WO2019053836A1 - プラズマ処理装置およびウェットクリーニング方法 - Google Patents
プラズマ処理装置およびウェットクリーニング方法 Download PDFInfo
- Publication number
- WO2019053836A1 WO2019053836A1 PCT/JP2017/033240 JP2017033240W WO2019053836A1 WO 2019053836 A1 WO2019053836 A1 WO 2019053836A1 JP 2017033240 W JP2017033240 W JP 2017033240W WO 2019053836 A1 WO2019053836 A1 WO 2019053836A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- processing chamber
- gas
- atmosphere
- pipe
- exhaust
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
- H01J37/32449—Gas control, e.g. control of the gas flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/04—Cleaning involving contact with liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B9/00—Cleaning hollow articles by methods or apparatus specially adapted thereto
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D7/00—Control of flow
- G05D7/06—Control of flow characterised by the use of electric means
- G05D7/0617—Control of flow characterised by the use of electric means specially adapted for fluid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32715—Workpiece holder
- H01J37/32724—Temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32798—Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
- H01J37/32816—Pressure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32798—Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
- H01J37/32816—Pressure
- H01J37/32834—Exhausting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67069—Apparatus for fluid treatment for etching for drying etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67109—Apparatus for thermal treatment mainly by convection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67253—Process monitoring, e.g. flow or thickness monitoring
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/332—Coating
- H01J2237/3321—CVD [Chemical Vapor Deposition]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/334—Etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/335—Cleaning
Definitions
- the present invention relates to a plasma processing apparatus and the wet cleaning technology thereof.
- processing techniques such as plasma CVD (Chemical Vapor Deposition) and plasma etching are used in order to form desired patterns.
- a plasma processing apparatus that performs such processing, an object to be processed (substrate to be processed) such as a semiconductor wafer is mounted on a stage disposed in a processing chamber.
- the temperature of the object placed on the stage is controlled by the heat transfer gas supplied between the stage and the object.
- processing gases such as Ar, O 2 , N 2 , CHF 3 , CH 4 , C 5 F 8 , C 4 F 8 , CF 4 , SF 6 , NF 3 , HBr, Cl 2 , BCl 3, etc. Supply.
- the pressure in the processing chamber is adjusted to a desired pressure by an exhausting means combining a turbo molecular pump and a dry pump, and a pressure adjusting means adjusting, for example, the opening degree of a valve.
- a source high frequency power for plasma generation is applied to plasmify the processing gas.
- Desired film formation or etching is performed on the object by applying a bias high frequency power for incident ion control to the object.
- Examples of etching condition parameters include gas type, pressure, source high frequency power, bias high frequency power, refrigerant temperature for controlling stage temperature, and heater temperature. Due to the miniaturization of the processing dimensions of the object to be processed, high dimensional accuracy (CD: Critical Dimension) of the processing pattern in the etching process is required. In addition, the amount of contamination of alkali metals and heavy metals causing the deterioration of the device performance and the reduction of the yield, and the allowable value of the size of the foreign matter adhering to the object are also becoming strict.
- CD Critical Dimension
- the plasma processing apparatus is composed of a metal base such as stainless alloy and aluminum alloy, and a ceramic base such as quartz or alumina.
- a protective film such as an alumite coating, an alumina thermal spray coating, or a Y 2 O 3 thermal spray coating is formed on the base material surface to suppress etching and corrosion of the base material surface by the processing gas and plasma that cause contamination and foreign matter. It is done.
- reaction products adhere to the inner surface of the processing chamber.
- the adhesion of the reaction product to the inner surface of the processing chamber causes the fluctuation of the radical state in the plasma, which causes the fluctuation of the CD.
- plasma cleaning is performed before or after the plasma treatment of the object to remove reaction products adhering to the inner surface of the treatment chamber.
- the surface condition of the inner surface is kept constant. Furthermore, stabilization of process performance is achieved by suppressing the fluctuation of the radical state in the plasma.
- Patent Document 1 US Pat. No. 7,767,584.
- Patent Document 2 Japanese Patent Application Laid-Open No. 11-244686
- Patent Document 2 Japanese Patent Application Laid-Open No. 11-244686
- reaction product generated varies depending on the processing gas used for plasma processing and the film type to be etched on the object to be processed. For example, if titanium (Ti) is contained in the film type to be etched and the processing gas is a fluorine-based gas, a fluoride such as TiF X is generated. In addition, if the process gas is a chlorine-based gas, a chloride such as TiCl x is generated. In addition to this, reaction products such as bromide are generated in the case of a Br-based gas and oxides in the case of an O 2 gas. Such reaction products are known to be hygroscopic.
- the leak rate satisfies the control value, so that the process gas can be supplied.
- the processing gas is supplied in such a state, the processing gas and the moisture react with each other to cause corrosion of the base material and the piping that constitute the processing chamber. As a result, foreign matter and contamination occur to cause pattern defects of the object to be processed and deterioration of device performance, resulting in deterioration of the yield.
- An object of the present invention is to provide a technique capable of reducing the generation of outgassing due to moisture at the time of vacuum evacuation of a processing chamber in wet cleaning of a plasma processing apparatus.
- a plasma processing apparatus comprises a processing chamber in which an object to be treated is subjected to plasma processing, an exhaust pipe for reducing the pressure in the processing chamber at atmospheric pressure, and a sample stage on which the object is placed.
- a heat transfer gas exhausting unit for exhausting heat transfer gas supplied to the back surface of the object to be processed through the exhaust pipe to transfer heat of the temperature-controlled sample stage; and the exhaust pipe And a first gas supply mechanism for supplying a first gas for purging a portion exposed to the atmosphere. Furthermore, when the wet cleaning of the processing chamber is performed with the processing chamber being open to the atmosphere, the processing pipe is exposed to the atmosphere of the exhaust pipe after the opening of the processing chamber to the start of exhausting the processing chamber.
- a controller is provided to control the first gas supply mechanism so as to continue supplying the first gas to the portion.
- Another plasma processing apparatus includes a processing chamber in which an object to be processed is plasma processed, an exhaust pipe for reducing the pressure of the processing chamber at atmospheric pressure, and a sample stage on which the object is mounted.
- a heat transfer gas exhaust unit for discharging the heat transfer gas supplied to the back surface of the object to transfer heat of the temperature-controlled sample stage through the exhaust pipe; And a first gas supply mechanism for supplying a first gas for purging a portion of the pipe exposed to the atmosphere.
- a controller is provided to control the first gas supply mechanism so as to continue supplying the first gas to the portion.
- the treatment chamber in which the object to be treated is subjected to the plasma treatment is exposed to the atmosphere to perform wet cleaning of the treatment chamber.
- the first gas is continuously supplied to the portion of the exhaust pipe exposed to the atmosphere.
- the exhaust pipe is a pipe for decompressing the processing chamber at atmospheric pressure, and the heat transfer supplied to the back surface of the object to transfer the heat of the temperature-controlled sample stage.
- a pipe for exhausting the gas is connected, and the first gas is a gas for purging a portion of the exhaust pipe exposed to the atmosphere.
- Embodiment 1 Embodiment 1
- FIG. 1 is a cross-sectional view showing an example of a schematic configuration of a plasma processing apparatus according to Embodiment 1 of the present invention.
- Plasma processing is performed on a semiconductor wafer (hereinafter simply referred to as wafer) 4 that generates plasma 15 and becomes a substrate to be processed (object to be processed).
- a stage 6 which is a sample stage for placing the wafer 4 is installed in the processing chamber 7 in which the processing is performed.
- the stage 6 includes a heater (not shown) for adjusting the temperature, a refrigerant flow path (not shown), and He for supplying He (helium) as a heat transfer gas between the stage 6 and the wafer 4.
- a supply pipe (first pipe) 60 is provided.
- the He supply pipe 60 is provided with a valve 61.
- a He exhaust pipe (second pipe) 80 for exhausting He supplied between the stage 6 and the wafer 4 is connected to an exhaust pipe 10 for evacuating the processing chamber 7.
- a gas supply source 95 for supplying gas to the exhaust pipe 10 and the He exhaust pipe 80 is provided, and the gas supply source 95 is connected to the gas supply pipe 90 via a valve 91.
- the gas supply pipe 90 is connected between the connection between the exhaust pipe 10 and the processing chamber 7 and the valve 17 and the valve 19 which shut off the vacuum and the atmosphere.
- the opening and closing operation of the valve 91 is controlled by the control device 150.
- the plasma processing apparatus decompresses the processing chamber 7 via the processing gas supply source 52 which is a processing gas supply unit for supplying the processing gas to the processing chamber 7, and the exhaust pipe 10 connected to the processing chamber 7.
- a heat transfer gas exhaust unit exhausts the heat transfer gas supplied to the back surface of the wafer 4 through the exhaust pipe 10 in order to transfer the heat of the temperature controlled stage 6, and the heat transfer gas is transferred to the stage 6
- the heat transfer gas exhaust unit connects the exhaust pipe 10 with the He supply pipe (first pipe) 60 for supplying the heat transfer gas to the stage 6 (second exhaust pipe (second Connected to the piping) 80.
- the plasma processing apparatus further includes a turbo molecular pump 12 for evacuating the degree of vacuum in the processing chamber 7 to a high degree of vacuum.
- the plasma processing apparatus further includes a first gas supply mechanism 141 that supplies a first gas (for example, N 2 gas or dry air) for purging a portion of the exhaust pipe 10 exposed to the atmosphere. Then, when the control device 150 performs wet cleaning of the processing chamber 7 accompanied by opening of the processing chamber 7 to the atmosphere, after the opening of the processing chamber 7 to the atmosphere, the controller 150 starts exhausting the exhaust piping 10.
- the first gas supply mechanism 141 is controlled so as to continue supplying the first gas to the portion exposed to the atmosphere.
- the control device 150 is provided in communication with a portion (for example, a portion P shown in FIG. 1) of each of the exhaust pipe 10 and the He exhaust pipe 80.
- an impedance matching unit 13 for applying a high frequency voltage to the wafer 4 during plasma processing and a high frequency power supply 14 are connected to the stage 6.
- the ceramic plate 3 is provided at the upper part of the processing chamber 7 to hold the vacuum of the processing chamber 7, and a plurality of through holes 9 are provided at positions under the ceramic plate 3 to form the gap 8.
- the ceramic plate 2 is provided.
- the processing gas is supplied by the processing gas supply source 52, and the flow rate is controlled by a gas flow rate control unit (not shown), and the valve 51 provided in the processing gas supply piping 50 is opened and the gap 8 is interposed.
- the through holes 9 are uniformly supplied to the processing chamber 7.
- a pipe 70 is connected to the processing chamber 7 and a high vacuum pressure detection means (pressure detection unit) 75 for detecting a high vacuum pressure and a low vacuum pressure for detecting a low vacuum pressure.
- a detection means (pressure detection unit) 76 is provided via the pipe 70. Further, valves 71 and 72 are provided between the pressure detection means and the processing chamber 7 respectively. Note that the low vacuum pressure detection means 76 is used from atmospheric pressure to a predetermined pressure, the high vacuum pressure detection means 75 is used from the predetermined pressure to high vacuum, and processing is performed by the high vacuum pressure detection means 75 during plasma processing. The pressure in the chamber 7 is detected.
- medium vacuum pressure detection means and a valve may be provided for detecting medium vacuum pressure, and the pressure during plasma processing may be detected by the medium vacuum pressure detection means.
- the processing chamber 7 is provided with a pressure adjusting unit 16 which is a pressure adjusting mechanism, and a turbo molecular pump (TMP: Turbo Molecular Pump) 12 which is an exhausting unit.
- TMP Turbo molecular pump
- DP Dry Pump
- DP11 is the heat transfer gas exhaust unit.
- the pressure adjusting means 16 also doubles as a valve.
- the valve 17 is a slow exhaust valve for slowly evacuating the processing chamber 7 from atmospheric pressure to vacuum with the DP 11, and the valve 19 is DP11
- the main exhaust valve for exhausting at high speed.
- the wafer 4 is transferred into the processing chamber 7 by a transfer device (not shown) and placed on the stage 6.
- An electrode (not shown) for electrostatic adsorption is provided in the stage 6, and the wafer 4 mounted on the stage 6 is held by applying a voltage to the electrode.
