WO2019052342A1 - 冷冻消融导管及系统 - Google Patents
冷冻消融导管及系统 Download PDFInfo
- Publication number
- WO2019052342A1 WO2019052342A1 PCT/CN2018/103237 CN2018103237W WO2019052342A1 WO 2019052342 A1 WO2019052342 A1 WO 2019052342A1 CN 2018103237 W CN2018103237 W CN 2018103237W WO 2019052342 A1 WO2019052342 A1 WO 2019052342A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- balloon
- capsule
- cavity
- cryoablation
- support structure
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00041—Heating, e.g. defrosting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00059—Material properties
- A61B2018/00089—Thermal conductivity
- A61B2018/00101—Thermal conductivity low, i.e. thermally insulating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
- A61B2018/0022—Balloons
- A61B2018/0025—Multiple balloons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
- A61B2018/0022—Balloons
- A61B2018/0025—Multiple balloons
- A61B2018/00255—Multiple balloons arranged one inside another
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
- A61B2018/0022—Balloons
- A61B2018/0025—Multiple balloons
- A61B2018/00261—Multiple balloons arranged in a line
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
- A61B2018/00267—Expandable means emitting energy, e.g. by elements carried thereon having a basket shaped structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00345—Vascular system
- A61B2018/00351—Heart
- A61B2018/00375—Ostium, e.g. ostium of pulmonary vein or artery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
- A61B2018/0212—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
- A61B2018/0231—Characteristics of handpieces or probes
- A61B2018/0262—Characteristics of handpieces or probes using a circulating cryogenic fluid
Definitions
- the present application belongs to the field of cryoablation medical devices, and in particular relates to a cryoablation catheter and system.
- Cryoablation is the process of destroying cells by forming ice hockey inside and outside the cell by low temperature.
- cryoablation the cryoprobe is placed on the surface of the tissue, which causes a low temperature through refrigeration, causing a puck to form inside and outside the cells around the probe. As the temperature drops, the cells within the puck produce irreversible damage.
- the cryoablation injury process can be divided into three stages: (1) freezing/warming period; (2) bleeding and inflammation; and (3) fiber formation.
- cryoablation is a useful treatment in a wide range of catheter-based interventions.
- cryoablation can be used to ablate pulmonary vestibules, resulting in electrical isolation of the pulmonary veins to treat atrial fibrillation;
- cryoablation can be used to ablate renal sympathetic nerves to treat refractory hypertension, a technique already used in clinical trials;
- cryoablation is also available For ablation of tumors, treatment of arterial stenosis and the like.
- cryoablation can deliver a regenerable balloon through the human lumen to deliver the frozen medium.
- These bladders are operatively coupled to an external control component (eg, a refrigerant source).
- cryoablation catheters are to deliver the freezing unit at the distal end of the catheter to the treatment site and perform freezing.
- Medtronic's Arctic Front product and its subsequent improved models entered the Chinese market as early as 2013.
- the product adheres to the pulmonary vein through the filled balloon.
- the liquid refrigerant N 2 O
- the liquid refrigerant absorbs a large amount of heat, so that the temperature of the target ablation site is lowered to achieve ablation.
- Clinical data show that the effectiveness of Medtronic products is obvious, the annual success rate of surgery is 69.9%, but because there is no cavity for isolating energy transmission between the first capsule and the second capsule, the freezing energy can be expanded to the surrounding area.
- the target site pulmonary vein vestibule
- the surrounding tissues such as the phrenic nerve, vagus nerve, esophagus, and bronchus. Because of the action of freezing energy in the surrounding tissues, related complications such as sacral nerve palsy, vagus nerve injury, and esophageal spasm are caused. According to relevant reports, the use of Medtronic Front Advance for pulmonary vein ablation, the incidence of radial nerve palsy was as high as 13.5%.
- Chinese patent CN201710096224.0 discloses a heat preservation device for protecting the esophagus during cryoablation of a pulmonary vein by using a frozen balloon catheter.
- the balloon is provided with a balloon wall thermocouple, a thermocouple inside the balloon, a thermal cycle heat preservation device, and a balloon wall.
- the thermocouple and the thermocouple inside the balloon are attached to the inner and outer walls of the balloon respectively to realize real-time temperature measurement.
- the thermal cycle thermal insulation device is connected to the thermal insulation module, the temperature control module is connected to the thermocouple of the balloon wall, the thermocouple inside the balloon, and the thermal insulation module are used.
- the intelligent matching controls the cold heat of the thermal cycle thermal insulation device, and maintains the pulmonary vein ablation zone adjacent to the esophageal temperature at 20-30 ° C; this thermal insulation device can be introduced into the cryoablation zone through the esophageal natural channel, in the freezing
- the thermal balloon is used to protect the esophagus adjacent to the ablation zone of the pulmonary vein, to prevent serious damage such as esophageal fistula caused by cryoablation, and to eliminate the limitation of frozen balloon catheter ablation of pulmonary vein for atrial fibrillation, which is beneficial to the frozen balloon ablation catheter.
- This type of thermal insulation device has many complicated components and is only suitable for the treatment of a specific target tissue, and the cost is high.
- the existing cryoablation catheter is fixed on the inner and outer two-layer balloon respectively on the catheter shaft body, the refrigerant is filled into the inner balloon to achieve the purpose of cooling, but since there is no effective heat-resistant cavity, the formed ice hockey often It will cover the area around the treatment site, which will damage the surrounding tissue and lead to complications.
- the technical problem to be solved by the present application is to provide a cryoablation catheter and system having a heat-resistant cavity, which can effectively limit the area of the frozen energy release and thereby reduce the probability of complications, Wide range of applications.
- a cryoablation catheter comprising:
- tubular body comprising a cold source inlet chamber and a cold source return chamber extending along an axial direction thereof;
- a freezing unit disposed at a distal end portion of the tubular body, the freezing unit including a first balloon in fluid communication with the cold source inlet chamber and the cold source return chamber and disposed outside the first balloon a second capsule having a length smaller than a length of the second capsule, and a region between the first capsule and the second capsule being a closed space, the first a portion of the capsule wall and the capsule wall of the second capsule are in a conforming state, and a fitting portion of the capsule wall of the first capsule and the second capsule is a passage for transferring frozen energy to the treatment site.
- an insulating fluid is pre-filled within the cavity to block energy transfer within the cavity.
- a support structure is disposed between the first capsule and the second capsule, and the support structure can be supported when the first capsule and the second capsule are expanded.
- the cavity for isolating energy transmission formed between the first capsule and the second capsule makes the shape of the cavity for isolating energy transmission stable and reliable.
- the support structure is a balloon, the tube further comprising a balloon filling lumen extending axially therewith, the balloon filling lumen being in fluid communication with the balloon.
- the support structure is made of one or more memory alloy wires having a predetermined shape, and the memory alloy wires are disposed on the first capsule and the second capsule. between.
- the support structure is a protrusion disposed on the first capsule.
- the support structure is a pleat disposed at a proximal end and/or a distal end of the first balloon.
- the pleats are stacked directly from the first capsule.
- the support structure is composed of a plurality of strips or filaments, and two ends of the strip or filament structure are respectively fixedly connected to both ends of the second capsule.
- the ribbon or filamentous structure is tightened to form an isolation energy between the first balloon and the second balloon The cavity that is transported.
- the cavity is pre-charged negatively such that the gas within the cavity is thin, thereby preventing the transfer of energy.
- a cryoablation system comprising:
- a cryoablation catheter comprising a tubular body and a freezing unit disposed at a distal end portion of the tubular body, the tubular body including a cold source air inlet chamber extending along an axial direction thereof, a cold source return air chamber, and a charge a suction chamber;
- the freezing unit includes a first capsule in fluid communication with the cold source inlet chamber and the cold source return chamber; and a second capsule disposed outside the first capsule, the second The capsule is in communication with the filling chamber, the length of the first capsule is smaller than the length of the second capsule, and a portion of the first capsule and the capsule wall of the second capsule are in a fitted state.
- a fitting portion of the capsule wall of the first capsule and the second capsule is a passage for transferring frozen energy to the treatment site;
- a cryoablation device comprising a thermal insulation module and a second rewarming module respectively communicating with the charging chamber, a refrigeration module in communication with the cold source inlet chamber and the cold source return chamber, and a first rewarming module in which the cold source inlet chamber is connected, and a control system for controlling parameters of the heat insulating module, the refrigerating module, the first rewarming module and the second rewarming module,
- the chilled energy in the refrigeration module is delivered to the first balloon through the cold source inlet cavity such that the first balloon and the second balloon expand; the cryoablation system
- the second capsule is filled with a heat insulating medium or suction by the heat insulating module, so that a cavity for isolating energy transmission formed between the first capsule and the second capsule is filled with a heat insulating medium Or being drawn to a negative pressure state to prevent freezing energy from passing through the cavity,
- the first rewarming module and the second rewarming module respectively pass the cold source intake chamber and the charging chamber to the first capsule and the second capsule respectively
- the rewarming fluid is charged so that the freezing unit can be quickly thawed.
- the insulation module is a filling pump.
- the insulation module is a vacuum pump.
- a support structure is disposed between the first capsule and the second capsule, and the support structure can support the cavity for isolating energy transmission when the first capsule is expanded.
- the shape of the cavity for isolating energy transmission is stable and reliable.
- the support structure is a balloon, the tube further comprising a balloon filling lumen extending axially therewith, the balloon filling lumen being in fluid communication with the balloon.
- the support structure is made of one or more memory alloy wires having a predetermined shape, one end of the support structure is connected to the push handle, and when the first capsule is transported to At the time of the lesion, the support structure is pushed between the first balloon and the second balloon by the push handle.
- the predetermined shape comprises a spiral shape, a cage shape or an umbrella shape.
- the support structure is composed of a plurality of strips or filaments, and two ends of the strip or filament structure are respectively fixedly connected to both ends of the second capsule.
- the ribbon or filamentous structure is tightened to form an isolation energy between the first balloon and the second balloon The cavity that is transported.
- the support structure is a pleat disposed at a proximal end and/or a distal end of the first balloon.
- the temperature of the rewarmed fluid injected through the aspiration chamber during rewarming of the cryoablation system is between 0 and 42 degrees Celsius.
- a steering handle is further disposed at a proximal end of the tubular body, and the steering handle is connected to a cold source joint through a flexible connecting tube, and the freezing energy in the cooling module passes through the cold source joint,
- the flexible connecting tube and the cold source inlet chamber disposed within the tube are delivered to the first capsule to expand the first balloon.
- At least one connecting plug is disposed at a proximal end of the cold source connector, and a distal end of the cold source connector is coupled to a proximal end of the steering handle through the flexible connecting tube.
- the catheter tip is provided at the most distal end of the tubular body.
- the catheter head is a polymer hose.
- a guide wire lumen is further disposed in the tube body, and a distal end of the first balloon body is fixedly connected to the guide wire lumen tube.
- the manipulation handle comprises a bending unit, a wire guide tube manipulation unit, the bending unit controls the movement of the distal end of the catheter head, and the guide wire lumen manipulation unit comprises a liquid injection
- the mouth is connected to the lumen of the guide wire lumen.
- the second vacuum chamber is disposed outside the tube body in the axial direction of the tube body.
- the cryoablation catheter of the present application is capable of isolating the transmission of energy by blocking the transfer of energy at the unintended energy transfer site of the freezing unit, thereby preventing heat transfer, thereby limiting the release area of the frozen energy and reducing the occurrence of complications. Probability, saving on treatment costs; and the present application can provide one or more isolated energy transmissions at the proximal or distal end or either side or both sides of the freezing unit depending on the specific needs of protecting the tissue surrounding the different cryoablation areas during different procedures
- the cavity can be injected into the cavity according to different thermal insulation requirements of different operations, and the heat-insulating medium is injected into the cavity to enhance the heat-blocking effect, so as to further reduce the damage of the frozen tissue energy to the surrounding tissue during the operation.
