WO2019053887A1 - 超臨界流体装置 - Google Patents

超臨界流体装置 Download PDF

Info

Publication number
WO2019053887A1
WO2019053887A1 PCT/JP2017/033496 JP2017033496W WO2019053887A1 WO 2019053887 A1 WO2019053887 A1 WO 2019053887A1 JP 2017033496 W JP2017033496 W JP 2017033496W WO 2019053887 A1 WO2019053887 A1 WO 2019053887A1
Authority
WO
WIPO (PCT)
Prior art keywords
diameter pipe
large diameter
small diameter
heating unit
supercritical fluid
Prior art date
Application number
PCT/JP2017/033496
Other languages
English (en)
French (fr)
Inventor
智尋 高良
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN201780092957.5A priority Critical patent/CN110914684B/zh
Priority to PCT/JP2017/033496 priority patent/WO2019053887A1/ja
Priority to JP2019541603A priority patent/JP6852796B2/ja
Priority to US16/643,795 priority patent/US11435324B2/en
Publication of WO2019053887A1 publication Critical patent/WO2019053887A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/40Selective adsorption, e.g. chromatography characterised by the separation mechanism using supercritical fluid as mobile phase or eluent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/16Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the conditioning of the fluid carrier
    • B01D15/161Temperature conditioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • G01N2030/326Control of physical parameters of the fluid carrier of pressure or speed pumps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • G01N2030/328Control of physical parameters of the fluid carrier of pressure or speed valves, e.g. check valves of pumps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6004Construction of the column end pieces
    • G01N2030/6013Construction of the column end pieces interfaces to detectors

