が造形槽上部側に位置するよう、それぞれの領域を形成する。そして、硬化用領域に立体造形の基点となるキャリアを配置し、バッファ領域(造形槽底部)側から硬化用領域に活性エネルギー線を選択的に照射する。これにより、キャリア表面に立体造形物の一部(樹脂組成物の硬化物)が形成される。そしてさらに、当該キャリアを造形槽上部側に引き上げながら、連続的に活性エネルギー線を照射することで、キャリアの下方に、樹脂組成物の硬化物が連続的に形成され、継ぎ目のない立体造形物が作製される。
 なお、上記バッファ領域は、造形槽と樹脂組成物の硬化物とが接触しないように設けられる領域であり、バッファ領域には通常、活性エネルギー線による樹脂組成物の硬化を阻害するための重合阻害剤(例えば酸素)が、連続的に供給される。
 ここで、各種製造業の生産ラインに使用される結束バンドに、磁性体を含めることが提案されている(特許文献7)。当該技術によれば、製品に混入した結束バンドの破片等を金属探知機で検出することが可能である。このような結束バンドは、射出成形等によって形成されている。
特開平8-174680号公報 特開2006-348214号公報 特許第5751388号公報 特開2017-95694号公報 特表2016-509962号公報 特表2016-509964号公報 国際公開第2010/087038号
 ここで近年、産業用ロボットのアームの先端部、すなわち各種製品を把持する把持部等に、樹脂製の部材を用いることが検討されている。このような把持部には、各製品の形状に適合した形状であることが求められ、さらには、高い強度や引張強度等も求められる。従来、樹脂の成形は、射出成形法で行うことが一般的であったが、射出成形法では、形状自由度が低く、個々の製品に合わせた形状とすることが難しい、との課題があった。また、特許文献3や4に記載のフィラメントを用いた造形法では、細かい部分の寸法精度が十分でない、との課題があった。
 そこで、例えば特許文献1、5、または6に記載されているような、液体状の樹脂組成物に活性エネルギー線を照射する方法を適用することが考えられる。これらの方法によれば、各種製品の形状に合わせて、高い寸法精度で上記把持部を作製することが可能である。ただし、従来の樹脂組成物から得られる立体造形物では、引張強度等が十分でなかったり、製品の製造中に把持部が破損した場合に、破片の混入の有無を検出できないという課題があった。そこで、樹脂組成物に金属粒子を添加することが考えられるが、例えば特許文献2のように、液体状の樹脂組成物に金属粒子を多量に含めると、樹脂組成物の粘度が高くなり、樹脂組成物内に空気が入り込んだ空気が抜けにくくなる。その結果、得られる立体造形物に空洞が生じやすく、その引張強度が却って低下する等の課題があった。一方、樹脂組成物に添加する金属粒子の量を少なくすると、樹脂組成物の粘度が低くなり、立体造形物に空洞が生じ難くなる。ただし、樹脂組成物の粘度が低くなると、金属粒子が沈降したり凝集したりする。その結果、金属探知機による検出性が十分にならなかったり、引張強度を十分に高めることが難しい、等の課題があった。
 本発明は、上記課題を鑑みてなされたものである。すなわち本発明は、得られる立体造形物の引張強度および寸法精度が高く、さらには金属探知機による検知性が良好な樹脂組成物の提供を目的とする。
 本発明の第1は、以下の樹脂組成物にある。
 [1]液体状の樹脂組成物に活性エネルギー線を選択的に照射して、前記樹脂組成物の硬化物からなる立体造形物を製造する方法に使用される樹脂組成物であって、光重合性化合物と、金属探知機により検出可能であり、かつ表面処理剤で表面処理された金属含有粒子と、を含み、前記金属含有粒子の含有量が、樹脂組成物の固形分に対して10質量%以上55質量%以下である、樹脂組成物。
 [2]前記表面改質剤が、シランカップリング剤である、[1]に記載の樹脂組成物。
 [3]粘土鉱物、セルロースナノファイバー、およびセルロースナノクリスタルからなる群から選ばれる少なくとも一種の化合物をさらに含む、[1]または[2]に記載の樹脂組成物。
 [4]前記金属含有粒子の動的散乱法により測定される平均粒子径が0.05μm以上1μm未満である、[1]~[3]のいずれかに記載の樹脂組成物。
 [5]前記金属含有粒子が、純鉄または酸化鉄である、[1]~[4]のいずれかに記載の樹脂組成物。
 [6]熱重合性化合物をさらに含む、[1]~[5]のいずれかに記載の樹脂組成物。
 本発明の第2は、以下の立体造形物、これを含む対象物把持用アタッチメント、これを含む産業用ロボットに関する。
 [7]前記[1]~[6]のいずれかに記載の樹脂組成物の硬化物である、立体造形物。
 [8]積層構造を有さない、[7]に記載の立体造形物。
 [9]上記[7]または[8]に記載の立体造形物を含み、産業用ロボットのアーム部に着脱可能に取り付けられる、対象物把持用アタッチメント。
 [10]対象物を搬送する搬送手段と、前記搬送手段によって搬送される対象物を把持し、処理するアーム部と、前記アーム部によって処理された対象物を検査する金属探知手段と、を備え、前記アーム部に、[9]に記載の対象物把持用アタッチメントが着脱可能に取り付けられている、産業用ロボット。
 本発明の第3は、以下の立体造形物の製造方法にある。
 [11]上記[1]~[6]のいずれかに記載の樹脂組成物に活性エネルギー線を選択的に照射し、前記光重合性化合物の硬化物を含む一次硬化物を形成する工程を含む、立体造形物の製造方法。
 [12]造形槽に充填された前記樹脂組成物に活性エネルギー線を選択的に照射し、前記光重合性化合物の硬化物を含む第1造形物層を形成する工程と、前記第1造形物層上に前記樹脂組成物を供給する工程と、前記樹脂組成物の供給工程で供給された前記樹脂組成物に活性エネルギー線を選択的に照射して、前記第1造形物層上に、前記光重合性化合物の硬化物を含む第2造形物層を形成する工程と、を含み、前記樹脂組成物の供給工程および前記第2造形物層の形成工程を繰り返し行い、前記一次硬化物を立体的に形成する、[11]に記載の立体造形物の製造方法。
 [13]前記樹脂組成物および重合阻害剤を含み、前記重合阻害剤により前記光重合性化合物の硬化が阻害されるバッファ領域、ならびに前記樹脂組成物を少なくとも含み、前記バッファ領域より前記重合阻害剤の濃度が低く、前記光重合性化合物の硬化が可能な硬化用領域を、造形物槽内に隣接して形成する工程と、前記バッファ領域側から前記樹脂組成物に活性エネルギー線を選択的に照射して、前記硬化用領域で前記光重合性化合物を硬化させる工程と、を含み、前記光重合性化合物の硬化工程では、形成された硬化物を連続的に前記バッファ領域とは反対側に移動させながら、前記硬化用領域に連続的に活性エネルギー線を照射し、前記一次硬化物を形成する、[11]に記載の立体造形物の製造方法。
 [14]前記重合阻害剤が酸素である、[13]に記載の立体造形物の製造方法。
 [15]前記一次硬化物の形成後、前記一次硬化物に、熱、マイクロ波、または化学線をさらに照射する、または前記一次硬化物を水、酸、または塩基と反応させる工程を含む、[11]~[14]のいずれかに記載の立体造形物の製造方法。
 本発明の樹脂組成物によれば、引張強度および寸法精度が高く、かつ金属探知機による検知性が良好な立体造形物を作製することが可能である。
図1は、本発明の一実施形態に係る立体造形物の製造装置の模式図である。 図2Aおよび図2Bは、本発明の他の実施形態に係る立体造形物の製造装置の模式図である。 図3は、本発明の一実施形態に係る産業用ロボットの一部を示す模式図である。
 前述のように、立体造形物に金属探知機による検知性を付与したり、立体造形物の強度を高めるため、液体状の樹脂組成物に金属粒子を添加することが検討されている。しかしながら、液体状の樹脂組成物では、金属粒子の量が多いと、樹脂組成物中に空気が入り込みやすくなり、却って立体造形物の引張強度が低下しやすいとの課題があった。一方で、金属粒子の量を少なくすると、樹脂組成物の粘度が低いことから、金属粒子が沈降したり、凝集したりしやすかった。この場合、十分に立体造形物の強度を高めることができず、さらには金属探知機による検出性も十分でない、との課題があった。
 このような課題に対し、本発明の樹脂組成物は、光重合性化合物と、金属探知機によって検出可能な金属含有粒子とを含んでおり、当該金属含有粒子は、表面改質剤によって改質されている。したがって、樹脂組成物中での金属含有粒子の分散性が良好であり、樹脂組成物の粘度が低くても、金属含有粒子の沈降や凝集等が生じ難い。さらに、光重合性化合物がラジカル重合性化合物である場合、ラジカル重合性化合物の重合が、フィラー表面に付着した酸素によって阻害されることがあるが、本発明では、表面改質剤による処理によって金属含有粒子表面が処理されていることから、このような酸素阻害も生じ難いという利点がある。
 また、樹脂組成物が含む金属含有粒子の量が、光重合性化合物および金属含有粒子の合計量に対して10質量%以上55質量%以下であることから、樹脂組成物の粘度が過度に高まらず、樹脂組成物内に空気が入り込んでも抜けやすい。一方で、樹脂組成物中にある程度の量の金属含有粒子が含まれることから、金属探知機による十分な検出性が得られる。
 以下、樹脂組成物について先に説明し、その後、当該樹脂組成物を用いた立体造形物の製造方法を説明する。
 1.樹脂組成物
 本発明の一実施形態に係る樹脂組成物には、光重合性化合物と、金属含有粒子と、が含まれる。樹脂組成物には通常、光重合性化合物の重合を開始させるための重合開始剤がさらに含まれる。また、樹脂組成物には、例えば熱重合性樹脂等の光重合性化合物以外の樹脂や、増粘剤、各種添加剤等がさらに含まれていてもよい。
 1-1.光重合性化合物
 樹脂組成物に含まれる光重合性化合物は、活性エネルギー線の照射によって、重合し、硬化可能な化合物であればよく、モノマーであってもよく、オリゴマーであってもよく、プレポリマーであってもよく、これらの混合物であってもよい。また、光重合性化合物は、ラジカル重合性化合物であっても、カチオン重合性化合物であってもよい。ただし、後述するように、樹脂組成物に酸素等の重合禁止剤を添加しながら、立体造形物を作製する方法(以下、「CLIP法」とも称する)に用いる樹脂組成物では、光重合性化合物がラジカル重合性化合物である必要がある。
 樹脂組成物には、光重合性化合物が1種のみ含まれていてもよく、2種以上含まれていてもよい。また、光重合性化合物を硬化させる活性エネルギー線の例には、紫外線、X線、電子線、γ線、可視光線等が含まれる。
 光重合性化合物の一つである、ラジカル重合性化合物は、ラジカル重合開始剤等の存在下、活性エネルギー線の照射によってラジカル重合可能な基を有していればその種類は特に制限されず、例えば、エチレン基、プロペニル基、ブテニル基、ビニルフェニル基、アリルエーテル基、ビニルエーテル基、マレイル基、マレイミド基、(メタ)アクリルアミド基、アセチルビニル基、ビニルアミド基、(メタ)アクリロイル基、等を分子内に1つ以上有する化合物とすることができる。これらの中でも、分子内に不飽和カルボン酸エステル構造を1つ以上含む後述の不飽和カルボン酸エステル化合物、または分子内に不飽和カルボン酸アミド構造を1つ以上含む後述の不飽和カルボン酸アミド化合物であることが好ましい。より具体的には、後述の、(メタ)アクリロイル基を含む(メタ)アクリレート系化合物および/または(メタ)アクリルアミド系化合物であることが特に好ましい。なお、本明細書において、「(メタ)アクリル」との記載は、メタクリルおよび/またはアクリルを表し、「(メタ)アクリロイル」との記載は、メタクリロイルおよび/またはアクリロイルを表し、「(メタ)アクリレート」との記載は、メタクリレートおよび/またはアクリレートを表す。
 上記ラジカル重合性化合物の一つである「アリルエーテル基を有する化合物」の例には、フェニルアリルエーテル、o-,m-,p-クレゾールモノアリルエーテル、ビフェニル-2-オールモノアリルエーテル、ビフェニル-4-オールモノアリルエーテル、ブチルアリルエーテル、シクロヘキシルアリルエーテル、シクロヘキサンメタノールモノアリルエーテル、フタル酸ジアリルエーテル、イソフタル酸ジアリルエーテル、ジメタノールトリシクロデカンジアリルエーテル、1,4-シクロヘキサンジメタノールジアリルエーテル、アルキレン(炭素数2~5)グリコールジアリルエーテル、ポリエチレングリコールジアリルエーテル、グリセリンジアリルエーテル、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールジアリルエーテル、ポリグリセリン(重合度2~5)ジアリルエーテル、トリメチロールプロパントリアリルエーテル、グリセリントリアリルエーテル、ペンタエリスリトールテトラアリルエーテル及びテトラアリルオキシエタン、ペンタエリスリトールトリアリルエーテル、ジグリセリントリアリルエーテル、ソルビトールトリアリルエーテルおよびポリグリセリン(重合度3~13)ポリアリルエーテル等が含まれる。
 また、上記「ビニルエーテル基を有する化合物」の例には、ブチルビニルエーテル、ブチルプロペニルエーテル、ブチルブテニルエーテル、ヘキシルビニルエーテル、1,4-ブタンジオールジビニルエーテル、エチルヘキシルビニルエーテル、フェニルビニルエーテル、ベンジルビニルエーテル、エチルエトキシビニルエーテル、アセチルエトキシエトキシビニルエーテル、シクロヘキシルビニルエーテル、トリシクロデカンビニルエーテル、アダマンチルビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、トリシクロデカンジメタノールジビニルエーテル、ビスフェノールAのEO付加物ジビニルエーテル、シクロヘキサンジオールジビニルエーテル、シクロペンタジエンビニルエーテル、ノルボルニルジメタノールジビニルエーテル、ジビニルレゾルシン、ジビニルハイドロキノン、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ジプロピレングリコールビニルエーテル、ブチレンジビニルエーテル、ジブチレングリコールジビニルエーテル、4-シクロヘキサンジビニルエーテル、オキサノルボナンジビニルエーテル、ネオペンチルグリコールジビニルエーテル、グリセリントリビニルエーテル、オキセタンジビニルエーテル、グリセリンエチレンオキシド付加物トリビニルエーテル(エチレンオキシドの付加モル数6)、トリメチロールプロパントリビニルエーテル、トリビニルエーテルエチレンオキシド付加物トリビニルエーテル(エチレンオキシドの付加モル数3)、ペンタエリスリトールトリビニルエーテル、ジトリメチロールプロパンヘキサビニルエーテルおよびそれらのオキシエチレン付加物等が含まれる。
 上記「マレイミド基を有する化合物」の例には、フェニルマレイミド、シクロヘキシルマレイミド、n-ヘキシルマレイミド等が含まれる。
 上記「(メタ)アクリルアミド系化合物」の例には、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、イソブトキシメチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、ビスメチレンアクリルアミド、ジ(エチレンオキシ)ビスプロピルアクリルアミド、およびトリ(エチレンオキシ)ビスプロピルアクリルアミド、(メタ)アクリロイルモルホリン等が含まれる。
 一方、上述の「(メタ)アクリレート系化合物」の例には、イソアミル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、イソミルスチル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-エチルヘキシル-ジグリコール(メタ)アクリレート、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、メトキシエトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ペンタクロロフェニル(メタ)アクリレート、ペンタブロモフェニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、グリセリン(メタ)アクリレート、7-アミノ-3,7-ジメチルオクチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-(2-エトキシエトキシ)エチル(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルフタル酸、2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチル-フタル酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、およびt-ブチルシクロヘキシル(メタ)アクリレート等を含む単官能の(メタ)アクリレートモノマー;
 トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、シクロヘキサンジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリシクロデカンジイルジメチレンジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、ポリエステルジ(メタ)アクリレート、ビスフェノールAのPO付加物ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、およびトリシクロデカンジメタノールジ(メタ)アクリレート等を含む2官能の(メタ)アクリレートモノマー;
 トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、およびペンタエリスリトールエトキシテトラ(メタ)アクリレート等を含む3官能以上の(メタ)アクリレートモノマー;
 およびこれらのオリゴマー等が含まれる。
 また、「(メタ)アクリレート系化合物」は、各種(メタ)アクリレートモノマーやそのオリゴマーをさらに変性したもの(変性物)であってもよい。変性物の例には、トリエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、エチレンオキサイド変性ノニルフェノール(メタ)アクリレート等のエチレンオキサイド変性(メタ)アクリレートモノマー;トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性ペンタエリスリトールテトラアクリレート、プロピレンオキサイド変性グリセリントリ(メタ)アクリレート等のプロピレンオキサイド変性(メタ)アクリレートモノマー;カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート等のカプロラクトン変性(メタ)アクリレートモノマー;カプロラクタム変性ジペンタエリスリトールヘキサ(メタ)アクリレート等のカプロラクタム変性(メタ)アクリレートモノマー;等が含まれる。
 「(メタ)アクリレート系化合物」はさらに、各種オリゴマーを(メタ)アクリレート化した化合物(以下、「変性(メタ)アクリレート系化合物」とも称する)であってもよい。このような変性(メタ)アクリレート系化合物の例には、ポリブタジエン(メタ)アクリレート系化合物、ポリイソプレン(メタ)アクリレート系化合物、エポキシ(メタ)アクリレート系化合物、ウレタン(メタ)アクリレート系化合物、シリコーン(メタ)アクリレート系化合物、ポリエステル(メタ)アクリレート系化合物、および直鎖(メタ)アクリル系化合物等が含まれる。これらの中でも特に、エポキシ(メタ)アクリレート系化合物、ウレタン(メタ)アクリレート系化合物、およびシリコーン(メタ)アクリレート系化合物を好適に用いることができる。樹脂組成物にエポキシ(メタ)アクリレート系化合物や、ウレタン(メタ)アクリレート系化合物やシリコーン(メタ)アクリレート系化合物が含まれると、得られる立体造形物の強度が高まったりする点で好ましい。
 エポキシ(メタ)アクリレート系化合物は、一分子内にエポキシ基と、(メタ)アクリレート基とをそれぞれ1つ以上含む化合物であればよく、その例には、ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート、ビスフェニル型エポキシ(メタ)アクリレート、トリフェノールメタン型エポキシ(メタ)アクリレートや、クレゾールノボラック型エポキシ(メタ)アクリレート、フェノールノボラック型エポキシ(メタ)アクリレート等のノボラック型エポキシ(メタ)アクリレート等が含まれる。
 ウレタン(メタ)アクリレート系化合物は、2つのイソシアネート基を有する脂肪族ポリイソシアネート化合物または2つのイソシアネート基を有する芳香族ポリイソシアネート化合物と、水酸基を有する(メタ)アクリル酸誘導体等とを反応させて得られる、ウレタン結合および(メタ)アクリロイル基を有する化合物とすることができる。
 上記ウレタン(メタ)アクリレート系化合物の原料となるイソシアネート化合物の例には、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等が含まれる。
 また、上記ウレタン(メタ)アクリレート系化合物の原料となるイソシアネート化合物の例には、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等のポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も含まれる。
 一方、上記ウレタン(メタ)アクリレート系化合物の原料となる、水酸基を有する(メタ)アクリル酸誘導体の例には、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレート;トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレートやジ(メタ)アクリレート;ビスフェノールA型エポキシアクリレート等のエポキシ(メタ)アクリレート等が含まれる。
 上記構造のウレタン(メタ)アクリレート系化合物は、市販されているものであってもよく、その例には、M-1100、M-1200、M-1210、M-1600(いずれも東亞合成社製)、EBECRYL210、EBECRYL220、EBECRYL230、EBECRYL270、EBECRYL1290、EBECRYL2220、EBECRYL4827、EBECRYL4842、EBECRYL4858、EBECRYL5129、EBECRYL6700、EBECRYL8402、EBECRYL8803、EBECRYL8804、EBECRYL8807、EBECRYL9260(いずれもダイセル・オルネクス社製)、アートレジンUN-330、アートレジンSH-500B、アートレジンUN-1200TPK、アートレジンUN-1255、アートレジンUN-3320HB、アートレジンUN-7100、アートレジンUN-9000A、アートレジンUN-9000H(いずれも根上工業社製)、U-2HA、U-2PHA、U-3HA、U-4HA、U-6H、U-6HA、U-6LPA、U-10H、U-15HA、U-108、U-108A、U-122A、U-122P、U-324A、U-340A、U-340P、U-1084A、U-2061BA、UA-340P、UA-4000、UA-4100、UA-4200、UA-4400、UA-5201P、UA-7100、UA-7200、UA-W2A(いずれも新中村化学工業社製)、AH-600、AI-600、AT-600、UA-101I、UA-101T、UA-306H、UA-306I、UA-306T(いずれも共栄社化学社製)等が含まれる。
 一方、ウレタン(メタ)アクリレート系化合物は、ポリイソシアネートのイソシアネート基を(メタ)アクリレート基を有するブロック剤によりブロック化して得られるブロックイソシアネートであってもよい。
 ブロックイソシアネートを得るために用いられるポリイソシアネートは、前述の「イソシアネート化合物」であってもよく、これらの化合物とポリオールやポリアミンとを反応させた化合物であってもよい。ポリオールの例には、従来公知のポリエーテルポリオール、ポリエステルポリオール、ポリマーポリオール、植物油ポリオール、さらには含リンポリオールやハロゲン含有ポリオール等の難燃ポリオール等が含まれる。これらのポリオールは、ブロックイソシアネート中に1種のみ含まれていてもよく、2種以上が含まれていてもよい。
 イソシアネート等と反応させる上記ポリエーテルポリオールの例には、少なくとも2個以上の活性水素基を有する化合物(具体的には、エチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の多価アルコール類;エチレンジアミン等のアミン類;エタノールアミン、ジエタノールアミン等のアルカノールアミン類;等)とアルキレンオキサイド(具体的には、エチレンオキシド、プロピレンオキシド等)との付加反応により調製される化合物が含まれる。ポリエーテルポリオールの調製方法は、例えば、Gunter Oertel,“Polyurethane Handbook”(1985) Hanser Publishers社(ドイツ),p.42-53に記載の方法とすることができる。
 上記ポリエステルポリオールの例には、アジピン酸、フタル酸等の多価カルボン酸と、エチレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール等の多価アルコールとの縮合反応物や、ナイロン製造時の廃物、トリメチロールプロパン、ペンタエリストールの廃物、フタル酸系ポリエステルの廃物、廃品を処理し誘導したポリエステルポリオール等が含まれる(例えば、岩田敬治「ポリウレタン樹脂ハンドブック」(1987)日刊工業新聞社 p.117の記載参照)。
 上記ポリマーポリオールの例には、上記ポリエーテルポリオールとエチレン性不飽和単量体(例えば、ブタジエン、アクリロニトリル、スチレン等)とをラジカル重合触媒の存在下に反応させた重合体ポリオールが含まれる。ポリマーポリオールは、分子量が5000~12000程度であることがより好ましい。
 植物油ポリオールの例には、ひまし油、やし油等のヒドロキシル基含有植物油等が含まれる。また、ひまし油又は水添ひまし油を原料として得られるひまし油誘導体ポリオールも好適に用いることができる。ひまし油誘導体ポリオールとしては、ひまし油、多価カルボン酸及び短鎖ジオールの反応で得られるひまし油ポリエステル、ひまし油やひまし油ポリエステルのアルキレンオキシド付加物等が含まれる。
 難燃ポリオールの例には、リン酸化合物にアルキレンオキシドを付加して得られるリン含有ポリオール;エピクロルヒドリンやトリクロロブチレンオキシドを開環重合して得られるハロゲン含有ポリオール;芳香環を有する活性水素化合物にアルキレンオキシドを付加して得られる芳香族系エーテルポリオール;芳香環を有する多価カルボン酸と多価アルコールの縮合反応で得られる芳香族系エステルポリオール;等が含まれる。
 イソシアネート等と反応させるポリオールの水酸基価としては、5~300mgKOH/gであることが好ましく、10~250mgKOH/gであることがより好ましい。水酸基価は、JIS-K0070に規定された方法で測定できる。
 また、イソシアネート等と反応させるポリアミンの例には、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、ヘキサメチレンペンタアミン、ビスアミノプロピルピペラジン、トリス(2-アミノエチル)アミン、イソホロンジアミン、ポリオキシアルキレンポリアミン、ジエタノールアミン、トリエタノールアミン等が含まれる。
 一方、ポリイソシアネートのイソシアネート基をブロックするためのブロック剤としては、(メタ)アクリロイル基を有し、かつ、イソシアネート基と反応し、加熱により脱離できるものであればよい。
 このようなブロック剤の具体的例には、t-ブチルアミノエチルメタクリレート(TBAEMA)、t-ペンチルアミノエチルメタクリレート(TPAEMA)、t-ヘキシルアミノエチルメタクリレート(THAEMA)、t-ブチルアミノプロピルメタクリレート(TPAEMA)、t-ヘキシルアミノエチルメタクリレート(THAEMA)、t-ブチルアミノプロピルメタクリレート(TBAPMA)等が含まれる。
 ポリイソシアネートのブロック化反応は、一般に-20~150℃で行うことができるが、好ましくは0~100℃である。150℃以下であれば副反応を防止することができ、他方、-20℃以上であれば反応速度を適度な範囲とすることができる。ポリイソシアネート化合物とブロック剤のブロック化反応は、溶剤の存在の有無に関わらず、行うことができる。溶剤を用いる場合は、イソシアネート基に対して不活性な溶剤を用いるのが好ましい。ブロック化反応においては、反応触媒を使用することができる。具体的な反応触媒の例には、錫、亜鉛、鉛等の有機金属塩、金属アルコラート、及び3級アミン等が含まれる。
 上述のように調製されるブロックイソシアネートをラジカル重合性化合物として用いる場合、まず、光照射によりアクリロイル基部分を重合させる。その後、加熱によってブロック剤を外すことで、生成したイソシアネート化合物を新たにポリオールやポリアミン等と重合させることができ、ポリウレタンやポリウレアまたはこれらの混合物を含む立体造形物を得ることができる。
 一方、シリコーン(メタ)アクリレート系化合物は、主鎖にポリシロキサン結合を有するシリコーンの末端および/または側鎖に(メタ)アクリル酸を付加した化合物とすることができる。シリコーン(メタ)アクリレート系化合物の原料となるシリコーンは、公知の1官能、2官能、3官能、または4官能のシラン化合物(例えばアルコキシシラン等)が任意の組み合わせで重合したオルガノポリシロキサンとすることができる。シリコーンアクリレートの具体例には、市販のTEGORad2500(商品名:テゴケミーサービスGmbH社製)の他、X-22-4015(商品名:信越化学工業株式会社製)の様な-OH基を有する有機変性シリコーンとアクリル酸とを酸触媒下でエステル化させたもの;KBM402、KBM403(商品名:いずれも信越化学工業株式会社製)の様なエポキシシラン等の有機変性シラン化合物とアクリル酸を反応させたもの;等が含まれる。
 一方、光重合性化合物の他の例である、カチオン重合性化合物は、酸触媒の存在下、活性エネルギー線の照射によってカチオン重合可能な基を有していれば、その種類は特に制限されない。その例には、環状ヘテロ化合物が含まれ、環状エーテル基を有する化合物であることが、その反応性等の観点から好ましい。
 カチオン重合性化合物の具体例には、オキシラン、メチルオキシラン、フェニルオキシラン、1,2-ジフェニルオキシラン等のオキシラン化合物類、あるいは、グリシジルエーテル、グリシジルエステル、グリシジルアミン等のオキシラン環の水素原子がメチレン結合基やメチン結合基で置換されているエポキシ基含有化合物;2-(シクロヘキシルメチル)オキシラン、2-エトキシ-3-(シクロヘキシルメチル)オキシラン、[(シクロヘキシルオキシ)メチル]オキシラン、1,4-ビス(オキシラニルメトキシメチル)シクロヘキサン、等のシクロアルカン環を有するエポキシ基含有化合物;7-オキサビシクロ[4.1.0]ヘプタン、3-メチル-7-オキサビシクロ[4.1.0]ヘプタン、7-オキサビシクロ[4.1.0]ヘプタン-3-イルメタノール、7-オキサビシクロ[4.1.0]ヘプタン-3-メトキシメチル等の芳香環を有さない脂環族系エポキシ基含有化合物;3-フェニル-7-オキサビシクロ[4.1.0]ヘプタン-3-カルボキシレート、4-エチルフェニル7-オキサビシクロ[4.1.0]ヘプタン、ベンジル7-オキサビシクロ[4.1.0]ヘプタン-3-カルボキシレート、4-エチルフェニル7-オキサビシクロ[4.1.0]ヘプタン-3-カルボキシレート等の芳香環を有する脂環族系エポキシ基含有化合物;
 3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン、ジ(1-エチル-3-オキセタニル)メチルエーテル、3-エチル-3-(フェノキシメチル)オキセタン、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン、フェノールノボラックオキセタン、3‐エチル-{(3-トリエトキシシリルプロポキシ)メチル}オキセタン等のオキセタニル基含有化合物;
 2-メチルテトラヒドロフラン、2,5-ジエトキシテトラヒドロフラン、テトラヒドロフラン-2,2-ジメタノール3-メチル-2,4(3H、5H)-フランジオン、2,4-ジオキソテトラヒドロフラン-3-カルボキシラート、プロパン酸1,5-ジ(テトラヒドロフラン-2-イル)ペンタン-3-イル、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、メトキシテトラヒドロピラン等の5員環以上の環状エーテル化合物等が含まれる。
 樹脂組成物に含まれる光重合性化合物の総量は、樹脂組成物の全質量に対して10~90質量%であることが好ましく、30~70質量%であることがより好ましく、40~60質量%であることがさらに好ましい。光重合性化合物の量が当該範囲であると、強度の高い立体造形物が得られやすくなる。
 1-2.金属含有粒子
 樹脂組成物に含まれる金属含有粒子は、金属探知機による検出が可能な金属成分からなる粒子含み、さらにその表面が、表面改質剤によって改質された粒子である。樹脂組成物には、金属含有粒子が一種のみ含まれていてもよく、二種以上含まれていてもよい。
 金属含有粒子に含まれる金属成分の例には、遷移金属磁性体、遷移金属合金磁性体、金属間化合物磁性体、酸化物磁性体、非磁性体等が含まれる。遷移金属磁性体の例には、鉄、コバルト、ニッケル、クロム等の金属が含まれる。また、遷移金属合金磁性体の例には、鉄-コバルト;鉄-ニッケル;鉄-ニッケル-コバルト-アルミニウム;マンガン-アルミニウム-カーボン磁石;マルテンサイト系、フェライト系、またはオーステナイト・フェライト系のステンレス鋼等が含まれる。ステンレス鋼の例には、SUS403、410、410S,420J1,420J2、440A等のマルテンサイト系ステンレス;SUS405、410L、429、430、434、436L、445J1、445J2、444、447J1、XM27等のフェライト系ステンレス;SUS329J1、329J3L、および329J4Lなどのオーステナイト・フェライト系ステンレスが含まれる。また、酸化物磁性体の例には、γ―酸化鉄、四酸化三鉄、マグヘマイト、バリウム磁石、フェライト磁石等が含まれる。また、非磁性体の例には、アルミニウム、銅等が含まれる。