- cryoablation catheter of the present application is provided with a supporting structure, a more reliable and stable cavity for isolating energy transmission can be formed, and the second capsule is not attached to the first capsule due to the negative pressure, thereby causing adiabatic failure. .
- the cryoablation system of the present application forms a heat-resistant cavity for the unintended energy transfer portion of the freezing unit through the suction chamber during the freezing process, which can isolate the transmission of energy and prevent heat transfer, thereby limiting the release of the frozen energy.
- the region reduces the probability of complications and saves the cost of treatment; meanwhile, the cryoablation system of the present application can accelerate the rewarming during the rewarming process.
- the present application is provided with two rewarming modules.
- the first rewarming module and the second rewarming module respectively pass the cold source intake cavity and the charging cavity.
- the first balloon and the second balloon are filled with a rewarming fluid such that the freezing unit can be quickly thawed.
- FIG. 1 is a schematic view showing the overall structure of a cryoablation catheter of the present application.
- FIG. 2 is a schematic view of a first embodiment of a cryoablation catheter of the present application having a support structure.
- FIG 3 is a schematic illustration of a second embodiment of a cryoablation catheter of the present application having a support structure.
- FIG. 4 is a schematic view of a third embodiment of the cryoablation catheter of the present application having a support structure.
- Figure 5 is a schematic illustration of a fourth embodiment of a cryoablation catheter of the present application having a support structure.
- FIG. 6A is a schematic view showing a fifth embodiment of the cryoablation catheter of the present application having a support structure
- FIG. 6B is a cross-sectional view taken along line A-A of FIG. 6A.
- FIG. 7A is a schematic view showing a sixth embodiment of the cryoablation catheter of the present application having a support structure
- FIG. 7B is a cross-sectional view taken along line B-B of FIG. 7A.
- FIG. 8A is a schematic view showing a seventh embodiment of the cryoablation catheter of the present application having a support structure
- FIG. 8B is a cross-sectional view taken along line C-C of FIG. 8A.
- FIG. 9A is a schematic view showing the overall structure of a cryoablation catheter having a suction chamber of the present application
- FIG. 9B is a schematic cross-sectional view of the tube of FIG. 9A taken along line D-D.
- FIG. 10 is a schematic view showing the overall structure of the cryoablation system of the present application.
- Figure 11 is a schematic illustration of a first embodiment of a cryoablation catheter of the present application having a support structure.
- FIG. 12A is a schematic view showing a second embodiment of a cryoablation catheter of the present application having a support structure
- FIG. 12B is a cross-sectional view taken along line E-E of FIG. 12A.
- Figure 13A is a schematic illustration of a third embodiment of a cryoablation catheter of the present application having a support structure.
- Figure 13B is a cross-sectional view taken along the line F-F of Figure 13A.
- Figure 14 is a schematic illustration of a fourth embodiment of a cryoablation catheter of the present application having a support structure.
- Figure 14B is a schematic cross-sectional view taken along the line G-G of Figure 14A.
- Figure 15 is a schematic illustration of a fifth embodiment of a cryoablation catheter of the present application having a support structure.
- Fig. 16 is a schematic view showing a support structure of a frozen ablation catheter of the present application having a shape of an umbrella.
- 1 is a cold source joint
- 2 is a control handle
- 3 is a freezing unit
- 4 is a flexible connecting tube
- 5 is a tube body
- 6 is a cavity for isolating energy transmission
- 21 is a bending unit
- 22 is a guide wire lumen
- the manipulation unit, 23 is a balloon filling port
- 31 is a first capsule
- 32 is a second capsule
- 33 is a support structure
- 331 is a balloon
- 332 is a memory alloy wire
- 333 is a protrusion
- 334 is a fold
- 335 It is a strip or filament structure
- 51 is a cold source inlet chamber
- 52 is a cold source return chamber
- 53 is a suction chamber
- 54 is a balloon filling chamber
- 55 is a catheter head
- 56 is a guide lumen.
- 57 is the second vacuum chamber
- 58 the push rod
- 531 is the port of the suction chamber
- 101 is the heat insulation module
- 102 is the first rewarming module
- 102' is the second rewarming module
- 103 is the refrigeration module
- 104 is the control system.
- proximal end refers to an end that is proximate to the operator, and the distal end refers to an end that is remote from the operator.
- a cryoablation catheter of the present application comprises: a cold source joint 1, a manipulation handle 2, a freezing unit 3, a flexible connecting tube 4 and a tube body 5, and a tube body 5 having a distal end and a proximal end.
- a cold source inlet chamber 51 extending along its axial direction, a cold source return chamber 52;
- the freezing unit 3 is disposed at a distal end portion of the tube body 5, including the cold source inlet chamber 51 and the cold
- a first capsule 31 in fluid communication with the source return chamber 52 and a second capsule 32 disposed outside the first capsule 31, the second capsule 32 expanding with the first capsule 31.
- the length of the first capsule 31 is smaller than the second capsule 32.
- a portion of the capsule wall of the first capsule 31 and the second capsule 32 is in a fitted state, and a fitting portion of the capsule wall of the first capsule 31 and the second capsule 32 is a frozen energy
- the passage that is transmitted to the treatment site is a closed space between the first capsule 31 and the second capsule 32, and is preliminarily evacuated or filled with an appropriate amount of heat insulating medium.
- a cavity 6 for isolating energy transmission is formed between the first capsule 31 and the second capsule 32 to achieve prevention and prevention.
- the energy transfer of the freezing unit 3 corresponding to the region of the cavity 6 is described.
- pulmonary vein isolation is a common procedure for the treatment of atrial fibrillation.
- the birth of a cryoablation catheter makes pulmonary vein electrical isolation easier and more convenient.
- the cryoablation position is limited to the pulmonary vein vestibule, it is desirable to concentrate the frozen energy in the front hemisphere of the balloon.
- the isolated energy transfer cavity 6 is disposed at the proximal end of the first balloon body 31.
- the freezing unit 3 is first pushed to the left atrium, and an appropriate amount of refrigerant is injected into the first capsule 31 to expand the first capsule 31, thereby driving the second capsule 32 to expand.
- a portion of the capsule wall of the first capsule 31 and the second capsule 32 is in a fitted state, and a fitting portion of the capsule wall of the first capsule 31 and the second capsule 32 is a frozen energy A channel that is delivered to the treatment site. Since the outer shape and size of the first capsule 31 and the second capsule 32 are different, a cavity 6 for isolating energy transmission is formed between the first capsule 31 and the second capsule 32 to prevent freezing energy to the freezing unit 3. The near end is passed. Then, the push freezing unit 3 is attached to the pulmonary vein mouth to be ablated, and the cryoablation treatment is started, and the refrigerant is injected into the first capsule 31 to absorb the heat of the treatment area to achieve the result of the cryoablation.
- the control handle 2 is disposed at a proximal end of the tubular body 5, and the control handle 2 is connected to the cold source joint 1 through a flexible connecting tube 4 through which the cold source passes, the flexible connecting tube 4 and the setting
- the cold source intake chamber 51 in the tubular body 5 is delivered into the first capsule 31 to expand the first capsule 31.
- at least one connection plug is disposed at a proximal end of the cold source connector 1, the connection plug is connected to a freezing device, and a distal end of the cold source connector 1 passes through the flexible connecting tube 4
- the proximal end of the steering handle 2 is connected, and the freezing device supplies refrigerant to the cryoablation catheter through the cold source joint 1.
- a catheter head 55 is provided at the most distal end of the tubular body 5.
- the catheter head 55 is a polymer hose.
- a guide wire lumen 56 is also disposed in the tubular body 5, and the catheter head 55 is fixedly coupled to the distal end of the guidewire lumen 56 by a bonding or welding process to prevent the frozen ablation catheter from damaging the blood vessel or tissue during delivery.
- the distal end of the first capsule 31 is fixedly connected to the guide wire lumen 56 by a process such as bonding or welding, and the proximal end of the first capsule 31 is fixedly connected to the cold source circuit by a process such as bonding or welding.
- the cold source circuit includes a cold source intake chamber 51 and a cold source return chamber 52. The cold source circuit can be connected to the freezing device via a cold source joint 1.
- the manipulation handle 2 further includes a bending unit 21, a wire guide tube manipulation unit 22, and the bending unit 21 controls the movement of the distal end of the catheter head 55 by controlling the curved shape of the distal end of the catheter head 55,
- the freezing unit 3 is made easy to reach the treatment site.
- the guidewire lumen manipulation unit 22 is fixedly coupled to the proximal end of the guidewire lumen 56.
- the guidewire lumen manipulation unit 22 includes a fluid inlet that communicates with the lumen of the guidewire lumen 56, and may pass the annotation if necessary
- the reservoir is filled with saline, contrast or other liquid.
- the cryoablation catheter of the present application operates in such a manner that the freezing unit 3 that pushes the cryoablation catheter enters the target tissue region, sufficiently filling the first balloon 31, and the second balloon 32 expands as the first balloon 31 expands.
- a cavity 6 for isolating energy transfer is formed between the first balloon body 31 and the second balloon body 32.
- the cryoablation catheter is pushed integrally and the deflection unit 21 is operated such that the freezing unit 3 can be in contact with the target tissue.
- the liquid refrigerant is transferred into the first capsule 31 by operating the freezing apparatus, thereby performing freezing of the target tissue. Since a cavity 6 capable of isolating energy transmission is formed between the first balloon body 31 and the second balloon body 32, the region is formed with thermal insulation protection to prevent the surrounding tissue from being accidentally injured by the freezing energy.
- the area surrounding the target tissue is often frozen due to the conduction of the frozen energy.
- the principle of action of the cryoablation catheter of the present application is to form a cavity 6 for isolating energy transmission between the first balloon body 31 and the second balloon body 32 such that the freezing energy cannot act on the peripheral region, thereby forming adiabatic protection.
- the cavity 6 may also be disposed at the distal end of the first balloon 31, or at both ends of the first balloon 31, or at the first, depending on the particular needs of protecting the tissue surrounding the different frozen ablation zones during different procedures.
- One side of a capsule 31 For example, in atrial fibrillation cryoablation surgery, the frozen ablation target tissue is a pulmonary vein vestibule.
- the phrenic nerve Since the front end of the target tissue is adjacent to the phrenic nerve, the phrenic nerve is frozen to cause paralysis of the phrenic nerve. Therefore, an isolation energy transfer space can be provided at the distal end of the freezing unit 3.
- the positional setting of the isolated energy transfer cavity 6 depends on the type of surgery and the tissue to be protected.
- the cryoablation catheter of the present application has a simple structure, and the arrangement of the cavity 6 for isolating energy transmission causes the freezing energy to be unable to be transmitted there, and the heat insulation effect is good, thereby limiting the release area of the freezing energy and reducing the probability of occurrence of complications. Saving treatment cost; and the present application can set one or more cavities 6 for isolating energy transmission according to the specific needs of different tissues in different operations to protect the surrounding tissue of the frozen ablation area, so as to further reduce the damage of the surrounding tissue during the operation of the frozen energy. Wide range.
- the present embodiment is different from the first embodiment in that a support structure is disposed in a region adjacent to the non-therapeutic portion between the first capsule 31 and the second capsule 32, when the first capsule 31 is And when the second capsule 32 is expanded, the support structure can support the cavity 6 for isolating energy transmission formed between the first capsule 31 and the second capsule 32, thereby ensuring isolation energy.
