WO2019053991A1 - 自動分析装置 - Google Patents

自動分析装置 Download PDF

Info

Publication number
WO2019053991A1
WO2019053991A1 PCT/JP2018/023577 JP2018023577W WO2019053991A1 WO 2019053991 A1 WO2019053991 A1 WO 2019053991A1 JP 2018023577 W JP2018023577 W JP 2018023577W WO 2019053991 A1 WO2019053991 A1 WO 2019053991A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
automatic analyzer
storage area
dispensing mechanism
storage unit
Prior art date
Application number
PCT/JP2018/023577
Other languages
English (en)
French (fr)
Inventor
健太 今井
博也 梅木
俊輔 佐々木
善寛 山下
卓 坂詰
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to EP18855209.5A priority Critical patent/EP3683581B1/en
Priority to US16/641,349 priority patent/US11639943B2/en
Priority to CN201880058582.5A priority patent/CN111094994B/zh
Priority to JP2019541661A priority patent/JP6768163B2/ja
Publication of WO2019053991A1 publication Critical patent/WO2019053991A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/493Physical analysis of biological material of liquid biological material urine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence

Definitions

  • the present invention relates to an automatic analyzer.
  • the following three processes are generally performed automatically on an automatic analyzer when analyzing specific components contained in a sample such as serum or urine in an automatic analyzer such as a biochemical analyzer or an immunoanalyzer.
  • an analysis sample collected from a sample such as serum or urine is reacted with a reagent that specifically binds to the component to be analyzed in the sample by mixing in a reaction container on the apparatus.
  • the properties of the reagent are used to convert the amount of reagent bound to the sample into a detectable amount of signal.
  • the amount of reagent bound to the sample into a signal amount by measuring the absorbance.
  • the obtained signal amount is converted to the concentration of the component to be analyzed in the sample, using the relationship between the concentration and the signal amount previously obtained by analysis of the known concentration sample.
  • an automatic analyzer it is generally required to analyze a plurality of components (items) in parallel for a plurality of samples. For example, when an immunoassay analyzer is used for screening of hepatitis virus tests, analysis of multiple items such as hepatitis A, hepatitis B, hepatitis C, etc. is automatically performed in parallel on multiple serum samples. By doing this, it is required that the diagnosis and treatment by a doctor be implemented as soon as possible.
  • the automatic analyzer generally includes a reaction unit capable of holding a plurality of reaction containers, and a reagent storage unit capable of holding a plurality of reagent containers. When performing analysis of a plurality of items, analysis of the plurality of items can be efficiently performed by dispensing appropriate reagents from the reagent container to the reaction container in accordance with the plurality of analysis items.
  • an automatic analyzer shown in Patent Document 1 As an automatic analyzer for analyzing a plurality of items as described above, for example, an automatic analyzer shown in Patent Document 1 may be mentioned.
  • the automatic analyzer according to Patent Document 1 has a reagent disc for holding a plurality of reagent containers, a reaction unit for holding a plurality of reaction containers, and a reagent dispensing probe for dispensing a reagent from the reagent container to the reaction container. And
  • the appropriate reagent is dispensed from the reagent container to the reaction container by adjusting the rotation of the reagent disc and the movement of the reagent dispensing probe according to the plurality of analysis items.
  • Patent Document 2 discloses an automatic analyzer provided with a reagent container transfer mechanism for transferring a reagent between the inside of the reagent disc and the outside of the reagent disc at the top of the reagent disc.
  • Patent Document 3 discloses an automatic analyzer provided with a reagent container input unit at the front of the automatic analyzer.
  • a relatively small-scale and inexpensive automatic analyzer is required.
  • the operator waits until the analyzer is finished operating and enters the standby state, or interrupts analysis and stands by the device. It needs to be set to the state. However, in this case, when the analyzer transits between the standby state and the analysis operation, a certain preparation time such as the reset operation and the washing operation of the mechanism may be required. Also, in the case of interrupting the analysis, it may be necessary to perform the analysis from the beginning again on the sample in the state of being analyzed on the device.
  • the automatic analyzer of Patent Document 2 includes a reagent container transfer mechanism for transferring the reagent between the inside of the reagent disc and the outside of the reagent disc.
  • a movable part such as a reagent dispensing probe does not directly access the installation position of the reagent container in the reagent container transfer mechanism. Therefore, the operator can install an additional reagent container at the reagent container setting position of the reagent container transfer mechanism even while the analyzer is in operation.
  • the reagent container transfer mechanism determines the timing at which the additional reagent container can be transferred to the inside of the reagent disk according to the operation schedule of the reagent disk, and automatically performs the loading operation of the reagent container on the reagent disk. Conversely, even when there is a reagent container to be removed from the inside of the reagent disc, the reagent container transfer mechanism determines the transferable timing and automatically performs the discharging operation.
  • the automatic analyzer of Patent Document 3 includes a reagent container loading unit on the front surface.
  • the reagent container loading unit is not directly accessed by a movable unit such as a reagent dispensing probe. Therefore, as in the configuration of Patent Document 2, the operator can install the reagent container even while the analyzer is in operation.
  • the reagent container transfer mechanism can carry out the loading operation or the discharging operation of the reagent container on the reagent disc at the timing when transfer is possible.
  • Patent Document 2 and Patent Document 3 As described above, when the configurations of Patent Document 2 and Patent Document 3 are used, it is possible to replace the reagent container even while the analyzer is in operation.
  • both of these configurations require a reagent container transfer mechanism to transfer the reagent container.
  • the reagent container transfer mechanism usually includes a motor, a transfer path, a control unit for transfer, and the like, which leads to an increase in size of the apparatus, an increase in apparatus cost, and the like. Therefore, it is not easy to mount such a mechanism on a particularly small scale automatic analyzer.
  • the present invention has been made in view of the foregoing, and one of the objects thereof is an automatic analyzer capable of easily realizing addition and replacement of additional reagents in operation even in a small scale configuration. To provide.
  • the automatic analyzer includes a dispensing mechanism that dispenses a reagent from a reagent container containing the reagent, and first and second storage areas for storing the reagent container.
  • the first storage area is located in the normal movable area which is a part of the movable area of the dispensing mechanism, and the second storage area is in the area excluding the normal movable area in the movable area of the dispensing mechanism.
  • the dispensing mechanism performs an access operation within the normal movable region in the normal operation, and performs an access operation to the second storage region when receiving a predetermined instruction.
  • FIG. 1 is a schematic view showing a configuration example of an automatic analyzer according to Embodiment 1.
  • the schematic diagram which shows the structural example of the reagent container in FIG. FIG. 2 is a plan view showing a configuration example of a cover mounted on the automatic analyzer of FIG. 1.
  • transformed the automatic analyzer of FIG. The schematic diagram which shows the structural example which deform
  • FIG. 18 is a diagram showing an example of how to use the additional reagent storage unit in the automatic analyzer according to the second embodiment.
  • FIG. 17 is a diagram showing another example of how to use the additional reagent storage unit in the automatic analyzer according to the second embodiment.
  • FIG. 10 is a schematic view showing a configuration example of an automatic analyzer according to a third embodiment. The top view which shows the structural example of the cover with which the automatic analyzer of FIG. 10 is mounted
  • FIG. 11B is a perspective view of FIG. 11A.
  • FIG. 13 is a schematic view showing a configuration example of an automatic analyzer according to a fourth embodiment.
  • FIG. 18 is a schematic view showing a configuration example of an automatic analyzer according to a fifth embodiment. The top view which shows the structural example of the cover with which the automatic analyzer of FIG. 13 is mounted
  • the schematic diagram which shows the structural example of a guard member The schematic diagram which shows the structural example of a guard member.
  • the constituent elements are not necessarily essential unless explicitly stated or considered to be obviously essential in principle. Needless to say.
  • the shapes, positional relationships and the like of components etc. when referring to the shapes, positional relationships and the like of components etc., the shapes thereof are substantially the same unless particularly clearly stated and where it is apparently clearly not so in principle. It is assumed that it includes things that are similar or similar to etc. The same applies to the above numerical values and ranges.
  • FIG. 1 is a schematic view showing a configuration example of the automatic analyzer according to the first embodiment.
  • an immunoanalyzer is assumed, which performs analysis of luminescence using an analyte as an antigen and a luminescent labeled substance that specifically binds to the antigen to be analyzed.
  • the automatic analyzer 101 of FIG. 1 has a rack transport line 103 for transporting a sample rack (abbreviated as a rack), a reagent storage unit 104, an incubator disc (reaction disc) 105, and a sample dispensing mechanism (sample dispensing mechanism).
  • the automatic analyzer 101 further includes an additional reagent storage unit 111.
  • each of the above components may be referred to as a unit.
  • the rack 102 is for accommodating a plurality of sample containers (sample containers) 112 for containing biological samples (abbreviated as samples) such as blood and urine, and on the rack transport line 103 with the sample containers 112 stored. Is transported.
  • the reagent storage unit 104 contains a plurality of reagent containers (analysis reagent containers) 113 in which various reagents (analysis reagents) used for analysis of a sample (also referred to as a sample or a sample) are stored. Further, the reagent container 113 in the cold storage unit 104 is cooled by a refrigerator. At least a portion of the top surface of the cold storage unit 104 is covered by a reagent disc cover 114.
  • the incubator disk 105 has a reaction container arrangement portion 116 in which a plurality of reaction containers 115 for reacting the sample and the reagent are arranged, and a temperature control mechanism for adjusting the temperature of the reaction container 115 to a desired temperature.
  • the sample dispensing mechanism 106 has a rotational drive mechanism and a vertical drive mechanism, and dispenses a sample from the sample container 112 to the reaction container 115 housed in the incubator disk 105 by these drive mechanisms.
  • the reagent dispensing mechanism 107 also has a rotational drive mechanism and a vertical drive mechanism, and dispenses the reagent from the reagent container 113 to the reaction container 115 accommodated in the incubator disk 105 by these drive mechanisms.
  • the drive mechanism of the reagent stirring mechanism 108 is also the same.
  • the detection unit 110 includes a photomultiplier tube, a light source lamp, a spectroscope, and a photodiode, has a function of adjusting the temperature of them, and analyzes the reaction liquid.
  • the transport mechanism 121 is a mechanism for transporting the reaction container to the detection unit 110, and includes rails provided in the X-axis and Z-axis directions.
  • the consumables conveyance unit 109 includes a storage container holding unit 118 and a conveyance mechanism 119.
  • the consumables storage container 117 stores a plurality of consumables used for analysis of a sample, such as the reaction container 115 and the dispensing tip 121.
  • the transport mechanism 119 grips the reaction container 115 and the dispensing tip 121 on the consumables storage container 117 and transports it to a predetermined position.
  • the transport mechanism 119 includes rails provided in the X-axis, Y-axis, and Z-axis directions, and the reaction container 115 stored in the consumables storage container 117 is transferred to the incubator disk 105 via the rails. Then, the dispensing tip 121 is transported to the tip mounting position 122. In addition, the used reaction container 115 on the incubator disk 105 is discarded to the waste hole 120. Further, the transport mechanism 119 transports the unused reaction container 115 and the dispensing tip 121 on the consumables storage container 117 to the incubator disk 105 and the chip mounting position 122, respectively. Therefore, the transport mechanism 119 has an arm structure for gripping the reaction container 115 and the dispensing tip 121.
  • the additional reagent storage unit (additional reagent storage area) 111 stores an additional reagent container (analytical reagent container) 123 to be charged or replaced, and is accessible even during normal analysis operation. That is, during normal analysis operation, the reagent container 113 used for analysis is stored in the normal reagent storage section (normal reagent storage area) 130 in the reagent storage unit 104.
  • the normal reagent storage unit 130 is located in the normal movable area 132 which is a part of the movable area 131 of the reagent dispensing mechanism 107.
  • the additional reagent storage unit 111 is located in the movable region 131 of the reagent dispensing mechanism 107 within the region excluding the normal movable region 132.
  • the reagent dispensing mechanism 107 uses the rotational movement on the XY plane to perform an access operation in the normal movable region 132 in a normal analysis operation, and an additional reagent storage unit when a predetermined instruction is received.