- the temperature of the wafer 4 is supplied by supplying He (heat transfer gas) between the wafer 4 and the stage 6 from the He supply source 62 which is a heat transfer gas supply unit, and transferring the heat of the stage 6 to the wafer 4 through He. Adjust the He (heat transfer gas)
- a magnetron oscillator 20 for outputting microwaves and a waveguide 21 for propagating the microwaves to the processing chamber 7 are provided around the processing chamber 7.
- a solenoid coil 22 and a solenoid coil 23 which are magnetic field generating means are provided above and to the side of the processing chamber 7.
- the microwave oscillated from the magnetron oscillator 20 propagates in the waveguide 21 and is radiated to the processing chamber 7 through the ceramic plate 3 and the ceramic plate 2.
- the interaction between the electric field generated by the microwaves and the magnetic field generated by the solenoid coil 22 and the solenoid coil 23 generates an electron cyclotron resonance (ECR) to generate a plasma 15.
- ECR electron cyclotron resonance
- the plasma 15 is generated in the processing chamber 7, and a high frequency voltage is applied to the wafer 4 placed on the stage 6, whereby the etching processing is performed along the processing pattern formed on the wafer 4.
- a reaction product adheres to the inside of the processing chamber 7.
- reaction products slightly adhere to the inner surfaces of the exhaust pipe 10 and the He exhaust pipe 80 which are pipes connected to the processing chamber 7.
- An example of the reaction product is shown in FIG.
- These reaction products are known to be hygroscopic according to the reference (Reference: Rev. 4 edition, Basic Handbook of Chemical Handbook 1, edited by The Chemical Society of Japan).
- the supply of the microwave, the magnetic field, the high frequency voltage, and the processing gas is stopped, and the high vacuum evacuation of the processing chamber 7 is performed.
- He supplied between the wafer 4 and the stage 6 is closed in the valve 61 and then opened in the processing chamber 7 through the He exhaust pipe 80 and the exhaust pipe 10 by opening the valve 81.
- Ru Alternatively, He opens the valve 82 with the valve 61 and the valve 81 closed, exhausts once with the DP 11, and then closes the valve 82 and opens the valve 81.
- the processing chamber 7 is evacuated to a high vacuum through the He exhaust pipe 80 and the exhaust pipe 10.
- the wafer 4 is taken out and plasma cleaning in the processing chamber 7 is performed.
- the plasma cleaning may be performed after the dummy wafer 4 is placed on the stage 6 or may be performed without using the dummy wafer 4.
- the reaction product deposited in the processing chamber 7 can be removed by plasma cleaning.
- the exhaust pipe 10 connected to the processing chamber 7 or the He exhaust pipe 80 connected to the exhaust pipe 10 Plasma cleaning of the inner surface is difficult. Therefore, even if the amount of reaction product deposited in one etching process is small, the amount of deposition of the reaction product will gradually increase as processing is repeated. However, such reaction products have an adhesion amount that is difficult to confirm visually.
- FIG. 2 shows an example of the procedure from the start to the end of the wet cleaning of the plasma processing apparatus shown in FIG.
- an inspection such as an etch rate, a CD shape, foreign matter, and contamination is performed.
- seasoning processing or dummy processing is performed to restore the state of the plasma processing apparatus to normal, but such processing is normal. If it does not return to the normal state, the wet cleaning with the open of the plasma processing apparatus is performed.
- a device lowering operation (S101) is performed.
- the apparatus shutdown operation (S101) plasma cleaning or the like for removing reaction products adhering to the inside of the processing chamber 7 and adsorbed gas molecules is performed.
- purge exhaust which repeats supply and exhaust of gas such as N 2 is also performed.
- the valve 31, the valve 51, the valve 61, the valve 81, the valve 82, the valve 82, the valve 17, the valve 19, the valve 91, and the valve 72 are closed.
- the processing chamber 7 is opened to the atmosphere (S102).
- the pressure adjusting means 16 and the valve 71 are closed, and the valve 72 is opened.
- the valve 31 is opened, and a gas is supplied from the gas supply source 35 such as N 2 or dry air into the processing chamber 7 through the vent pipe 30 connected to the processing chamber 7.
- the pressure of the processing chamber 7 is detected by the low vacuum pressure detection means 76, and the valve 31 is closed when the atmospheric pressure is reached.
- FIG. 9 is a cross-sectional view showing a schematic configuration of a plasma processing apparatus of a comparative example in which the inventor of the present invention has conducted comparative examination.
- the ceramic plate 3 which constitutes the processing chamber 7 is removed without supplying the gas to the exhaust pipe 10, so the atmosphere reaches the exhaust pipe 10. It will be done.
- the clean room in which the plasma processing apparatus is installed is a space where temperature and humidity are controlled, but the humidity in the clean room is 30 to 50%.
- the reaction product adheres to the inner surface of the exhaust pipe 10 the reaction product attached to the inner surface of the exhaust pipe 10 is absorbed by moisture in the atmosphere.
- the valve 91 is opened before the ceramic plate (parts constituting the processing chamber 7) is removed.
- a gas (first gas) is supplied to at least the exhaust pipe 10 from the gas supply source 95 of a gas such as N 2 or dry air via the gas supply pipe 90 (S 103).
- the gas supply source 95 and the gas supply source 35 may be the same or different.
- the gas was supplied to the exhaust pipe 10 to adhere to the inner surface of the exhaust pipe 10 or the like even after the ceramic plate (part) 3 was removed (S104) It can be suppressed that the reaction product absorbs moisture in the air.
- the gas is continuously supplied to the exhaust pipe 10, so that the exhaust pipe 10 is also removed from when the parts constituting the processing chamber 7 are removed to when the clean parts are attached (S105). It is possible to suppress that the reaction product attached to the inner surface of the water absorption of moisture in the air. Then, various parts such as the ceramic plate 3 constituting the processing chamber 7 are attached, and the valve 91 is closed to supply the gas supplied to the exhaust pipe 10 when there is no possibility that the atmosphere mixes in the processing chamber 7. It stops (S106). Thus, the moisture absorption of the reaction product adhering to the exhaust pipe 10 can be suppressed.
- evacuation (S107) in the processing chamber 7 is performed.
- the valve 18 is closed and the slow evacuation valve 17 is opened.
- the valve 17 By opening the valve 17 and evacuating the inside of the processing chamber 7 slowly (first speed) from the atmospheric pressure via the exhaust pipe 10 by the DP 11, foreign particles resulting from the rapid pressure fluctuation or the turbulence of the air flow Alternatively, water condensation and the like can be suppressed.
- the pressure in the processing chamber 7 reaches a predetermined pressure
- the valve 17 is closed and the main exhaust valve 19 is opened.
- the evacuation time can be shortened.
- the vacuum exhaust is performed by the DP 11 through the valve 19 until the pressure in the processing chamber 7 reaches a predetermined pressure, for example, 100 Pa.
- a predetermined pressure for example, 100 Pa.
- the valve 72 is closed and the valve 71 is opened to detect the pressure in the processing chamber 7 by the high vacuum pressure detection means (pressure detection unit) 75.
- the pressure adjustment means 16 is opened, and the inside of the processing chamber 7 is evacuated to a high vacuum by the TMP 12.
- the leak rate in the processing chamber 7 is confirmed (S108). If the predetermined control value can not be satisfied, the processing chamber 7 is opened to the atmosphere (S102) again. If the leak rate can satisfy the control value, a device startup operation (S109) for product start is performed. In the apparatus startup operation (S109), temperature control of the plasma processing apparatus, seasoning processing, dummy processing, and the like are performed. Thereafter, a start-up inspection (S110) of an etch rate, a CD shape, foreign matter, contamination, and the like is performed. As a result of the inspection, if the predetermined management value can not be satisfied, device start-up work (S111) such as seasoning processing or dummy processing and start-up inspection (S112) are performed. If the inspection result can satisfy all the predetermined control values, the start of the product construction (S113) is started.
- FIG. 3 is a graph showing an example of the relationship between the evacuation time and the amount of water in the turbo molecular pump of the plasma processing apparatus shown in FIG. That is, FIG. 3 shows a quadrupole mass spectrometer (in the case where the plasma processing apparatus shown in FIG. 9 is used) and the first embodiment (in the case where the plasma processing apparatus shown in FIG. 1 is used).
- the result of having measured the moisture content (Mass No. 18) in the evacuation by TMP12 by QMS: Quadrupole Mass Spectrometer is shown.
- the vertical axis in FIG. 3 is a value obtained by standardizing the ion current value of water (H 2 O) measured by QMS, and the horizontal axis is an elapsed time from the start of evacuation by the TMP 12.
- 3-1 shown in FIG. 3 is a result when gas is not supplied to each of the He supply piping 60, the exhaust piping 10, and the He exhaust piping 80 while the treatment chamber 7 is open to the atmosphere during the wet cleaning.
- . 3-2 shown in FIG. 3 is the result when the gas is supplied only to the He supply pipe 60.
- 3-3 shown in FIG. 3 is the result when gas is simultaneously supplied to the He supply pipe 60, the exhaust pipe 10 and the He exhaust pipe 80 at the same time.
- the first embodiment is characterized in that the gas is supplied to the exhaust pipe 10, the exhaust pipe 10 and the He exhaust pipe 80 are different from the difference between the results of 3-2 in FIG. 3 and 3-3 in FIG. It is possible to confirm the suppression effect of the water content in the vacuum exhaust by supplying the gas to the
- FIG. 4 is a graph showing the leak rate according to the first embodiment of the present invention, and in detail, the leak rate when the process gas is supplied and the predetermined control value that enables the etching process is satisfied. Is an indicator of This leak rate is the result four hours after the evacuation by the TMP 12 is started.
- the vertical axis in FIG. 4 is a value obtained by standardizing the leak rate.
- 4-1 shown in FIG. 4 is the result when gas is not supplied to the He supply piping 60, the exhaust piping 10, and the He exhaust piping 80 while the processing chamber 7 is open to the atmosphere during the wet cleaning.
- 4-3 shown in FIG. 4 is the result when gas is simultaneously supplied to the He supply pipe 60, the exhaust pipe 10, and the He exhaust pipe 80.
- the leak rate satisfying the predetermined control value 4 hours after starting evacuation by the TMP 12 is the case where there is no gas supply during open to the atmosphere, the He supply piping 60 and the exhaust piping It can be seen that they are substantially the same in the case where the gas is simultaneously supplied to the pipe 10 and the He exhaust pipe 80. Although there is a difference of about 30% in the water content after 4 hours in the result of FIG. 3, the leak rate satisfies the control value, so that the inside of the processing chamber 7 is also in the plasma processing apparatus of the comparative example. It is possible to supply the processing gas in a state where the water content of the catalyst can not be sufficiently reduced. As a result, in the plasma processing apparatus of the comparative example, when the processing gas is supplied, the processing gas and the moisture react with each other to cause corrosion of the base material and the piping that constitute the processing chamber 7.
- the leak rate satisfies the control value, and the water content in the processing chamber 7 can be sufficiently reduced. Since the reaction of moisture does not occur, the corrosion of the base material and piping which constitute the processing chamber 7 can be prevented.
- the reaction product attached to the pipe absorbs moisture due to the mixture of the air, It is possible to reduce the generation of outgassing due to moisture at the time of vacuum evacuation. Further, by the reduction of the moisture at the time of vacuum evacuation, even if the processing gas is supplied, the corrosion of the base material and piping constituting the processing chamber 7 can be prevented, and the generation of foreign matter and contamination can be suppressed. As a result, pattern defects and deterioration of device performance can be suppressed, and the product yield can be improved.
- the gas (first gas) is supplied only to the exhaust pipe 10 in the wet cleaning involving open to the atmosphere.
- the exhaust pipe 10 and the He exhaust pipe (second It goes without saying that the gas may be supplied to the piping 80).
- the exhaust pipe in S103 and S106 represents both the exhaust pipe 10 and the He exhaust pipe 80.
- FIG. 6 is a cross-sectional view showing an example of a schematic configuration of a plasma processing apparatus in accordance with a second embodiment of the present invention.
- a gas is supplied to the pipe 70 in the wet cleaning accompanied by the open to the atmosphere of the plasma processing apparatus shown in FIG.
- the description is abbreviate
- a pipe 70 is connected to the processing chamber 7, and a high vacuum pressure detecting means 75 and a low vacuum pressure detecting means 76 are connected to the pipe 70. .