- the shape of the transported cavity 6 is stable and reliable.
- the support structure 33 is a balloon 331 disposed at the proximal end of the first balloon 31.
- the tubular body 5 further includes a balloon filling lumen 54 extending axially therewith, the balloon filling lumen 54 being in fluid communication with the balloon 331.
- an appropriate amount of refrigerant is first injected into the first capsule 31 to cause the first capsule 31 and the second capsule 32 to expand.
- the liquid/gas can be injected through the balloon filling cavity 54, so that the balloon 331 is filled, and the expansion of the balloon 331 serves as a supporting effect, so that the vacuum adiabatic cavity is stable and reliable, because the cavity 6 is pre-vacuumed or filled.
- the heat insulating medium prevents freezing energy from being transmitted to the proximal end of the freezing unit 3.
- the cryoablation treatment is then initiated, and a refrigerant is injected into the first balloon 31 to absorb the heat of the treatment area to achieve the result of cryoablation.
- the support structure 33 can be made of one or more memory alloy wires 332 having a predetermined shape, the support structure 33, the first capsule.
- the body 31 and the second capsule 32 are in a compressed state before reaching the lesion.
- the support structure 33 can be restored to a predetermined configuration for support.
- the cryoablation treatment is then initiated, and a refrigerant is injected into the first capsule 31 to absorb the heat of the treatment area to achieve the effect of cryoablation.
- the memory alloy wire is preferably a nickel titanium wire.
- the predetermined shape comprises a spiral (as shown in Figure 12A), a cage (as shown in Figure 3) or an umbrella (as shown in Figure 16).
- the memory alloy wire is shaped into a spiral shape, a cage shape, or an umbrella shape by heat treatment.
- the support structure 33 is a protrusion 333 disposed on the first capsule 31.
- the protrusion 333 is adjacent to the non-therapeutic area and can serve as a support to facilitate the formation of the cavity.
- the projection 333 is of a mastoid shape, or as shown in FIG. 5, the projection 333 is threaded.
- the protrusion 333 is disposed at a proximal end portion of the first capsule 31 and is integral with the first capsule 31.
- the protrusion 333 separates the proximal end portion of the first balloon body 31 from the proximal end portion of the second balloon body 32, thereby at the first capsule body 31 and A cavity 6 for isolating energy transfer is formed between the second capsules 32. Since the first capsule 31 and the second capsule 31 are pre-vacuum or filled with the heat insulating medium, a heat insulating space is formed at the proximal end of the first balloon 31 to prevent the transfer of the frozen energy to the proximal end of the freezing unit 3. . When the freezing unit 3 reaches the position to be ablated, the refrigerant is injected into the first capsule 31 to absorb the heat of the treatment area to achieve the effect of cryoablation.
- This embodiment differs from the second embodiment in that the support structure 33 is configured as a pleat 334 disposed at the proximal end and/or the distal end of the first capsule 31.
- the pleats 334 are formed by folding and deforming the first capsule 31 itself. As shown in FIGS. 6A and 6B, the pleats are directly stacked by the proximal end portions of the first capsules 31. When the first capsule 31 is regularly folded due to the reduction in diameter, a certain height of wrinkles is formed.
- These pleats 334 can serve as a support against the attachment of the second bladder 32 to the first bladder 31 to form a cavity 6 for isolating energy transfer.
- the cavity 6 for isolating the energy transmission prevents the transfer of the frozen energy to the proximal end of the freezing unit 3.
- the refrigerant is injected into the first capsule 31 to absorb the heat of the treatment area to achieve the effect of cryoablation.
- the pleats may also be provided at the distal end of the first balloon 31.
- the support structure is composed of a plurality of strip-shaped or filament-like structures 335, and the two ends of the strip-shaped or filament-like structure 335 are respectively associated with the second capsule.
- the two ends of the body 32 are fixedly connected, and when the first capsule 31 and the second capsule 32 are inflated, the strip or filament-like structure 335 is tightened to form a support, thereby being at the first A cavity 6 for isolating energy transfer is formed between the balloon 31 and the second balloon 32.
- the support structure 33 is a flat polymer ribbon having one end fixed to the distal end of the second capsule 32 and the other end fixed to the proximal end of the second capsule 32. Located inside the second capsule 32.
- the ribbon is stretched to provide a certain supporting ability.
- the cavity 6 can block the transfer of energy.
- the cryoablation treatment can be initiated to inject a refrigerant into the first capsule 31 to absorb the heat of the treatment area to achieve the effect of cryoablation.
- the support structure is a silk, one end of which is fixed to the distal end of the second capsule 32, and the other end is fixed to the proximal end of the second capsule 32, and both ends are located at the second capsule 32. internal.
- the silk is stretched to have a certain supporting ability.
- the cavity 6 can block the transfer of energy.
- the cryoablation treatment can be initiated to inject a refrigerant into the first capsule 31 to absorb the heat of the treatment area to achieve the effect of cryoablation.
- a cryoablation catheter of the present application includes: a cold source joint 1, a manipulation handle 2, a freezing unit 3, a flexible connecting tube 4 and a tube body 5, and a distal and proximal tube body.
- the tubular body 5 includes a cold source inlet chamber 51, a cold source return chamber 52 and a suction chamber 53 extending in the axial direction thereof; a suction port 531 is provided at a distal end of the charging chamber 53, and the freezing unit 3 is Provided at a distal end portion of the tubular body 5, including a first balloon body 31 in fluid communication with the cold source inlet chamber 51 and the cold source return air chamber 52, and a first portion disposed outside the first capsule body 31 a second balloon 32, the second balloon 32 is in fluid communication with the charging chamber 53 when the first balloon 31 is expanded, and the second balloon 32 is evacuated or charged through the charging chamber 53 When the heat insulating medium is introduced, an insulating cavity 6 for isolating energy transmission is formed between the first balloon body 31 and the second balloon body 32.
- the length of the first capsule 31 is smaller than that of the second capsule 32, and a part of the capsule wall of the first capsule 31 and the second capsule 32 is in a fitted state, and the first capsule 31 is in a fitted state.
- the conforming portion with the capsule wall of the second balloon 32 is a passage for delivery of cryogenic energy to the treatment site.
- a support structure is further disposed between the first capsule 31 and the second capsule 32, and the support is expanded when the first capsule 31 and the second capsule 32 are expanded.
- the structure is capable of supporting a cavity 6 for isolating energy transfer formed between the first balloon body 31 and the second balloon body 32, the support being evacuated when the second balloon body 32 is evacuated through the suction chamber 53 The structure ensures that the second bladder 32 does not collapse, and the shape of the isolated energy transfer cavity 6 is stable and reliable.
- a cryoablation system of the present application includes: a cryoablation catheter and a cryoablation device.
- the cryoablation catheter has the structure as described in Example 7.
- the cryoablation device includes a thermal insulation module 101, a first rewarming module 102, a second rewarming module 102', a refrigeration module 103, and a control system 104.
- the heat insulating module 101 and the second rewarming module 102' are respectively connected to the charging chamber 53, and the second rewarming module 102' is interlocked with the heat insulating module 101, and only one of the two can be in an operating state.
- the refrigeration module 103 is in communication with the cold source intake chamber 51 and the cold source return air chamber 52, the first rewarming module 102 is in communication with the cold source intake chamber 51, and the refrigeration module 103 and the first rewarming module 102 interlocks, only one of them can be in operation.
- the control system 104 controls parameters of the thermal insulation module 101, the refrigeration module 103, the first rewarming module 102, and the second rewarming module 102'.
- the chilled energy in the refrigeration module 103 is delivered into the first capsule 31 through the cold source inlet chamber 51 such that the first capsule 31 and the second capsule 32 expansion; the cryoablation system charges the second capsule 32 with a heat insulating medium or a vacuum by the heat insulating module 101, so that between the first capsule 31 and the second capsule 32
- the resulting isolated energy transfer cavity 6 is filled with adiabatic medium or pumped to a negative pressure state; thereby preventing freezing energy from passing through the cavity 6.
- the first rewarming module 102 and the second rewarming module 102' respectively pass the cold source intake chamber 51 and the charging chamber 53 to the first capsule 31 and the chamber
- the second capsule 32 is filled with a rewarming fluid so that the freezing unit 3 can be quickly thawed.
- the temperature of the rewarming fluid is between 0 and 45 degrees Celsius.
- the heat insulating module 101 evacuates the second bladder 32 through the suction chamber 53, thereby achieving a heat insulating function.
- the heat insulation module 101 is a vacuum pump.
- the heat insulating module 101 is filled with a heat insulating medium by a suction chamber 53 to achieve a heat insulating function, and the heat insulating module 101 is a filling pump.
- the present embodiment is different from the eighth embodiment in that the support structure 33 is a balloon 331 disposed at the proximal end of the first capsule 31 as shown in FIG.
- the tubular body 5 also includes a balloon filling lumen 54 extending axially therewith, the balloon filling lumen 54 being in fluid communication with the balloon 331.
- an appropriate amount of refrigerant is first injected into the first capsule 31 to cause the first capsule 31 and the second capsule 32 to expand.
- the liquid/gas is injected through the balloon filling chamber 54 to fill the balloon 331, and the space between the first capsule 31 and the second capsule 32 is performed by the adiabatic unit 101 through the filling chamber 53 and the charging port 531.
- the negative pressure or the insulative medium is sucked, and the expansion of the balloon 331 serves as a supporting action, so that the adiabatic cavity 6 is stable and reliable, and the freezing energy is prevented from being transmitted to the proximal end of the freezing unit 3.
- the cryoablation treatment is then initiated, and a refrigerant is injected into the first balloon 31 to absorb the heat of the treatment area to achieve the result of cryoablation.
- the second rewarming unit 102' fills the second capsule 32 with the rewarming fluid through the suction port 531, while the first rewarming unit 102 passes the cold source intake chamber 51 to the first
- the capsule 31 is filled with a rewarming fluid to accelerate the rewarming of the freezing unit 3.
- the support structure 33 can be made of one or more memory alloy wires 332 having a predetermined shape, one end of the support structure 33 and the push.
- the rod 58 is coupled, and when the first capsule 31 is delivered to the lesion, the support structure 33 is pushed to the proximal end of the first capsule 31 by the push rod 58 at the first capsule 31. Between the second capsule 32 and its predetermined shape, it is supported.
- 12B is a schematic cross-sectional view of the tube body 5 of FIG. 12A. As shown in FIG. 12B, the cavity 6 between the first capsule body 31 and the second capsule body 32 is evacuated by the charging port 531 of the flushing chamber 53. Or fill the insulation medium to achieve energy isolation.
- the cryoablation treatment can then be initiated to inject refrigerant into the first balloon 31 to absorb heat from the treatment area to achieve a freeze ablation effect.
- the second rewarming unit 102' fills the second capsule 32 with the rewarming fluid through the suction port 531 of the suction chamber 53, while the first rewarming unit 102 passes through the cold source intake chamber 51.
- the rewarming fluid is filled into the first capsule 31 to accelerate the rewarming of the freezing unit 3.
- the memory alloy wire is preferably a nickel titanium wire.
- the predetermined shape comprises a spiral shape, a cage shape or an umbrella shape.
- the memory alloy wire is shaped into a spiral shape, a cage shape or an umbrella shape by heat treatment, and the support structure 33 is compressed in the tube body 5 during the process in which the cryoablation catheter is delivered to the lesion site.