  • the access operation to 111 is performed.
  • the relationship with the reagent stirring mechanism 108 is also the same, and the additional reagent storage unit 111 is located in the movable region of the reagent stirring mechanism 108 within the region excluding the normal movable region. Then, the additional reagent in the additional reagent container 123 is dispensed and stirred by the reagent dispensing mechanism 107 and the reagent stirring mechanism 108 when a predetermined instruction is received.
  • air can be exchanged between the normal reagent storage unit 130 and the additional reagent storage unit 111. That is, by circulating the temperature-controlled air in the reagent cooling unit 104 into the additional reagent storage unit 111, it is possible to cool the additional reagent in the additional reagent container 123 in addition to the reagent in the reagent container 113. It has become.
  • the additional reagent storage unit 111 may be provided with a temperature control mechanism (for example, a Peltier element or the like) different from the temperature control mechanism (for example, a refrigerator or the like) of the reagent cold storage unit 104.
  • the additional reagent may not be kept cold.
  • the additional reagent storage unit 111 may be capable of storing at least one or more additional reagents.
  • the automatic analyzer 101 further includes a control unit 124 that controls the overall operation of the automatic analyzer 101 and an operation unit 125 in addition to such an analysis operation unit.
  • the control unit 124 is formed of, for example, a hardware substrate, and is connected to the control device 126 such as a computer and the storage device 127 such as a hard disk.
  • the operation unit 125 includes, for example, a display unit, which is a display, and an input device such as a mouse or a keyboard.
  • a temperature range corresponding to each unit is stored in the storage device 127.
  • the control unit 124 may be configured as hardware by a dedicated circuit board, or may be configured by software executed by a computer (for example, the control device 126) connected to the automatic analyzer 101.
  • a plurality of computing units that execute processing are integrated on a wiring substrate or in a semiconductor chip or package.
  • a high-speed general-purpose CPU Central Processing Unit
  • a program that executes desired arithmetic processing is executed by the CPU. It is also possible to upgrade an existing device by a recording medium on which this program is recorded. Further, these devices, circuits, and computers are connected by a wired or wireless network, and data is appropriately transmitted and received.
  • FIG. 2 is a schematic view showing a configuration example of the reagent container in FIG.
  • three kinds of reagents, a labeled antibody reagent, a biotinylated antibody reagent, and a streptavidin-coupled magnetic particle reagent are contained in one reagent container 113 as a reagent kit. It is a kit.
  • the reagent container 113 mainly includes a labeled antibody reagent container 201 containing a labeled antibody reagent, a biotinylated antibody reagent container 202 containing a biotinylated antibody reagent, and a streptavidin containing a streptavidin-conjugated magnetic particle reagent. It comprises an avidin-coupled magnetic particle reagent container 203.
  • a reagent label 204 representing information of the reagent contained inside is attached to the reagent container 113.
  • the reagent label 204 is, for example, a bar code or an RFID (Radio Frequency IDentifier), etc., and includes a target analysis item, a manufacturing lot number, a reagent kit number, an analysis possible number, a storage term, an expiration date after installation of the device, device installation history, It contains information such as the calibration validity period after calibration and calibration data at the time of shipment from the factory.
  • the information of the reagent label 204 is read by the reading unit 205.
  • the reading unit 205 is, for example, a bar code reader, an RFID reader / writer, or the like, and in addition to the reagent label 204 of the reagent container 113 stored in the reagent storage unit 104, an additional reagent stored in the additional reagent storage unit 111 The reagent label 204 of the container 123 is also read. For this reason, although depending on the reading method of the reagent label 204, the reading unit 205 is provided at two places, for example, the reagent cold storage unit 104 and the additional reagent storage unit 111.
  • FIG. 3A is a plan view showing a configuration example of a cover mounted on the automatic analyzer of FIG. 1, and FIG. 3B is a perspective view of FIG. 3A.
  • the automatic analysis apparatus 101 is equipped with an overall cover 301 and an individual cover 302.
  • the entire cover 301 is, for example, an entrance and exit of a manual operation (loading operation of the reagent container 113, etc.) to the reagent storage unit 104
  • the individual cover 302 is a manual operation of the additional reagent storage unit 111 (loading operation of the additional reagent container 123, etc.) It becomes the entrance of).
  • the whole cover 301 and the individual cover 302 be provided with separate interlocking mechanisms.
  • the interlock mechanism of the overall cover 301 prevents a manual operation on the automatic analysis device 101 during the analysis operation, and activates a predetermined safety function (for example, an emergency stop of the device etc.) according to opening and closing.
  • a predetermined safety function for example, an emergency stop of the device etc.
  • the operator can not open the entire cover 301 unless the analysis operation is stopped.
  • the individual cover 302 can be opened and closed in a state in which the entire cover 301 is closed. As a result, the operator can perform a manual operation on the additional reagent storage unit 111 without stopping the analysis operation.
  • the reagent dispensing mechanism 107 or the reagent stirring mechanism 108 temporarily receives an access instruction to the additional reagent storage unit 111 in the state where the individual cover 302 is opened. Even in this case, the access operation to the additional reagent storage unit 111 is not performed.
  • a guard member may be installed in conjunction with the opening of the individual cover 302 or as a preparation for opening the individual cover 302.
  • the guard member includes a mechanism (for example, a shielding plate movable in the Z-axis direction) capable of switching whether or not the additional reagent storage unit 111 is shielded from the other area, and in the shielded state from the other area
  • the access operation to the additional reagent storage unit 111 is physically prevented.
  • the access operation at this time is not limited to the physical access operation by movable parts such as the reagent dispensing mechanism 107 and the reagent stirring mechanism 108, and also includes other unexpected access operations. For example, the scattering of harmful substances due to the movement of movable parts may be mentioned.
  • the operator At the time of introduction or replacement of the additional reagent, the operator first notifies the apparatus via the operation unit 123 to that effect.
  • movable parts such as the reagent dispensing mechanism 107 and the reagent stirring mechanism 108 are controlled not to access the additional reagent storage unit 111.
  • the lock of the individual cover 302 is released to allow free opening and closing.
  • the operator opens the individual cover 302, and inserts (or replaces) the additional reagent container 123 in the additional reagent storage unit 111.
  • the guard member as described above be installed at the same time as the individual cover 302 is opened.
  • the operator closes the individual cover 302. When the individual cover 302 is closed, the guard member is also removed.
  • the operator notifies the apparatus via the operation unit 123 that the reagent loading or replacement has been completed.
  • the reading unit 205 reads the information written on the reagent label 204 of the additional reagent container 123 and registers the information in the device.
  • notification of input completion or replacement completion is not necessarily performed.
  • the apparatus automatically recognizes that the individual cover 302 is closed, and operates the reading unit 205. It may be a mechanism.
  • the apparatus issues a predetermined instruction to movable parts such as the reagent dispensing mechanism 107 and the reagent stirring mechanism 108.
  • movable parts such as the reagent dispensing mechanism 107 and the reagent stirring mechanism 108 can access the additional reagent storage unit 111, check the reagent volume for the additional reagent, pre-stirring the magnetic particle reagent, etc. Perform the preparatory actions involved in the analysis of
  • the device installation history (that is, whether or not it has been installed in the device) described on the reagent label 204 of the additional reagent container 123, and information such as the number of remaining analyzes can be stored in the storage device 127. Be done. For example, after the necessary analysis is performed using the additional reagent container 123, if the reagent remains in the reagent container 123, the operator uses the rest period of the apparatus to use the reagent container 123. Can be manually transferred to the reagent cooling unit 104 and reused in the normal analysis operation. At this time, by referring to the information stored in the storage device 127, the apparatus can take over the information (for example, the remaining number of analysis possible) of the reagent container 123.
  • the apparatus made preparations for the introduction (or replacement) of the additional reagent by the operator notifying the apparatus prior to the addition (or replacement) of the additional reagent.
  • the preparation is, for example, the unlocking of the individual cover 302 or the movable area restriction of movable parts such as the reagent dispensing mechanism 107 and the reagent stirring mechanism 108.
  • the present invention is not limited to this, and the apparatus may prepare for the addition (or replacement) of the additional reagent based on the information it has, regardless of the presence or absence of notification by the operator.
  • the device when the device is expected to be completely consumed (A) one of the reagents stored in the reagent storage unit 104 or (B) the reagent corresponding to the analysis item registered in the device is a reagent In the case where the cold storage unit 104 is not installed, or (C) the remaining amount of the reagent becomes a predetermined value or less, preparation may be performed along with the addition (or replacement) of the additional reagent.
  • preparation may be performed along with the addition (or replacement) of the additional reagent.
  • the case where one of the reagents is expected to be completely consumed is, for example, the case where the number of remaining analytically available reagents is smaller than the number of analyzes instructed by the operator.
  • the apparatus urges the operator to replenish the reagent and the like by notifying the operator via the display unit such as a display, and additionally prepares for the addition (or replacement) of the additional reagent.
  • the operator supplies the additional reagent to be replenished to the additional reagent storage unit 111.
  • the apparatus recognizes the added reagent based on the reagent label 204, and in the stage where the reagent in the reagent storage unit 104 has been completely consumed, A predetermined instruction is issued to the injection mechanism 107 and the reagent stirring mechanism 108. As a result, when the reagent in the reagent storage unit 104 is completely consumed, it can be immediately transferred to the additional reagent in the additional reagent storage unit 111.
  • the operator may be able to freely open the individual cover 302 and inject additional reagents without informing the device in advance.
  • the individual cover 302 is provided with an interlock mechanism, no lock is provided.
  • the interlock mechanism restricts the movable area of the movable part, installs the guard member described above, and the like.
  • the reading unit 205 operates accordingly.
  • FIGS. 4 to 7 are schematic views showing various configuration examples in which the automatic analyzer of FIG. 1 is modified.
  • the reagent stirring mechanism 108 is installed on the reagent cold storage unit 104.
  • the reagent stirring mechanism 108 includes a movable area including the additional reagent storage unit 111, but does not perform an access operation to the additional reagent storage unit 111 during a normal analysis operation.
  • the reagent stirring mechanism 108 is not provided in the automatic analyzer 501 of FIG. 5.
  • the reagent stirring mechanism 108 is not particularly required.
  • the automatic analyzer 601 of FIG. 6 differs from the configuration example of FIG. 1 in that the additional reagent storage unit 111 is integrated with the reagent cold storage unit 104. This makes it possible to keep the additional reagent storage unit 111 at the same temperature as the reagent cold storage unit 104.
  • the reagent cold storage unit 104 performs temperature adjustment including the additional reagent storage unit 111 by, for example, an air cooling method using a heat exchanger or the like, or a water cooling method using a water cooling jacket or the like.
  • the additional reagent storage unit 111 is provided with an additional reagent holding unit 602 for holding the additional reagent.
  • the reagent stirring mechanism may be installed on the reagent storage unit 104, or the reagent stirring mechanism may not be installed.
  • the reagent dispensing mechanism 107 and the reagent stirring mechanism 108 perform rotational motion on one XY plane on the XY plane. Therefore, the additional reagent storage unit 111 needs to be disposed on the circumferential trajectory of the reagent dispensing mechanism 107 and the reagent stirring mechanism 108.
  • the drive mechanism for the rotational movement may be one having at least one or more rotation axes.
  • the reagent dispensing mechanism 107 and the reagent stirring mechanism 108 have a plurality of rotation axes associated with the rotational movement.
  • the location of the additional reagent storage unit 111 is not limited to a specific circumferential trajectory, since the movable region is expanded compared to that with only one rotation axis. As a result, the degree of freedom in determining the placement location of the additional reagent storage unit 111 is improved.