Definitions

  • the present invention relates to a supercritical fluid apparatus using a fluid in a supercritical state, such as supercritical fluid chromatograph (SFC) and supercritical fluid extraction (SFE).
  • a fluid in a supercritical state such as supercritical fluid chromatograph (SFC) and supercritical fluid extraction (SFE).
  • a supercritical fluid device such as SFC or SFE raises the pressure in a channel through which a mobile phase containing liquid carbon dioxide flows to a predetermined pressure by means of a back pressure control valve to bring the carbon dioxide into a supercritical state (patented Reference 1.).
  • the flow path downstream of the back pressure control valve is open to the atmosphere, so the mobile phase that has passed through the back pressure control valve rapidly drops from the high pressure state to the atmospheric pressure state, The carbon phase changes from the liquid state or the supercritical state to the gas state.
  • an endothermic reaction occurs, the temperature of the outlet of the back pressure control valve decreases, and condensation may occur in the pipe on the outlet side of the back pressure control valve.
  • carbon dioxide instantaneously changes to dry ice, causing clogging in the flow path.
  • an object of the present invention is to make it possible to effectively suppress condensation and freezing in piping on the outlet side of the back pressure control valve without adversely affecting the back pressure control valve. It is.
  • the present inventors connect a small diameter pipe having an inner diameter such that the internal pressure is maintained at a pressure higher than the atmospheric pressure at the outlet of the back pressure control valve, and the downstream side of the small diameter pipe has a smaller diameter than the small diameter pipe. If a large diameter pipe with a large inner diameter is connected to provide a "sudging section" where the inner diameter of the flow path is rapidly expanded, if the flow area of the mobile phase is a high flow area above a certain level, that "slow expansion” It has been found that the position of “part” or the downstream side is a position where carbon dioxide is vaporized.
  • the position where carbon dioxide vaporizes can be contained in a desired section, and if the section is heated, condensation and freezing due to the heat of vaporization of carbon dioxide are efficiently performed. Can be suppressed.
  • the present invention has been made based on such findings.
  • the supercritical fluid device comprises: an analysis flow channel through which a mobile phase flows; a back pressure control valve provided at the downstream end of the analysis flow channel and adjusting the pressure in the analysis flow channel to a predetermined pressure; A small diameter pipe having an inner diameter connected to the outlet of the back pressure control valve and having an internal pressure maintained at a pressure higher than the atmospheric pressure, and an inner diameter larger than the small diameter pipe connected to the downstream end of the small diameter pipe And a large diameter pipe heating unit for heating the large diameter pipe.
  • a "sudden expansion portion" in which the inner diameter of the flow path is rapidly expanded is formed at the joint between the small diameter pipe and the large diameter pipe, and the flow area of the mobile phase is a high flow area above a certain level
  • the position where the carbon dioxide gasification can occur can be limited to the downstream side of the "rapid expansion", that is, in the large diameter piping.
  • the large diameter piping heating part which heats the said large diameter piping is provided, when the flow volume area of a mobile phase is a high flow volume area, heating the section which vaporization of carbon dioxide will generate efficiently certainly. Can.
  • At least the small diameter pipe exists between the large diameter pipe and the back pressure control valve, and the large diameter pipe is not directly connected to the outlet of the back pressure control valve. Even if a large amount of heat is applied to the large diameter pipe by the part, there is little possibility of adversely affecting the back pressure control valve.
  • the flow area of the mobile phase where carbon dioxide vaporization occurs upstream of the "high flow area” and the "rapid expansion part", that is, in the small diameter pipe is referred to as the "low flow area”.
  • the flow rate in the boundary region where the position where carbon dioxide is vaporized is downstream or upstream of the "rapid expansion” is the composition of the mobile phase, and the mobile phase of the mobile phase when flowing out from the back pressure control valve. It may change depending on conditions such as temperature, length of small diameter piping, and inner diameter.
  • the flow rate area of the mobile phase is a low flow rate area
  • vaporization of carbon dioxide occurs in the small diameter pipe, which may cause condensation and freezing inside and outside the small diameter pipe. Therefore, in the supercritical fluid device of the present invention, it is preferable to further include a small diameter pipe heating unit configured to heat the small diameter pipe.
  • the amount of heat required to prevent condensation and freezing due to vaporization of carbon dioxide varies depending on the flow rate range of the mobile phase, and the higher the flow rate range of the mobile phase, the larger the amount of heat required to prevent condensation and freezing.
  • the flow rate area of the mobile phase is a low flow rate area, so the amount of heating may be smaller than that of the large diameter pipe heating unit. For this reason, a large amount of heat is not added to the pipe in the vicinity of the back pressure control valve, so that condensation or freezing due to the vaporization of carbon dioxide in the small diameter pipe is suppressed without adversely affecting the back pressure control valve.
  • the control unit configured to control the heating amounts of the large diameter pipe heating unit and the small diameter pipe heating unit is a mobile phase flowing in the analysis channel.
  • the small diameter pipe When the flow rate is equal to or less than a predetermined flow rate, that is, in a low flow rate area, the small diameter pipe is heated by the small diameter pipe heating unit while the flow rate of the mobile phase flowing in the analysis channel exceeds the predetermined flow rate, ie, a high flow rate
  • the region is a region, it is preferable that only the large diameter piping be heated by the large diameter piping heating unit. Then, when the flow rate area of the mobile phase is a high flow rate area, the small diameter pipe which does not generate carbon dioxide is not unnecessarily heated, and carbon dioxide is vaporized according to the flow rate area of the mobile phase. The place where it occurs can be heated efficiently.
  • the temperature sensor for detecting the temperature of the large diameter pipe heating unit, and the heating amount of the large diameter pipe heating unit and the small diameter pipe heating unit are controlled.
  • the control unit further includes: the control unit drives only the small diameter pipe heating unit when the temperature of the large diameter pipe detected by the temperature sensor is equal to or higher than a predetermined temperature, and is detected by the temperature sensor When the temperature of the large diameter pipe to be cut is less than a predetermined temperature, the large diameter pipe heating unit may be driven. Then, the small-diameter pipe heating unit and the large-diameter pipe heating unit can be selectively used as needed, and the portion where carbon dioxide vaporization occurs can be efficiently heated.
  • the large diameter pipe heating unit may include an electric circuit configured to cause a current to flow through the large diameter pipe to cause the large diameter pipe to generate heat.
  • a heater may be attached to the outer periphery of the large diameter pipe so that heat is given to the fluid flowing in the large diameter pipe, but the large diameter pipe itself is heated as a heater to directly generate the fluid from the large diameter pipe. It is more efficient to apply heat to
  • the inner diameter of the small diameter pipe is substantially the same as the inner diameter of the outlet flow path provided in the back pressure control valve. Then, the rapid expansion portion where the flow passage diameter is rapidly expanded is not formed at the outlet portion of the back pressure control valve, and the pressure in the small diameter pipe is set to the same pressure as the outlet flow passage of the back pressure control valve. Since the pressure is maintained, generation of carbon dioxide vaporization near the outlet of the back pressure control valve is suppressed.