- the support structure 33 is pushed between the first capsule 31 and the second capsule 32 by the push handle, the support structure 33 made of the memory alloy wire 332 recovers its heat-treated shape.
- the support structure is composed of a plurality of strip-shaped or filament-like structures 335, and the two ends of the strip-shaped or filament-like structure 335 are respectively associated with the second capsule.
- the two ends of the body 32 are fixedly connected, and when the first capsule 31 is inflated, the strip or filament-like structure 335 is tightened to form a support, so that the first capsule 31 and the second A cavity 6 is formed between the bladders 32 to isolate energy transfer.
- the support structure 33 is a flat polymer ribbon having one end fixed to the distal end of the second capsule 32 and the other end fixed at the proximal end of the second capsule 32. Located inside the second capsule 32.
- the ribbon is stretched to provide a certain supporting ability.
- the region is evacuated or filled with a heat insulating medium to form an energy barrier.
- the cryoablation treatment can be initiated to inject a refrigerant into the first capsule 31 to absorb the heat of the treatment area to achieve the effect of cryoablation.
- the second rewarming unit 102' fills the second capsule 32 with the rewarming fluid through the suction port 531, while the first rewarming unit 102 passes the cold source intake chamber 51 to the first
- the capsule 31 is filled with a rewarming fluid to accelerate the rewarming of the freezing unit 3.
- the support structure is a silk, one end of which is fixed to the distal end of the second capsule 32, and the other end is fixed to the proximal end of the second capsule 32, and both ends are located at the second capsule 32. internal.
- the silk is stretched to have a certain supporting ability.
- the region is evacuated or filled with a heat insulating medium to form an energy barrier.
- the cryoablation treatment can be initiated to inject a refrigerant into the first capsule 31 to absorb the heat of the treatment area to achieve the effect of cryoablation.
- the support structure 33 is a flat polymer ribbon 335 having one end fixed to the distal end of the second capsule 32 and the other end fixed at the proximal end of the second capsule 32.
- the ribbon is stretched to provide a certain supporting ability.
- a cavity 6 for isolating energy transfer is formed at both the distal end and the proximal end of the first balloon 31.
- the region is evacuated or filled with a heat insulating medium to prevent the transfer of the frozen energy to both ends of the freezing unit 3.
- the cryoablation treatment can then be initiated to inject refrigerant into the first balloon 31 to absorb heat from the treatment area to achieve a freeze ablation effect.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Otolaryngology (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Thermotherapy And Cooling Therapy Devices (AREA)
- Surgical Instruments (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- External Artificial Organs (AREA)
Abstract
一种冷冻消融导管及冷冻消融系统,冷冻消融导管包括:管体(5)和冷冻单元(3),管体(5)包括沿其轴向延伸的冷源进气腔(51)、冷源回气腔(52),冷冻单元(3)设置在管体(5)远端部分,包括与冷源进气腔(51)和冷源回气腔(52)流体连通的第一囊体(31)和设置在第一囊体(31)外的第二囊体(32),第一囊体(31)的长度小于第二囊体(32)的长度,当第一囊体(31)以及第二囊体(32)扩张时,在第一囊体(31)与第二囊体(32)之间形成隔离能量传输的空腔(6),实现阻止空腔(6)相对应的冷冻单元(3)的空间的能量传递。该冷冻消融导管可有效限制冷冻能量释放区域从而降低并发症发生的概率、适用面广。
Description
相关申请
本申请要求2017年09月12日申请的,申请号为201710816282.6,名称为“一种冷冻消融导管及系统”的中国专利申请的优先权,在此将其全文引入作为参考。
本申请属于冷冻消融医疗器械领域,具体涉及一种冷冻消融导管及系统。
冷冻消融(Cryoablation)是通过低温使得细胞内外结成冰球从而破坏细胞。冷冻消融时,将冷冻探头置于组织的表面,通过制冷导致低温,使得探头周围的细胞内外形成冰球。随着温度的下降,冰球内的细胞产生不可逆性的损伤。冷冻消融损伤过程可分为3个阶段:(1)冷冻/复温期;(2)出血和炎症期;(3)纤维形成期。
冷冻消融术在广泛的基于导管的介入手术中是一种有用的治疗方式。例如,冷冻消融可用于消融肺静脉前庭,导致肺静脉电隔离,从而治疗心房颤动;冷冻消融可用于消融肾动脉交感神经,从而治疗顽固性高血压,该技术已经用于临床试验;冷冻消融术还可用于消融肿瘤、治疗动脉血管狭窄等。在这些冷冻治疗过程中,冷冻消融术可经由人体管腔推送可扩张的囊体来递送冷冻介质。这些囊体可操作地连接到体外操控部件(例如制冷剂源)。随着用于外科干预冷冻治疗应用的不断扩大,需要相关装置、系统和方法的创新(例如关于效能、安全性、效率和/或可靠性)。这种创新有可能进一步扩大作为改善患者健康的工具的冷冻治疗的作用。现有的冷冻消融导管多是将导管远端的冷冻单元输送至治疗位置,并实施冷冻。
作为冷冻球囊导管的代表,美敦力公司的Arctic Front产品及其后续改进型号早在2013年便进入中国市场。该产品通过充盈的球囊贴靠肺静脉口,当液态制冷剂(N
2O)在球囊中喷射气化时,吸收大量热量,使得目标消融部位温度降低实现消融。临床数据显示,美敦力产品的有效性是明显的,一年手术成功率为69.9%,但由于第一囊体和第二囊体之间没有隔离能量传输的空腔,导致冷冻能量可以向四周扩张,除了消融了目标位置(肺静脉前庭)外,也影响了周边的组织,如膈神经、迷走神经、食道、支气管等。由于冷冻能量在周边组织作用,导致了相关的并发症,如膈神经麻痹、迷走神经损伤、食道瘘等。据有 关报道显示,使用美敦力Arctic Front Advance进行肺静脉消融,膈神经麻痹发生率高达13.5%。
中国专利CN201710096224.0公开了用冷冻球囊导管来冷冻消融肺静脉过程中保护食道的保温装置,球囊内设有球囊壁热电偶,球囊内热电偶、热循环保温装置,且球囊壁热电偶和球囊内热电偶分别附着在球囊内外壁上,实现实时测温,热循环保温装置连接保温模块,控温模块连接球囊壁热电偶,球囊内热电偶、保温模块,用于控制及反馈球囊温度,智能匹配控制热循环保温装置的冷热量,保持肺静脉消融区临近食道温度在20-30℃;这种保温装置可通过食道自然腔道导入冷冻消融区,在冷冻消融肺静脉时同时使用保温球囊,以保护肺静脉冷冻消融区临近的食道,防止食道因冷冻消融产生食道瘘等严重损伤,消除冷冻球囊导管消融肺静脉治疗房颤的局限,利于冷冻球囊消融导管消融肺静脉的普及推广。但是,这种保温装置增设了很多部件结构复杂,仅适用于对特定靶组织的治疗,费用较高。
现有的冷冻消融导管虽然采用将内外两层球囊分别固定在导管杆体上,通过向内球囊中充入制冷剂达到制冷的目的,但是由于没有有效的阻热腔体,形成的冰球往往会覆盖治疗位置周边的区域,从而会损伤周边的组织,导致并发症的产生。
发明内容
鉴于现有技术的上述缺陷,本申请所要解决的技术问题是提供一种具有阻热腔体的冷冻消融导管及系统,该导管和系统可有效限制冷冻能量释放区域从而降低并发症发生的概率、适用面广。
本申请解决其技术问题所采用的一个技术方案是:
一种冷冻消融导管,包括:
管体,所述管体包括沿其轴向延伸的冷源进气腔、冷源回气腔;
设置在所述管体远端部分的冷冻单元,所述冷冻单元包括与所述冷源进气腔和所述冷源回气腔流体连通的第一囊体和设置在所述第一囊体外的第二囊体,所述第一囊体的长度小于所述第二囊体的长度,在所述第一囊体和所述第二囊体之间的区域为密闭空间,所述第一囊体和所述第二囊体的囊壁的一部分处于贴合状态,所述第一囊体和所述第二囊体的囊壁的贴合部分为冷冻能量传输到治疗部位的通道,
当所述第一囊体以及所述第二囊体扩张时,在所述第一囊体与所述第二囊体之间形成隔离能量传输的空腔,实现阻止与所述空腔相对应区域的所述冷冻单元的能量传递。
本申请解决其技术问题所采用的进一步的技术方案是:
在一个实施方式中,在所述空腔内预充入绝热流体,以阻隔空腔内的能量传递。
在一个实施方式中,所述第一囊体与第二囊体之间设置有支撑结构,当所述第一囊体以及所述第二囊体扩张时,所述支撑结构能够支撑在所述第一囊体与所述第二囊体之间形成的隔离能量传输的空腔,使得所述隔离能量传输的空腔的形态稳定可靠。
在一个优选的实施方式中,所述支撑结构为球囊,所述管体还包括沿其轴向延伸的球囊充盈腔,所述球囊充盈腔与所述球囊流体连通。
在一个优选的实施方式中,所述支撑结构由一根或多根具有预设形状的记忆合金丝制成,所述记忆合金丝被设置在所述第一囊体与所述第二囊体之间。
在一个优选的实施方式中,所述支撑结构为设置在所述第一囊体上的凸起。
在一个优选的实施方式中,所述支撑结构为设置在所述第一囊体近端和/或远端的褶皱。
在一个优选的实施方式中,所述褶皱由所述第一囊体直接堆叠而成。