- the pipe 70 is provided with a gas supply source 95 for supplying a gas such as N 2 or dry air.
- the gas supply source 95 is connected to a gas supply pipe 92 via a valve 93.
- the gas supply pipe 92 is connected between the connection portion of the pipe 70 and the processing chamber 7 and the valve 71 which shuts off the vacuum and the atmosphere (for example, a Q portion shown in FIG. 2).
- a second gas supply mechanism 142 is provided in communication with the pipe 70.
- the second gas supply mechanism 142 supplies a second gas for purging a portion of the pipe 70 exposed to the atmosphere for communication between the pressure detection unit that detects the pressure of the processing chamber 7 and the processing chamber 7. It is.
- the second gas is, for example, N 2 or dry air.
- the second gas supply mechanism 142 is controlled by the controller 150.
- the opening / closing operation of the valve 93 is controlled by the control device 150.
- the control device 150 performs the wet cleaning of the processing chamber 7 accompanied by the atmosphere opening of the processing chamber 7
- the atmosphere of the piping 70 is after the atmosphere opening of the processing chamber 7 until the exhaust of the processing chamber 7 is started.
- the second gas supply mechanism 142 is controlled so as to keep supplying the second gas to the portion exposed to the second gas.
- the gas supply source 95 may be the same as or different from the gas supply source 95 described in the first embodiment.
- reaction products slightly adhere to the inner surface of the pipe 70 connected to the processing chamber 7 by the etching process.
- the inner surface of the pipe 70 is difficult to clean by plasma similarly to the inner surface of the exhaust pipe 10 and the He exhaust pipe 80. Therefore, while the etching process is repeated, the adhesion amount of the reaction product gradually increases. become. However, such reaction products have an adhesion amount that is difficult to confirm visually.
- the atmosphere reaches the pipe 70, for example, when the ceramic plate (part) 3 is removed.
- the reaction product adheres to the inner surface of the pipe 70 since the reaction product adheres to the inner surface of the pipe 70, the reaction product adhered to the inner surface of the pipe 70 is absorbed by moisture in the air.
- the valve 93 is opened before the ceramic plate 3 is removed, and the pipe 92 for supplying the gas is supplied from the gas supply source 95 such as N 2 or dry air.
- the gas is supplied to the piping 70 via
- the ceramic plate (parts) 3 is removed by supplying the gas to the pipe 70 before the air is mixed in the processing chamber 7, the reaction product attached to the inner surface of the pipe 70 is in the air. Moisture can be suppressed. Further, even after the ceramic plate 3 is removed, the inner surface of the pipe 70 is maintained between the removal of parts such as the ceramic plate 3 constituting the processing chamber 7 and the attachment of clean parts in order to continue supplying gas to the pipe 70.
- the wet cleaning accompanied by opening to the atmosphere.
- a pressure detection unit such as the high vacuum pressure detection unit 75 or the low vacuum pressure detection unit 76 connected to the processing chamber 7 described in the second embodiment
- the wet cleaning accompanied by opening to the atmosphere.
- the gas supplied to the pipe 70
- the corrosion of the base material and piping constituting the processing chamber 7 can be prevented, and the generation of foreign matter and contamination can be suppressed.
- pattern defects and deterioration of device performance can be suppressed, and the product yield can be improved.
- FIG. 7 is a cross-sectional view showing an example of a schematic configuration of a plasma processing apparatus in accordance with a third embodiment of the present invention.
- FIG. 7 A case will be described where the gas is supplied to the vent pipe 30 in the wet cleaning involving the open to the atmosphere of the plasma processing apparatus shown in FIG. 7.
- the components given the same reference numerals as in FIG. 1 have the same functions as those described in the first embodiment, and therefore the description thereof is omitted.
- a vent pipe 30 is connected to the processing chamber 7, and the vent pipe 30 is provided with a gas supply source 95 for supplying a gas such as N 2 or dry air. It is done.
- the gas supply source 95 is connected to a gas supply pipe 94 via a valve 96.
- the gas supply pipe 94 is connected between the connecting portion of the vent pipe 30 and the processing chamber 7 and the valve 31 which shuts off the vacuum and the atmosphere (for example, the R portion shown in FIG. 7).
- a third gas supply mechanism 143 is provided in communication with the vent pipe 30.
- the third gas supply mechanism 143 is a third gas for purging a portion of the vent pipe 30, which is a pipe for supplying a gas supplied into the processing chamber 7 to open the processing chamber 7 to the atmosphere, exposed to the atmosphere.
- the third gas is, for example, N 2 or dry air.
- the third gas supply mechanism 143 is controlled by the controller 150. Thereby, the opening and closing operation of the valve 96 is controlled by the control device 150.
- the control device 150 performs the wet cleaning of the processing chamber 7 accompanied by the atmosphere opening of the processing chamber 7, the control device 150 performs the opening of the vent pipe 30 from the atmosphere opening of the processing chamber 7 to the start of the exhaust of the processing chamber 7.
- the third gas supply mechanism 143 is controlled so as to continue supplying the third gas to a portion exposed to the atmosphere.
- the gas supply source 95 may be the same as or different from the gas supply source 95 described in the first and second embodiments.
- reaction product slightly adheres to the inner surface of the vent pipe 30 connected to the processing chamber 7 by the etching process. Similar to the inner surfaces of the exhaust pipe 10, the He exhaust pipe 80, and the pipe 70, the inner surface of the vent pipe 30 is difficult to clean by plasma, so the deposition amount of the reaction product gradually increases while the etching process is repeated. It will go. However, such reaction products have an adhesion amount that is difficult to confirm visually.
- the atmosphere reaches the vent pipe 30, for example, when the ceramic plate (part) 3 is removed.
- the reaction product adhering to the inner surface of the vent pipe 30 is absorbed by moisture in the air.
- the valve 96 is opened before removing the ceramic plate 3, and piping for gas supply from the gas supply source 95 such as N 2 or dry air is provided.
- the gas is supplied to the vent pipe 30 through 94.
- valve configuration and the gas supply pipe 94 are provided in the vent pipe 30 to supply the gas.
- the N 2 gas supplied from the gas supply source 35, dry air, etc. are shown. Gas may be supplied to the vent pipe 30.
- FIG. 8 is a cross-sectional view showing a schematic configuration of a plasma processing apparatus of a modification according to the third embodiment of the present invention.
- the gas supplied from the gas supply source 35 is for making the processing chamber 7 into the atmosphere, and a large flow of gas is supplied.
- a valve 32 may be provided in parallel with the valve 31, and a mass flow controller 36 may be provided between the valve 32 and the gas supply source 35.
- the vent pipe 30 is supplied by supplying the gas to the vent pipe 30 in the wet cleaning accompanied by the air opening. Since it is possible to suppress that the reaction product deposited on the surface absorbs moisture due to the mixture of the air, it is possible to reduce the generation of outgassing due to the moisture at the time of vacuum evacuation. Further, by the reduction of the water content at the time of vacuum evacuation, even if the processing gas is supplied, the corrosion of the base material and piping constituting the processing chamber 7 can be prevented, and the generation of foreign matter and contamination can be suppressed. As a result, pattern defects and deterioration of device performance can be suppressed, and the product yield can be improved.
- the gas such as N 2 or dry air is supplied to the pipe connected to the processing chamber 7 in the wet cleaning involving open to the atmosphere. Since the reaction product attached to the piping can be prevented from absorbing moisture due to the mixture of the air, it is possible to reduce the generation of outgassing due to the water at the time of vacuum evacuation. Further, by the reduction of the water content at the time of vacuum evacuation, even if the processing gas is supplied, the corrosion of the base material and piping constituting the processing chamber 7 can be prevented, and the generation of foreign matter and contamination can be suppressed. As a result, pattern defects and deterioration of device performance can be suppressed, and the product yield can be improved.
- the gas such as N 2 or dry air
- the present invention is not limited to the above-described embodiment, but includes various modifications.
- the above-described embodiments are described in detail to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
- part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. .
- the respective members and relative sizes described in the drawings are simplified and idealized in order to explain the present invention in an easy-to-understand manner, and the mounting becomes more complicated.
- a gas such as N 2 or dry air is supplied to a pipe connected to the processing chamber 7 to suppress moisture absorption of a reaction product attached to the inner surface of the pipe.
- the present invention can also be applied to the He supply piping 60 and the processing gas supply piping 50. That is, in the wet cleaning, by supplying the gas to the He supply piping 60 and the processing gas supply piping 50, it is possible to suppress the adsorption of moisture in the atmosphere on the inner surface of the piping.
- the present invention is not limited to the above-described electron cyclotron resonance type plasma processing apparatus, for example, inductively coupled plasma (ICP) processing apparatus, capacitively coupled plasma (CCP). It is applicable also to a processing device etc. Furthermore, the present invention is not limited to the fields of production and inspection of semiconductor devices, and can be applied to various fields such as production of flat panel displays and processing apparatuses using plasma.
- ICP inductively coupled plasma
- CCP capacitively coupled plasma
- the first gas supply mechanism 141 when the first gas supply mechanism 141 is provided in each plasma processing apparatus, the first gas supply mechanism 141 and the second gas supply mechanism 142 are provided.
- the case where the first gas supply mechanism 141, the second gas supply mechanism 142, and the third gas supply mechanism 143 are provided has been described as an example. And the case where gas was supplied to the location exposed to each atmosphere of exhaust piping 10, He piping 80, piping 70, or vent piping 30 was explained.
- the first gas supply mechanism 141 and the third gas supply mechanism 143 may be provided.
- the first gas supply mechanism 141 and the third gas supply mechanism 143 may be separately provided gas supply mechanisms, or may be the same gas supply mechanism.
- the first gas supply mechanism 141, the second gas supply mechanism 142, and the third gas supply mechanism 143 may be the same gas supply mechanism.
- a gas such as N 2 or dry air is supplied to the pipe connected to the processing chamber 7 in the wet cleaning involving the release to the atmosphere, the exhaust from the processing chamber 7 after the release to the atmosphere.