  • the inner diameter of the large diameter pipe is preferably twice or more the inner diameter of the small diameter pipe. Then, since the fluid pressure is rapidly reduced at the joint between the small diameter pipe and the large diameter pipe, the carbon dioxide is easily vaporized at this portion.
  • a small diameter pipe having an inner diameter such that the internal pressure is maintained at a pressure higher than atmospheric pressure is connected to the outlet of the back pressure control valve, and the small diameter pipe is further connected to the downstream end of the small diameter pipe.
  • a large diameter pipe having an inner diameter larger than the piping is connected to form a rapidly expanding portion where the inner diameter of the flow path is rapidly expanded at the joint between the small diameter pipe and the large diameter pipe.
  • the position where carbon dioxide vaporization occurs can be limited within the large diameter pipe.
  • the large diameter piping heating part which heats the said large diameter piping is provided, when the flow volume area of a mobile phase is a high flow volume area, heating the section which vaporization of carbon dioxide will generate efficiently certainly. Can.
  • FIG. 1 is a block diagram schematically showing an embodiment of a supercritical fluid device. It is a figure showing roughly piping composition at the exit side of a back pressure control valve of the example. It is a block diagram which shows roughly the other Example of a supercritical fluid apparatus.
  • the liquid state carbon dioxide contained in the carbon dioxide cylinder 6 is modified by the liquid delivery pump 4 a to be contained in the modifier container 8.
  • A is sent to the common mixer 10 by the feed pump 4b, and the mixed solution is sent as a mobile phase in the analysis channel 2.
  • the sample injection unit 12, the analysis column 14, and the detector 16 are provided on the analysis channel 2 from the upstream side, and the downstream end of the analysis channel 2 is connected to the back pressure control valve 18.
  • the sample injection unit 12 injects a sample to be analyzed into the analysis channel 2.
  • the analysis column 14 is for separating the sample injected into the analysis channel 2 by the sample injection unit 12.
  • the detector 16 is for detecting the sample component separated by the analysis column 14.
  • the back pressure control valve 18 is for controlling the pressure in the analysis channel 2 to a predetermined pressure.
  • carbon dioxide in the mobile phase becomes supercritical and flows through the analysis column 14.
  • the small diameter pipe 20 is connected to the outlet of the back pressure control valve 18, and the large diameter pipe 24 is connected to the downstream end of the small diameter pipe 20 via a coupling 22.
  • the inner diameter of the small diameter pipe 20 is substantially the same as the outlet flow path of the back pressure control valve 18, and the inner diameter of the small diameter pipe 20 is designed to be maintained at a pressure higher than atmospheric pressure.
  • the inner diameter of the large diameter pipe 24 is larger than the inner diameter of the small diameter pipe 20, preferably twice or more the inner diameter of the small diameter pipe 20.
  • the inner diameter of the small diameter pipe 20 is, for example, about 0.5 mm, and the inner diameter of the large diameter pipe 24 is, for example, about 1.0 mm.
  • the downstream end of the large diameter pipe 24 is open to the atmosphere, and the inside of the large diameter pipe 24 is at the atmospheric pressure.
  • the inner diameter of the small diameter pipe 20 is significantly smaller than that of the large diameter pipe 24, and the pressure in the small diameter pipe 20 is maintained at a pressure higher than the atmospheric pressure. That is, at the joint between the small diameter pipe 20 on the outlet side of the back pressure control valve 18 and the large diameter pipe 24, there is a rapidly expanding portion where the flow path diameter is rapidly expanded. The pressure drops sharply when passing through the joint between the small diameter pipe 20 and the large diameter pipe 24.
  • a small diameter pipe heating unit 26 for heating the small diameter pipe 20 is also provided.
  • the small diameter pipe heating unit 26 heats the small diameter pipe 20 with a smaller amount of heat than the large diameter pipe heating unit 28 which does not adversely affect the back pressure control valve 18.
  • the drive of the small diameter pipe heating unit 26 and the large diameter pipe heating unit 28 is controlled by the control unit 30.
  • the control unit 30 is a function obtained by executing a predetermined program by an arithmetic element such as a microcomputer provided in a dedicated computer or a general-purpose computer.
  • the control unit 30 heats only the large diameter pipe 24 by the large diameter pipe heating unit 28 when the flow rate area of the mobile phase is equal to or higher than the predetermined flow rate, and the flow area of the mobile phase is less than the predetermined flow rate
  • the small diameter pipe heating unit 26 heats the small diameter pipe 20.
  • the flow rate value serving as the threshold value for determining whether or not to drive the small-diameter pipe heating unit 26 varies depending on the composition of the mobile phase (the ratio of carbon dioxide in the mobile phase) or the pressure in the analysis channel 2 is there. Therefore, it is preferable that the control unit 30 hold a data table indicating the relationship between the composition or the like of the mobile phase and the flow rate value serving as the threshold value. In that case, the control unit 30 sets a threshold value using the data table and determines whether to drive the small diameter pipe heating unit 26 depending on whether the flow rate of the mobile phase is equal to or greater than the threshold value. It is preferable to be configured. In addition, when the gradient analysis in which the composition of the mobile phase is temporally changed is performed, the threshold value of the flow rate may be changed according to the composition of the mobile phase which temporally changes.
  • a ribbon heater or the like directly attached to the outer peripheral surface of the small diameter pipe 20 can be used as the small diameter pipe heating unit 26.
  • the large diameter pipe heating unit 28 is preferably configured by an electric circuit that applies a voltage to a predetermined section of the large diameter pipe 24 by the power supply 28.
  • a voltage is applied to a predetermined section of the large diameter pipe 24 by the voltage 28
  • a current flows through the large diameter pipe 24 and the large diameter pipe 24 generates heat due to the resistance of the large diameter pipe 24 itself.
  • the fluid flowing through the large diameter pipe 24 can be efficiently heated by the Joule heat generated in the large diameter pipe 24.
  • a large amount of heat can be added to the fluid flowing through the large diameter pipe 24. Therefore, even if the flow rate area of the mobile phase is a high flow rate area, condensation and freezing due to vaporization heat of carbon dioxide are effectively suppressed. It becomes possible.
  • an insulating material is used as the coupling 22.
  • Polyether ether ketone can be used as a material of such coupling 22.
  • any material having heat resistance up to 120 ° C. and an insulating property can be used as the material of the coupling 22.
  • Such materials include thermoplastic resins and the like.
  • the temperature sensor 32 is attached to the large diameter pipe 24, and the control unit 30 drives the large diameter pipe 24 based on the temperature of the large diameter pipe 24 detected by the temperature sensor 32. It may be configured to control. For example, when the temperature of the large diameter pipe 24 is a predetermined temperature or more, for example, room temperature or more, only the small diameter pipe heating unit 26 is driven, and when the temperature of the large diameter pipe 24 is less than the predetermined temperature, the large diameter pipe heating The control unit 30 may be configured to drive the unit 28 as well.
  • the small diameter pipe heating unit 26 heats the small diameter pipe 20 so that condensation or freezing due to the heat of vaporization of carbon dioxide can be suppressed.
  • the temperature of large diameter piping 20 will fall rapidly by the vaporization heat of carbon dioxide. Therefore, if the temperature of the large diameter piping 24 is monitored, it can be determined whether or not the heating of the large diameter piping 24 by the large diameter piping heating unit 28 is necessary.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Details Of Valves (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