在一个优选的实施方式中,所述支撑结构为多根带状或丝状的结构组成,所述带状或丝状的结构的两端分别与所述第二囊体的两端固定连接,当所述第一囊体和所述第二囊体膨胀时,所述带状或丝状的结构被绷紧,从而在所述第一囊体和所述第二囊体之间形成隔离能量传输的空腔。
在一个优选的实施方式中,所述空腔被预先抽负压,使得所述空腔内气体稀薄,从而阻止能量的传递。
本申请解决其技术问题所采用的另一个技术方案是:
一种冷冻消融系统,包括:
冷冻消融导管,所述冷冻消融导管包括管体和设置在所述管体远端部分的冷冻单元,所述管体包括沿其轴向延伸的冷源进气腔、冷源回气腔和充吸腔;所述冷冻单元包括与所述冷源进气腔和所述冷源回气腔流体连通的第一囊体和设置在所述第一囊体外的第二囊体,所述第二囊体与所述充吸腔连通,所述第一囊体的长度小于所述第二囊体的长度,所述第一囊体和所述第二囊体的囊壁的一部分处于贴合状态,所述第一囊体和所述第二囊体的囊壁的贴合部分为冷冻能量传输到治疗部位的通道;
冷冻消融设备,所述冷冻消融设备包括与所述充吸腔分别连通的绝热模块和第二复温模块、与所述冷源进气腔和所述冷源回气腔连通的制冷模块、与所述冷源进气腔连通的第一复温模块,以及对所述绝热模块、所述制冷模块、所述第一复温模块和第二复温模块的参数进行控制的控制系统,
在冷冻消融阶段,所述制冷模块中的冷冻能量通过冷源进气腔被输送到所述第一囊体 内,使得所述第一囊体以及所述第二囊体扩张;所述冷冻消融系统通过所述所述绝热模块对所述第二囊体充入绝热介质或者抽吸,使得在所述第一囊体与所述第二囊体之间形成的隔离能量传输的空腔充满绝热介质或被抽至负压状态,以阻止冷冻能量通过所述空腔进行传递,
在复温阶段,所述第一复温模块和所述第二复温模块模块分别通过所述冷源进气腔和所述充吸腔对所述第一囊体和所述第二囊体充入复温流体,使得所述冷冻单元能够迅速解冻。
本申请解决其技术问题所采用的进一步的技术方案是:
在一个实施方式中,所述绝热模块为充盈泵。
在一个实施方式中,所述绝热模块为真空泵。
在一个优选的实施方式中,所述第一囊体与第二囊体之间设置有支撑结构,当所述第一囊体扩张时,所述支撑结构能够支撑所述隔离能量传输的空腔,使得所述隔离能量传输的空腔的形态稳定可靠。
在一个优选的实施方式中,所述支撑结构为球囊,所述管体还包括沿其轴向延伸的球囊充盈腔,所述球囊充盈腔与所述球囊流体连通。
在一个优选的实施方式中,所述支撑结构由一根或多根具有预设形状的记忆合金丝制成,所述支撑结构的一端与推送手柄连接,当所述第一囊体被输送至病变部位时,所述支撑结构通过所述推送手柄被推送至所述第一囊体与所述第二囊体之间。
在一个更优选的实施方式中,所述预设形状包括螺旋形、笼形或伞形。
在一个优选的实施方式中,所述支撑结构为多根带状或丝状的结构组成,所述带状或丝状的结构的两端分别与所述第二囊体的两端固定连接,当所述第一囊体和所述第二囊体膨胀时,所述带状或丝状的结构被绷紧,从而在所述第一囊体和所述第二囊体之间形成隔离能量传输的空腔。
在一个优选的实施方式中,所述支撑结构为设置在所述第一囊体近端和/或远端的褶皱。
在一个实施方式中,所述冷冻消融系统在复温时通过充吸腔注入的复温流体的温度为0~42摄氏度。
在上述的实施方式中,在所述管体的近端还设置有操控手柄,所述操控手柄通过柔性连接管与冷源接头连接,所述制冷模块中的冷冻能量通过所述冷源接头、所述柔性连接管以及设置在所述管体内的所述冷源进气腔输送至所述第一囊体内,以扩张所述第一囊体。
在一个优选的实施方式中,在所述冷源接头的近端设置有至少一个连接插头,所述冷 源接头的远端通过所述柔性连接管与所述操控手柄的近端连接。
在上述的实施方式中,在所述管体的最远端设置有导管头。优选的,所述导管头是高分子软管。
在上述的实施方式中,在所述管体内还设置有导丝腔管,所述第一囊体的远端与所述导丝腔管固定连接。
在一个优选的实施方式中,所述操控手柄包括调弯单元、导丝腔管操控单元,所述调弯单元控制所述导管头远端的运动,所述导丝腔管操控单元包括注液口,所述注液口与所述导丝腔管的管腔连通。
在上述的实施方式中,在所述管体外沿所述管体的轴向设置有第二真空腔。
同现有技术相比,本申请的优点与进步如下:
1、本申请的冷冻消融导管由于在冷冻单元的非预期能量传输部位设置有阻热空腔,能够隔离能量的传输,可阻止热量传递,因此能够限制冷冻能量的释放区域,降低并发症发生的概率,节省治疗成本;而且本申请可以根据不同手术中保护不同冷冻消融区域周围组织的具体需要,在冷冻单元的近端或远端或任一侧或两侧上设置一个或多个隔离能量传输的空腔;本申请可以根据不同手术的绝热需求不同,对空腔内注入绝热介质或者被抽吸,增强阻热效果,以进一步减少手术中冷冻能量对周边组织的损伤。
2、本申请的冷冻消融导管由于设置有支撑结构,可以形成更可靠稳定的隔离能量传输的空腔,不会因为负压作用导致第二囊体贴附到第一囊体上,而造成绝热失效。
3、本申请的冷冻消融系统,在冷冻过程中通过充吸腔对冷冻单元的非预期能量传输部位形成阻热空腔,能够隔离能量的传输,可阻止热量传递,因此能够限制冷冻能量的释放区域,降低并发症发生的概率,节省治疗成本;同时,本申请的冷冻消融系统在复温过程中能够加速复温。
4、本申请设置有两个复温模块,在复温阶段,所述第一复温模块和所述第二复温模块分别通过所述冷源进气腔和所述充吸腔对所述第一囊体和所述第二囊体充入复温流体,使得所述冷冻单元能够迅速解冻。
图1是本申请的冷冻消融导管的整体结构示意图。
图2是本申请的冷冻消融导管具有支撑结构的第一种实施方式示意图。
图3是本申请的冷冻消融导管具有支撑结构的第二种实施方式示意图。
图4是本申请的冷冻消融导管具有支撑结构的第三种实施方式示意图。
图5是本申请的冷冻消融导管具有支撑结构的第四种实施方式示意图。
图6A是本申请的冷冻消融导管具有支撑结构的第五种实施方式示意图,图6B是图6A的A-A剖面示意图。
图7A是本申请的冷冻消融导管具有支撑结构的第六种实施方式示意图,图7B是图7A的B-B剖面示意图。
图8A是本申请的冷冻消融导管具有支撑结构的第七种实施方式示意图,图8B是图8A的C-C剖面示意图。
图9A是本申请的具有充吸腔的冷冻消融导管的整体结构示意图,图9B是图9A的管体的D-D剖面示意图。
图10是本申请的冷冻消融系统的整体结构示意图。
图11是本申请的冷冻消融导管具有支撑结构的第一种实施方式示意图。
图12A是本申请的冷冻消融导管具有支撑结构的第二种实施方式示意图,图12B是图12A的E-E剖面示意图。
图13A是本申请的冷冻消融导管具有支撑结构的第三种实施方式示意图。图13B是图13A的F-F剖面示意图。
图14是本申请的冷冻消融导管具有支撑结构的第四种实施方式示意图。图14B是图14A的G-G剖面示意图。
图15是本申请的冷冻消融导管具有支撑结构的第五种实施方式示意图。
图16是本申请的冷冻消融导管的预设形状为伞形的支撑结构的示意图。
其中,1是冷源接头,2是操控手柄,3是冷冻单元,4是柔性连接管,5是管体,6是隔离能量传输的空腔,21是调弯单元,22是导丝腔管操控单元,23是球囊充盈端口,31是第一囊体,32是第二囊体,33是支撑结构,331是球囊,332是记忆合金丝,333是凸起,334是褶皱,335是带状或丝状的结构,51是冷源进气腔,52是冷源回气腔,53是充吸腔,54是球囊充盈腔,55是导管头,56是导丝腔管,57是第二真空腔,58,推送杆,531是充吸腔的端口,101是绝热模块,102是第一复温模块,102’是第二复温模块,103是制冷模块,104是控制系统。
为了使本申请的目的、技术方案及优点更加清楚明白,以下参照附图并举实施例对本申请进行详细说明。
本申请所述的近端是指接近手术操作者的一端,所述远端是指远离手术操作者的一端。
实施例一
如图1所示,本申请的一种冷冻消融导管,包括:冷源接头1,操控手柄2,冷冻单元3,柔性连接管4和管体5,具有远端和近端的管体5包括沿其轴向延伸的冷源进气腔51、冷源回气腔52;所述冷冻单元3被设置在管体5的远端部分,包括与所述冷源进气腔51和所述冷源回气腔52流体连通的第一囊体31和设置在所述第一囊体31外的第二囊体32,所述第二囊体32随着所述第一囊体31扩张。所述第一囊体31的长度小于所述第二囊体32。所述第一囊体31和所述第二囊体32的囊壁的一部分处于贴合状态,所述第一囊体31和所述第二囊体32的囊壁的贴合部分为冷冻能量传输到治疗部位的通道,在所述第一囊体31和所述第二囊体32之间的区域为密闭空间,且预先抽成真空状态或充入适量的绝热介质。当所述第一囊体31以及所述第二囊体32扩张时,在所述第一囊体31与所述第二囊体32之间形成隔离能量传输的空腔6,实现阻止与所述空腔6相对应区域的所述冷冻单元3的能量传递。
例如,肺静脉电隔离术是治疗房颤常见的术式,冷冻消融导管的诞生使得肺静脉电隔离术更加简单便捷。但由于左心房空间有限,且冷冻消融位置仅限于肺静脉前庭,所以希望冷冻能量集中在球囊的前半球。因此,所述隔离能量传输的空腔6被设置在所述第一囊体31的近端。在治疗过程中,先将冷冻单元3推送至左心房,向第一囊体31内注入适量的制冷剂,使得第一囊体31膨胀,进而带动第二囊体32膨胀。所述第一囊体31和所述第二囊体32的囊壁的一部分处于贴合状态,所述第一囊体31和所述第二囊体32的囊壁的贴合部分为冷冻能量传输到治疗部位的通道。由于第一囊体31和第二囊体32的外形和尺寸不同,因此在第一囊体31和第二囊体32之间形成隔离能量传输的空腔6,以防止冷冻能量向冷冻单元3的近端传递。然后推送冷冻单元3与待消融的肺静脉口贴合,启动冷冻消融治疗,向第一囊体31内注入制冷剂,从而吸收治疗区域的热量,达到冷冻消融的结果。
所述操控手柄2被设置在所述管体5的近端,操控手柄2通过柔性连接管4与冷源接头1连接,冷源通过所述冷源接头1、所述柔性连接管4以及设置在所述管体5内的所述冷源进气腔51输送至所述第一囊体31内,以扩张所述第一囊体31。在一个实施方式中,在所述冷源接头1的近端设置有至少一个连接插头,所述连接插头与冷冻设备连接,所述冷源接头1的远端通过所述柔性连接管4与所述操控手柄2的近端连接,冷冻设备通过冷源接头1向冷冻消融导管提供制冷剂。
在一个实施方式中,在所述管体5的最远端设置有导管头55。优选的,所述导管头55是高分子软管。在所述管体5内还设置有导丝腔管56,导管头55通过粘接或熔接工艺与导丝腔管56的远端固定连接,以防止冷冻消融导管在输送过程中损伤血管或组织。第一囊体31的远端通过粘结或焊接等工艺与所述导丝腔管56固定连接,所述第一囊体31的近端通过粘结或焊接等工艺与冷源回路固定连接,所述冷源回路包括冷源进气腔51和冷源回气腔52。所述冷源回路可通过冷源接头1与冷冻设备连接。
所述操控手柄2还包括调弯单元21、导丝腔管操控单元22,所述调弯单元21控制所述导管头55远端的运动,通过控制所述导管头55远端的弯曲形状,使得冷冻单元3易于到达治疗部位。导丝腔管操控单元22与导丝腔管56的近端固定连接,导丝腔管操控单元22包括与所述导丝腔管56的管腔连通的注液口,必要时可通过该注液口注入生理盐水、造影剂或其他液体。
本申请的冷冻消融导管的作用方式为:推送冷冻消融导管的冷冻单元3进入靶组织区域,充分充盈第一囊体31,第二囊体32伴随第一囊体31的膨胀而膨胀。第一囊体31和第二囊体32之间形成隔离能量传输的空腔6。整体推送冷冻消融导管,并操作调弯单元21,使得冷冻单元3能够与靶组织接触。完成上述步骤后,通过操作冷冻设备,向第一囊体31内传送液态制冷剂,从而实施靶组织的冷冻。由于在第一囊体31与第二囊体32之间形成能隔离能量传输的空腔6,导致该区域形成绝热保护,避免周边组织被冷冻能量误伤。
在现有的冷冻消融手术中,由于冷冻能量的传导,往往会导致靶组织周边的区域被冷冻。本申请所述冷冻消融导管的作用原理是:在第一囊体31和第二囊体32之间形成隔离能量传输的空腔6,使得冷冻能量无法作用于周边区域,从而形成绝热保护。根据不同手术中保护不同冷冻消融区域周围组织的具体需要,所述空腔6也可以被设置在所述第一囊体31的远端,或者在第一囊体31的两端,或者在第一囊体31的一侧。如在房颤冷冻消融手术中,冷冻消融靶组织为肺静脉前庭,由于靶组织前端临近膈神经,膈神经被冷冻会引起膈神经麻痹,故可在冷冻单元3的远端设置隔离能量传输的空腔6;在肾动脉交感神经冷冻消融手术中,冷冻消融靶组织为肾动脉中远端,由于靶组织远端临近肾盂,肾盂被冷冻会引起功能性阳痿,靶组织近端临近主动脉,主动脉被不恰当冷冻亦会导致相关并发症,故可在冷冻单元3的远端和近端均设置隔离能量传输的空腔6。因此,所述隔离能量传输的空腔6的位置设置取决于手术的类型和所需要保护的组织。本申请的冷冻消融导管结构简单,通过隔离能量传输的空腔6的设置,导致冷冻能量在该处不能进行传递,绝热效果良好,因此能够限制冷冻能量的释放区域,降低并发症发生的概率,节省治疗成本; 而且本申请可以根据不同手术中保护不同冷冻消融区域周围组织的具体需要,设置一个或多个隔离能量传输的空腔6,以进一步减少手术中冷冻能量对周边组织的损伤,适用面广。
实施例二
本实施例与实施例一的不同之处在于:在所述第一囊体31与所述第二囊体32之间邻近非治疗部位的区域设置有支撑结构,当所述第一囊体31以及所述第二囊体32扩张时,所述支撑结构可以支撑在所述第一囊体31与所述第二囊体32之间形成的隔离能量传输的的空腔6,从而确保隔离能量传输的空腔6的形态稳定可靠。