- the gas may be supplied to the above pipe before the start of the exhaust of the processing chamber 7 before the atmospheric opening. . That is, as shown in the procedure of the wet cleaning of the modified example shown in FIG. 10, the gas supply to the exhaust pipe is started before the atmosphere opening S103 of the processing chamber (S102). As a result, since the gas is supplied to the above-mentioned pipe before opening to the atmosphere, it is possible to further reduce the generation of outgassing caused by water at the time of vacuum evacuation.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- General Engineering & Computer Science (AREA)
- Drying Of Semiconductors (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Plasma Technology (AREA)
Abstract
プラズマ処理装置は、ウエハ4にプラズマ処理が行われる処理室7と、処理室7に接続された排気用配管10を介して処理室7を減圧するDP11と、処理室7の真空度を高い真空度に排気するTMP12と、ウエハ4を載置するステージ6と、を有する。さらに、温度調節されたステージ6の熱をウエハ4に伝達する伝熱ガスの流路であるHe排気用配管80と、大気開放を伴う処理室7のウェットクリーニング時に、排気用配管10の大気に曝される箇所にガスを供給する第1ガス供給機構141と、第1ガス供給機構141を制御する制御装置150と、を有し、制御装置150は、排気用配管10に連通して設けられている。
Description
本発明は、プラズマ処理装置およびそのウェットクリーニング技術に関する。
半導体デバイスやフラットパネルディスプレイなどの製造工程では、所望のパターンを形成するために、プラズマCVD(Chemical Vapor Deposition)やプラズマエッチングなどの加工技術が用いられている。このような加工を行うプラズマ処理装置では、半導体ウエハなどの被処理体(被処理基板)を処理室内に配置されたステージ上に載置する。ステージ上に設置された被処理体は、ステージと被処理体との間に供給される伝熱ガスによって温度制御される。例えば、Ar、O2 、N2 、CHF3 、CH4 、C5 F8 、C4 F8 、CF4 、SF6 、NF3 、HBr、Cl2、BCl3 などの処理ガスを処理室に供給する。処理室内の圧力は、ターボ分子ポンプとドライポンプを組み合わせた排気手段と、例えばバルブの開度を調整する圧力調整手段によって所望の圧力に調整する。処理室が所望の圧力に到達した後、プラズマ生成用のソース高周波電力を印加して処理ガスをプラズマ化する。入射イオン制御用のバイアス高周波電力を被処理体に印加することによって被処理体に所望の成膜やエッチングを行う。エッチング条件のパラメータの一例としては、ガス種、圧力、ソース高周波電力、バイアス高周波電力、ステージ温度を制御する冷媒温度やヒータ温度などがある。被処理体の加工寸法の微細化により、エッチング工程における処理パターンの寸法精度(CD:Critical Dimension)は、高い精度が要求されている。また、デバイス性能の劣化および歩留まりの低下の原因となるアルカリ金属や重金属の汚染量、および被処理体上に付着する異物サイズの許容値も厳しくなっている。
プラズマ処理装置は、ステンレス合金およびアルミニウム合金などの金属基材、石英またはアルミナなどのセラミック基材によって構成される。汚染や異物の原因となる処理ガス、プラズマによる基材表面へのエッチングおよび腐食を抑制するため、基材表面にはアルマイト皮膜、アルミナ溶射皮膜、またはY2 O3 溶射皮膜などの保護膜が形成されている。
プラズマ処理装置において,プラズマ処理を行うと処理室の内面に反応生成物が付着する。処理室の内面への反応生成物の付着は、プラズマ中のラジカル状態の変動を引き起こすため、上記CDが変動する原因となる。上記CDの精度を一定に維持するため、量産工程では、被処理体のプラズマ処理前あるいはプラズマ処理後にプラズマクリーニングを行い、処理室の内面に付着した反応生成物を除去することで、処理室の内面の表面状態を一定に維持している。さらに、プラズマ中のラジカル状態の変動を抑制することで、プロセス性能の安定化を図っている。
例えば、特許文献1(米国特許第7767584号明細書)に記載のように、被処理体の処理毎にリアクタ内壁にコーティング膜を形成することで、リアクタ内壁の状態、および、プラズマ中のラジカル状態の変動を抑制し、プロセス性能への影響を低減する方法がある。
しかしながら、このような安定化処理を実施しても、上記CD、異物、汚染が管理値を外れることがある。この場合、装置状態を正常に戻すためのシーズニング処理やダミー処理が行われるが、このような処理を実施しても正常な状態に復帰しない場合、プラズマ処理装置の大気開放を伴うウェットクリーニングが実施される。
このようなウェットクリーニングに際し、例えば、特許文献2(特開平11-244686号公報)に記載のように、処理室内の大気開放時に、試料台に設置された伝熱ガスを供給する配管の内部に大気中の水分や異物、試料台の設置面の洗浄に用いた純水が侵入することを抑制するため、伝熱ガスを供給する配管に加熱された窒素ガスを供給する方法がある。これによってウェットクリーニング後の真空引き時のアウトガスの発生を抑制できると記載されている。
上記特許文献2に開示された、ウェットクリーニング後の真空引き時のアウトガスの発生を抑制するため、伝熱ガスを供給する配管に、加熱された窒素ガスを供給し、ウェットクリーニング時に大気中の水分や異物、洗浄に用いた純水の配管内への侵入を抑制する方法では、伝熱ガスを排気する配管に付着した反応生成物が吸湿する水分に起因するアウトガスについて何ら考慮されていない。
プラズマ処理中は、伝熱ガスが供給されるため、伝熱ガスの供給用配管の内面はクリーンな状態である。一方、伝熱ガスを排気する排気用配管の内面にはプラズマ処理中に反応生成物が付着する。本願発明者が行った実験によれば、このような状態でウェットクリーニングを実施した場合、伝熱ガスを供給するクリーンな配管に加熱された窒素ガスを供給しても真空引き時のアウトガスを低減する効果は小さいことが判明した。さらには、プラズマ処理装置の真空度の状態を示すリークレートチェックを実施したところ、リークレートが管理値を満たしていても、処理室内の水分は十分に低減されていないことが判明した。
プラズマ処理に使用する処理ガスと被処理体上のエッチングする膜種によって、生成される反応生成物の種類は異なる。例えば、エッチングする膜種にチタン(Ti)が含有されていて、処理ガスがフッ素系のガスであれば、TiFX のようなフッ化物が生成される。また、処理ガスが塩素系のガスであれば、TiClX のような塩化物が生成される。この他にも、Br系のガスであれば臭化物、O2 ガスであれば酸化物といったような反応生成物が生成される。このような反応生成物は吸湿性があることが知られている。
反応生成物は、主にプラズマが生成される処理室の内面に付着するが、プラズマ生成部から遠い箇所、例えば、処理室に接続された真空排気用の配管の内面や処理室の圧力を検知する圧力計が接続された配管の内面にも付着し、このような箇所に付着した反応成生物は、プラズマクリーニングで除去されにくい。このように処理室に接続された配管の内面に吸湿性のある反応生成物が付着した状態で大気開放を伴うウェットクリーニングを実施すると、反応生成物が吸湿することになる。つまり、伝熱ガスを供給するクリーンな配管に、加熱された窒素ガスを供給する方法では、供給用配管の内面への大気中の水分の吸着を抑制できるが、排気用配管のような処理室に接続された配管の内面に付着した反応生成物の吸湿を抑制することは困難であり、真空排気時に水分に起因するアウトガスを生じさせる原因となってしまう。
上述したように、真空排気時に水分が十分に低減できていない状態であるにもかかわらず、リークレートは管理値を満たしているため、処理ガスの供給が可能な状態となる。このような状態で処理ガスを供給すると、処理ガスと水分とが反応して、処理室を構成する基材や配管が腐食する原因となる。これによって異物や汚染が生じ、被処理体のパターン欠陥やデバイス性能の劣化の原因となり、歩留まりが悪化することになる。
本発明の目的は、プラズマ処理装置のウェットクリーニングにおける処理室の真空排気時の水分に起因したアウトガスの発生を低減することができる技術を提供することにある。
本発明の上記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、以下のとおりである。
本発明に係るプラズマ処理装置は、被処理体がプラズマ処理される処理室と、大気圧の上記処理室を減圧するための排気用配管と、上記被処理体が載置される試料台と、温度調節された上記試料台の熱を伝熱するために上記被処理体の裏面に供給される伝熱ガスを上記排気用配管を介して排気する伝熱ガス排気部と、上記排気用配管の大気に曝される箇所をパージするための第1ガスを供給する第1ガス供給機構と、を備える。さらに、上記処理室の大気開放を伴う上記処理室のウェットクリーニングを行う場合、上記処理室の大気開放後から上記処理室の排気を開始するまでの間、上記排気用配管の大気に曝される箇所に上記第1ガスを供給し続けるように上記第1ガス供給機構を制御する制御装置を備える。
本発明に係る他のプラズマ処理装置は、被処理体がプラズマ処理される処理室と、大気圧の上記処理室を減圧するための排気用配管と、上記被処理体が載置される試料台と、温度調節された上記試料台の熱を伝熱するために上記被処理体の裏面に供給される伝熱ガスを上記排気用配管を介して排気する伝熱ガス排気部と、上記排気用配管の大気に曝される箇所をパージするための第1ガスを供給する第1ガス供給機構と、を備える。さらに、上記処理室の大気開放を伴う上記処理室のウェットクリーニングを行う場合、上記処理室の大気開放前から上記処理室の排気を開始するまでの間、上記排気用配管の大気に曝される箇所に上記第1ガスを供給し続けるように上記第1ガス供給機構を制御する制御装置を備える。
本発明に係る他のプラズマ処理装置は、被処理体がプラズマ処理される処理室と、大気圧の上記処理室を減圧するための排気用配管と、上記被処理体が載置される試料台と、温度調節された上記試料台の熱を伝熱するために上記被処理体の裏面に供給される伝熱ガスを上記排気用配管を介して排気する伝熱ガス排気部と、上記排気用配管の大気に曝される箇所をパージするための第1ガスを供給する第1ガス供給機構と、を備える。さらに、上記処理室の大気開放を伴う上記処理室のウェットクリーニングを行う場合、上記処理室の大気開放前から上記処理室の排気を開始するまでの間、上記排気用配管の大気に曝される箇所に上記第1ガスを供給し続けるように上記第1ガス供給機構を制御する制御装置を備える。
また、本発明に係るウェットクリーニング方法は、被処理体がプラズマ処理される処理室を大気開放して上記処理室をウェットクリーニングするウェットクリーニング方法において、上記処理室の大気開放後から上記処理室の排気を開始するまでの間、排気用配管の大気に晒される箇所に第1ガスを供給し続ける。そして、上記排気用配管は、大気圧の上記処理室を減圧するための配管であると共に温度調節された上記試料台の熱を伝熱するために上記被処理体の裏面に供給される伝熱ガスを排気する配管が接続され、上記第1ガスは、上記排気用配管の大気に曝される箇所をパージするガスである。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば、以下のとおりである。
プラズマ処理装置のウェットクリーニングにおける処理室の真空排気時の水分に起因したアウトガスの発生を低減することができ、異物やコンタミの発生を抑制することができる。また、製品の歩留まりを向上させることができる。
本発明の各実施の形態について以下、図面を参照しながら説明する。
(実施の形態1)
(実施の形態1)
図1は本発明の実施の形態1に係るプラズマ処理装置の模式的な構成の一例を示す断面図である。
図1を用いて本実施の形態1のプラズマ処理装置の構成について説明すると、プラズマ15を生成して被処理基板(被処理体)となる半導体ウエハ(以降、単にウエハと呼ぶ)4にプラズマ処理が行われる処理室7には、ウエハ4を載置するための試料台であるステージ6が設置されている。ステージ6には、その温度を調節するヒータ(図示せず)や冷媒流路(図示せず)と、ステージ6とウエハ4の間に伝熱ガスであるHe(ヘリウム)を供給するためのHe供給用配管(第1配管)60とが備えられている。そして、He供給用配管60にはバルブ61が設けられており、Heを供給する場合はバルブ61を開き、Heの供給を止める場合はバルブ61を閉じる。ステージ6とウエハ4の間に供給されたHeを排気するためのHe排気用配管(第2配管)80は、処理室7内を真空排気するための排気用配管10に接続されている。
また、排気用配管10とHe排気用配管80にガスを供給するガス供給源95が備えられており、ガス供給源95はバルブ91を介してガス供給用配管90に接続されている。ガス供給用配管90は、排気用配管10と処理室7の接続部と、真空と大気を遮断するバルブ17およびバルブ19との間に接続されている。そして、バルブ91の開閉動作は、制御装置150によって制御される。
また、プラズマ処理装置は、処理室7に処理ガスを供給する処理ガス供給部である処理ガス供給源52と、処理室7に接続された排気用配管10を介して処理室7を減圧し、かつ温度調節されたステージ6の熱を伝熱するためにウエハ4の裏面に供給される伝熱ガスを排気用配管10を介して排気する伝熱ガス排気部と、上記伝熱ガスをステージ6に供給する伝熱ガス供給部と、を備えている。
