以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において同一部には原則として同一符号を付し、繰り返しの説明は省略する。なお、説明上、X方向、Y方向、Z方向を用いる。X方向およびY方向は、水平面を構成する2つの方向であり、X方向は、装置の前面に対する左右方向や幅方向に対応し、Y方向は、装置の前後方向や奥行き方向に対応する。Z方向は、鉛直方向であり、装置の上下方向、高さ方向に対応する。装置の前面は、利用者が標準的な利用位置で正対する面である。
[課題等]
前提技術や課題等について補足説明する。図28および図29は、実施の形態に対する比較例の自動分析装置における外観構造部品の構成例を示す。図28は、単体方式の自動分析装置における上面(X-Y面)の構成概要を示す。図28の(A)は、第1タイプとして生化学分析用の自動分析装置91Aの場合を示す。図28の(B)は、第2タイプとして免疫分析用の自動分析装置91Bの場合を示す。
図28の(A)で、自動分析装置91Aは、主に、生化学分析用の分析モジュール90Aで構成されている。分析モジュール90Aは、制御部、操作部、分析部(特に生化学分析部)、検体搬送部等の構成要素が統合的に実装されている。自動分析装置91Aは、外観構造部品93として、分析モジュール90Aの側面(Y-Z面)に取り付けられる側面カバーである外観構造部品93-1,93-2を有する。分析モジュール90Aの右側の側面s1に、右側の外観構造部品93-1が取り付けられ、分析モジュール90Aの左側の側面s2に、左側の外観構造部品93-2が取り付けられている。これらの2つの外観構造部品93-1,93-2は、異なる固有の形状等を持つ異なる部品であり、種類の違いをわかりやすく示すために、記号A,Bでも示す。
図28の(B)で、自動分析装置91Bは、主に、免疫分析用の分析モジュール90Bで構成されている。分析モジュール90Bは、制御部、操作部、分析部(特に免疫分析部)、検体搬送部等の構成要素が統合的に実装されている。自動分析装置91Bは、外観構造部品93として、分析モジュール90Bの側面に取り付けられる側面カバーである外観構造部品93-3,93-4を有する。分析モジュール90Bの右側の側面s3に、右側の外観構造部品93-3が取り付けられ、分析モジュール90Bの左側の側面s4に、左側の外観構造部品93-4が取り付けられている。これらの2つの外観構造部品93-3,93-4は、異なる固有の形状等を持つ異なる部品であり、わかりやすく示すために、記号C,Dでも示す。
上記のように、比較例の単体方式の第1タイプの自動分析装置91Aおよび第2タイプの自動分析装置91Bは、外観構造部品93として、4種類{A,B,C,D}の外観構造部品93-1~93-4が必要である。単体の分析モジュールの種類がさらに増える場合には、その種類に応じた外観構造部品93が必要である。
図29は、組合せ方式の自動分析装置における上面(X-Y面)の構成概要を示す。図29の(A)は、第1タイプの自動分析装置91Cの場合を示す。図29の(B)は、第2タイプの自動分析装置91Dの場合を示す。図29の(C)は、第3タイプの自動分析装置91Eの場合を示す。
図29の(A)で、自動分析装置91Cは、主に、操作モジュール94と、生化学分析用の分析モジュール92Aと、免疫分析用の分析モジュール92Bとで構成されている。X方向で中央に配置された操作モジュール94に対し、右側に分析モジュール92A、左側に分析モジュール92Bが配置されている。
操作モジュール94は、制御部、操作部、検体搬送部等の構成要素が実装されている。分析モジュール92Aは、生化学分析用の分析部が実装されている。分析モジュール92Bは、免疫分析用の分析部が実装されている。分析部は、分注によって検体と試薬とを混合した反応液を作成し、光度計等を用いて反応液を測定する部分であり、検体分注機構や試薬分注機構等を備える。
自動分析装置91Cは、外観構造部品93として、分析モジュール92Aの右側の側面s5に取り付けられる側面カバーである外観構造部品93-5と、分析モジュール92Bの左側の側面s6に取り付けられる側面カバーである外観構造部品93-6とを有する。2つの外観構造部品93-5,93-6は、形状等が異なる部品であり、記号E,Fでも示す。
図29の(B)で、自動分析装置91Dは、主に、操作モジュール94と、生化学分析用の分析モジュール92Aとで構成されている。操作モジュール94に対し、X方向で右側に分析モジュール92Aが配置されている。自動分析装置91Dは、外観構造部品93として、分析モジュール92Aの右側の側面s5に取り付けられる側面カバーである外観構造部品93-5と、操作モジュール94の左側の側面s8に取り付けられる側面カバーである外観構造部品93-7とを有する。2つの外観構造部品93-5,93-7は、形状等が異なる部品であり、記号E,Gでも示す。なお、(A)の分析モジュール92Aと(B)の分析モジュール92Aとは同じであるから、同じ種類{E}の外観構造部品93-5が適用できる。
図29の(C)で、自動分析装置91Eは、主に、操作モジュール94と、免疫分析用の分析モジュール92Bとで構成されている。操作モジュール94に対し、X方向で左側に分析モジュール92Bが配置されている。自動分析装置91Eは、外観構造部品93として、分析モジュール92Bの左側の側面s6に取り付けられる側面カバーである外観構造部品93-6と、操作モジュール94の右側の側面s7に取り付けられる側面カバーである外観構造部品93-8とを有する。2つの外観構造部品93-6,93-8は、形状等が異なる部品であり、記号F,Hでも示す。なお、(A)の分析モジュール92Bと(C)の分析モジュール92Bとは同じであるから、同じ種類{F}の外観構造部品93-6が適用できる。
上記のように、比較例の組合せ方式の第1タイプの自動分析装置91C、第2タイプの自動分析装置91D、および第3タイプの自動分析装置91Eは、外観構造部品93として、4種類{E,F,G,H}の外観構造部品93(93-5~93-8)が必要である。4種類の外観構造部品93は、分析モジュール92Aの右側の外観構造部品93-5、分析モジュール92Bの左側の外観構造部品93-6、操作モジュール4の右側の外観構造部品93-8、および操作モジュール4の左側の外観構造部品93-7である。組合せ可能なモジュールの種類がさらに増える場合には、その種類に応じて必要な外観構造部品93の種類が増える。
上記のように、単体方式および組合せ方式の自動分析装置は、仕様やタイプ毎、モジュール毎に、複数の外観構造部品93が必要である。各タイプの自動分析装置を構成するための各モジュールは、仕様や分析種類、および機能の実装に応じて、形状やサイズ、側面や前面の構造等が異なる。そのため、それらに応じた固有の形状等を持つ複数の種類の外観構造部品93が必要となる。複数の自動分析装置を含む全体でみると、事業者は、多くの種類および対応する数の外観構造部品93を取り扱う必要があり、それらの複数の外観構造部品93の製造や管理等が必要である。これは、事業者によるモジュールおよび外観構造部品の製造や管理のコストやロジスティクス等において大きな負担となる。利用者の環境に新たに自動分析装置を設置する場合や、自動分析装置の構成を変更する場合や、自動分析装置を撤去する場合等には、事業者や利用者による保守作業が必要である。その保守作業の際にも、多くの外観構造部品を区別して扱わなければならないので、作業者の負担が大きい。
また、組合せ方式の自動分析装置では、組合せに応じた複数のタイプの装置構成が可能であり、利用者のニーズに応じてタイプの選択や変更が可能である。しかしながら、各タイプの装置構成に応じて、不要となる外観構造部品が生じる場合や、新たに必要となる外観構造部品が生じる場合がある。これらの場合にも、その外観構造部品に関する管理のコストやロジスティクスにおいて負担が生じる。例えば、図29の(B)の第2タイプの自動分析装置91Dから、図29の(A)の第1タイプの自動分析装置91Cに変更される場合、操作モジュール94の一方の側面s8に取り付けられていた外観構造部品93-7が不要となり、追加で接続された分析モジュール92Bの一方の側面s6に新たに取り付ける外観構造部品93-6が必要となる。
(実施の形態)
図1~図32を用いて、本発明の実施の形態の自動分析装置について説明する。実施の形態の自動分析装置は、単体方式の各タイプの自動分析装置と、モジュール・アセンブリ方式の各タイプの自動分析装置とを有する。これらの各タイプの自動分析装置は、モジュールや外観構造部品の選択や組合せに応じて構成される。単体方式の各タイプの自動分析装置を構成するモジュールまたは本体は、事業者が提供する仕様、分析種類の少なくともいずれかに応じて異なる単体方式用の複数の種類のモジュールまたは本体から選択される1つのモジュールまたは本体である。組合せ方式の各タイプの自動分析装置を構成する複数のモジュールは、事業者が提供する仕様、分析種類の少なくともいずれかに応じて異なる組合せ方式用の複数の種類のモジュールから選択される複数のモジュールである。各タイプの自動分析装置は、複数個の外観構造部品として少なくとも側面カバーが取り付けられる。実施の形態における各タイプの自動分析装置は、複数の箇所に取り付けられる複数個の外観構造部品について、共通化の仕組みを有する。各タイプの自動分析装置は、複数の箇所の外観構造部品が、共通化された少ない種類の外観構造部品を用いて構成される。事業者は、共通化された外観構造部品を用いて、各タイプの自動分析装置における好適な外観を容易に構成できる。各タイプの自動分析装置を含む全体は、外観構造部品とモジュール側の構造とを含め、共通化方式として設計されている。これにより、事業者および利用者は、複数の各タイプの自動分析装置に関して、少ない種類の外観構造部品を扱えばよく、製造や管理のコストやロジスティクスの負担が低減される。
[自動分析装置(1)-単体方式]
図1および図2は、実施の形態の単体方式の自動分析装置1の概要の斜視図を示す。図1は、単体方式の第1タイプとして生化学分析用の自動分析装置1Aを示す。図2は、単体方式の第2タイプとして、免疫分析用の自動分析装置1Bを示す。なお、図1等では、わかりやすいように、モジュールと外観構造部品3との間に隙間を設けて図示しているが、実装例では隙間無く配置可能である。また、図1等では、上部カバー等の図示を省略している。
図1で、自動分析装置1Aは、主に、生化学分析用の分析モジュール2Aで構成されている。分析モジュール2Aには、制御部、操作部、生化学分析機能を持つ分析部、検体搬送部、等の各構成要素が実装されている。分析モジュール2AのX方向の右側の側面SS1および左側の側面SS2には、外観構造部品3が取り付けられている。外観構造部品3は、右側の外観構造部品31と、左側の外観構造部品32とがある。後述の第1共通化方式の場合には、外観構造部品31は、右側共通の外観構造部品3aが適用され、外観構造部品32は、左側共通の外観構造部品3bが適用される。後述の第2共通化方式の場合には、外観構造部品31および外観構造部品32は、左右共通の外観構造部品3cが適用される。
図2で、自動分析装置1Bは、主に、免疫分析用の分析モジュール2Bで構成されている。分析モジュール2Bには、制御部、操作部、免疫分析機能を持つ分析部、検体搬送部、等の各構成要素が実装されている。分析モジュール2BのX方向の右側の側面SS3および左側の側面SS4には、外観構造部品3が取り付けられている。外観構造部品3は、右側の外観構造部品33と、左側の外観構造部品34とがある。後述の第1共通化方式の場合には、外観構造部品33は、右側共通の外観構造部品3aが適用され、外観構造部品34は、左側共通の外観構造部品3bが適用される。後述の第2共通化方式の場合には、外観構造部品33および外観構造部品34は、左右共通の外観構造部品3cが適用される。
外観構造部品3は、モジュールの最も外側に取り付けられ、外観を構成するカバー部材であり、実施の形態では特にモジュールの側面に取り付けられる側面カバーである。他の外観構造部品としては、モジュールの前面に取り付けられる前面カバーや、モジュールの上面を覆うように取り付けられる上部カバーがある。外観構造部品3は、モジュールの側面の機構や部品が露出しないように、モジュールの側面を覆うように取り付けられる。これにより、安全性が確保される。また、外観構造部品3は、自動分析装置1の温度制御、放熱性能等も考慮して、通気や密閉等の構造が設計されている。外観構造部品3は、自動分析装置1の複数の箇所に対し、共通して取り付けおよび取り外しが可能である互換性を持つ部品であり、種類毎に同一の形状やサイズ等を持つ部品である。
[自動分析装置(2)-モジュール・アセンブリ方式]
図3~図5は、実施の形態の自動分析装置1である、モジュール・アセンブリ方式(組合せ方式、複合型)の自動分析装置1の概要構成の斜視図を示す。
図3は、第1タイプの自動分析装置1Cを示す。自動分析装置1Cは、主に、操作モジュール4、生化学分析用の分析モジュール2C、免疫分析用の分析モジュール2Dで構成されている。分析モジュール2Cは、検体に対し分注や測定を含む生化学分析を行うモジュールである。分析モジュール2Dは、検体に対し分注や測定を含む免疫分析を行うモジュールである。
第1タイプの自動分析装置1Cは、特に、X方向で中央に操作モジュール4が配置され、操作モジュール4の右側の側面SS7に対し右側に分析モジュール2Cが配置され、操作モジュール4の左側の側面SS8に対し左側に分析モジュール2Dが配置されている。
操作モジュール4は、制御部、操作部、検体搬送部等の構成要素が実装されている。本例では、操作モジュール4は、特にタッチパネル5を有する。タッチパネル5は、制御部および操作部の一部を構成している。
また、本例では、検体搬送機構に関しては、後述の第1構成例(図10)の場合を示している。この場合、操作モジュール4、分析モジュール2C、および分析モジュール2Dの背面側に、検体搬送部6が実装されている。検体搬送部6は、モジュール間で検体ラック7を搬送する部分である。
分析モジュール2Cには、試薬ディスク、反応ディスク、検体分注機構、試薬分注機構等が実装されている。分析モジュール2Dには、試薬ディスク、インキュベータ、検体分注機構、試薬分注機構等が実装されている。
自動分析装置1Cは、外観構造部品3である側面カバーとして、外観構造部品41,42を有する。分析モジュール2Cの右側の側面SS5に外観構造部品41が取り付けられ、分析モジュール2Dの左側の側面SS6に外観構造部品42が取り付けられている。
後述の第1共通化方式の場合には、外観構造部品41は、右側共通の外観構造部品3eが適用され、外観構造部品42は、左側共通の外観構造部品3fが適用される。後述の第2共通化方式の場合には、外観構造部品41および外観構造部品42は、左右共通の外観構造部品3gが適用される。
なお、変形例の自動分析装置としては、操作モジュール4の右側に分析モジュール2Dが配置され、左側に分析モジュール2Cが配置される構成も同様に可能である。
図4は、第2タイプの自動分析装置1Dを示す。自動分析装置1Dは、主に、操作モジュール4と、生化学分析用の分析モジュール2Cとで構成されている。第2タイプの自動分析装置1Dは、X方向で、操作モジュール4の例えば右側の側面SS7に対し、右側に分析モジュール2Cが配置されている。第2タイプの構成は、第1タイプの構成から、分析モジュール2Dを切り離した構成に相当する。自動分析装置1Dは、外観構造部品3として、外観構造部品43,44を有する。分析モジュール2Cの右側の側面SS5に、右側の外観構造部品43が取り付けられている。操作モジュール4の左側の側面SS8に、左側の外観構造部品44が取り付けられている。
後述の第1共通化方式の場合には、外観構造部品43は、右側共通の外観構造部品3eが適用され、外観構造部品44は、左側共通の外観構造部品3fが適用される。後述の第2共通化方式の場合には、外観構造部品43および外観構造部品44は、左右共通の外観構造部品3gが適用される。
図5は、第3タイプの自動分析装置1Eを示す。自動分析装置1Eは、主に、操作モジュール4と、免疫分析用の分析モジュール2Dとで構成されている。第3タイプの自動分析装置1Eは、X方向で、操作モジュール4の左側の側面SS8に対し、左側に分析モジュール2Dが配置されている。第3タイプの構成は、第1タイプの構成から、分析モジュール2Cを切り離した構成に相当する。自動分析装置1Dは、外観構造部品3として、外観構造部品45,46を有する。分析モジュール2Dの左側の側面SS6に外観構造部品46が取り付けられている。操作モジュール4の右側の側面SS7に外観構造部品45が取り付けられている。
後述の第1共通化方式の場合には、外観構造部品45は、右側共通の外観構造部品3eが適用され、外観構造部品46は、左側共通の外観構造部品3fが適用される。後述の第2共通化方式の場合には、外観構造部品45および外観構造部品46は、左右共通の外観構造部品3gが適用する。
図6の(A),(B)は、変形例の自動分析装置の構成として、組合せ方式における他のタイプの構成例を示す。図6の(A)は、第4タイプの自動分析装置1Fを示し、図6の(B)は、第5タイプの自動分析装置1Gを示す。このようなタイプも同様に可能である。
図6の(A)の第4タイプの自動分析装置1Fは、X方向で、例えば左側から順に、操作モジュール4、免疫分析用の分析モジュール2D、生化学分析用の分析モジュール2Cを有する。操作モジュール4の右側の側面SS7に対し、右側に分析モジュール2Dが配置されている。さらに、分析モジュール2Dの右側の側面SS10に対し、右側に分析モジュール2Cが配置されている。自動分析装置1Fは、外観構造部品3として、外観構造部品47,48を有する。分析モジュール2Cの右側の側面SS5に外観構造部品47が取り付けられ、操作モジュール4の左側の側面SS8に外観構造部品48が取り付けられている。これらの外観構造部品47,48に関しても、同様に共通化が可能である。
図6の(B)の第5タイプの自動分析装置1Gは、X方向で、例えば右側から順に、操作モジュール4、生化学分析用の分析モジュール2C、免疫分析用の分析モジュール2Dを有する。操作モジュール4の左側の側面SS8に対し、左側に分析モジュール2Cが配置されている。さらに、分析モジュール2Cの左側の側面SS9に対し、左側に分析モジュール2Dが配置されている。自動分析装置1Gは、外観構造部品3として、外観構造部品49,50を有する。操作モジュール4の右側の側面SS7に外観構造部品49が取り付けられ、分析モジュール2Dの左側の側面SS6に外観構造部品50が取り付けられている。これらの外観構造部品49,50に関しても、同様に共通化が可能である。
組合せ方式における変形例の自動分析装置として、複数個の同じ種類の分析モジュールを接続する構成も同様に可能である。例えば、操作モジュール4の一方の側面に対し、2つ以上の分析モジュール2Cが直列で接続される構成等が可能である。この構成の場合、同時に分析可能な検体の数を増やすことができる。
[自動分析装置(3)-生化学分析]
図8は、実施の形態の自動分析装置1における、生化学分析用の分析部、制御部、および駆動部等に関する基本構成を示す。図1の自動分析装置1Aの分析モジュール2Aや、図3の自動分析装置1Cの分析モジュール2Cは、図8の基本構成に基づいて構成されている。図8では、自動分析装置1の上面800の付近に配置されている要素や、その要素に対して接続されている、自動分析装置1の内部の駆動部等の要素を示している。
図8の自動分析装置1は、検体ディスク11、反応ディスク12、試薬ディスク13、検体分注機構14、試薬分注機構15、光源16、光度計17、撹拌機構18、洗浄機構19等を備える。
検体ディスク11は、ディスク状の検体容器搬送機構であり、円周上、複数の検体容器を架設し、搬送する。検体ディスク11には、検体ディスク駆動部811が接続されている。検体容器は、血液等の検体を収容する容器である。
反応ディスク12は、ディスク状の反応容器搬送機構であり、円周上、複数の反応容器を架設し、搬送する。反応ディスク12には、反応ディスク駆動部812が接続されている。反応容器(セルとも呼ばれる)は、透光性材料から構成されている。反応容器は、反応ディスク12に接続されている恒温槽によって所定の温度に維持される。
試薬ディスク13は、ディスク状の試薬容器搬送機構であり、円周上、複数の試薬容器を架設し、搬送する。試薬ディスク13には、試薬ディスク駆動部813が接続されている。試薬容器には、分析項目に対応する試薬液が収容されている。
検体分注機構14は、検体ディスク11および反応ディスク12の近傍に配置され、検体ディスク11の検体容器の検体を反応ディスク12の反応容器に分注する機構である。検体分注機構14は、可動アーム、プローブ等を備える。検体分注機構14は、指定された検査項目の分析パラメータ等に従って、検体容器から反応容器へ検体を分注する。検体分注機構14は、対象の検体の分注時には、可動アームによってプローブを検体ディスク11上の所定の分注位置に移動させ、プローブによって検体容器から所定量の検体を吸入する。検体分注機構14は、可動アームによってプローブを反応ディスク12上の所定の分注位置に移動させ、プローブから検体を反応容器内に吐出する。検体分注機構14には、検体分注機構駆動部814が接続されている。
試薬分注機構15は、試薬ディスク13および反応ディスク12の近傍に配置され、試薬ディスク13の試薬容器の試薬を反応ディスク12の反応容器に分注する機構である。試薬分注機構15は、可動アーム、ピペットノズル等を備える。試薬分注機構16は、指定された検査項目の分析パラメータ等に従って、試薬容器から反応容器へ試薬液を分注する。試薬分注機構15は、対象の試薬の分注時には、可動アームによってピペットノズルを試薬ディスク12上の所定の分注位置に移動させ、ピペットノズルによって対象の試薬容器から所定量の試薬を吸入する。試薬分注機構15は、可動アームによってピペットノズルを反応ディスク12上の所定の分注位置に移動させ、ピペットノズルから試薬を反応容器内に吐出する。試薬分注機構15には、試薬分注機構駆動部815が接続されている。
攪拌機構18は、反応ディスク12、試薬ディスク13および試薬分注機構15の近傍の位置に配置されている。攪拌機構18は、反応容器内の検体と試薬との混合液を撹拌して反応を促進し、反応液にする。
光源16と光度計17は、測定部である光検出系を構成している。反応ディスク12の中心付近には光源16が配置され、対応して外周側の所定の位置には光度計17が配置されている。光度計17は、透過光または散乱光を検出する多波長光度計である。反応ディスク12の回転動作に応じて、撹拌後の反応液を含む反応容器は、光源16と光度計17とで挟まれた所定の測光位置を通過する。光度計17は、その測光位置を通過する反応容器の反応液を対象として光学測定を行う。光度計17には、測定回路817が接続されている。測定回路817は、Log変換・アナログデジタル変換器を含む。光度計17によって検体毎に測定された信号(例えば散乱光のアナログ信号)は、測定回路817に入力され、Log変換・アナログデジタル変換器によってLog変換およびアナログデジタル変換が行われる。Log変換は、光量に比例した数値への変換である。測定回路817から、結果のデジタル信号が、制御部100へ送られる。
洗浄機構19は、測定後の使用済みの反応容器の内部を洗浄する。これにより、反応容器は、繰り返しの使用が可能になる。洗浄機構19には、洗浄水ポンプ等の洗浄機構駆動部819が接続されている。
検体ディスク駆動部811等の駆動部は、インタフェース回路850を通じて、制御部100や操作部110等と電気的に接続されている。検体ディスク11等の機構や、検体ディスク駆動部811等の駆動部を含む部分802は、分析モジュール(例えば図3の分析モジュール2C)として実装可能である。
インタフェース回路850には、制御部100、記憶装置103、入力装置104、表示装置105、プリンタ106、電源部107、操作部110等が接続されており、相互に通信可能となっている。制御部100および操作部110等の部分801は、操作モジュール(例えば図3の操作モジュール4)として実装可能である。
制御部100は、IC基板101または計算機102の少なくとも一方で構成されている。制御部100は、自動分析装置1の全体を制御し、自動分析機能を実現する。制御部100は、例えば、各駆動部へ制御信号を送信することで、検体ディスク11等の各部を駆動する。制御部100は、分析の際、操作部110を通じた利用者の操作や、設定情報、分析依頼情報等に基づいて、検体分注機構駆動部814等の各部に指令の制御信号を送ることで、検体分注動作等を制御する。
操作部110は、臨床検査の作業を行う利用者による自動分析装置1の操作を行うための部分である。操作部110は、操作パネルで構成されてもよいし、入力装置104(例えばキーボード等)や表示装置105で構成されてもよいし、特に前述のタッチパネル5で構成されてもよい。操作部110または表示装置105は、操作画面等の表示画面を提供する。利用者は、操作画面を介して、自動分析装置の操作を行うことができる。
予め、操作者は、操作部110の操作画面を通じて、各検体に対して依頼されている検査項目を選択し、分析に必要な各種のパラメータを設定し、患者ID等の検体情報の登録を行う。入力された情報は記憶装置103に保存される。操作者は、操作画面に対し、分析依頼情報や分析開始指示を入力する。
記憶装置103は、内部メモリまたは外部メモリ等で構成され、プログラムや設定情報や各種のデータが記憶される。記憶装置103には、例えば、各種レベルの表示画面データ、分析パラメータ、分析依頼情報、キャリブレーション結果情報、分析結果情報等の情報が記憶される。
制御部100のうち、CPU等のプログラム処理によって構成される分析処理部は、測定回路817から得たデジタル信号を用いて、指定された検査項目の分析処理を行うことで、検体の成分を分析する。その際、分析処理部は、検査項目毎に指定された分析法によって予め測定しておいた検量線に基づいて、成分の濃度データを算出する。分析処理部は、検査項目の分析処理結果情報(成分の濃度データを含む)を、記憶装置103に保存し、表示画面に表示し、プリンタ106を通じて印刷出力する。操作者は、分析結果情報を表示画面等で確認する。
[自動分析装置(4)-免疫分析]
図9は、自動分析装置1Bの免疫分析用の分析モジュール2Bや、自動分析装置1Cの分析モジュール2Dに対応する免疫分析モジュールの基本構成を示す。図9は、分析モジュール2Dの例で、上面(X-Y面)の構成例を示す。分析モジュール2Dは、生化学分析用の分析モジュール2Cとの大きな違いとしては、反応容器や検体分注用チップが使い捨てであり、そのための機構を備えている。
分析モジュール2Dは、上面において、ホルダー21、インキュベータ22、試薬ディスク23、検体分注機構24、試薬分注機構25、搬送機構26、洗浄機構27、シッパー28、反応検出部29等を有する。上面における背面に近い上辺部には、検体ラック収容部8Dが設けられている。検体ラック収容部8Dでは、搬送ライン上、検体搬送部6(図10または図11)から搬送された検体ラック7が収容されている。本例では、分析モジュール2Dの右側の側面SS10の近くにホルダー21や搬送機構26が配置され、左側の側面SS6の近くに試薬ディスク23が配置されている。
ホルダー21毎に、複数の反応容器や複数の検体分注チップが載置されている。反応容器および検体分注用チップは、検体分注で使用された後、廃棄される。分析モジュール2Dの前面の一部には引出し21Bが設けられている。引出し21Bは、利用者の操作によってY方向で引き出し可能となっており、ホルダー21や廃棄品回収箱が収容されている。引出し21Bが閉じられた状態では、搬送機構26からホルダー21へアクセスが可能である。廃棄品回収箱は、搬送機構26の所定の廃棄位置に配置され、その廃棄位置で廃棄された反応容器や検体分注チップを収容する。
搬送機構26は、ホルダー21内の反応容器や検体分注チップを所定の位置へ搬送し、使用済みの反応容器や検体分注チップを所定の廃棄位置(対応する廃棄孔26a)へ搬送する機構である。搬送機構26は、X方向、Y方向、およびZ方向の3軸方向に移動可能な機構である。搬送機構26は、ホルダー21から1つずつ反応容器を把持し、上昇して、インキュベータ22の所定の位置へ移動させ、架設させる。また、搬送機構26は、ホルダー21から1つずつ検体分注チップを把持し、上昇して、所定の装着位置(対応するバッファ26b)へ移動させる。
インキュベータ22は、培養ディスクとも呼ばれ、ディスク状の反応容器架設部であり、円周上に複数の反応容器22Aが架設され、反応容器22Aの回転動作を行う。
試薬ディスク23は、ディスク状の試薬容器搬送機構であり、円周上に複数の試薬ボトルが架設され、試薬ボトルの回転動作を行う。試薬ディスク23は、円筒状の保冷庫を含み、試薬ボトルを一定の温度に制御する。試薬ボトルには、複数の試薬容器23Aが収容されている。試薬容器23Aには、分析可能な項目に応じた試薬液が収容されている。試薬ディスク23は、保冷庫のカバーで覆われており、カバーの一部には、出し入れ口を有し、試薬ボトルおよび試薬容器23Aの出し入れが可能である。出し入れ口は、開閉方式のカバー等によって構成され、インターロック機構を有し、試薬ディスク23の動作中にはロック状態にされる。
検体分注機構24は、可動アームやノズル等を備える。検体分注機構24は、搬送機構26によって装着位置に搬送された検体分注チップを把持し、ノズルに装着する。検体分注機構24は、搬送機構26によって搬送された反応容器を、インキュベータ22の所定の位置に架設する。検体分注機構24は、検体ラック収容部8Cの検体容器の検体を、インキュベータ22の反応容器に分注する。検体分注機構24は、検体分注チップが装着されたノズルを検体容器の上に移動させ、検体分注チップ内に検体を吸引させ、インキュベータ22の反応容器の上へ移動させ、検体分注チップ内から検体をその反応容器内に吐出させる。その後、検体分注機構24は、ノズルを廃棄孔26aの上に移動させ、使用済みの検体分注チップを、廃棄孔26a内に落下させる。また、検体分注機構24は、使用済みの反応容器を、廃棄孔26aの上に移動させ、廃棄孔26a内に落下させる。
試薬分注機構25は、ピペットノズル等を備え、試薬ディスク23の所定の分注位置の試薬容器23Aの試薬を、インキュベータ22の所定の分注位置の反応容器22Aに分注する。試薬分注機構25は、ピペットノズルを対象の試薬容器23Aの上に移動させ、その試薬容器23Aから試薬を吸引させ、ピペットノズルを反応容器22Aの上へ移動させ、反応容器22A内に試薬を吐出させる。
試薬分注機構25は、試薬撹拌機構を含む。試薬撹拌機構は、試薬の分注の直前に、対象の試薬容器の試薬液を攪拌アームによって撹拌する。攪拌後、試薬撹拌機構は、攪拌アームを、洗浄機構27の上へ移動させ、洗浄する。
インキュベータ22の反応容器22A内に検体と試薬液とが分注され、所定の反応時間が経過した後、反応液が形成される。分析モジュール2Dは、ノズルを含むシッパー28によって、反応容器22Aから反応液を吸引し、反応検出部29へ供給する。反応検出部29は、光度計を用いて反応液を光学測定する。
なお、図8の分析モジュール2Cの上面800の破線の領域や、図9の分析モジュール2Dの上面900の破線の領域は、図示しない上部カバーによって覆われる。上部カバーは、例えばY方向で前後に開閉可能な機構を備える。上部カバーは、作業の安全性および分析の信頼性を確保するために、インターロック機構を有する。モジュールの動作中には、上部カバーは、インターロック機構によってロックされ閉じられた状態に保持される。モジュールの動作停止中には、上部カバーは、インターロック機構のロック解除によって、利用者が開けることができる状態となる。
[自動分析装置(5)-第1タイプ-検体搬送機構(1)]
図10の(A)は、組合せ方式の第1タイプの自動分析装置1Cの上面(X-Y面)における、外観構造部品3を含むデザインの構成例を示し、特に検体搬送機構に関する第1構成例を示す。図10の(B)は、検体ラック7と検体容器7Aの概要構成を示す。
図10の(A)で、自動分析装置1Cは、図3と同様に、中央の操作モジュール4、右側の分析モジュール2C、左側の分析モジュール2Dを有する。操作モジュール4、分析モジュール2Cおよび分析モジュール2DのY方向の後側にある背面のZ方向の上部には、検体搬送部6が取り付けられている。検体搬送部6である検体ラック搬送モジュールは、操作モジュール4、分析モジュール2Cおよび分析モジュール2Dの間でX方向に検体ラック7を搬送する機構である。本例では、検体搬送部6には、X方向に延在する1つの搬送ラインが構成されている。その搬送ライン上に検体ラック7が載置され、X方向の左右に搬送される。
図10の(B)のように、検体ラック7には、複数の検体容器7Aが収容されている。検体容器7Aは、検体を収容した容器である。検体は、血液、血漿、血清、尿、その他の体液等の生体試料である。
操作モジュール4は、例えばY方向の中央付近位置に、Z方向に立つ状態で、タッチパネル5が取り付けられている。タッチパネル5は、前述(図8)の制御部100および操作部110の一部が実装されており、操作者に対するグラフィカル・ユーザ・インタフェース(GUI)を提供する。
操作モジュール4は、Y方向の後部に、検体ラック収容部8Aを有する。検体ラック収容部8Aには、複数の検体ラック7が収容されている。利用者は、検体ラック収容部8Aに検体ラック7を収容する。
操作モジュール4は、検体ラック収容部8Aの検体ラック7を、検体搬送部6の搬送ラインへ移送する。検体搬送部6は、その検体ラック7を搬送ラインにおいて移動させ、分析の種類に応じて、分析モジュール2Cの検体ラック収容部8C、または分析モジュール2Dの検体ラック収容部8Dへ搬送させる。分析モジュール2CのY方向の後側の背面近くには、検体ラック収容部8Cが設けられている。分析モジュール2DのY方向の後側の背面近くには、検体ラック収容部8Dが設けられている。
分析モジュール2Cは、検体搬送部6から、対象の検体ラック7または対象の検体容器7Aを受け取り、検体ラック収容部8C内に収容する。分析モジュール2Dは、検体搬送部6から、対象の検体ラック7または対象の検体容器7Aを受け取り、検体ラック収容部8D内に収容する。
分析モジュール2Cの検体分注機構14は、検体ラック収容部8Cの検体容器7Aから、反応ディスク12の反応容器へ、検体を分注する。分析モジュール2Cの試薬分注機構15は、試薬ディスク13の試薬容器から、反応ディスク12の反応容器へ、試薬を分注する。分析モジュール2Dの検体分注機構24は、検体ラック収容部8Dの検体容器7Aから、インキュベータ22の反応容器へ、検体を分注する。分析モジュール2Dの試薬分注機構25は、試薬ディスク23の試薬容器から、インキュベータ22の反応容器へ、試薬を分注する。
分析モジュール2C,2Dの側面には、それぞれ、外観構造部品3である側面カバーが取り付けられている。右側の分析モジュール2Cの右側の側面SS5に対し、外観構造部品41が取り付けられている。左側の分析モジュール2Dの左側の側面SS6に対し、外観構造部品42が取り付けられている。これにより、自動分析装置1Cの側面の外観が構成されている。なお、部品がわかりやすいように、モジュール側面と外観構造部品3との隙間を設けて図示しているが、実際には隙間無く配置が可能である。
[自動分析装置(6)-第1タイプ-検体搬送機構(2)]
図11は、組合せ方式の第1タイプの自動分析装置1Cにおける、外観構造部品3を含むデザインの構成例を示し、特に検体搬送機構に関する第2構成例を示す。第2構成例は、ラックロータ200を用いた検体搬送機構を有する。図11の(A)では概要構成を示し、(B)では特に検体搬送機構に関する詳細を示す。
図11の(A)で、操作モジュール4は、Y方向の中央付近位置にタッチパネル5が設けられ、Y方向の後部には、検体搬送部6を構成するラックロータ200が実装されている。ラックロータ200に対しY方向の前側には、搬送ラインを通じて、検体ラック収容部8Aが設けられている。ラックロータ200に対し、X方向の右側には、搬送ラインを通じて、分析モジュール2Cの検体ラック収容部8Cが設けられ、X方向の左側には、搬送ラインを通じて、分析モジュール2Dの検体ラック収容部8Dが設けられている。
検体ラック7には、種類として、通常検体ラックと、緊急検体ラックとがあってもよい。通常検体ラックは、通常検体が収容された検体容器が収容されている検体ラックである。通常検体は、通常の優先度や緊急度で分析や測定が行われる検体である。緊急検体ラックは、緊急検体が収容された検体容器が収容されている検体ラックである。緊急検体は、通常検体ラックよりも高い優先度や緊急度で分析や測定が行われる検体である。第2構成例における検体ラック収容部8Aは、通常検体ラックと緊急検体ラックとが収容可能である。
分析モジュール2Cの上面の破線の領域は、図示しない上部カバーによって覆われている。分析モジュール2Dの上面の破線の領域は、図示しない上部カバーによって覆われている。分析モジュール2Cの試薬ディスク13の上面の一部には、出し入れ口を覆うようにしてスライド方式のカバーが設けられている。分析モジュール2Dの試薬ディスク23の上面の一部には、出し入れ口を覆うようにしてスライド方式のカバーが設けられている。
図11の(B)は、(A)のラックロータ200とそれに接続されている各部についての詳細構成を示す。検体搬送部6は、ラックロータ200に対し、Y方向の前側に、Y方向に延在する搬送ライン201を有し、X方向の右側に、X方向に延在する搬送ライン202を有し、X方向の左側に、X方向に延在する搬送ライン203を有する。
操作モジュール4は、検体ラック収容部8Aを構成する、検体ラック供給部211、検体ラック供給部212、緊急検体ラック投入部213等を有する。搬送ライン201のX方向の右側に隣接してY方向の前後には、検体ラック供給部211および検体ラック供給部212が配置されている。また、操作モジュール4は、搬送ライン201に隣接して、検体識別装置210、緊急検体ラック投入部213を有する。
分析モジュール2Cは、搬送ライン202を含む検体ラック収容部8Cを有する。検体ラック収容部8Cは、検体ラック退避部221、検体識別装置220を有する。分析モジュール2Dは、搬送ライン203を含む検体ラック収容部8Dを有する。検体ラック収容部8Dは、検体ラック退避部231、検体識別装置230を有する。
ラックロータ200は、円柱形状を有する検体ラック搬送機構であり、円周上に複数の検体ラック7を収容可能である。ラックロータ200は、上面において、円周上の所定の位置に、回転動作可能である1つ以上のスロットを有する。本例では、ラックロータ200は、2つのスロットとしてスロット204,205を有し、2つのスロットが、円周上、180度で互いに対向する位置に配置されている。ラックロータ200は、スロットに検体ラック7を収容し、スロットの回転動作によって、検体ラック7を円周方向で搬送する。スロットは、回転動作によって、搬送ライン201の一端に隣接する位置にも移動可能である。
搬送ライン201は、検体ラック収容部8Aとラックロータ200との間で検体ラック7を搬送する機構である。ラックロータ200の左右の搬送ライン202,203は、ラックロータ200のスロット204,205と、分析モジュール2Cの検体ラック収容部8Cと、分析モジュール2Dの検体ラック収容部8Dとの間で、検体ラック7を往復動作によって搬送する機構である。搬送ライン201,202,203は、例えばベルトコンベヤ型の搬送機構が採用されている。
搬送ライン201は、一端がラックロータ200の円周のY方向の前側の端部まで延在し、他端が操作モジュール4の前面に近い緊急検体ラック投入部213に隣接する位置まで延在している。緊急検体ラック投入部213は、利用者が緊急検体ラックを退避し、搬送ライン201へ投入する部分である。検体ラック供給部211は、利用者が複数の通常検体ラックを投入可能であり、搬送ライン201に通常検体ラックを供給する部分である。検体ラック供給部212は、搬送ライン201から検体ラックを受け取り、複数の検体ラックを収容可能な部分である。
検体識別装置210は、搬送ライン201上を搬送される検体ラック7の検体容器の検体に関する分析依頼情報を照会するために、検体ラック7および検体容器に設けられた識別媒体を読み取って識別する。識別媒体は、例えばRFID(radio frequency identifier)のタグやバーコードのラベルである。
搬送ライン202の一端は、ラックロータ200の右側の位置のスロット204と接する位置まで延在し、他端は、検体ラック退避部221と接する位置まで延在している。検体分注機構14は、搬送ライン202上の所定の分注位置で、検体ラック7の検体容器から検体の分注を行う。搬送ライン203の一端は、ラックロータ200の左側の位置のスロット205と接する位置まで延在し、他端は、検体ラック退避部231と接する位置まで延在している。検体分注機構24は、搬送ライン203上の所定の分注位置で、検体ラック7の検体容器から検体の分注を行う。
検体ラック退避部221,231は、搬送ライン202,203との間で検体ラック7を授受し、検体ラック7を退避させる機構であり、例えば、検体ラック7を連続的に往復搬送可能なベルトコンベヤ型の機構が採用されている。
検体識別装置220,230は、搬送ライン202,203に搬入された検体ラック7内の検体容器の検体に対する分析依頼情報を照合するための装置であり、検体ラック7および検体容器に設けられた識別媒体を読み取って識別する装置である。
ラックロータ200は、前側の搬送ライン201との間で、スロットを介して検体ラック7を授受し、また、左右の搬送ライン202,203との間で、スロットを介して検体ラック7を授受する。ラックロータ200は、スロットを介して検体ラック7を回転移動させ、対象の分析モジュール2C,2Dの検体ラック収容部8C,8Dへ搬送する。ラックロータ200は、分析の種類に応じて、例えば分析モジュール2C側の搬送ライン202に検体ラック7を引き渡すためにスロットを右側の位置まで回転移動させる。搬送ライン202は、ラックロータ200の右側の位置のスロット204から検体ラック7を受け取り、分注位置へ搬送する。
上記検体搬送機構の第2構成例は、図4の自動分析装置1Dや図5の自動分析装置1Eの場合にも共通して適用可能である。例えば、図4の自動分析装置1Dの場合、図11の左側の分析モジュール2Dが無い構成に相当し、ラックロータ200は、前側の搬送ライン201および右側の搬送ライン202に対する搬送を行う。
なお、組合せ方式におけるモジュール同士の配置は、単なる隣接配置ではなく、側面間で機械的な接続がされている。モジュール間では、一部の機構(例えば検体搬送部6)や一部の配線や配管等が共有されている。外観構造部品3を介在せずに隣接配置されるモジュール間の側面同士では、ボルト等を用いて機械的な接続がされている。例えば、操作モジュール4の右側の側面SS7と分析モジュール2Cの左側の側面SS9は、検体搬送部6を構成する機構や部品を介在しながら相互に接続されている。側面SS8と側面SS10についても同様である。
[外観構造部品の共通化方式]
実施の形態の自動分析装置1は、共通化する対象の外観構造部品3として、カバー部材、特に側面カバーを有する。カバー部材は、本体(カバー本体)と取付部品とを含む。また、各装置構成の自動分析装置の全体において、共通のカバー部材を取り付けおよび取り外しする対象となる複数のモジュール側面がある。第1共通化方式の場合は右側面と左側面とで独立であり、第2共通化方式の場合は左右両方の側面である。各装置構成における複数のカバー部材および複数のモジュールは、共通化のために以下のような構成を有する。カバー部材は、カバー本体の裏面に取付部品を有し(後述の図15等の取付部品62)、対応して、各モジュールの側面には、カバー部材(特に取付部品)を取り付けるための取付部(カバー部材取付部)を含む構造を有する(後述の図19等の取付部72)。自動分析装置の前面に対する左右方向(X方向)において、例えば中央の位置に、共通化のための基準となる面(例えば後述の図12等の一点鎖線で示すX-Z面)または軸(例えば鉛直方向の軸や水平方向の軸)等を考える。
第1共通化方式では、各モジュールの右側面に共通して取り付け可能である第1カバー部材と、各モジュールの左側面に共通して取り付け可能である第2カバー部材とを有する。第1カバー部材の取付部品の位置に対応させた各モジュールの右側面の位置に取付部が設けられ、第2カバー部材の取付部品の位置に対応させた各モジュールの左側面の位置に取付部が設けられる。右側面での取付部品および取付部の位置と、左側面での取付部品および取付部の位置とは異なっていてもよい。カバー本体の裏面に設けられている2つ以上の取付部品の位置は、基本的には任意の位置である。
第2共通化方式では、第1カバー部材および第2カバー部材は、各モジュールの右側面および左側面のいずれにも共通して取り付け可能である。各モジュールの右側面の取付部の位置および第1カバー部材の取付部品の位置と、各モジュールの左側面の取付部の位置および第2カバー部材の取付部品の位置とは、基準面に対し、鏡像または対称等の関係を持ち、左右反転した場合に対応する位置、または上下反転した場合に対応する位置である。例えば、一方の第1カバー部材の取付部品の位置およびモジュール右側面の取付部の位置を、鉛直方向の軸周りに180度回転させることで左右反転させた場合、他方の第2カバー部材の取付部品の位置およびモジュール左側面の取付部の位置に一致する。
図7は、外観構造部品3(カバー部材)の共通化方式に係わる、カバー部材の取付部品62の位置と各モジュール側面の取付部72の位置との対応関係について示す。ここでは、カバー部材の表面の外観デザイン(表面形状)については考えない。第1共通化方式の場合、例えば複数の各々のモジュール右側面MRに取り付けられる第1カバー部材(右側カバー部材)3Rが共通である。第1カバー部材3Rのカバー本体の裏面では、2つ以上の所定の位置に2つ以上の取付部品62が設けられる。取付部品62の位置に対応させて、各モジュール右側面MRの所定の位置に、取付部72が設けられる。各取付部品62および各取付部72の位置は、各モジュール側面間でカバー部材を平行移動した場合または上下反転した場合に、対応する位置関係を持つ。図7では平行移動の関係の場合を示す。同様に、複数の各々のモジュール左側面MLに取り付けられる第2カバー部材(左側カバー部材)3Lが共通である。第2カバー部材3Lの取付部品62の位置と各モジュール左側面MLの取付部72の位置とが対応関係を持つ。
第2共通化方式では、第1カバー部材3Rが取り付けられるモジュール右側面MRにおける取付部品62および取付部72の位置と、第2カバー部材3Lが取り付けられるモジュール左側面MLにおける取付部品62および取付部72の位置とは、基準面S0(Y-Z面)に対し、左右反転または上下反転の対応関係を持つ。図7では左右反転の関係の場合を示す。例えば、モジュール右側面MRおよび第1カバー部材3RにおけるY-Z面において、説明上、右上の第1象限、左上の第2象限、左下の第3象限、右下の第4象限を示す。例えば、右上の第1象限および左上の第2象限に、2つの取付部品62および2つの取付部72が配置されている。第1カバー部材3Rを、Z方向の軸周りに180度回転させることで左右反転させた場合、第1カバー部材3Rは、第2カバー部材3Lの状態と同じになる。第1カバー部材3Rの右上および左上の2つの取付部品62およびモジュール右側面MRの2つの取付部72の位置が、第2カバー部材3Lの右上および左上の2つの取付部品62およびモジュール左側面MLの2つの取付部72の位置に一致する。上記のような構成によって外観構造部品3の共通化が実現されている。
[外観構造部品の共通化方式(1)]
図12~図14等を用いて、実施の形態の単体方式および組合せ方式の複数の各タイプの自動分析装置1における、外観構造部品3の共通化の方式について説明する。図12は、単体方式の自動分析装置1(1A,1B)に関する第1共通化および第2共通化について示す。図12の(A)は、単体方式での第1共通化方式を示す。図12の(B)は、単体方式での第2共通化方式を示す。図13は、組合せ方式の自動分析装置1(1C,1D,1E)に関する第1共通化方式について示す。図14は、組合せ方式の自動分析装置1(1C,1D,1E)に関する第2共通化方式について示す。図12~図14は、主にモジュールおよび外観構造部品3の上面(X-Y面)の概要構成を示し、併せて、外観構造部品3の斜視も示している。また、基準面S0を一点鎖線で示す。
図12の(A)で、第1共通化方式では、全モジュールの右側の側面と左側の側面とで分けて、左右毎に外観構造部品3が共通化されている。すなわち、全モジュールの側面カバーである外観構造部品3は、右側面用の第1カバー部材である外観構造部品3aと、左側面用の第2カバー部材である外観構造部品3bとの2種類のみで構成されている。右側面用の外観構造部品3aと左側面用の外観構造部品3bは、X方向で中央の基準面S0に対し左右対称形状を有する。また、外観構造部品3aおよび外観構造部品3bは、それぞれ単独でみた場合、Z方向で上下非対称形状を有する。
自動分析装置1Aの分析モジュール2Aの右側の外観構造部品31と、自動分析装置1Bの分析モジュール2Bの右側の外観構造部品33とは、共通化された同じ外観構造部品3aで構成されている。自動分析装置1Aの分析モジュール2Aの左側の外観構造部品32と、自動分析装置1Bの分析モジュール2Bの左側の外観構造部品34とは、共通化された同じ外観構造部品3bで構成されている。