在一个实施方式中,所述支撑结构33为设置在所述第一囊体31近端的球囊331。如图2所示,所述管体5还包括沿其轴向延伸的球囊充盈腔54,所述球囊充盈腔54与所述球囊331流体连通。在治疗过程中,先向第一囊体31内注入适量的制冷剂,使得第一囊体31和第二囊体32膨胀。可通过球囊充盈腔54注入液体/气体,使得所述球囊331充盈,由于球囊331的膨胀起到支撑作用,使得真空绝热腔稳定可靠,由于空腔6内被预先抽真空或充入绝热介质,可以防止冷冻能量向冷冻单元3的近端传递。然后启动冷冻消融治疗,向第一囊体31内注入制冷剂,从而吸收治疗区域的热量,达到冷冻消融的结果。
实施例三
本实施例与实施例二的不同之处在于:如图3所示,支撑结构33可以由一根或多根具有预设形状的记忆合金丝332制成,所述支撑结构33、第一囊体31和第二囊体32在到达病变部位前呈压缩状态。当所述第一囊体31被输送至病变部位时,所述支撑结构33可恢复为预设定的形态,从而进行支撑。然后启动冷冻消融治疗,向第一囊体31内注入制冷剂,从而吸收治疗区域的热量,达到冷冻消融的效果。所述记忆合金丝优选为镍钛丝。在优选的实施方式中,所述预设形状包括螺旋形(如图12A所示)、笼形(如图3所示)或伞形(如图16所示)。所述记忆合金丝通过热处理被定型为螺旋形、笼形或伞形等形状。
实施例四
本实施例与实施例二的不同之处在于:所述支撑结构33为设置在所述第一囊体31上的凸起333。所述凸起333邻近非治疗区域,能够起到支撑作用,以利于所述空腔的形成。如图4所示,所述凸起333为乳突形,或者如图5所示,所述凸起333为螺纹形。所述凸起333被设置在第一囊体31的近端部分与所述第一囊体31是一体结构。当所述第一囊体31膨胀时,所述凸起333将第一囊体31的近端部分和第二囊体32的近端部分隔开,从而在所述第一囊体31和所述第二囊体32之间形成隔离能量传输的空腔6。由于第一囊体31和第二囊体31之间被预抽真空或充入绝热介质,此时在第一球囊31的近端形成绝热空间,防止冷冻能量向冷冻单元3的近端传递。当冷冻单元3到达待消融位置,向第一囊体31 内注入制冷剂,从而吸收治疗区域的热量,达到冷冻消融的效果。
实施例五
本实施例与实施例二的不同之处在于:在所述支撑结构33结构为设置在所述第一囊体31近端和/或远端的褶皱334。所述褶皱334是由第一囊体31自身折叠变径所形成的。如图6A和6B所示,该褶皱由所述第一囊体31的近端部分直接堆叠而成。当第一囊体31因为变径而规则折叠时,会形成一定高度的褶皱。这些褶皱334可起到支撑作用,防止第二囊体32贴附在第一囊体31上,形成隔离能量传输的空腔6。由于第一囊体31和第二囊体31之间被预抽真空或充入绝热介质,隔离能量传输的空腔6防止冷冻能量向冷冻单元3的近端传递。当冷冻单元3到达待消融位置,向第一囊体31内注入制冷剂,从而吸收治疗区域的热量,达到冷冻消融的效果。当然,根据不同的治疗部位,褶皱也可以被设置在第一囊体31的远端。
实施例六
本实施例与实施例二的不同之处在于:所述支撑结构为多根带状或丝状的结构335组成,所述带状或丝状的结构335的两端分别与所述第二囊体32的两端固定连接,当所述第一囊体31和所述第二囊体32膨胀时,所述带状或丝状的结构335被绷紧而形成支撑,从而在所述第一囊体31和所述第二囊体32之间形成隔离能量传输的空腔6。
如图7A和7B所示,所述支撑结构33为扁平高分子带状物,其一端固定于第二囊体32的远端,另一端固定在第二囊体32的近端,两端均位于第二囊体32的内部。当第一囊体31和第二囊体32膨胀后,该带状物被绷直,从而具备一定的支撑能力。此时,由于第一囊体31和第二囊体31之间被预先抽真空或充入绝热介质,空腔6能阻挡能量的传递。然后,可启动冷冻消融治疗,向第一囊体31内注入制冷剂,从而吸收治疗区域的热量,达到冷冻消融的效果。
如图8A和8B所示,所述支撑结构为蚕丝,其一端固定于第二囊体32的远端,另一端固定在第二囊体32的近端,两端均位于第二囊体32的内部。当第一囊体31和第二囊体32膨胀后,该蚕丝被绷直,从而具备一定的支撑能力。此时,由于第一囊体31和第二囊体31之间被预先抽真空或充入绝热介质,空腔6能阻挡能量的传递。然后,可启动冷冻消融治疗,向第一囊体31内注入制冷剂,从而吸收治疗区域的热量,达到冷冻消融的效果。
实施例七
如图9A和9B所示,本申请的一种冷冻消融导管,包括:冷源接头1,操控手柄2,冷冻单元3,柔性连接管4和管体5,具有远端和近端的管体5包括沿其轴向延伸的冷源 进气腔51、冷源回气腔52和充吸腔53;在所述充吸腔53的远端设置有充吸端口531,所述冷冻单元3被设置在管体5的远端部分,包括与所述冷源进气腔51和所述冷源回气腔52流体连通的第一囊体31和设置在所述第一囊体31外的第二囊体32,所述第二囊体32与所述充吸腔53流体连通,当所述第一囊体31扩张,以及第二囊体32通过所述充吸腔53被抽真空或充入绝热介质时,在所述第一囊体31与所述第二囊体32之间形成隔离能量传输的绝热腔6。所述第一囊体31的长度小于所述第二囊体32,所述第一囊体31和所述第二囊体32的囊壁的一部分处于贴合状态,所述第一囊体31和所述第二囊体32的囊壁的贴合部分为冷冻能量传输到治疗部位的通道。
在一个实施方式中,在所述第一囊体31与第二囊体32之间还设置有支撑结构,当所述第一囊体31以及所述第二囊体32扩张时,所述支撑结构能够支撑在所述第一囊体31与所述第二囊体32之间形成的隔离能量传输的空腔6,当第二囊体32通过充吸腔53被抽真空时,所述支撑结构可确保第二囊体32不会塌陷,所述隔离能量传输的空腔6的形态稳定可靠。
实施例八
如图10所示,本申请的一种冷冻消融系统,包括:冷冻消融导管及冷冻消融设备。所述冷冻消融导管具有如实施例7所述的结构。所述冷冻消融设备包括绝热模块101、第一复温模块102、第二复温模块102’、制冷模块103及控制系统104。所述绝热模块101及第二复温模块102’分别与充吸腔53相连通,第二复温模块102’与绝热模块101互锁,两者只能有一个处于运行状态。所述制冷模块103与所述冷源进气腔51和所述冷源回气腔52连通,第一复温模块102与冷源进气腔51相连通,制冷模块103与第一复温模块102互锁,两者只能有一个处于运行状态。控制系统104对所述绝热模块101、所述制冷模块103、所述第一复温模块102和第二复温模块102’的参数进行控制。
在冷冻消融阶段,所述制冷模块103中的所述冷冻能量通过冷源进气腔51被输送到所述第一囊体31内,使得所述第一囊体31以及所述第二囊体32扩张;所述冷冻消融系统通过所述绝热模块101对所述第二囊体32充入绝热介质或者抽吸真空,使得在所述第一囊体31与所述第二囊体32之间形成的隔离能量传输的空腔6充满绝热介质或被抽至负压状态;从而阻止冷冻能量通过所述空腔6进行传递。
在复温阶段,所述第一复温模块102和所述第二复温模块102’分别通过所述冷源进气腔51和所述充吸腔53对所述第一囊体31和所述第二囊体32充入复温流体,使得所述冷冻单元3能够迅速解冻。所述复温流体的温度在0~45摄氏度之间。
在一个实施方式中,所述绝热模块101通过充吸腔53,对第二囊体32抽真空,从而 实现绝热功能。所述绝热模块101为真空泵。
在另一个实施方式中,所述绝热模块101通过充吸腔53,对第二囊体32充入绝热介质,从而实现绝热功能,所述绝热模块101为充盈泵。
实施例九
本实施例与实施例八的不同之处在于:如图11所示,所述支撑结构33为被设置在所述第一囊体31的近端的球囊331。所述管体5还包括沿其轴向延伸的球囊充盈腔54,所述球囊充盈腔54与所述球囊331流体连通。在治疗过程中,先向第一囊体31内注入适量的制冷剂,使得第一囊体31和第二囊体32膨胀。通过球囊充盈腔54注入液体/气体,使得所述球囊331充盈,绝热单元101通过充吸腔53和充吸端口531,对第一囊体31和第二囊体32之间的空间进行抽负压或充入绝热介质,由于球囊331的膨胀起到支撑作用,使得绝热的空腔6稳定可靠,防止冷冻能量向冷冻单元3的近端传递。然后启动冷冻消融治疗,向第一囊体31内注入制冷剂,从而吸收治疗区域的热量,达到冷冻消融的结果。在复温阶段,第二复温单元102’通过吸端口531向所述第二囊体32内充入复温流体,同时第一复温单元102通过冷源进气腔51向所述第一囊体31内充入复温流体,加速冷冻单元3的复温。
实施例十
本实施例与实施例八的不同之处在于:如图12A所示,支撑结构33可以由一根或多根具有预设形状的记忆合金丝332制成,所述支撑结构33的一端与推送杆58连接,当所述第一囊体31被输送至病变部位时,所述支撑结构33通过所述推送杆58被推送至所述第一囊体31的近端,位于第一囊体31与第二囊体32之间,并恢复其预设的形状,从而进行支撑。图12B为图12A中管体5的横截面示意图,如图12B所示,通过冲洗腔53的充吸端口531对第一囊体31与第二囊体32之间的空腔6抽负压或充入绝热介质,实现能量隔绝。然后可启动冷冻消融治疗,向第一囊体31内注入制冷剂,从而吸收治疗区域的热量,达到冷冻消融的效果。在复温阶段,第二复温单元102’通过充吸腔53的吸端口531向所述第二囊体32内充入复温流体,同时第一复温单元102通过冷源进气腔51向所述第一囊体31内充入复温流体,加速冷冻单元3的复温。所述记忆合金丝优选为镍钛丝。在优选的实施方式中,所述预设形状包括螺旋形、笼形或伞形。所述记忆合金丝通过热处理被定型为螺旋形、笼形或伞形等形状,在所述冷冻消融导管被输送到病变部位的过程中,所述支撑结构33被压缩在所述管体5内,当通过推送手柄将支撑结构33推送到第一囊体31与第二囊体32之间时,由记忆合金丝332制成的支撑结构33恢复其被热处理后的形状。
实施例十一
本实施例与实施例八的不同之处在于:所述支撑结构为多根带状或丝状的结构335组成,所述带状或丝状的结构335的两端分别与所述第二囊体32的两端固定连接,当所述第一囊体31膨胀时,所述带状或丝状的结构335被绷紧而形成支撑,从而在所述第一囊体31和所述第二囊体32之间形成隔离能量传输的空腔6。
如图13A和13B所示,所述支撑结构33为扁平高分子带状物,其一端固定于第二囊体32的远端,另一端固定在第二囊体32的近端,两端均位于第二囊体32的内部。当第一囊体31和第二囊体32膨胀后,该带状物被绷直,从而具备一定的支撑能力。此时对该区域抽负压或充入绝热介质,形成能量隔绝。然后,可启动冷冻消融治疗,向第一囊体31内注入制冷剂,从而吸收治疗区域的热量,达到冷冻消融的效果。在复温阶段,第二复温单元102’通过吸端口531向所述第二囊体32内充入复温流体,同时第一复温单元102通过冷源进气腔51向所述第一囊体31内充入复温流体,加速冷冻单元3的复温。
如图14A和14B所示,所述支撑结构为蚕丝,其一端固定于第二囊体32的远端,另一端固定在第二囊体32的近端,两端均位于第二囊体32的内部。当第一囊体31和第二囊体32膨胀后,该蚕丝被绷直,从而具备一定的支撑能力。此时对该区域抽负压或充入绝热介质,形成能量隔绝。然后,可启动冷冻消融治疗,向第一囊体31内注入制冷剂,从而吸收治疗区域的热量,达到冷冻消融的效果。
如图15所示,所述支撑结构33为扁平高分子带状物335,其一端固定于第二囊体32的远端,另一端固定在第二囊体32的近端,两端均位于第二囊体32的内部。当第一囊体31和第二囊体32膨胀后,该带状物被绷直,从而具备一定的支撑能力。在第一囊体31的远端和近端均形成隔离能量传输的空腔6。此时对该区域抽负压或充入绝热介质,防止冷冻能量向冷冻单元3的两端传递。然后可启动冷冻消融治疗,向第一囊体31内注入制冷剂,从而吸收治疗区域的热量,达到冷冻消融的效果。
最后应当说明的是,以上所述仅为本申请的较佳的实施例而已,并不用于限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。
Claims (18)
- 一种冷冻消融导管,其特征在于,包括:管体(5),所述管体(5)包括沿其轴向延伸的冷源进气腔(51)、冷源回气腔(52);设置在所述管体(5)远端部分的冷冻单元(3),所述冷冻单元(3)包括与所述冷源进气腔(51)和所述冷源回气腔(52)流体连通的第一囊体(31)和设置在所述第一囊体(31)外的第二囊体(32),所述第一囊体(31)的长度小于所述第二囊体(32)的长度,在所述第一囊体(31)和所述第二囊体(32)之间的区域为密闭空间,所述第一囊体(31)和所述第二囊体(32)的囊壁的一部分处于贴合状态,所述第一囊体(31)和所述第二囊体(32)的囊壁的贴合部分为冷冻能量传输到治疗部位的通道,当所述第一囊体(31)以及所述第二囊体(32)扩张时,在所述第一囊体(31)与所述第二囊体(32)之间形成隔离能量传输的空腔(6),实现阻止与所述空腔(6)相对应区域的所述冷冻单元(3)的能量传递。
- 根据权利要求1所述的冷冻消融导管,其特征在于,在所述空腔(6)内预充入绝热流体,以阻隔空腔(6)内的能量传递。
- 根据权利要求1所述的冷冻消融导管,其特征在于,所述第一囊体(31)与第二囊体(32)之间设置有支撑结构(33),当所述第一囊体(31)以及所述第二囊体(32)扩张时,所述支撑结构(33)能够支撑在所述第一囊体(31)与所述第二囊体(32)之间形成的隔离能量传输的空腔(6)。