 上記の中でも、ステンレス鋼、鉄、酸化鉄(γ―酸化鉄または四酸化三鉄)が好ましく、鉄または酸化鉄が金属探知機による検出性の観点から好ましい。また、鉄または酸化鉄は、人体に影響を及ぼし難いことから、例えば樹脂組成物を後述の産業用ロボットのアタッチメントの作製に用いる場合に、非常に有用である。
 一方、表面改質剤は、金属成分からなる粒子の分散性を高めることが可能な化合物であれば、その種類は特に制限されない。表面改質剤は、上記金属成分表面に存在する官能基と結合、もしくは金属成分に吸着可能な基と、樹脂組成物中の各種成分(例えば、光重合性化合物等)に対する分散性を高めるための基、とを有する化合物とすることができる。その例には、シランカップリング剤やチタンカップリング剤、ジルコニウム系カップリング剤等が含まれる。なお、表面改質剤による表面処理の有無は、EDS(エネルギー分散型X線分光器)による微小領域の元素分析により特定することができる。
 なお、本明細書において、シランカップリング剤の例には、例えばビニル基やエポキシ基等の反応性官能基を有するシラン系化合物だけでなく、アルキル基を有するアルコキシシランや、シラザン等も含むものとする。シランカップリング剤の具体例には、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等の反応性官能基含有アルコキシシラン;メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン、トリフルオロプロピルトリメトキシシラン等のアルキル基含有アルコキシシラン;ヘキサメチルジシラザン等のシラザン;が含まれる。
 一方、チタンカップリング剤の例には、n-プロピルトリメトキシチタン、i-プロピルトリエトキシチタン、n-ヘキシルトリメトキシチタン、シクロヘキシルトリエトキシチタン、フェニルトリメトキシチタン等が含まれる。
 ジルコニウム系カップリング剤の例には、トリ-n-ブトキシ・エチルアセトアセテートジルコニウム、ジ-n-ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、n-ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、テトラキス(n-プロピルアセトアセテート)ジルコニウム、テトラキス(アセチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウム、ジ-n-ブトキシ・ビス(アセチルアセトナート)ジルコニウム等が含まれる。
 各金属含有粒子は、金属成分からなる粒子の表面が、一種の表面改質剤で処理されたものであってもよく、二種以上の表面改質剤で処理されたものであってもよい。表面改質剤は、上記の中でもシランカップリング剤であることが好ましく、金属含有粒子の分散性向上や、光重合性樹脂との相溶性、光重合性樹脂との反応性等の観点から、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシランであることがより好ましい。また、光重合性樹脂との反応性が高い3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシランであることが特に好ましい。
 金属含有粒子の調製方法は特に制限されない。例えば任意の溶媒に金属成分からなる粒子を分散させた後、当該分散液内に表面処理剤を添加して、攪拌する。その後、濾過等により溶媒を除去し、加熱乾燥する方法等とすることができる。加熱乾燥後、必要に応じて、得られた粒子を例えばボールミル等によって解砕してもよい。
 ここで、樹脂組成物に含まれる金属含有粒子の形状は特に制限されず、例えば球状であってもよく、扁平状や繊維状等であってもよいが、取扱性等の観点から球状であることが好ましい。
 金属含有粒子が球状である場合、その動的散乱法により測定される平均粒子径は0.05μm以上1μm以下であることが好ましく、0.08μm~0.8μmであることがより好ましく、0.1μm~0.5μmであることがさらに好ましい。金属含有粒子の平均粒子径が0.05μm未満であると、粒子間の相互作用が増大し、凝集体が生成しやすくなる傾向がある。また平均粒子径が1μm以上であると、金属含有粒子が樹脂組成物内で沈降しやすくなる傾向がある。上記平均粒子径の測定は、例えば微粒子粒度分布測定装置(日機装社製、ナノトラックUPA250EX)により行うことができ、その測定条件は、例えばレーザー波長:780nm、測定範囲:0.8~6000nmとすることができる。なお、金属含有粒子が、扁平状である場合や繊維状である場合には、その最大径の平均値が上記範囲であることが好ましい。また、金属含有粒子が扁平状または繊維状である場合には、そのアスペクト比(最大径/最小径)は、2以上20以下であることが好ましい。
 樹脂組成物に含まれる金属含有粒子の量は、樹脂組成物の固形分量に対して10質量%以上55質量%以下であるが、15質量%以上50質量%以下であることがより好ましく、20質量%以上30質量%以下であることがさらに好ましい。なお、本明細書において「固形分量」とは、樹脂組成物を硬化させたときに残存する成分の合計量とし、樹脂組成物中で液状である成分の量も含むものとする。樹脂組成物に含まれる金属粒子の量が過度に多くなると、樹脂組成物の粘度が高まり、樹脂組成物内に入り込んだ空気が抜け難くなる。その結果、立体造形物に空洞が生じやすく、立体造形物の引張強度等が低下しやすくなる。一方、樹脂組成物に含まれる金属含有粒子の量が過度に少ないと、立体造形物が金属探知機によって検出され難くなる。これに対し、金属含有粒子の量が上記範囲であると、得られる立体造形物の引張強度が高まりやすく、さらには金属探知機による検出性も良好になる。
 1-3.重合開始剤
 樹脂組成物には、上記光重合性化合物の重合を開始するための重合開始剤が通常含まれる。重合開始剤の種類は、光重合性化合物の種類に応じて適宜選択され、例えば光重合性化合物がラジカル重合性化合物である場合には、ラジカル重合開始剤が含まれる。一方、光重合性化合物がカチオン重合性化合物である場合には、光酸発生剤等のカチオン重合開始剤が含まれる。
 ラジカル重合開始剤は、活性エネルギー線の照射によってラジカルを発生させることが可能な化合物であれば特に制限されず、公知のラジカル重合開始剤とすることができる。
 ラジカル重合開始剤の例には、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(BASF社製、IRGACURE 1173(「IRGACURE」は同社の登録商標)等)、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチループロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン(BASF社製、IRGACURE 127等)、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(BASF社製、IRGACURE 2959等)、2,2-ジメトキシー1,2-ジフェニルエタンー1-オン(BASF社製、IRGACURE 651等)、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ベンジル、メチルフェニルグリオキシエステル、ベンゾフェノン、o-ベンゾイル安息香酸メチル-4-フェニルベンゾフェノン、4,4’-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、ミヒラ-ケトン、4,4’-ジエチルアミノベンゾフェノン、10-ブチル-2-クロロアクリドン、2-エチルアンスラキノン、9,10-フェナンスレンキノン、カンファーキノンおよび2,4-ジエチルオキサンテン-9-オン等が含まれる。
 ラジカル重合開始剤は、ラジカル重合性化合物の総量に対して0.01~10質量%含まれることが好ましく、0.1~5質量%含まれることがより好ましく、0.5~3質量%含まれることがさらに好ましい。ラジカル重合開始剤が当該範囲含まれると、上述のラジカル重合性化合物を十分に効率よく重合させることが可能となる。
 一方、カチオン重合開始剤は、活性エネルギー線の照射によって、酸を発生させ、カチオン重合性化合物を重合させることが可能な化合物であれば特に制限されず、公知の光酸発生剤を用いることができる。光酸発生剤の例には、スルホニウム塩系、またはヨードニウム塩系等のオニウム塩系光酸発生剤が含まれる。
 上記オニウム塩系光酸発生剤におけるアニオン成分としては、例えば、PF 、PF(CFCF 等のリン酸イオン、SbF 等のアンチモン酸イオン、トリフルオロメタンスルホナート等のフルオロアルキルスルホン酸イオン、パーフルオロアルキルスルホンアミド、パーフルオロアルキルスルホンメチド等が含まれる。
 一方、上記オニウム塩系光酸発生剤におけるカチオン成分としては、例えば、芳香族スルホニウム等のスルホニウム、芳香族ヨードニウム等のヨードニウム、芳香族ホスホニウム等のホスホニウム、芳香族スルホキソニウム等のスルホキソニウム等が含まれる。
 このようなオニウム塩系光酸発生剤の例には、アニオン成分をカウンターアニオンとして有する、芳香族スルホニウム塩等のスルホニウム塩、芳香族ヨードニウム塩等のヨードニウム塩、芳香族ホスホニウム塩等のホスホニウム塩、芳香族スルホキソニウム塩等のスルホキソニウム塩等が含まれる。
 光酸発生剤は、カチオン重合性化合物の総量に対して0.01~10質量%含まれることが好ましく、0.1~5質量%含まれることがより好ましく、0.5~3質量%含まれることがさらに好ましい。光酸発生剤が当該範囲含まれると、上述のカチオン重合性化合物を十分に効率よく重合させることが可能となる。
 1-4.その他の化合物
 樹脂組成物には、例えば熱重合性樹脂や、増粘剤、各種添加剤が含まれていてもよい。
 熱重合性樹脂の例には、シアネートエステル系樹脂、エポキシ樹脂、シリコーン樹脂等が含まれる。熱重合性樹脂であるシアネートエステル樹脂の例には、1,3-または1,4-ジシアナトベンゼン;1,3,5-トリシアナトベンゼン;1,3-、1,4-、1,6-、1,8-、2,6-、または2,7-ジシアナトナフタレン;1,3,6-トリシアナトナフタレン;2,2’-または4,4’-ジシアナトビフェニル;ビス(4-シアナトフェニル)メタン;2,2-ビス(4-シアナトフェニル)プロパン;2,2-ビス(3,5-ジクロロ-4-シアナトフェニル)プロパン;2,2-ビス(3-ジブロモ-4-ジシアナトフェニル)プロパン;ビス(4-シアナトフェニル)エーテル;ビス(4-シアナトフェニル)チオエーテル;ビス(4-シアナトフェニル)スルホン;トリス(4-シアナトフェニル)フォスファイト;トリス(4-シアナトフェニル)フォスフェート;ビス(3-クロロ-4-シアナトフェニル)メタン:4-シアナトビフェニル;4-クミルシアナトベンゼン;2-t-ブチル-1,4-ジシアナトベンゼン;2,4-ジメチル-1,3-ジシアナトベンゼン;2,5-ジ-t-ブチル-l,4-ジシアナトベンゼン;テトラメチル-1,4-ジシアナトベンゼン;4-クロロ-1,3-ジシアナトベンゼン;3,3’,5,5’-テトラメチル-4,4’ジシアナトジフェニルビス(3-クロロ-4-シアナトフェニル)メタン:1,1,1-トリス(4-シアナトフェニル)エタン;1,1-ビス(4-シアナトフェニル)エタン;2,2-ビス(3,5-ジクロロ-4-シアナトフェニル)プロパン;2,2-ビス(3,5-ジブロモ-4-シアナトフェニル)プロパン;ビス(p-シアノフェノキシフェノキシ)ベンゼン;ジ(4-シアナトフェニル)ケトン;シアン酸化ノボラック;シアン酸化ビスフェノールポリカーボネートオリゴマー等が含まれる。
 また、熱重合性樹脂であるエポキシ系樹脂は、分子内に1つまたは2つ以上のエポキシ基を有する公知のエポキシ樹脂が含まれる。その例には、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂等の結晶性エポキシ樹脂;クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;フェニレン骨格含有フェノールアラルキル型エポキシ樹脂、ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂、フェニレン骨格含有ナフトールアラルキル型エポキシ樹脂等のフェノールアラルキル型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、グリシジルアミン、4官能ナフタレン型エポキシ樹脂等の多官能型エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂、テルペン変性フェノール型エポキシ樹脂、シリコーン変性エポキシ樹脂等の変性フェノール型エポキシ樹脂;トリアジン核含有エポキシ樹脂等の複素環含有エポキシ樹脂;ナフチレンエーテル型エポキシ等が含まれる。
 また、熱重合性樹脂であるシリコーン樹脂は、オルガノポリシロキサン構造を有する樹脂であればよく、その例には、以下のような付加硬化型のシリコーン樹脂が含まれる。
 典型的な付加硬化型の液状シリコーン樹脂は、ビニルシリル基を含有するシリコーンと、ヒドロシリル基を含有するシリコーンと、付加反応触媒とを必須成分として含有しており、加熱するとビニルシリル基とヒドロシリル基との間で生じる付加反応により架橋構造が形成されて硬化する。
 ビニル基を有するシリコーンの例には、各末端ケイ素原子にビニル基が置換されたポリジメチルシロキサン、各末端ケイ素原子にビニル基が置換されたジメチルシロキサン-ジフェニルシロキサンコポリマー、各末端ケイ素原子にビニル基が置換されたポリフェニルメチルシロキサン、各末端にトリメチルシリル基を有するビニルメチルシロキサン-ジメチルシロキサンコポリマーなどが用いられる。
 ヒドロシリル基を含有するシリコーンの例には、各末端にトリメチルシリル基を有するメチルヒドロシロキサン-ジメチルシロキサンコポリマーが含まれる。また、各末端に水素原子が結合したポリジメチルシロキサンを併用することができる。
 付加反応触媒としては、白金黒、塩化第2白金、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白金酸とオレフィン類との錯体、白金ビスアセトアセテート等の白金系触媒、パラジウム系触媒、ロジウム系触媒などの白金族金属触媒が主に使用される。
 上記熱重合性樹脂は、樹脂組成物の総量に対して10~90質量%含まれることが好ましく、30~70質量%含まれることがより好ましく、40~60質量%含まれることがさらに好ましい。熱重合性樹脂が当該範囲含まれると、得られる立体造形物の耐熱性等が高まりやすくなる。
 また、樹脂組成物には、熱重合性樹脂と共に硬化剤や硬化促進剤等が含まれていてもよい。硬化剤や硬化促進剤の例には、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等の炭素数2~20の直鎖脂肪族ジアミン、メタフェニレンジアミン、パラフェニレンジアミン、パラキシレンジアミン、4,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエーテル、4,4'-ジアミノジフェニルスルホン、4,4'-ジアミノジシクロヘキサン、ビス(4-アミノフェニル)フェニルメタン、1,5-ジアミノナフタレン、メタキシレンジアミン、パラキシレンジアミン、1,1-ビス(4-アミノフェニル)シクロヘキサン、N,N-ジメチル-n-オクチルアミン、ジシアノジアミド等のアミノ類;アニリン変性レゾール樹脂やジメチルエーテルレゾール樹脂等のレゾール型フェノール樹脂;フェノールノボラック樹脂、クレゾールノボラック樹脂、tert-ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂等のノボラック型フェノール樹脂;フェニレン骨格含有フェノールアラルキル樹脂、ビフェニレン骨格含有フェノールアラルキル樹脂等のフェノールアラルキル樹脂;ナフタレン骨格やアントラセン骨格のような縮合多環構造を有するフェノール樹脂;ポリパラオキシスチレン等のポリオキシスチレン;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)等の脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)等の芳香族酸無水物を含む酸無水物等;ポリサルファイド、チオエステル、チオエーテル等のポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネート等のイソシアネート化合物;カルボン酸含有ポリエステル樹脂等の有機酸類等;ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)、アセチルアセトナート亜鉛等の有機金属塩が含まれる。樹脂組成物には1種が単独で含まれていてもよく、2種以上含まれていてもよい。当該硬化剤や硬化促進剤の量は、熱重合性樹脂の種類や量に合わせて適宜選択される。