超臨界流体装置は、移動相が流れる分析流路と、前記分析流路の下流端に設けられ、前記分析流路内の圧力を所定の圧力に調節する背圧制御弁と、前記背圧制御弁の出口に接続され、内部の圧力が大気圧よりも高い圧力に維持される内径を有する小径配管と、前記小径配管の下流端に接続され、前記小径配管よりも大きい内径をもつ大径配管と、前記大径配管を加熱するための大径配管加熱部と、を備えている。

Description

超臨界流体装置
 本発明は、超臨界流体クロマトグラフ(SFC)や超臨界流体抽出(SFE)など、超臨界状態の流体を用いる超臨界流体装置に関するものである。
 SFCやSFEなどの超臨界流体装置は、液体の二酸化炭素を含む移動相が流れる流路内の圧力を背圧制御弁によって所定の圧力にまで上昇させ、二酸化炭素を超臨界状態にする(特許文献1参照。)。
 超臨界流体装置では、一般的に、背圧制御弁の下流側の流路が大気解放されているため、背圧制御弁を経た移動相が高圧状態から大気圧状態へ急激に低下し、二酸化炭素が液体状態又は超臨界状態から気体状態へと相変化する。このとき、吸熱反応が起こり、背圧制御弁の出口部の温度が低下し、背圧制御弁の出口側の配管において結露が発生することがある。場合によっては、二酸化炭素が瞬時にドライアイスへと変化し、流路内の詰まりの原因となる。
 このような問題への対処方法として、背圧制御弁の出口側の配管をヒータによって加熱することで、二酸化炭素の気化熱による結露や凍結を抑制することが一般的である。
特表2014-517323号公報
 背圧制御弁の出口側の配管に加える熱量が高いほど、背圧制御弁の下流側での結露や凍結を効果的に抑制することができる。しかし、背圧制御弁の出口部分を高温に加熱すると背圧制御弁に悪影響を与える虞があるため、背圧制御弁の出口側の配管の全体を高い熱量で加熱することはできない。また、二酸化炭素の気化が起こる位置を正確に予測できないため、背圧制御弁の出口側の配管の特定部分だけを加熱しても、二酸化炭素の気化熱による結露や凍結を効果的に抑制することはできない。
 そこで、本発明は、背圧制御弁に悪影響を与えることなく、背圧制御弁の出口側の配管内での結露や凍結を効果的に抑制することができるようにすることを目的とするものである。
 本発明者らは、背圧制御弁の出口に、その内部圧力が大気圧よりも高い圧力に維持されるような内径をもつ小径配管を接続し、その小径配管の下流側に小径配管よりも大きい内径をもつ大径配管を接続して流路内径が急激に拡大する「急拡大部」を設けると、移動相の流量域が一定以上の高流量域である場合には、その「急拡大部」又はそれよりも下流側の位置が二酸化炭素の気化する位置になるという知見を得た。すなわち、上記のような「急拡大部」を設ければ、二酸化炭素が気化する位置を所望の区間内に収めることができ、その区間を加熱すれば二酸化炭素の気化熱による結露や凍結を効率的に抑制することが可能となる。本発明は、このような知見に基づいてなされたものである。
 本発明に係る超臨界流体装置は、移動相が流れる分析流路と、前記分析流路の下流端に設けられ、前記分析流路内の圧力を所定の圧力に調節する背圧制御弁と、前記背圧制御弁の出口に接続され、内部の圧力が大気圧よりも高い圧力に維持される内径を有する小径配管と、前記小径配管の下流端に接続され、前記小径配管よりも大きい内径をもつ大径配管と、前記大径配管を加熱するための大径配管加熱部と、を備えている。これにより、前記小径配管と前記大径配管との繋ぎ目部分に、流路内径が急激に拡大する「急拡大部」が形成され、移動相の流量域が一定以上の高流量域である場合に、二酸化炭素の気化が起こる位置を、その「急拡大部」よりも下流側、すなわち前記大径配管内に限定することができる。そして、前記大径配管を加熱する大径配管加熱部を備えているので、移動相の流量域が高流量域である場合に、二酸化炭素の気化が発生する区間を確実に効率よく加熱することができる。前記大径配管と前記背圧制御弁との間には少なくとも前記小径配管が存在し、前記背圧制御弁の出口に前記大径配管が直接的に接続されていないため、前記大径配管加熱部によって前記大径配管に大きな熱量を加えても、前記背圧制御弁に悪影響を与える虞は小さい。
 以下では、背圧制御弁の下流側の小径配管と大径配管との繋ぎ目部分の「急拡大部」又はそれよりも下流側において二酸化炭素の気化が発生するような移動相の流量域を「高流量域」、「急拡大部」よりも上流側、すなわち小径配管内において二酸化炭素の気化が発生するような移動相の流量域を「低流量域」と称する。なお、二酸化炭素が気化する位置が「急拡大部」よりも下流側となるか上流側となるかの境界領域の流量は、移動相の組成、背圧制御弁から流出する際の移動相の温度、小径配管の長さや内径等の条件によって変化し得るものである。
 また、移動相の流量域が低流量域である場合には、前記小径配管内において二酸化炭素の気化が発生し、それによって前記小径配管の内外で結露や凍結が発生する虞がある。したがって、本発明の超臨界流体装置では、前記小径配管を加熱するように構成された小径配管加熱部をさらに備えていることが好ましい。ところで、二酸化炭素の気化による結露や凍結を防止するために必要な熱量は、移動相の流量域によって変わり、移動相の流量域が高いほど結露や凍結の防止のために大きな熱量が必要になる。小径配管で二酸化炭素の気化が発生する場合、移動相の流量域は低流量域であるため、前記大径配管加熱部に比べて加熱量は小さくてよい。このため、背圧制御弁の近傍の配管に大きな熱量を加えることにはならないので、背圧制御弁に悪影響を与えることなく、小径配管内での二酸化炭素の気化による結露や凍結を抑制することができる。
 上記のように、移動相の流量域が高流量域であれば、前記小径配管と前記大径配管との繋ぎ目部分よりも下流側で二酸化炭素の気化が発生する。そのため、移動相の流量域が高流量域である場合には前記小径配管を前記小径配管加熱部によって加熱する必要がない。そこで、本発明に係る超臨界流体装置では、前記大径配管加熱部と前記小径配管加熱部のそれぞれの加熱量を制御するように構成された制御部が、前記分析流路を流れる移動相の流量が所定流量以下、すなわち低流量域であるときは、前記小径配管を前記小径配管加熱部によって加熱する一方で、前記分析流路を流れる移動相の流量が前記所定流量を超える、すなわち高流量域であるときは、前記大径配管のみを前記大径配管加熱部によって加熱するように構成されていることが好ましい。そうすれば、移動相の流量域が高流量域である場合に、二酸化炭素の気化が発生しない前記小径配管を無駄に加熱することがなくなり、移動相の流量域に応じて二酸化炭素の気化が発生する箇所を効率的に加熱することができる。
 また、前記小径配管内において二酸化炭素の気化が起こるような流量域では、前記小径配管加熱部によって前記小径配管を加熱することで二酸化炭素の気化熱による結露や凍結を抑制することができる。一方で、前記大径配管内において二酸化炭素の気化が起こるような流量域になると、二酸化炭素の気化熱によって前記大径配管の温度が急激に低下する。したがって、前記大径配管の温度をモニタしておけば、前記大径配管加熱部による前記大径配管の加熱が必要か否かを判断することができる。
 そこで、本発明の超臨界流体装置においては、前記大径配管加熱部の温度を検出する温度センサと、前記大径配管加熱部と前記小径配管加熱部のそれぞれの加熱量を制御するように構成された制御部と、さらに備え、前記制御部は、前記温度センサにより検出される前記大径配管の温度が所定温度以上であるときは前記小径配管加熱部のみを駆動し、前記温度センサにより検出される前記大径配管の温度が所定温度未満であるときは前記大径配管加熱部を駆動するように構成されていてもよい。そうすれば、必要に応じて前記小径配管加熱部と前記大径配管加熱部を使い分けることができ、二酸化炭素の気化が発生する箇所を効率的に加熱することができる。
 前記大径配管加熱部は、前記大径配管に電流を流して前記大径配管を発熱させるように構成された電気回路を含むものであってよい。前記大径配管内で二酸化炭素の気化が発生するような高流量域では、二酸化炭素の気化熱による結露や凍結を抑制するために大きな熱量を高効率に流体へ与える必要がある。前記大径配管の外周にヒータと取り付けて前記大径配管内を流れる流体に熱量を与えるようにしてもよいが、前記大径配管自身をヒータとして発熱させ、前記大径配管から流体へ直接的に熱を加えるほうが高効率である。
 また、前記小径配管の内径は前記背圧制御弁内に設けられた出口流路の内径と略同一であることが好ましい。そうすれば、前記背圧制御弁の出口部分に流路径が急激に拡大する急拡大部が形成されず、前記小径配管内の圧力が前記背圧制御弁の出口流路と同程度の圧力に維持されるので、前記背圧制御弁の出口付近で二酸化炭素の気化が発生することが抑制される。
 また、前記大径配管の内径は前記小径配管の内径の2倍以上であることが好ましい。そうすれば、前記小径配管と前記大径配管との繋ぎ目部分で流体圧力が急激に低下するため、この部分において二酸化炭素の気化を誘発しやすくなる。
 本発明に係る超臨界流体装置では、背圧制御弁の出口に内部の圧力が大気圧よりも高い圧力に維持される内径を有する小径配管を接続し、さらに前記小径配管の下流端に前記小径配管よりも大きい内径をもつ大径配管を接続して、前記小径配管と前記大径配管との繋ぎ目部分に流路内径が急激に拡大する急拡大部を形成したので、移動相の流量域が高流量域である場合に、二酸化炭素の気化が起こる位置を前記大径配管内に限定することができる。そして、前記大径配管を加熱する大径配管加熱部を備えているので、移動相の流量域が高流量域である場合に、二酸化炭素の気化が発生する区間を確実に効率よく加熱することができる。
超臨界流体装置の一実施例を概略的に示す構成図である。 同実施例の背圧制御弁の出口側の配管構成を概略的に示す図である。 超臨界流体装置の他の実施例を概略的に示す構成図である。
 以下、本発明に係る超臨界流体装置の一実施例である超臨界流体クロマトグラフについて、図面を参照しながら説明する。
 図1に示されているように、この実施例の超臨界流体クロマトグラフは、二酸化炭素ボンベ6に収容された液体状態の二酸化炭素を送液ポンプ4aによって、モディファイア容器8に収容されたモディファイアを送液ポンプ4bによって共通のミキサ10へ送液し、その混合液を移動相として分析流路2中において送液するように構成されている。分析流路2上には、上流側から、試料注入部12、分析カラム14、及び検出器16が設けられており、分析流路2の下流端は背圧制御弁18に接続されている。
 試料注入部12は、分析対象の試料を分析流路2中に注入するものである。分析カラム14は試料注入部12により分析流路2中に注入された試料を分離するためのものである。検出器16は分析カラム14で分離した試料成分を検出するためのものである。
 背圧制御弁18は、分析流路2内の圧力を所定の圧力に制御するためのものである。背圧制御弁18により所定の圧力に制御された分析流路2内では、移動相中の二酸化炭素が超臨界状態となって分析カラム14を流れる。
 背圧制御弁18の出口に小径配管20が接続され、小径配管20の下流端にカップリング22を介して大径配管24が接続されている。小径配管20の内径は背圧制御弁18の出口流路と略同一であり、小径配管20内の圧力が大気圧よりも高い圧力に維持されるような大きさに設計されている。大径配管24の内径は小径配管20の内径よりも大きく、好ましくは小径配管20の内径の2倍以上である。小径配管20の内径は例えば約0.5mmであり、大径配管24の内径は例えば約1.0mmである。
 図示は省略されているが、大径配管24の下流端は大気解放されており、大径配管24内は大気圧となる。一方で、小径配管20の内径は大径配管24に比べて大幅に小さく、小径配管20内の圧力が大気圧よりも高い圧力に維持される。すなわち、背圧制御弁18の出口側の小径配管20と大径配管24との繋ぎ目部分には、流路径が急激に拡大する急拡大部が存在し、背圧制御弁18から流出した流体の圧力は小径配管20と大径配管24との繋ぎ目部分を通過するときに急激に低下する。
 このような構成により、移動相の流量域が、小径配管20内において二酸化炭素の気化が起こらないような高流量域であるときは、小径配管20と大径配管24との繋ぎ目部分よりも下流側の区間、すなわち大径配管24の一定の区間内において二酸化炭素の気化が誘発される。そのため、大径配管24の一定の区間を大きな熱量で加熱することができる大径配管加熱部28が設けられている。
 一方で、移動相の流量域が、小径配管20内において二酸化炭素の気化が起こるような低流量域であるときには、小径配管20内での二酸化炭素の気化による結露や凍結が起こる虞がある。そのため、そのような小径配管20での結露や凍結を防止するために、小径配管20を加熱する小径配管加熱部26も設けられている。小径配管加熱部26は、背圧制御弁18に悪影響を与えない程度の大径配管加熱部28よりも小さい熱量で小径配管20を加熱する。
 小径配管加熱部26及び大径配管加熱部28の駆動は制御部30によって制御される。制御部30は、専用のコンピュータ又は汎用のコンピュータに設けられているマイクロコンピュータなどの演算素子が所定のプログラムを実行することにより得られる機能である。
 制御部30は、移動相の流量域が所定の流量以上であるときは、大径配管加熱部28によって大径配管24のみを加熱し、移動相の流量域が所定の流量未満であるときに小径配管加熱部26によって小径配管20を加熱するように構成されている。
 なお、小径配管加熱部26を駆動するか否かのしきい値となる流量値は、移動相の組成(移動相中における二酸化炭素の割合)や分析流路2内の圧力などによって変わるものである。したがって、制御部30は、移動相の組成等としきい値となる流量値との関係性を示すデータテーブルを保持していることが好ましい。その場合、制御部30は、そのデータテーブルを用いてしきい値を設定し、移動相の流量がそのしきい値以上か否かによって小径配管加熱部26を駆動するか否かを決定するように構成されていることが好ましい。また、移動相の組成を時間的に変化させるグラジエント分析が実行されている場合には、時間的に変化する移動相の組成に応じて流量のしきい値を変化させるようにしてもよい。
 図2に示されているように、小径配管加熱部26として、小径配管20の外周面に直接的に取り付けられたリボンヒータなどを用いることができる。
 また、大径配管加熱部28は、図2に示されているように、電源28によって大径配管24の一定区間に電圧を印加する電気回路によって構成することが好ましい。電圧28によって大径配管24の一定区間に電圧を印加すると、大径配管24を電流が流れ、大径配管24自体の抵抗によって大径配管24が発熱する。これにより、大径配管24に発生したジュール熱によって大径配管24を流れる流体を効率よく加熱することができる。この構成により、大径配管24を流れる流体に大きな熱量を加えることができるため、移動相の流量域が高流量域であっても、二酸化炭素の気化熱による結露や凍結を効果的に抑制することが可能になる。
 上記の場合、大径配管24の電流が背圧制御弁18側へ流れることを防止するため、カップリング22として絶縁性のものを用いる。そのようなカップリング22の素材としては、ポリエーテルエーテルケトンを用いることができる。このほか、120度までの耐熱性を有し、かつ絶縁性の素材であればいかなるものもカップリング22の素材として用いることができる。そのような素材としては、熱可塑性樹脂などが挙げられる。
 また、図3に示されているように、大径配管24に温度センサ32を取り付け、制御部30が温度センサ32により検出される大径配管24の温度に基づいて大径配管24の駆動を制御するように構成してもよい。例えば、大径配管24の温度が所定温度以上、例えば室温以上である場合には小径配管加熱部26のみを駆動し、大径配管24の温度が所定温度未満である場合には大径配管加熱部28も駆動するように、制御部30を構成してもよい。
 小径配管20内において二酸化炭素の気化が起こるような流量域では、小径配管加熱部26によって小径配管20を加熱することで二酸化炭素の気化熱による結露や凍結を抑制することができる。一方で、大径配管20内において二酸化炭素の気化が起こるような流量域になると、二酸化炭素の気化熱によって大径配管20の温度が急激に低下する。したがって、大径配管24の温度をモニタしておけば、大径配管加熱部28による大径配管24の加熱が必要か否かを判断することができる。
 上記実施形態では、小径配管加熱部26と大径配管加熱部28とのどちらか一方を加熱駆動する例を記載したが、小径配管加熱部26と大径配管加熱部28との両方を加熱駆動してもよい。
   2   分析流路
   4a,4b   送液ポンプ
   6   二酸化炭素ボンベ
   8   モディファイア容器
   10   ミキサ
   12   試料注入部
   14   分析カラム
   16   検出器
   18   背圧制御弁
   20   小径流路
   22   カップリング
   24   大径流路
   26   小径配管加熱部
   28   大径配管加熱部
   30   制御部
   32   温度センサ

