WO2019054001A1 - 不揮発性記憶装置、及び駆動方法 - Google Patents

不揮発性記憶装置、及び駆動方法 Download PDF

Info

Publication number
WO2019054001A1
WO2019054001A1 PCT/JP2018/024077 JP2018024077W WO2019054001A1 WO 2019054001 A1 WO2019054001 A1 WO 2019054001A1 JP 2018024077 W JP2018024077 W JP 2018024077W WO 2019054001 A1 WO2019054001 A1 WO 2019054001A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage pulse
electrode
resistance
resistance state
polarity
Prior art date
Application number
PCT/JP2018/024077
Other languages
English (en)
French (fr)
Inventor
隆太郎 安原
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201880002572.XA priority Critical patent/CN109791791B/zh
Priority to JP2018545512A priority patent/JP7080178B2/ja
Priority to US16/221,092 priority patent/US10490276B2/en
Publication of WO2019054001A1 publication Critical patent/WO2019054001A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0061Timing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0064Verifying circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0071Write using write potential applied to access device gate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0073Write using bi-directional cell biasing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0078Write using current through the cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0092Write characterized by the shape, e.g. form, length, amplitude of the write pulse
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/31Material having complex metal oxide, e.g. perovskite structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/72Array wherein the access device being a diode
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/82Array having, for accessing a cell, a word line, a bit line and a plate or source line receiving different potentials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering

Definitions

  • the present invention relates to a non-volatile memory device and a method of driving a variable resistance element included therein.
  • a resistance change type has a property in which a resistance value changes reversibly by an electrical signal, and further, a resistance change element using a variable resistance element capable of storing logic information corresponding to the resistance value in a nonvolatile manner.
  • Nonvolatile storage devices are known.
  • an object of the present invention is to provide a non-volatile storage device capable of making the time period for storing logic information in a non-volatile manner longer than in the prior art.
  • a non-volatile memory device is provided between a first electrode, a second electrode, and the first electrode and the second electrode, and between the first electrode and the second electrode.
  • a variable resistance element including a variable resistance layer in which a resistance value changes according to a voltage pulse applied, a voltage pulse application circuit applying a voltage pulse between the first electrode and the second electrode, and the voltage pulse application A control circuit for controlling the circuit, wherein the voltage pulse application circuit applies the first voltage pulse of the first polarity between the first electrode and the second electrode to form the resistance change layer; 1.
  • a high resistance process for changing from a low resistance state indicating 1 logic information to a high resistance state indicating a second logic information having a resistance value higher than that of the low resistance state and different from the first logic information Between the first electrode and the second electrode, Performing a low resistance process of changing the variable resistance layer from the high resistance state to the low resistance state by applying a second voltage pulse of a second polarity different from the one polarity;
  • the control circuit receives an external command, reads the resistance state of the variable resistance element, and when the read resistance state is the high resistance state, between the first electrode and the second electrode,
  • the voltage pulse application circuit is controlled to apply a first additional voltage pulse of the first polarity, which has a larger energy than the first voltage pulse, and when the read resistance state is the low resistance state,
  • the voltage pulse application circuit is controlled to apply a second additional voltage pulse of the second polarity, which is larger in energy than the second voltage pulse, between the first electrode and the second electrode.
  • a driving method includes a first electrode, a second electrode, and a voltage applied between the first electrode and the second electrode, being interposed between the first electrode and the second electrode.
  • Method of driving a variable resistance element including a variable resistance layer whose resistance value changes in accordance with a voltage pulse, and applying a first voltage pulse of a first polarity between the first electrode and the second electrode.
  • the resistance change layer is changed from the low resistance state indicating the first logic information to the high resistance indicating the second logic information different from the first logic information and having a higher resistance value than the low resistance state.
  • Between the first electrode and the second electrode by applying a second voltage pulse having a second polarity different from the first polarity between the first electrode and the second electrode.
  • Resistance that changes the high resistance state to the low resistance state A process of reading out the resistance state of the variable resistance element in response to a command from the outside, and a process of reading out the resistance state of the variable resistance element;
  • the first additional voltage pulse of the first polarity which has a larger energy than the first voltage pulse
  • the resistance state read out by the reading process is the low resistance state
  • the additional step of applying a second additional voltage pulse of the second polarity which has a larger energy than the second voltage pulse, between the first electrode and the second electrode.
  • the first electrode, the second electrode, and the first electrode and the second electrode are interposed between the first electrode and the second electrode.
  • a method of driving a plurality of resistance change elements comprising: a resistance change layer having a resistance value that changes in accordance with an applied voltage pulse, wherein at least one of the plurality of resistance change elements includes: By applying a first voltage pulse of a first polarity between the electrode and the second electrode, the resistance change layer has a resistance value higher than that of the low resistance state from the low resistance state indicating the first logic information.
  • the resistance change process of changing the resistance change layer from the high resistance state to the low resistance state by applying a second voltage pulse of polarity, and a plurality of resistance changes in response to an external command A read process for reading out the resistance state of the variable resistance element for all elements, and a first electrode and the above for the resistance change element in which the resistance state read out in the read process is the high resistance state
  • the voltage pulse application circuit is controlled to apply a first additional voltage pulse of the first polarity, which has a larger energy than the first voltage pulse, between the second electrodes, and the resistance read by the reading process A second of the second polarity having a larger energy than the second voltage pulse between the first electrode and the second electrode with respect to the variable resistance element in the low resistance state; Comprising the additional step of applying a pressurized
  • non-volatile storage device According to the non-volatile storage device and the driving method, it is possible to provide a non-volatile storage device which can make a period for storing logic information in a non-volatile manner longer than conventional.
  • FIG. 1 is a schematic view showing an example of the configuration of the variable resistance element according to the first embodiment.
  • FIG. 2 is a flowchart showing an example of a method of driving the variable resistance element according to the first embodiment.
  • FIG. 3 is a schematic view showing an example of the configuration of a circuit for operating the variable resistance element according to the first embodiment.
  • FIG. 4A is a schematic view showing the change of the resistance value of the variable resistance layer according to the first embodiment.
  • FIG. 4B is a schematic view showing the change of the resistance value of the variable resistance layer according to the first embodiment.
  • FIG. 5 is a schematic view showing an example of the configuration of a circuit for operating the variable resistance element according to the first embodiment.
  • FIG. 6 is a schematic view showing a relationship between a voltage pulse in a normal operation and an additional voltage pulse in an addition process according to the first embodiment.
  • FIG. 7A is a schematic cross-sectional view of the variable resistance element in the low resistance state.
  • FIG. 7B is a cross-sectional schematic view of the variable resistance element in the high resistance state.
  • FIG. 8 is a schematic view showing a relationship between a voltage pulse during normal operation and an additional voltage pulse in the addition process according to the first modification.
  • FIG. 9 is a schematic view showing a relationship between a voltage pulse in a normal operation and an additional voltage pulse in an addition process according to the second modification.
  • FIG. 10 is a schematic view showing a relationship between a voltage pulse in a normal operation and an additional voltage pulse in an addition process according to the third modification.
  • FIG. 11 is a schematic view showing the result of data retention characteristic evaluation.
  • FIG. 12 is a block diagram showing an example of the configuration of the non-volatile memory device according to the second embodiment.
  • FIG. 13 is a block diagram showing an example of the configuration of the nonvolatile memory device according to the third embodiment.
  • FIG. 14 is a block diagram showing an example of the configuration of the non-volatile storage system according to another embodiment.
  • variable resistance element has a property that the resistance value is reversibly changed by an electrical signal, and further refers to an element capable of storing information corresponding to the resistance value in a non-volatile manner.
  • perovskite materials for example, Pr (1-x) CaxMnO3 [PCMO], LaSrMnO3 [LSMO], GdBaCoxOy [GBCO], etc.
  • transition metal oxides NiO, V2O, etc.
  • Nonvolatile resistance change elements using ZnO, Nb 2 O 5, TiO 2, WO 3 or CoO have been proposed. This technique is to apply a voltage pulse (wavelike voltage with a short duration) to an oxide material to increase or decrease its resistance value, and store data by correlating data with changing resistance values. is there.
  • Non-Patent Document 1 a method called "migration" is used to transfer data entirely from the old storage device to the new storage device at regular intervals.
  • variable resistance element As a result of intensive investigations to improve the storage life of the variable resistance element, the inventor conducted a final resistance increase process or a resistance reduction process before storing the variable resistance element, and then the resistance state became Additional voltage pulse is applied to lower element with higher energy than normal low resistance voltage pulse application, or higher resistance to high element element than normal high resistance voltage pulse It has been found that the storage life of the variable resistance element can be extended by performing at least one additional voltage pulse application in the above. The details of the knowledge are appropriately described below together with the embodiment.
  • the non-volatile memory device is interposed between the first electrode, the second electrode, the first electrode and the second electrode, and is applied between the first electrode and the second electrode.
  • a variable resistance element including a variable resistance layer whose resistance value changes according to a voltage pulse, a voltage pulse application circuit applying a voltage pulse between the first electrode and the second electrode, and the voltage pulse application circuit
  • the control circuit receives an external command, reads the resistance state of the variable resistance element, and when the read resistance state is the high resistance state, the control circuit is configured to receive the command between the first electrode and the second electrode.
  • the voltage pulse application circuit is controlled to apply a first additional voltage pulse of the first polarity, which has a larger energy than a first voltage pulse, and the read-out resistance state is the low resistance state.
  • the voltage pulse application circuit is controlled to apply a second additional voltage pulse of the second polarity, which has a larger energy than the second voltage pulse, between the first electrode and the second electrode.
  • control circuit may include a processor and a memory, and the processor may control the voltage pulse application circuit by executing a program stored in the memory.
  • the external command may be a command by the user to stabilize the resistance state of the variable resistance layer for a longer period of time than at the present time.
  • the driving method includes a voltage applied between the first electrode and the second electrode, which is interposed between the first electrode, the second electrode, and the first electrode and the second electrode.
  • a method of driving a variable resistance element comprising: a variable resistance layer in which a resistance value changes according to a pulse, wherein a first voltage pulse of a first polarity is applied between the first electrode and the second electrode.
  • a first additional voltage pulse of the first polarity which has a larger energy than the first voltage pulse, is applied, and the resistance state read out by the reading process is the low resistance state.
  • the first additional voltage pulse may be a voltage pulse in which a current flowing through the variable resistance layer is larger than the first voltage pulse.
  • the second additional voltage pulse may be a voltage pulse in which a current flowing through the variable resistance layer is larger than the second voltage pulse.
  • the first additional voltage pulse may be a voltage pulse in which an absolute value of a voltage applied to the variable resistance layer is larger than the first voltage pulse.
  • the second additional voltage pulse may be a voltage pulse in which an absolute value of a voltage applied to the variable resistance layer is larger than the second voltage pulse.
  • the first additional voltage pulse may be a voltage pulse having a pulse width larger than that of the first voltage pulse.
  • the second additional voltage pulse may be a voltage pulse having a pulse width larger than that of the second voltage pulse.
  • the first electrode and the first electrode are preferably applied before the application of the first additional voltage pulse.
  • a third additional voltage pulse of the second polarity may be applied between the two electrodes.
  • the third additional voltage pulse and the second voltage pulse may be the same voltage pulse.
  • the first electrode and the first electrode are preferably applied before the second additional voltage pulse is applied.
  • the fourth additional voltage pulse of the first polarity may be applied between the two electrodes.
  • the fourth additional voltage pulse and the first voltage pulse may be the same voltage pulse.
  • the adding process may be repeated twice or more.
  • the variable resistance layer includes a metal oxide layer
  • the metal oxide layer includes a local region having a lower oxygen content than the surrounding
  • the first electrode and the first electrode are added in the additional process.
  • the driving method includes a voltage applied between the first electrode and the second electrode, which is interposed between the first electrode, the second electrode, and the first electrode and the second electrode.
  • a method of driving a plurality of resistance change elements comprising: a resistance change layer having a resistance value that changes according to a pulse, wherein at least one of the plurality of resistance change elements includes: By applying a first voltage pulse of a first polarity between two electrodes, the resistance change layer can be changed from a low resistance state indicating first logic information to a resistance value higher than the low resistance state.
  • a process of reading out the resistance state of the variable resistance element, and between the first electrode and the second electrode with respect to the resistance change element whose resistance state read out in the readout process is the high resistance state Control the voltage pulse application circuit to apply a first additional voltage pulse of the first polarity, which has a larger energy than the first voltage pulse, and the resistance state read out in the reading process is the low state.
  • Embodiment 1 [Configuration of resistance change element] First, an example of the configuration of the variable resistance element according to Embodiment 1 will be described.
  • FIG. 1 is a schematic view showing a configuration of a variable resistance element 10 which is an example of the variable resistance element according to the first embodiment.
  • a resistance change element 10 includes a substrate 1, a first electrode 2 formed on the substrate 1, and a resistance change layer 3 formed as a metal oxide layer on the first electrode 2. And the second electrode 4 formed on the resistance change layer 3. The first electrode 2 and the second electrode 4 are electrically connected to the resistance change layer 3. That is, the variable resistance element 10 includes the first electrode 2, the second electrode 4, and the variable resistance layer 3 interposed between the first electrode 2 and the second electrode 4.
  • the first electrode 2 may have the same size as the second electrode 4, and the electrodes 2, 4 and the resistance change layer 3 may be arranged upside down or may be arranged horizontally. Good.
  • the substrate 1 is formed of, for example, a silicon substrate on which circuit elements such as transistors are formed.
  • the first electrode 2 and the second electrode 4 are, for example, one of Au (gold), Pt (platinum), Ir (iridium), Cu (copper), W (tungsten), and TaN (tantalum nitride). Constructed using one or more materials.
  • the resistance change layer 3 changes its resistance in response to a voltage pulse applied between the first electrode 2 and the second electrode 4.
  • the resistance change layer 3 is formed of a metal oxide, and is formed by laminating a first tantalum oxide layer 3a and a second tantalum oxide layer 3b.
  • the oxygen content of the second tantalum oxide layer 3 b is higher than the oxygen content of the first tantalum oxide layer 3 a.
  • the composition of the first tantalum oxide layer 3a is TaO x, then 0 ⁇ x ⁇ 2.5, and if the composition of the second tantalum oxide layer 3b is TaO y, then x ⁇ y Good.
  • the resistance value of the resistance change layer 3 can be stably changed at high speed. .
  • x and y may be in the above ranges.
  • the thickness of the variable resistance layer 3 is 1 ⁇ m or less, a change in resistance value is recognized, but may be 40 nm or less. In such a configuration, when photolithography and etching are used as the patterning process, it is easy to process, and the voltage value of the voltage pulse required to change the resistance value of the variable resistance layer 3 can be lowered. On the other hand, the thickness of the variable resistance layer 3 may be at least 5 nm or more from the viewpoint of more reliably avoiding breakdown (insulation breakdown) at the time of voltage pulse application.
  • the thickness of the second tantalum oxide layer 3b may be about 1 nm or more and 8 nm or less from the viewpoint of reducing the possibility of the initial resistance value becoming too high and obtaining a stable change in resistance.
  • the first electrode 2 and the second electrode 4 are electrically connected to different terminals of the power supply 5 (here, the first terminal 7 and the second terminal 8).
  • the variable resistance element 10 may be electrically connected to the power supply 5 via the protective resistor 6.
  • the power source 5 can apply an electric pulse (voltage pulse) of a predetermined polarity, voltage and time width to the resistance change element 10 as an electric pulse application device for driving the resistance change element 10 Is configured.
  • the protective resistor 6 is for preventing the destruction of the variable resistance element 10 due to an overcurrent.
  • the resistance value is, for example, 4.5 k ⁇ . Then, a voltage pulse is applied between the first terminal 7 and the second terminal 8.
  • the voltage of the voltage pulse applied between terminals shall be specified by the electric potential of the 2nd terminal 8 on the basis of the 1st terminal 7.
  • the first electrode 2 with a thickness of 20 nm is formed on the substrate 1 by sputtering. Thereafter, a tantalum oxide layer is formed on the first electrode 2 by so-called reactive sputtering in which a Ta target is sputtered in argon gas and oxygen gas.
  • the oxygen content in the tantalum oxide layer can be easily adjusted by changing the flow ratio of oxygen gas to argon gas. Note that the substrate temperature can be set to room temperature without particular heating.
  • the outermost surface of the tantalum oxide layer formed as described above is oxidized to reform the surface.
  • a layer with a higher oxygen content is formed by sputtering using a tantalum oxide (for example, Ta 2 O 5) target having a high concentration of oxygen content.
  • a region (second region) having an oxygen content higher than that of the non-oxidized region (first region) of the tantalum oxide layer is formed on the surface of the previously formed tantalum oxide layer.
  • the first region and the second region respectively correspond to the first tantalum oxide layer 3a and the second tantalum oxide layer 3b, and thus the first tantalum oxide layer 3a and the second tantalum oxide formed in this manner
  • the layer 3 b constitutes the variable resistance layer 3.
  • the second electrode 4 with a thickness of 40 nm is formed by sputtering on the variable resistance layer 3 formed as described above, whereby the variable resistance element 10 is obtained.
  • the size and shape of the first electrode 2 and the second electrode 4 and the variable resistance layer 3 can be adjusted by a photomask and photolithography.
  • the sizes of the second electrode 4 and the resistance change layer 3 are 0.1 ⁇ m ⁇ 0.1 ⁇ m (area 0.01 ⁇ m 2), and the size of the portion where the first electrode 2 and the resistance change layer 3 are in contact is also 0.1 ⁇ m ⁇ 0.1 ⁇ m (area 0.01 ⁇ m 2).
  • variable resistance element 10 obtained by the above-described manufacturing method.
  • the state in which the resistance value of the resistance change layer 3 is at a predetermined high value (for example, 200 k ⁇ or more, typically 300 k ⁇ ) indicating the first logic information (here, for example, the logic value 1).
  • a predetermined low value (for example, 20 k ⁇ or less) indicating second logic information (here, for example, a logic value 0 here), which is called a high resistance state, and the resistance value of the resistance change layer 3 is different from the first logic information.
  • the state that is typically 12 k ⁇ ) is called a low resistance state.
  • a low resistance voltage pulse which is a negative voltage pulse
  • the resistance value of the resistance change layer 3 is reduced, and the resistance change layer 3 is Changes from the high resistance state to the low resistance state. Below, this is called a resistance reduction process.
  • the resistance value of the resistance change layer 3 is increased by applying a high resistance voltage pulse, which is a voltage pulse of positive polarity, between the first terminal 7 and the second terminal 8 using the power supply 5 to change the resistance.
  • Layer 3 changes from the low resistance state to the high resistance state.
  • this is referred to as a process of increasing resistance.
  • the resistance change element 10 operates by repeating the above-described process of reducing the resistance and increasing the resistance.
  • an initial process is performed prior to the above-described first resistance reduction process.
  • the initial process is a process for realizing stable resistance change operation in the subsequent resistance lowering process and the resistance increasing process.
  • the resistance change element 10 immediately after manufacturing exhibits an initial resistance value higher than that in the high resistance state during normal operation, and in that state, the resistance change occurs even if the low resistance voltage pulse or high resistance voltage pulse is applied in the normal operation. Absent.
  • a first initial voltage pulse high resistance breaking
  • a second initial voltage pulse low resistance breaking
  • the resistance value of the resistance change layer 3 decreases from the initial resistance value to the first resistance value
  • the resistance value of the resistance change element 10 is changed by further reducing the resistance value from the first resistance value to the second resistance value and thereafter applying a low resistance voltage pulse or a high resistance voltage pulse in the normal operation.
  • the initial process is performed on the variable resistance element 10 in an initial state in which a voltage has not been applied yet after the variable resistance element 10 is manufactured.
  • the resistance value of the resistance change layer 3 may be lowered from the initial resistance value using only one of the polarity of the first initial voltage pulse or the second initial voltage pulse.
  • a local region having an oxygen content lower than the surrounding oxygen content called a filament is formed in the resistance change layer 3.
  • a low resistance voltage pulse which is a voltage pulse of negative polarity
  • the resistance state changes from the low state to the high state by the application of a high resistance voltage pulse, which is a positive voltage pulse, between the first terminal 7 and the second terminal 8.
  • the mechanism of the resistance change operation at this time is considered to be that the oxygen content in the filament is lowered by the low resistance voltage pulse and raised by the high resistance voltage pulse.
  • the filament is formed through the initial process in the present embodiment, the filament does not necessarily have to be formed through the initial process, and the oxygen content is higher than that of the stoichiometric tantalum oxide when the resistance change element 10 is formed. It may be substituted by providing a low Ta oxide layer.
  • the user of the nonvolatile memory device including the variable resistance element 10 is a user of the nonvolatile memory device.
  • a command can be given to the future handling of the stored information to the non-volatile storage device through an interface or the like. This command may be a command to only read out the stored information without rewriting from now on, and from now on, the resistance state of the resistance change layer 3 will be stable over a longer period than at the present time It may be a command to turn it on (hereinafter also referred to as "long-term memory command").
  • the non-volatile memory device reads out whether the resistance state of the variable resistance element 10 is high or low. Then, to the variable resistance element 10 in the low resistance state, a voltage pulse of the same polarity as the low resistance voltage pulse is applied with energy higher than that of the normal low resistance voltage pulse. On the other hand, to the variable resistance element 10 in the high resistance state, a voltage pulse having the same polarity as the high resistance voltage pulse is applied with energy higher than that of the normal high resistance voltage pulse.
  • FIG. 2 is a flowchart showing an example of a method of driving the variable resistance element 10 according to the first embodiment.
  • the nonvolatile memory device applies a first voltage pulse (a high resistance voltage pulse) of a first polarity between the first electrode 2 and the second electrode 4 during normal operation.
  • Increasing resistance step S10) of changing resistance change layer 3 from a low resistance state indicating first logic information to a high resistance state indicating second logic information different from the first logic information;
  • a second voltage pulse a low resistance voltage pulse
  • the resistance change layer 3 is set to a high resistance state.
  • the resistance reduction process for changing the resistance state to the low resistance state.
  • the non-volatile storage device when the non-volatile storage device receives an instruction from the outside (for example, a long-term storage instruction) (step S30), the non-volatile storage device performs a reading process of reading the resistance state of the variable resistance element 10 (step S40).
  • an instruction from the outside for example, a long-term storage instruction
  • the non-volatile storage device performs a reading process of reading the resistance state of the variable resistance element 10 (step S40).
  • the first voltage is applied between the first electrode 2 and the second electrode 4 If the first additional voltage pulse of the first polarity, which has a larger energy than the pulse, is applied (step S60), and the resistance state read out by the reading process is the low resistance state (the low resistance state in the process of step S50) In the case where it is determined that the second additional voltage pulse of the second polarity, which has a larger energy than the second voltage pulse, is applied between the first electrode 2 and the second electrode 4 (step S70).
  • the non-volatile storage device stabilizes the resistance state of the variable resistance layer 3 for a longer period of time than the present time, as described later, by performing an additional process including the process of step S50, the process of step S60, and the process of step S70. It is possible to
  • the energy applied by the first additional voltage pulse is applied from the high resistance state to the low resistance state by applying the second voltage pulse (low resistance voltage pulse) after the end of the addition process.
  • the second voltage pulse low resistance voltage pulse
  • the second voltage pulse is applied after the completion of the additional process. Even if this is done, it is also possible to make it impossible to change the variable resistance layer 3 from the high resistance state to the low resistance state. That is, it is also possible to fix (do not rewrite) the logic information stored in the non-volatile storage device.
  • the energy applied by the second additional voltage pulse is applied from the low resistance state to the high resistance state by applying a first voltage pulse (a high resistance voltage pulse) after the end of the addition process.
  • a first voltage pulse a high resistance voltage pulse
  • the first voltage pulse high resistance voltage pulse
  • FIG. 3 is a diagram showing an example of a configuration of a circuit for operating the variable resistance element 10 according to the first embodiment and an operation example in the case of writing data in the variable resistance element 10.
  • this circuit includes a variable resistance element 10, a second terminal 8 and a first terminal 7.
  • the second electrode 4 of the variable resistance element 10 is electrically connected to the second terminal 8, and the first electrode 2 is electrically connected to the first terminal 7.
  • a transistor 13 is provided between the first electrode 2 and the first terminal 7 of the variable resistance element 10.
  • the transistor plays a role of a switching element for selecting the variable resistance element 10 and a protective resistance.
  • FIGS. 4A and 4B write data in the variable resistance element 10 according to the first embodiment, that is, a resistance reduction process of writing a logical value 0, erase data, that is, increase a resistance process of writing a logical value 1.
  • FIG. 7 is a schematic view showing a change in resistance value of the resistance change layer 3 in the addition process.
  • the second terminal 8 is used with reference to the first terminal 7.
  • a predetermined positive voltage pulse is supplied, and when a negative voltage pulse is applied, a predetermined positive voltage pulse is supplied to the first terminal 7 with reference to the second terminal 8.
  • variable resistance layer 3 of the variable resistance element 10 When the variable resistance layer 3 of the variable resistance element 10 is in a high resistance state at a certain point in time, and the negative low resistance voltage pulse (second voltage pulse: voltage value VRL) is supplied to the second terminal 8, The resistance value of the resistance change layer 3 changes from the high resistance value RH to the low resistance value RL.
  • the resistance value of the resistance change layer 3 is the low resistance value RL
  • first voltage pulse: voltage value VRH when the positive high resistance voltage pulse (first voltage pulse: voltage value VRH) is supplied to the second terminal 8 the resistance change layer The resistance value of 3 changes from the low resistance value RL to the high resistance value RH.
  • FIG. 5 is a diagram showing an example of the configuration of a circuit for operating the variable resistance element 10 according to the first embodiment and an operation example in the case of reading out the data written in the variable resistance element 10.
  • a read voltage is supplied to the second terminal 8 based on the first terminal 7.
  • the read voltage is a value that does not change its resistance even when supplied to the resistance change element 10, and is specified based on the first electrode 2 and the ground point.
  • the non-volatile storage device when the non-volatile storage device receives a long-term storage instruction from the user, it reads the resistance state of the variable resistance element 10 at that time.
  • the part of the additional process in FIG. 4A shows the case where the read resistance state is a low resistance.
  • a second additional voltage pulse of the same polarity as the low resistance voltage pulse is applied to the resistance change element 10 with energy higher than that of the normal low resistance voltage pulse.
  • the resistance change element 10 has a lower resistance value RLa than after the normal resistance reduction process.
  • the part of the additional process in FIG. 4B shows the case where the read resistance state is high resistance.
  • a first additional voltage pulse of the same polarity as the high resistance voltage pulse is applied to the resistance change element 10 at a higher energy than a normal high resistance voltage pulse.
  • the resistance change element 10 has a higher resistance value RHa than after the normal resistance increasing process.
  • FIG. 6 shows voltage pulses (a high resistance voltage pulse (first voltage pulse) and a low resistance voltage pulse in a process of increasing resistance and reducing resistance during normal operation of the variable resistance element 10 according to the first embodiment. It is a schematic diagram showing the relation between the 2nd voltage pulse) and the additional voltage pulse (the 1st additional voltage pulse and the 2nd additional voltage pulse) in the addition process.
  • the first additional voltage pulse has higher energy than the high resistance voltage pulse in the normal operation. This high energy is realized by setting the first additional voltage pulse as a voltage pulse in which the absolute value of the voltage applied to the variable resistance layer 3 is larger than that of the high resistance voltage pulse (first voltage pulse).
  • the first additional voltage pulse is realized as a voltage pulse in which the current flowing through the variable resistance layer 3 when the voltage pulse is applied is larger than the high resistance voltage pulse (the first voltage pulse).
  • the first additional voltage pulse may be realized by a voltage pulse having a pulse width larger than that of the high resistance voltage pulse (first voltage pulse).
  • the relationship between the second additional voltage pulse and the low resistance voltage pulse in the normal operation is also the same. That is, the second additional voltage pulse may be realized by a voltage pulse in which the absolute value of the voltage applied to the resistance change layer 3 is larger than that of the low resistance voltage pulse (second voltage pulse).
  • the second additional voltage pulse may be realized by a voltage pulse in which the current flowing through the variable resistance layer 3 at the time of application of the voltage pulse is larger than the low resistance voltage pulse (second voltage pulse).