つまり、上記伝熱ガス排気部は、排気用配管10と、上記伝熱ガスをステージ6に供給するためのHe供給用配管(第1配管)60と、を連通させるHe排気用配管(第2配管)80に繋がっている。さらに、プラズマ処理装置は、処理室7内の真空度を高い真空度に排気するターボ分子ポンプ12を備えている。
また、プラズマ処理装置は、排気用配管10の大気に曝される箇所をパージするための第1ガス(例えば、N2ガスやドライエアー)を供給する第1ガス供給機構141を備えている。そして、制御装置150は、処理室7の大気開放を伴う処理室7のウェットクリーニングを行う場合、処理室7の大気開放後から処理室7の排気を開始するまでの間、排気用配管10の大気に曝される箇所に上記第1ガスを供給し続けるように第1ガス供給機構141を制御する。なお、制御装置150は、排気用配管10やHe排気用配管80のそれぞれの一部(例えば、図1に示すP部)に連通して設けられている。
また、ステージ6には、プラズマ処理中にウエハ4に高周波電圧を印加するためのインピーダンス整合器13と高周波電源14が接続されている。
また、処理室7の真空を保持するために処理室7の上部にセラミックプレート3が備えられており、セラミックプレート3の下方に間隙8を形成するような位置に複数の貫通孔9が設けられたセラミックプレート2が備えられている。なお、処理ガスは、処理ガス供給源52によって供給され、さらにガス流量制御手段(図示せず)で流量制御され、処理ガス供給用配管50に設けられたバルブ51が開いて間隙8を介して貫通孔9から処理室7に均一に供給される。
また、処理室7には、配管70が接続されており、高真空の圧力を検知するための高真空圧力検知手段(圧力検知部)75と、低真空の圧力を検知するための低真空圧力検知手段(圧力検知部)76とが、配管70を介して備えられている。さらに、各圧力検知手段と処理室7の間にそれぞれバルブ71とバルブ72が備えられている。なお、大気圧から所定の圧力までは低真空圧力検知手段76が用いられ、所定の圧力から高真空までは高真空圧力検知手段75が用いられ、プラズマ処理中は高真空圧力検知手段75によって処理室7内の圧力を検知する。
また、中真空の圧力を検知するための中真空圧力検知手段およびバルブを備える場合もあり、プラズマ処理中の圧力を中真空圧力検知手段によって検知することもある。
そして、処理室7の圧力を制御するため、処理室7には圧力調整機構である圧力調整手段16と、排気手段であるターボ分子ポンプ(TMP:Turbo Molecular Pump)12とが備えられている。また、ドライポンプ(DP:Dry Pump)11との間にバルブ18が設けられている。ここで、DP11は、上記伝熱ガス排気部である。
また、圧力調整手段16はバルブの役目も兼用している。排気用配管10に接続されているバルブ17とバルブ19のうち、バルブ17は、処理室7を大気圧から真空にDP11でゆっくり排気するためのスロー排気用のバルブであり、バルブ19は、DP11で高速に排気するためのメイン排気用のバルブである。
ウエハ4は、図示しない搬送装置によって処理室7内に搬送され、ステージ6上に載置される。ステージ6内には静電吸着用の電極(図示せず)が設けられており、ステージ6に載置されたウエハ4は、電極に電圧を印加することによって保持される。伝熱ガス供給部であるHe供給源62からウエハ4とステージ6との間にHe(伝熱ガス)を供給し、Heを介してステージ6の熱をウエハ4に伝えることでウエハ4の温度を調節する。
また、処理室7の周囲には、マイクロ波を出力するマグネトロン発振器20と、マイクロ波を処理室7まで伝搬させるための導波管21とが備えられている。また、処理室7の上方と側方に磁場発生手段であるソレノイドコイル22とソレノイドコイル23が備えられている。マグネトロン発振器20から発振されたマイクロ波は、導波管21内を伝搬し、セラミックプレート3およびセラミックプレート2を介して処理室7に放射される。マイクロ波によって生じる電界とソレノイドコイル22、ソレノイドコイル23により生成された磁界との相互作用によって電子サイクロトロン共鳴(ECR:Electron Cyclotron Resonance)を生じさせることによりプラズマ15が生成される。
処理室7内にプラズマ15を生成し、ステージ6に載置されたウエハ4に高周波電圧を印加することによって、ウエハ4上に形成された処理パターンに沿ってエッチング処理が行われる。このエッチング処理によって、処理室7内に反応生成物が付着する。また、例えば、処理室7に接続された配管である排気用配管10やHe排気用配管80の内面にもわずかに反応生成物が付着する。図5に反応生成物の一例を示す。これらの反応生成物は参考文献により吸湿性があることが知られている(参考文献:改訂4版、化学便覧基礎編1、日本化学会編)。
上記エッチング処理の終了後は、マイクロ波、磁場、高周波電圧および処理ガスの供給を停止し、処理室7の高真空排気を行う。その際、ウエハ4とステージ6の間に供給されたHeは、バルブ61を閉じた後、バルブ81を開けて、He排気用配管80と排気用配管10を介して処理室7内に排気される。別の方法としては、Heは、バルブ61とバルブ81を閉じた状態でバルブ82を開けて、DP11で一度排気した後に、バルブ82を閉じてバルブ81を開ける。これにより、処理室7は、He排気用配管80と排気用配管10を介して高真空に排気される。
高真空排気後にウエハ4を取り出し、処理室7内のプラズマクリーニングを行う。プラズマクリーニングは、ダミーのウエハ4をステージ6上に載置した後に実施してもよいし、ダミーのウエハ4を使用せずに実施してもよい。
なお、処理室7内に付着した反応生成物はプラズマクリーニングによって除去できるが、例えば、処理室7に接続された排気用配管10や、排気用配管10に接続されているHe排気用配管80の内面のプラズマクリーニングは困難である。そのため、1回のエッチング処理で付着する反応生成物が僅かであっても、処理を重ねるうちに反応生成物の付着量は徐々に増えていくことになる。しかしながら、このような反応生成物は、目視で確認することが困難なほどの付着量である。
次に、図2は図1に示すプラズマ処理装置のウェットクリーニングを開始してから終了するまでの手順の一例を示すものである。まず、プラズマ処理装置の状態が正常か判断するため、エッチレート、CD形状、異物、汚染などの検査(S100)を実施する。検査の結果、各種数値のうち1つでも管理値を外れた場合、プラズマ処理装置の状態を正常に復帰させるためのシーズニング処理やダミー処理が行われるが、このような処理を実施しても正常な状態に復帰しない場合、プラズマ処理装置の大気開放を伴うウェットクリーニングを実施する。
ウェットクリーニングを開始する前に、装置立下げ作業(S101)が行われる。装置立下げ作業(S101)では、処理室7内に付着した反応生成物や吸着したガス分子を除去するためのプラズマクリーニング等を実施する。また、処理ガス供給用配管50内の残留ガスを排気するために、N2 などのガスの供給と排気を繰り返すパージ排気なども実施する。装置立下げ作業(S101)が完了した後のプラズマ処理装置は、バルブ31、バルブ51、バルブ61、バルブ81、バルブ82、バルブ17、バルブ19、バルブ91、バルブ72が閉じた状態である。
次に処理室7の大気開放(S102)を実施する。ここでは、真空排気を停止するため、圧力調整手段16、バルブ71を閉じて、バルブ72を開ける。その後、バルブ31を開き、N2 やドライエアーなどのガス供給源35から、処理室7に接続されたベント配管30を介して処理室7内にガスを供給する。この時、低真空圧力検知手段76によって処理室7の圧力を検知し、大気圧になった時点で、バルブ31を閉じる。
ここで、図9は本願発明者が比較検討を行った比較例のプラズマ処理装置の模式的な構成を示す断面図である。図9に示す比較例のプラズマ処理装置では、排気用配管10にガスを供給せずに、処理室7を構成する、例えばセラミックプレート3を取り外すことになるため、大気が排気用配管10に到達することになる。プラズマ処理装置が設置されているクリーンルームは温度と湿度が管理された空間であるが、クリーンルーム中の湿度は30~50%となる。上述したように、排気用配管10の内面は反応生成物が付着しているため、大気中の水分によって排気用配管10の内面に付着した反応生成物が吸湿してしまう。
そこで、図1に示す本実施の形態1のプラズマ処理装置では、処理室7内を大気圧にした後、セラミックプレート(処理室7を構成する部品)3を取り外す前に、バルブ91を開けて、N2 やドライエアーなどのガスのガス供給源95からガス供給用配管90を介して、少なくとも排気用配管10にガス(第1ガス)を供給する(S103)。なお、ガス供給源95とガス供給源35は同一であってもよいし、別々のものでもよい。処理室7内に大気が混入する前に、排気用配管10にガスを供給することによって、セラミックプレート(部品)3を取り外した後(S104)においても、排気用配管10やの内面に付着した反応生成物が大気中の水分を吸湿することを抑制できる。また、セラミックプレート3を取り外した後も、排気用配管10にガスを供給し続けるため、処理室7を構成する部品を取り外してから清浄な部品を取り付ける(S105)までの間も排気用配管10の内面に付着した反応生成物が大気中の水分を吸湿することを抑制できる。そして、処理室7を構成するセラミックプレート3などの各種部品を取り付け、処理室7内に大気が混入する恐れが無くなった時点で、バルブ91を閉じて排気用配管10に供給しているガスを停止する(S106)。これによって、排気用配管10に付着している反応生成物の水分の吸湿を抑制することができる。
次に、処理室7内の真空排気(S107)を実施する。真空排気(S107)では、バルブ18を閉じて、スロー排気用のバルブ17を開ける。バルブ17を開けて、DP11により排気用配管10を介して処理室7内を大気圧からゆっくり(第1速度)と真空排気することによって、急激な圧力変動または気流の乱れに起因する異物の舞い上がりもしくは水分凝縮などを抑制することができる。処理室7内の圧力が所定の圧力に到達すると、バルブ17を閉じ、メイン排気用のバルブ19を開ける。バルブ19を開けて高速(第1速度より速い第2速度)で排気することで、真空排気時間の短縮を図ることができる。処理室7内の圧力が所定の圧力、例えば100Paに到達するまでバルブ19を介してDP11により真空排気を行う。処理室7内の圧力が100Paに到達すると、バルブ72を閉じてバルブ71を開けて高真空圧力検知手段(圧力検知部)75により処理室7内の圧力を検知する。また、バルブ19を閉じてバルブ18を開けた後に、圧力調整手段16を開けて、TMP12によって処理室7内を高真空排気する。
高真空排気後に、処理室7内のリークレートを確認し(S108)、所定の管理値を満たすことができなければ、再度処理室7の大気開放(S102)が実施される。リークレートが管理値を満たすことができれば、製品着工のための装置立上げ作業(S109)が実施される。装置立上げ作業(S109)では、プラズマ処理装置の温度調節やシーズニング処理またはダミー処理などが実施される。その後、エッチレート、CD形状、異物、汚染などの立上げ検査(S110)が実施される。検査の結果、所定の管理値を満たすことができなければ、シーズニング処理もしくはダミー処理などの装置立上げ作業(S111)および立上げ検査(S112)が実施される。検査結果が所定の管理値を全て満たすことができれば、製品の着工(S113)を開始する。
ここで、本実施の形態1の特徴である大気開放中に排気用配管10にガスを供給する効果について検討した結果を述べる。本実験では、実際のウェットクリーニングを模擬して処理室7の大気開放時間を4時間とし、大気開放後に処理室7内をTMP12で真空排気している最中の水分量を測定した。
なお、図3は図1に示すプラズマ処理装置のターボ分子ポンプにおける排気時間と水分量の関係の一例を示すグラフである。つまり、図3は、比較例(図9に示すプラズマ処理装置を用いた場合)と本実施の形態1(図1に示すプラズマ処理装置を用いた場合)において、四重極型質量分析計(QMS:Quadrupole Mass Spectrometer)にてTMP12による真空排気中の水分量(Mass No.18)を測定した結果を示している。図3の縦軸は、QMSにて計測された水(H2 O)のイオン電流値を規格化した値であり、横軸は、TMP12による真空排気を開始してからの経過時間である。図3に示す3-1は、ウェットクリーニング時に処理室7の大気開放中にHe供給用配管60と排気用配管10およびHe排気用配管80のそれぞれにガスを供給していない時の結果である。図3に示す3-2は、He供給用配管60のみにガスを供給した時の結果である。図3に示す3-3は、He供給用配管60と排気用配管10およびHe排気用配管80のそれぞれに同時にガスを供給した時の結果である。本実施の形態1では排気用配管10にガスを供給することを特徴とするが、図3の3-2と図3の3-3の結果の差から排気用配管10とHe排気用配管80にガスを供給することによる真空排気中の水分量の抑制効果を確認することができる。
図3の結果から、大気開放中にガスを供給しない場合(図3の3-1)と大気開放中にHe供給用配管60のみにガスを供給した場合(図3の3-2)において、真空排気中に減少していく水分量はほぼ同等であることが分かる。つまり、上記比較例のように大気開放中に配管内面がクリーンな状態であるHe供給用配管60にガスを供給しても、真空排気中の水分量を低減する効果は小さいことを示している。一方、大気開放中にHe供給用配管60のみにガスを供給した場合(図3の3-2)と、He供給用配管60と排気用配管10ならびにHe排気用配管80に同時にガスを供給した場合(図3の3-3)において、真空排気中の水分量を比較すると、TMP12による排気を開始してから全ての経過時間で、図3の3-3の水分量が25~30%低減できていることが分かる。図3の3-1と図3の3-2の結果から、He供給用配管60にガスを供給しても真空排気中の水分量を低減する効果が小さいことが判明しているため、図3による結果は、大気開放中に排気用配管10とHe排気用配管80にガスを供給したことによって、真空排気中の水分量を低減する効果が得られたことを示している。つまり、大気開放中に排気用配管10とHe排気用配管80にガスを供給することによって、排気用配管10とHe排気用配管80に付着した反応生成物の吸湿を抑制できるため、真空排気中の水分量を低減することができると言える。なお、大気開放中に排気用配管10のみにガスを供給することによっても、排気用配管10に付着した反応生成物の吸湿を抑制できることは言うまでもない。