Claims (7)

  1.  移動相が流れる分析流路と、
     前記分析流路の下流端に設けられ、前記分析流路内の圧力を所定の圧力に調節する背圧制御弁と、
     前記背圧制御弁の出口に接続され、内部の圧力が大気圧よりも高い圧力に維持される内径を有する小径配管と、
     前記小径配管の下流端に接続され、前記小径配管よりも大きい内径をもつ大径配管と、
     前記大径配管を加熱するための大径配管加熱部と、を備えた超臨界流体装置。
  2.  前記大径配管加熱部よりも小さい加熱量で前記小径配管を加熱するように構成された小径配管加熱部をさらに備えている、請求項1に記載の超臨界流体装置。
  3.  前記大径配管加熱部と前記小径配管加熱部のそれぞれの加熱量を制御するように構成された制御部をさらに備え、
     前記制御部は、前記分析流路を流れる移動相の流量が所定流量以下であるときは前記小径配管を前記小径配管加熱部によって加熱し、前記分析流路を流れる移動相の流量が前記所定流量を超えているときは前記大径配管のみを前記大径配管加熱部によって加熱するように構成されている、請求項2に記載の超臨界流体装置。
  4.  前記大径配管加熱部の温度を検出する温度センサと、
     前記大径配管加熱部と前記小径配管加熱部のそれぞれの加熱量を制御するように構成された制御部と、さらに備え、
     前記制御部は、前記温度センサにより検出される前記大径配管の温度が所定温度以上であるときは前記小径配管加熱部のみを駆動し、前記温度センサにより検出される前記大径配管の温度が所定温度未満であるときは前記大径配管加熱部を駆動するように構成されている、請求項2に記載の超臨界流体装置。
  5.  前記大径配管加熱部は、前記大径配管に電流を流して前記大径配管を発熱させるように構成された電気回路を含む、請求項1から4のいずれか一項に記載の超臨界流体装置。
  6.  前記小径配管の内径は前記背圧制御弁内に設けられた出口流路の内径と略同一である、請求項1から5のいずれか一項に記載の超臨界流体装置。
  7.  前記大径配管の内径は前記小径配管の内径の2倍以上である、請求項1から6のいずれか一項に記載の超臨界流体装置。
PCT/JP2017/033496 2017-09-15 2017-09-15 超臨界流体装置 WO2019053887A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780092957.5A CN110914684B (zh) 2017-09-15 2017-09-15 超临界流体装置
PCT/JP2017/033496 WO2019053887A1 (ja) 2017-09-15 2017-09-15 超臨界流体装置
JP2019541603A JP6852796B2 (ja) 2017-09-15 2017-09-15 超臨界流体装置
US16/643,795 US11435324B2 (en) 2017-09-15 2017-09-15 Supercritical fluid apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/033496 WO2019053887A1 (ja) 2017-09-15 2017-09-15 超臨界流体装置

Publications (1)

Publication Number Publication Date
WO2019053887A1 true WO2019053887A1 (ja) 2019-03-21

Family

ID=65723292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033496 WO2019053887A1 (ja) 2017-09-15 2017-09-15 超臨界流体装置

Country Status (4)

Country Link
US (1) US11435324B2 (ja)
JP (1) JP6852796B2 (ja)
CN (1) CN110914684B (ja)
WO (1) WO2019053887A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011118880A (ja) * 2009-10-28 2011-06-16 Jasco Corp 超臨界流体用圧力制御装置
WO2016147379A1 (ja) * 2015-03-19 2016-09-22 株式会社島津製作所 超臨界流体装置
JP3209072U (ja) * 2016-12-13 2017-03-02 株式会社島津製作所 超臨界流体装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0427671B1 (de) * 1989-11-08 1994-07-27 Ciba-Geigy Ag Ventil
DE69332946T2 (de) * 1992-10-16 2004-05-19 Suprex Corp. Automatisierte extrakion mittels eines superkritischen fluidum
FR2712762B1 (fr) 1993-11-19 1996-02-02 Electricite De France Dispositif et procédé de chauffage par effet Joule d'un fluide dans un tube formant résistance électrique.
AU2001261545A1 (en) * 2000-05-11 2001-11-20 Ontogen Corporation Apparatus and method for multiple channel high throughput purification
US7964029B2 (en) * 2006-07-17 2011-06-21 Thar Instrument, Inc. Process flowstream collection system
CN101396646A (zh) * 2007-09-28 2009-04-01 天津市职业大学 超临界流体处理装置
DE202009003807U1 (de) * 2009-03-20 2010-08-12 Voss Automotive Gmbh Elektrisches Heizsystem für ein Fluid-Leitungssystem
JP6031098B2 (ja) 2011-06-17 2016-11-24 ウオーターズ・テクノロジーズ・コーポレイシヨン 超臨界流体クロマトグラフィー用の開放型常圧回収のための方法および装置
JP5458314B2 (ja) * 2011-06-30 2014-04-02 セメス株式会社 基板処理装置及び超臨界流体排出方法
CN104813163B (zh) * 2012-11-28 2019-05-14 株式会社岛津制作所 超临界流体处理装置
JP6406358B2 (ja) * 2014-12-05 2018-10-17 株式会社島津製作所 試料回収機構及びその試料回収機構を備えた超臨界流体装置
JP3211870U (ja) * 2017-05-22 2017-08-10 株式会社島津製作所 超臨界流体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011118880A (ja) * 2009-10-28 2011-06-16 Jasco Corp 超臨界流体用圧力制御装置
WO2016147379A1 (ja) * 2015-03-19 2016-09-22 株式会社島津製作所 超臨界流体装置
JP3209072U (ja) * 2016-12-13 2017-03-02 株式会社島津製作所 超臨界流体装置

Also Published As

Publication number Publication date
CN110914684A (zh) 2020-03-24
JP6852796B2 (ja) 2021-03-31
US20200209199A1 (en) 2020-07-02
CN110914684B (zh) 2022-11-08
JPWO2019053887A1 (ja) 2020-05-28
US11435324B2 (en) 2022-09-06

Similar Documents

Publication Publication Date Title
JP4569633B2 (ja) 液体クロマトグラフィーによる分析方法及び装置
US11273390B2 (en) Techniques for thermally insulating a liquid chromatographic column
JP5999194B2 (ja) 超臨界流体処理装置
JP6648018B2 (ja) ガスを検出するための装置及び方法
JP6332550B2 (ja) 超臨界流体装置
US20200139264A1 (en) Techniques for accelerating thermal equilibrium in a chromatographic column
JP6891772B2 (ja) マルチディメンジョナルガスクロマトグラフ
WO2019053887A1 (ja) 超臨界流体装置
US9234608B2 (en) Heated rotary valve for chromotography
JP5482191B2 (ja) 脱気装置
JP6863457B2 (ja) ガスクロマトグラフ
JP5853942B2 (ja) ガスクロマトグラフ装置
US20180111058A1 (en) Expansion regulation in carbon dioxide based chromatographic systems
JP4179189B2 (ja) ガスクロマトグラフ装置
JP2010175418A (ja) フローセルを用いた液体クロマトグラフ用の検出器及び液体クロマトグラフ
JPWO2016088252A1 (ja) 試料回収機構及びその試料回収機構を備えた超臨界流体装置
JP7294417B2 (ja) 超臨界流体装置用移動相温調装置および超臨界流体装置
JP2010249610A (ja) 定圧力機構
JP2018189545A (ja) ガス供給制御装置、ガスクロマトグラフ及び圧力センサ異常判定方法
JP2016070448A (ja) シール部材並びにそれを用いた除香方法及び除香システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541603

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925433

Country of ref document: EP

Kind code of ref document: A1