  • FIGS. 8 and 9 are diagrams showing an example of how to use the additional reagent storage unit in the automatic analyzer according to the second embodiment.
  • the additional reagent storage unit 111 stores the additional reagent container 123.
  • the additional reagent storage unit (additional reagent storage area) 111 can store not only the additional reagent container 123 but also a sample container (sample container) 112 in which a sample (specimen) to be analyzed is stored. It is.
  • sample dispensing mechanism 106 of FIG. 1 a region common to the movable region of the sample dispensing mechanism (sample dispensing mechanism) 106 of FIG. 1 and the movable regions of the reagent dispensing mechanism 107 and the reagent stirring mechanism 108 may exist.
  • the sample dispensing mechanism 106 can dispense the sample from the sample container 112 installed in the additional reagent storage unit 111.
  • the reagent dispensing mechanism 107 may have a sample dispensing mechanism. In this case, the sample can be dispensed from the sample container 112 by the reagent dispensing mechanism 107.
  • the size may be different between the reagent container 113 (or the additional reagent container 123) and the rack 102 containing the sample container 112 as shown in FIG. Therefore, in order to enable installation of the rack 102 in the additional reagent storage unit 111, it is useful to use a method as shown in FIG. 8 and FIG. 9, for example.
  • an adapter member whose bottom portion has the same shape as that of the reagent container 113 and which can be coupled to the rack 102 is used.
  • the adapter member 802 is compatible with the additional reagent holding portion 801 of the additional reagent storage portion 111 because the bottom portion has the same structure as the reagent container 113. Therefore, by mounting the adapter member 802 to the rack 102, the rack 102 can be installed and fixed to the additional reagent holding portion 801 via the adapter member 802.
  • the shape of the additional reagent holding portion 901 is a shape that can be adapted to both the reagent container 113 and the rack 102. In this case, the rack 102 can be directly installed in the additional reagent storage unit 111 without using an adapter member.
  • FIG. 10 is a schematic view showing a configuration example of the automatic analyzer according to the third embodiment.
  • the automatic analyzer 1001 shown in FIG. 10 differs from the case of the first embodiment in that the reagent dispensing mechanism 1002 and the reagent stirring mechanism 1003 use a normal reagent storage unit (normal reagent by linear motion rather than rotational motion on the XY plane). An access operation is performed to the storage area 1008 and the additional reagent storage unit 1006 (additional reagent storage area).
  • the automatic analyzer 1001 is also provided with a control unit 124 and the like similar to the case of FIG. 1 although illustration is omitted.
  • the reagent dispensing mechanism 1002 and the reagent stirring mechanism 1003 are installed on a rail that moves in the X axis, Y axis, and Z axis directions.
  • the reagent is dispensed from the reagent container to the reaction container housed in the incubator disk 105.
  • At least a portion of the top surface of the reagent storage unit 1004 is covered by a reagent disc cover 1005.
  • the additional reagent storage unit 1006 is installed in the reagent storage unit 1004 in this example, and kept at the same temperature as the storage unit.
  • the reagent dispensing mechanism 1002 and the reagent stirring mechanism 1003 do not perform the access operation to the additional reagent storage unit 1006 during the normal analysis operation, and receive a predetermined instruction. And the access operation to the additional reagent storage unit 1006 is performed.
  • the additional reagent storage unit 1006 may be disposed outside the reagent storage unit 1004, as in the case of FIG. In this case, the additional reagent may be stored by ventilating the additional reagent storage unit 1006 and the reagent storage unit 1004. In addition, the additional reagent may be cooled using a temperature control mechanism (for example, a Peltier device or the like) different from the reagent cold storage unit 1004, and further, there may be a case where cooling is not performed.
  • the additional reagent storage unit 1006 is provided with an additional reagent holding unit 1007 for holding an additional reagent container.
  • the additional reagent storage unit 1006 can add at least one reagent.
  • FIG. 11A is a plan view showing a configuration example of a cover mounted on the automatic analyzer of FIG. 10, and FIG. 11B is a perspective view of FIG. 11A.
  • the automatic analyzer 1001 be equipped with an overall cover 1101 each having a different interlock mechanism and an individual cover 1102 for the additional reagent storage unit 1006. As mentioned above, this allows additional reagents to be charged or replaced without stopping the analysis operation.
  • the method of charging and replacing the additional reagent is also the same as in the first embodiment.
  • the automatic analyzer 1001 may be based on its own information regardless of the presence or absence of the notification. In some cases, it may be in the state of being inserted or replaceable (for example, the unlocked state of the individual cover 1102).
  • a mechanism in which a guard member that physically shields between the additional reagent storage unit 1006 and the reagent storage unit 1004 appears simultaneously with the individual cover 1102 opening is desirable to have
  • reagent information information such as the device installation history of reagents based on the reagent label 204 (FIG. 2) and the number of remaining analysis items registered at the time of additional reagent input It is desirable to take over when transferring to 1008.
  • the rack in which the sample container is stored may be installed in the additional reagent storage unit 1006 by the same method as in the second embodiment.
  • FIG. 12 is a schematic view showing a configuration example of the automatic analyzer according to the fourth embodiment.
  • the automatic analyzer 1201 shown in FIG. 12 differs from the case of Embodiment 3 in that the reagent dispensing mechanism 1205 and the reagent stirring mechanism 1206 perform linear motion on the XY plane and the plane in the vertical direction (Z-axis direction). In combination with the linear movement, the access operation to the normal reagent storage unit (normal reagent storage area) 1209 and the additional reagent storage unit (additional reagent storage area) 1207 is performed.
  • the automatic analyzer 1201 is also provided with a control unit 124 and the like similar to the case of FIG. 1, although illustration is omitted.
  • the additional reagent container 1202 and the reagent container 1204 in the reagent storage unit 1203 are not arranged in the same XY plane.
  • the reagent dispensing mechanism 1205 and the reagent stirring mechanism 1206 do not access the additional reagent storage unit 1207 during a normal analysis operation, and when receiving a predetermined instruction, move in the Z-axis direction via the drive mechanism. It moves and performs an access operation to the additional reagent storage unit 1006.
  • reagent storage unit 1203 includes a reagent storage unit 1203, a reagent container 1204, a reagent dispensing mechanism 1205, a reagent stirring mechanism 1206, an additional reagent storage unit 1207, an additional reagent holding unit 1208, and an additional reagent container 1202.
  • reagent storage unit 1203 includes a reagent storage unit 1203, a reagent container 1204, a reagent dispensing mechanism 1205, a reagent stirring mechanism 1206, an additional reagent storage unit 1207, an additional reagent holding unit 1208, and an additional reagent container 1202.
  • the additional reagent storage unit 1207 is installed inside the reagent storage unit 1203 and kept at the same temperature as the reagent storage unit 1203.
  • the positional relationship between the additional reagent storage unit 1207 and the reagent cold storage unit 1203, various methods of temperature control, and the like can be changed as appropriate.
  • the cover configuration, handover of reagent information, installation of a rack, and the like are also the same as in the case of the third embodiment. Note that at least one reagent can be added to the additional reagent storage unit 1207.
  • FIG. 13 is a schematic view showing a configuration example of the automatic analyzer according to the fifth embodiment.
  • the automatic analyzer 1301 shown in FIG. 13 has two systems of a reagent storage unit, a reagent dispensing mechanism, and a reagent stirring mechanism.
  • the reagent cooling unit 1311 of the first system is provided with an additional reagent storage unit (additional reagent storage area) 1303.
  • the first system is a system capable of adding or replacing reagents even during normal analysis operation.
  • the reagent storage unit 1304 of the second system is provided with a normal reagent storage unit (normal reagent storage area) 1302.
  • the second line is a line for normal analysis operation, and is a line in which addition or replacement of reagents during normal analysis operation is not possible.
  • An incubator disk (reaction disk) 1306 containing a plurality of reaction containers 1305 is installed on the outer periphery of the second type of reagent storage unit 1304. At least one reagent can be added to both the first system and the second system.
  • the first system and the second system are cooled by different temperature control mechanisms. However, the first system may not be cooled.
  • the reagents in the reagent cooling unit 1311 of the first system are dispensed and stirred by the reagent dispensing mechanism 1307 and the reagent stirring mechanism 1308.
  • the reagent in the reagent cooling unit 1304 of the second system is dispensed and stirred by the reagent dispensing mechanism 1309 and the reagent stirring mechanism 1310.
  • the two reagent dispensing mechanisms 1307 and 1309 can access the reaction container 1305 housed in the reaction disk 1306.
  • the first system (1311, 1307, 1308) operates in parallel with the second system (1304, 1309, 1310) during normal analysis operation, but even during normal analysis operation, a predetermined instruction is When received, stop the operation. In this state, the normal analysis operation is continued only by the second system (1304, 1309, 1310). That is, the second system (1304, 1309, 1310) performs the normal analysis operation regardless of the presence or absence of the predetermined instruction. In this way, it is possible to construct a state in which the operation of the first system is stopped while continuing the normal analysis operation, so addition or replacement of the reagent to the additional reagent storage unit 1303 is possible even during the normal analysis operation. It becomes possible.
  • the additional reagent storage unit 1303 is movable within the movable region 1313 of the reagent dispensing mechanism 1307 of the first system and the reagent stirring mechanism 1308, and of the reagent dispensing mechanism 1309 of the second system and the reagent stirring mechanism 1310. It needs to be disposed in the area excluding the area 1312.
  • FIG. 14A is a plan view showing a configuration example of a cover mounted on the automatic analyzer of FIG. 13, and FIG. 14B is a perspective view of FIG. 14A.
  • the automatic analyzer 1301 be provided with an overall cover 1401 each having a different interlock mechanism and an individual cover 1402 for the additional reagent storage unit 1303. This makes it possible to add or replace additional reagents without stopping the analysis operation.
  • the method of charging and replacing the additional reagent is also the same as in the first embodiment.
  • the automatic analyzer 1301 may be based on its own information regardless of the presence or absence of the notification. In some cases, it may be in the state of being inserted or replaceable (for example, the unlocked state of the individual cover 1402). With regard to the latter, specifically, for example, it is predicted that all one of the reagents stored in the reagent cooling unit 1302 of the second system is expected to be consumed, or a reagent corresponding to an analysis item registered in the apparatus There is a case where is not installed.
  • a mechanism is provided in which a guard member physically shielding between the first system and the second system appears. It is desirable to keep With regard to reagent information as well, information such as the device installation history of reagents based on the reagent label 204 (FIG. 2) and the number of remaining analysis items registered at the time of additional reagent input corresponds to the reagent from the additional reagent storage unit 1303 It is desirable to be taken over when transferring to 1302.
  • FIG. 15A and FIG. 15B are schematic views showing a configuration example of a guard member.
  • FIG. 15A shows a plan configuration example of the automatic analyzer 1301 and a cross-sectional configuration example between A-A ′ with the individual cover 1402 closed.
  • a plate-like guard member 1501 is provided on the lower side of the unit mounting surface 1502 in the automatic analyzer 1301.
  • the said guard member 1501 is provided so that it may be located in the lower part of the edge by the side of the reagent cold storage unit 1304 in the separate cover 1402.
  • the guard member 1501 is provided at the lower part of the boundary line of the reagent cooling unit 1311 of the first system and the reagent cooling unit 1302 of the second system and on the unit mounting surface.
  • FIG. 15B shows an example of a plan configuration of the automatic analyzer 1301 and an example of a cross-sectional configuration between B-B ′ with the individual cover 1402 opened.
  • the guard member 1501 appears in the upper part sandwiching the unit mounting surface 502 in conjunction with it.
  • the first system and the second system are physically shielded by the guard member 1501 at the upper part sandwiching the unit mounting surface 502.
  • the plate-shaped guard member 1501 was used here, you may use the guard member etc. which open and close like fan shape, for example.
  • FIG. 16 and FIG. 17 are schematic diagram which shows the various structural example which deform
  • reagent stirring mechanisms 1308 and 1310 are respectively installed on the reagent cold storage units 1311 and 1314 as in the case of FIG. 4.
  • the reagent stirring mechanisms 1308 and 1310 are not provided as in the case of FIG. 5.
  • the present invention is not limited to the above-mentioned embodiment, and can be variously changed in the range which does not deviate from the gist.
  • the above-described embodiments are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Ecology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