わかりやすいように、外観構造部品3a,3bにおける種類を記号A,Bでも示す。また、外観構造部品3a,3bにおける位置の例を点p1で示す。例えば、右側の外観構造部品3aにおける表面の右上の点p1と、左側の外観構造部品3bにおける表面の左上の点p1とが、左右対称で対応する点である。本実装例では、外観デザイン上、左右の外観構造部品3(3a,3b)を左右対称形状としているが、これに限らず、左右非対称形状としてもよい。また、外観構造部品3(3a,3b)は、それぞれ、背面に後述の取付部品を有するので、背面で見た場合には上下非対称形状となっている。外観構造部品3(3a,3b)は、表面のみで見た場合には、例えば上下非対称形状を有するが、上下非対称形状に限らず、上下対称形状としてもよいし、左右対称形状(Y方向の前後での対称形状)としてもよい。
図28の比較例では、自動分析装置91A,91Bの提供にあたって、4種類{A~D}の外観構造部品93-1~93-4が必要であった。それに対し、第1共通化方式によれば、自動分析装置1A,1Bの提供にあたって、2種類{A,B}の外観構造部品3a,3bのみで済む。
[外観構造部品の共通化方式(2)]
図12の(B)は、さらに、第2共通化方式を示す。実施の形態の自動分析装置1は、単体方式の各タイプに関して、第1共通化方式の採用まででも相応の効果が得られるが、さらに第2共通化方式を採用する。これにより、さらに外観構造部品3の種類を低減できる。第2共通化方式では、さらに、右側の外観構造部品3aと左側の外観構造部品3bとが、共通化された同じ種類の外観構造部品3cで構成されている。自動分析装置1Aの左右の外観構造部品31,32と自動分析装置1Bの左右の外観構造部品33,34とを含むすべての外観構造部品が、共通化された同じ外観構造部品3cで構成される。モジュールの右側の側面に配置される外観構造部品3cと、モジュールの左側の側面に配置される外観構造部品3cとでは、X方向で左右対称形状を有する。外観構造部品3cは、それぞれZ方向でも上下対称形状を有する。右側に配置される外観構造部品3cの取付部品の位置および分析モジュール2Aの右側面の取付部の位置と、左側に配置される外観構造部品3cの取付部品の位置および分析モジュール2Bの右側面の取付部の位置とは、基準面S0に対し上下反転での対応関係を持つ。
わかりやすいように、外観構造部品3cにおける種類を記号Cでも示す。また、外観構造部品3cにおける位置の例を点p2で示す。例えば、モジュールの右側の側面に配置される外観構造部品3cにおける表面の右上の点p2と、モジュールの左側の側面に配置される外観構造部品3cにおける表面の左下の点p2とが、対応する同じ点である。外観構造部品3cは、上下反転した状態でも使用できるように、上下対称形状となっている。
上記のように、実施の形態の自動分析装置1は、単体方式の各タイプの自動分析装置1(1A,1B)における複数の箇所に、共通化された同一の種類の外観構造部品3(3a,3b,3c)を使用する。これにより、外観構造部品3の種類が低減でき、コストやロジスティクスの負担が改善される。例えば、外観構造部品3を成形方法によって製造する場合の金型等のコストも低減できる。なお、本例では、生化学分析用の自動分析装置1Aと免疫分析用の自動分析装置1Bとについて外観構造部品3の共通化を適用した場合を示した。共通化の対象となる複数の装置は、本例に限らず可能である。例えば、生化学分析用の複数種類の自動分析装置がある場合や、免疫分析用の複数の種類の自動分析装置がある場合にも、それぞれ同様に共通化が適用可能である。
[外観構造部品の共通化方式(3)]
図13は、同様に、組合せ方式の自動分析装置1(1C,1D,1E)の外観構造部品3に関する第1共通化方式について示し、上から順に、自動分析装置1C、自動分析装置1D、および自動分析装置1Eの上面(X-Y面)の概要構成を示す。わかりやすいように、共通する操作モジュール4の位置を基準に一点鎖線(基準面S0)で示す。各タイプの自動分析装置1(1C,1D,1E)の構成では、側面カバーである外観構造部品3として、最も右側に配置されている外観構造部品41,43,45と、最も左側に配置されている外観構造部品42,44,46とを有する。
第1共通化方式では、各タイプの右側の外観構造部品41,43,45は、共通化された同じ種類の外観構造部品3eで構成されている。また、左側の外観構造部品42,44,46は、共通化された同じ種類の外観構造部品3fで構成されている。右側面用の外観構造部品3eと、左側面用の外観構造部品3fとでは、異なる形状等を有するが、X方向では左右対称形状を有し、概ね類似の形状等を有する。外観構造部品3e,3fは、それぞれ、Z方向では例えば上下非対称形状を有する。右側に配置される外観構造部品3eの取付部品の位置および各モジュール右側面の取付部の位置は、対応関係を持つ。左側に配置される外観構造部品3fの取付部品の位置および各モジュール左側面の取付部の位置は、対応関係を持つ。
わかりやすいように、外観構造部品3e,3fにおける種類を記号E,Fでも示す。また、外観構造部品3e,3fにおける位置の例を点p3で示す。例えば、右側の外観構造部品3eにおける表面の右上の点p3と、左側の外観構造部品3fにおける表面の左上の点p3とが、左右対称形状で対応する点である。
第1共通化方式では、分析モジュール1Cの右側の外観構造部品41,43と、操作モジュール4の右側の外観構造部品45とが、外観構造部品3eとして共通化されている。同様に、分析モジュール1Dの左側の外観構造部品42,46と、操作モジュール4の左側の外観構造部品44とが、外観構造部品3fとして共通化されている。
図29の比較例では、自動分析装置91C,91D,91Eの提供にあたって、4種類{E~H}の外観構造部品93(93-5~93-8)が必要であった。それに対し、第1共通化方式によれば、自動分析装置1C,1D,1Eの提供にあたって、2種類{E,F}の外観構造部品3e,3fのみで済む。第1共通化方式は、第2共通化方式よりも外観構造部品3の種類が多いが、外観構造部品3の表面のデザインの自由度はより高い。
[外観構造部品の共通化方式(4)]
図14は、同様に、組合せ方式の自動分析装置1(1C,1D,1E)に関する第2共通化方式について示す。実施の形態の自動分析装置1は、組合せ方式の各タイプに関して、第1共通化方式の採用まででも相応の効果が得られるが、さらに第2共通化方式を採用する。これにより、さらに外観構造部品3の種類を低減できる。
第2共通化方式では、各タイプにおける左右のすべての外観構造部品41~46が、共通化された同じ種類の外観構造部品3gで構成されている。第2共通化方式によれば、自動分析装置1C,1D,1Eの提供にあたって、1種類の外観構造部品3gのみで済む。モジュールの右側面に配置される外観構造部品3gと、左側面に配置される外観構造部品3gとでは、X方向で左右対称形状を有する。外観構造部品3gは、それぞれ、Z方向では上下対称形状を有する。右側に配置される外観構造部品3gの取付部品の位置および各モジュール右側面の取付部の位置と、左側に配置される外観構造部品3gの取付部品の位置および各モジュール左側面の取付部の位置とは、基準面S0に対し上下反転での対応関係を持つ。
わかりやすいように、外観構造部品3gにおける種類を記号Gでも示す。また、外観構造部品3gにおける位置の例を点p4で示す。例えば、右側に配置される外観構造部品3gにおける表面の右上の点p4と、左側に配置される外観構造部品3gにおける表面の左下の点p4とが、対応する点である。右側に配置された外観構造部品3gの表面の状態は、Y方向の軸J1周りに180度回転させることで上下反転させることで、左側に配置された外観構造部品3gの表面の状態と同じになる。
上記のように、実施の形態の自動分析装置1は、組合せ方式の各タイプの自動分析装置1(1C,1D,1E)における複数の箇所に、共通化された同一の種類の外観構造部品3(3e,3f,3g)を使用する。これにより、外観構造部品3の種類が低減でき、コストやロジスティクスの負担が改善される。なお、本例では、自動分析装置1C,1D,1Eについて外観構造部品3の共通化を適用した場合を示した。共通化の対象となる複数の装置は、本例に限らず可能である。例えば、生化学分析用の分析モジュール2Cがさらに複数種類ある場合等にも、同様に共通化が適用可能である。
なお、上記実装例では、外観構造部品3c(図12の(B))または外観構造部品3g(図14)のカバー本体は、後述するが、Y方向で前側から後側に行くに従って幅が大きくなる形状を有し、表面でみた場合にY方向で非対称形状を有する。これに対応して、カバー本体の上下反転を用いて、第2共通化方式が実現されている。外観構造部品3cまたは外観構造部品3gのカバー本体の形状は、これに限らず可能である。変形例では、カバー本体は、Y方向で前側、後側によらずにX方向の幅が一定の形状としてもよい。この場合、カバー本体の上下反転を用いる必要無く、例えばカバー本体の左右反転を用いることで、第2共通化が実現できる。
図30は、上記変形例に対応する第2共通化方式を示す。自動分析装置1C,1D,1Eに関して、図14の場合とは異なる形状の外観構造部品41~46(3g)が用いられている。本例では、操作モジュール4は、ラックロータ200を備える場合を示す。例えば自動分析装置1Cは、分析モジュール2Cの右側面に取り付けられる外観構造部品41と、分析モジュール2Dの左側面に取り付けられる外観構造部品42とが、共通化された外観構造部品3gで構成される。この外観構造部品3gは、Y方向で前側、後側によらずにX方向の幅が一定である。この外観構造部品3gのカバー本体は、単独で表面をみた場合にY方向で対称形状を有する。カバー本体の表面の位置の例を点p5で示し、表面の右上の位置(Z方向で上側、Y方向で後側の位置)にある。自動分析装置1Cの右側に配置されている外観構造部品41(3g)は、左側に配置される場合には、カバー本体のZ方向の軸J2周りに180度回転させることで基準面S0に対し左右反転させることで、左側に配置される外観構造部品42(3g)と同じ状態となる。左側の外観構造部品42(3g)の状態では、点p5は、表面の右上の位置(Z方向で上側、Y方向で前側の位置)にある。
[外観構造部品の共通化方式(5)]
図31は、実施の形態の変形例の自動分析装置における、組合せ方式の他のタイプの自動分析装置1H,1I,1Jに関して第2共通化方式を適用した場合について示す。自動分析装置1Hは、第6タイプの構成として、中央の操作モジュール4に対し、左右に、同じ種類のモジュールとして2つの生化学分析の分析モジュール2C(2C-1,2C-2)が接続されているタイプである。また、本例では、ラックロータ200を備える操作モジュール4を組み合わせる場合を示している。このタイプは、同じ分析種類の分析モジュールの数を増やすことで同時分析可能な検体数を増やした構成である。右側の生化学分析モジュール2C-1と左側の生化学分析モジュール2C-2とは、同じ機構等を持つ、同じ分析種類および同じ仕様のモジュールである。生化学分析モジュール2C-1の右側面に取り付けられる外観構造部品41と、生化学分析モジュール2C-2の左側面に取り付けられる外観構造部品42とが、共通化された外観構造部品3gで構成される。
また、自動分析装置1Iは、図14の自動分析装置1Dと同様の構成であるが、自動分析装置1Hから左側の分析モジュール2C-2を除いた構成に相当する。分析モジュール2C-1の右側の外観構造部品43と操作モジュール4の左側の外観構造部品43とについても、共通化された外観構造部品3gで構成される。また、自動分析装置1Jは、自動分析装置1Hから右側の分析モジュール2C-1を除いた構成に相当する。分析モジュール2C-2の左側の外観構造部品46と操作モジュール4の右側の外観構造部品45とについても、共通化された外観構造部品3gで構成される。
上記構成は第2共通化方式を適用した場合であるが、同様に第1共通化方式も適用可能である。また、他のタイプの自動分析装置として、操作モジュール4の左右に対し、同じ免疫分析用の分析モジュール2Dが接続される構成の場合でも、同様に共通化方式が適用可能である。組合せ方式の自動分析装置を構成する複数のモジュールは、仕様、分析種類の少なくともいずれかに応じて異なる複数の種類のモジュールから選択される複数のモジュールであるが、選択される複数のモジュールは、上記のように、異なる種類の複数個のモジュールでもよいし、同じ種類の複数個のモジュールでもよい。
[外観構造部品の共通化方式(6)]
実施の形態の変形例の自動分析装置として、以下も可能である。変形例の自動分析装置は、単体方式や組合せ方式において、ある分析種類のモジュールは、さらに、複数の種類のモジュールが存在してもよい。例えば、生化学分析モジュールとして、機構や形状等のバリエーションに対応して仕様が異なる複数の種類の生化学分析モジュールがあってもよい。同様に、複数の種類の免疫分析モジュールがあってもよい。選択される種類の分析モジュールに応じて、異なる自動分析装置が構成可能である。そして、このように同じ分析種類のモジュールで仕様等が異なる複数の種類のモジュールがある場合にも、前述と同様に共通化方式が適用可能である。
一例として、単体方式の自動分析装置において、同じ分析種類として生化学分析用のモジュールまたは本体として、仕様が異なる複数の種類(例えば2種類)のモジュールまたは本体があるとする。例えば、第2共通化方式を適用する場合に、第1仕様のモジュールの左右の側面の外観構造部品、および第2仕様のモジュールの左右の側面の外観構造部品が、すべて共通化された外観構造部品で構成される。
他の例として、組合せ方式の自動分析装置において、例えば生化学分析用の分析モジュールとして仕様が異なる例えば2種類の分析モジュールがあるとする。例えば、第3タイプの自動分析装置1Cを構成する際に、分析モジュール2Cの候補として、2種類の分析モジュール2Cがあり、それぞれの組合せが可能である。これらの構成に対し、例えば、第2共通化方式を適用する場合に、第1仕様の分析モジュール2Cの右側面の外観構造部品と第2仕様の分析モジュール2Cの右側面の外観構造部品とが、共通化された外観構造部品で構成される。同様に、免疫分析用の分析モジュール2Dとして複数の種類の分析モジュール2Dがある場合にも、共通化方式が適用可能である。
[外観構造部品(1)]
図15~図17は、上記共通化された外観構造部品3、例えば図14の外観構造部品3gに関する詳しい構造例を示す。図15は、例えば、図3の自動分析装置1Cの分析モジュール2Cの右側の側面SS5に右側の外観構造部品41として取り付けられる外観構造部品3gの構造を示す斜視図である。図16は、例えば、図3の自動分析装置1Cの分析モジュール2Dの左側の側面SS6に左側の外観構造部品42として取り付けられる外観構造部品3gの構造を示す斜視図である。図17は、外観構造部品3gに備える取付部品62の構造を示す。
図15の(A)は、外観構造部品3g(41)の表面の斜視を示し、(B)は、裏面の斜視を示す。図15の(A)で、外観構造部品3gは、表面をみた場合に、一点鎖線で示す基準線C1に対し、上下対称形状を有する。基準線C1は、Z方向で外観構造部品3gの長さの中心付近にあり、Y方向に延在する軸を示す。
外観構造部品3gは、大別して、カバー本体である本体61と取付部品62とで構成されている。本体61は、概略平板形状であり、全体的にX方向の外側(例えば右側)に凸形状であり、裏面でみてX方向で所定の厚さの空間を有する。その空間に取付部品62が収まっている。本体61は、外観デザインの一例として、Y方向で前側から後側に行くに従って幅が大きくなる形状を有する。このデザイン例は、利用者が標準位置から前面をみた場合の外観の印象を意図したものである。実施の形態では、外観構造部品3gは、Y方向の前後では非対称形状を有する。また、本体61は、表面において、外観デザインの一例として、Y方向の概略中央付近の位置で、Z方向に長い凹部63が設けられている。凹部63は、裏面からみると凸部である。
図15の(B)で、本体61は、裏面では、空間内に、Z方向の中央付近の基準線C1の位置において、Y方向の前後の所定の位置に、2つの取付部品62、特に取付部品62a,62bが固定されている。Y方向の前側に取付部品62a、後側に取付部品62bが配置されている。2つの取付部品62a,62bは、同じ形状や寸法や機構等を有する。
取付部品62は、外観構造部品3gを、対象のモジュールである分析モジュール2Cまたは分析モジュール2Dまたは操作モジュール4の側面に対して取り付けるための部品である。後述するが、各モジュールの側面には、外観構造部品3gを取り付けるための共通化された取付部を含む構成を有する。
なお、本体61のZ方向の上下の辺の所定の位置には、後述の裾カバーを取り付けるためのねじ穴部品64も設けられている。実施の形態の自動分析装置1は、外観構造部品3において、後述の裾カバーを取り付け可能な構成を有するが、この裾カバーを設けない形態も可能である。
図16の(A),(B)は、同様に、図15と同じ外観構造部品3gが、モジュールの左側の側面に配置される場合の状態を示す。図16の(A)は表面、(B)は裏面の斜視を示す。図15の外観構造部品3gの状態に対し、本体61の向きを変更し、かつ取付部品62の上下の状態を変更することで、図16の外観構造部品3gの状態となる。
図17のように、取付部品62は、本体61に固定される部分である固定部62Aと、その固定部62Aから連続的に延在している係合部62Bとを有する。図17の(A)は、図15の(B)に対応した取付部品62の状態を拡大で示す。本実装例では、係合部62Bは、特にフックで構成されている。この係合部62Bであるフックは、モジュール側の取付部(図17の(D)の取付部72)における被係合部であるフック受けに対して係合する。取り付けの際には、取付部のフック受けの隙間に対し、フックが上側から挿入されて引っ掛かった状態として係合される。取付部品62の実装は、このようなフック等に限らず可能である。
図17の(B)は、(A)に対し、Z方向で上下反転した状態を示す。図15の外観構造部品3gの本体61を基準線C1のY方向の軸の周りに180度回転させて上下を逆にした場合や、あるいは、取付部品62のみを図17の(C)のように回転させて上下を逆にした場合には、図17の(B)のような状態になる。
取付部品62は、第2共通化方式に対応して、すなわち、外観構造部品3gをモジュールの左右の側面のいずれにも取り付けが可能なように、Z方向で上下を反転できる機構を備えている。この機構は、本体61が上下反転された場合に、取付部品62を上下反転させるための機構である。この機構は、本例では、ねじ止めによる機構で実装されている。図17のように、本体61の所定の位置に設けられている固定部62Cには、ねじ穴を有する。固定部62Cのねじ穴に対し、取付部品62の固定部62Aが、ねじ止めによって固定される。その際、係合部62Bが、基準線C1に対し、Z方向で上側の位置にある状態とされる。外観構造部品3gが、モジュールの右側の側面に配置される場合、図15のような取付部品62の状態とされる。外観構造部品3gが、モジュールの左側の側面に配置される場合、図16のような取付部品62の状態とされる。
図17の(C)は、取付部品62の係合部62Bを固定部62Cに対して軸周りに回転させて上下反転させる場合の概要を示す。固定部62Aおよび係合部62Bは、例えば板金を折り曲げることで形成されており、固定部62Cに対してねじ止めによって固定され、ねじ解除によって取り外しが可能となっている。固定部62Cから取り外された取付部品62(固定部62Aおよび係合部62B)は、作業者によって、(A)から(B)のように、上下を反転させるように向きを変更し、固定部62Cに対してねじ止めによって固定される。このような取付部品62の上下反転ができる機構は、ねじ止めによる実装に限らず可能であり、例えば、ねじ止めを用いずに、(C)のイメージのように固定部62CのX方向の軸周りに係合部62Bを回転可能である回転機構を採用してもよい。
図17の(D)は、モジュールの側面1700に設けられた取付部72に対し、取付部品62の係合部62Bが係合された状態を示す。取付部72は、外観構造部品取付部(カバー部材取付部)である。
図18は、第2共通化方式に対応した、モジュールの左右に配置される外観構造部品3gの配置関係等を示し、例えば図14の自動分析装置1Cの右側の外観構造部品41と左側の外観構造部品42との関係を示す。図15の外観構造部品41(3g)の本体61の状態に対し、図16の外観構造部品42(3g)の本体61の状態は、基準線C1の軸周りに180度回転させて上下反転させた状態と対応している。別の捉え方では、図15の本体61の状態から、例えばZ方向の軸周りに180度回転させることで左右反転した状態とし、さらに、その状態からX方向の軸周りに180度回転させることで上下反転した状態とすること等によっても、図16の本体61の状態になる。
上記のように外観構造部品3gの本体61を上下反転させると、それに伴い取付部品62も上下反転された状態(図17の(B)の状態)となる。この取付部品62の状態では、取付部72に係合できない。よって、モジュールの左右の側面にそれぞれ同じ外観構造部品3gを取り付け可能とするためには、その取付部品62をさらに上下反転させることで、図17の(A)の状態にする必要がある。そのため、取付部品62は、上記のように上下反転できる機構を備えている。
図18の(A)~(E)は、仮に、右側の外観構造部品41(3g)の状態から、左側の外観構造部品41(3g)の状態に変更する作業を行う場合における状態の遷移を示す。図18の(A)は、図15の(A)に対応した、分析モジュール2Cの右側の側面に配置される外観構造部品3g(41)の表面をみた状態の概略を示す。(B)は、(A)の外観構造部品3g(41)の裏面をみた状態を示す。(A),(B)の状態では、取付部品62は、正しい状態として、係合部62Bが基準線C1よりも上側の位置にある。(C)は、(A),(B)の状態から、本体61を基準線C1で示すY方向の軸周りに180度回転させた状態を示す。この状態では、取付部品62は、上下反転した状態となっており、係合部62Bが基準線C1よりも下側の位置にある。この状態では、分析モジュール2Dの左側の側面に外観構造部品3gを取り付けることができないので、取付部品62の向きを変更する必要がある。
図18の(D)は、(C)の状態から、2つの取付部品62を、基準線C1に対し上下反転させるように、向きを変更して取り付けた状態を示す。(E)は、(D)に対応して表面からみた状態を示す。(E)の状態で、分析モジュール2Dの左側の側面に、この外観構造部品3gを外観構造部品42として取り付けることができる。左側の外観構造部品42から右側の外観構造部品41へ変更する場合にも、上記と同様の関係が成立する。
[モジュール側の取付部(1)]
図19~図21は、自動分析装置1の各モジュールの側面における、共通の外観構造部品3gの取り付けに係わる構造例を示す。
図19は、操作モジュール4の側面における取付部72を含む構造例を示す斜視図である。図19の(A)は、例えば図5の自動分析装置1E等の操作モジュール4の右側の側面SS7における構造例を示し、(B)は、その操作モジュール4の左側の側面SS8における構造例を示す。
操作モジュール4は、大別して、Z方向で、基準線Z1に対し、上部4Aと下部4Bとを有する。基準線Z1の位置には、上部4Aと下部4Bとを仕切る仕切り板400を有する。上部4Aには、主に、前述の検体搬送部6(例えば検体ラック収容部8Aやラックロータ200を含む)等の可動機構が実装されている。下部4Bには、主に、前述のIC基板101や各駆動部(洗浄機構駆動部819等を含む)等の非可動機構が実装されている。上部4Aでは、側面SS8において、開口部からラックロータ200の一部が見えている。可動機構は、動く部品等が表面に露出している。非可動機構は、動く部品等が表面に露出していない。
なお、本実装例では、上部4Aの前面には、Y方向の前側に張り出すように操作台が設けられている。操作台には電源ボタンを含む操作パネル等も設けられている。下部4Bの前面には、前面カバー410が設けられている。前面カバー410には、開閉可能な扉(特に片開き扉)が設けられており、保守等の際に開閉が可能である。前面カバー410のさらに下側には裾カバー411が設けられている。下部4Bの下面には、モジュールの移動や静止のためのキャスター機構412やアジャスター機構413等が設けられている。
下部4Bにおける右側の側面SS7において、機構を構成する基板や部品等が露出している。基準線Z1に位置する仕切り板400に対し、下側の基準線Z2の位置には、Y方向で前後の2つの所定の位置に、2つの取付部72、特に取付部72a,72bが設けられている。同様に、(B)の左側の側面SS8においても、側面SS7と対応する同様の位置に、2つの取付部72(72a,72b)が設けられている。
図19の(C)は、1つの取付部72を拡大で示す。取付部72は、固定部72Aと被係合部72Bとを有する。固定部72Aは、モジュールの側面に対し、ねじ止め等によって固定されている部分である。被係合部72Bは、その固定部72Aから連続して折り曲げによってZ方向の上側およびX方向の外側に出ている部分である。被係合部72Bは、本例では、フック受け部として実装されている。被係合部72Bは、モジュールの側面との間に、隙間(言い換えると凹部)を形成している。
図20の(A),(B)は、例えば図14の自動分析装置1Eを構成する場合に、図19の操作モジュール4の右側の側面SS7の取付部72に対し、外観構造部品45(3g)を取り付けた状態を示す。(A)は右側の側面SS7、(B)は左側の側面SS8を示す。なお、例えば図14の自動分析装置1Cや自動分析装置1Dを構成する場合には、操作モジュール4の右側の側面SS7に対し、分析モジュール2Cの左側の側面が隣接して配置され、側面同士で機械的に接続される。同様に、操作モジュール4の左側の側面SS8に対しては、外観構造部品3gが取り付けられるか、分析モジュール2Dが隣接して配置される。
図20の(C)および(D)は、例えば左側の側面SS8の取付部72に対し、外観構造部品3gのうちの取付部品62が取り付けられた状態を拡大で示す。図示のように、取付部品62のうちの係合部62Bが、取付部72の被係合部72Bの隙間に対し、上側から挿入され引っ掛けられるようにして係合した状態である。これにより、外観構造部品3gは、操作モジュール4の上部4Aおよび下部4Bの側面に対し、取り付けられた状態が保持される。逆に、外観構造部品3gが操作モジュール4の側面から取り外される際には、取付部品62のうちの係合部62Bが、取付部72の被係合部72Bから上側に引き抜かれるようにして非係合の状態となる。
また、図20の状態では、外観構造部品45(3g)の下側、基準線Z4で示すZ方向の位置から下側には、さらに、裾カバー66が取り付けられている。側面の裾カバー66や前面の裾カバー411によって、下部4Bの下面にあるキャスター機構412やアジャスター機構413を含む所定の高さの空間部分が隠れている。裾カバー66の高さは、前面の裾カバー411の高さと合わせられている。このように裾カバー66や裾カバー411を設ける場合、自動分析装置1の外観をより整えることができる。
なお、図20の実装例のように、外観構造部品3gのZ方向の上辺部は、操作モジュール4の側面に取り付けられた状態で、上部4Aの上面の基準線Z3で示す高さ位置から上側に一部が出た状態となってもよい。これは、各モジュールの高さや、後述の上部カバーとの関係を考慮して設計されている。
また、図19の操作モジュール4の実装例では、操作モジュール4の左右の側面(SS7,SS8)において、ラックロータ200の左右の側面の部分がみえるように、開口部が設けられている。これに関する他の実装例として以下も可能である。
図32は、変形例における操作モジュール4の実装例を示す。(A)は操作モジュール4等の上面の概要を示す。(B)は操作モジュール4の側面の概要を斜視で示す。操作モジュール4の左右の少なくとも一方の側面、本例では両方の側面(SS7,SS8)には、ラックロータ200の側面に対応する開口部に対して取り付けおよび取り外しが可能であるラックロータカバー280が設けられている。例えば、事業者は、自動分析装置を顧客環境へ導入する際、操作モジュール4の側面にラックロータカバー280が取り付けられた状態で導入する。操作モジュール4の側面に対し、分析モジュール2C等を接続する場合には、ラックロータカバー280が取り外される。(A)の例では、操作モジュール4の右側の側面SS7ではラックロータカバー280が取り外され、分析モジュール2Cが接続されている。操作モジュール4の左側の側面SS8ではラックロータカバー280が取り付けられている。操作モジュール4の側面に分析モジュール2C等が接続されない場合には、そのままラックロータカバー280が取り付けられた状態とされる。
さらに、ラックロータカバー280が取り付けられている操作モジュール4の側面に対し、外観構造部品3が取り付けおよび取り外し可能である。(A)の例では、左側の側面SS8に対し、外観構造部品44として共通化された外観構造部品3gが取り付け可能であることを示している。取付部72および対応する取付部品62の位置は、ラックロータカバー280の領域以外の位置とされている。同様に、各種の分析モジュールの側面においても、ディスク等の機構に対応した開口部に専用のカバーが設けられてもよい。
[モジュール側の取付部(2)]
図21は、分析モジュール2Cの場合の側面、例えば右側の側面SS5における、外観構造部品3gの取り付けに係わる構造例を示す。分析モジュール2Cは、Z方向で、基準線Z5で示すZ方向の高さ位置に仕切り板500が設けられている。分析モジュール2Cは、大別して、仕切り板500に対し上下に、上部2Caと下部2Cbを有する。上部2Caには、可動機構として、試薬ディスク13等があり、側面SS5において試薬ディスク13の一部が見えている。下部2Cbには、基板や部品等が見えている。
基準線Z5の位置の仕切り板500に対し、基準線Z6で示す下側の位置には、Y方向で前後の2つの所定の位置に、2つの取付部72、特に取付部72c,72dが設けられている。この分析モジュール2Cの取付部72(72c,72d)は、操作モジュール4の取付部72(72a,72b)と同様の部品で構成されており、これらの高さ位置(基準線Z2,Z6)は概略的に同じである。
分析モジュール2CのY方向の前面には、前面カバー510が設けられている。前面カバー510には、開閉可能な扉(特に両開き扉)が設けられている。また、前面カバー510の下側には、裾カバー511が設けられている。分析モジュール2Cの保守の際には、作業者が前面カバー510の扉を開閉して、分析モジュール2C内の構成要素の保守作業を行うことができる。
例えば、図14の自動分析装置1Cや自動分析装置1Dを構成する場合、分析モジュール2Cの右側の側面SS5に対し、外観構造部品3gを、外観構造部品41や外観構造部品43として取り付けることができる。分析モジュール2Cの左側の側面SS7(図3)は、操作モジュール4の右側の側面SS7に隣接して配置され、側面同士で機械的に接続される。
また、図21の状態では、分析モジュール2Cの上部2Caの上面の基準線Z7で示す高さ位置よりも上側には、上部カバー520が取り付けられている。上部カバー520は、上部2Caの上面の試薬ディスク13や検体分注機構14(図8)等の構成要素やそれらを含む空間を覆う盛り上がった形状を有する。上部カバー520は、開閉カバー520Aを含む。開閉カバー520Aは、利用者の操作に応じてY方向で開閉可能であり、インターロック機構を備えている。
また、分析モジュール2Cの側面SS5に取り付けられる外観構造部品3gに関しても、下部2Cbの基準線Z8で示す高さ位置から下側に、図示しない裾カバーを取り付けることが可能である。これにより、下部2Cbの下面に配置されているキャスター機構512やアジャスター機構513等を隠し、外観をより整えることができる。
なお、図示しないが、分析モジュール2Dについても、外観構造部品3gの取付部72を含む構成に関して、上記分析モジュール2Cと同様の構成を有する。また、図13の第1共通化方式を適用する形態の場合でも、共通化された外観構造部品3e,3fに関して、上記と同様のモジュール側の取付部72を含む構成を適用できる。また、図12の単体方式の場合でも、共通化された外観構造部品3a,3bまたは外観構造部品3cに関して、上記と同様の構成を適用できる。
[モジュール側の取付部(3)]
上記のように、自動分析装置1C等を構成する各モジュールである例えば操作モジュール4、分析モジュール2C、および分析モジュール2Dは、共通化された外観構造部品3gを取り付けるための取付部72を含む構成を有する。各モジュールの取付部72についても、概略的に同じ構造として共通化されている。
各モジュールにおいて、上部と下部との仕切り板は、Z方向で概略的に近い位置に設けられている。例えば、図19の操作モジュール4の仕切り板400の基準線Z1の高さ位置と図21の分析モジュール2Cの仕切り板500の基準線Z5の高さ位置とが概略的に同じである。前述のように、モジュールの上部には主に可動機構が実装され、下部には主に非可動機構が実装されている。上部の可動機構(例えば図19のラックロータ200)の近くには、なるべく取付部72を設けたくない。あるいは、上部の可動機構の近くには空間等が必要であり、取付部72を設けることが難しい場合がある。そのため、実施の形態の自動分析装置1では、モジュールの下部の側面における仕切り板の近くの下側の位置、例えば図19の基準線Z2や図21の基準線Z6の位置に、取付部72が設けられている。これにより、いずれの種類のモジュールの側面に対しても、取付部72および取付部品62を通じて、第2共通化方式の外観構造部品3gを取り付け可能である。モジュールの右側面や左側面のいずれに対しても、取付部72および取付部品62を通じて、図18のような左右反転または上下反転の関係を通じて、同じ外観構造部品3gを取り付け可能である。
また、図15や図19のように、実施の形態における実装例では、各モジュールの側面に対し、上下左右の辺や端に近い位置ではなく、それよりも内側に寄った位置に、取付部72および取付部品62が配置されている。モジュールの側面に外観構造部品3gが取り付けられた状態では、取付部72および取付部品62が隠れて見えない状態となる。そのため、実施の形態では、外観デザイン上、装置の外観をより整えることができる。
[外観構造部品(2)]
図22は、特に外観構造部品3gにおける裾カバー66の構造例を示す。外観構造部品3gは、裾カバー66の取り付けおよび取り外しが可能な構成を有する。図22は、例えば図14の自動分析装置1Cの分析モジュール2Cの右側の側面SS5(図3)に取り付けられる右側の外観構造部品41(3g)の裏面を示す斜視図である。図16の外観構造部品3gの基本構成に対し、図22の外観構造部品3gは、本体61の上下辺に対し裾カバー66を取り付けおよび取り外しが可能な構造を有する。図22では、モジュールの右側の側面に取り付ける外観構造部品3gの場合に対応して、本体61の下辺に裾カバー66が取り付けられている状態を示している。なお、図示しないが、この外観構造部品3gが、モジュールの左側の側面に取り付けられる場合には、裾カバー66を取り外し、本体61を上下反転し、その状態での新たな下辺にその裾カバー66が取り付けられる。
図22で、外観構造部品3gの本体61におけるZ方向の上辺(基準線C5で示す)および下辺(基準線C6で示す)には、Y方向で所定の位置、例えば前後の2つの位置に、2つのねじ穴部品64が設けられている。本体61の下辺の下側には、下辺に合わせたサイズを持つ概略的に長方形板状の裾カバー66が配置されている。裾カバー66の高さは、図20の例のように、モジュールの下面と設置床との空間の高さに合わせられており、前面カバーの裾カバーの高さとも合わせられている。裾カバー66は、本体61の下辺の下側に、裾カバー取付部65を介して取り付けられている。本体61のねじ穴部品64に対し、裾カバー取付部65がねじ止めによって固定されている。裾カバー取付部65は、例えば概略的に長方形板状の部品である。裾カバー取付部65に対し、裾カバー66がねじ止めによって固定されている。
また、本実装例では、本体61に対する裾カバー66の取り付けおよび取り外しは、外観構造部品3の裏面からでも、表面からでも作業が可能な構造としている。ねじ穴部品64は、ねじ穴が表面にも露出している。作業者は、本体61の表面側からねじ止めによって裾カバー66を取り付けおよび取り外しが可能である。
なお、変形例としては、裾カバー取付部65は、本体61と一体化された部分としてもよいし、裾カバー66と一体化された部分としてもよい。裾カバー66の取り付けの手段は、ねじ止めに限らず適用可能である。
裾カバー66に関する変形例として、本体61に対し、下辺を軸として、裾カバー66を表面側に折り曲げる、もしくは回転させることができる機構を備えてもよい。
図23は、第2共通化方式に対応した、モジュールの左右に配置される図22の裾カバー66を含む外観構造部品3gの配置関係等を示す。図23の(A)は、モジュールの右側の側面に配置される外観構造部品3gの表面を示し、(B)は裏面を示す。(A),(B)では、本体61の下辺に、裾カバー66が取り付けられた状態である。上辺は点p4がある側の辺とし、下辺は点p4が無い側の辺とする。取付部品62は、係合部62Bが基準線C1よりも上側にある。(C)は、(B)の状態から、裾カバー66を取り外した状態を示す。(D)は、(C)の状態から、モジュールの左側の側面に配置するために、本体61をY方向の軸周りに180度回転させることで上下反転させた状態での裏面を示す。取付部品62も上下反転した状態となっている。(E)は、(D)の状態から、取付部品62を上下反転させて係合部62Bを上側にした状態を示す。また、(E)は、本体61の新たな下辺である点p4がある側の辺に裾カバー66を取り付けた状態を示す。(F)は、(E)に対応する表面の状態を示す。
本実装例では、裾カバー66は、単独で表面をみた場合に、Y方向で対称形状を有し、本体61とは異なりY方向の前後で幅が一定である。裾カバー66に関する変形例としては、本体61と同様に、Y方向で非対称形状としてもよい。
図24は、操作モジュール4の左側の側面SS8に対し、裾カバー66付きの外観構造部品3gが取り付けられる場合の斜視図を示す。(A)は、本体61および裾カバー66が取り付けられている状態を示す。(B)は、本体61が取り付けられ、裾カバー66が取り外されている状態を示す。(B)の状態では、操作モジュール4の下面のキャスター機構412やアジャスター機構413等にアクセスが可能である。
実施の形態の自動分析装置1では、以下のような理由もあるため、外観構造部品3に裾カバー66を設けた構成とした。まず、外観デザイン上の理由がある。自動分析装置1のモジュールの前面には、前述の図19の前面カバー410や図21の前面カバー510の例のように、外観構造部品の一種として前面カバーがある。外観デザインとして、より調和を持たせる観点からは、モジュールの前面カバーと側面カバーとで、Z方向の高さ位置等を揃えたい。ただし、その実現のために、仮に、外観構造部品3を、裾カバーで覆う部分まで含めて、一体成形方法等によって1つの部品で構成した場合、第2共通化方式は実現できない。すなわち、モジュールの左右での外観構造部品の共通化は実現できない。例えば、その場合のモジュールの右側に配置される外観構造部品の裾の部分は、モジュールの左側に配置される場合には、上下反転によって上側に来てしまう。そこで、実施の形態では、図22のように外観構造部品3gの本体61の上下辺に対して取り付けおよび取り外しが可能である裾カバー66を設けた構成とした。これにより、第2共通化を実現しつつ、裾カバー66があることによる利点も実現した。
この構成では、モジュールの側面に対し、外観構造部品3gを取り付けた状態で、本体61については取り付けた状態のまま、裾カバー66のみを取り外すことができる。あるいは、変形例では裾カバー66を表面側に開いた状態とすることができる。これにより、作業者は、モジュールの最下部にアクセスできる。例えば、保守作業の際、図20の外観構造部品3g(45)の裾カバー66を取り外すことで、操作モジュール4の下部4Bの下面にあるキャスター機構412やアジャスター機構413等にアクセスできる。作業者は、外観構造部品3gの本体61を取り付けた状態のまま、例えば装置の水平位置や高さの調整が可能である。このように、装置の設置や保守等の作業のしやすさの利点がある。
また、事業者は、自動分析装置1のタイプとして、外観構造部品3を本体61のみとして裾カバー66を取り付けない構成と、本体61に裾カバー66を取り付けた構成との両方を提供することも可能である。
[外観構造部品(3)]
図25は、例えば自動分析装置1Cの分析モジュール2Cにおける、側面カバーである外観構造部品3g(41)と上部カバー520との関係等について、前面(X-Y面)で概略的に示す。分析モジュール2Cの右側の側面SS5において、設置面SF0から上側に基準線Z8の高さ位置までに、裾カバー66等が設けられる空間2500を有する。空間2500を除き、基準線Z8から上面SF1の基準線Z7までの領域において、Z方向で中央に近い基準線Z6に対応する位置に、取付部72が設けられている。その取付部72に対し、取付部品62が係合することで、外観構造部品3gが取り付けられている。
前述(図20)のように、この状態で、外観構造部品3gは、分析モジュール2Cの上部2Caの上面SF1よりも上側に一部が出ている。上側に出ている一部を部分2501で示す。部分2501は、基準線Z7から基準線Z9で示す高さ位置まで出ている。分析モジュール2Cの上面SF1よりも上側には、前述の上部カバー520が設けられている。上部カバー520のX方向の端部は、側面SS1の位置よりも内側であり、外観構造部品3gの上側の部分2501よりも内側にある。上部カバー520のX方向の端部と、外観構造部品3gの上側の端部の部分2501とがX方向で重なるようにして配置されている。
変形例としては、外観構造部品3gの上側の端が、上面SF1の基準線Z7の位置までである構成としてもよい。また、外観構造部品3gの上側の端が、上面SF1の位置よりも下側の位置までである構成としてもよい。また、変形例として、高さが異なる複数の各モジュールがあり、各モジュールの側面に同じ外観構造部品3を取り付けた場合に、それぞれの側面をカバーする範囲が異なってもよい。例えば、操作モジュール4に対し、分析モジュール2C,2Dの方が上面の高さ位置が低い場合に、操作モジュール4の側面では外観構造部品3gが同じ高さ位置となり、分析モジュール2C,2Dの側面では外観構造部品3gが上面よりも上側の高さ位置となる。
また、他の変形例として、第1共通化方式での外観構造部品3(3e,3f)は、本体61と、裾カバーの空間2500に対応する部分とを含め、一体成形方法等による1つの部品として構成されてもよい。
[効果等]
上記のように、実施の形態の自動分析装置によれば、単体方式やモジュール・アセンブリ方式の各種の装置構成において、複数の箇所に、共通化された同一の外観構造部品3を適用でき、必要な外観構造部品3の種類を低減できる。これにより、単体方式やモジュール・アセンブリ方式に応じた各種の装置構成において必要な複数の外観構造部品3の取り扱いに係わる、製造や管理等のコストやロジスティクスの負担を低減できる。また、これにより、自動分析装置の利用や保守等の作業のしやすさを高めることができる。
[変形例(1)]
他の実施の形態の自動分析装置として以下も可能である。まず、前述の実施の形態では、単体方式と組合せ方式とでは、別々の共通化であり、それぞれの外観構造部品3を有するものとした。例えば、図1の外観構造部品31と図3の外観構造部品41とではサイズも異なる。これに限らず、単体方式と組合せ方式とで共通化された外観構造部品3を用いるものとしてもよい。
実施の形態では、外観構造部品3の取付部品62、およびモジュール側の取付部72の構成について、ねじ止め、フック等の手段を適用したが、これに限らず適用可能である。変形例では、ねじ止めを用いずに、弾性部材を用いた構成としてもよいし、スライド方式の金具等を用いた構成としてもよい。モジュール側に突起部(言い換えると凸部)を設け、外観構造部品3側に対応する穴部(言い換えると凹部)を設けた構成としてもよい。外観構造部品3側に突起部を設け、モジュール側に対応する穴部を設けた構成としてもよい。
また、変形例として、側面カバーである外観構造部品3に、開閉可能な扉を設けてもよい。この場合、外観構造部品3を取り付けたままの状態で、その扉を通じて、モジュールの側面の構成要素に関する保守等のアクセスが可能である。
[変形例(2)]
図26は、変形例の自動分析装置1における、第2共通化方式での外観構造部品3gの取付部品62の構成例を示す斜視図である。本体61の面において、位置L1,L2は、前述の実施の形態での取付部品62(62a,62b)の位置を示す。変形例として、本体61の上下左右の辺に近い位置に取付部品62を設けてもよい。例えば、位置L11,L12,L21,L22,L31,L32は、取付部品62を設ける位置の例を示す。例えば、Z方向で基準線C1の付近で、Y方向で左右辺に近い2つの位置L11,L12に、2つの取付部品62を設けてもよい。また、Z方向で上辺に近い位置H1に対応する2つの位置L21,L22に2つの取付部品62を設けてもよい。また、Z方向で下辺に近い位置H2に対応する2つの位置L31,L32に2つの取付部品62を設けてもよい。また、例えば上辺に近い位置L41と下辺に近い位置L42との2つの位置に2つの取付部品62を設けてもよい。上記取付部品62の位置に応じて、モジュールの側面における対応する位置に取付部72が設けられる。第2共通化方式の場合、いずれの位置の取付部品62も、前述の上下反転できる機構を備える。第1共通化方式の場合、本体61を上下反転する必要が無いので、いずれの位置の取付部品62も、上下反転できる機構を備える必要は無い。
実施の形態では、カバー部材に2つの取付部品62を設け、対応してモジュール側面に2つの取付部72を設ける構成としたが、これに限らず可能である。カバー部材に3つ以上の取付部品62、対応してモジュール側面に3つ以上の取付部72が設けられる構成としてもよい。また、取り付けおよび接続の性能が確保されるのであれば、カバー部材に1つの取付部品62を設け、対応してモジュール側面に1つの取付部72を設ける構成としてもよい。
他の変形例として、特に、本体61の上下左右の辺の端に露出する位置、例えば位置L11b,L12b,L41b,L42b等の位置に、取付部品62を設けてもよい。この場合の取付部品62は、それぞれの向きが異なっていてもよく、前述のフック等の手段に限らない。この変形例の場合、外観上、取付部品62が露出して見えるデザインとなる。その代わり、この変形例の場合、作業者が外観構造部品3の表面側から取付部品62の位置等を視覚的に把握しやすいので、モジュールの側面に外観構造部品3を取り付ける作業がより容易になる。
[変形例(3)]
図27は、変形例の自動分析装置1における、各モジュールの側面(Y-Z面)の取付部72および対応する取付部品62の位置の構成例について示す。例えば、自動分析装置1Cの各モジュールである操作モジュール4、分析モジュール2C、および分析モジュール2Dにおいて、仕切り板、上部および下部等のZ方向の高さ位置や厚さが異なる構成であるとする。この場合に、この変形例では、モジュールの左側面と右側面において、取付部72および取付部品62の高さ位置を異ならせる。
図27の(A)は、例えば分析モジュール2Cの右側の側面SS5に対して取り付けられる外観構造部品3g(41)を示し、(B)は、分析モジュール2Dの左側の側面SS6に対して取り付けられる外観構造部品3g(42)を示す。本体61におけるZ方向の中央の位置z1を一点鎖線で示す。分析モジュール2Cの側面SS5では、例えば位置z1よりも上側に仕切り板があり、分析モジュール2Dの側面SS6では、位置z1よりも下側に仕切り板があるとする。
この変形例では、右側の側面SS5では、位置z1よりも上側の位置z2に、取付部72、特に取付部72-1を設け、左側の側面SS6では、位置z1よりも下側の位置z3に、取付部72、特に取付部72-2を設ける。右側の側面SS5に外観構造部品3gを取り付ける場合、取付部品62(特に係合部)が上側の位置z2に来る状態とする。左側の側面SS6に外観構造部品3gを取り付ける場合、本体61を上下反転させて、取付部品62(特に係合部)が下側の位置z3に来る状態とする。この変形例では、取付部品62は、前述の上下反転できる機構が不要であり、例えば本体61とともに一体成形で構成されてもよい。この変形例では、取付部品62の係合部は、前述のフックでなく、他の手段、例えば突起等が採用される。取付部72の被係合部は、それに対応して、フック受け部ではなく、他の手段、例えば突起を挿入できる穴部等が採用される。操作モジュール4と分析モジュール2C,2Dとで仕切り板の高さ位置が異なる場合にも、上記と同様の構成が適用可能である。第1共通化方式を適用する場合にも上記と同様の構成が適用可能である。
他の変形例としては、各モジュールの取付部72の位置が異なる場合に、それに対応して、外観構造部品3gの取付部品62(特に係合部)の位置を作業者によって可変に調節できる機構を備えてもよい。
他の変形例としては、各モジュールの取付部72の位置が異なる場合に、それに対応して、外観構造部品3gに予め複数の位置に複数の取付部品62が設けられていてもよい。この場合、外観構造部品3gを取り付けるモジュールの側面に応じて、使用する取付部品62が選択される。
以上、本発明を実施の形態に基づいて具体的に説明したが、本発明は前述の実施の形態に限定されず、その要旨を逸脱しない範囲で種々変更可能である。例えば、本発明は、分析モジュールとして血液凝固分析モジュール等の他のモジュールを有する場合にも同様に適用可能である。