 また、樹脂組成物には、本発明の目的および効果を損なわない範囲において、増粘剤が含まれていてもよい。増粘剤の例には、粘土鉱物、セルロースナノファイバー、およびセルロースナノクリスタル等が含まれる。
 粘土鉱物の具体例には、タルク、マイカ、クレイ、ワラストナイト、ヘクトライト、サポナイト、スチブンサイト、ハイデライト、モンモリロナイト、ノントライト、ベントナイト、Na型テトラシリシックフッ素雲母、Li型テトラシリシックフッ素雲母、Na型フッ素テニオライト、Li型フッ素テニオライト等の膨潤性雲母、およびバーミキュラライト等が含まれる。
 セルロースナノファイバーは、例えば、植物由来の繊維質もしくは植物の細胞壁の機械的な解繊、酢酸菌による生合成、2,2,6,6-tetramethylpiperidine-1-oxyl radical(TEMPO)等のN-オキシル化合物による酸化または電解紡糸法等によって得られる、繊維状のナノフィブリルを主成分とする繊維とすることができる。また、セルロースナノクリスタルは、植物由来の繊維質もしくは植物の細胞壁を機械的に解繊した後に酸処理等をして得られる、ウィスカー状(針状)に結晶化したナノフィブリルを主成分とする結晶とすることができる。セルロースナノファイバーおよびセルロースナノクリスタルは、セルロースを主成分とすればよく、リグニンおよびヘミセルロース等を含んでいてもよい。
 樹脂組成物には、増粘剤が一種のみ含まれていてもよく、二種以上含まれていてもよい。樹脂組成物にこれらの増粘剤が含まれると、樹脂組成物の粘度が適度に高まり、金属含有粒子の沈降や凝集等が抑制されやすくなる。ただし、増粘剤の量が過度に多いと、樹脂組成物に入り込んだ空気が抜け難くなったりすることがある。そこで、増粘剤の量は、樹脂組成物の全質量に対して0.1~10質量%であることが好ましく、0.5~5質量%であることがより好ましく、1~3質量%であることがさらに好ましい。
 また、樹脂組成物には、活性エネルギー線の照射による立体造形物の形成を可能にし、かつ得られる立体造形物に強度のムラを顕著に生じさせない限りにおいて、光増感剤、重合阻害剤、紫外線吸収剤、酸化防止剤、染料および顔料等の色材、消泡剤ならびに界面活性剤等の任意の添加剤がさらに含まれていてもよい。
 1-5.樹脂組成物の物性
 本発明の樹脂組成物は、JIS K-7117-1に準拠する方法で、回転式粘度計を用いて測定される、25℃の粘度が0.2~100Pa・sであることが好ましく、1~15Pa・sであることがより好ましい。樹脂組成物の粘度が当該範囲であると、金属含有粒子が沈降したり凝集したりし難くなり、ひいては立体造形物の強度が高まりやすくなる。
 1-6.樹脂組成物の調製方法
 上記樹脂組成物の調製方法は特に制限されず、例えば上述の光重合性化合物と、金属含有粒子と、重合開始剤、さらに必要に応じて他の成分等とを一度に混合して調製してもよく、一部の成分のみをあらかじめ混合し、その後、他の成分を混合して調製してもよい。
 樹脂組成物の混合に用いられる装置としては公知のものを使用できる。例えば、ウルトラタラックス(IKAジャパン社製)、TKホモミクサー(プライミクス社製)、TKパイプラインホモミクサー(プライミクス社製)、TKフィルミックス(プライミクス社製)、クレアミックス(エム・テクニック社製)、クレアSS5(エム・テクニック社製)、キャビトロン(ユーロテック社製)、ファインフローミル(太平洋機工社製)のようなメディアレス撹拌機、ビスコミル(アイメックス製)、アペックスミル(寿工業社製)、スターミル(アシザワ、ファインテック社製)、DCPスーパーフロー(日本アイリッヒ社製)、エムピーミル(井上製作所社製)、スパイクミル(井上製作所社製)、マイティーミル(井上製作所社製)、SCミル(三井鉱山社製)などのメディア攪拌機等やアルティマイザー(スギノマシン社製)、スターバースト(スギノマシン社製)、ナノマイザー(吉田機械社製)、NANO3000(美粒社製)などの高圧衝撃式分散装置が含まれる。
 また、あわとり練太郎(シンキー社製)やカクハンター(写真化学社製)等の自転公転ミキサーや、ハイビスミックス(プライミクス社製)、ハイビスディスパー(プライミクス社製)等の遊星式混合機、Nanoruptor(ソニック・バイオ社製)等の超音波分散装置も好適に用いることが可能である。
 2.立体造形物の製造方法
 上述した液体状の樹脂組成物は、活性エネルギー線を選択的に照射して、前記光重合性化合物の硬化物を含む一次硬化物を形成する工程を含む、立体造形物の製造方法に使用することができる。
 上述の樹脂組成物を用いた立体造形物の製造方法では、まず樹脂組成物に選択的に活性エネルギー線を照射し、上述の光重合性化合物を所望の形状に硬化させて、一次硬化物を形成する。活性エネルギー線は、光重合性化合物を十分に重合させることが可能であれば特に制限されず、例えば紫外線、X線、電子線、γ線および可視光線などとすることができる。なお、樹脂組成物に、重合性の成分として光重合性化合物のみ含まれる場合には、一次硬化物を立体造形物とすることができる。一方、樹脂組成物に、重合性の成分として、光重合性化合物以外の成分(例えば熱重合性樹脂)が含まれる場合には、一次硬化物の形成後、当該一次硬化物内に含まれる熱重合性化合物等を、任意の方法で硬化(重合)させて、立体造形物を得る。
 上述の樹脂組成物を用いた立体造形物の製造方法の例には、以下の2つの実施形態が含まれるが、本発明の方法は、これらの方法に限定されない。
 2-1.積層造形法(SLA法)
 図1は、積層造形法により一次硬化物を作製するための装置(立体造形物の製造装置)の一例を示す模式図である。製造装置500は、液体状の樹脂組成物550を貯留可能な造形槽510と、造形槽510の内部で上下方向(深さ方向)に往復移動可能な造形ステージ520と、造形ステージ520を支持するベース521と、活性エネルギー線の光源530と、活性エネルギー線を造形槽510の内部に導くガルバノミラー531等と、を有する。
 造形槽510は、製造しようとする一次硬化物を収容可能な大きさを有していればよい。また、活性エネルギー線を照射するための光源530には、公知のものを使用することができる。例えば紫外線を照射する光源530の例には、半導体レーザー、メタルハライドランプ、水銀アークランプ、キセノンアークランプ、蛍光ランプ、炭素アークランプ、タングステン-ハロゲン複写ランプ、および太陽光等が含まれる。
 当該方法ではまず、樹脂組成物550を造形槽510内に充填する。またこのとき、樹脂組成物550の液面から、作製する造形物層(第1造形物層)の厚み分だけ下方に造形ステージ520を配置する。この状態で、光源530から出射された活性エネルギー線を、ガルバノミラー531等で導いて走査し、造形ステージ520上の樹脂組成物550に照射する。このとき、第1造形物層を形成する領域にのみ選択的に活性エネルギー線を照射することで、所望の形状に第1造形物層が形成される。
 その後、造形ステージ520を1層分の厚み(次に作製する第2造形物層の厚み分)だけ降下(深さ方向へ移動)させて、第1造形物層を樹脂組成物550の中に沈下させる。これにより、上記第1造形物層上に樹脂組成物が供給される。続いて上記と同様に、光源530から出射された活性エネルギー線を、ガルバノミラー531等で導き、第1造形物層より上方に位置する樹脂組成物550に照射する。このときも、第2造形物層を形成する領域にのみ選択的に活性エネルギー線を照射する。これにより、前述の第1造形物層上に第2造形物層が積層される。
 その後、造形ステージ520の降下(樹脂組成物の供給)、および活性エネルギー線の照射、を繰り返すことで、所望の形状に一次硬化物が形成される。なお、上記方法で作製する一次硬化物の形状は、最終的に作製する立体造形物の形状と同様とする。
 その後、必要に応じて、一次硬化物に含まれる光重合性化合物以外の重合性化合物を、各種方法により硬化させて、立体造形物を得る。第2重合性化合物を硬化させる方法は、第2重合性化合物の種類(重合方式)に応じて適宜選択される。例えば、一次硬化物を加熱する方法であってもよく、マイクロ波や化学線を照射する方法であってもよい。また、水や、酸、塩基等に浸漬させて、これらと反応させる方法等であってもよい。
 上記の中でも、一次硬化物を加熱する方法が好ましい。なお、一次硬化物を加熱する際には、一次硬化物が変形しない温度とすることが好ましく、例えば光重合性化合物の硬化物のTgより低い温度とすることが好ましい。
 2-2.連続造形法(CLIP法)
 図2Aおよび図2Bは、連続造形法により一次硬化物を作製するための装置(立体造形物の製造装置)の一例を示す模式図である。図2Aに示すように、製造装置600は、液体状の樹脂組成物を貯留可能な造形槽610と、上下方向(深さ方向)に往復移動可能なステージ620と、活性エネルギー線を照射するための光源630等と、を有する。造形槽610は、その底部に、樹脂組成物を透過させず、活性光線および重合阻害剤(本実施形態では酸素)は透過させる窓部615を有する。なお、造形槽610は、製造しようとする立体造形物よりも広い幅を有し、かつ樹脂組成物と相互作用しないものであれば、その材質等は特に制限されない。また、窓部615の材質も、本実施形態の目的および硬化を損なわない範囲であれば特に制限されない。
 また、活性エネルギー線を照射するための光源630は公知のものを使用することができ紫外線を照射する光源630の例には、半導体レーザー、メタルハライドランプ、水銀アークランプ、キセノンアークランプ、蛍光ランプ、炭素アークランプ、タングステン-ハロゲン複写ランプ、および太陽光等が含まれる。また、光源630に液晶パネルやデジタルミラーデバイス(DMD)等の空間光変調器(Spatial Light Modulator:SLM)を有するSLM投影光学系を用いることで、活性エネルギー線を所望の領域に面照射することができる。
 当該方法では、まず、造形槽610に上述の樹脂組成物650を充填する。上述のように、当該方法に用いる樹脂組成物650が含む光重合性化合物は、ラジカル重合性化合物とする。そして、造形槽610の底部に設けられた窓部615から、造形槽610の底部側に酸素を導入する。酸素の導入方法は特に制限されず、例えば造形槽610の外部を酸素濃度が高い雰囲気とし、当該雰囲気に圧力をかける方法等とすることができる。
 このように窓部615から造形槽610内に酸素を供給することにより、窓部615側の領域では、酸素濃度が上昇し、活性エネルギー線を照射されても光重合性化合物が硬化しないバッファ領域642が形成される。一方で、バッファ領域642より上側の領域では、酸素の濃度がバッファ領域642より十分に低くなり、活性エネルギー線の照射によって、光重合性化合物が硬化可能な硬化用領域644となる。
 続いて、前記バッファ領域側642から活性エネルギー線を選択的に照射して、硬化用領域644で光重合性化合物の硬化物を形成する工程を行う。具体的には、図2Aに示すように、一次硬化物作製の基点となるステージ620を、硬化用領域644とバッファ領域642との界面近傍に配置する。そして、バッファ領域642側に配置された光源630からステージ620の底面側に、選択的に活性エネルギー線を照射する。これにより、ステージ620の底面近傍(硬化用領域644)の樹脂組成物中の光重合性化合物が硬化して、一次硬化物の最上部が形成される。
 その後、図2Bに示すように、ステージ620を上昇(バッファ領域642から離れる方向に移動)させる。これにより、硬化物651より造形槽610底部側の硬化用領域644に、未硬化の樹脂組成物650が新たに供給される。そして、ステージ620および硬化物651を連続的に上昇させながら、光源630から活性エネルギー線を連続的、かつ選択的(硬化させる領域)に照射する。これにより、ステージ620底面から造形槽610の底部側にかけて硬化物が連続して形成され、継ぎ目がなく、強度の高い一次造形物が製造される。なお、本実施形態においても、一次硬化物の形状は、最終的に作製する立体造形物の形状と同様とする。
 その後、必要に応じて一次硬化物に含まれる光重合性化合物以外の重合性化合物を、各種方法により硬化させて、立体造形物を得る。第2重合性化合物を硬化させる方法は、第2重合性化合物の種類(重合方式)等に応じて適宜選択され、上述の積層造形法(SLA法)における第2重合性化合物の硬化方法と同様とすることができる。
 なお、上記説明では、重合阻害剤として酸素を用いる例を説明したが、当該方法に限定されず、重合阻害剤は、光重合性化合物の重合を阻害する公知の重合禁止剤等であってもよい。重合阻害剤が公知の重合禁止剤であるときは、造形槽610の外側かつ窓部615に接する位置に重合禁止剤を貯留する貯留槽を設けて、上記貯留槽から上記重合阻害剤に窓部615を透過させて造形槽の底部側に供給してもよい。
 3.産業用ロボットについて
 上述の樹脂組成物から得られる立体造形物は、寸法精度や引張強度が高く、さらには金属探知機による検出性も有する。そこで、立体造形物の用途の一例として、産業用ロボットの先端に取り外し可能に取り付けられる、対象物把持用アタッチメント(以下、単に「アタッチメント」とも称する)が挙げられる。当該アタッチメントは、例えば、製品や中間体、原料等を把持して移動させたり、把持して向きを変える等の作業を行うための部品である。
 このようなアタッチメントを適用可能な産業用ロボットの一部の模式図を図3に示す。当該産業用ロボット300は、対象物310を搬送する搬送手段320と、当該搬送手段320によって搬送される対象物310を処理するアーム部330と、当該アーム部330によって処理された対象物310について、金属化合物を含むか否かを検査する金属探知手段340と、を含む。そして、アーム部330の先端に、上述のアタッチメント331が取り付けられている。
 当該産業用ロボット300で各種処理される対象物310の種類は特に制限されず、例えば食品等や樹脂製品等、金属探知手段によって検出されないものであれば特に制限されない。
 一方、産業用ロボット300における搬送手段320は、対象物310を連続的もしくは断続的に移動させることが可能な手段であれば特に制限されず、例えば一般的な産業用ロボットの搬送手段と同様とすることができる。
 また、アーム部330は、対象物310を把持するためのアタッチメント331が着脱可能に取り付けられており、対象物310に対して、所定の処理(例えば対象物310の加工や移動、選別等)を行うための手段である。当該アーム部310では、アタッチメント331が対象物310を把持しながら、所定の処理を行う。なお、アーム部330の近傍には、アーム部330とは異なる処理(例えば対象物310の加工等)を行うための処理用アーム部(図示せず)等がさらに配置されていてもよい。また、アタッチメント331の形状は特に制限されず、対象物310の形状に合わせて適宜選択される。
 また、金属探知手段340は、アーム部330によって処理された対象物310に金属成分が含まれるか否かを判定するための手段である。金属探知手段340において金属成分が探知された場合には、当該対象物310を移動させたり、マーキングする等の手段(図示せず)が、金属探知手段340の下流側に設けられていてもよい。
 なお、金属探知手段340は、金属成分の検出が可能であればよく、交流型金属探知手段(以降、「交流型MD」とも称する)であってもよく直流型金属探知手段(以下、「直流型MD」とも称する)であってもよい。
 金属探知手段340が交流型MDであると、すべての金属の検出が可能である。交流型MDでは、鉄やニッケル、コバルトなどの強磁性体を検出する場合には、金属による磁力線の変化を検知し、金属成分の有無を判断する。一方、ステンレス鋼や、アルミニウム、銅等の非磁性体を検出する場合には、交流磁界により金属成分近傍に渦電流を発生させ、磁界を発生させる。そして、この磁界の変化を検知し、金属成分の有無を判定する。
 一方、金属探知手段340が直流型MDであると、アルミニウム箔を使用した食品の検査等を行うことができる。直流型MDでは、金属探知手段340が有する強磁性体によって金属成分が磁化され、これによって生じる起電力(電圧)を検知することで、金属成分の有無を判定する。
 なお、上述の産業用ロボット300では、対象物310をアーム部330のアタッチメント331によって把持しながら各種処理を行うが、このとき、アタッチメント331の一部が破損したりして、対象物310内にその破片が混入することも想定される。そこでこのような場合に備え、アタッチメント311を、上述の金属含有粒子を含む樹脂組成物を用いて作製することで、破片が混入した製品を排除すること等が可能となる。
 なお、このような産業用ロボット300において、金属探知手段340による試験片の最小検出体積は、40mm未満であることが好ましく、32mm未満であることが好ましく、24mm未満であることがさらに好ましい。このような小さな試験片も検出することができると、より信頼性の高い製品を製造することが可能となる。なお、検出性の向上は、上述の樹脂組成物中の金属含有粒子の分散性を高めることで実現することができる。
 以下において、本発明の具体的な実施例を説明する。なお、これらの実施例によって、本発明の範囲は限定して解釈されない。
 実施例および比較例には、以下の金属含有粒子を用いた。
 (金属含有粒子)
 ステンレス鋼粒子A(平均粒子径:0.02μm)
 ステンレス鋼粒子B(平均粒子径:0.1μm)
 ステンレス鋼粒子C(平均粒子径:3μm)
 ステンレス鋼粒子D(平均粒子径:0.05μm)
 ステンレス鋼粒子E(平均粒子径:1μm)
 酸化鉄粒子(平均粒子径:0.1μm)
 鉄粒子(平均粒子径:0.1μm)
 1.樹脂組成物の調製
 [サンプル1]
 平均粒子径が0.02μmのステンレス鋼粒子A30g、表面改質剤であるn-プロピルトリメトキシシラン(信越シリコーン社製、KBM-3033)0.3g、塩酸(濃度35%)0.5gをエタノール水溶液20gに添加して、室温で30分間撹拌した。撹拌後、当該反応液を濾過し、浅いトレー等に広げて120℃で90分間乾燥した。乾燥後、ボールミルで解砕した。
 その後、光硬化性樹脂(ダイセル・オルネクス社製、EBECRYL 600;ビスフェノールAタイプエポキシアクリレート)180g、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子21g、および光重合開始剤(IRGACURE TPO:ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド)2.5gを混合し、樹脂組成物を調製した。
 [サンプル2]
 サンプル1と同様に、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)140g、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子62g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル3]
 サンプル1と同様に、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)100g、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子103g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル4]
 平均粒子径が0.1μmのステンレス鋼粒子B30g、表面改質剤であるn-プロピルトリメトキシシラン(信越シリコーン社製、KBM-3033)0.3g、塩酸(濃度35%)0.5gをエタノール水溶液20gに添加して、室温で30分間撹拌した。撹拌後、当該反応液を濾過し、浅いトレー等に広げて120℃で90分間乾燥した。乾燥後、ボールミルで解砕した。
 その後、光硬化性樹脂(EBECRYL 600)180g、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子21g、および光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル5]
 サンプル4と同様に、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)140g、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子62g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル6]
 サンプル4と同様に、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)100g、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子103g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル7]
 平均粒子径が3μmのステンレス鋼粒子C30g、表面改質剤であるn-プロピルトリメトキシシラン(信越シリコーン社製、KBM-3033)0.3g、塩酸(濃度35%)0.5gをエタノール水溶液20gに添加して、室温で30分間撹拌した。撹拌後、当該反応液を濾過し、浅いトレー等に広げて120℃で90分間乾燥した。乾燥後、ボールミルで解砕した。
 その後、光硬化性樹脂(EBECRYL 600)180g、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子21g、および光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル8]
 サンプル7と同様に、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)140g、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子62g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル9]
 サンプル7と同様に、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)100g、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子103g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル10]
 平均粒子径が0.02μmのステンレス鋼粒子A30g、表面改質剤である3-アクリロキシプロピルトリメトキシシラン(信越シリコーン社製、KBM-5103)0.3g、塩酸(濃度35%)0.5gをエタノール水溶液20gに添加して、室温で30分間撹拌した。撹拌後、当該反応液を濾過し、浅いトレー等に広げて120℃で90分間乾燥した。乾燥後、ボールミルで解砕した。
 その後、光硬化性樹脂(EBECRYL 600)180g、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子21g、および光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル11]
 サンプル10と同様に、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)140g、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子62g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル12]
 サンプル10と同様に、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)100g、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子103g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル13]
 平均粒子径が0.1μmのステンレス鋼粒子B30g、表面改質剤である3-アクリロキシプロピルトリメトキシシラン(信越シリコーン社製、KBM-5103)0.3g、塩酸(濃度35%)0.5gをエタノール水溶液20gに添加して、室温で30分間撹拌した。撹拌後、当該反応液を濾過し、浅いトレー等に広げて120℃で90分間乾燥した。乾燥後、ボールミルで解砕した。
 その後、光硬化性樹脂(EBECRYL 600)180g、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子21g、および光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル14]
 サンプル13と同様に、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)140g、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子62g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル15]
 サンプル13と同様に、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)100g、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子103g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル16]
 平均粒子径が3μmのステンレス鋼粒子C30g、表面改質剤である3-アクリロキシプロピルトリメトキシシラン(信越シリコーン社製、KBM-5103)0.3g、塩酸(濃度35%)0.5gをエタノール水溶液20gに添加して、室温で30分間撹拌した。撹拌後、当該反応液を濾過し、浅いトレー等に広げて120℃で90分間乾燥した。乾燥後、ボールミルで解砕した。その後、光硬化性樹脂(EBECRYL 600)180g、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子21g、および光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル17]
 サンプル16と同様に、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)140g、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子62g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル18]
 サンプル16と同様に、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)100g、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子103g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル19]
 サンプル10と同様に、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)180g、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子21g、セルロースナノファイバー溶液(セルロースナノファイバーの濃度:2%、繊維径:50nm、繊維長:5μm)10g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル20]
 サンプル10と同様に、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)140g、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子62g、セルロースナノファイバー溶液(セルロースナノファイバーの濃度:2%、繊維径:50nm、繊維長:5μm)10g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル21]
 サンプル10と同様に、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)100g、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子103g、セルロースナノファイバー溶液(セルロースナノファイバーの濃度:2%、繊維径:50nm、繊維長:5μm)10g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル22]
 平均粒子径が0.05μmのステンレス鋼粒子D30g、表面改質剤である3-アクリロキシプロピルトリメトキシシラン(信越シリコーン社製、KBM-5103)0.3g、塩酸(濃度35%)0.5gをエタノール水溶液20gに添加して、室温で30分間撹拌した。撹拌後、当該反応液を濾過し、浅いトレー等に広げて120℃で90分間乾燥した。乾燥後、ボールミルで解砕した。
 その後、光硬化性樹脂(EBECRYL 600)180g、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子21g、セルロースナノファイバー溶液(セルロースナノファイバーの濃度:2%、繊維径:50nm、繊維長:5μm)10g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル23]
 サンプル22と同様に、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)140g、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子62g、セルロースナノファイバー溶液(セルロースナノファイバーの濃度:2%、繊維径:50nm、繊維長:5μm)10g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル24]
 サンプル22と同様に、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)100g、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子103g、セルロースナノファイバー溶液(セルロースナノファイバーの濃度:2%、繊維径:50nm、繊維長:5μm)10g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル25]
 サンプル13と同様に、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)180g、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子21g、セルロースナノファイバー溶液(セルロースナノファイバーの濃度:2%、繊維径:50nm、繊維長:5μm)10g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル26]
 サンプル13と同様に、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)140g、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子62g、セルロースナノファイバー溶液(セルロースナノファイバーの濃度:2%、繊維径:50nm、繊維長:5μm)10g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル27]
 サンプル13と同様に、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)100g、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子103g、セルロースナノファイバー溶液(セルロースナノファイバーの濃度:2%、繊維径:50nm、繊維長:5μm)10g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル28]
 平均粒子径が1μmのステンレス鋼粒子E30g、表面改質剤である3-アクリロキシプロピルトリメトキシシラン(信越シリコーン社製、KBM-5103)0.3g、塩酸(濃度35%)0.5gをエタノール水溶液20gに添加して、室温で30分間撹拌した。撹拌後、当該反応液を濾過し、浅いトレー等に広げて120℃で90分間乾燥した。乾燥後、ボールミルで解砕した。
 その後、光硬化性樹脂(EBECRYL 600)180g、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子21g、セルロースナノファイバー溶液(セルロースナノファイバーの濃度:2%、繊維径:50nm、繊維長:5μm)10g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル29]
 サンプル28と同様に、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)140g、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子62g、セルロースナノファイバー溶液(セルロースナノファイバーの濃度:2%、繊維径:50nm、繊維長:5μm)10g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル30]
 サンプル28と同様に、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)100g、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子103g、セルロースナノファイバー溶液(セルロースナノファイバーの濃度:2%、繊維径:50nm、繊維長:5μm)10g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル31]
 サンプル16と同様に、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)180g、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子21g、セルロースナノファイバー溶液(セルロースナノファイバーの濃度:2%、繊維径:50nm、繊維長:5μm)10g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル32]
 サンプル16と同様に、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)140g、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子62g、セルロースナノファイバー溶液(セルロースナノファイバーの濃度:2%、繊維径:50nm、繊維長:5μm)10g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル33]
 サンプル16と同様に、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)100g、3-アクリロキシプロピルトリメトキシシラン修飾ステンレス鋼粒子103g、セルロースナノファイバー溶液(セルロースナノファイバーの濃度:2%、繊維径:50nm、繊維長:5μm)10g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル34]
 ステンレス鋼粒子を、平均粒子径が0.1μmの酸化鉄粒子に変更した以外は、サンプル19と同様に樹脂組成物を調製した。
 [サンプル35]
 ステンレス鋼粒子を、平均粒子径が0.1μmの酸化鉄粒子に変更した以外は、サンプル20と同様に樹脂組成物を調製した。
 [サンプル36]
 ステンレス鋼粒子を、平均粒子径が0.1μmの酸化鉄粒子に変更した以外は、サンプル21と同様に樹脂組成物を調製した。
 [サンプル37]
 ステンレス鋼粒子を、平均粒子径が0.1μmの鉄粒子に変更した以外は、サンプル19と同様に樹脂組成物を調製した。
 [サンプル38]
 ステンレス鋼粒子を、平均粒子径が0.1μmの鉄粒子に変更した以外は、サンプル20と同様に樹脂組成物を調製した。
 [サンプル39]
 ステンレス鋼粒子を、平均粒子径が0.1μmの鉄粒子に変更した以外は、サンプル21と同様に樹脂組成物を調製した。
 [サンプル40]
 サンプル34と同様に、3-アクリロキシプロピルトリメトキシシラン修飾酸化鉄粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)90g、熱重合性樹脂(新日鉄住金化学社製、YD-127;ビスフェノールA型エポキシ樹脂)90g、3-アクリロキシプロピルトリメトキシシラン修飾酸化鉄粒子21g、セルロースナノファイバー溶液(セルロースナノファイバーの濃度:2%、繊維径:50nm、繊維長:5μm)10g、光重合開始剤(IRGACURE TPO)1.5g、硬化剤(4,4’-ジアミノジフェニルスルホン)1.5gを混合し、樹脂組成物を調製した。
 [サンプル41]
 サンプル34と同様に、3-アクリロキシプロピルトリメトキシシラン修飾酸化鉄粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)70g、熱重合性樹脂(YD-127)70g、3-アクリロキシプロピルトリメトキシシラン修飾酸化鉄粒子62g、セルロースナノファイバー溶液(セルロースナノファイバーの濃度:2%、繊維径:50nm、繊維長:5μm)10g、光重合開始剤(IRGACURE TPO)1.5g、硬化剤(4,4’-ジアミノジフェニルスルホン)1.5gを混合し、樹脂組成物を調製した。
 [サンプル42]
 サンプル34と同様に、3-アクリロキシプロピルトリメトキシシラン修飾酸化鉄粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)50g、熱重合性樹脂(YD-127)50g、3-アクリロキシプロピルトリメトキシシラン修飾酸化鉄粒子104g、セルロースナノファイバー溶液(セルロースナノファイバーの濃度:2%、繊維径:50nm、繊維長:5μm)10g、光重合開始剤(IRGACURE TPO)1.5g、硬化剤(4,4’-ジアミノジフェニルスルホン)1.5gを混合し、樹脂組成物を調製した。
 [サンプル43]
 光硬化性樹脂(EBECRYL 600)190g、ステンレス鋼粒子A11g、および光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル44]
 光硬化性樹脂(EBECRYL 600)180g、ステンレス鋼粒子A21g、および光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル45]
 光硬化性樹脂(EBECRYL 600)140g、ステンレス鋼粒子A62g、および光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル46]
 光硬化性樹脂(EBECRYL 600)100g、ステンレス鋼粒子A103g、および光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル47]
 光硬化性樹脂(EBECRYL 600)80g、ステンレス鋼粒子A125g、および光重合開始剤(IRGACURE TPO)2.0gを混合し、樹脂組成物を調製した。
 [サンプル48]
 ステンレス鋼粒子Aをステンレス鋼粒子Bに変更した以外は、サンプル43と同様に樹脂組成物を調製した。
 [サンプル49]
 ステンレス鋼粒子Aをステンレス鋼粒子Bに変更した以外は、サンプル44と同様に樹脂組成物を調製した。
 [サンプル50]
 ステンレス鋼粒子Aをステンレス鋼粒子Bに変更した以外は、サンプル45と同様に樹脂組成物を調製した。
 [サンプル51]
 ステンレス鋼粒子Aをステンレス鋼粒子Bに変更した以外は、サンプル46と同様に樹脂組成物を調製した。
 [サンプル52]
 ステンレス鋼粒子Aをステンレス鋼粒子Bに変更した以外は、サンプル47と同様に樹脂組成物を調製した。
 [サンプル53]
 ステンレス鋼粒子Aをステンレス鋼粒子Cに変更した以外は、サンプル43と同様に樹脂組成物を調製した。
 [サンプル54]
 ステンレス鋼粒子Aをステンレス鋼粒子Cに変更した以外は、サンプル44と同様に樹脂組成物を調製した。
 [サンプル55]
 ステンレス鋼粒子Aをステンレス鋼粒子Cに変更した以外は、サンプル45と同様に樹脂組成物を調製した。
 [サンプル56]
 ステンレス鋼粒子Aをステンレス鋼粒子Cに変更した以外は、サンプル46と同様に樹脂組成物を調製した。
 [サンプル57]
 ステンレス鋼粒子Aをステンレス鋼粒子Cに変更した以外は、サンプル47と同様に樹脂組成物を調製した。
 [サンプル58]
 サンプル1と同様に、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)190g、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子11g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル59]
 サンプル1と同様に、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)80g、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子122g、光重合開始剤(IRGACURE TPO)2.0gを混合し、樹脂組成物を調製した。
 [サンプル60]
 サンプル4と同様に、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)190g、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子11g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル61]
 サンプル4と同様に、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)80g、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子122g、光重合開始剤(IRGACURE TPO)2.0gを混合し、樹脂組成物を調製した。
 [サンプル62]
 サンプル7と同様に、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)190g、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子11g、光重合開始剤(IRGACURE TPO)2.5gを混合し、樹脂組成物を調製した。
 [サンプル63]
 サンプル7と同様に、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子を作製した。その後、光硬化性樹脂(EBECRYL 600)80g、n-プロピルトリメトキシシラン修飾ステンレス鋼粒子122g、光重合開始剤(IRGACURE TPO)2.0gを混合し、樹脂組成物を調製した。
 2.立体造形物の作製
 (第1の立体造形方法(SLA法))
 図1に示すような構成を有する立体造形物の製造装置(XYZprinting社製NOBEL1.0)の造形槽510に樹脂組成物(サンプル1~63)をそれぞれ投入した。そして、光源530からの半導体レーザー光(出力100mW、波長405nm)の照射および造形ステージ520の降下を繰り返して、JIS K7161-2(ISO 527-2) 1A形の試験片形状の一次硬化物を得た。なお、作製の際には、引張試験片の長手方向が造形方向(ステージの降下方向)となるようにした。
 サンプル1~39、および43~63については、当該一次硬化物を立体造形物とした。一方サンプル40~42を用いて作製された一次硬化物は、イソプロピルアルコールで洗浄した後、100℃で1時間、150℃で1時間、180℃で1時間オーブンにて加熱し、一次硬化物中に含まれる熱重合性樹脂を硬化させた。
 (第2の立体造形方法(CLIP法))
 立体造形物の作製には、図2Aに示す製造装置600の造形槽610に樹脂組成物(サンプル40~42)650をそれぞれ投入した。当該造形槽610の底部には、重合阻害剤である酸素の透過が可能なBiogeneral社製の0.0025インチ厚のTeflon(登録商標)AF2400フィルム(窓部615)が配置されている。そして、造形槽610の外側の雰囲気を酸素雰囲気としたうえで、適度に加圧を行った。これにより、造形槽610の底部側に、樹脂組成物650および酸素を含むバッファ領域642が形成され、バッファ領域642より上部は、バッファ領域より酸素濃度が低い硬化用領域644が形成された。
 そして、紫外線源:LEDプロジェクタ(Texas Instruments社製のDLP(VISITECH LE4910H UV-388))から光を面状に照射しながらステージ620を上昇させた。このとき、紫外線の照射強度は5mW/cmとした。また、ステージ620の引き上げ速度は、50mm/hrとした。そして、JIS K7161-2(ISO 527-2) 1A形の試験片形状の一次硬化物を作製した。なお、作製の際には、引張試験片の長手方向が造形方向(ステージ620の引き上げ方向)となるようにした。得られた一次硬化物をイソプロピルアルコールで洗浄した後、100℃で1時間、150℃で1時間、180℃で1時間オーブンにて加熱し、一次硬化物中に含まれる熱重合性樹脂を硬化させた。
 3.立体造形物の評価
 得られた立体造形物について、それぞれ造形精度、金属探知機による検出性、および引張強度を評価した。
 3-1.造形精度
 立体造形物の造形精度の評価は、各立体造形物の寸法を測定して行った。具体的には、JIS K7161-2(ISO 527-2) 1A形の試験片のつかみ部の幅(b2)の左右寸法差の絶対値をBとし、つかみ部の厚さ(h)の左右寸法差の絶対値をHとし、以下のように評価した。
 ◎:BおよびHが、それぞれ0.1mm未満である場合
 〇:BおよびHのうち、いずれか一方が0.1mm未満であり、他方が0.1mm以上0.2mm未満である場合
 △:BおよびHの両方が、0.1mm以上0.2mm未満である場合
 ×:BおよびHのうちいずれかが0.2mm以上となる場合、もしくは造形物が得られなかった場合
 3-2.金属探知機による検出性
 立体造形物の金属探知機による検出性は、異なる体積の立体造形物を金属探知機(アンリツインフィビス社製KDS8113BW)に通し、検出された最小サイズの立体造形物の体積によって、以下の基準で評価した。
 ◎◎:金属探知機による最小検出体積が16mm未満の場合
 ◎:金属探知機による最小検出体積が16mm以上24mm未満である場合
 〇:金属探知機による最小検出体積が24mm以上32mm未満である場合
 △:金属探知機による最小検出体積が32mm以上40mm未満である場合
 ×:金属探知機による最小検出体積が40mm以上である場合
 3-3.引張強度
 JIS K7161に準拠して引張試験を実施した。具体的には、A&D社製引張試験機 テンシロンRTC-1250型によって、引張強度を特定し、以下のように評価した。
 ◎◎:引張強度が60MPa以上の場合
 ◎:引張強度が50MPa以上60MPa未満の場合
 〇:引張強度が30MPa以上50MPa未満の場合
 △:引張強度が10MPa以上30MPa未満の場合
 ×:引張強度が10MPa未満の場合
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 上記表1~3に示されるように、光重合性化合物と金属含有粒子とを含む樹脂組成物において、金属含有粒子が表面改質剤によって表面処理されていない場合(サンプル43~57)、金属探知機による検出性が非常に悪かった。樹脂組成物中で金属含有粒子が沈降したり凝集したりしたため、得られる立体造形物において、金属含有粒子が疎らに分散されていたと推察される。なお、金属含有粒子の量が増えると、樹脂組成物の粘度が増加し、金属含有粒子の沈降や凝集等は抑制されたと推察されるが、樹脂組成物の粘度増加によって、樹脂組成物中に空気が混入しやすくなり、造形精度が低くなったり、引張強度が低下したりした(サンプル47、52、および57)。
 これに対し、光重合性化合物と金属含有粒子とを含み、かつ金属含有粒子が表面改質剤によって表面処理されていたとしても、金属含有粒子の量が非常に少ない場合(サンプル58、60、および62)には、立体造形物において、金属含有粒子が含まれない領域が多くなり、金属探知機による検出性が低下した。一方、金属含有粒子の量が非常に多い場合(サンプル59、61、および63)には、金属検出性は向上したものの、樹脂組成物の粘度増加によって、樹脂組成物中に空気が混入しやすくなり、造形精度が低くなったり、引張強度が低下したりした。
 一方、光重合性化合物と金属含有粒子とを含み、かつ金属含有粒子が表面改質剤によって表面処理されており、さらに光重合性化合物の量に対する金属含有粒子の量が10~50質量%である場合には、金属探知機による検出性、造形精度、および引張強度を兼ね備える立体造形物が得られた(サンプル1~42)。また、これらの樹脂組成物にセルロースナノファイバーが含まれると、樹脂組成物の粘度が適度に増加したり、樹脂組成物中に分散されたセルロースナノファイバーと金属含有粒子とが相互作用することで、金属含有粒子の分散性が高まり、金属検出性が大幅に向上した(サンプル19~42)。
 また、金属含有粒子が酸化鉄または純鉄である場合にも、金属探知機による検出性が大幅に向上した(サンプル34~42)。また、光硬化性樹脂と共に熱硬化性樹脂が含まれると、CLIP法で立体造形物を作製したときの引張強度や造形精度が高まった(サンプル40~42)。
 本出願は、2017年9月22日出願の特願2017-182478号に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 本発明の樹脂組成物によれば、引張強度および寸法精度が高く、さらには金属探知機による検出が容易な立体造形物を製造することができる。そのため、本発明は、樹脂組成物を用いた立体造形物の適用の幅を広げ、同分野の技術の進展および普及に貢献することが期待される。
 300 産業用ロボット
 310 対象物
 320 搬送手段
 330 アーム部
 331 アタッチメント
 340 金属探知手段
 500、600 製造装置
 510、610 造形槽
 615 窓部
 520、620 ステージ
 521 ベース
 530、630 光源
 531 ガルバノミラー
 642 バッファ領域
 644 硬化用領域
 550、650 樹脂組成物
 651 硬化物
 
 

Claims (15)

  1.  液体状の樹脂組成物に活性エネルギー線を選択的に照射して、前記樹脂組成物の硬化物からなる立体造形物を製造する方法に使用される樹脂組成物であって、
     光重合性化合物と、
     金属探知機により検出可能であり、かつ表面処理剤で表面処理された金属含有粒子と、
     を含み、
     前記金属含有粒子の含有量が、樹脂組成物の固形分量に対して10質量%以上55質量%以下である、
     樹脂組成物。
  2.  前記表面改質剤が、シランカップリング剤である、
     請求項1に記載の樹脂組成物。
  3.  粘土鉱物、セルロースナノファイバー、およびセルロースナノクリスタルからなる群から選ばれる少なくとも一種の増粘剤をさらに含む、
     請求項1または2に記載の樹脂組成物。
  4.  前記金属含有粒子の動的散乱法により測定される平均粒子径が0.05μm以上1μm未満である、
     請求項1~3のいずれか一項に記載の樹脂組成物。
  5.  前記金属含有粒子が、純鉄または酸化鉄を含む、
     請求項1~4のいずれか一項に記載の樹脂組成物。
  6.  熱重合性化合物をさらに含む、
     請求項1~5のいずれか一項に記載の樹脂組成物。
  7.  請求項1~6のいずれか一項に記載の樹脂組成物の硬化物である、
     立体造形物。
  8.  積層構造を有さない、
     請求項7に記載の立体造形物。
  9.  請求項7または8に記載の立体造形物を含み、
     産業用ロボットのアーム部に着脱可能に取り付けられる、
     対象物把持用アタッチメント。
  10.  対象物を搬送する搬送手段と、
     前記搬送手段によって搬送される対象物を把持し、処理するアーム部と、
     前記アーム部によって処理された対象物を検査する金属探知手段と、を備え、
     前記アーム部に、請求項9に記載の対象物把持用アタッチメントが着脱可能に取り付けられている、
     産業用ロボット。
  11.  請求項1~6のいずれか一項に記載の樹脂組成物に活性エネルギー線を選択的に照射し、前記光重合性化合物の硬化物を含む一次硬化物を形成する工程を含む、
     立体造形物の製造方法。
  12.  造形槽に充填された前記樹脂組成物に活性エネルギー線を選択的に照射し、前記光重合性化合物の硬化物を含む第1造形物層を形成する工程と、
     前記第1造形物層上に前記樹脂組成物を供給する工程と、
     前記樹脂組成物の供給工程で供給された前記樹脂組成物に活性エネルギー線を選択的に照射して、前記第1造形物層上に、前記光重合性化合物の硬化物を含む第2造形物層を形成する工程と、
     を含み、
     前記樹脂組成物の供給工程および前記第2造形物層の形成工程を繰り返し行い、前記一次硬化物を立体的に形成する、
     請求項11に記載の立体造形物の製造方法。
  13.  前記樹脂組成物および重合阻害剤を含み、前記重合阻害剤により前記光重合性化合物の硬化が阻害されるバッファ領域、ならびに前記樹脂組成物を少なくとも含み、前記バッファ領域より前記重合阻害剤の濃度が低く、前記光重合性化合物の硬化が可能な硬化用領域を、造形物槽内に隣接して形成する工程と、
     前記バッファ領域側から前記樹脂組成物に活性エネルギー線を選択的に照射して、前記硬化用領域で前記光重合性化合物を硬化させる工程と、
     を含み、
     前記光重合性化合物の硬化工程では、形成された硬化物を連続的に前記バッファ領域とは反対側に移動させながら、前記硬化用領域に連続的に活性エネルギー線を照射し、前記一次硬化物を形成する、
     請求項11に記載の立体造形物の製造方法。
  14.  前記重合阻害剤が酸素である、
     請求項13に記載の立体造形物の製造方法。
  15.  前記一次硬化物の形成後、前記一次硬化物に、熱、マイクロ波、化学線をさらに照射する、または前記一次硬化物を水、酸、または塩基と反応させる工程を含む、
     請求項11~14のいずれか一項に記載の立体造形物の製造方法。
     