次に、図4は本発明の実施の形態1に係るリークレートを示すグラフであり、詳細には、処理ガスを供給し、エッチング処理が可能になる所定の管理値を満たした時のリークレートを示すものである。このリークレートは、TMP12による真空排気を開始してから4時間後の結果である。図4の縦軸はリークレートを規格化した値である。図4に示す4-1は、ウェットクリーニング時に処理室7の大気開放中にHe供給用配管60と排気用配管10ならびにHe排気用配管80にガスを供給していない時の結果である。図4に示す4-3は、He供給用配管60と排気用配管10ならびにHe排気用配管80に同時にガスを供給した時の結果である。なお、図4の4-1は、比較例と同様のHe供給用配管60のみにガスを供給した時のリークレートの結果ではないが、図3の結果から図4の4-1の結果と、He供給用配管60のみにガスを供給した時のリークレートの結果とは、同等の結果になると推測される。
図4の結果から、TMP12による真空排気を開始してから4時間後の所定の管理値を満たしたリークレートは、大気開放中にガス供給がない場合と、He供給用配管60と排気用配管10ならびにHe排気用配管80に同時にガスを供給した場合とでほぼ同等であることが分かる。図3の結果で4時間後の水分量には30%程度の差があるのにも関わらず、リークレートは管理値を満たしているため、比較例のプラズマ処理装置においても、処理室7内の水分が十分に低減できていない状態で処理ガスを供給することが可能になる。その結果、比較例のプラズマ処理装置において、処理ガスを供給すると、処理ガスと水分が反応して処理室7を構成する基材や配管が腐食する原因となる。
本実施の形態1の図1に示すプラズマ処理装置では、リークレートが管理値を満たすとともに、処理室7内の水分も十分に低減できているため、処理ガスを供給しても、処理ガスと水分の反応が起こることがないため、処理室7を構成する基材や配管の腐食を防止することができる。
このように本実施の形態1では、大気開放を伴うウェットクリーニングにおいて、排気用配管10にガスを供給することにより、配管に付着した反応生成物が大気の混入によって吸湿することを抑制できるため、真空排気時の水分起因のアウトガスの発生を低減することができる。また、真空排気時の水分の低減により、処理ガスを供給しても処理室7を構成する基材や配管の腐食を防止することができ、異物やコンタミの発生を抑制できる。これによって、パターン欠陥やデバイス性能の劣化を抑制することができ、製品の歩留まりを向上させることができる。
なお、本実施の形態1では、大気開放を伴うウェットクリーニングにおいて、排気用配管10のみにガス(第1ガス)を供給する場合について述べたが、排気用配管10とHe排気用配管(第2配管)80とにガスを供給してもよいことは言うまでもない。例えば、図2のプラズマ処理装置の処理手順 において、S103とS106の排気用配管が、排気用配管10とHe排気用配管80の両方を表している場合である。このように排気用配管10とHe排気用配管80とにガスを供給することにより、両方の配管のそれぞれにおいて、付着した反応生成物が大気の混入によって吸湿することを抑制できるため、真空排気時の水分起因のアウトガスの発生をさらに低減することができる。
なお、本実施の形態1では、大気開放を伴うウェットクリーニングにおいて、排気用配管10にガスを供給する場合について述べたが、処理室7に接続された高真空圧力検知手段75および低真空圧力検知手段76を備えた配管70においても本発明を適用することができる。
(実施の形態2)
なお、本実施の形態1では、大気開放を伴うウェットクリーニングにおいて、排気用配管10にガスを供給する場合について述べたが、処理室7に接続された高真空圧力検知手段75および低真空圧力検知手段76を備えた配管70においても本発明を適用することができる。
(実施の形態2)
本実施の形態2では、大気開放を伴うウェットクリーニングにおいて、処理室7に接続された高真空圧力検知手段75および低真空圧力検知手段76を備えた配管70に対して本発明を適用する場合を説明する。
図6は本発明の実施の形態2に係るプラズマ処理装置の模式的な構成の一例を示す断面図である。図6に示すプラズマ処理装置の大気開放を伴うウェットクリーニングにおいて、配管70にガスを供給する場合を説明する。なお、図6において、図1と同じ符号を付した構成は実施の形態1で説明したものと同じ機能を備えるためその説明を省略する。
図6に示す本実施の形態2のプラズマ処理装置では、処理室7に配管70が接続されており、この配管70に高真空圧力検知手段75と低真空圧力検知手段76とが接続されている。さらに、配管70には、N2 やドライエアーなどのガスを供給するガス供給源95が備えられている。ガス供給源95は、バルブ93を介してガス供給用配管92に接続されている。ガス供給用配管92は、配管70と処理室7の接続部と、真空と大気を遮断するバルブ71との間(例えば、図2に示すQ部)に接続されている。さらに、配管70には、第2ガス供給機構142が連通して設けられている。第2ガス供給機構142は、処理室7の圧力を検知する圧力検知部と処理室7とが連通するための配管70の大気に曝される箇所をパージするための第2ガスを供給するものである。上記第2ガスは、例えば、N2 やドライエアーなどである。そして、第2ガス供給機構142は、制御装置150によって制御される。 これにより、バルブ93の開閉動作は、制御装置150によって制御される。ここで、制御装置150は、処理室7の大気開放を伴う処理室7のウェットクリーニングを行う場合、処理室7の大気開放後から処理室7の排気を開始するまでの間、配管70の大気に曝される箇所に上記第2ガスを供給し続けるように第2ガス供給機構142を制御するものである。なお、ガス供給源95は、実施の形態1で述べたガス供給源95と同一であってもよいし、別々のものでもよい。
エッチング処理によって、処理室7に接続されている配管70の内面には、わずかに反応生成物が付着する。配管70の内面は、排気用配管10やHe排気用配管80の内面と同様にプラズマクリーニングが困難であるため、したがって、エッチング処理を重ねるうちに反応生成物の付着量が徐々に増えていくことになる。しかしながら、このような反応生成物は、目視で確認することが困難なほどの付着量である。
このような状態で大気開放を伴う処理室7のウェットクリーニングを実施すると、例えばセラミックプレート(部品)3を取り外した際に、大気が配管70に到達することになる。上述したように、配管70の内面は反応生成物が付着しているため、大気中の水分によって配管70の内面に付着した反応生成物が吸湿してしまう。
本実施の形態2では、処理室7内を大気圧にした後、セラミックプレート3を取り外す前に、バルブ93を開けて、N2 やドライエアーなどのガス供給源95からガス供給用配管92を介して、配管70にガスを供給する。そして、処理室7内に大気が混入する前に、配管70にガスを供給することによって、セラミックプレート(部品)3を取り外した後においても、配管70の内面に付着した反応生成物が大気中の水分を吸湿することを抑制できる。また、セラミックプレート3を取り外した後も、配管70にガスを供給し続けるため、処理室7を構成するセラミックプレート3などの部品を取り外してから清浄な部品を取り付けるまでの間も配管70の内面に付着した反応生成物が大気中の水分を吸湿することを抑制できる。その後、処理室7を構成するセラミックプレート3などの各種部品を取り付け、処理室7内への大気が混入する恐れが無くなった時点で、バルブ93を閉じて配管70に供給しているガスを停止する。これによって、配管70に付着している反応生成物の水分の吸湿を抑制することができる。
このように本実施の形態2で説明した処理室7に接続された高真空圧力検知手段75や低真空圧力検知手段76などの圧力検知部を備えた配管70においても、大気開放を伴うウェットクリーニングにおいて、配管70にガスを供給することにより、配管70に付着した反応生成物が大気の混入によって吸湿することを抑制できる。これにより、真空排気時の水分起因のアウトガスの発生を低減することができる。また、真空排気時の水分の低減により、処理ガスを供給しても処理室7を構成する基材や配管の腐食を防止でき、異物やコンタミの発生を抑制できる。これによって、パターン欠陥やデバイス性能の劣化を抑制でき、製品の歩留まりを向上させることができる。
なお、本実施の形態2では、大気開放を伴うウェットクリーニングにおいて、処理室7に接続された上記圧力検知部を備えた配管70にガスを供給する場合について述べたが、処理室7に接続されたベント配管30においても本発明を適用することができる。
(実施の形態3)
(実施の形態3)
本実施の形態3では、大気開放を伴うウェットクリーニングにおいて、処理室7に接続されたベント配管30に対して本発明を適用する場合を説明する。
図7は本発明の実施の形態3に係るプラズマ処理装置の模式的な構成の一例を示す断面図である。
図7に示すプラズマ処理装置の大気開放を伴うウェットクリーニングにおいて、ベント配管30にガスを供給する場合を説明する。なお、図7において、図1と同じ符号を付した構成は実施の形態1で説明したものと同じ機能を備えるためその説明を省略する。
図7に示す本実施の形態3のプラズマ処理装置では、処理室7にベント配管30が接続されており、このベント配管30にN2 やドライエアーなどのガスを供給するガス供給源95が備えられている。ガス供給源95はバルブ96を介してガス供給用配管94に接続されている。そして、ガス供給用配管94は、ベント配管30と処理室7の接続部と、真空と大気を遮断するバルブ31との間(例えば、図7に示すR部)に接続されている。さらに、ベント配管30には、第3ガス供給機構143が連通して設けられている。第3ガス供給機構143は、処理室7を大気開放するために処理室7内に供給されるガスの供給用配管であるベント配管30の大気に曝される箇所をパージするための第3ガスを供給するものである。上記第3ガスは、例えば、N2 やドライエアーなどである。そして、第3ガス供給機構143は、制御装置150によって制御される。これにより、バルブ96の開閉動作は、制御装置150によって制御される。ここで、制御装置150は、処理室7の大気開放を伴う処理室7のウェットクリーニングを行う場合、処理室7の大気開放後から処理室7の排気を開始するまでの間、ベント配管30の大気に曝される箇所に上記第3ガスを供給し続けるように第3ガス供給機構143を制御するものである。なお、ガス供給源95は、実施の形態1および実施の形態2で述べたガス供給源95と同一であってもよいし、別々のものでもよい。
エッチング処理によって、処理室7に接続されているベント配管30の内面には、わずかに反応生成物が付着する。ベント配管30の内面は、排気用配管10、He排気用配管80、配管70の内面と同様にプラズマクリーニングが困難であるため、エッチング処理を重ねるうちに反応生成物の付着量が徐々に増えていくことになる。しかしながら、このような反応生成物は、目視で確認することが困難なほどの付着量である。
このような状態で大気開放を伴うウェットクリーニングを実施すると、例えばセラミックプレート(部品)3を取り外した際に、大気がベント配管30に到達することになる。上述したように、ベント配管30の内面は反応生成物が付着しているため、大気中の水分によってベント配管30の内面に付着した反応生成物が吸湿してしまう。
そこで、本実施の形態3では、処理室7内を大気圧にした後、セラミックプレート3を取り外す前に、バルブ96を開けて、N2 やドライエアーなどのガス供給源95からガス供給用配管94を介して、ベント配管30にガスを供給する。処理室7内に大気が混入する前に、ベント配管30にガスを供給することによって、セラミックプレート3を取り外した後においても、ベント配管30の内面に付着した反応生成物が大気中の水分を吸湿することを抑制できる。また、セラミックプレート3を取り外した後も、ベント配管30にガスを供給し続けるため、処理室7を構成するセラミックプレート3などの部品を取り外してから清浄な部品を取り付けるまでの間もベント配管30の内面に付着した反応生成物が大気中の水分を吸湿することを抑制できる。その後、処理室7を構成するセラミックプレート3などの各種部品を取り付け、処理室7内への大気が混入する恐れが無くなった時点で、バルブ96を閉じてベント配管30に供給しているガスを停止する。これによって、ベント配管30に付着している反応生成物の水分の吸湿を抑制することができる。
本実施の形態3では、ベント配管30にバルブ96、ガス供給用配管94を備えてガスを供給する場合の装置構成を示したが、ガス供給源35から供給されるN2 ガスやドライエアーなどのガスをベント配管30に供給してもよい。
ここで、図8は、本発明の実施の形態3に係る変形例のプラズマ処理装置の模式的な構成を示す断面図である。図8に示す変形例のプラズマ処理装置において、ガス供給源35から供給されるガスは、処理室7を大気にするためのものであり、大流量のガスが供給されることになるが、図8に示すように、バルブ31と並列にバルブ32を設け、バルブ32とガス供給源35との間にマスフローコントローラー36を設ければよい。
つまり、ガス供給源35からN2 ガスやドライエアーなどのガスをベント配管30に供給する場合、バルブ31を閉じた状態で、バルブ32を開けて、マスフローコントローラー36により供給する流量を設定することによって、ベント配管30に大流量のガスが供給されることを防止できる。
このように、本実施の形態3および変形例で説明した処理室7に接続されたベント配管30においても、大気開放を伴うウェットクリーニングにおいて、ベント配管30にガスを供給することにより、ベント配管30に付着した反応生成物が大気の混入によって吸湿することを抑制できるため、真空排気時の水分起因のアウトガスの発生を低減することができる。また、真空排気時の水分の低減により、処理ガスを供給しても処理室7を構成する基材や配管の腐食を防止でき、異物やコンタミの発生を抑制できる。これによって、パターン欠陥やデバイス性能の劣化を抑制でき、製品の歩留まりを向上させることができる。
以上、実施の形態1~3に係るプラズマエッチング装置およびそのウェットクリーニング方法では、大気開放を伴うウェットクリーニングにおいて、処理室7に接続された配管にN2 やドライエアーなどのガスを供給することにより、配管に付着した反応生成物が大気の混入によって吸湿することを抑制できるため、真空排気時の水分起因のアウトガスの発生を低減することができる。また、真空排気時の水分の低減により、処理ガスを供給しても処理室7を構成する基材や配管の腐食を防止でき、異物やコンタミの発生を抑制できる。これによって、パターン欠陥やデバイス性能の劣化を抑制でき、製品の歩留まりを向上させることができる。