  • the second additional voltage pulse may be realized by a voltage pulse having a pulse width larger than that of the low resistance voltage pulse (second voltage pulse).
  • FIG. 7A shows a schematic cross-sectional view of the variable resistance element 10 according to the first embodiment in a low resistance state and FIG. 7B in a high resistance state.
  • the second electrode 4 and the tantalum oxide layer in the tantalum oxide layer 3b in either resistance state It is considered that a local region 3c having an oxygen content lower than the surrounding oxygen content, which is called a filament, connecting 3a is present.
  • the resistance value of the variable resistance element is determined by the amount of oxygen defects 9 present in the filament, and the oxygen content NLOx in the filament of the variable resistance element 10 in the low resistance state and the filament in the variable resistance element 10 in the high resistance state.
  • the oxygen content rate of NHOx is considered to satisfy NLOx ⁇ NHOx.
  • the change from the low resistance state to the high resistance state in the storage state after the resistance change is weak in the connection of the micro conduction path in the filament, so the surrounding oxygen is minute It is considered to be equivalent to the micro conduction path being broken halfway by being diffused to the conduction path and being linked to a certain oxygen defect. Therefore, the number of oxygen defects in the filament in the variable resistance device in the low resistance state is determined by additionally applying a second additional voltage pulse having higher energy than that in the normal operation to the variable resistance device 10 in the low resistance state. Longer storage than usual can be realized by increasing and strengthening the connection of the minute conductive paths.
  • the change from the high resistance state to the low resistance state in the storage state after the resistance change is new due to the diffusion of oxygen when the micro conduction path in the filament is broken halfway but the number of oxygen defects is large. It is considered that this corresponds to the formation of an oxygen defect, and the connection with the existing oxygen defect leads to the connection of a broken micro conduction path. Therefore, the number of oxygen defects in the filament in the high resistance state variable resistance element is determined by additionally applying a first additional voltage pulse having higher energy than that in the normal operation to the high resistance state variable resistance element 10 finally. Longer storage than usual can be realized by reducing and suppressing the connection of the minute conductive paths.
  • variable resistance element 10 in the present embodiment, although an example in which tantalum oxide is used for the variable resistance layer is described, the mechanism of the additional voltage pulse application described above is an oxide other than tantalum as the variable resistance layer It is thought that it is applicable also to the resistance change element used for these.
  • variable resistance element using a metal oxide other than tantalum in the variable resistance layer and in which an electric pulse of different polarity is applied to the electrode to cause a resistance change, as described above It is believed that the effect of the additional voltage pulse application described in the mechanism is effective.
  • the resistance value of the element in the high resistance state can be made higher by increasing the energy of the voltage pulse to be applied, or the resistance of the element in the low resistance state If the resistance change element can be set to a lower value, it is considered that the effect of the additional voltage pulse application is similarly obtained.
  • the additional voltage pulse application is not performed only when receiving the long-term storage instruction from the user as in the present invention, but the low resistance voltage pulse applied during the normal operation and the high resistance It is considered that the resistance of the element in the high resistance state can be set higher or the resistance of the element in the low resistance state can be set lower by increasing the energy of the voltage pulse.
  • a variable resistance element in a high resistance state, to which a low resistance voltage pulse with high energy is repeatedly applied in the past, is likely to cause a transition to a low resistance state during storage.
  • the resistance change element in the low resistance state to which the high resistance voltage pulse in the prior art has been repeatedly applied in the past, tends to cause a transition to the high resistance state during storage. Therefore, a high energy pulse of the same polarity as the low resistance voltage pulse is applied only to the variable resistance element 10 in the low resistance state at a timing after long-term storage or last writing, or a resistance change in the high resistance state It is important to apply a high energy pulse of the same polarity as the high resistance voltage pulse only to the element 10.
  • the fourth additional voltage pulse may be the same voltage pulse as the high resistance voltage pulse (first voltage pulse).
  • the resistance change element 10 in the low resistance state is once rewritten to the high resistance state, and then the oxygen content NLOx in the filament of the resistance change element 10 is changed to the normal state It can be lowered than after the resistance reduction process.
  • FIG. 8 is a schematic view showing a relationship between a voltage pulse in a normal operation and an additional voltage pulse in an addition process according to the first modification.
  • the same polarity as the high resistance voltage pulse is applied.
  • Apply a first additional voltage pulse That is, in the non-volatile memory device, when the resistance state read in the reading process is the high resistance state, between the first electrode 2 and the second electrode 4 before applying the first additional voltage pulse, A third additional voltage pulse of a second polarity is applied.
  • the third additional voltage pulse may be the same voltage pulse as the low resistance voltage pulse (second voltage pulse).
  • FIG. 9 is a schematic view showing a relationship between a voltage pulse in a normal operation and an additional voltage pulse in an addition process according to the second modification.
  • the additional voltage pulse having the same polarity as the high resistance voltage pulse is generated twice or more with energy higher than the high resistance voltage pulse. Apply. By so doing, the oxygen content rate NHOx in the filament of the resistance change element 10 can be more reliably increased than after the normal high resistance process.
  • Modification 3 of additional voltage pulse In the modification 1 of the additional voltage pulse in the first embodiment, after the fourth additional voltage pulse having a polarity different from that of the low resistance voltage pulse is applied to the variable resistance element 10 in the low resistance state in the additional process. An example of applying a second additional voltage pulse of the same polarity as the low resistance voltage pulse has been shown. Further, in the modification 2 of the additional voltage pulse in the first embodiment, in the addition process, for the variable resistance element 10 in the low resistance state, the same as the energy reduction voltage pulse with energy higher than that of the low resistance voltage pulse. An example is shown in which additional voltage pulses of polarity are applied twice or more.
  • FIG. 10 is a schematic view showing a relationship between a voltage pulse at the time of normal operation and an additional voltage pulse in the addition process according to the third modification.
  • the third modification after the additional voltage pulse having the polarity different from that of the high resistance voltage pulse is applied to the variable resistance element 10 in the high resistance state in the addition process, it is higher than the high resistance voltage pulse.
  • the process of applying a first additional voltage pulse of the same polarity as the high resistance voltage pulse with energy is repeated twice or more. By so doing, the oxygen content rate NHOx in the filament of the resistance change element 10 can be more reliably increased than after the normal high resistance process.
  • this corresponds to the operating conditions during normal operation (operating conditions in the process of step S10 and the process of step S20 in FIG. 2) performed in the present embodiment and the third modification of the additional voltage pulse in the first embodiment.
  • the operation condition of the addition process (the operation condition in the process of step S60 and the process of step S70 in FIG. 2) is specifically shown.
  • the negative resistance pulse voltage is set such that the current flowing through the variable resistance layer 3 is 200 ⁇ A at the time of pulse application, and the pulse application time is 100 ns. Further, for the high resistance voltage pulse, the pulse voltage applied to the resistance change layer 3 was set to +2.0 V, and the pulse application time was 100 ns.
  • the resistance change operation (the process of step S10 and the process of step S20 in FIG. 2) in the normal operation is repeated 1000 times.
  • variable resistance element group to which the additional voltage pulse application was performed the same operation as the element group to which the resistance change operation was performed in the normal operation was performed, and then the additional voltage pulse application was performed as described below. .
  • the pulse voltage of the second additional voltage pulse in the addition process was set to 100 ns so that the current flowing through the variable resistance layer 3 was 238 ⁇ A at the time of pulse application.
  • the pulse voltage applied to the resistance change layer 3 was set to +2.1 V, and the pulse application time was 100 ns.
  • the current flowing through the variable resistance layer 3 at the time of pulse application is 238 ⁇ A, but it is not necessarily limited to 238 ⁇ A.
  • the second additional voltage pulse has the same pulse width as the low resistance voltage pulse, typically, the current flowing through the variable resistance layer 3 at the time of applying the pulse is 105% to 150% of the low resistance voltage pulse. It is desirable to be in the range of%.
  • the first additional voltage pulse is herein assumed to have a pulse voltage of +2.1 V applied to the variable resistance layer 3, the first additional voltage pulse is not necessarily limited to +2.1 V.
  • the voltage applied to the resistance change layer 3 is typically 105% to 150% of the high resistance voltage pulse. It is desirable to be in the range of
  • the current flowing through the variable resistance layer 3 at the time of pulse application is the same as that of the low resistance voltage pulse (that is, 200 ⁇ A), but the pulse width is longer than that of the low resistance pulse. Examples are also conceivable. In this case, it is desirable that the pulse width is typically in the range of 150% to 1000% of the resistance lowering pulse.
  • the pulse voltage applied to the variable resistance layer 3 at the time of applying a pulse is the same as the high resistance voltage pulse (ie, +2.0 V)
  • the first additional voltage pulse has a high pulse width, An example may be considered that is longer than the resistance pulse. In this case, it is desirable that the pulse width is typically in the range of 150% to 1000% of the resistance increasing pulse.
  • the fourth additional voltage pulse having a polarity different from that of the low resistance voltage pulse for the variable resistance element 10 in the low resistance state applies the same voltage pulse as the high resistance voltage pulse in the normal operation.
  • the third additional voltage pulse having a polarity different from that of the high resistance voltage for the variable resistance element 10 in the high resistance state applied the same voltage pulse as the low resistance voltage pulse in the normal operation.
  • the retention characteristics of the resistance value of the variable resistance element group prepared as described above were evaluated.
  • the resistance value of the variable resistance element 10 used in this evaluation example has such a characteristic that almost no deterioration is observed for 10 years or more at a temperature around room temperature. Therefore, the nonvolatile memory element was held in a thermostat at 210 ° C. to accelerate the deterioration, and the holding characteristics were evaluated. Note that the measurement of the resistance value was performed at room temperature by taking out the nonvolatile memory element from the thermostat.
  • the holding characteristics were evaluated by repeatedly performing holding in a constant temperature bath and measurement at room temperature.
  • no further writing is performed on the variable resistance element 10 (that is, the resistance value state set above is maintained), and reading using a low voltage such that the resistance change does not occur I only went.
  • FIG. 11 shows 4 kbit of each of the variable resistance elements 10 in the high resistance state and the low resistance state in the variable resistance operation group in which the additional process corresponding to the ordinary variable resistance operation element group and the modification 3 of the first embodiment is implemented. It is a result of data retention characteristic evaluation.
  • the element group consisting of the variable resistance element 10 in the low resistance state is referred to as a low resistance element group
  • the element group consisting of the variable resistance element 10 in the high resistance state is referred to as a high resistance element group.
  • the element with the worst resistance value in each resistance change element group at each measurement the element with the lowest read current in the element in the low resistance state and the element with the highest read current in the element with the high resistance state). Only the tail bit is indicated)).
  • the horizontal axis is the holding time (total) in the thermostat, and the vertical axis is the read current value.
  • the horizontal axis is plotted logarithmically, and the vertical axis is plotted linearly.
  • the drop in the read current due to the holding in the thermostatic chamber is lower in the element group subjected to the additional process compared to the element group after normal operation It can be said that the retention characteristic is improved by performing the additional process on the resistance change element 10 which is suppressed and in the low resistance state.
  • the resistance change element 10 in the high resistance state that is, the read current value is low
  • part of the element group subjected to the additional process by holding in the constant temperature bath. It can be said that the increase in the read current of the element is suppressed, and the retention characteristic is improved by performing the additional process to the resistance change element 10 in the high resistance state.
  • the additional process is performed to at least one of the variable resistance element 10 in the low resistance state and the variable resistance element 10 in the high resistance state to hold the variable resistance element 10
  • the characteristics are improved, and the holding process of the variable resistance element 10 is further improved by performing the additional process to the variable resistance elements in both resistance states, and the read error suppressing effect at the time of reading after the data is held. It gets higher.
  • FIG. 12 is a block diagram showing an example of the configuration of the non-volatile storage device 100 according to the second embodiment.
  • the 1T1R nonvolatile memory device 100 includes a memory main body 101 on a semiconductor substrate, and the memory main body 101 includes the resistance change element 10 and the access transistor arranged in an array.
  • a memory array 102 having a (current control element) and a voltage pulse application circuit 300 are provided.
  • the voltage pulse application circuit 300 has a function of applying a voltage pulse between the first electrode 2 and the second electrode 4 of each variable resistance element 10.
  • the row selection circuit / driver 103, the column selection circuit 104, The write circuit 105 for writing information and the amount of current flowing through the selected bit line are detected, and it is determined which of binary data is stored in the selected variable resistance element 10
  • a sense amplifier 106 and a data input / output circuit 107 for performing input / output processing of input / output data via the terminal DQ are provided.
  • the nonvolatile memory device 100 further includes a cell plate power supply (VCP power supply) 108, an address input circuit 109 for receiving an address signal input from the outside, and a control circuit 110.
  • VCP power supply cell plate power supply
  • the control circuit 110 is a circuit that controls the voltage pulse application circuit 300 and the memory main unit 101, and includes a receiving unit 310, a determination unit 320, and a pulse condition switching unit 330.
  • receiving unit 310 controls voltage pulse application circuit 300 to read the resistance state of each variable resistance element 10.
  • the determination unit 320 determines whether each resistance state read by the reception unit 310 is a high resistance state or a low resistance state.
  • the pulse condition switching unit 330 controls the voltage pulse application circuit 300 based on the result of the determination by the determination unit 320. More specifically, the pulse condition switching unit 330 sets the resistance change element 10 between the first electrode 2 and the second electrode 4 of the resistance change element 10 determined to be in the high resistance state.
  • the voltage pulse application circuit 300 is controlled to apply the first additional voltage pulse of the first polarity, which has a larger energy than the first voltage pulse.
  • the resistance change element 10 determined to be in the low resistance state has a larger energy than the second voltage pulse between the first electrode 2 and the second electrode 4 of the resistance change element 10.
  • the voltage pulse application circuit 300 is controlled to apply a second additional voltage pulse of two polarities.
  • the reception unit 310, the determination unit 320, and the pulse condition switching unit 330 may be realized as a logic circuit.
  • the control circuit 110 includes a processor and a memory, and the processor is stored in the memory May be realized functionally by executing a program.
  • Memory array 102 includes a plurality of word lines WL0, WL1, WL2,... And bit lines BL0, BL1, BL2,. , And WL1,... And bit lines BL0, BL1, BL2,..., A plurality of access transistors T11, T12, T13, T21, T22, T23, T31, T32, T33,.
  • a plurality of memory cells M111, M112, M113, M121, M121, M122, M123, M131, M132 are provided in a one-to-one correspondence with "access transistors T11, T12, " and access transistors T11, T12,. , M133 (hereinafter referred to as "memory cells M111, M112, ##).
  • the memory cells M111, M112,... Correspond to the resistance change element 10 of the first embodiment.
  • the memory array 102 further includes a plurality of plate lines PL0, PL1, PL2,... Arranged in parallel to the word lines WL0, WL1, WL2,.
  • the drains of the access transistors T11, T12, T13,... are connected to the bit line BL0, the drains of the access transistors T21, T22, T23, ... are connected to the bit line BL1, and the drains of the access transistors T31, T32, T33,. , Each connected.
  • access transistors T11, T21, T31,... Are word line WL0, the gates of access transistors T12, T22, T32,... Are word line WL1, and the gates of access transistors T13, T23, T33,. Each is connected to WL2.
  • the sources of the access transistors T11, T12,... are connected to the memory cells M111, M112,.
  • Address input circuit 109 receives an address signal from an external circuit (not shown), outputs a row address signal to row selection circuit / driver 103 based on the address signal, and outputs a column address signal to column selection circuit 104.
  • the address signal is a signal indicating the address of a specific memory cell selected from among the plurality of memory cells M111, M112,.
  • the row address signal is a signal indicating the address of the row among the addresses indicated by the address signal
  • the column address signal is a signal indicating the address of the column among the addresses indicated by the address signal.
  • Row selection circuit / driver 103 receives a row address signal output from address input circuit 109, and selects one of a plurality of word lines WL0, WL1, WL2,... According to the row address signal, A predetermined voltage is applied to the selected word line.
  • Column select circuit 104 receives a column address signal output from address input circuit 109, selects one of a plurality of bit lines BL0, BL1, BL2,... According to the column address signal, and selects the selected one. Various voltage pulses are applied to the selected bit line.
  • the write circuit 105 When the write circuit 105 receives the write signal output from the control circuit 110, it instructs the column selection circuit 104 to apply a voltage pulse corresponding to the write signal to the selected bit line. Output signal.
  • the sense amplifier 106 detects the amount of current flowing through the selected bit line to be read out in the information reading process, and determines the stored data.
  • the resistance states of the memory cells M111, M112,... are set to two states of high and low, and the respective states are associated with the respective data. Therefore, sense amplifier 106 determines which state the resistance state of the resistance change layer of the selected memory cell is in, and accordingly determines which data of the binary data is stored. Do.
  • the output data DO obtained as a result is output to an external circuit through the data input / output circuit 107.
  • control circuit 110 instructs write circuit 105 to write signals instructing to apply the first initial voltage pulse and the second initial voltage pulse to memory cells M111, M112,. Output.
  • the write circuit 105 receives this write signal, it writes a signal instructing to apply the first initial voltage pulse and the second initial voltage pulse to all the bit lines BL0, BL1, BL2,. It outputs to the selection circuit 104.
  • the column selection circuit 104 When the column selection circuit 104 receives this signal, it applies the first initial voltage pulse and the second initial voltage pulse to all the bit lines BL0, BL1, BL2,. At this time, the row selection circuit / driver 103 applies a predetermined voltage to all the word lines WL0, WL1, WL2,.
  • control circuit 110 instructs the application of a low resistance voltage pulse or a high resistance voltage pulse according to input data Din input to data input / output circuit 107. Are output to the write circuit 105.
  • control circuit 110 outputs a read signal instructing application of a read voltage pulse to the column selection circuit 104.
  • Receiving unit 310 receives a predetermined command from the outside (for example, a command for long-term storage by the user), voltage pulse application circuit 300 instructs a signal for reading the resistance state of all the memory cells included in memory array 102. Output to read out the resistance states of all the memory cells.
  • the determination unit 320 determines whether the resistance state read by the reception unit 310 is the high resistance state or the low resistance state for all the memory cells.
  • the pulse condition switching unit 330 instructs to apply the first additional voltage pulse to each memory cell determined to be in the low resistance state as the resistance state, and is determined to be in the high resistance state.
  • a signal instructing application of the second additional voltage pulse to each memory cell is output to voltage pulse application circuit 300.
  • voltage pulse application circuit 300 When receiving this signal, voltage pulse application circuit 300 applies the first additional voltage pulse to each memory cell determined to be in the high resistance state, and determines that the resistance state is in the low resistance state. A second additional voltage pulse is applied to each of the selected memory cells.
  • the non-volatile storage device 100 can make the logical information storage period longer than conventional.
  • FIG. 13 is a block diagram showing an example of the configuration of the non-volatile storage device 200 according to the third embodiment.
  • the cross-point nonvolatile memory device 200 includes a memory main body 201 on a semiconductor substrate, and the memory main body 201 includes the resistance change elements 10 arranged in an array and a current A memory array 202 having control elements and a voltage pulse application circuit 400 are provided.
  • the voltage pulse application circuit 400 has a function of applying a voltage pulse between the first electrode 2 and the second electrode 4 of each variable resistance element 10.
  • the row selection circuit / driver 203 and the column selection circuit / driver 204 The write circuit 205 for writing information, and the amount of current flowing through the selected bit line are detected to determine which of binary data is stored in the selected variable resistance element 10.
  • a data input / output circuit 207 for performing input / output processing of input / output data through the terminal DQ.
  • non-volatile storage device 200 further includes an address input circuit 208 that receives an address signal input from the outside, and a control circuit 210.
  • the control circuit 210 is a circuit that controls the voltage pulse application circuit 400 and the memory main unit 201, and includes a receiving unit 410, a determination unit 420, and a pulse condition switching unit 430.
  • receiving unit 410 controls voltage pulse application circuit 400 to read the resistance state of each variable resistance element 10.
  • the determination unit 420 determines whether each resistance state read by the reception unit 410 is a high resistance state or a low resistance state.
  • the pulse condition switching unit 430 controls the voltage pulse application circuit 400 based on the result of the determination by the determination unit 420. More specifically, the pulse condition switching unit 430 sets the resistance change element 10 between the first electrode 2 and the second electrode 4 of the resistance change element 10 determined to be in the high resistance state.
  • the voltage pulse application circuit 400 is controlled to apply the first additional voltage pulse of the first polarity, which has a larger energy than the first voltage pulse.
  • the resistance change element 10 determined to be in the low resistance state has a larger energy than the second voltage pulse between the first electrode 2 and the second electrode 4 of the resistance change element 10.
  • the voltage pulse application circuit 400 is controlled to apply a second additional voltage pulse of two polarities.
  • the reception unit 410, the determination unit 420, and the pulse condition switching unit 430 may be realized as, for example, a logic circuit.
  • the control circuit 210 includes a processor and a memory, and the processor is stored in the memory May be realized functionally by executing a program.
  • Memory array 202 is parallel to the main surface of the semiconductor substrate above a plurality of word lines WL 0, WL 1, WL 2,... And these word lines WL 0, WL 1, WL 2,.
  • a plurality of bit lines BL0, BL1, BL2,... Are formed parallel to each other in a plane and formed to cross three word lines WL0, WL1, WL2,.
  • a plurality of memory cells M211, M212, M213, M221, M222, M223 provided in a matrix corresponding to the intersections of these word lines WL0, WL1, WL2,... And bit lines BL0, BL1, BL2,. , M231, M232, M123,... (Hereinafter referred to as “memory cells M211, M212,...”) are provided.
  • the memory cells M211, M212,... are composed of an element corresponding to the resistance change element 10 of the first embodiment and an MIM (Metal-Insulator-Metal) diode or an MSM (Metal-Semiconductor-Metal) diode or the like. And a current control element are connected.
  • Address input circuit 208 receives an address signal from an external circuit (not shown), and outputs a row address signal to row select circuit / driver 203 based on the address signal, and a column address signal as column select circuit / driver 204.
  • the address signal is a signal indicating the address of a specific memory cell selected from among the plurality of memory cells M211, M212,.
  • the row address signal is a signal indicating the address of the row among the addresses indicated by the address signal
  • the column address signal is a signal indicating the address of the column as well.
  • Row selection circuit / driver 203 receives a row address signal output from address input circuit 208, and selects one of a plurality of word lines WL0, WL1, WL2,... According to the row address signal, A predetermined voltage is applied to the selected word line.
  • Column selection circuit / driver 204 receives a column address signal output from address input circuit 208, and selects one of a plurality of bit lines BL0, BL1, BL2,... According to the column address signal, Various voltage pulses are applied to the selected bit line.
  • the write circuit 205 When the write circuit 205 receives a write signal output from the control circuit 210, the write circuit 205 outputs a signal instructing application of a voltage to the selected word line to the row select circuit / driver 203, and A signal for instructing the driver 204 to apply a voltage pulse corresponding to the write signal to the selected bit line is output.
  • the sense amplifier 206 detects the amount of current flowing through the selected bit line to be read in the data read process, and determines the stored data.
  • the resistance states of the memory cells M211, M212,... are set to two states of high and low, and the respective states are associated with the respective data. Therefore, sense amplifier 206 determines which state the resistance state of the resistance change layer of the selected memory cell is in, and accordingly determines which data of the binary data is stored. Do.
  • the output data DO obtained as a result is output to an external circuit through the data input / output circuit 207.
  • control circuit 210 instructs write circuit 205 to write signals instructing to apply the first initial voltage pulse and the second initial voltage pulse to memory cells M211, M212,. Output.
  • the write circuit 105 receives this write signal, the write circuit 105 outputs, to the row selection circuit / driver 203, a signal instructing application of a predetermined voltage to all the word lines WL0, WL1, WL2,.
  • a signal instructing application of the first initial voltage pulse and the second initial voltage pulse to all bit lines BL0, BL1, BL2,... Is output to the column selection circuit / driver 204.
  • Control circuit 210 sets a write signal for instructing application of a low resistance voltage pulse or a high resistance voltage pulse according to input data Din input to data input / output circuit 207 in the data write process during normal operation. It outputs to the write circuit 205. On the other hand, in the data read process, the control circuit 210 outputs a read signal instructing application of a read voltage pulse to the column selection circuit / driver 204.
  • Receiving unit 410 receives a predetermined command from the outside (for example, a command for long-term storage by the user), voltage pulse application circuit 400 instructs a signal indicating that the resistance state of all the memory cells included in memory array 202 is read. Output to read out the resistance states of all the memory cells.
  • the determination unit 420 determines whether the resistance state read by the reception unit 410 is the high resistance state or the low resistance state for all the memory cells.
  • the pulse condition switching unit 430 instructs to apply the first additional voltage pulse to each memory cell determined to be in the high resistance state as the resistance state, and it is determined that the resistance state is in the low resistance state.
  • a signal instructing application of the second additional voltage pulse to each memory cell is output to voltage pulse application circuit 400.
  • voltage pulse application circuit 400 When voltage pulse application circuit 400 receives this signal, it applies the first additional voltage pulse to each memory cell determined to be in the high resistance state and determines that the resistance state is in the low resistance state. A second additional voltage pulse is applied to each of the selected memory cells.
  • the non-volatile storage device 200 can make the logical information storage period longer than conventional.
  • the second embodiment exemplifies a configuration in which the non-volatile storage device 100 according to the second embodiment performs an operation in the addition process alone.
  • an example of a configuration in which a plurality of devices or circuits jointly perform an operation in the additional process is also conceivable.
  • FIG. 14 is a block diagram showing an example of the configuration of the non-volatile storage system 1000 according to another embodiment.
  • the non-volatile storage system 1000 is configured to include a non-volatile storage device 100 a and a controller 500. Then, the non-volatile storage device 100a and the controller 500 jointly execute the operation in the addition process.
  • the non-volatile storage device 100a is configured by changing the control circuit 110 according to the second embodiment to the control circuit 110a from the non-volatile storage device 100 according to the second embodiment.
  • the control circuit 110 a is configured to be modified such that the receiving unit 310 according to the second embodiment and the determination unit 320 according to the second embodiment are deleted from the control circuit 110 according to the second embodiment.
  • the controller 500 is configured to include a processor and a memory. Then, the processor executes the program stored in the memory to functionally implement the receiving unit 310 according to the second embodiment and the determination unit 320 according to the second embodiment.
  • controller 500 for example, a configuration example in which the receiving unit 310 and the determination unit 320 are realized as a logic circuit can be considered.
  • controller 500 may be realized by, for example, a plurality of integrated circuits or may be realized by one integrated circuit.
  • the reception unit 310 and the determination unit 320 included in the controller 500, and the pulse condition switching unit 330 included in the non-volatile storage device 100a are jointly added according to the second embodiment. Perform the same operation as in the process.
  • the non-volatile storage system 1000 can realize the same operation as the operation in the additional process according to the second embodiment.
  • the non-volatile storage system 1000 can also be considered as one device comprising the non-volatile storage device 100 a and the controller 500. Therefore, the non-volatile storage system 1000 may be referred to as a non-volatile storage device.
  • the present invention can be widely used for resistance variable nonvolatile memory devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