- 根据权利要求3所述的冷冻消融导管,其特征在于,所述支撑结构(33)为球囊(331),所述管体(5)还包括沿其轴向延伸的球囊充盈腔,所述球囊充盈腔与所述球囊(331)流体连通。
- 根据权利要求3所述的冷冻消融导管,其特征在于,所述支撑结构(33)由一根或多根具有预设形状的记忆合金丝(332)制成,所述记忆合金丝(332)被设置在所述第一囊体(31)与所述第二囊体(32)之间。
- 根据权利要求3所述的冷冻消融导管,其特征在于,所述支撑结构(33)为设置在所述第一囊体(31)上的凸起(333)。
- 根据权利要求3所述的冷冻消融导管,其特征在于,所述支撑结构(33)为设置在所述第一囊体(31)近端和/或远端的褶皱(334)。
- 根据权利要求7所述的冷冻消融导管,其特征在于,所述褶皱(334)由所述第一囊体(31)直接堆叠而成。
- 根据权利要求3所述的冷冻消融导管,其特征在于,所述支撑结构(33)为多根 带状或丝状的结构(335)组成,所述带状或丝状的结构(335)的两端分别与所述第二囊体(32)的两端固定连接,当所述第一囊体(31)和所述第二囊体(32)膨胀时,所述带状或丝状的结构(335)被绷紧,从而在所述第一囊体(31)和所述第二囊体(32)之间形成隔离能量传输的空腔(6)。
- 根据权利要求3至9任一项所述的冷冻消融导管,其特征在于,所述空腔(6)被预先抽负压,从而阻止能量的传递。
- 一种冷冻消融系统,其特征在于,包括:冷冻消融导管,所述冷冻消融导管包括管体(5)和设置在所述管体(5)远端部分的冷冻单元(3),所述管体(5)包括沿其轴向延伸的冷源进气腔(51)、冷源回气腔(52)和充吸腔(53);所述冷冻单元(3)包括与所述冷源进气腔(51)和所述冷源回气腔(52)流体连通的第一囊体(31)和设置在所述第一囊体(31)外的第二囊体(32),所述第二囊体(32)与所述充吸腔(53)连通,所述第一囊体(31)的长度小于所述第二囊体(32)的长度,所述第一囊体(31)和所述第二囊体(32)的囊壁的一部分处于贴合状态,所述第一囊体(31)和所述第二囊体(32)的囊壁的贴合部分为冷冻能量传输到治疗部位的通道;冷冻消融设备,所述冷冻消融设备包括与所述充吸腔(53)分别连通的绝热模块(101)和第二复温模块(102’)、与所述冷源进气腔(51)和所述冷源回气腔(52)连通的制冷模块(103)、与所述冷源进气腔(51)连通的第一复温模块(102),以及对所述绝热模块(101)、所述制冷模块(103)、所述第一复温模块(102)和第二复温模块(102’)的参数进行控制的控制系统(104),在冷冻消融阶段,所述制冷模块(103)中的冷冻能量通过冷源进气腔(51)被输送到所述第一囊体(31)内,使得所述第一囊体(31)以及所述第二囊体(32)扩张;所述冷冻消融系统通过所述绝热模块(101)对所述第二囊体(32)充入绝热介质或者抽吸,使得在所述第一囊体(31)与所述第二囊体(32)之间形成的隔离能量传输的空腔(6)充满绝热介质或被抽至负压状态,以阻止冷冻能量通过所述空腔(6)进行传递,在复温阶段,所述第一复温模块(102)和所述第二复温模块(102’)分别通过所述冷源进气腔(51)和所述充吸腔(53)对所述第一囊体(31)和所述第二囊体(32)充入复温流体,使得所述冷冻单元(3)能够迅速解冻。
- 根据权利要求11所述的冷冻消融导管,其特征在于,所述绝热模块(101)为充盈泵。
- 根据权利要求11所述的冷冻消融导管,其特征在于,所述绝热模块(101)为真 空泵。
- 根据权利要求13所述的冷冻消融导管,其特征在于,所述第一囊体(31)与第二囊体(32)之间设置有支撑结构(33),当所述第一囊体(31)扩张时,所述支撑结构(33)能够支撑所述隔离能量传输的空腔(6),使得所述隔离能量传输的空腔(6)的形态稳定可靠。
- 根据权利要求14所述的冷冻消融导管,其特征在于,所述支撑结构(33)为球囊(331),所述管体(5)还包括沿其轴向延伸的球囊充盈腔,所述球囊充盈腔与所述球囊(331)流体连通。
- 根据权利要求14所述的冷冻消融导管,其特征在于,所述支撑结构(33)由一根或多根具有预设形状的记忆合金丝(332)制成,所述支撑结构(33)的一端与推送手柄连接,当所述第一囊体(31)被输送至病变部位时,所述支撑结构(33)通过所述推送手柄被推送至所述第一囊体(31)与所述第二囊体(32)之间。
- 根据权利要求14所述的冷冻消融导管,其特征在于,所述支撑结构(33)为多根带状或丝状的结构(335)组成,所述带状或丝状的结构(335)的两端分别与所述第二囊体(32)的两端固定连接,当所述第一囊体(31)和所述第二囊体(32)膨胀时,所述带状或丝状的结构(335)被绷紧,从而在所述第一囊体(31)和所述第二囊体(32)之间形成隔离能量传输的空腔(6)。
- 根据权利要求14所述的冷冻消融导管,其特征在于,所述支撑结构(33)为设置在所述第一囊体(31)近端和/或远端的褶皱(334)。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020535287A JP7211635B2 (ja) | 2017-09-12 | 2018-08-30 | 冷凍アブレーションカテーテル及びシステム |
EP18855833.2A EP3682830B1 (en) | 2017-09-12 | 2018-08-30 | Cryoablation catheter and system |
RS20230173A RS64056B1 (sr) | 2017-09-12 | 2018-08-30 | Kateter i sistem za krioablaciju |
US16/646,843 US20210077173A1 (en) | 2017-09-12 | 2018-08-30 | Cryoablation catheter and system |
ES18855833T ES2939459T3 (es) | 2017-09-12 | 2018-08-30 | Catéter y sistema de crioablación |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710816282.6 | 2017-09-12 | ||
CN201710816282.6A CN107411815B (zh) | 2017-09-12 | 2017-09-12 | 一种冷冻消融导管及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019052342A1 true WO2019052342A1 (zh) | 2019-03-21 |
Family
ID=60431921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/103237 WO2019052342A1 (zh) | 2017-09-12 | 2018-08-30 | 冷冻消融导管及系统 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20210077173A1 (zh) |
EP (1) | EP3682830B1 (zh) |
JP (1) | JP7211635B2 (zh) |
CN (1) | CN107411815B (zh) |
ES (1) | ES2939459T3 (zh) |
RS (1) | RS64056B1 (zh) |
WO (1) | WO2019052342A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113520570A (zh) * | 2021-07-07 | 2021-10-22 | 上海市肺科医院 | 一种经支气管镜介入冷冻治疗支气管结核的可调冷冻探头 |
CN116898558A (zh) * | 2023-06-26 | 2023-10-20 | 苏州海宇新辰医疗科技有限公司 | 一种心脏冷冻消融用球囊导管 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107411815B (zh) * | 2017-09-12 | 2020-06-12 | 康沣生物科技(上海)有限公司 | 一种冷冻消融导管及系统 |
CN108309432B (zh) * | 2018-04-13 | 2024-04-09 | 山前(珠海)医疗科技有限公司 | 低温消融导管、低温消融操作装置及低温消融设备 |
KR102170109B1 (ko) * | 2019-01-04 | 2020-10-26 | (주) 타우피엔유메디칼 | 비후성 심근증 시술용 냉동절제 카테터 |
US20220008111A1 (en) * | 2019-01-31 | 2022-01-13 | Shanghai Microport Ep Medtech Co., Ltd. | Balloon catheter and electrophysiological system |
DE102019117871B4 (de) * | 2019-07-02 | 2021-08-19 | Georg Nollert | Kathetersystem für eine Kryoablation des Nervus vagus |
CN110393603A (zh) * | 2019-08-02 | 2019-11-01 | 上海市东方医院(同济大学附属东方医院) | 一种大型动物的肺迷走神经损伤的方法 |
US11679239B2 (en) | 2020-06-09 | 2023-06-20 | Accutarget Medipharma (Shanghai) Co., Ltd. | Double-layer cryogenic inflatable balloon |
CN111759449B (zh) * | 2020-06-19 | 2021-08-13 | 首都医科大学附属北京潞河医院 | 冷冻装置及肿瘤消融设备 |
CN113598926B (zh) * | 2021-08-06 | 2023-09-12 | 上海市胸科医院 | 冷冻消融导管及系统 |
CN113827336B (zh) * | 2021-10-26 | 2023-09-01 | 苏州海宇新辰医疗科技有限公司 | 一种冷冻球囊导管 |
NL2033927B1 (en) * | 2023-01-09 | 2024-07-16 | Marijke Irene Van Der Laan | Cryogenic Biparietal ablation catheter and ablation system comprising such an ablation catheter |
CN116747013B (zh) * | 2023-06-30 | 2024-06-18 | 苏州海宇新辰医疗科技有限公司 | 一种双层消融球囊导管 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1301133B1 (en) * | 2000-06-23 | 2005-11-09 | Cryocath Technologies inc. | Cryotreatment device |
US20090088735A1 (en) * | 2004-03-23 | 2009-04-02 | Cryocath Technologies Inc. | Method and apparatus for inflating and deflating balloon catheters |
US20150250525A1 (en) * | 2010-02-01 | 2015-09-10 | Boston Scientific Scimed, Inc. | Nested balloon cryotherapy |
CN106102816A (zh) * | 2014-01-14 | 2016-11-09 | 美敦力 | 具有流体注射元件的球囊导管 |
WO2017047545A1 (ja) * | 2015-09-14 | 2017-03-23 | テルモ株式会社 | アブレーションカテーテル |
CN106691676A (zh) * | 2017-02-22 | 2017-05-24 | 上海导向医疗系统有限公司 | 冷冻球囊导管冷冻消融肺静脉过程中保护食道的保温装置 |
CN107411815A (zh) * | 2017-09-12 | 2017-12-01 | 康沣生物科技(上海)有限公司 | 一种冷冻消融导管及系统 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA917281B (en) * | 1990-09-26 | 1992-08-26 | Cryomedical Sciences Inc | Cryosurgical instrument and system and method of cryosurgery |