以上、本発明者によってなされた発明を発明の実施の形態に基づき具体的に説明したが、本発明は前記発明の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加、削除、置換をすることが可能である。なお、図面に記載した各部材や相対的なサイズは、本発明を分かりやすく説明するため簡素化・理想化しており、実装上はより複雑な形状となる。
また、本発明では、ウェットクリーニングにおいて、処理室7に接続された配管にN2 やドライエアーなどのガスを供給し、配管の内面に付着した反応生成物の吸湿を抑制することを特徴としているが、He供給用配管60や処理ガス供給用配管50にも本発明を適用することができる。すなわち、ウェットクリーニングにおいて、He供給用配管60や処理ガス供給用配管50にガスを供給することによって、配管の内面に大気中の水分が吸着することを抑制することができる。
また、本発明は、上述した電子サイクロトロン共鳴型プラズマ処理装置に限定されるものではなく、例えば、誘導結合型プラズマ(Inductively Coupled Plasma:ICP)処理装置、容量結合型プラズマ(Capacitively Coupled Plasma:CCP)処理装置などに対しても適用可能である。さらに本発明は、半導体デバイスの製造や検査の分野に限定されるものではなく、フラットパネルディスプレイの製造や、プラズマを用いた処理装置など、様々な分野に適用可能である。
また、上記実施の形態1~3では、それぞれのプラズマ処理装置において、第1ガス供給機構141が設けられている場合、第1ガス供給機構141と第2ガス供給機構142が設けられている場合、第1ガス供給機構141と第2ガス供給機構142と第3ガス供給機構143が設けられている場合をそれぞれ一例として説明した。そして、排気用配管10、He排気用配管80、配管70もしくはベント配管30のそれぞれの大気に曝される箇所にガスを供給する場合について説明した。
しかしながら、上記実施の形態1~3のそれぞれのプラズマ処理装置においては、例えば、第1ガス供給機構141と第3ガス供給機構143が設けられていてもよい。そして、その場合、第1ガス供給機構141と第3ガス供給機構143は、それぞれ別個に設けられたガス供給機構であってもよいし、あるいは同一のガス供給機構であってもよい。
さらに、第1ガス供給機構141と第2ガス供給機構142と第3ガス供給機構143が設けられている場合に、それらは、同一のガス供給機構であってもよい。
また、上記実施の形態1~3では、大気開放を伴うウェットクリーニングにおいて、処理室7に接続された配管にN2 やドライエアーなどのガスを供給する際、大気開放後から処理室7の排気を開始するまでの間、排気用配管10にガスを供給する場合について説明したが、大気開放前から処理室7の排気を開始するまでの間、上記配管にガスを供給するようにしてもよい。すなわち、図10に示す変形例のウェットクリーニングの手順に示すように、処理室の大気開放S103の前に排気用配管にガス供給を開始する(S102)。これにより、大気開放前から上記配管にガスを供給しているため、真空排気時の水分起因のアウトガスの発生をさらに低減することができる。
さらに、第1ガス供給機構141と第2ガス供給機構142と第3ガス供給機構143が設けられている場合に、それらは、同一のガス供給機構であってもよい。
また、上記実施の形態1~3では、大気開放を伴うウェットクリーニングにおいて、処理室7に接続された配管にN2 やドライエアーなどのガスを供給する際、大気開放後から処理室7の排気を開始するまでの間、排気用配管10にガスを供給する場合について説明したが、大気開放前から処理室7の排気を開始するまでの間、上記配管にガスを供給するようにしてもよい。すなわち、図10に示す変形例のウェットクリーニングの手順に示すように、処理室の大気開放S103の前に排気用配管にガス供給を開始する(S102)。これにより、大気開放前から上記配管にガスを供給しているため、真空排気時の水分起因のアウトガスの発生をさらに低減することができる。
2 セラミックプレート
3 セラミックプレート(部品)
4 ウエハ(被処理体、被処理基板)
6 ステージ
7 処理室
8 間隙
9 貫通孔
10 排気用配管
11 ドライポンプ(DP、伝熱ガス排気部)
12 ターボ分子ポンプ(TMP)
13 インピーダンス整合器
14 高周波電源
15 プラズマ
16 圧力調整手段
17、18、19 バルブ
20 マグネトロン発振器
21 導波管
22 ソレノイドコイル
23 ソレノイドコイル
30 ベント配管
31、32 バルブ
35 ガス供給源
36 マスフローコントローラー
50 処理ガス供給用配管
51 バルブ
52 処理ガス供給源
60 He供給用配管(第1配管)
61 バルブ
62 He供給源
70 配管
71、72 バルブ
75 高真空圧力検知手段(圧力検知部)
76 低真空圧力検知手段(圧力検知部)
80 He排気用配管(第2配管)
81、82 バルブ
90 ガス供給用配管
91 バルブ
92 ガス供給用配管
93 バルブ
94 ガス供給用配管
95 ガス供給源
96 バルブ
141 第1ガス供給機構
142 第2ガス供給機構
143 第3ガス供給機構
150 制御装置
3 セラミックプレート(部品)
4 ウエハ(被処理体、被処理基板)
6 ステージ
7 処理室
8 間隙
9 貫通孔
10 排気用配管
11 ドライポンプ(DP、伝熱ガス排気部)
12 ターボ分子ポンプ(TMP)
13 インピーダンス整合器
14 高周波電源
15 プラズマ
16 圧力調整手段
17、18、19 バルブ
20 マグネトロン発振器
21 導波管
22 ソレノイドコイル
23 ソレノイドコイル
30 ベント配管
31、32 バルブ
35 ガス供給源
36 マスフローコントローラー
50 処理ガス供給用配管
51 バルブ
52 処理ガス供給源
60 He供給用配管(第1配管)
61 バルブ
62 He供給源
70 配管
71、72 バルブ
75 高真空圧力検知手段(圧力検知部)
76 低真空圧力検知手段(圧力検知部)
80 He排気用配管(第2配管)
81、82 バルブ
90 ガス供給用配管
91 バルブ
92 ガス供給用配管
93 バルブ
94 ガス供給用配管
95 ガス供給源
96 バルブ
141 第1ガス供給機構
142 第2ガス供給機構
143 第3ガス供給機構
150 制御装置
Claims (10)
- 被処理体がプラズマ処理される処理室と、
大気圧の前記処理室を減圧するための排気用配管と、
前記被処理体が載置される試料台と、
温度調節された前記試料台の熱を伝熱するために前記被処理体の裏面に供給される伝熱ガスを前記排気用配管を介して排気する伝熱ガス排気部と、
前記排気用配管の大気に曝される箇所をパージするための第1ガスを供給する第1ガス供給機構と、
前記処理室の大気開放を伴う前記処理室のウェットクリーニングを行う場合、前記処理室の大気開放後から前記処理室の排気を開始するまでの間、前記排気用配管の大気に曝される箇所に前記第1ガスを供給し続けるように前記第1ガス供給機構を制御する制御装置と、
を備えることを特徴とするプラズマ処理装置。 - 請求項1に記載のプラズマ処理装置において、
前記処理室の圧力を検知する圧力検知部と前記処理室とが連通するための配管の大気に曝される箇所をパージするための第2ガスを供給する第2ガス供給機構をさらに備え、
前記制御装置は、前記処理室の大気開放を伴う前記処理室のウェットクリーニングを行う場合、前記処理室の大気開放後から前記処理室の排気を開始するまでの間、前記配管の大気に曝される箇所に前記第2ガスを供給し続けるように前記第2ガス供給機構を制御することを特徴とするプラズマ処理装置。 - 請求項1に記載のプラズマ処理装置において、
前記処理室を大気開放するために前記処理室内に供給されるガスの供給用配管であるベント配管の大気に曝される箇所をパージするための第3ガスを供給する第3ガス供給機構をさらに備え、
前記制御装置は、前記処理室の大気開放を伴う前記処理室のウェットクリーニングを行う場合、前記処理室の大気開放後から前記処理室の排気を開始するまでの間、前記ベント配管の大気に曝される箇所に前記第3ガスを供給し続けるように前記第3ガス供給機構を制御することを特徴とするプラズマ処理装置。 - 請求項2に記載のプラズマ処理装置において、
前記処理室を大気開放するために前記処理室内に供給されるガスの供給用配管であるベント配管の大気に曝される箇所をパージするための第3ガスを供給する第3ガス供給機構をさらに備え、
前記制御装置は、前記処理室の大気開放を伴う前記処理室のウェットクリーニングを行う場合、前記処理室の大気開放後から前記処理室の排気を開始するまでの間、前記ベント配管の大気に曝される箇所に前記第3ガスを供給し続けるように前記第3ガス供給機構を制御することを特徴とするプラズマ処理装置。 - 請求項3に記載のプラズマ処理装置において、
前記第1ガス供給機構および前記第3ガス供給機構は、同一のガス供給機構であることを特徴とするプラズマ処理装置。 - 請求項4に記載のプラズマ処理装置において、
前記第1ガス供給機構、前記第2ガス供給機構および前記第3ガス供給機構は、同一のガス供給機構であることを特徴とするプラズマ処理装置。 - 請求項1に記載のプラズマ処理装置において、
前記伝熱ガス排気部は、前記排気用配管と前記伝熱ガスを前記試料台に供給するための第1配管とを連通させる第2配管を具備し、
前記制御装置は、前記処理室の大気開放を伴う前記処理室のウェットクリーニングを行う場合、前記処理室の大気開放後から前記処理室の排気を開始するまでの間、前記排気用配管および前記第2配管の各々の大気に曝される箇所に前記第1ガスを供給し続けるように前記第1ガス供給機構を制御することを特徴とするプラズマ処理装置。 - 被処理体がプラズマ処理される処理室と、
大気圧の前記処理室を減圧するための排気用配管と、
前記被処理体が載置される試料台と、
温度調節された前記試料台の熱を伝熱するために前記被処理体の裏面に供給される伝熱ガスを前記排気用配管を介して排気する伝熱ガス排気部と、
前記排気用配管の大気に曝される箇所をパージするための第1ガスを供給する第1ガス供給機構と、
前記処理室の大気開放を伴う前記処理室のウェットクリーニングを行う場合、前記処理室の大気開放前から前記処理室の排気を開始するまでの間、前記排気用配管の大気に曝される箇所に前記第1ガスを供給し続けるように前記第1ガス供給機構を制御する制御装置と、
を備えることを特徴とするプラズマ処理装置。 - 請求項8に記載のプラズマ処理装置において、
前記伝熱ガス排気部は、前記排気用配管と前記伝熱ガスを前記試料台に供給するための第1配管とを連通させる第2配管を具備し、
前記制御装置は、前記処理室の大気開放を伴う前記処理室のウェットクリーニングを行う場合、前記処理室の大気開放前から前記処理室の排気を開始するまでの間、前記排気用配管および前記第2配管の各々の大気に曝される箇所に前記第1ガスを供給し続けるように前記第1ガス供給機構を制御することを特徴とするプラズマ処理装置。 - 被処理体がプラズマ処理される処理室を大気開放して前記処理室をウェットクリーニングするウェットクリーニング方法において、
前記処理室の大気開放後から前記処理室の排気を開始するまでの間、排気用配管の大気に晒される箇所に第1ガスを供給し続け、
前記排気用配管は、大気圧の前記処理室を減圧するための配管であるとともに温度調節された前記試料台の熱を伝熱するために前記被処理体の裏面に供給される伝熱ガスを排気する配管が接続され、
前記第1ガスは、前記排気用配管の大気に曝される箇所をパージするガスであることを特徴とするウェットクリーニング方法。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/033240 WO2019053836A1 (ja) | 2017-09-14 | 2017-09-14 | プラズマ処理装置およびウェットクリーニング方法 |
JP2018140436A JP6648208B2 (ja) | 2017-09-14 | 2018-07-26 | プラズマ処理装置および大気開放方法 |
KR1020180088456A KR102106381B1 (ko) | 2017-09-14 | 2018-07-30 | 플라스마 처리 장치 및 대기 개방 방법 |
TW109117132A TWI750669B (zh) | 2017-09-14 | 2018-08-09 | 電漿處理裝置及大氣開放方法 |
TW107127760A TWI704595B (zh) | 2017-09-14 | 2018-08-09 | 電漿處理裝置及大氣開放方法 |
US16/124,714 US10886106B2 (en) | 2017-09-14 | 2018-09-07 | Plasma processing apparatus and method for venting a processing chamber to atmosphere |
JP2020004078A JP6876158B2 (ja) | 2017-09-14 | 2020-01-15 | プラズマ処理装置 |
KR1020200049833A KR102240623B1 (ko) | 2017-09-14 | 2020-04-24 | 플라스마 처리 장치 및 대기 개방 방법 |
US16/953,914 US20210074515A1 (en) | 2017-09-14 | 2020-11-20 | Plasma processing apparatus and method for venting a processing chamber to atmosphere |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/033240 WO2019053836A1 (ja) | 2017-09-14 | 2017-09-14 | プラズマ処理装置およびウェットクリーニング方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019053836A1 true WO2019053836A1 (ja) | 2019-03-21 |