PCT/JP2018/034507 2017-09-22 2018-09-18 樹脂組成物、およびこれを用いた立体造形物の製造方法、立体造形物、ならびに対象物把持用アタッチメントおよびこれを用いた産業用ロボット WO2019059184A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/647,273 US20200276752A1 (en) 2017-09-22 2018-09-18 Resin composition, method for manufacturing three-dimensional object using resin composition, three-dimensional object, and object-gripping attachment, and industrial robot using object-gripping attachment
EP18858479.1A EP3685989B1 (en) 2017-09-22 2018-09-18 Object-gripping attachment and industrial robot using object-gripping attachment
JP2019543643A JPWO2019059184A1 (ja) 2017-09-22 2018-09-18 樹脂組成物、およびこれを用いた立体造形物の製造方法、立体造形物、ならびに対象物把持用アタッチメントおよびこれを用いた産業用ロボット
CN201880060498.7A CN111107975A (zh) 2017-09-22 2018-09-18 树脂组合物、以及使用了该组合物的立体造型物的制造方法、立体造型物以及用于把持对象物的配件、以及使用该配件的工业用机器人

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017182478 2017-09-22
JP2017-182478 2017-09-22

Publications (1)

Publication Number Publication Date
WO2019059184A1 true WO2019059184A1 (ja) 2019-03-28

Family

ID=65809898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034507 WO2019059184A1 (ja) 2017-09-22 2018-09-18 樹脂組成物、およびこれを用いた立体造形物の製造方法、立体造形物、ならびに対象物把持用アタッチメントおよびこれを用いた産業用ロボット

Country Status (5)

Country Link
US (1) US20200276752A1 (ja)
EP (1) EP3685989B1 (ja)
JP (1) JPWO2019059184A1 (ja)
CN (1) CN111107975A (ja)
WO (1) WO2019059184A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11633909B2 (en) 2018-07-28 2023-04-25 CALT Dynamics Limited Methods, systems, and devices for three-dimensional object generation and physical mask curing
WO2023099435A1 (en) 2021-11-30 2023-06-08 Momentive Performance Materials Gmbh Curing compositions for epoxy resin compositions

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128370A (en) * 1975-04-30 1976-11-09 Hinode Suidou Kiki Kk Method of manufacture of reinforced plastic product covered with metallic thin plate to be detectable by metal detector
JPS5751388B2 (ja) 1975-04-26 1982-11-01
JPH08174680A (ja) 1994-12-22 1996-07-09 Japan Synthetic Rubber Co Ltd 光造形方法
JP2003306217A (ja) * 2002-04-12 2003-10-28 Nippon Filcon Co Ltd 金属検知器で検出できる磁性を具備した合成樹脂を用いたコンベアベルト及び金属検知器を組み合わせたベルトコンベア装置
JP2006348214A (ja) 2005-06-17 2006-12-28 Jsr Corp 光造形用光硬化性液状組成物、立体造形物及びその製造方法
WO2010087038A1 (ja) 2009-02-02 2010-08-05 アラム株式会社 結束バンド
WO2016108519A1 (en) * 2014-12-29 2016-07-07 Samsung Electronics Co., Ltd. Ink compositions for 3d printing, 3d printer and method for controlling of the same
JP2017052870A (ja) * 2015-09-09 2017-03-16 株式会社リコー 活性エネルギー線硬化型組成物
WO2017053783A1 (en) * 2015-09-25 2017-03-30 Carbon3D, Inc. Build plate assemblies for continuous liquid interphase printing having lighting panels and related methods, systems and devices
JP2017095694A (ja) 2015-11-20 2017-06-01 ゼロックス コーポレイションXerox Corporation 高導電性コンポジットのための3相の不混和性ポリマー−金属ブレンド
JP2017518898A (ja) * 2014-06-08 2017-07-13 マッシビット スリーディー プリンティング テクノロジーズ リミテッド 三次元物体形成方法
JP2017182478A (ja) 2016-03-30 2017-10-05 住友電気工業株式会社 識別情報判定装置、識別情報判定システム、コンピュータプログラム及び識別情報判定方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH106346A (ja) * 1996-06-19 1998-01-13 Takemoto Oil & Fat Co Ltd プラスチック成形型の製造方法及びプラスチック成形型
DE102005046160C5 (de) * 2005-09-27 2008-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Roboter-Greifer und Verfahren zu dessen Herstellung
JP5280615B2 (ja) * 2006-06-16 2013-09-04 シーメット株式会社 光学的立体造形用樹脂組成物
EP2052693B2 (en) * 2007-10-26 2021-02-17 Envisiontec GmbH Process and freeform fabrication system for producing a three-dimensional object
JP5535474B2 (ja) * 2008-12-26 2014-07-02 独立行政法人科学技術振興機構 磁性光硬化樹脂およびそれを用いて作成した磁性立体構造物
EP2650124B1 (en) * 2010-12-09 2019-05-15 Asahi Kasei Kabushiki Kaisha Fine-structure laminate, method for preparing fine-structure laminate, and production method for fine-structure laminate
EP2502728B1 (en) * 2011-03-23 2017-01-04 DSM IP Assets B.V. Lightweight and high strength three-dimensional articles producible by additive fabrication processes
DK2733095T3 (en) * 2012-11-16 2015-12-07 Multivac Sepp Haggenmüller Gmbh & Co Kg Separation system and method for packaging plants
EP2764934B1 (en) * 2013-02-11 2015-06-17 King Abdulaziz City for Science & Technology (KACST) Method for manufacturing an element of a plurality of casting mold elements and casting method for manufacturing and system for casting a 3-dimensional object
ES2667676T3 (es) * 2013-02-12 2018-05-14 Carbon, Inc. Método y aparato para fabricación tridimensional
EP3203318A1 (en) * 2013-02-12 2017-08-09 CARBON3D, Inc. Continuous liquid interphase printing
CN105555867B (zh) * 2013-09-11 2018-08-24 东丽株式会社 热熔融层积式三维造型用原材料及热熔融层积式3d打印设备用丝状物
JP2015189085A (ja) * 2014-03-28 2015-11-02 トヨタ自動車株式会社 積層造形方法、及び積層造形装置
DE102014006519A1 (de) * 2014-05-03 2015-11-05 Smart Material Printing B.V. Verwendung magnetischer und/oder magnetisierbarer, polymerer Mikro- und/oder Nanocomposite zur Herstellung komplexer, magnetischer und/oder magnetisierbarer Formteile mithilfe additiver Fabrikatoren
US10703052B2 (en) * 2014-06-06 2020-07-07 Northeastern University Additive manufacturing of discontinuous fiber composites using magnetic fields
CN107073813B (zh) * 2014-06-20 2019-07-05 卡本有限公司 使用可聚合液体的往复送料的三维打印
CN107108768B (zh) * 2014-11-12 2019-07-05 日本电气硝子株式会社 立体造形用树脂组合物、立体造形物的制造方法及无机填料粒子
WO2016114031A1 (ja) * 2015-01-16 2016-07-21 日本電気硝子株式会社 立体造形用樹脂組成物
WO2016133759A1 (en) * 2015-02-20 2016-08-25 Carbon3D, Inc. Methods and apparatus for continuous liquid interface printing with electrochemically supported dead zone
JP6656574B2 (ja) * 2015-03-31 2020-03-04 日本電気硝子株式会社 立体造形用樹脂組成物
JP6525758B2 (ja) * 2015-06-17 2019-06-05 花王株式会社 三次元造形用の光硬化性組成物
WO2017040890A1 (en) * 2015-09-04 2017-03-09 Carbon3D, Inc. Methods of making three dimensional objects from dual cure resins with supported second cure
JP6235541B2 (ja) * 2015-09-04 2017-11-22 ファナック株式会社 射出成形システム
WO2017079475A1 (en) * 2015-11-03 2017-05-11 Massachusetts Institute Of Technology Additive manufacturing of a structure by deposition of solidifying and non-solidifying materials
US10343331B2 (en) * 2015-12-22 2019-07-09 Carbon, Inc. Wash liquids for use in additive manufacturing with dual cure resins
JP2017159474A (ja) * 2016-03-07 2017-09-14 セイコーエプソン株式会社 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物
CN205707548U (zh) * 2016-04-08 2016-11-23 天津沃昌机械设备有限公司 机器人装箱系统
CN206436245U (zh) * 2017-01-23 2017-08-25 太仓韬信信息科技有限公司 一种食品搬运用机器人

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751388B2 (ja) 1975-04-26 1982-11-01
JPS51128370A (en) * 1975-04-30 1976-11-09 Hinode Suidou Kiki Kk Method of manufacture of reinforced plastic product covered with metallic thin plate to be detectable by metal detector
JPH08174680A (ja) 1994-12-22 1996-07-09 Japan Synthetic Rubber Co Ltd 光造形方法
JP2003306217A (ja) * 2002-04-12 2003-10-28 Nippon Filcon Co Ltd 金属検知器で検出できる磁性を具備した合成樹脂を用いたコンベアベルト及び金属検知器を組み合わせたベルトコンベア装置
JP2006348214A (ja) 2005-06-17 2006-12-28 Jsr Corp 光造形用光硬化性液状組成物、立体造形物及びその製造方法
WO2010087038A1 (ja) 2009-02-02 2010-08-05 アラム株式会社 結束バンド
JP2017518898A (ja) * 2014-06-08 2017-07-13 マッシビット スリーディー プリンティング テクノロジーズ リミテッド 三次元物体形成方法
WO2016108519A1 (en) * 2014-12-29 2016-07-07 Samsung Electronics Co., Ltd. Ink compositions for 3d printing, 3d printer and method for controlling of the same
JP2017052870A (ja) * 2015-09-09 2017-03-16 株式会社リコー 活性エネルギー線硬化型組成物
WO2017053783A1 (en) * 2015-09-25 2017-03-30 Carbon3D, Inc. Build plate assemblies for continuous liquid interphase printing having lighting panels and related methods, systems and devices
JP2017095694A (ja) 2015-11-20 2017-06-01 ゼロックス コーポレイションXerox Corporation 高導電性コンポジットのための3相の不混和性ポリマー−金属ブレンド
JP2017182478A (ja) 2016-03-30 2017-10-05 住友電気工業株式会社 識別情報判定装置、識別情報判定システム、コンピュータプログラム及び識別情報判定方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUNTER OERTEL: "Polyurethane Handbook", 1985, HANSER PUBLISHERS, LLC, pages: 42 - 53
KEIJI IWATA: "Polyurethane Resin Handbook", 1987, THE NIKKAN KOGYO SHIMBUN, LTD., pages: 117
See also references of EP3685989A4

Also Published As

Publication number Publication date
US20200276752A1 (en) 2020-09-03
EP3685989A4 (en) 2020-11-04
EP3685989B1 (en) 2023-03-15
JPWO2019059184A1 (ja) 2020-10-15
EP3685989A1 (en) 2020-07-29
CN111107975A (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
TWI491601B (zh) A sulfide compound, a mixture containing a cyclic sulfide, a process for producing a mixture containing a cyclic sulfide, a hardened composition and a connecting structure
KR101905347B1 (ko) 반도체 나노 입자 함유 경화성 조성물, 경화물, 광학 재료 및 전자 재료
JP5704691B2 (ja) 重合可能なダイヤモンド及びこれを含有する樹脂組成物
TWI443175B (zh) An anisotropic conductive material, a connecting structure, and a connecting structure
EP3849806B1 (en) Dual cure additive manufacturing resins for production of flame retardant objects
KR101837829B1 (ko) 고굴절 유무기 하이브리드 조성물 및 이의 제조방법
CN110650986A (zh) 辐射固化性树脂的组成及取得方式
Jiao et al. Effect of gamma and neutron irradiation on properties of boron nitride/epoxy resin composites
WO2019059184A1 (ja) 樹脂組成物、およびこれを用いた立体造形物の製造方法、立体造形物、ならびに対象物把持用アタッチメントおよびこれを用いた産業用ロボット
JP7406193B2 (ja) ナノインプリント用硬化性樹脂組成物、硬化物の製造方法、及び凹凸構造体の製造方法
JP2006265502A (ja) 光重合性組成物及び難燃性樹脂成形品
JP7309315B2 (ja) 樹脂組成物、およびこれを用いた立体造形物の製造方法、ならびに立体造形物
JP7115491B2 (ja) 樹脂組成物、およびこれを用いた立体造形物の製造方法、ならびに立体造形物
JP7163956B2 (ja) 樹脂組成物、およびこれを用いた立体造形物の製造方法、ならびに立体造形物
TW202311431A (zh) 硬化性樹脂組成物
Zhang et al. Nano‐sio2‐reinforced ultraviolet‐curing materials for three‐dimensional printing
WO2019167895A1 (ja) 樹脂組成物、およびこれを用いた立体造形物の製造方法、ならびに立体造形物
WO2019203134A1 (ja) 重合性組成物及び立体造形物の製造方法
Yuwawech et al. Functionalized graphene nanoplatelets as a barrier enhancing filler in organic photovoltaic encapsulant
JP7173137B2 (ja) 立体造形用重合性組成物、およびこれを用いた立体造形物の製造方法、ならびに立体造形物
EP3744740A1 (en) Composition for optical three-dimensional shaping, three-dimensional shaped object, and production method therefor
JP2010132849A (ja) エポキシ樹脂組成物および硬化物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858479

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543643

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018858479

Country of ref document: EP

Effective date: 20200422