US5807310A (en) * | 1997-05-13 | 1998-09-15 | Nexus Medical System, Inc. Llc | Irrigation sleeve for an ultrasonic tip |
US6500174B1 (en) * | 1997-07-08 | 2002-12-31 | Atrionix, Inc. | Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member |
US6514245B1 (en) * | 1999-03-15 | 2003-02-04 | Cryovascular Systems, Inc. | Safety cryotherapy catheter |
US6575966B2 (en) * | 1999-08-23 | 2003-06-10 | Cryocath Technologies Inc. | Endovascular cryotreatment catheter |
GB0130975D0 (en) * | 2001-12-27 | 2002-02-13 | Gyrus Group Plc | A surgical instrument |
WO2009007963A1 (en) * | 2007-07-09 | 2009-01-15 | Arbel Medical Ltd. | Cryosheath |
JP5562869B2 (ja) * | 2008-01-11 | 2014-07-30 | ボストン サイエンティフィック サイムド,インコーポレイテッド | 切除デバイスおよび使用方法 |
EP2265205B1 (en) * | 2008-03-13 | 2016-04-27 | Boston Scientific Scimed, Inc. | Cryo-ablation refrigerant distribution catheter |
US8187261B2 (en) * | 2008-05-29 | 2012-05-29 | Boston Scientific Scimed, Inc. | Regulating internal pressure of a cryotherapy balloon catheter |
US8465481B2 (en) * | 2008-10-20 | 2013-06-18 | Boston Scientific Scimed, Inc. | Providing cryotherapy with a balloon catheter having a non-uniform thermal profile |
WO2010083281A1 (en) * | 2009-01-15 | 2010-07-22 | Boston Scientific Scimed, Inc. | Controlling depth of cryoablation |
US8926602B2 (en) * | 2010-01-28 | 2015-01-06 | Medtronic Cryocath Lp | Triple balloon catheter |
US8790300B2 (en) * | 2010-12-06 | 2014-07-29 | Boston Scientific Scimed, Inc. | Dual balloon catheter |
JP2013132364A (ja) * | 2011-12-26 | 2013-07-08 | Nippon Erekuteru:Kk | バルーンカテーテル |
JPWO2013160981A1 (ja) * | 2012-04-27 | 2015-12-21 | 株式会社デージーエス・コンピュータ | 冷凍手術装置用プローブ外筒及び治療子ユニット |
US9381055B2 (en) * | 2013-03-13 | 2016-07-05 | Cryofocus Medtech (Shanghai) Co. Ltd. | Therapeutic cryoablation system |
US9636172B2 (en) * | 2013-05-31 | 2017-05-02 | Medtronic Cryocath Lp | Compliant balloon with liquid injection |
US9446222B2 (en) * | 2014-03-05 | 2016-09-20 | Invatec S.P.A. | Catheter assemblies and methods for stabilizing a catheter assembly within a subintimal space |
US10610279B2 (en) * | 2014-04-10 | 2020-04-07 | Channel Medsystems, Inc. | Apparatus and methods for regulating cryogenic treatment |
US10213245B2 (en) * | 2015-03-10 | 2019-02-26 | PAVmed Inc. | Continuous flow balloon catheter systems and methods of use |
-
2017
- 2017-09-12 CN CN201710816282.6A patent/CN107411815B/zh active Active
-
2018
- 2018-08-30 ES ES18855833T patent/ES2939459T3/es active Active
- 2018-08-30 RS RS20230173A patent/RS64056B1/sr unknown
- 2018-08-30 US US16/646,843 patent/US20210077173A1/en active Pending
- 2018-08-30 WO PCT/CN2018/103237 patent/WO2019052342A1/zh unknown
- 2018-08-30 JP JP2020535287A patent/JP7211635B2/ja active Active
- 2018-08-30 EP EP18855833.2A patent/EP3682830B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1301133B1 (en) * | 2000-06-23 | 2005-11-09 | Cryocath Technologies inc. | Cryotreatment device |
US20090088735A1 (en) * | 2004-03-23 | 2009-04-02 | Cryocath Technologies Inc. | Method and apparatus for inflating and deflating balloon catheters |
US20150250525A1 (en) * | 2010-02-01 | 2015-09-10 | Boston Scientific Scimed, Inc. | Nested balloon cryotherapy |
CN106102816A (zh) * | 2014-01-14 | 2016-11-09 | 美敦力 | 具有流体注射元件的球囊导管 |
WO2017047545A1 (ja) * | 2015-09-14 | 2017-03-23 | テルモ株式会社 | アブレーションカテーテル |
CN106691676A (zh) * | 2017-02-22 | 2017-05-24 | 上海导向医疗系统有限公司 | 冷冻球囊导管冷冻消融肺静脉过程中保护食道的保温装置 |
CN107411815A (zh) * | 2017-09-12 | 2017-12-01 | 康沣生物科技(上海)有限公司 | 一种冷冻消融导管及系统 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3682830A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113520570A (zh) * | 2021-07-07 | 2021-10-22 | 上海市肺科医院 | 一种经支气管镜介入冷冻治疗支气管结核的可调冷冻探头 |
CN113520570B (zh) * | 2021-07-07 | 2022-09-23 | 上海市肺科医院 | 一种经支气管镜介入冷冻治疗支气管结核的可调冷冻探头 |
CN116898558A (zh) * | 2023-06-26 | 2023-10-20 | 苏州海宇新辰医疗科技有限公司 | 一种心脏冷冻消融用球囊导管 |
CN116898558B (zh) * | 2023-06-26 | 2024-04-30 | 苏州海宇新辰医疗科技有限公司 | 一种心脏冷冻消融用球囊导管 |
Also Published As
Publication number | Publication date |
---|---|
EP3682830B1 (en) | 2022-12-14 |
CN107411815A (zh) | 2017-12-01 |
ES2939459T3 (es) | 2023-04-24 |
RS64056B1 (sr) | 2023-04-28 |
US20210077173A1 (en) | 2021-03-18 |
EP3682830A1 (en) | 2020-07-22 |
JP7211635B2 (ja) | 2023-01-24 |
JP2020533144A (ja) | 2020-11-19 |
CN107411815B (zh) | 2020-06-12 |
EP3682830A4 (en) | 2021-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019052342A1 (zh) | 冷冻消融导管及系统 | |
US20200390487A1 (en) | Shape changing ablation balloon | |
JP6837118B2 (ja) | 冷凍アブレーションシステム | |
US9636172B2 (en) | Compliant balloon with liquid injection | |
US8679105B2 (en) | Device and method for pulmonary vein isolation | |
US8235977B2 (en) | Ablation devices and methods of use | |
US10588682B2 (en) | Apparatus and methods related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls | |
US9028445B2 (en) | Apparatus and method for chilling cryo-ablation coolant and resulting cryo-ablation system | |
WO2021190547A1 (zh) | 改进的房间隔造口装置 | |
CN106572876B (zh) | 用于治疗心律失常的心脏冷冻溶脂 | |
CN107049467B (zh) | 一种可调冷冻消融导管 | |
CN107440782B (zh) | 一种带绝热囊体的冷冻消融导管 | |
WO2020134683A1 (zh) | 电生理导管及消融系统 | |
CN107440781B (zh) | 一种头端带绝热保护的冷冻消融导管 | |
CN207785273U (zh) | 一种带推送装置的冷冻消融导管 | |
CN207708254U (zh) | 腹腔镜手术用充气管加热装置 | |
CN112823758A (zh) | 一种双球囊冷冻消融导管 | |
CN118717270A (zh) | 一种冷冻消融导管及系统 | |
CN116807596A (zh) | 冷冻消融导管及装置 | |
Lewis et al. | Catheter application of cryogenic temperatures inside the heart |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18855833 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020535287 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018855833 Country of ref document: EP Effective date: 20200414 |