不揮発性記憶装置は、第1電極(2)と第2電極(4)と第1電極(2)及び第2電極(4)間に印加される電圧パルスに応じて抵抗値が変化する抵抗変化層(3)とを備える抵抗変化素子(10)と、第1電極(2)及び第2電極(4)間に電圧パルスを印加する電圧パルス印加回路(300)と、電圧パルス印加回路(300)を制御する制御回路(110)とを備え、制御回路(110)は、外部からの指令を受けて、抵抗変化素子(10)の抵抗状態を読み出し、読み出した抵抗状態が高抵抗状態である場合には、第1電極(2)及び第2電極(4)間に、第1極性の第1追加電圧パルスを印加するよう、電圧パルス印加回路(300)を制御し、読み出した抵抗状態が低抵抗状態である場合には、第1電極(2)及び第2電極(4)間に、第1極性とは異なる第2極性の第2追加電圧パルスを印加するよう、前記電圧パルス印加回路を制御する。

Description

不揮発性記憶装置、及び駆動方法
 本発明は、不揮発性記憶装置、及びそれに含まれる抵抗変化素子の駆動方法に関する。
 従来、電気的信号によって抵抗値が可逆的に変化する性質を有し、さらにはこの抵抗値に対応した論理情報を不揮発的に記憶することが可能な抵抗変化素子を用いた、抵抗変化型の不揮発性記憶装置が知られている。
米国特許第6204139号明細書 特開2004-363604号公報
科学技術未来戦略ワークショップ「超長期保存メモリ・システムの開発」報告書、2012年11月16日、CRDS-FY2012-WR-07、独立行政法人科学技術振興機構 研究開発戦略センター刊行
 不揮発性記憶装置に対して、論理情報を不揮発的に記憶する期間を、従来よりも長くすることが望まれている。
 そこで、本発明は、論理情報を不揮発的に記憶する期間を、従来よりも長くし得る不揮発性記憶装置を提供することを目的とする。
 本発明の一態様に係る不揮発性記憶装置は、第1電極と、第2電極と、前記第1電極と前記第2電極との間に介在し、前記第1電極及び前記第2電極間に印加される電圧パルスに応じて抵抗値が変化する抵抗変化層とを備える抵抗変化素子と、前記第1電極及び前記第2電極間に電圧パルスを印加する電圧パルス印加回路と、前記電圧パルス印加回路を制御する制御回路とを備え、前記電圧パルス印加回路は、前記第1電極及び前記第2電極間に、第1極性の第1電圧パルスを印加することによって、前記抵抗変化層を、第1の論理情報を示す低抵抗状態から、前記低抵抗状態よりも抵抗値が高い、前記第1の論理情報とは異なる第2の論理情報を示す高抵抗状態へと変化させる高抵抗化過程と、前記第1電極及び前記第2電極間に、前記第1極性とは極性が異なる第2極性の第2電圧パルスを印加することによって、前記抵抗変化層を、前記高抵抗状態から前記低抵抗状態へと変化させる低抵抗化過程と、を実行し、前記制御回路は、外部からの指令を受けて、前記抵抗変化素子の抵抗状態を読み出し、読み出した抵抗状態が前記高抵抗状態である場合には、前記第1電極及び前記第2電極間に、前記第1電圧パルスよりもエネルギーの大きい、前記第1極性の第1追加電圧パルスを印加するよう、前記電圧パルス印加回路を制御し、読み出した抵抗状態が前記低抵抗状態である場合には、前記第1電極及び前記第2電極間に、前記第2電圧パルスよりもエネルギーの大きい、前記第2極性の第2追加電圧パルスを印加するよう、前記電圧パルス印加回路を制御する。
 本発明の一態様に係る駆動方法は、第1電極と、第2電極と、前記第1電極と前記第2電極との間に介在し、前記第1電極及び前記第2電極間に印加される電圧パルスに応じて抵抗値が変化する抵抗変化層とを備える抵抗変化素子の駆動方法であって、前記第1電極及び前記第2電極間に、第1極性の第1電圧パルスを印加することによって、前記抵抗変化層を、第1の論理情報を示す低抵抗状態から、前記低抵抗状態よりも抵抗値が高い、前記第1の論理情報とは異なる第2の論理情報を示す高抵抗状態へと変化させる高抵抗化過程と、前記第1電極及び前記第2電極間に、前記第1極性とは極性が異なる第2極性の第2電圧パルスを印加することによって、前記抵抗変化層を、前記高抵抗状態から前記低抵抗状態へと変化させる低抵抗化過程と、外部からの指令を受けて、前記抵抗変化素子の抵抗状態を読み出す読み出し過程と、前記読み出し過程により読み出された抵抗状態が前記高抵抗状態である場合には、前記第1電極及び前記第2電極間に、前記第1電圧パルスよりもエネルギーの大きい、前記第1極性の第1追加電圧パルスを印加し、前記読み出し過程により読み出された抵抗状態が前記低抵抗状態である場合には、前記第1電極及び前記第2電極間に、前記第2電圧パルスよりもエネルギーの大きい、前記第2極性の第2追加電圧パルスを印加する追加過程と、を含む。
 また、本発明の一態様に係る駆動方法は、第1電極と、第2電極と、前記第1電極と前記第2電極との間に介在し、前記第1電極及び前記第2電極間に印加される電圧パルスに応じて抵抗値が変化する抵抗変化層とを備える複数の抵抗変化素子の駆動方法であって、前記複数の抵抗変化素子の内の少なくとも1つに対して、前記第1電極及び前記第2電極間に、第1極性の第1電圧パルスを印加することによって、前記抵抗変化層を、第1の論理情報を示す低抵抗状態から、前記低抵抗状態よりも抵抗値が高い、前記第1の論理情報とは異なる第2の論理情報を示す高抵抗状態へと変化させる高抵抗化過程と、前記複数の抵抗変化素子の内の少なくとも1つに対して、前記第1電極及び前記第2電極間に、前記第1極性とは極性が異なる第2極性の第2電圧パルスを印加することによって、前記抵抗変化層を、前記高抵抗状態から前記低抵抗状態へと変化させる低抵抗化過程と、外部からの指令を受けて、前記複数の抵抗変化素子の全てに対して、前記抵抗変化素子の抵抗状態を読み出す読み出し過程と、前記読み出し過程により読み出された抵抗状態が前記高抵抗状態である抵抗変化素子に対して、前記第1電極及び前記第2電極間に、前記第1電圧パルスよりもエネルギーの大きい、前記第1極性の第1追加電圧パルスを印加するよう、前記電圧パルス印加回路を制御し、前記読み出し過程により読み出された抵抗状態が前記低抵抗状態である抵抗変化素子に対して、前記第1電極及び前記第2電極間に、前記第2電圧パルスよりもエネルギーの大きい、前記第2極性の第2追加電圧パルスを印加する追加過程と、を含む。
 上記不揮発性記憶装置、及び駆動方法によると、論理情報を不揮発的に記憶する期間を、従来よりも長くし得る不揮発性記憶装置を提供することが可能となる。
図1は、実施の形態1に係る抵抗変化素子の構成の一例を示す模式図である。 図2は、実施の形態1に係る抵抗変化素子の駆動方法の一例を示すフローチャートである。 図3は、実施の形態1に係る抵抗変化素子を動作させる回路の構成の一例を示す模式図である。 図4Aは、実施の形態1に係る抵抗変化層の抵抗値の変化を示す模式図である。 図4Bは、実施の形態1に係る抵抗変化層の抵抗値の変化を示す模式図である。 図5は、実施の形態1に係る抵抗変化素子を動作させる回路の構成の一例を示す模式図である。 図6は、実施の形態1に係る、通常動作時における電圧パルスと、追加過程における追加電圧パルスとの関係を示す模式図である。 図7Aは、低抵抗状態における抵抗変化素子の断面模式図である。 図7Bは、高抵抗状態における抵抗変化素子の断面模式図である。 図8は、変形例1に係る、通常動作時における電圧パルスと、追加過程における追加電圧パルスとの関係を示す模式図である。 図9は、変形例2に係る、通常動作時における電圧パルスと、追加過程における追加電圧パルスとの関係を示す模式図である。 図10は、変形例3に係る、通常動作時における電圧パルスと、追加過程における追加電圧パルスとの関係を示す模式図である。 図11は、データ保持特性評価の結果を示す模式図である。 図12は、実施の形態2に係る不揮発性記憶装置の構成の一例を示すブロック図である。 図13は、実施の形態3に係る不揮発性記憶装置の構成の一例を示すブロック図である。 図14は、その他の実施の形態に係る不揮発性記憶システムの構成の一例を示すブロック図である。
 (本発明の一態様を得るに至った経緯)
 近年、デジタル技術の進展に伴って携帯情報機器や情報家電等の電子機器が、より一層高機能化している。これらの電子機器の高機能化に伴い、使用される半導体素子の微細化及び高速化が急速に進んでいる。その中でも、フラッシュメモリに代表されるような大容量の不揮発性メモリの用途が急速に拡大している。
 更に、このフラッシュメモリに置き換わる次世代の新型不揮発性メモリとして、いわゆる抵抗変化素子を用いた抵抗変化型の不揮発性記憶装置の研究開発が進んでいる。抵抗変化素子とは、電気的信号によって抵抗値が可逆的に変化する性質を有し、さらにはこの抵抗値に対応した情報を、不揮発的に記憶することが可能な素子のことをいう。
 このような抵抗変化素子として動作する従来技術として、ペロブスカイト材料(例えば、Pr(1-x)CaxMnO3[PCMO]、LaSrMnO3[LSMO]、GdBaCoxOy[GBCO]など)や遷移金属酸化物(NiO、V2O、ZnO、Nb2O5、TiO2、WO3、またはCoO)を用いた不揮発性抵抗変化素子が提案されている。この技術は、酸化物材料に電圧パルス(継続時間の短い波状の電圧)を印加してその抵抗値を増大または減少させ、変化する抵抗値にデータを対応させることによってデータを記憶させるというものである。
 一方、今後ますますデジタル情報の普及が広がっていく中、社会、産業、個々人のアイデンティティ、文化、歴史などを後世に継承する情報の保管技術が重要視されつつあり、そこでは100年以上の情報記憶寿命が求められている。旧来の記録媒体である紙は保証期間が250年、マイクロフィルムは保証期間が500年といわれる。
 しかしながら、通常の抵抗変化型不揮発性記憶装置を含めて既存の不揮発性メモリの保証期間は10年程度と短い。そこで、現在のデジタル情報の長期保管用ストレージ・システムでは一定期間ごとにデータをまるごと旧記憶装置から新記憶装置に移し替える「マイグレーション」という手法が用いられている(非特許文献1)。
 しかしながら、マイグレーションには膨大なデータ移行コストがかかることから、マイグレーションを必要としないデジタル情報長期保管システムの構築が望まれている。そのため、100年以上の寿命を有する不揮発性記憶装置が求められている。
 本発明者は、抵抗変化素子の保管寿命を向上すべく鋭意検討を行った結果、抵抗変化素子を保管する前の最終的な高抵抗化過程もしくは低抵抗化過程を行った後に、抵抗状態が低の素子に対して通常の低抵抗化電圧パルス印加時よりも高いエネルギーで追加電圧パルス印加を行う、もしくは抵抗状態が高の素子に対して通常の高抵抗化電圧パルス印加時よりも高いエネルギーで追加電圧パルス印加を行う、の少なくともいずれか一方の追加電圧パルス印加を行うことにより、抵抗変化素子の保管寿命が長期化されることを見出した。当該知見の詳細は、以下において、実施の形態とともに適宜説明される。
 実施の形態に係る不揮発性記憶装置は、第1電極と、第2電極と、前記第1電極と前記第2電極との間に介在し、前記第1電極及び前記第2電極間に印加される電圧パルスに応じて抵抗値が変化する抵抗変化層とを備える抵抗変化素子と、前記第1電極及び前記第2電極間に電圧パルスを印加する電圧パルス印加回路と、前記電圧パルス印加回路を制御する制御回路とを備え、前記電圧パルス印加回路は、前記第1電極及び前記第2電極間に、第1極性の第1電圧パルスを印加することによって、前記抵抗変化層を、第1の論理情報を示す低抵抗状態から、前記低抵抗状態よりも抵抗値が高い、前記第1の論理情報とは異なる第2の論理情報を示す高抵抗状態へと変化させる高抵抗化過程と、前記第1電極及び前記第2電極間に、前記第1極性とは極性が異なる第2極性の第2電圧パルスを印加することによって、前記抵抗変化層を、前記高抵抗状態から前記低抵抗状態へと変化させる低抵抗化過程と、を実行し、前記制御回路は、外部からの指令を受けて、前記抵抗変化素子の抵抗状態を読み出し、読み出した抵抗状態が前記高抵抗状態である場合には、前記第1電極及び前記第2電極間に、前記第1電圧パルスよりもエネルギーの大きい、前記第1極性の第1追加電圧パルスを印加するよう、前記電圧パルス印加回路を制御し、読み出した抵抗状態が前記低抵抗状態である場合には、前記第1電極及び前記第2電極間に、前記第2電圧パルスよりもエネルギーの大きい、前記第2極性の第2追加電圧パルスを印加するよう、前記電圧パルス印加回路を制御する。
 上記不揮発性記憶装置において、前記制御回路は、プロセッサとメモリとを含み、前記プロセッサが、前記メモリに記憶されるプログラムを実行することで、前記電圧パルス印加回路の制御を行うとしてもよい。
 上記不揮発性記憶装置において、前記外部からの指令は、前記抵抗変化層の抵抗状態を、現時点よりも長期間に渡って安定化させる旨の、ユーザによる指令であるとしてもよい。
 実施の形態に係る駆動方法は、第1電極と、第2電極と、前記第1電極と前記第2電極との間に介在し、前記第1電極及び前記第2電極間に印加される電圧パルスに応じて抵抗値が変化する抵抗変化層とを備える抵抗変化素子の駆動方法であって、前記第1電極及び前記第2電極間に、第1極性の第1電圧パルスを印加することによって、前記抵抗変化層を、第1の論理情報を示す低抵抗状態から、前記低抵抗状態よりも抵抗値が高い、前記第1の論理情報とは異なる第2の論理情報を示す高抵抗状態へと変化させる高抵抗化過程と、前記第1電極及び前記第2電極間に、前記第1極性とは極性が異なる第2極性の第2電圧パルスを印加することによって、前記抵抗変化層を、前記高抵抗状態から前記低抵抗状態へと変化させる低抵抗化過程と、外部からの指令を受けて、前記抵抗変化素子の抵抗状態を読み出す読み出し過程と、前記読み出し過程により読み出された抵抗状態が前記高抵抗状態である場合には、前記第1電極及び前記第2電極間に、前記第1電圧パルスよりもエネルギーの大きい、前記第1極性の第1追加電圧パルスを印加し、前記読み出し過程により読み出された抵抗状態が前記低抵抗状態である場合には、前記第1電極及び前記第2電極間に、前記第2電圧パルスよりもエネルギーの大きい、前記第2極性の第2追加電圧パルスを印加する追加過程と、を含む。
 上記駆動方法において、前記第1追加電圧パルスは、前記抵抗変化層に流れる電流が、前記第1電圧パルスよりも大きくなる電圧パルスであるとしてもよい。
 上記駆動方法において、前記第2追加電圧パルスは、前記抵抗変化層に流れる電流が、前記第2電圧パルスよりも大きくなる電圧パルスであるとしてもよい。
 上記駆動方法において、前記第1追加電圧パルスは、前記抵抗変化層に印加される電圧の絶対値が、前記第1電圧パルスよりも大きくなる電圧パルスであるとしてもよい。
 上記駆動方法において、前記第2追加電圧パルスは、前記抵抗変化層に印加される電圧の絶対値が、前記第2電圧パルスよりも大きくなる電圧パルスであるとしてもよい。
 上記駆動方法において、前記第1追加電圧パルスは、前記第1電圧パルスよりも、パルス幅が大きな電圧パルスであるとしてもよい。
 上記駆動方法において、前記第2追加電圧パルスは、前記第2電圧パルスよりも、パルス幅が大きな電圧パルスであるとしてもよい。
 上記駆動方法において、前記追加過程では、前記読み出し過程により読み出された抵抗状態が前記高抵抗状態である場合には、前記第1追加電圧パルスを印加する前に、前記第1電極及び前記第2電極間に、前記第2極性の第3追加電圧パルスを印加するとしてもよい。
 上記駆動方法において、前記第3追加電圧パルスと前記第2電圧パルスとは、同一の電圧パルスであるとしてもよい。
 上記駆動方法において、前記追加過程では、前記読み出し過程により読み出された抵抗状態が前記低抵抗状態である場合には、前記第2追加電圧パルスを印加する前に、前記第1電極及び前記第2電極間に、前記第1極性の第4追加電圧パルスを印加するとしてもよい。
 上記駆動方法において、前記第4追加電圧パルスと前記第1電圧パルスとは、同一の電圧パルスであるとしてもよい。
 上記駆動方法において、前記追加過程を2回以上繰り返すとしてもよい。
 上記駆動方法において、前記抵抗変化層は、金属酸化物層を有し、前記金属酸化物層は、周囲よりも酸素含有量の低い局所領域を有し、前記追加過程において、前記第1電極及び前記2電極間に前記第1追加電圧パルスが印加されることで、前記局所領域における酸素含有量が上昇し、前記第1電極及び前記2電極間に前記第2追加電圧パルスが印加されることで、前記局所領域における酸素含有量が低下するとしてもよい。
 実施の形態に係る駆動方法は、第1電極と、第2電極と、前記第1電極と前記第2電極との間に介在し、前記第1電極及び前記第2電極間に印加される電圧パルスに応じて抵抗値が変化する抵抗変化層とを備える複数の抵抗変化素子の駆動方法であって、前記複数の抵抗変化素子の内の少なくとも1つに対して、前記第1電極及び前記第2電極間に、第1極性の第1電圧パルスを印加することによって、前記抵抗変化層を、第1の論理情報を示す低抵抗状態から、前記低抵抗状態よりも抵抗値が高い、前記第1の論理情報とは異なる第2の論理情報を示す高抵抗状態へと変化させる高抵抗化過程と、前記複数の抵抗変化素子の内の少なくとも1つに対して、前記第1電極及び前記第2電極間に、前記第1極性とは極性が異なる第2極性の第2電圧パルスを印加することによって、前記抵抗変化層を、前記高抵抗状態から前記低抵抗状態へと変化させる低抵抗化過程と、外部からの指令を受けて、前記複数の抵抗変化素子の全てに対して、前記抵抗変化素子の抵抗状態を読み出す読み出し過程と、前記読み出し過程により読み出された抵抗状態が前記高抵抗状態である抵抗変化素子に対して、前記第1電極及び前記第2電極間に、前記第1電圧パルスよりもエネルギーの大きい、前記第1極性の第1追加電圧パルスを印加するよう、前記電圧パルス印加回路を制御し、前記読み出し過程により読み出された抵抗状態が前記低抵抗状態である抵抗変化素子に対して、前記第1電極及び前記第2電極間に、前記第2電圧パルスよりもエネルギーの大きい、前記第2極性の第2追加電圧パルスを印加する追加過程と、を含む。
 以下、実施の形態の具体例について、図面を参照しながら説明する。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。本発明は、請求の範囲だけによって限定される。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、採用し得る形態を構成するものとして説明される。
 (実施の形態1)
 [抵抗変化素子の構成]
 まず、実施の形態1に係る抵抗変化素子の構成の一例について説明する。
 図1は、実施の形態1に係る抵抗変化素子の一例である抵抗変化素子10の構成示す模式図である。
 図1に示すように、抵抗変化素子10は、基板1と、基板1の上に形成された第1電極2と、第1電極2の上に金属酸化物層として形成された抵抗変化層3と、抵抗変化層3の上に形成された第2電極4とを備えている。第1電極2及び第2電極4は、抵抗変化層3と電気的に接続されている。すなわち、抵抗変化素子10は、第1電極2と、第2電極4と、第1電極2と第2電極4との間に介在する抵抗変化層3とを備える。
 なお、第1電極2は第2電極4と同等のサイズでもよく、また各電極2,4及び抵抗変化層3の配置は、上下逆に配置してもよいし、横向けに配置してもよい。
 基板1は、例えばトランジスタ等の回路素子が形成されたシリコン基板により構成される。また、第1電極2及び第2電極4は、例えば、Au(金)、Pt(白金)、Ir(イリジウム)、Cu(銅)、W(タングステン)、及びTaN(窒化タンタル)のうちの1つまたは複数の材料を用いて構成される。
 抵抗変化層3は、第1電極2及び第2電極4間に印加される電圧パルスに応じて抵抗が変化する。抵抗変化層3は、金属酸化物で構成されており、第1タンタル酸化物層3aと第2タンタル酸化物層3bとが積層されて構成されている。ここで、第2タンタル酸化物層3bの酸素含有率は、第1タンタル酸化物層3aの酸素含有率よりも高くなっている。
 第1タンタル酸化物層3aの組成をTaOxとした場合に、0<x<2.5であり、且つ、第2タンタル酸化物層3bの組成をTaOyとした場合に、x<yであればよい。また、0.8≦x≦1.9であり、且つ、2.1≦y≦2.5とした場合には、抵抗変化層3の抵抗値を安定して高速に変化させることができた。従って、x及びyは上記の範囲内にあってもよい。
 抵抗変化層3の厚みは、1μm以下であれば抵抗値の変化が認められるが、40nm以下であってもよい。係る構成では、パターニングプロセスとしてフォトリソグラフィ及びエッチングを使用する場合に、加工し易く、しかも抵抗変化層3の抵抗値を変化させるために必要となる電圧パルスの電圧値を低くすることができる。他方、電圧パルス印加時のブレイクダウン(絶縁破壊)をより確実に回避するという観点からは、抵抗変化層3の厚みは少なくとも5nm以上であってもよい。
 また、第2タンタル酸化物層3bの厚みについては、初期抵抗値が高くなりすぎる可能性を低減し、安定した抵抗変化を得るという観点から、1nm以上8nm以下程度であってもよい。
 上述したように構成される抵抗変化素子10を動作させる場合、第1電極2及び第2電極4が、電源5の異なる端子(ここでは、第1端子7及び第2端子8)に電気的に接続される。なお、抵抗変化素子10は、保護抵抗6を介して電源5と電気的に接続されていてもよい。この電源5は、抵抗変化素子10を駆動するための電気的パルス印加装置として、所定の極性、電圧及び時間幅の電気的パルス(電圧パルス)を、抵抗変化素子10に印加することができるように構成されている。なお、保護抵抗6は、過電流による抵抗変化素子10の破壊を防止するためのものである。本実施の形態1では、その抵抗値は例えば4.5kΩとする。そして電圧パルスは第1端子7及び第2端子8間に印加される。
 なお、以下では、端子間に印加される電圧パルスの電圧は、第1端子7を基準にした第2端子8の電位で特定されるものとする。この時、第2端子8に正の電圧を印加したときの電流の極性を正とする。
 [抵抗変化素子の製造方法]
 次に、抵抗変化素子10の製造方法の一例について説明する。
 まず、基板1上に、スパッタリング法により、厚さ20nmの第1電極2を形成する。その後、Taターゲットをアルゴンガス及び酸素ガス中でスパッタリングする所謂反応性スパッタリング法によって、第1電極2の上にタンタル酸化物層を形成する。ここで、タンタル酸化物層における酸素含有率は、アルゴンガスに対する酸素ガスの流量比を変えることにより容易に調整することができる。なお、基板温度は特に加熱することなく室温とすることができる。
 次に、上記のようにして形成されたタンタル酸化物層の最表面を酸化することによりその表面を改質する。あるいは、高濃度の酸素含有率を有するタンタル酸化物(例えばTa2O5)ターゲットを用いて、より酸素含有率の高い層をスパッタ法で形成する。これにより、先に形成されたタンタル酸化物層の表面に、当該タンタル酸化物層の酸化されなかった領域(第1領域)よりも酸素含有率の高い領域(第2領域)が形成される。
 これらの第1領域及び第2領域が第1タンタル酸化物層3a及び第2タンタル酸化物層3bにそれぞれ相当し、このようにして形成された第1タンタル酸化物層3a及び第2タンタル酸化物層3bによって抵抗変化層3が構成されることになる。
 次に、上記のようにして形成された抵抗変化層3の上に、スパッタリング法により、厚さ40nmの第2電極4を形成することにより、抵抗変化素子10が得られる。
 なお、第1電極2及び第2電極4並びに抵抗変化層3の大きさ及び形状は、フォトマスク及びフォトリソグラフィによって調整することができる。本実施の形態では、第2電極4及び抵抗変化層3の大きさを0.1μm×0.1μm(面積0.01μm2)とし、第1電極2と抵抗変化層3とが接する部分の大きさも0.1μm×0.1μm(面積0.01μm2)とした。
 また、本実施の形態では、第1タンタル酸化物層3aの組成をTaOx(x=1.54)とし、第2タンタル酸化物層3bの組成をTaOy(y=2.47)としている。さらに、抵抗変化層3の厚みを25nmとし、第1タンタル酸化物層3aの厚みを20nm、第2タンタル酸化物層3bの厚みを5nmとしている。
 なお、このように、本実施の形態においてはx=1.54、y=2.47であるが、x及びyの値はこれに限られるわけではない。0.8≦x≦1.9であり、2.1≦y≦2.5としてもよい。係る構成でも、本実施の形態での抵抗変化特性と同様に、安定した抵抗変化を実現できる。
 [抵抗変化素子10の動作]
 次に、上述した製造方法により得られた抵抗変化素子10の動作について説明する。
 以下では、抵抗変化層3の抵抗値が、第1の論理情報(ここでは、例えば、論理値1)を示す所定の高い値(例えば、200kΩ以上、典型的には300kΩ。)にある状態を高抵抗状態といい、抵抗変化層3の抵抗値が、第1の論理情報とは異なる第2の論理情報(ここでは、例えば、論理値0)を示す所定の低い値(例えば、20kΩ以下、典型的には12kΩ。)にある状態を低抵抗状態という。
 電源5を用いて、負極性の電圧パルスである低抵抗化電圧パルスを第1端子7及び第2端子8間に印加することにより、抵抗変化層3の抵抗値が減少し、抵抗変化層3が高抵抗状態から低抵抗状態へ変化する。以下では、これを低抵抗化過程という。
 他方、電源5を用いて、正極性の電圧パルスである高抵抗化電圧パルスを第1端子7及び第2端子8間に印加することにより、抵抗変化層3の抵抗値が増加し、抵抗変化層3が低抵抗状態から高抵抗状態へ変化する。以下では、これを高抵抗化過程という。
 上記の低抵抗化過程及び高抵抗化過程を繰り返すことにより、抵抗変化素子10が動作する。
 本実施の形態では、第1回目の上記の低抵抗化過程の前に初期過程が実行される。ここで、初期過程とは、その後の低抵抗化過程及び高抵抗化過程において安定した抵抗変化動作を実現するための過程である。製造直後の抵抗変化素子10は通常動作時における高抵抗状態より高い初期抵抗値を示し、その状態で通常動作時における低抵抗化電圧パルスまたは高抵抗化電圧パルスを印加しても抵抗変化は起こらない。この初期過程においては、正極性の電圧パルスである第1の初期電圧パルス(高抵抗化ブレイク)及び負極性の電圧パルスである第2の初期電圧パルス(低抵抗化ブレイク)の2種類の初期電圧パルスがこの順に第1端子7及び第2端子8間に印加される。ここで、第1の初期電圧パルスが印加された場合は抵抗変化層3の抵抗値が初期抵抗値から第1の抵抗値へ減少し、次に第2の初期電圧パルスが印加された場合は第1の抵抗値から第2の抵抗値へさらに減少し、以降、通常動作時の低抵抗化電圧パルスまたは高抵抗化電圧パルスを印加することにより抵抗変化素子10は抵抗変化を起こす。一般的に、初期過程は、抵抗変化素子10を製造した後に、まだ電圧が印加されたことのない初期状態の抵抗変化素子10に対して行なわれる。
 なお、初期過程において、第1の初期電圧パルスもしくは第2の初期電圧パルスのうちのどちらか一方の極性のみを用いて抵抗変化層3の抵抗値を初期抵抗値から下げてもよい。
 上述した初期過程を経ることにより、フィラメントと呼ばれる周囲の酸素含有率よりも低い酸素含有率を持つ局所領域が抵抗変化層3内に形成される。初期過程後の通常の抵抗変化動作時においては、負極性の電圧パルスである低抵抗化電圧パルスが第1端子7及び第2端子8間に印加されることにより抵抗状態が高の状態から低の状態に変化し、正極性の電圧パルスである高抵抗化電圧パルスが第1端子7及び第2端子8間に印加されることにより抵抗状態が低の状態から高の状態に変化する。この際の抵抗変化動作のメカニズムとしては、フィラメント内の酸素含有率が、低抵抗化電圧パルスによって低下し、また高抵抗化電圧パルスによって上昇することによると考えられる。ここで、通常の抵抗変化動作時における高抵抗状態及び低抵抗状態のフィラメント内の酸素含有率をそれぞれNHOx、NLOxとすると、NHOx>NLOxを満たす。なお、本実施の形態では初期過程を経ることによりフィラメントを形成したが、必ずしも初期過程を経てフィラメントを形成する必要は無く、抵抗変化素子10形成時にストイキオメトリのタンタル酸化物よりも酸素含有率の低いTa酸化物層を設けることで代用してもよい。
 [追加電圧パルス印加過程]
 本実施の形態では、上記の通常の抵抗変化動作によって抵抗変化素子10を高抵抗状態及び低抵抗状態に設定後、抵抗変化素子10を含む不揮発性記憶装置使用者は、不揮発性記憶装置のユーザーインターフェース等を通じて、不揮発性記憶装置に対し記憶させた情報の今後の取り扱いについて指令を与えることができる。この指令は、今後は書き換えを行わずに記憶させた情報の読み出し動作のみを行うという指令であってもよいし、今後は抵抗変化層3の抵抗状態を、現時点よりも長期間に渡って安定化させるという指令(以下、「長期記憶の指令」とも呼ぶ。)でもよい。上記指令を受けると、不揮発性記憶装置は、抵抗変化素子10の抵抗状態が高か低かを読み出す。そして低抵抗状態の抵抗変化素子10に対しては、追加で通常の低抵抗化電圧パルスよりも高いエネルギーで低抵抗化電圧パルスと同極性の電圧パルスを印加する。一方、高抵抗状態の抵抗変化素子10に対しては、追加で通常の高抵抗化電圧パルスよりも高いエネルギーで高抵抗化電圧パルスと同極性の電圧パルスを印加する。
 図2は、実施の形態1に係る抵抗変化素子10の駆動方法の一例を示すフローチャートである。
 図2に示すように、不揮発性記憶装置は、通常動作時には、第1電極2及び第2電極4間に、第1極性の第1電圧パルス(高抵抗化電圧パルス)を印加することによって、抵抗変化層3を、第1の論理情報を示す低抵抗状態から、第1の論理情報とは異なる第2の論理情報を示す高抵抗状態へと変化させる高抵抗化過程(ステップS10)と、第1電極2及び第2電極4間に、第1極性とは極性が異なる第2極性の第2電圧パルス(低抵抗化電圧パルス)を印加することによって、抵抗変化層3を、高抵抗状態から低抵抗状態へと変化させる低抵抗化過程(ステップS20)とを繰り返す。
 一方、不揮発性記憶装置は、外部からの指令(例えば、長期記憶の指令)を受けると(ステップS30)、抵抗変化素子10の抵抗状態を読み出す読み出し過程を行う(ステップS40)。そして、読み出し過程によって読み出された抵抗状態が高抵抗状態である場合(ステップS50の処理において高抵抗状態と判定した場合)には、第1電極2及び第2電極4間に、第1電圧パルスよりもエネルギーの大きい、第1極性の第1追加電圧パルスを印加し(ステップS60)、読み出し過程によって読み出された抵抗状態が低抵抗化状態である場合(ステップS50の処理において低抵抗状態と判定した場合)には、第1電極2及び第2電極4間に、第2電圧パルスよりもエネルギーの大きい、第2極性の第2追加電圧パルスを印加する(ステップS70)。
 不揮発性記憶装置は、ステップS50処理、ステップS60の処理、ステップS70の処理からなる追加過程を行うことで、後述の通り、抵抗変化層3の抵抗状態を、現時点よりも長期間に渡って安定化させることが可能となる。
 なお、以下では、第1追加電圧パルスによって印加されるエネルギーは、追加過程終了後に第2電圧パルス(低抵抗化電圧パルス)を印加することによって、抵抗変化層3を、高抵抗状態から低抵抗状態へと変化させることが可能となる程度のエネルギーであるとして説明するが、第1追加電圧パルスによって印加されるエネルギーによっては、追加過程終了後に第2電圧パルス(低抵抗化電圧パルス)が印加されても、抵抗変化層3を、高抵抗状態から低抵抗状態へと変化させることができなくすることも可能である。すなわち、不揮発性記憶装置の記憶する論理情報を固定化(書き換え不可化)することも可能である。同様に、以下では、第2追加電圧パルスによって印加されるエネルギーは、追加過程終了後に第1電圧パルス(高抵抗化電圧パルス)を印加することによって、抵抗変化層3を、低抵抗状態から高抵抗状態へと変化させることが可能となる程度のエネルギーであるとして説明するが、第2追加電圧パルスによって印加されるエネルギーによっては、追加過程終了後に第1電圧パルス(高抵抗化電圧パルス)が印加されても、抵抗変化層3を、低抵抗状態から高抵抗状態へと変化させることができなくすることも可能である。すなわち、不揮発性記憶装置の記憶する論理情報を固定化(書き換え不可化)することも可能である。
 図3は、実施の形態1に係る抵抗変化素子10を動作させる回路の構成の一例及び当該抵抗変化素子10にデータを書き込む場合における動作例を示す図である。図3に示すように、この回路は、抵抗変化素子10と、第2端子8及び第1端子7とを備えている。抵抗変化素子10の第2電極4は第2端子8に電気的に接続されており、第1電極2は第1端子7に電気的に接続されている。また、抵抗変化素子10の第1電極2と第1端子7との間にはトランジスタ13が設けられている。このトランジスタは抵抗変化素子10を選択するスイッチング素子及び保護抵抗の役割を担っている。このトランジスタ13にゲート電圧Vgが印加されることにより、抵抗変化素子10にトランジスタ13を介して所定の電圧パルスが供給される。
 図4A及び図4Bは、実施の形態1の抵抗変化素子10に、データを書き込む、すなわち、論理値0を書き込む低抵抗化過程、データを消去する、すなわち、論理値1を書き込む高抵抗化過程、及び追加過程における抵抗変化層3の抵抗値の変化を示す模式図である。なお、これらの低抵抗化過程、高抵抗化過程、及び追加過程においては、図3に示すように、正極性の電圧パルス印加時は、第1端子7を基準にして、第2端子8に所定の正電圧パルスが供給され、負極性の電圧パルス印加時は、第2端子8を基準にして、第1端子7に所定の正電圧パルスが供給される。
 抵抗変化素子10の抵抗変化層3が、ある時点で高抵抗状態にある場合、負極性の低抵抗化電圧パルス(第2電圧パルス:電圧値VRL)が第2端子8に供給されると、抵抗変化層3の抵抗値が高抵抗値RHから低抵抗値RLへと変化する。他方、抵抗変化層3の抵抗値が低抵抗値RLである場合、正極性の高抵抗化電圧パルス(第1電圧パルス:電圧値VRH)が第2端子8に供給されると、抵抗変化層3の抵抗値は低抵抗値RLから高抵抗値RHへ変化する。
 図5は、実施の形態1の抵抗変化素子10を動作させる回路の構成の一例及び当該抵抗変化素子10に書き込まれたデータを読み出す場合における動作例を示す図である。図5に示すように、データの読み出しを行う場合には、第1端子7を基準に、第2端子8に読み出し電圧が供給される。この読み出し電圧は、抵抗変化素子10に供給されてもその抵抗を変化させない程度の値であり、第1電極2及び接地点を基準に特定される。
 上述したとおり、不揮発性記憶装置は、ユーザによる長期記憶の指令を受けると、その時点での抵抗変化素子10の抵抗状態を読み出す。
 図4Aにおける追加過程の部分は、読み出した抵抗状態が低抵抗であった場合を示している。この場合は、抵抗変化素子10に対し、通常の低抵抗化電圧パルスよりも高いエネルギーで、低抵抗化電圧パルスと同じ極性の第2追加電圧パルスを印加する。それにより、抵抗変化素子10は通常の低抵抗化過程後よりも低い抵抗値RLaとなる。
 図4Bにおける追加過程の部分は、読み出した抵抗状態が高抵抗であった場合を示している。この場合は、抵抗変化素子10に対し、通常の高抵抗化電圧パルスよりも高いエネルギーで高抵抗化電圧パルスと同じ極性の第1追加電圧パルスを印加する。それにより、抵抗変化素子10は通常の高抵抗化過程後よりも高い抵抗値RHaとなる。
 図6は、実施の形態1に係る抵抗変化素子10の通常動作時の高抵抗化過程及び低抵抗化過程における電圧パルス(高抵抗化電圧パルス(第1電圧パルス)及び低抵抗化電圧パルス(第2電圧パルス))と、追加過程における追加電圧パルス(第1追加電圧パルス及び第2追加電圧パルス)の関係を表した模式図である。第1追加電圧パルスは通常動作時の高抵抗化電圧パルスよりも高いエネルギーを有する。この高いエネルギーは、第1追加電圧パルスを、抵抗変化層3に印加される電圧の絶対値が、高抵抗化電圧パルス(第1電圧パルス)よりも大きくなる電圧パルスとすることで実現してもよいし、第1追加電圧パルスを、電圧パルスの印加時に抵抗変化層3に流れる電流が、高抵抗化電圧パルス(第1電圧パルス)よりも大きくなる電圧パルスとすることで実現してもよいし、第1追加電圧パルスを、高抵抗化電圧パルス(第1電圧パルス)よりもパルス幅が大きな電圧パルスとすることで実現してもよい。また、第2追加電圧パルスと通常動作時の低抵抗化電圧パルスの関係も同様である。すなわち、第2追加電圧パルスを、抵抗変化層3に印加される電圧の絶対値が、低抵抗化電圧パルス(第2電圧パルス)よりも大きくなる電圧パルスとすることで実現してもよいし、第2追加電圧パルスを、電圧パルスの印加時に抵抗変化層3に流れる電流が、低抵抗化電圧パルス(第2電圧パルス)よりも大きくなる電圧パルスとすることで実現してもよいし、第2追加電圧パルスを、低抵抗化電圧パルス(第2電圧パルス)よりもパルス幅が大きな電圧パルスとすることで実現してもよい。
 [追加電圧パルス印加によるデータ保持特性改善のメカニズム]
 ここで、通常動作時よりも高エネルギーの追加電圧パルス印加を行うことでデータの保持特性がなぜ改善するかについて推定されるメカニズムを述べる。ただし、上述の保持特性の改善メカニズムについては確定的な結論を導出するまでには至っていないため、可能性を述べるにとどめる。
 はじめに、本実施の形態で説明した抵抗変化素子10の高抵抗状態と低抵抗状態の違いについて説明する。図7Aは低抵抗状態、図7Bは高抵抗状態における、実施の形態1に係る抵抗変化素子10の断面模式図を示している。
 本実施の形態においては、低抵抗状態、高抵抗状態とも初期状態の抵抗値よりも低いことから、いずれの抵抗状態においても、タンタル酸化物層3b中に、第2電極4とタンタル酸化物層3aをつなぐ、フィラメントと呼ばれる周囲の酸素含有率よりも低い酸素含有率を持つ局所領域3cが存在している状態であると考えられる。そして抵抗変化素子の抵抗値は、このフィラメントに存在する酸素欠陥9の量によって決まり、低抵抗状態の抵抗変化素子10のフィラメント内の酸素含有率NLOxと高抵抗状態の抵抗変化素子10のフィラメント内の酸素含有率NHOxは、NLOx<NHOxを満たしていると考えられる。
 より微視的にフィラメント内の酸素欠陥と抵抗変化素子10の抵抗値の関係について記述する。フィラメント内においては、酸素欠陥が連なった微小導通パスが存在し、低抵抗状態においては、酸素欠陥が十分に多いため、この微小導通パスが第2電極4からタンタル酸化物層3aまでつながった状態であると考えられる。一方、高抵抗状態においては、酸素欠陥の量が少ないため、この微小導通パスが途中で切れている状態であると考えられる。
 以上のような抵抗変化のメカニズムに基づくと、抵抗変化後の保管状態における低抵抗状態から高抵抗状態への変化は、フィラメント内の微小導通パスのつながりが脆弱であるため、周囲の酸素が微小導通パスにまで拡散し、ある酸素欠陥と結びつくことにより微小導通パスが途中で切れてしまうことに相当すると考えられる。そこで、低抵抗状態の抵抗変化素子10に最後に通常動作時よりも高エネルギーの第2追加電圧パルスを追加で印加することにより、低抵抗状態の抵抗変化素子におけるフィラメント内の酸素欠陥の数を増やし、微小導電パスのつながりを強化することにより通常よりも長期の保管を実現することができる。
 同様に、抵抗変化後の保管状態における高抵抗状態から低抵抗状態への変化は、フィラメント内の微小導通パスは途中で切れているものの酸素欠陥の数は多い場合に、酸素の拡散により新たな酸素欠陥が生成し、既にある酸素欠陥と結びつくことにより切れていた微小導通パスがつながってしまうことに相当すると考えられる。そこで、高抵抗状態の抵抗変化素子10に最後に通常動作時よりも高エネルギーの第1追加電圧パルスを追加で印加することにより、高抵抗状態の抵抗変化素子におけるフィラメント内の酸素欠陥の数を減らし、微小導電パスのつながりを抑制することにより通常よりも長期の保管を実現することができる。
 本実施の形態で説明した抵抗変化素子10は、タンタル酸化物を抵抗変化層に用いた例を説明しているが、上述した追加電圧パルス印加のメカニズムは、タンタル以外の酸化物を抵抗変化層に用いる抵抗変化素子にも適用可能であると考えられる。
 つまり、タンタル以外の金属酸化物を抵抗変化層に用いた抵抗変化素子で、かつ、異なる極性の電気パルスを電極に印加して抵抗変化を起こすような抵抗変化素子でも、上記で説明したようなメカニズムで説明される追加電圧パルス印加の効果があると考えられる。
 また、金属酸化物を抵抗変化層に用いた抵抗変化素子以外にも、印加する電圧パルスのエネルギーを高くすることにより高抵抗状態の素子の抵抗値をより高く、あるいは低抵抗状態の素子の抵抗をより低く設定できる抵抗変化素子であれば、同様に追加電圧パルス印加の効果が有ると考えられる。
 上記のようなメカニズムによれば、本発明のようにユーザによる長期保存の指令を受けた時のみ追加電圧パルス印加を行うのではなく、通常動作時に印加する低抵抗化電圧パルス、及び高抵抗化電圧パルスのエネルギーを高くすることによっても高抵抗状態の素子の抵抗値をより高く、あるいは低抵抗状態の素子の抵抗をより低く設定できると考えられる。しかしながら、一般的に、抵抗変化素子においては、高いエネルギーでの低抵抗化電圧パルスを過去に繰り返し印加された高抵抗状態の抵抗変化素子は保管時に低抵抗状態への遷移を起こしやすく、高いエネルギーでの高抵抗化電圧パルスを過去に繰り返し印加された低抵抗状態の抵抗変化素子は保管時に高抵抗状態への遷移を起こしやすいという課題がある。そのため、長期保存を実施する、あるいは最終書き込み後のタイミングにおいて、低抵抗状態の抵抗変化素子10のみに低抵抗化電圧パルスと同じ極性の高エネルギーのパルスを印加する、あるいは高抵抗状態の抵抗変化素子10のみに高抵抗化電圧パルスと同じ極性の高エネルギーのパルスを印加することが重要である。
 [追加電圧パルスの変形例1]
 本実施の形態1では、ユーザによる長期保存の指令を受けて抵抗変化素子10の読み出しを行った後の追加過程において、低抵抗状態の抵抗変化素子10に対しては、低抵抗化電圧パルスと同じ極性の第2追加電圧パルスを印加する例を示した。本変形例では、追加過程において、低抵抗状態の抵抗変化素子10に対しては、低抵抗化電圧パルスと異なる極性の電圧パルスを印加した後に、低抵抗化電圧パルスと同じ極性の第2追加電圧パルスを印加する。すなわち、不揮発性記憶装置は、読み出し過程により読み出された抵抗状態が低抵抗状態である場合には、第2追加電圧パルスを印加する前に、第1電極2及び第2電極4間に、第1極性の第4追加電圧パルスを印加する。
 この第4追加電圧パルスは、高抵抗化電圧パルス(第1電圧パルス)と同一の電圧パルスであってもよい。こうすることにより、低抵抗状態の抵抗変化素子10を一旦高抵抗状態に書き換え、その後に改めて高いエネルギーで低抵抗状態にすることにより、抵抗変化素子10のフィラメント内の酸素含有率NLOxを通常の低抵抗化過程後よりも低下させることができる。図8は、本変形例1に係る、通常動作時における電圧パルスと、追加過程における追加電圧パルスとの関係を示す模式図である。
 また、本変形例1では、追加過程において、高抵抗状態の抵抗変化素子10に対しては、高抵抗化電圧パルスと異なる極性の電圧パルスを印加した後に、高抵抗化電圧パルスと同じ極性の第1追加電圧パルスを印加する。すなわち、不揮発性記憶装置は、読み出し過程により読み出された抵抗状態が高抵抗状態である場合には、第1追加電圧パルスを印加する前に、第1電極2及び第2電極4間に、第2極性の第3追加電圧パルスを印加する。
 この第3追加電圧パルスは、低抵抗化電圧パルス(第2電圧パルス)と同一の電圧パルスであってもよい。こうすることにより、高抵抗状態の抵抗変化素子10を一旦低抵抗状態に書き換え、その後に改めて高いエネルギーで高抵抗状態にすることにより、抵抗変化素子10のフィラメント内の酸素含有率NHOxを通常の高抵抗化過程後よりも上昇させることができる。
 [追加電圧パルスの変形例2]
 本実施の形態1では、ユーザによる長期保存の指令を受けて抵抗変化素子10の読み出しを行った後の追加過程において、低抵抗状態の抵抗変化素子10に対しては、低抵抗化電圧パルスと同じ極性の第2追加電圧パルスを印加する例を示した。本変形例では、追加過程において、低抵抗状態の抵抗変化素子10に対しては、低抵抗化電圧パルスより高いエネルギーで低抵抗化電圧パルスと同じ極性の追加電圧パルスを2回以上印加する。こうすることにより、抵抗変化素子10のフィラメント内の酸素含有率NLOxを通常の低抵抗化過程後よりも確実に低下させることができる。図9は、本変形例2に係る、通常動作時における電圧パルスと、追加過程における追加電圧パルスとの関係を示す模式図である。
 また、本変形例2では、追加過程において、高抵抗状態の抵抗変化素子10に対しては、高抵抗化電圧パルスより高いエネルギーで高抵抗化電圧パルスと同じ極性の追加電圧パルスを2回以上印加する。こうすることにより、抵抗変化素子10のフィラメント内の酸素含有率NHOxを通常の高抵抗化過程後よりも確実に上昇させることができる。
 [追加電圧パルスの変形例3]
 本実施の形態1における追加電圧パルスの変形例1では、追加過程において、低抵抗状態の抵抗変化素子10に対しては、低抵抗化電圧パルスと異なる極性の第4追加電圧パルスを印加した後に、低抵抗化電圧パルスと同じ極性の第2追加電圧パルスを印加する例を示した。また、本実施の形態1における追加電圧パルスの変形例2では、追加過程において、低抵抗状態の抵抗変化素子10に対しては、低抵抗化電圧パルスより高いエネルギーで低抵抗化電圧パルスと同じ極性の追加電圧パルスを2回以上印加する例を示した。本変形例では、上記変形例1及び変形例2を組み合わせることにより、低抵抗状態の抵抗変化素子10に対しては、低抵抗化電圧パルスと異なる極性の追加電圧パルスを印加した後に、低抵抗化電圧パルスよりも高いエネルギーで低抵抗化電圧パルスと同じ極性の第2追加電圧パルスを印加するという過程を2回以上繰り返す。こうすることにより、抵抗変化素子10のフィラメント内の酸素含有率NLOxを通常の低抵抗化過程後よりもさらに確実に低下させることができる。図10は、本変形例3に係る、通常動作時における電圧パルスと、追加過程における追加電圧パルスとの関係を示す模式図である。
 また、本変形例3では、追加過程において、高抵抗状態の抵抗変化素子10に対しては、高抵抗化電圧パルスと異なる極性の追加電圧パルスを印加した後に、高抵抗化電圧パルスよりも高いエネルギーで高抵抗化電圧パルスと同じ極性の第1追加電圧パルスを印加するという過程を2回以上繰り返す。こうすることにより、抵抗変化素子10のフィラメント内の酸素含有率NHOxを通常の高抵抗化過程後よりもさらに確実に上昇させることができる。
 [評価例]
 実施の形態1における追加電圧パルスの変形例3の駆動方法を実施し、抵抗を設定した抵抗変化素子群に対してデータ保持特性の評価を行った。
 ここで、本実施例で行った通常動作時の動作条件(図2中のステップS10の処理及びステップS20の処理における動作条件)及び本実施の形態1における追加電圧パルスの変形例3に相当する追加過程の動作条件(図2中のステップS60の処理及びステップS70の処理における動作条件)を具体的に示す。
 通常動作時の動作では、低抵抗化電圧パルスは、パルス印加時に抵抗変化層3に流れる電流が200μAとなるように負極性のパルス電圧を設定し、パルス印加時間を100nsとした。また、高抵抗化電圧パルスは、抵抗変化層3に印加されるパルス電圧を+2.0Vに設定し、パルス印加時間を100nsとした。本実施例においては、初期過程を実施後、通常動作時の抵抗変化動作(図2中のステップS10の処理及びステップS20の処理)を1000回繰り返した。
 一方、追加電圧パルス印加を実施した抵抗変化素子群については、通常動作時の抵抗変化動作を実施した素子群と同一の動作を実施した後、以下に記載の通りの追加電圧パルス印加を実施した。
 追加過程における第2追加電圧パルスは、パルス印加時に抵抗変化層3に流れる電流が238μAとなるようにパルス電圧を設定し、パルス印加時間を100nsとした。第1追加電圧パルスは、抵抗変化層3に印加されるパルス電圧を+2.1Vに設定し、パルス印加時間を100nsとした。ここでは、第2追加電圧パルスは、パルス印加時に抵抗変化層3に流れる電流が、238μAであるとしたが、必ずしも、238μAに限定される必要はない。第2追加電圧パルスは、低抵抗化電圧パルスと同一のパルス幅とする場合には、典型的には、パルス印加時に抵抗変化層3に流れる電流が、低抵抗化電圧パルスの105%~150%の範囲であることが望ましい。また、ここでは、第1追加電圧パルスは、抵抗変化層3に印加されるパルス電圧が+2.1Vであるとしたが、必ずしも、+2.1Vに限定される必要はない。第1追加電圧パルスは、高抵抗化電圧パルスと同一のパルス幅とする場合には、典型的には、抵抗変化層3に印加される電圧が、高抵抗化電圧パルスの105%~150%の範囲であることが望ましい。
 なお、第2追加電圧パルスは、パルス印加時に抵抗変化層3に流れる電流が、低抵抗化電圧パルスと同様(すなわち、200μA)である一方で、そのパルス幅が、低抵抗化パルスよりも長くなる例も考えられる。この場合には、そのパルス幅は、典型的には、低抵抗化パルスの150%~1000%の範囲であることが望ましい。同様に、第1追加電圧パルスは、パルス印加時に抵抗変化層3に印加されるパルス電圧が、高抵抗化電圧パルスと同様(すなわち、+2.0V)である一方で、そのパルス幅が、高抵抗化パルスよりも長くなる例も考えられる。この場合には、そのパルス幅は、典型的には、高抵抗化パルスの150%~1000%の範囲であることが望ましい。
 また、追加過程において、低抵抗状態の抵抗変化素子10に対する低抵抗化電圧パルスと異なる極性の第4追加電圧パルスは、通常動作時の高抵抗化電圧パルスと同じ電圧パルスを印加した。高抵抗状態の抵抗変化素子10に対する高抵抗化電圧と異なる極性の第3追加電圧パルスは、通常動作時の低抵抗化電圧パルスと同じ電圧パルスを印加した。
 さらに、追加過程において、低抵抗状態の抵抗変化素子10に対して、低抵抗化電圧パルスと異なる極性の第4追加電圧パルスの印加と、続けて行う低抵抗化電圧パルスと同じ極性の第2追加電圧パルス印加の2パルスからなる繰り返し単位を100回繰り返した。そして、高抵抗状態の抵抗変化素子10に対して、高抵抗化電圧パルスと異なる極性の第3追加電圧パルスの印加と、続けて行う高抵抗化電圧パルスと同じ極性の第1追加電圧パルス印加の2パルスからなる繰り返し単位を100回繰り返した。
 以上のようにして用意した抵抗変化素子群の抵抗値の保持特性の評価を行った。なお、本評価例で用いた抵抗変化素子10の抵抗値は室温程度の温度では、10年以上もほとんど劣化が見られないような特性を有している。そこで、不揮発性記憶素子を210℃の恒温槽中に保持し、劣化を加速させて、保持特性の評価を行った。なお、抵抗値の測定は恒温槽から不揮発性記憶素子を取り出して室温で行った。
 つまり、恒温槽での保持と、室温での測定を繰り返し行う事により、保持特性の評価を行った。また、保持特性の評価では、抵抗変化素子10に対して更なる書き込みは行わず(すなわち、上記にて設定された抵抗値状態を維持)、抵抗変化が起こらないような低い電圧を用いた読み出しのみを行った。
 図11は、通常の抵抗変化動作素子群及び本実施の形態1の変形例3に相当する追加過程を実施した抵抗変化素子群における、高抵抗状態及び低抵抗状態の抵抗変化素子10各4kbitのデータ保持特性評価結果である。図11において、低抵抗状態の抵抗変化素子10からなる素子群のことを、低抵抗素子群と記し、高抵抗状態の抵抗変化素子10からなる素子群のことを、高抵抗素子群と記している。なお、図11においては、各測定時における各抵抗変化素子群で最も悪い抵抗値の素子(低抵抗状態の素子においては最も低い読み出し電流の素子、高抵抗状態の素子においては最も高い読み出し電流の素子を指す)、すなわちテイルビットのみを記してある。
 図11では、横軸は恒温槽での保持時間(累計)、縦軸は読み出し電流値である。横軸は対数で、縦軸は線形でプロットしてある。
 低抵抗状態(すなわち読み出し電流値が高い)の抵抗変化素子10に着目すると、通常動作後の素子群と比較して、追加過程を実施した素子群では恒温槽での保持による読み出し電流の低下が抑制されており、低抵抗状態の抵抗変化素子10に対し追加過程を実施することにより保持特性が向上したと言える。
 また、高抵抗状態(すなわち読み出し電流値が低い)の抵抗変化素子10に着目すると、通常動作後の素子群と比較して、追加過程を実施した素子群では恒温槽での保持による一部の素子の読み出し電流の高電流化が抑制されており、高抵抗状態の抵抗変化素子10に対し追加過程を実施することにより保持特性が向上したと言える。
 以上のことから、評価例の駆動方法においては、低抵抗状態の抵抗変化素子10、高抵抗状態の抵抗変化素子10の少なくともいずれか一方に対し追加過程を実施することで抵抗変化素子10の保持特性が向上し、両方の抵抗状態の抵抗変化素子に対して追加過程を実施することで、抵抗変化素子10の保持特性がさらに向上し、また、データ保持後の読み出し時における読み出しエラー抑制効果がさらに高くなる。
 (実施の形態2)
 実施の形態2では、実施の形態1において説明した抵抗変化素子10を用いて構成される、1トランジスタ/1不揮発性記憶部型(1T1R型)の不揮発性記憶装置について説明する。
 [不揮発性記憶装置の構成]
 図12は、実施の形態2に係る不揮発性記憶装置100の構成の一例を示すブロック図である。図12に示すように、1T1R型の不揮発性記憶装置100は、半導体基板上にメモリ本体部101を備えており、このメモリ本体部101は、アレイ状に配置される抵抗変化素子10及びアクセストランジスタ(電流制御素子)を具備するメモリアレイ102と、電圧パルス印加回路300とを備える。
 電圧パルス印加回路300は、各抵抗変化素子10の第1電極2及び第2電極4間に電圧パルスを印加する機能を有し、例えば、行選択回路/ドライバ103と、列選択回路104と、情報の書き込みを行うための書込み回路105と、選択ビット線に流れる電流量を検出し、選択された抵抗変化素子10に2値のデータのうちの何れのデータが記憶されているかの判定を行うセンスアンプ106と、端子DQを介して入出力データの入出力処理を行うデータ入出力回路107と、を具備している。
 また、不揮発性記憶装置100は、セルプレート電源(VCP電源)108と、外部から入力されるアドレス信号を受け取るアドレス入力回路109と、制御回路110とをさらに備えている。
 制御回路110は、電圧パルス印加回路300及びメモリ本体部101を制御する回路であって、受け付け部310と、判定部320と、パルス条件切り替え部330とを備える。
 受け付け部310は、外部からの指令(例えば、ユーザによる長期保存の指令)を受け付けると、電圧パルス印加回路300を制御して、各抵抗変化素子10の抵抗状態を読み出す。
 判定部320は、受け付け部310によって読み出された各抵抗状態が、高抵抗状態であるか低抵抗状態であるかを判定する。
 パルス条件切り替え部330は、判定部320による判定の結果に基づいて、電圧パルス印加回路300を制御する。より具体的には、パルス条件切り替え部330は、抵抗状態が高抵抗状態であると判定された抵抗変化素子10には、その抵抗変化素子10の第1電極2及び第2電極4間に、第1電圧パルスよりもエネルギーの大きい、第1極性の第1追加電圧パルスを印加するよう、電圧パルス印加回路300を制御する。そして、抵抗状態が低抵抗状態であると判定された抵抗変化素子10には、その抵抗変化素子10の第1電極2及び第2電極4間に、第2電圧パルスよりもエネルギーの大きい、第2極性の第2追加電圧パルスを印加するよう、電圧パルス印加回路300を制御する。
 これら、受け付け部310、判定部320、パルス条件切り替え部330は、例えば、論理回路として実現されてもよいし、例えば、制御回路110がプロセッサとメモリとを含み、そのプロセッサがそのメモリに記憶されるプログラムを実行することで機能的に実現されてもよい。
 メモリアレイ102は、半導体基板の上に形成された、互いに交差するように配列された複数のワード線WL0,WL1,WL2,…及びビット線BL0,BL1,BL2,…と、これらのワード線WL0,WL1,WL2,…及びビット線BL0,BL1,BL2,…の交点に対応してそれぞれ設けられた複数のアクセストランジスタT11,T12,T13,T21,T22,T23,T31,T32,T33,…(以下、「アクセストランジスタT11,T12,…」と表す)と、アクセストランジスタT11,T12,…と1対1に設けられた複数のメモリセルM111,M112,M113,M121,M122,M123,M131,M132,M133(以下、「メモリセルM111,M112,…」と表す)とを備えている。ここで、メモリセルM111,M112,…は、実施の形態1の抵抗変化素子10に相当する。
 また、メモリアレイ102は、ワード線WL0,WL1,WL2,…に平行して配列されている複数のプレート線PL0,PL1,PL2,…を備えている。
 アクセストランジスタT11,T12,T13,…のドレインはビット線BL0に、アクセストランジスタT21,T22,T23,…のドレインはビット線BL1に、アクセストランジスタT31,T32,T33,…のドレインはビット線BL2に、それぞれ接続されている。
 また、アクセストランジスタT11,T21,T31,…のゲートはワード線WL0に、アクセストランジスタT12,T22,T32,…のゲートはワード線WL1に、アクセストランジスタT13,T23,T33,…のゲートはワード線WL2に、それぞれ接続されている。
 さらに、アクセストランジスタT11,T12,…のソースはそれぞれ、メモリセルM111,M112,…と接続されている。
 また、メモリセルM111,M121,M131,…はプレート線PL0に、メモリセルM112,M122,M132,…はプレート線PL1に、メモリセルM113,M123,M133,…はプレート線PL2に、それぞれ接続されている。
 アドレス入力回路109は、外部回路(図示せず)からアドレス信号を受け取り、このアドレス信号に基づいて行アドレス信号を行選択回路/ドライバ103へ出力するとともに、列アドレス信号を列選択回路104へ出力する。ここで、アドレス信号は、複数のメモリセルM111,M112,…のうちの選択される特定のメモリセルのアドレスを示す信号である。また、行アドレス信号は、アドレス信号に示されたアドレスのうちの行のアドレスを示す信号であり、列アドレス信号は、アドレス信号に示されたアドレスのうちの列のアドレスを示す信号である。
 行選択回路/ドライバ103は、アドレス入力回路109から出力された行アドレス信号を受け取り、この行アドレス信号に応じて、複数のワード線WL0,WL1,WL2,…のうちの何れかを選択し、その選択されたワード線に対して、所定の電圧を印加する。
 列選択回路104は、アドレス入力回路109から出力された列アドレス信号を受け取り、この列アドレス信号に応じて、複数のビット線BL0,BL1,BL2,…のうちの何れかを選択し、その選択されたビット線に対して、各種電圧パルスを印加する。
 書込み回路105は、制御回路110から出力された書き込み信号を受け取った場合、列選択回路104に対して、その書き込み信号に応じた電圧パルスを、選択されたビット線に対して印加することを指示する信号を出力する。
 センスアンプ106は、情報の読み出し工程において、読み出し対象となる選択ビット線に流れる電流量を検出し、記憶されているデータを判別する。本実施の形態の場合、各メモリセルM111,M112,…の抵抗状態を高低の2つの状態とし、それらの各状態と各データとを対応させる。そのため、センスアンプ106は、選択されたメモリセルの抵抗変化層の抵抗状態が何れの状態にあるのかを判別し、それに応じて2値のデータのうち何れのデータが記憶されているのかを判定する。その結果得られた出力データDOは、データ入出力回路107を介して、外部回路へ出力される。
 [初期過程における動作]
 制御回路110は、初期過程において、第1の初期電圧パルス及び第2の初期電圧パルスを各メモリセルM111,M112,…に対してこの順に印加することを指示する書き込み信号を書込み回路105に対して出力する。書込み回路105は、この書き込み信号を受け取った場合、すべてのビット線BL0,BL1,BL2,…に対して第1の初期電圧パルス及び第2の初期電圧パルスを印加することを指示する信号を列選択回路104に対して出力する。
 列選択回路104は、この信号を受け取った場合、すべてのビット線BL0,BL1,BL2,…に対して第1の初期電圧パルス及び第2の初期電圧パルスを印加する。このとき、行選択回路/ドライバ103は、すべてのワード線WL0,WL1,WL2,…に対して、所定の電圧を印加する。
 [通常動作時における動作]
 制御回路110は、通常動作時のデータの書き込み過程においては、データ入出力回路107に入力された入力データDinに応じて、低抵抗化電圧パルス又は高抵抗化電圧パルスの印加を指示する書き込み信号を書込み回路105へ出力する。他方、データの読み出し過程において、制御回路110は、読み出し用電圧パルスの印加を指示する読み出し信号を列選択回路104へ出力する。
 [追加過程における動作]
 受け付け部310は、外部から所定の指令(例えば、ユーザによる長期保存の指令)を受け付けると、メモリアレイ102に含まれる全てのメモリセルの抵抗状態を読み出すことを指示する信号を電圧パルス印加回路300へ出力して、全てのメモリセルの抵抗状態を読み出す。
 判定部320は、全てのメモリセルについて、受け付け部310によって読み出された抵抗状態が、高抵抗状態であるか低抵抗状態であるかを判定する。
 パルス条件切り替え部330は、抵抗状態が低抵抗状態であると判定された各メモリセルに対して第1追加電圧パルスを印加することを指示し、抵抗状態が高抵抗状態であると判定された各メモリセルに対して第2追加電圧パルスを印加することを指示する信号を電圧パルス印加回路300へ出力する。
 電圧パルス印加回路300は、この信号を受け取ると、抵抗状態が高抵抗状態であると判定された各メモリセルに対して第1追加電圧パルスを印加し、抵抗状態が低抵抗状態であると判定された各メモリセルに対して第2追加電圧パルスを印加する。
 上記のように動作することにより、不揮発性記憶装置100は、論理情報を記憶する期間を従来よりも長くし得る。
 (実施の形態3)
 実施の形態3では、実施の形態1において説明した抵抗変化素子10を用いて構成される、クロスポイント型の不揮発性記憶装置について説明する。
 [不揮発性記憶装置の構成]
 図13は、実施の形態3に係る不揮発性記憶装置200の構成の一例を示すブロック図である。図13に示すように、クロスポイント型の不揮発性記憶装置200は、半導体基板上にメモリ本体部201を備えており、このメモリ本体部201は、アレイ状に配置される抵抗変化素子10及び電流制御素子を具備するメモリアレイ202と、電圧パルス印加回路400とを備える。
 電圧パルス印加回路400は、各抵抗変化素子10の第1電極2及び第2電極4間に電圧パルスを印加する機能を有し、例えば、行選択回路/ドライバ203と、列選択回路/ドライバ204と、情報の書き込みを行うための書込み回路205と、選択ビット線に流れる電流量を検出し、選択された抵抗変化素子10に2値のデータのうちの何れのデータが記憶されているかの判別を行うセンスアンプ206と、端子DQを介して入出力データの入出力処理を行うデータ入出力回路207と、を具備している。
 また、不揮発性記憶装置200は、外部から入力されるアドレス信号を受け取るアドレス入力回路208と、制御回路210とをさらに備えている。
 制御回路210は、電圧パルス印加回路400及びメモリ本体部201を制御する回路であって、受け付け部410と、判定部420と、パルス条件切り替え部430とを備える。
 受け付け部410は、外部からの指令(例えば、ユーザによる長期保存の指令)を受け付けると、電圧パルス印加回路400を制御して、各抵抗変化素子10の抵抗状態を読み出す。
 判定部420は、受け付け部410によって読み出された各抵抗状態が、高抵抗状態であるか低抵抗状態であるかを判定する。
 パルス条件切り替え部430は、判定部420による判定の結果に基づいて、電圧パルス印加回路400を制御する。より具体的には、パルス条件切り替え部430は、抵抗状態が高抵抗状態であると判定された抵抗変化素子10には、その抵抗変化素子10の第1電極2及び第2電極4間に、第1電圧パルスよりもエネルギーの大きい、第1極性の第1追加電圧パルスを印加するよう、電圧パルス印加回路400を制御する。そして、抵抗状態が低抵抗状態であると判定された抵抗変化素子10には、その抵抗変化素子10の第1電極2及び第2電極4間に、第2電圧パルスよりもエネルギーの大きい、第2極性の第2追加電圧パルスを印加するよう、電圧パルス印加回路400を制御する。
 これら、受け付け部410、判定部420、パルス条件切り替え部430は、例えば、論理回路として実現されてもよいし、例えば、制御回路210がプロセッサとメモリとを含み、そのプロセッサがそのメモリに記憶されるプログラムを実行することで機能的に実現されてもよい。
 メモリアレイ202は、半導体基板上に互い平行に形成された複数のワード線WL0,WL1,WL2,…と、これらのワード線WL0,WL1,WL2,…の上方にその半導体基板の主面に平行な面内において互いに平行に、しかも複数のワード線WL0,WL1,WL2,…に立体交差するように形成された複数のビット線BL0,BL1,BL2,…とを備えている。
 また、これらのワード線WL0,WL1,WL2,…及びビット線BL0,BL1,BL2,…の交点に対応してマトリクス状に設けられた複数のメモリセルM211,M212,M213,M221,M222,M223,M231,M232,M123,…(以下、「メモリセルM211,M212,…」と表す)が設けられている。ここで、メモリセルM211,M212,…は、実施の形態1の抵抗変化素子10に相当する素子と、MIM(Metal-Insulator-Metal)ダイオード又はMSM(Metal-Semiconductor-Metal)ダイオード等で構成される電流制御素子とが接続されて構成されている。
 アドレス入力回路208は、外部回路(図示せず)からアドレス信号を受け取り、このアドレス信号に基づいて行アドレス信号を行選択回路/ドライバ203へ出力するとともに、列アドレス信号を列選択回路/ドライバ204へ出力する。ここで、アドレス信号は、複数のメモリセルM211,M212,…のうちの選択される特定のメモリセルのアドレスを示す信号である。また、行アドレス信号はアドレス信号に示されたアドレスのうちの行のアドレスを示す信号であり、列アドレス信号は同じく列のアドレスを示す信号である。
 行選択回路/ドライバ203は、アドレス入力回路208から出力された行アドレス信号を受け取り、この行アドレス信号に応じて、複数のワード線WL0,WL1,WL2,…のうちの何れかを選択し、その選択されたワード線に対して、所定の電圧を印加する。
 列選択回路/ドライバ204は、アドレス入力回路208から出力された列アドレス信号を受け取り、この列アドレス信号に応じて、複数のビット線BL0,BL1,BL2,…のうちの何れかを選択し、その選択されたビット線に対して、各種電圧パルスを印加する。
 書込み回路205は、制御回路210から出力された書き込み信号を受け取った場合、行選択回路/ドライバ203に対して選択されたワード線に対する電圧の印加を指示する信号を出力するとともに、列選択回路/ドライバ204に対して、その書き込み信号に応じた電圧パルスを、選択されたビット線に対して印加することを指示する信号を出力する。
 センスアンプ206は、データの読み出し工程において、読み出し対象となる選択ビット線に流れる電流量を検出し、記憶されているデータを判別する。本実施の形態の場合、各メモリセルM211,M212,…の抵抗状態を高低の2つの状態とし、それらの各状態と各データとを対応させる。そのため、センスアンプ206は、選択されたメモリセルの抵抗変化層の抵抗状態が何れの状態にあるのかを判別し、それに応じて2値のデータのうち何れのデータが記憶されているのかを判定する。その結果得られた出力データDOは、データ入出力回路207を介して、外部回路へ出力される。
 [初期過程における動作]
 制御回路210は、初期過程において、第1の初期電圧パルス及び第2の初期電圧パルスを各メモリセルM211,M212,…に対してこの順に印加することを指示する書き込み信号を書込み回路205に対して出力する。書込み回路105は、この書き込み信号を受け取った場合、すべてのワード線WL0,WL1,WL2,…に対して所定の電圧を印加することを指示する信号を行選択回路/ドライバ203に対して出力するとともに、すべてのビット線BL0,BL1,BL2,…に対して第1の初期電圧パルス及び第2の初期電圧パルスを印加することを指示する信号を列選択回路/ドライバ204に対して出力する。
 [通常動作時における動作]
 制御回路210は、通常動作時のデータの書き込み過程において、データ入出力回路207に入力された入力データDinに応じて、低抵抗化電圧パルス又は高抵抗化電圧パルスの印加を指示する書き込み信号を書込み回路205へ出力する。他方、データの読み出し工程において、制御回路210は、読み出し用電圧パルスの印加を指示する読み出し信号を列選択回路/ドライバ204へ出力する。
 [追加過程における動作]
 受け付け部410は、外部から所定の指令(例えば、ユーザによる長期保存の指令)を受け付けると、メモリアレイ202に含まれる全てのメモリセルの抵抗状態を読み出すことを指示する信号を電圧パルス印加回路400へ出力して、全てのメモリセルの抵抗状態を読み出す。
 判定部420は、全てのメモリセルについて、受け付け部410によって読み出された抵抗状態が、高抵抗状態であるか低抵抗状態であるかを判定する。
 パルス条件切り替え部430は、抵抗状態が高抵抗状態であると判定された各メモリセルに対して第1追加電圧パルスを印加することを指示し、抵抗状態が低抵抗状態であると判定された各メモリセルに対して第2追加電圧パルスを印加することを指示する信号を電圧パルス印加回路400へ出力する。
 電圧パルス印加回路400は、この信号を受け取ると、抵抗状態が高抵抗状態であると判定された各メモリセルに対して第1追加電圧パルスを印加し、抵抗状態が低抵抗状態であると判定された各メモリセルに対して第2追加電圧パルスを印加する。
 上記のように動作することにより、不揮発性記憶装置200は、論理情報を記憶する期間を従来よりも長くし得る。
 なお、図13に示す本実施の形態に係る不揮発性記憶装置200におけるメモリアレイ202を、3次元に積み重ねることによって、多層化構造の不揮発性記憶装置を実現することも可能である。このように構成された多層化メモリアレイを設けることによって、超大容量不揮発性記憶装置を実現することが可能となる。
 (その他の実施の形態)
 実施の形態2では、実施の形態2に係る不揮発性記憶装置100が単独で、追加過程における動作を実施する構成の例について例示した。これに対して他の例として、複数の装置又は回路が共同で、追加過程における動作を実施する構成の例も考えられる。
 図14は、その他の実施の形態に係る不揮発性記憶システム1000の構成の一例を示すブロック図である。図14に示すように、不揮発性記憶システム1000は、不揮発性記憶装置100aとコントローラ500とを備えて構成される。そして、不揮発性記憶装置100aとコントローラ500とが共同で、追加過程における動作を実行する。
 不揮発性記憶装置100aは、実施の形態2に係る不揮発性記憶装置100から、実施の形態2に係る制御回路110が制御回路110aに変更されて構成される。
 制御回路110aは、実施の形態2に係る制御回路110から、実施の形態2に係る受け付け部310と、実施の形態2に係る判定部320とが削除されるよう変更されて構成される。
 コントローラ500は、プロセッサとメモリとを含んで構成される。そして、そのプロセッサがそのメモリに記憶されるプログラムを実行することで、実施の形態2に係る受け付け部310と、実施の形態2に係る判定部320とを機能的に実現する。
 コントローラ500の他の構成例としては、例えば、受け付け部310と、判定部320とを、論理回路として実現する構成例等が考えられる。
 また、コントローラ500は、例えば、複数の集積回路で実現されてもよいし、1つの集積回路で実現されてもよい。
 上記構成の不揮発性記憶システム1000において、コントローラ500に含まれる受け付け部310及び判定部320と、不揮発性記憶装置100aに含まれるパルス条件切り替え部330とは、共同で、実施の形態2に係る追加過程における動作と同様の動作を行う。
 このように、不揮発性記憶システム1000は、実施の形態2に係る追加過程における動作と同様の動作を実現することができる。
 なお、不揮発性記憶システム1000のことを、不揮発性記憶装置100aとコントローラ500とからなる1つの装置であると考えることもできる。このため、不揮発性記憶システム1000のことを、不揮発性記憶装置という名称で呼んでも構わない。
 本発明は、抵抗変化型の不揮発性記憶装置に広く利用することができる。
 2 第1電極
 3 抵抗変化層
 4 第2電極
 10 抵抗変化素子
 110、110a、210 制御回路
 300、400 電圧パルス印加回路

Claims (17)

  1.  第1電極と、第2電極と、前記第1電極と前記第2電極との間に介在し、前記第1電極及び前記第2電極間に印加される電圧パルスに応じて抵抗値が変化する抵抗変化層とを備える抵抗変化素子と、
     前記第1電極及び前記第2電極間に電圧パルスを印加する電圧パルス印加回路と、
     前記電圧パルス印加回路を制御する制御回路とを備え、
     前記電圧パルス印加回路は、
      前記第1電極及び前記第2電極間に、第1極性の第1電圧パルスを印加することによって、前記抵抗変化層を、第1の論理情報を示す低抵抗状態から、前記低抵抗状態よりも抵抗値が高い、前記第1の論理情報とは異なる第2の論理情報を示す高抵抗状態へと変化させる高抵抗化過程と、
      前記第1電極及び前記第2電極間に、前記第1極性とは極性が異なる第2極性の第2電圧パルスを印加することによって、前記抵抗変化層を、前記高抵抗状態から前記低抵抗状態へと変化させる低抵抗化過程と、を実行し、
     前記制御回路は、外部からの指令を受けて、
      前記抵抗変化素子の抵抗状態を読み出し、読み出した抵抗状態が前記高抵抗状態である場合には、前記第1電極及び前記第2電極間に、前記第1電圧パルスよりもエネルギーの大きい、前記第1極性の第1追加電圧パルスを印加するよう、前記電圧パルス印加回路を制御し、読み出した抵抗状態が前記低抵抗状態である場合には、前記第1電極及び前記第2電極間に、前記第2電圧パルスよりもエネルギーの大きい、前記第2極性の第2追加電圧パルスを印加するよう、前記電圧パルス印加回路を制御する
     不揮発性記憶装置。
  2.  前記制御回路は、プロセッサとメモリとを含み、前記プロセッサが、前記メモリに記憶されるプログラムを実行することで、前記電圧パルス印加回路の制御を行う
     請求項1に記載の不揮発性記憶装置。
  3.  前記外部からの指令は、前記抵抗変化層の抵抗状態を、現時点よりも長期間に渡って安定化させる旨の、ユーザによる指令である
     請求項1又は2に記載の不揮発性記憶装置。
  4.  第1電極と、第2電極と、前記第1電極と前記第2電極との間に介在し、前記第1電極及び前記第2電極間に印加される電圧パルスに応じて抵抗値が変化する抵抗変化層とを備える抵抗変化素子の駆動方法であって、
     前記第1電極及び前記第2電極間に、第1極性の第1電圧パルスを印加することによって、前記抵抗変化層を、第1の論理情報を示す低抵抗状態から、前記低抵抗状態よりも抵抗値が高い、前記第1の論理情報とは異なる第2の論理情報を示す高抵抗状態へと変化させる高抵抗化過程と、
     前記第1電極及び前記第2電極間に、前記第1極性とは極性が異なる第2極性の第2電圧パルスを印加することによって、前記抵抗変化層を、前記高抵抗状態から前記低抵抗状態へと変化させる低抵抗化過程と、
     外部からの指令を受けて、前記抵抗変化素子の抵抗状態を読み出す読み出し過程と、
     前記読み出し過程により読み出された抵抗状態が前記高抵抗状態である場合には、前記第1電極及び前記第2電極間に、前記第1電圧パルスよりもエネルギーの大きい、前記第1極性の第1追加電圧パルスを印加し、前記読み出し過程により読み出された抵抗状態が前記低抵抗状態である場合には、前記第1電極及び前記第2電極間に、前記第2電圧パルスよりもエネルギーの大きい、前記第2極性の第2追加電圧パルスを印加する追加過程と、を含む
     駆動方法。
  5.  前記第1追加電圧パルスは、前記抵抗変化層に流れる電流が、前記第1電圧パルスよりも大きくなる電圧パルスである
     請求項4に記載の駆動方法。
  6.  前記第2追加電圧パルスは、前記抵抗変化層に流れる電流が、前記第2電圧パルスよりも大きくなる電圧パルスである
     請求項4又は5に記載の駆動方法。
  7.  前記第1追加電圧パルスは、前記抵抗変化層に印加される電圧の絶対値が、前記第1電圧パルスよりも大きくなる電圧パルスである
     請求項4に記載の駆動方法。
  8.  前記第2追加電圧パルスは、前記抵抗変化層に印加される電圧の絶対値が、前記第2電圧パルスよりも大きくなる電圧パルスである
     請求項4又は7に記載の駆動方法。
  9.  前記第1追加電圧パルスは、前記第1電圧パルスよりも、パルス幅が大きな電圧パルスである
     請求項4に記載の駆動方法。
  10.  前記第2追加電圧パルスは、前記第2電圧パルスよりも、パルス幅が大きな電圧パルスである
     請求項4又は9に記載の駆動方法。
  11.  前記追加過程では、前記読み出し過程により読み出された抵抗状態が前記高抵抗状態である場合には、前記第1追加電圧パルスを印加する前に、前記第1電極及び前記第2電極間に、前記第2極性の第3追加電圧パルスを印加する
     請求項4~10のいずれか1項に記載の駆動方法。
  12.  前記第3追加電圧パルスと前記第2電圧パルスとは、同一の電圧パルスである
     請求項11に記載の駆動方法。
  13.  前記追加過程では、前記読み出し過程により読み出された抵抗状態が前記低抵抗状態である場合には、前記第2追加電圧パルスを印加する前に、前記第1電極及び前記第2電極間に、前記第1極性の第4追加電圧パルスを印加する
     請求項4~12のいずれか1項に記載の駆動方法。
  14.  前記第4追加電圧パルスと前記第1電圧パルスとは、同一の電圧パルスである
     請求項13に記載の駆動方法。
  15.  前記追加過程を2回以上繰り返す
     請求項4~14のいずれか1項に記載の駆動方法。
  16.  前記抵抗変化層は、金属酸化物層を有し、
     前記金属酸化物層は、周囲よりも酸素含有量の低い局所領域を有し、
     前記追加過程において、
      前記第1電極及び前記第2電極間に前記第1追加電圧パルスが印加されることで、前記局所領域における酸素含有量が上昇し、
      前記第1電極及び前記第2電極間に前記第2追加電圧パルスが印加されることで、前記局所領域における酸素含有量が低下する
     請求項4~15のいずれか1項に記載の駆動方法。
  17.  第1電極と、第2電極と、前記第1電極と前記第2電極との間に介在し、前記第1電極及び前記第2電極間に印加される電圧パルスに応じて抵抗値が変化する抵抗変化層とを備える複数の抵抗変化素子の駆動方法であって、
     前記複数の抵抗変化素子の内の少なくとも1つに対して、前記第1電極及び前記第2電極間に、第1極性の第1電圧パルスを印加することによって、前記抵抗変化層を、第1の論理情報を示す低抵抗状態から、前記低抵抗状態よりも抵抗値が高い、前記第1の論理情報とは異なる第2の論理情報を示す高抵抗状態へと変化させる高抵抗化過程と、
     前記複数の抵抗変化素子の内の少なくとも1つに対して、前記第1電極及び前記第2電極間に、前記第1極性とは極性が異なる第2極性の第2電圧パルスを印加することによって、前記抵抗変化層を、前記高抵抗状態から前記低抵抗状態へと変化させる低抵抗化過程と、
     外部からの指令を受けて、前記複数の抵抗変化素子の全てに対して、前記抵抗変化素子の抵抗状態を読み出す読み出し過程と、
     前記読み出し過程により読み出された抵抗状態が前記高抵抗状態である抵抗変化素子に対して、前記第1電極及び前記第2電極間に、前記第1電圧パルスよりもエネルギーの大きい、前記第1極性の第1追加電圧パルスを印加し、前記読み出し過程により読み出された抵抗状態が前記低抵抗状態である抵抗変化素子に対して、前記第1電極及び前記第2電極間に、前記第2電圧パルスよりもエネルギーの大きい、前記第2極性の第2追加電圧パルスを印加する追加過程と、を含む
     駆動方法。
PCT/JP2018/024077 2017-09-12 2018-06-26 不揮発性記憶装置、及び駆動方法 WO2019054001A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880002572.XA CN109791791B (zh) 2017-09-12 2018-06-26 非易失性存储装置、以及驱动方法
JP2018545512A JP7080178B2 (ja) 2017-09-12 2018-06-26 不揮発性記憶装置、及び駆動方法
US16/221,092 US10490276B2 (en) 2017-09-12 2018-12-14 Non-volatile storage device and driving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017174642 2017-09-12
JP2017-174642 2017-09-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/221,092 Continuation US10490276B2 (en) 2017-09-12 2018-12-14 Non-volatile storage device and driving method

Publications (1)

Publication Number Publication Date
WO2019054001A1 true WO2019054001A1 (ja) 2019-03-21

Family

ID=65722489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024077 WO2019054001A1 (ja) 2017-09-12 2018-06-26 不揮発性記憶装置、及び駆動方法

Country Status (4)

Country Link
US (1) US10490276B2 (ja)
JP (1) JP7080178B2 (ja)
CN (1) CN109791791B (ja)
WO (1) WO2019054001A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202139195A (zh) 2019-12-03 2021-10-16 美商美光科技公司 用於讀取記憶體單元之系統及方法
US11315633B2 (en) 2019-12-30 2022-04-26 Micron Technology, Inc. Three-state programming of memory cells
US11177009B2 (en) 2019-12-30 2021-11-16 Micron Technology, Inc. Multi-state programming of memory cells

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076143A (ja) * 2007-09-21 2009-04-09 Toshiba Corp 抵抗変化メモリ装置
JP2010040090A (ja) * 2008-08-04 2010-02-18 Fujitsu Ltd 記憶装置及びデータ保持方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204139B1 (en) 1998-08-25 2001-03-20 University Of Houston Method for switching the properties of perovskite materials used in thin film resistors
KR100773537B1 (ko) 2003-06-03 2007-11-07 삼성전자주식회사 한 개의 스위칭 소자와 한 개의 저항체를 포함하는비휘발성 메모리 장치 및 그 제조 방법
JP5214208B2 (ja) * 2007-10-01 2013-06-19 スパンション エルエルシー 半導体装置及びその制御方法
JP2010211883A (ja) 2009-03-11 2010-09-24 Toshiba Corp 不揮発性半導体記憶装置
CN102084429B (zh) 2009-04-10 2013-12-25 松下电器产业株式会社 非易失性存储元件的驱动方法和非易失性存储装置
JP5549105B2 (ja) * 2009-04-15 2014-07-16 ソニー株式会社 抵抗変化型メモリデバイスおよびその動作方法
EP2751807A4 (en) * 2011-09-02 2015-02-18 Hewlett Packard Development Co DEVICE FOR STORING DATA AND METHOD FOR READING MEMORY CELLS
JP2013127826A (ja) * 2011-12-16 2013-06-27 Sharp Corp 可変抵抗素子の駆動方法
KR20130139066A (ko) * 2012-06-12 2013-12-20 삼성전자주식회사 소스라인 전압 발생기를 포함하는 자기 저항 메모리 장치
JP2017058913A (ja) * 2015-09-16 2017-03-23 ルネサスエレクトロニクス株式会社 記憶装置及び記憶方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076143A (ja) * 2007-09-21 2009-04-09 Toshiba Corp 抵抗変化メモリ装置
JP2010040090A (ja) * 2008-08-04 2010-02-18 Fujitsu Ltd 記憶装置及びデータ保持方法

Also Published As

Publication number Publication date
US20190122731A1 (en) 2019-04-25
US10490276B2 (en) 2019-11-26
CN109791791B (zh) 2023-03-28
CN109791791A (zh) 2019-05-21
JP7080178B2 (ja) 2022-06-03
JPWO2019054001A1 (ja) 2020-08-27

Similar Documents

Publication Publication Date Title
US9378817B2 (en) Variable resistance nonvolatile memory element writing method and variable resistance nonvolatile memory device
JP4972238B2 (ja) 抵抗変化型不揮発性記憶素子のフォーミング方法
JP4607257B2 (ja) 不揮発性記憶素子及び不揮発性記憶装置
JP5313413B2 (ja) 抵抗変化素子の駆動方法、及び不揮発性記憶装置
US8279658B2 (en) Method of programming variable resistance element and nonvolatile storage device
JP5209151B1 (ja) 抵抗変化型不揮発性記憶素子の書き込み方法
JP5351363B1 (ja) 不揮発性記憶素子および不揮発性記憶装置
US8576608B2 (en) Memory apparatus
JPWO2006137111A1 (ja) 不揮発性半導体記憶装置及びその書き込み方法
JP5380612B2 (ja) 不揮発性記憶素子の駆動方法及び初期化方法、並びに不揮発性記憶装置
JP2014232559A (ja) 不揮発性記憶素子の駆動方法および不揮発性記憶装置
JP5069339B2 (ja) 不揮発性可変抵抗素子の抵抗制御方法
JP7080178B2 (ja) 不揮発性記憶装置、及び駆動方法
KR102301109B1 (ko) 저항성 메모리 장치 및 그것의 제조 방법
JP5312709B1 (ja) 抵抗変化素子の駆動方法及び不揮発性記憶装置
KR101101999B1 (ko) 저항 변화 메모리 장치
JP5291270B1 (ja) 不揮発性記憶素子、不揮発性記憶装置、及び不揮発性記憶素子の書き込み方法
JP2009212245A (ja) 可変抵抗素子
JP2020107625A (ja) 抵抗変化型不揮発性記憶素子及びそれを用いた抵抗変化型不揮発性記憶装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018545512

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855546

Country of ref document: EP

Kind code of ref document: A1