小規模な構成においても、動作中の追加試薬の投入や交換を容易に実現可能にする自動分析装置を提供する。そこで、試薬が収容された試薬容器113の中から試薬を分注する試薬分注機構107と、試薬容器を保管する通常試薬保管部130および追加試薬保管部111とを備える。通常試薬保管部130は、試薬分注機構107の可動領域131の一部となる通常可動領域132内に位置し、追加試薬保管部111は、試薬分注機構107の可動領域131の中で通常可動領域132を除く領域内に位置する。試薬分注機構107は、通常動作の際には通常可動領域132内でのアクセス動作を行い、所定の指示を受けた際には追加試薬保管部111へのアクセス動作を行う。

Description

自動分析装置
 本発明は、自動分析装置に関する。
 生化学分析装置や免疫分析装置などの自動分析装置において、血清や尿などの検体中に含まれる特定成分の分析を行うにあたっては、一般的に次の三つのプロセスが自動分析装置上で自動的に実施される。第一のプロセスとして、血清や尿などの検体から分取した分析試料と、試料中の分析対象成分に特異的に結合する試薬とを、装置上の反応容器内で混合することにより反応させる。第二のプロセスとして、一定時間の反応後、試薬の特性を利用して、試料に結合した試薬量を、検出可能な信号量に変換する。例えば、試料と反応することによって変色する試薬を用いた場合には、吸光度の測定によって、試料に結合した試薬量を信号量に変換することが可能となる。第三のプロセスとして、予め既知濃度試料の分析により求めていた濃度と信号量との関係を用いて、得られた信号量を試料中の分析対象成分の濃度に変換する。
 また、自動分析装置では、一般的に、複数の検体に対して複数の成分(項目)を並行的に分析することが求められる。例えば、免疫分析装置を肝炎ウィルス検査のスクリーニングのために使用する場合には、複数の血清検体に対してA型肝炎、B型肝炎、C型肝炎などの複数項目の分析を自動的に並行実施することにより、医師による診断と治療をできる限り早期に実施可能とすることが求められる。このような複数項目の自動分析を実現するために、自動分析装置は、一般的に、複数の反応容器を保持可能な反応部と、複数項目の試薬容器を保持可能な試薬保管部を備える。複数項目の分析を行うにあたっては、複数の分析項目に応じて、それぞれ適切な試薬を試薬容器から反応容器に分注することで、複数項目の分析を効率的に実施可能とする。
 上記のような複数項目を分析するための自動分析装置として、例えば特許文献1に示す自動分析装置が挙げられる。特許文献1の自動分析装置は、複数の試薬容器を保持するための試薬ディスクと、複数の反応容器を保持する反応部と、試薬を試薬容器から反応容器に分注するための試薬分注プローブとを備える。複数項目の分析を行うにあたっては、複数の分析項目に応じて試薬ディスクの回転や試薬分注プローブの移動を調整することにより、それぞれ適切な試薬を試薬容器から反応容器に分注する。
 また、特許文献2には、試薬ディスクの上部に、試薬を試薬ディスク内部と試薬ディスク外部との間で移送するための試薬容器移送機構を備える自動分析装置が開示されている。特許文献3には、自動分析装置の前面部に試薬容器投入部を備えた自動分析装置が開示されている。
特開2016-161295号公報 特開2012-189611号公報 特開2012-132925号公報
 例えば、簡易診断、迅速診断といった用途では、比較的、小規模かつ廉価な自動分析装置が求められる。特に、このような自動分析装置では、装置の動作中に試薬容器を交換することは容易でない。すなわち、分析装置の動作中、試薬ディスクや試薬分注プローブは、分析項目に応じて複雑に移動する。そのため、分析装置の動作中にオペレータが試薬ディスクに直接アクセスして、試薬容器を交換することは困難となる。
 そうすると、分析装置の動作中に試薬の補充や追加が必要となった場合、オペレータは、分析装置の動作が終了してスタンバイ状態になるまで待機するか、あるいは、分析を中断して装置をスタンバイ状態に設定する必要がある。しかし、この場合、分析装置がスタンバイ状態と分析動作の間を遷移するにあたり、機構のリセット動作や洗浄動作などの一定の準備時間が必要となる恐れがある。また、分析を中断する場合には、装置上で分析中の状態にある試料に対して、再度はじめから分析を実施する必要性が生じ得る。
 そこで、特許文献2や特許文献3の自動分析装置を用いることが考えられる。特許文献2の自動分析装置は、試薬を試薬ディスク内部と試薬ディスク外部との間で移送するための試薬容器移送機構を備える。試薬容器移送機構における試薬容器の設置位置には、試薬分注プローブなどの可動部が直接アクセスしない。よって、オペレータは、分析装置の動作中であっても、試薬容器移送機構の試薬容器設置位置に追加の試薬容器を設置することが可能となる。試薬容器移送機構は、試薬ディスクの動作予定に応じて追加の試薬容器を試薬ディスク内部に移送可能なタイミングを判断し、試薬ディスクへの試薬容器の搭載動作を自動的に行う。また逆に、試薬ディスク内部から取り出したい試薬容器がある場合にも、試薬容器移送機構は、移送可能なタイミングを判断し、排出動作を自動的に行う。
 また、特許文献3の自動分析装置は、前面部に試薬容器投入部を備える。試薬容器投入部には、試薬分注プローブなどの可動部が直接アクセスしない。よって、特許文献2の構成と同様に、オペレータは、分析装置の動作中であっても試薬容器を設置することができる。また、試薬容器移送機構は、移送が可能なタイミングで、試薬ディスクに対して試薬容器の搭載動作あるいは排出動作を実施することが可能となる。
 このように、特許文献2や特許文献3の構成を用いると、分析装置の動作中であっても、試薬容器を交換することが可能となる。しかし、これらの構成は、共に、試薬容器を移送するための試薬容器移送機構が必要とされる。試薬容器移送機構は、通常、モータ、移送路、移送のための制御部等を含むため、装置の大型化や、装置コストの増大等を招く。そのため、特に小規模な自動分析装置に、このような機構を搭載することは容易でない。
 本発明は、このようなことに鑑みてなされたものであり、その目的の一つは、小規模な構成においても、動作中の追加試薬の投入や交換を容易に実現可能にする自動分析装置を提供することにある。
 本発明の前記並びにその他の目的と新規な特徴は、本明細書の記述及び添付図面から明らかになるであろう。
 本願において開示される実施の形態のうち代表的なものの概要を簡単に説明すれば下記の通りである。
 一実施の形態の自動分析装置は、試薬が収容された試薬容器の中から試薬を分注する分注機構と、試薬容器を保管する第1および第2の保管領域とを備える。第1の保管領域は、分注機構の可動領域の一部となる通常可動領域内に位置し、第2の保管領域は、分注機構の可動領域の中で通常可動領域を除く領域内に位置する。分注機構は、通常動作の際には通常可動領域内でのアクセス動作を行い、所定の指示を受けた際には第2の保管領域へのアクセス動作を行う。
 本願において開示される発明のうち、代表的な実施の形態によって得られる効果を簡単に説明すると、小規模な自動分析装置においても、動作中の追加試薬の投入や交換を容易に行うことが可能になる。
実施の形態1による自動分析装置の構成例を示す模式図。 図1における試薬容器の構成例を示す模式図。 図1の自動分析装置に装着されるカバーの構成例を示す平面図。 図3Aの斜視図。 図1の自動分析装置を変形した構成例を示す模式図。 図1の自動分析装置を変形した構成例を示す模式図。 図1の自動分析装置を変形した構成例を示す模式図。 図1の自動分析装置を変形した構成例を示す模式図。 実施の形態2による自動分析装置において、追加試薬保管部の使用方法の一例を示す図。 実施の形態2による自動分析装置において、追加試薬保管部の使用方法の他の一例を示す図。 実施の形態3による自動分析装置の構成例を示す模式図。 図10の自動分析装置に装着されるカバーの構成例を示す平面図。 図11Aの斜視図。 実施の形態4による自動分析装置の構成例を示す模式図。 実施の形態5による自動分析装置の構成例を示す模式図。 図13の自動分析装置に装着されるカバーの構成例を示す平面図。 図14Aの斜視図。 ガード部材の構成例を示す模式図。 ガード部材の構成例を示す模式図。 図13の自動分析装置を変形した構成例を示す模式図。 図13の自動分析装置を変形した構成例を示す模式図。
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
 以下、実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
 (実施の形態1)
 《自動分析装置全体の概略構成および概略動作》
 図1は、実施の形態1による自動分析装置の構成例を示す模式図である。ここでは、自動分析装置の一例として、分析対象を抗原とし、分析対象抗原に特異的に結合する発光標識物質を用いて発光分析を行う免疫分析装置を想定する。図1の自動分析装置101は、検体ラック(ラックと略す)102を搬送するラック搬送ライン103と、試薬保冷ユニット104と、インキュベータディスク(反応ディスク)105と、サンプル分注機構(試料分注機構)106と、試薬分注機構107と、試薬攪拌機構108と、消耗品搬送ユニット109と、検出部ユニット110とを備える。これらに加えて、自動分析装置101は、更に追加試薬保管部111を備える。明細書では、以上の各構成要素をユニットと呼ぶこともある。
 ラック102は、血液や尿などの生体サンプル(サンプルと略す)を収容する複数のサンプル容器(試料容器)112が収納されるものであり、サンプル容器112が収納された状態でラック搬送ライン103上を搬送される。試薬保冷ユニット104には、サンプル(試料または検体とも呼ぶ)の分析に用いる種々の試薬(分析試薬)が収容された複数の試薬容器(分析試薬容器)113が収納されている。また、保冷ユニット104内の試薬容器113は、冷凍機によって保冷されている。保冷ユニット104の上面の少なくとも一部は、試薬ディスクカバー114により覆われている。
 インキュベータディスク105は、サンプルと試薬を反応するための複数の反応容器115が配置される反応容器配置部116と、反応容器115の温度を所望の温度に調整する温度調整機構とを有している。サンプル分注機構106は、回転駆動機構や上下駆動機構を有し、これらの駆動機構によりサンプル容器112の中からインキュベータディスク105に収納された反応容器115にサンプルを分注する。同様に、試薬分注機構107も、回転駆動機構や上下駆動機構を有し、これらの駆動機構により試薬容器113の中からインキュベータディスク105に収容された反応容器115に試薬を分注する。試薬攪拌機構108の駆動機構も同様である。
 検出部ユニット110は、光電子増倍管や光源ランプ、分光器、フォトダイオードを備え、それらの温度を調整する機能を持ち、反応液の分析を行う。搬送機構121は、検出部ユニット110へ反応容器を搬送するための機構であり、X軸およびZ軸方向に設けられたレールを備える。消耗品搬送ユニット109は、収納容器保持部118と、搬送機構119とを備える。消耗品収納容器117は、反応容器115や分注チップ121など試料の分析に用いられる消耗品を複数収納する。搬送機構119は、消耗品収納容器117上の反応容器115や分注チップ121を把持して所定の位置へ搬送する。
 具体的には、搬送機構119は、X軸、Y軸、Z軸方向に設けられたレールを備え、当該レールを介して、消耗品収納容器117に収納された反応容器115をインキュベータディスク105へ搬送したり、分注チップ121をチップ装着位置122へ搬送する。また、インキュベータディスク105上の使用済みの反応容器115を廃棄孔120に破棄する。さらに、搬送機構119は、消耗品収納容器117上の未使用の反応容器115や分注チップ121をそれぞれインキュベータディスク105やチップ装着位置122へ搬送する。そのため、搬送機構119は、反応容器115や分注チップ121を掴むアーム構造を有する。
 追加試薬保管部(追加試薬保管領域)111は、投入または交換される追加の試薬容器(分析試薬容器)123を保管し、通常の分析動作中であってもアクセス可能となっている。すなわち、通常の分析動作中、分析に使用される試薬容器113は、試薬保冷ユニット104内の通常試薬保管部(通常試薬保管領域)130に保管される。通常試薬保管部130は、試薬分注機構107の可動領域131の一部となる通常可動領域132内に位置する。一方、追加試薬保管部111は、試薬分注機構107の可動領域131の中で通常可動領域132を除く領域内に位置する。
 試薬分注機構107は、XY平面上の回転運動を用いて、通常の分析動作の際には通常可動領域132内でのアクセス動作を行い、所定の指示を受けた際には追加試薬保管部111へのアクセス動作を行う。試薬攪拌機構108との関係も同様であり、追加試薬保管部111は、試薬攪拌機構108の可動領域の中で通常可動領域を除く領域内に位置する。そして、追加の試薬容器123内の追加試薬は、所定の指示を受けた際に、試薬分注機構107および試薬攪拌機構108により分注および攪拌される。
 ここで、例えば、通常試薬保管部130と追加試薬保管部111の間は、空気が交換可能となっている。すなわち、試薬保冷ユニット104で温度調整された空気を追加試薬保管部111内に循環させることで、試薬容器113内の試薬に加えて、追加の試薬容器123内の追加試薬を保冷することが可能となっている。ただし、追加試薬の保冷にあたっては、追加試薬保管部111に、試薬保冷ユニット104の温度調整機構(例えば冷凍機等)とは別の温度調整機構(例えばペルチェ素子等)を設けてもよい。さらには、追加試薬を保冷しない場合があってもよい。また、追加試薬保管部111は、少なくとも一つ以上の追加試薬を保管可能であればよい。
 明細書では、自動分析装置101のうち、以上で説明したラック搬送ライン103、試薬保冷ユニット104、インキュベータディスク105、サンプル分注機構106、試薬分注機構107、試薬攪拌機構108、消耗品搬送ユニット109、検出部ユニット110、追加試薬保管部111、等を分析動作部と称する。自動分析装置101は、このような分析動作部に加えて、さらに、自動分析装置101全体の動作を制御する制御部124と、操作部125とを備える。
 制御部124は、例えばハードウェア基板からなり、コンピュータなどの制御装置126やハードディスクなどの記憶装置127に接続されている。操作部125は、例えばディスプレイである表示部や、マウス、キーボードなどの入力装置から構成されている。記憶装置127には、例えば各ユニットに対応した温度範囲が記憶されている。制御部124は、専用の回路基板によってハードウェアとして構成されていてもよいし、自動分析装置101に接続されたコンピュータ(例えば制御装置126)で実行されるソフトウェアによって構成されてもよい。
 ハードウェアで構成する場合、例えば、処理を実行する複数の演算器が、配線基板上、または半導体チップまたはパッケージ内に集積される。ソフトウェアで構成する場合、コンピュータに高速な汎用CPU(Central Processing Unit)が搭載され、当該CPUによって所望の演算処理を実行するプログラムが実行される。このプログラムが記録された記録媒体により、既存の装置をアップグレードすることも可能である。また、これらの装置や回路、コンピュータ間は、有線又は無線のネットワークで接続され、適宜データが送受信される。
 図2は、図1における試薬容器の構成例を示す模式図である。例えば、前述したような発光分析を行う免疫分析装置では、標識化抗体試薬と、ビオチン化抗体試薬と、ストレプトアビジン結合磁性粒子試薬の3種の試薬が、試薬キットとして1個の試薬容器113にキット化されている。つまり、試薬容器113は、主に、標識化抗体試薬が含まれる標識化抗体試薬容器201、ビオチン化抗体試薬が含まれるビオチン化抗体試薬容器202、および、ストレプトアビジン結合磁性粒子試薬が含まれるストレプトアビジン結合磁性粒子試薬容器203から構成される。
 また、試薬容器113には、内部に収容された試薬の情報を表す試薬ラベル204が貼り付けられる。試薬ラベル204は、例えば、バーコードやRFID(Radio Frequency IDentifier)等であり、対象分析項目、製造ロット番号、試薬キット番号、分析可能数、保管期限、装置設置後の使用期限、装置設置履歴、校正後の校正有効期間、工場出荷時の校正データなどの情報を含んでいる。試薬ラベル204の情報は、読み取り部205によって読み取られる。読み取り部205は、例えば、バーコードリーダや、RFIDリーダライタ等であり、試薬保冷ユニット104に保管された試薬容器113の試薬ラベル204に加えて、追加試薬保管部111に保管された追加の試薬容器123の試薬ラベル204も読み取る。このため、試薬ラベル204の読み取り方式にも依るが、読み取り部205は、例えば、試薬保冷ユニット104と、追加試薬保管部111の2箇所にそれぞれ設けられる。
 図3Aは、図1の自動分析装置に装着されるカバーの構成例を示す平面図であり、図3Bは、図3Aの斜視図である。図3Aおよび図3Bに示すように、自動分析装置101には、全体カバー301と個別カバー302とが装着される。全体カバー301は、例えば、試薬保冷ユニット104に対する手作業(試薬容器113の投入作業等)の出入り口となり、個別カバー302は、追加試薬保管部111に対する手作業(追加の試薬容器123の投入作業等)の出入り口となる。
 全体カバー301と個別カバー302は、それぞれ、別のインターロック機構を備えることが望ましい。例えば、全体カバー301のインターロック機構は、分析動作中の自動分析装置101に対する手作業を防止し、開閉に応じて所定の安全機能(例えば、装置の緊急停止等)を作動させる。この機構により、オペレータは、分析動作を停止させない限り、全体カバー301を開けることはできない。一方、個別カバー302は、全体カバー301を閉じた状態で開閉を行うことが可能となっている。その結果、オペレータは、分析動作を停止させずとも、追加試薬保管部111に対する手作業を行うことができる。
 個別カバー302のインターロック機構の一つとして、試薬分注機構107や試薬攪拌機構108は、例えば、個別カバー302が開いた状態では、仮に、追加試薬保管部111へのアクセス指示を受けた場合であっても、追加試薬保管部111へのアクセス動作を行わない。また、個別カバー302のインターロック機構の他の一つとして、個別カバー302の開放に連動して、あるいは、個別カバー302を開放する際の前準備としてガード部材を設置してもよい。
 ガード部材は、追加試薬保管部111を他の領域から遮蔽するか否かを切り替え可能な機構(例えば、Z軸方向に移動可能な遮蔽板等)を備え、遮蔽した状態で当該他の領域から追加試薬保管部111へのアクセス動作を物理的に防止する。この際のアクセス動作は、試薬分注機構107や試薬攪拌機構108といった可動部品による物理的なアクセス動作に限らず、その他の不測のアクセス動作も含まれる。例えば、可動部品の可動に伴う有害物質の飛散等が挙げられる。
 《追加試薬の投入および交換の方法》
 追加試薬の投入または交換にあたって、オペレータは、まず、操作部123を介して装置にその旨を通知する。装置が通知を受け付けると、試薬分注機構107や試薬攪拌機構108などの可動部品は、追加試薬保管部111へアクセスしないよう制御される。同時に、個別カバー302のロックが解除され、自由開閉が可能となる。この状態で、オペレータは、個別カバー302を開き、追加試薬保管部111に追加の試薬容器123を投入する(もしくは交換する)。このとき、安全性の観点から、例えば、個別カバー302が開くと同時に、前述したようなガード部材が設置されるように構成することが望ましい。試薬投入または交換後、オペレータは、個別カバー302を閉じる。個別カバー302を閉じると、ガード部材も除去される。
 次いで、オペレータは、操作部123を介して、試薬の投入または交換が完了したことを装置に通知する。装置が通知を受け付けると、読み取り部205は、追加の試薬容器123の試薬ラベル204に記載された情報を読み取り、装置に登録する。ここで、投入完了または交換完了の通知は、必ずしも実施される必要はなく、例えば、通知を行う代わりに、装置が、個別カバー302が閉じられたことを自動認識し、読み取り部205を動作させる仕組みであってもよい。追加試薬の情報が登録されると、装置は、試薬分注機構107や試薬攪拌機構108などの可動部品に所定の指示を発行する。これに応じて、試薬分注機構107や試薬攪拌機構108などの可動部品は、追加試薬保管部111へのアクセス動作が可能となり、追加試薬に対して試薬容量チェックや磁性粒子試薬の事前撹拌などの分析に伴う前準備動作を行う。
 ここで、追加の試薬容器123の試薬ラベル204に記載された装置設置履歴(すなわち、装置に設置されたことが有るか否か)や、残分析可能数などの情報は、記憶装置127に記憶される。例えば、追加の試薬容器123を用いて必要な分析を行ったのち、当該試薬容器123に試薬が残存しているような場合、オペレータは、装置の休止期間等を利用して、当該試薬容器123を試薬保冷ユニット104に手作業で移設し、通常の分析動作で再利用することができる。この際に、装置は、記憶装置127に記憶された情報を参照することで、当該試薬容器123の情報(例えば、残分析可能数)を引き継ぐことができる。
 以上の説明では、追加試薬の投入(または交換)に先立ち、オペレータが装置へその旨を通知することで、装置は、追加試薬の投入(または交換)に伴う前準備を行った。当該前準備は、具体的には、個別カバー302のロック解除や、試薬分注機構107や試薬攪拌機構108などの可動部品の可動領域制限等である。ただし、これに限らず、装置は、オペレータによる通知の有無に関わらず、自身が有する情報に基づいて、追加試薬の投入(または交換)に伴う前準備を行ってもよい。
 例えば、装置は、(A)試薬保冷ユニット104内に保管された試薬の一つが完全に消費されることが予測される場合や、(B)装置に登録された分析項目に対応した試薬が試薬保冷ユニット104に設置されていない場合や、(C)試薬の残量が一定値以下となった場合等で、追加試薬の投入(または交換)に伴う前準備を行ってもよい。試薬の一つが完全に消費されることが予測される場合とは、例えば、試薬の残分析可能数が、オペレータによって指示された分析回数よりも少ないような場合である。
 このような場合、装置は、その旨をディスプレイなどの表示部を介してオペレータに通知することで試薬の補充等を促し、加えて、追加試薬の投入(または交換)に伴う前準備を行う。これを受けて、オペレータは、補充すべき追加試薬を追加試薬保管部111へ投入する。例えば、(A)や(C)のケースでは、装置は、試薬ラベル204に基づき投入された追加試薬を認識し、実際に試薬保冷ユニット104内の試薬が完全に消費された段階で、試薬分注機構107や試薬攪拌機構108に所定の指示を発行する。これにより、試薬保冷ユニット104内の試薬が完全に消費されると、即座に、追加試薬保管部111の追加試薬へ移行することができる。
 また、場合によっては、オペレータが、装置に事前に通知することなく、自由に個別カバー302を開いて、追加試薬を投入できるような構成であってもよい。具体的には、個別カバー302には、インターロック機構は設けられるが、ロックは設けられない。オペレータが個別カバー302を開くと、インターロック機構により、可動部品の可動領域制限や、前述したガード部材の設置等が行われる。オペレータが追加試薬を投入したのち、個別カバー302を閉じると、これに応じて読み取り部205が動作する。
 《自動分析装置全体の概略構成(各種変形例)》
 図4~図7のそれぞれは、図1の自動分析装置を変形した各種構成例を示す模式図である。図4の自動分析装置401では、図1の構成例と異なり、試薬攪拌機構108が試薬保冷ユニット104上に設置される。図1の場合と同様に、試薬攪拌機構108は、追加試薬保管部111を含めた可動領域を備えるが、通常の分析動作中、追加試薬保管部111へのアクセス動作を行わない。図5の自動分析装置501では、図1の構成例と異なり、試薬攪拌機構108が設けられない。例えば、試薬として磁性粒子等を用いない装置では、試薬攪拌機構108は、特に必要とされない。
 図6の自動分析装置601は、図1の構成例と異なり、追加試薬保管部111が試薬保冷ユニット104と一体化されている。これにより、追加試薬保管部111を試薬保冷ユニット104と同一温度に保つことが可能となる。試薬保冷ユニット104は、具体的には、例えば、熱交換器等を用いた空冷方式や、水冷ジャケット等を用いた水冷方式によって、追加試薬保管部111を含めて温度調整を行う。追加試薬保管部111には、追加試薬を保持するための追加試薬保持部602が設けられる。なお、前述の通り、試薬保冷ユニット104上に試薬攪拌機構を設置してもよいし、試薬攪拌機構を設置しなくてもよい。
 図1および図4~図6に示した自動分析装置では、試薬分注機構107や試薬攪拌機構108は、XY平面上で一つの回転軸で回転運動を行っている。このため、追加試薬保管部111は、試薬分注機構107および試薬攪拌機構108の円周軌道上に配置される必要がある。しかし、回転運動の駆動機構としては、少なくとも一つ以上の回転軸を有するものであればよい。一例として、図7に示す自動分析装置701では、試薬分注機構107や試薬攪拌機構108は、回転運動に伴う回転軸を複数有している。この場合、回転軸が一つだけのものに比べて可動領域が広がるため、追加試薬保管部111の配置場所は、ある特定の円周軌道上に限定されない。その結果、追加試薬保管部111の配置場所を定める際の自由度が向上する。
 《実施の形態1の主要な効果》
 以上、実施の形態1の方式を用いることで、小規模な自動分析装置においても、動作中の追加試薬の投入や交換を容易に行うことが可能になる。その結果、分析装置の動作中に試薬の補充や追加が必要となった場合にも、時間をかけずに分析を継続することが可能になり、分析結果に基づく診断や治療をより早期に実施できるようになる。また、特許文献2や特許文献3のような試薬容器移送機構を必要とせず、可動部品の可動領域の調整と、追加試薬の保管場所の工夫とによって、追加試薬の投入や交換が可能になる。その結果、装置の大型化や装置コストの増大も招かない。
 (実施の形態2)
 《追加試薬保管部の使用方法(応用例)》
 図8および図9は、実施の形態2による自動分析装置において、追加試薬保管部の使用方法の一例を示す図である。実施の形態1で述べた自動分析装置では、追加試薬保管部111は、追加の試薬容器123を保管した。一方、当該追加試薬保管部(追加試薬保管領域)111は、追加の試薬容器123に限らず、分析対象となる試料(検体)が収容されたサンプル容器(試料容器)112を保管することも可能である。
 自動分析装置によっては、図1のサンプル分注機構(試料分注機構)106の可動領域と、試薬分注機構107および試薬攪拌機構108の可動領域とで共通する領域が存在する場合がある。この場合、この共通する領域に追加試薬保管部111を配置すれば、追加試薬保管部111に設置されたサンプル容器112の中から、サンプル分注機構106によってサンプルを分注することができる。また、自動分析装置によっては、試薬分注機構107がサンプル分注機構を兼ね備える場合がある。この場合、サンプル容器112の中から、試薬分注機構107によってサンプルを分注することができる。
 ただし、試薬容器113(または追加の試薬容器123)と、図1に示したようなサンプル容器112を収納したラック102とでは、サイズが異なる場合がある。そこで、追加試薬保管部111へのラック102の設置を可能にするため、例えば、図8や図9に示されるような方式を用いることが有益となる。
 図8では、試薬容器113と底部が同一形状でかつラック102に結合可能なアダプタ部材が用いられる。図8に示すように、アダプタ部材802は、底部が試薬容器113と同一構造であるため、追加試薬保管部111の追加試薬保持部801に適合可能である。よって、ラック102にアダプタ部材802を装着することで、当該ラック102をアダプタ部材802を介して追加試薬保持部801に設置および固定することができる。一方、図9では、追加試薬保持部901の形状が、試薬容器113とラック102の両方に適合可能な形状となっている。この場合、アダプタ部材を用いることなく、ラック102を追加試薬保管部111に直接設置することが可能になる。
 《実施の形態2の主要な効果》
 以上、実施の形態2の方式を用いることで、実施の形態1の場合と同様の効果が得られる。これに加えて、さらに、分析動作中にサンプルの供給を行えるようになるため、例えば、緊急検体に対する割り込み測定等を早期に行うことが可能になる。
 (実施の形態3)
 《自動分析装置全体の概略構成(実施の形態3)》
 図10は、実施の形態3による自動分析装置の構成例を示す模式図である。図10に示す自動分析装置1001は、実施の形態1の場合と異なり、試薬分注機構1002や試薬攪拌機構1003が、XY平面上の回転運動ではなく直線運動によって、通常試薬保管部(通常試薬保管領域)1008および追加試薬保管部(追加試薬保管領域)1006へのアクセス動作を行う構成となっている。また、当該自動分析装置1001は、図示は省略されているが、図1の場合と同様の制御部124等も備えている。
 図10において、試薬分注機構1002および試薬攪拌機構1003は、X軸、Y軸、Z軸方向に移動するレール上に設置される。これらの駆動機構により、試薬容器からインキュベータディスク105に収容された反応容器に試薬が分注される。試薬保冷ユニット1004の上面の少なくとも一部は試薬ディスクカバー1005により覆われている。追加試薬保管部1006は、この例では、試薬保冷ユニット1004内に設置され、保冷ユニットと同一温度に保たれる。実施の形態1の場合と同様に、試薬分注機構1002および試薬攪拌機構1003は、通常の分析動作中は、追加試薬保管部1006へのアクセス動作を行わず、所定の指示を受けた際に、追加試薬保管部1006へのアクセス動作を行う。
 なお、追加試薬保管部1006は、図1の場合と同様に、試薬保冷ユニット1004の外に配置されてもよい。この場合、追加試薬保管部1006と試薬保冷ユニット1004を通気することで追加試薬を保冷してもよい。また、試薬保冷ユニット1004とは別の温度調整機構(例えば、ペルチェ素子等)を使用して追加試薬を保冷してもよいし、さらには、保冷しない場合があってもよい。追加試薬保管部1006には、追加の試薬容器を保持するための追加試薬保持部1007が設けられる。追加試薬保管部1006には、少なくとも一つの試薬を追加可能である。
 図11Aは、図10の自動分析装置に装着されるカバーの構成例を示す平面図であり、図11Bは、図11Aの斜視図である。実施の形態1の場合と同様に、自動分析装置1001には、それぞれ別のインターロック機構を有する全体カバー1101と、追加試薬保管部1006用の個別カバー1102を装着させることが望ましい。前述の通り、これにより、分析動作を停止することなく追加試薬を投入または交換することが可能となる。
 追加試薬の投入および交換の方法も実施の形態1の場合と同様である。例えば、オペレータが操作部を使って装置にその旨を通知することで、投入または交換が可能になる場合もあれば、自動分析装置1001が、通知の有無に関わらず、自身の情報に基づいて投入または交換可能な状態(例えば、個別カバー1102のロック解除状態)にする場合もある。また、実施の形態1の場合と同様に、安全性の観点から、個別カバー1102が開くと同時に、追加試薬保管部1006と試薬保冷ユニット1004の間を物理的に遮蔽するガード部材が出現する機構を設置しておくことが望ましい。
 試薬情報に関しても、追加試薬投入時に登録された、試薬ラベル204(図2)に基づく試薬の装置設置履歴や残分析可能数などの情報が、当該試薬を追加試薬保管部1006から通常試薬保管部1008へ移設する際に引き継がれることが望ましい。さらに、実施の形態2の場合と同様の方法により、追加試薬保管部1006にサンプル容器が収納されたラックを設置できるように構成してもよい。
 《実施の形態3の主要な効果》
 以上、実施の形態3の方式を用いることで、実施の形態1の場合と同様の効果が得られる。一般的に、図10に示されるような直線運動を行う駆動機構は、実施の形態1に示した回転運動を行う駆動機構と比較して、装置の大型化や装置コストの増大を招き易くなるため、この観点では、図1等の構成例の方が有益となる場合がある。
 (実施の形態4)
 《自動分析装置全体の概略構成(実施の形態3)》
 図12は、実施の形態4による自動分析装置の構成例を示す模式図である。図12に示す自動分析装置1201は、実施の形態3の場合と異なり、試薬分注機構1205や試薬攪拌機構1206が、XY平面上の直線運動と当該平面の鉛直方向(Z軸方向)への直線運動との組み合わせによって、通常試薬保管部(通常試薬保管領域)1209および追加試薬保管部(追加試薬保管領域)1207へのアクセス動作を行う構成となっている。また、当該自動分析装置1201は、図示は省略されているが、図1の場合と同様の制御部124等も備えている。
 図12では、追加の試薬容器1202と試薬保冷ユニット1203内の試薬容器1204は、同一XY平面状に配置されない。試薬分注機構1205および試薬攪拌機構1206は、通常の分析動作中は、追加試薬保管部1207へのアクセス動作を行わず、所定の指示を受けた際に、駆動機構を介してZ軸方向へ移動し、追加試薬保管部1006へのアクセス動作を行う。また、図12の自動分析装置1201は、試薬保冷ユニット1203、試薬容器1204、試薬分注機構1205、試薬攪拌機構1206、追加試薬保管部1207、追加試薬保持部1208、および追加の試薬容器1202を備えるが、実際には、加えて、図示されない実施の形態3の場合と同様の各種機構を備える。
 追加試薬保管部1207は、この例では、試薬保冷ユニット1203の内部に設置され、試薬保冷ユニット1203と同一温度に保たれている。ただし、実施の形態3でも述べたように、追加試薬保管部1207と試薬保冷ユニット1203の位置関係や、温度調整の各種方式等は、適宜変更可能である。また、カバー構成や、試薬情報の引き継ぎや、ラックの設置等に関しても、実施の形態3の場合と同様である。なお、追加試薬保管部1207には、少なくとも一つの試薬が追加可能である。
 《実施の形態4の主要な効果》
 以上、実施の形態4の方式を用いることで、実施の形態1の場合と同様の効果が得られる。
 (実施の形態5)
 《自動分析装置全体の概略構成(実施の形態5)》
 図13は、実施の形態5による自動分析装置の構成例を示す模式図である。図13に示す自動分析装置1301は、試薬保冷ユニット、試薬分注機構、および試薬攪拌機構を2系統有する。第一系統の試薬保冷ユニット1311には、追加試薬保管部(追加試薬保管領域)1303が設けられる。第一系統は、通常の分析動作中であっても試薬の追加または交換が可能な系統である。一方、第二系統の試薬保冷ユニット1304には、通常試薬保管部(通常試薬保管領域)1302が設けられる。第二系統は、通常の分析オペレーション用の系統であり、通常の分析動作中の試薬の追加または交換が不可能な系統である。
 第二系統の試薬保冷ユニット1304の外周には、複数の反応容器1305を収納したインキュベータディスク(反応ディスク)1306が設置される。第一系統、第二系統ともに少なくとも一つの試薬を追加可能である。第一系統と第二系統は、それぞれ別の温度調整機構により保冷される。ただし、第一系統に関しては、保冷しない場合があってもよい。第一系統の試薬保冷ユニット1311内の試薬は、試薬分注機構1307および試薬攪拌機構1308によって分注および攪拌される。一方、第二系統の試薬保冷ユニット1304内の試薬は、試薬分注機構1309および試薬攪拌機構1310によって分注および攪拌される。二つの試薬分注機構1307,1309は、いずれも反応ディスク1306に収納された反応容器1305にアクセス可能である。
 第一系統(1311,1307,1308)は、通常の分析動作中、第二系統(1304,1309,1310)と並行して動作するが、通常の分析動作中であっても、所定の指示を受けた際には、動作を停止する。この状態では、第二系統(1304,1309,1310)のみによって通常の分析動作が継続される。すなわち、第二系統(1304,1309,1310)は、所定の指示の有無に関わらず、通常の分析動作を行う。これにより、通常の分析動作を継続しつつ、第一系統の動作が停止した状態を構築できるため、通常の分析動作中であっても、追加試薬保管部1303に対して試薬の追加または交換が可能となる。
 なお、図13の例では、第一系統には、第二系統の試薬分注機構1309および試薬攪拌機構1310の可動領域1312が達しないため、第一系統の動作が停止状態である限り、追加試薬保管部1303に対して試薬の追加または交換が可能となる。ただし、自動分析装置によって、第一系統に、第二系統の試薬分注機構1309および試薬攪拌機構1310の可動領域1312が達する場合も考えられる。この観点から、追加試薬保管部1303は、第一系統の試薬分注機構1307および試薬攪拌機構1308の可動領域1313内で、かつ、第二系統の試薬分注機構1309および試薬攪拌機構1310の可動領域1312を除く領域に配置される必要がある。
 図14Aは、図13の自動分析装置に装着されるカバーの構成例を示す平面図であり、図14Bは、図14Aの斜視図である。実施の形態1の場合と同様に、自動分析装置1301には、それぞれ別のインターロック機構を有する全体カバー1401と、追加試薬保管部1303用の個別カバー1402を装着させることが望ましい。これにより、分析動作を停止することなく、追加試薬を投入または交換することが可能となる。
 追加試薬の投入および交換の方法も実施の形態1の場合と同様である。例えば、オペレータが操作部を使って装置にその旨を通知することで、投入または交換が可能になる場合もあれば、自動分析装置1301が、通知の有無に関わらず、自身の情報に基づいて投入または交換可能な状態(例えば、個別カバー1402のロック解除状態)にする場合もある。後者に関して、具体的には、例えば、第二系統の試薬保冷ユニット1304内に保管された試薬の一つが全て消費されることが予測される場合や、装置に登録された分析項目に対応した試薬が設置されていない場合等が挙げられる。
 また、実施の形態1の場合と同様に、安全性の観点から、個別カバー1402が開くと同時に、第一系統と第二系統の間を物理的に遮蔽するガード部材が出現する機構を設置しておくことが望ましい。試薬情報に関しても、追加試薬投入時に登録された、試薬ラベル204(図2)に基づく試薬の装置設置履歴や残分析可能数などの情報が、当該試薬を追加試薬保管部1303から通常試薬保管部1302へ移設する際に引き継がれることが望ましい。
 図15Aおよび図15Bは、ガード部材の構成例を示す模式図である。図15Aには、個別カバー1402を閉じた状態での、自動分析装置1301の平面構成例と、そのA-A’間の断面構成例とが示される。図15Aにおいて、自動分析装置1301におけるユニット搭載面1502を挟んだ下部には、板状のガード部材1501が設けられる。当該ガード部材1501は、個別カバー1402における試薬保冷ユニット1304側の辺の下部に位置するように設けられる。言い換えれば、ガード部材1501は、第一系統の試薬保冷ユニット1311と、第二系統の試薬保冷ユニット1304の境界ラインかつユニット搭載面を挟んだ下部に設けられる。
 図15Bには、個別カバー1402を開いた状態での、自動分析装置1301の平面構成例と、そのB-B’間の断面構成例とが示される。図15Bに示されるように、個別カバー1402を開くと、それに連動して、ガード部材1501がユニット搭載面502を挟んだ上部に出現する。その結果、ユニット搭載面502を挟んだ上部において、第一系統と第二系統は、ガード部材1501によって物理的に遮蔽される。なお、ここでは、板状のガード部材1501を用いたが、例えば、扇子状に開閉するガード部材等を用いてもよい。
 《自動分析装置全体の概略構成(各種変形例)》
 図16および図17のそれぞれは、図13の自動分析装置を変形した各種構成例を示す模式図である。図16の自動分析装置1601では、図13の構成例と異なり、図4の場合と同様に、試薬攪拌機構1308,1310がそれぞれ試薬保冷ユニット1311,1304上に設置される。図17の自動分析装置1701では、図13の構成例と異なり、図5の場合と同様に、試薬攪拌機構1308,1310が設けられない。
 《実施の形態5の主要な効果》
 以上、実施の形態5の方式を用いることで、実施の形態1の場合と同様の効果が得られる。さらに、試薬保冷ユニット、試薬分注機構、および試薬攪拌機構を2系統有することで、通常の分析動作をより効率的に行うことが可能になり、その上で、追加試薬の投入または交換を、通常の分析動作を継続しつつ行うことが可能になる。また、追加試薬保管部1303は、実施の形態1の場合のような追加試薬専用の領域ではなく、通常の分析動作用の領域としても使用できるため、スペースをより効率的に使用することができる。
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、前述した実施の形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 101:自動分析装置、102:検体ラック、103:ラック搬送ライン、104:試薬保冷ユニット、105:インキュベータディスク、106:試料分注機構、107:試薬分注機構、108:試薬攪拌機構、109:消耗品搬送ユニット、110:検出部ユニット、111:追加試薬保管部、112:サンプル容器、113:試薬容器、114:試薬ディスクカバー、115:反応容器、116:反応容器配置部、117:消耗品収納容器、118:収納容器保持部、119:搬送機構、120:廃棄孔、121:分注チップ、122:チップ装着位置、123:追加の試薬容器、130:通常試薬保管部、131:可動領域、132:通常可動領域、204:試薬ラベル、205:読み取り部、301:全体カバー、302:個別カバー、602:追加試薬保持部、801:追加試薬保持部、802:アダプタ部材、901:追加試薬保持部、1002:試薬分注機構、1004:試薬保冷ユニット、1006:追加試薬保管部、1007:追加試薬保持部、1008:通常試薬保管部、1101:全体カバー、1102:個別カバー、1202:追加の試薬容器、1203:試薬保冷ユニット、1204:試薬容器、1205:試薬分注機構、1207:追加試薬保管部、1208:追加試薬保持部、1302:通常試薬保管部、1303:追加試薬保管部、1304:試薬保冷ユニット、1305:反応容器、1306:インキュベータディスク、1307:試薬分注機構、1309:試薬分注機構、1311:試薬保冷ユニット、1312:可動領域、1313:可動領域、1401:全体カバー、1402:個別カバー、1501:ガード部材、1601:自動分析装置、1701:自動分析装置

Claims (19)

  1.  試薬が収容された試薬容器の中から前記試薬を分注する分注機構と、
     前記分注機構の可動領域の一部となる通常可動領域内に位置し、前記試薬容器を保管する第1の保管領域と、
     前記分注機構の前記可動領域の中で前記通常可動領域を除く領域内に位置し、前記試薬容器を保管する第2の保管領域と、
    を有し、
     前記分注機構は、通常動作の際には前記通常可動領域内でのアクセス動作を行い、所定の指示を受けた際には前記第2の保管領域へのアクセス動作を行う、
    自動分析装置。
  2.  請求項1記載の自動分析装置において、
     動作中の前記自動分析装置に対する手作業を防止し、開閉に応じて所定の安全機能を作動させる全体カバーと、
     前記第2の保管領域に対する手作業の出入り口となり、前記全体カバーを閉じた状態で開閉を行うことが可能な個別カバーと、
    を有する、
    自動分析装置。
  3.  請求項2記載の自動分析装置において、
     前記第2の保管領域を他の領域から遮蔽するか否かを切り替え可能な機構を含み、遮蔽した状態で当該他の領域から前記第2の保管領域へのアクセス動作を物理的に防止するためのガード部材を有する、
    自動分析装置。
  4.  請求項1記載の自動分析装置において、
     前記自動分析装置の有する情報にもとづいて、前記第2の保管領域へのアクセス動作の有無が変更可能となっている、
    自動分析装置。
  5.  請求項4記載の自動分析装置において、
     前記自動分析装置の有する情報は、少なくとも一つの前記試薬の残量が一定以下となったことを示す情報か、前記自動分析装置に登録された分析依頼項目に対応する前記試薬が使用不可能であることを示す情報か、前記第2の保管領域に追加の前記試薬が設置されたことを示す情報のうちの少なくとも何れか一つの情報である、
    自動分析装置。
  6.  請求項2記載の自動分析装置において、
     前記自動分析装置の有する情報にもとづいて、前記第2の保管領域へのアクセス動作の有無が変更可能となっている、
    自動分析装置。
  7.  請求項6記載の自動分析装置において、
     前記自動分析装置の有する情報は、前記個別カバーが開いた状態を示す情報か、前記個別カバーのロックを解除した状態を示す情報のうちの少なくとも何れか一つの情報である、
    自動分析装置。
  8.  請求項2記載の自動分析装置において、
     前記自動分析装置は、自身の情報に基づいて前記個別カバーのロックを解除する、
    自動分析装置。
  9.  請求項1記載の自動分析装置において、
     前記第1の保管領域と前記第2の保管領域の温度を共通に制御する温度調整機構を備える、
    自動分析装置。
  10.  請求項1記載の自動分析装置において、
     前記第1の保管領域の温度を制御する第1の温度調整機構と、
     前記第2の保管領域の温度を制御する第2の温度調整機構と、
    を有する、
    自動分析装置。
  11.  請求項1記載の自動分析装置において、
     前記試薬容器は、内部に収容された試薬の情報を表すラベルを備え、
     前記自動分析装置は、前記第1の保管領域および前記第2の保管領域に保管された前記試薬容器の前記ラベルを読み取る単数または複数の読み取り部を有する、
    自動分析装置。
  12.  請求項11記載の自動分析装置において、
     前記試薬の情報は、前記試薬容器が前記自動分析装置に設置された履歴の有無の情報か、前記試薬容器における残分析可能数の情報のうちの少なくとも何れか一つの情報である、
    自動分析装置。
  13.  請求項1記載の自動分析装置において、
     前記分注機構は、平面上の回転運動によって前記第1の保管領域および前記2の保管領域へのアクセス動作を行う、
    自動分析装置。
  14.  請求項13記載の自動分析装置において、
     前記分注機構は、前記回転運動に伴う回転軸を複数備える、
    自動分析装置。
  15.  請求項1記載の自動分析装置において、
     前記分注機構は、平面上の直線運動によって前記第1の保管領域および前記2の保管領域へのアクセス動作を行う、
    自動分析装置。
  16.  請求項1記載の自動分析装置において、
     前記分注機構は、平面上の直線運動と当該平面の鉛直方向への直線運動との組み合わせによって前記第1の保管領域および前記2の保管領域へのアクセス動作を行う、
    自動分析装置。
  17.  請求項1記載の自動分析装置において、
     前記第2の保管領域には、さらに、分析対象となる試料が収容された試料容器が保管可能となっている、
    自動分析装置。
  18.  請求項1記載の自動分析装置において、
     前記第1の保管領域と、前記第1の保管領域へのアクセス動作を行う前記分注機構との組み合わせを、少なくとも二対備える、
    自動分析装置。
  19.  内部に試薬が収容された試薬容器の中から前記試薬を分注する第1の分注機構および第2の分注機構と、
     前記第1の分注機構の可動領域となる第1の可動領域内に位置し、前記試薬容器を保管する第1の保管領域と、
     前記第2の分注機構の可動領域となる第2の可動領域内で、かつ前記第1の可動領域を除く領域内に位置し、前記試薬容器を保管する第2の保管領域と、
    を有し、
     前記第2の分注機構は、通常動作の際には前記第2の可動領域内でのアクセス動作を行い、所定の指示を受けた際には当該アクセス動作を停止し、
     前記第1の分注機構は、前記所定の指示の有無に関わらず、前記第1の可動領域内でのアクセス動作を行う、
    自動分析装置。
PCT/JP2018/023577 2017-09-13 2018-06-21 自動分析装置 WO2019053991A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18855209.5A EP3683581B1 (en) 2017-09-13 2018-06-21 Automatic analysis device
US16/641,349 US11639943B2 (en) 2017-09-13 2018-06-21 Automatic analysis device
CN201880058582.5A CN111094994B (zh) 2017-09-13 2018-06-21 自动分析装置
JP2019541661A JP6768163B2 (ja) 2017-09-13 2018-06-21 自動分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017175685 2017-09-13
JP2017-175685 2017-09-13

Publications (1)

Publication Number Publication Date
WO2019053991A1 true WO2019053991A1 (ja) 2019-03-21

Family

ID=65722621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023577 WO2019053991A1 (ja) 2017-09-13 2018-06-21 自動分析装置

Country Status (5)

Country Link
US (1) US11639943B2 (ja)
EP (1) EP3683581B1 (ja)
JP (1) JP6768163B2 (ja)
CN (1) CN111094994B (ja)
WO (1) WO2019053991A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112326649A (zh) * 2020-11-17 2021-02-05 河北凯恩德软件开发有限公司 一种免用尿常规检测试纸进行尿常规检测的装置及方法
CN112858712A (zh) * 2019-11-28 2021-05-28 深圳市帝迈生物技术有限公司 试剂信息的导入方法、样本检测设备以及存储介质
CN113711053A (zh) * 2019-04-26 2021-11-26 株式会社日立高新技术 自动分析装置
WO2021255995A1 (ja) * 2020-06-19 2021-12-23 株式会社日立ハイテク 自動分析装置
US11639943B2 (en) 2017-09-13 2023-05-02 Hitachi High-Tech Corporation Automatic analysis device
WO2023176094A1 (ja) * 2022-03-17 2023-09-21 株式会社日立ハイテク 自動分析装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207944A (ja) * 1993-01-11 1994-07-26 Hitachi Ltd 洗浄機能付き自動分析装置
US5334349A (en) * 1992-07-16 1994-08-02 Schiapparelli Biosystems, Inc. Liquid transfer module for a chemical analyzer
JP2006250958A (ja) * 2006-06-26 2006-09-21 Hitachi High-Technologies Corp 自動分析装置
US20060239860A1 (en) * 2005-04-26 2006-10-26 Timothy Patrick Evers Method and apparatus for aspirating and dispensing small liquid samples in an automated clinical analyzer
JP2008032688A (ja) * 2006-06-30 2008-02-14 Sysmex Corp 試料分析装置
JP2008216173A (ja) * 2007-03-07 2008-09-18 Toshiba Corp 自動分析装置
JP2008224384A (ja) * 2007-03-12 2008-09-25 Olympus Corp 分析装置および分析方法
JP2012132925A (ja) 2005-05-04 2012-07-12 Abbott Lab 自動試験システム用の試薬およびサンプル処理装置
JP2012189611A (ja) 2009-07-29 2012-10-04 F. Hoffmann-La Roche Ag 自動分析器
JP2013152240A (ja) * 2013-04-01 2013-08-08 Toshiba Corp 自動分析装置
JP2013174536A (ja) * 2012-02-27 2013-09-05 Hitachi High-Technologies Corp 自動分析装置
JP2016161295A (ja) 2015-02-26 2016-09-05 株式会社日立ハイテクノロジーズ 自動分析装置及び試料希釈攪拌方法
JP2016176777A (ja) * 2015-03-19 2016-10-06 株式会社日立ハイテクノロジーズ 自動分析装置及び自動分析方法並びに自動分析システム

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708886A (en) * 1985-02-27 1987-11-24 Fisher Scientific Company Analysis system
DE3683573D1 (de) 1985-06-26 1992-03-05 Japan Tectron Instr Corp Automatischer analysenapparat.
JPS6366466A (ja) 1986-09-08 1988-03-25 Shimadzu Corp デイスクリ−ト型自動分析装置
JPS63229371A (ja) 1987-03-19 1988-09-26 Nittec Co Ltd 自動分析装置
JP2539512B2 (ja) 1989-07-17 1996-10-02 株式会社日立製作所 複数項目分析装置およびその分析装置を動作させる方法
JP2834200B2 (ja) * 1989-08-02 1998-12-09 株式会社日立製作所 液体試料の分析装置および分析方法
US6190617B1 (en) * 1992-03-27 2001-02-20 Abbott Laboratories Sample container segment assembly
JP2705471B2 (ja) 1992-06-30 1998-01-28 株式会社島津製作所 自動分析装置
US5357095A (en) 1992-07-16 1994-10-18 Schiapparelli Biosystems, Inc. Reagent bottle identification and reagent monitoring system for a chemical analyzer
JP2826236B2 (ja) 1992-09-04 1998-11-18 株式会社日立製作所 自動分析装置における試料処理方法
US5897837A (en) * 1997-02-06 1999-04-27 Toa Medical Electronics Co., Ltd. Dispensing device and Immunoassay apparatus using the same
JP4299403B2 (ja) * 1999-06-01 2009-07-22 シスメックス株式会社 自動分析装置
US6825041B2 (en) * 2001-03-16 2004-11-30 Beckman Coulter, Inc. Method and system for automated immunochemistry analysis
JP4130905B2 (ja) * 2003-06-23 2008-08-13 株式会社日立ハイテクノロジーズ 自動分析装置
JP4033060B2 (ja) * 2003-07-17 2008-01-16 株式会社日立ハイテクノロジーズ 自動分析装置
US7220385B2 (en) * 2003-07-18 2007-05-22 Bio-Rad Laboratories, Inc. System and method for multi-analyte detection
JP4110101B2 (ja) * 2004-01-28 2008-07-02 株式会社日立ハイテクノロジーズ 自動分析装置
US9341640B2 (en) 2005-04-01 2016-05-17 Mitsubishi Kagaku Iatron, Inc. Apparatus for multiple automatic analysis of biosamples, method for autoanalysis, and reaction cuvette
JP2006337386A (ja) * 2006-09-25 2006-12-14 Hitachi High-Technologies Corp 自動分析装置
JP5032088B2 (ja) * 2006-10-10 2012-09-26 シスメックス株式会社 分析装置および試薬収容具
JP5094222B2 (ja) * 2007-06-15 2012-12-12 シスメックス株式会社 試料分析装置および試料分析方法
JP4558017B2 (ja) * 2007-07-31 2010-10-06 株式会社日立ハイテクノロジーズ 自動分析装置および自動分析装置の使用方法
US8691149B2 (en) * 2007-11-06 2014-04-08 Abbott Laboratories System for automatically loading immunoassay analyzer
JP5286120B2 (ja) 2009-03-18 2013-09-11 株式会社日立ハイテクノロジーズ 自動分析装置
CN102378915B (zh) 2009-04-09 2014-11-26 株式会社日立高新技术 自动分析装置以及分注装置
JP2011027663A (ja) * 2009-07-29 2011-02-10 Hitachi High-Technologies Corp 自動分析装置
JP5340975B2 (ja) * 2010-01-29 2013-11-13 株式会社日立ハイテクノロジーズ 自動分析装置
JP5393535B2 (ja) * 2010-02-26 2014-01-22 シスメックス株式会社 検体処理装置
DE102010043712B4 (de) 2010-11-10 2021-03-18 Siemens Healthcare Gmbh Verfahren zur Ermittlung des Wertes einer Röhrenspannung, Röntgeneinrichtung, Rechenprogramm und Datenträger
EP2546655B1 (en) * 2011-07-13 2019-12-04 F. Hoffmann-La Roche AG Instrument and process for the automated processing of liquid samples
JP5178891B2 (ja) * 2011-08-23 2013-04-10 株式会社日立ハイテクノロジーズ 自動分析装置
JP5593291B2 (ja) 2011-09-21 2014-09-17 株式会社日立ハイテクノロジーズ 自動分析装置
JP6026753B2 (ja) * 2012-02-23 2016-11-16 株式会社日立ハイテクノロジーズ 自動分析装置
JP6032672B2 (ja) * 2013-01-11 2016-11-30 株式会社日立ハイテクノロジーズ 自動分析装置
JP6161909B2 (ja) * 2013-01-29 2017-07-12 株式会社日立ハイテクノロジーズ 自動分析装置
US10656169B2 (en) 2014-05-29 2020-05-19 Siemens Healthcare Diagnostics Inc. Method and apparatus for reducing carryover of reagents and samples in analytical testing
JP6429753B2 (ja) * 2015-09-07 2018-11-28 日本電子株式会社 自動分析装置及び自動分析方法
JP6660861B2 (ja) 2016-09-26 2020-03-11 株式会社日立ハイテクノロジーズ 自動分析装置
US11340241B2 (en) 2017-02-22 2022-05-24 Hitachi High-Tech Corporation Automated analyzer
JP6830412B2 (ja) 2017-06-14 2021-02-17 株式会社日立ハイテク 試験キット、試験方法、分注装置
EP3683581B1 (en) 2017-09-13 2024-01-24 Hitachi High-Technologies Corporation Automatic analysis device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334349A (en) * 1992-07-16 1994-08-02 Schiapparelli Biosystems, Inc. Liquid transfer module for a chemical analyzer
JPH06207944A (ja) * 1993-01-11 1994-07-26 Hitachi Ltd 洗浄機能付き自動分析装置
US20060239860A1 (en) * 2005-04-26 2006-10-26 Timothy Patrick Evers Method and apparatus for aspirating and dispensing small liquid samples in an automated clinical analyzer
JP2012132925A (ja) 2005-05-04 2012-07-12 Abbott Lab 自動試験システム用の試薬およびサンプル処理装置
JP2006250958A (ja) * 2006-06-26 2006-09-21 Hitachi High-Technologies Corp 自動分析装置
JP2008032688A (ja) * 2006-06-30 2008-02-14 Sysmex Corp 試料分析装置
JP2008216173A (ja) * 2007-03-07 2008-09-18 Toshiba Corp 自動分析装置
JP2008224384A (ja) * 2007-03-12 2008-09-25 Olympus Corp 分析装置および分析方法
JP2012189611A (ja) 2009-07-29 2012-10-04 F. Hoffmann-La Roche Ag 自動分析器
JP2013174536A (ja) * 2012-02-27 2013-09-05 Hitachi High-Technologies Corp 自動分析装置
JP2013152240A (ja) * 2013-04-01 2013-08-08 Toshiba Corp 自動分析装置
JP2016161295A (ja) 2015-02-26 2016-09-05 株式会社日立ハイテクノロジーズ 自動分析装置及び試料希釈攪拌方法
JP2016176777A (ja) * 2015-03-19 2016-10-06 株式会社日立ハイテクノロジーズ 自動分析装置及び自動分析方法並びに自動分析システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3683581A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11639943B2 (en) 2017-09-13 2023-05-02 Hitachi High-Tech Corporation Automatic analysis device
CN113711053A (zh) * 2019-04-26 2021-11-26 株式会社日立高新技术 自动分析装置
EP3961223A4 (en) * 2019-04-26 2023-01-25 Hitachi High-Tech Corporation AUTOMATIC ANALYZER
CN112858712A (zh) * 2019-11-28 2021-05-28 深圳市帝迈生物技术有限公司 试剂信息的导入方法、样本检测设备以及存储介质
WO2021255995A1 (ja) * 2020-06-19 2021-12-23 株式会社日立ハイテク 自動分析装置
JP7478237B2 (ja) 2020-06-19 2024-05-02 株式会社日立ハイテク 自動分析装置
EP4170350A4 (en) * 2020-06-19 2024-07-03 Hitachi High Tech Corp AUTOMATIC ANALYSIS DEVICE
CN112326649A (zh) * 2020-11-17 2021-02-05 河北凯恩德软件开发有限公司 一种免用尿常规检测试纸进行尿常规检测的装置及方法
WO2023176094A1 (ja) * 2022-03-17 2023-09-21 株式会社日立ハイテク 自動分析装置

Also Published As

Publication number Publication date
US20200241029A1 (en) 2020-07-30
CN111094994A (zh) 2020-05-01
CN111094994B (zh) 2023-05-30
JPWO2019053991A1 (ja) 2020-08-27
EP3683581A1 (en) 2020-07-22
JP6768163B2 (ja) 2020-10-14
EP3683581B1 (en) 2024-01-24
US11639943B2 (en) 2023-05-02
EP3683581A4 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
JP6768163B2 (ja) 自動分析装置
JP6333756B2 (ja) 試薬の在庫品を管理するためのシステム
US20140356233A1 (en) Automatic analysis device and reagent processing method in automatic analysis device
JP2005030855A (ja) 検査装置
JP5898972B2 (ja) 自動分析装置
WO2018155190A1 (ja) 自動分析装置
JP2019215355A (ja) 自動分析装置
JP6054642B2 (ja) 自動分析装置
JP2021193402A (ja) 自動分析装置
JP7053898B2 (ja) 自動分析システムおよび検体の搬送方法
EP4170350A1 (en) Automatic analysis device
WO2016203919A1 (ja) 自動分析装置
CN116745624A (zh) 自动分析装置及自动分析装置的控制方法
JP7062781B2 (ja) 自動分析装置
WO2023171092A1 (ja) 自動分析装置
WO2022137989A1 (ja) 自動分析装置および自動分析装置における試薬の保管方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541661

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018855209

Country of ref document: EP

Effective date: 20200414