Family
ID=65632392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/033240 WO2019053836A1 (ja) | 2017-09-14 | 2017-09-14 | プラズマ処理装置およびウェットクリーニング方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US10886106B2 (ja) |
JP (2) | JP6648208B2 (ja) |
KR (2) | KR102106381B1 (ja) |
TW (2) | TWI750669B (ja) |
WO (1) | WO2019053836A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111672808A (zh) * | 2020-06-18 | 2020-09-18 | 上海广奕电子科技股份有限公司 | 一种icp等离子体刻蚀用清洗机构 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI756475B (zh) * | 2017-10-06 | 2022-03-01 | 日商東京威力科創股份有限公司 | 抑制粒子產生之方法及真空裝置 |
TW202324639A (zh) * | 2019-05-28 | 2023-06-16 | 日商國際電氣股份有限公司 | 半導體裝置的製造方法,基板處理裝置及程式 |
JP6948428B2 (ja) * | 2019-05-28 | 2021-10-13 | 株式会社Kokusai Electric | 半導体装置の製造方法、基板処理装置及びプログラム |
JP7378357B2 (ja) * | 2020-06-17 | 2023-11-13 | 東京エレクトロン株式会社 | 基板処理装置およびガス供給配管のパージ方法 |
KR102600534B1 (ko) * | 2021-11-02 | 2023-11-10 | 세메스 주식회사 | 기판 처리 장치 및 기판 처리 방법 |
WO2023228232A1 (ja) * | 2022-05-23 | 2023-11-30 | 株式会社日立ハイテク | 内壁部材の再生方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09232296A (ja) * | 1996-02-23 | 1997-09-05 | Mitsubishi Electric Corp | 半導体装置の製造装置および製造方法 |
JPH11244686A (ja) * | 1998-03-04 | 1999-09-14 | Hitachi Ltd | 真空処理装置 |
JP2007324341A (ja) * | 2006-05-31 | 2007-12-13 | Hitachi High-Technologies Corp | プラズマ処理方法およびプラズマ処理装置 |
US7767584B1 (en) * | 2002-06-28 | 2010-08-03 | Lam Research Corporation | In-situ pre-coating of plasma etch chamber for improved productivity and chamber condition control |
JP2012199535A (ja) * | 2011-03-08 | 2012-10-18 | Tokyo Electron Ltd | 基板温度制御方法及びプラズマ処理装置 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2768952B2 (ja) * | 1988-08-04 | 1998-06-25 | 忠弘 大見 | 金属酸化処理装置及び金属酸化処理方法 |
JPH05245360A (ja) * | 1992-03-09 | 1993-09-24 | Hitachi Ltd | 真空処理装置 |
EP0648861A1 (en) * | 1993-10-15 | 1995-04-19 | Applied Materials, Inc. | Semiconductor processing apparatus |
JPH07231034A (ja) * | 1994-02-17 | 1995-08-29 | Hitachi Ltd | 板状物の固定方法および装置ならびにプラズマ処理装置 |
JP2922440B2 (ja) * | 1994-02-21 | 1999-07-26 | 松下電器産業株式会社 | 空圧機器の大気開放方法 |
JPH0963963A (ja) * | 1995-08-23 | 1997-03-07 | Hitachi Ltd | 半導体基板処理装置及び半導体基板処理方法 |
JPH10125652A (ja) * | 1996-10-16 | 1998-05-15 | Fujitsu Ltd | 半導体製造装置 |
JP2003201565A (ja) * | 2002-01-08 | 2003-07-18 | Canon Inc | 堆積膜形成装置および堆積膜形成方法 |
JP4798981B2 (ja) * | 2004-10-28 | 2011-10-19 | 東京エレクトロン株式会社 | 基板処理装置の制御方法,基板処理装置,基板処理装置の制御を行うプログラム |
JP4628807B2 (ja) * | 2005-01-28 | 2011-02-09 | 株式会社日立ハイテクノロジーズ | 真空処理装置および真空処理方法 |
KR20070017851A (ko) * | 2005-08-08 | 2007-02-13 | 삼성전자주식회사 | 반도체 제조설비 |
JP5224567B2 (ja) * | 2005-11-21 | 2013-07-03 | 株式会社日立国際電気 | 基板処理装置、基板処理方法および半導体装置の製造方法 |
JP2007208020A (ja) * | 2006-02-02 | 2007-08-16 | Seiko Epson Corp | 半導体製造装置および半導体製造方法 |
JP2010192513A (ja) * | 2009-02-16 | 2010-09-02 | Hitachi High-Technologies Corp | プラズマ処理装置およびその運転方法 |
US9207689B2 (en) | 2011-03-08 | 2015-12-08 | Tokyo Electron Limited | Substrate temperature control method and plasma processing apparatus |
JP2013147709A (ja) * | 2012-01-20 | 2013-08-01 | Canon Inc | 堆積膜形成方法 |
JP6202720B2 (ja) * | 2013-03-29 | 2017-09-27 | 株式会社日立ハイテクノロジーズ | プラズマ処理装置およびプラズマ処理方法 |
JP6548484B2 (ja) * | 2015-07-01 | 2019-07-24 | 東京エレクトロン株式会社 | プラズマ処理装置およびそれに用いる排気構造 |
-
2017
- 2017-09-14 WO PCT/JP2017/033240 patent/WO2019053836A1/ja active Application Filing
-
2018
- 2018-07-26 JP JP2018140436A patent/JP6648208B2/ja active Active
- 2018-07-30 KR KR1020180088456A patent/KR102106381B1/ko active Application Filing
- 2018-08-09 TW TW109117132A patent/TWI750669B/zh active
- 2018-08-09 TW TW107127760A patent/TWI704595B/zh active
- 2018-09-07 US US16/124,714 patent/US10886106B2/en active Active
-
2020
- 2020-01-15 JP JP2020004078A patent/JP6876158B2/ja active Active
- 2020-04-24 KR KR1020200049833A patent/KR102240623B1/ko active IP Right Grant
- 2020-11-20 US US16/953,914 patent/US20210074515A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09232296A (ja) * | 1996-02-23 | 1997-09-05 | Mitsubishi Electric Corp | 半導体装置の製造装置および製造方法 |
JPH11244686A (ja) * | 1998-03-04 | 1999-09-14 | Hitachi Ltd | 真空処理装置 |
US7767584B1 (en) * | 2002-06-28 | 2010-08-03 | Lam Research Corporation | In-situ pre-coating of plasma etch chamber for improved productivity and chamber condition control |
JP2007324341A (ja) * | 2006-05-31 | 2007-12-13 | Hitachi High-Technologies Corp | プラズマ処理方法およびプラズマ処理装置 |
JP2012199535A (ja) * | 2011-03-08 | 2012-10-18 | Tokyo Electron Ltd | 基板温度制御方法及びプラズマ処理装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111672808A (zh) * | 2020-06-18 | 2020-09-18 | 上海广奕电子科技股份有限公司 | 一种icp等离子体刻蚀用清洗机构 |
Also Published As
Publication number | Publication date |
---|---|
TW202040634A (zh) | 2020-11-01 |
US10886106B2 (en) | 2021-01-05 |
TW201916098A (zh) | 2019-04-16 |
KR20190030587A (ko) | 2019-03-22 |
JP6648208B2 (ja) | 2020-02-14 |
JP2020065079A (ja) | 2020-04-23 |
TWI750669B (zh) | 2021-12-21 |
US20190080888A1 (en) | 2019-03-14 |
US20210074515A1 (en) | 2021-03-11 |
TWI704595B (zh) | 2020-09-11 |
KR20200067776A (ko) | 2020-06-12 |
KR102240623B1 (ko) | 2021-04-14 |
KR102106381B1 (ko) | 2020-05-06 |
JP6876158B2 (ja) | 2021-05-26 |
JP2019054234A (ja) | 2019-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6876158B2 (ja) | プラズマ処理装置 | |
JP4801045B2 (ja) | ドライクリーニングプロセスのプラズマ処理システムからチャンバ残渣を除去する方法 | |
KR101011097B1 (ko) | 기판 처리 챔버용 다중 포트 펌핑 시스템 | |
US6164295A (en) | CVD apparatus with high throughput and cleaning method therefor | |
TWI779753B (zh) | 電漿處理裝置及被處理體處理方法 | |
US20090233450A1 (en) | Plasma etchimg method and plasma etching apparatus | |
US20060090773A1 (en) | Sulfur hexafluoride remote plasma source clean | |
JP5473962B2 (ja) | パターン形成方法及び半導体装置の製造方法 | |
KR102538188B1 (ko) | 플라즈마 처리 장치의 세정 방법 | |
KR20190039874A (ko) | 파티클 발생 억제 방법 및 진공 장치 | |
JP5548028B2 (ja) | 堆積チャンバのリモートクリーニング方法 | |
TW201812897A (zh) | 電漿處理方法 | |
JP2006319041A (ja) | プラズマクリーニング方法、成膜方法 | |
JP2000323467A (ja) | 遠隔プラズマ放電室を有する半導体処理装置 | |
TW201937597A (zh) | 清洗方法及電漿處理裝置 | |
JPH10233389A (ja) | 半導体処理装置およびそのクリーニング方法ならびに半導体装置の製造方法 | |
JP3727312B2 (ja) | プラズマ処理装置のプラズマ処理方法 | |
JP2019071410A (ja) | パーティクル発生抑制方法及び真空装置 | |
JP7045428B2 (ja) | 被処理体を処理する方法 | |
JP6938672B2 (ja) | プラズマ処理装置 | |
JP2009260091A (ja) | プラズマ処理装置のシーズニング方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17925186 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17925186 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |