WO2020134683A1 - 电生理导管及消融系统 - Google Patents

电生理导管及消融系统 Download PDF

Info

Publication number
WO2020134683A1
WO2020134683A1 PCT/CN2019/118882 CN2019118882W WO2020134683A1 WO 2020134683 A1 WO2020134683 A1 WO 2020134683A1 CN 2019118882 W CN2019118882 W CN 2019118882W WO 2020134683 A1 WO2020134683 A1 WO 2020134683A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
heating element
ablation
heating
delivery tube
Prior art date
Application number
PCT/CN2019/118882
Other languages
English (en)
French (fr)
Inventor
常兆华
梁波
孙毅勇
沈刘娉
Original Assignee
上海微创电生理医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创电生理医疗科技股份有限公司 filed Critical 上海微创电生理医疗科技股份有限公司
Priority to EP19903360.6A priority Critical patent/EP3903705A4/en
Priority to US17/419,219 priority patent/US20220110669A1/en
Publication of WO2020134683A1 publication Critical patent/WO2020134683A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/082Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00434Neural system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00714Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00797Temperature measured by multiple temperature sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/0091Handpieces of the surgical instrument or device
    • A61B2018/00916Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00994Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0212Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0262Characteristics of handpieces or probes using a circulating cryogenic fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B2018/044Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid
    • A61B2018/046Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid in liquid form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B2018/044Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid
    • A61B2018/048Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid in gaseous form

Definitions

  • the invention relates to the technical field of medical devices, in particular to an electrophysiological catheter and an ablation system.
  • Atrial fibrillation Patients with atrial fibrillation have a high risk of stroke.
  • atrial fibrillation occurs, the atrium beats irregularly and quickly, losing contractile function.
  • the blood easily stagnate in the atrium to form a thrombus.
  • the thrombus falls off and enters the brain with the artery. Stroke.
  • the interventional catheter applies energy to the pulmonary veins to ablate, thereby isolating the pulmonary vein potential, and the therapeutic effect can be achieved.
  • Hypertension has the characteristics of high morbidity, low awareness and great harm. Experimental data has shown that hypertension is related to the high excitability of renal sympathetic nerves in patients. Blocking renal sympathetic nerves through ablation can not only lower blood pressure, but also affect chronic organ-specific diseases caused by excessive sympathetic nerve activation.
  • the ablation can be performed by freezing balloon ablation.
  • Frozen balloon ablation is based on anatomical considerations, using the contact between the balloon and the tissue for freezing, and has the characteristics of one-time and continuity.
  • a frozen balloon catheter is used, a balloon is provided at the distal end of the catheter, and a freezing device is connected at the proximal end.
  • the surgeon placed the frozen balloon catheter through the percutaneous puncture into the heart cavity, reached the pulmonary vein ostium, filled the balloon, adjusted the outer wall of the balloon to contact with the myocardial tissue, and then frozen the inlet tube in the balloon catheter The frozen liquid is directly sprayed to the inner surface of the balloon.
  • ablation electrodes can also be used for thermal ablation.
  • the ablation operation method of the ablation electrode is similar to the frozen balloon ablation operation method. Specifically, an ablation electrode balloon catheter is used, a balloon is provided at the distal end of the catheter, and an ablation device is connected at the proximal end.
  • the surgeon placed the ablation electrode balloon catheter into the heart cavity through the percutaneous puncture approach, reached the pulmonary vein ostium, filled the balloon, adjusted the outer wall of the balloon to contact with the myocardial tissue, and then the myocardial tissue was heated by the ablation electrode. Thermal ablation.
  • the prior art also proposes to eliminate the uneven temperature of the balloon surface of the balloon ablation catheter that cauterizes the tissue, so as to improve the therapeutic effect of the ablation.
  • a single ablation method is used, namely cold ablation or hot ablation, and the therapeutic effect of ablation is still not ideal.
  • the purpose of the present invention is to provide an electrophysiological catheter and an ablation system, which aims to realize the combined ablation of cold and heat to the target tissue through a set of ablation system and improve the therapeutic effect of ablation.
  • the present invention provides an electrophysiological catheter, including a catheter body and a balloon disposed at a distal end of the catheter body, the electrophysiological catheter further includes a first heating element and a first temperature sensor, and the The catheter body includes a fluid delivery tube; the distal end of the fluid delivery tube is disposed within the balloon for releasing fluid to the balloon; the first heating element is disposed at the distal end of the fluid delivery tube For heating the fluid in the fluid delivery tube; the first temperature sensor is provided on the distal end of the catheter body or on the first heating element, and is used to collect the catheter body or the first A temperature information of the heating element; among them:
  • the fluid delivery tube When the first heating element is in operation, the fluid delivery tube is used to release thermal ablation gas to the balloon, and when the first heating element is not in operation, the fluid delivery tube is used to direct the ball The bladder releases frozen liquid.
  • the electrophysiological catheter further includes a second heating element and a second temperature sensor;
  • the second heating element is disposed at the proximal end of the fluid delivery tube and is used to perform fluid on the fluid delivery tube Pre-heating;
  • the second temperature sensor is provided on the proximal end of the catheter body or the second heating element, and is used to collect temperature information of the catheter body or the second heating element;
  • the fluid delivery tube is used to release hot ablation gas to the balloon, and when the first heating element and the second heating element When none is in operation, the fluid delivery tube is used to release frozen liquid to the balloon.
  • the fluid delivery tube includes a first spiral structure and a first longitudinally extending portion communicating with the first spiral structure; the first heating element is disposed on the first longitudinally extending portion; the first A temperature sensor is disposed on the fluid delivery tube and is near the distal end of the first heating element.
  • a plurality of fluid ejection ports are provided on the first spiral structure, and the plurality of fluid ejection ports are used to eject fluid in different directions.
  • the electrophysiological catheter further includes a handle connected to the proximal end of the catheter body, and the second heating element is disposed in the handle.
  • the handle includes at least one electrical input and output interface, a fluid input interface and a fluid output interface;
  • the fluid input interface is in communication with the proximal end of the fluid delivery tube; the first heating element, the first temperature sensor, the second heating element, and the second temperature sensor are connected to the at least one electrical input and output interface; The fluid output interface is used to expel the fluid in the catheter body from the catheter body.
  • the second temperature sensor is disposed on the fluid delivery tube and is close to the distal end of the second heating element.
  • the first heating element includes a second spiral structure and a second longitudinally extending portion electrically connected to the second spiral structure, the second spiral structure is disposed around the fluid delivery pipe, the second The longitudinally extending portion extends along the wall of the fluid delivery tube and is connected to an electrical input and output interface at the proximal end of the catheter body.
  • the first heating element and/or the second heating element are resistance wires or induction coils.
  • the electrophysiological catheter further includes a third heating element and a third temperature sensor; the third heating element is disposed on the balloon for heating a target area; and the third temperature sensor It is arranged on the balloon and used to collect temperature information of the third heating element.
  • the electrophysiological catheter further includes a fourth temperature sensor, the fourth temperature sensor is disposed on the balloon and/or the catheter body, and is used to collect the balloon and/or the catheter Body temperature information.
  • the catheter body further includes an outer tube and a hollow mandrel, the fluid delivery tube and the mandrel are both passed through the outer tube, and the mandrel is movably disposed on the outer Inside the tube; the distal end of the balloon is connected to the core rod, and the proximal end of the balloon is connected to the outer tube; and the distal end of the fluid delivery tube is spirally wound on the core rod.
  • the present invention also provides an ablation system, including a control device, an ablation energy output device, and the electrophysiological catheter; the ablation energy output device communicates with the electrophysiological catheter to Electrophysiological catheters provide fluids;
  • the control device is configured to control the ablation energy output device to selectively provide a first fluid or a second fluid to the fluid delivery tube, the second fluid being a frozen liquid;
  • the control device is further configured to control the operation of the first heating element when the ablation energy output device provides the first fluid to the fluid delivery tube so that the first heating element pair enters the fluid delivery tube Heating of the first fluid, so that the fluid delivery tube jets hot ablation gas toward the balloon, and at the same time, the control device controls the heating temperature of the first heating element according to the temperature information fed back by the first temperature sensor, to Making the temperature of the balloon surface within a preset thermal ablation temperature range;
  • control device is further configured to control the first heating element not to work when the ablation energy output device provides the second fluid to the fluid delivery tube, so that the fluid delivery tube is sprayed toward the balloon Frozen liquid.
  • the electrophysiological catheter further includes a second heating element and a second temperature sensor
  • the control device is further configured to, when the ablation energy output device provides the first fluid to the fluid delivery tube, also control the operation of the second heating element so that the second heating element is rigid
  • the fluid entering the fluid delivery pipe is pre-heated, and at the same time, the control device also controls the heating temperature of the second heating element according to the temperature information fed back by the second temperature sensor.
  • the ablation energy output device includes a heating unit, a refrigeration unit, a fluid output channel, and a fluid source;
  • the fluid source is used for storing fluid;
  • the fluid output channel is in communication with the fluid source for outputting fluid in the fluid source;
  • the refrigeration unit is disposed on the fluid output channel for Cooling the fluid in the fluid output channel;
  • the heating unit is used to provide heating energy to the first heating element and/or the second heating element;
  • the control device is further configured to control the refrigeration unit to cool the fluid in the fluid output channel when the ablation energy output device provides the second fluid to the fluid delivery tube, so that The ablation energy output device provides the frozen liquid to the fluid delivery tube;
  • the control device is further configured to, when the ablation energy output device supplies the first fluid to the fluid delivery tube, control the heating unit to provide heating energy or to the first heating element The first heating element and the second heating element provide heating energy to cause the first heating element, or the first heating element and the second heating element to The fluid is heated.
  • the preset thermal ablation temperature range is 50°C to 80°C.
  • the fluid is carbon dioxide or nitrous oxide.
  • the refrigeration unit is a compressor
  • the heating unit is a high-frequency heating source or a common power supply for heating the resistance wire.
  • control device includes a refrigeration control unit and a heating control unit;
  • the cooling unit is used for cooling the fluid in the fluid output channel according to a cooling signal sent by the cooling control unit; the heating unit is used for heating a signal according to the heating control unit , To provide heating energy to the first heating element and/or the second heating element.
  • the electrophysiological catheter further includes a third heating element and a third temperature sensor, both of which are disposed on the balloon;
  • the control device is further configured to control the ablation energy output device when it stops supplying fluid to the fluid delivery tube, or when the ablation energy output device provides the first fluid to the fluid delivery tube
  • the heating unit provides heating energy to the third heating element, so that the third heating element heats a target tissue, and at the same time, the control device also performs third heating according to the feedback from the third temperature sensor
  • the temperature information of the element controls the heating temperature of the third heating element.
  • the electrophysiological catheter further includes a fourth temperature sensor, which is disposed on the balloon and/or the catheter body;
  • the control device is further configured to adjust the temperature of freezing ablation or thermal ablation according to the temperature information of the balloon and/or the catheter body fed back by the fourth temperature sensor.
  • the ablation system further includes a display device for displaying feedback of any one of the first temperature sensor, the second temperature sensor, the third temperature sensor, and the fourth temperature sensor Back temperature information.
  • control device is configured to control the ablation energy output device to provide the second fluid to the electrophysiology catheter for a period of time, and then control the ablation energy output device to the electrophysiology
  • the catheter provides the first fluid while controlling the ablation energy output device to provide heating energy to the first heating element or heating energy to the first heating element and the second heating element to At least one thermal ablation is performed after at least one freezing ablation.
  • the purpose of heating the fluid in the fluid delivery tube is achieved, so that the distal end of the fluid delivery tube can be directed toward the inner surface of the balloon
  • the thermal ablation gas is sprayed to achieve thermal ablation of the target tissue
  • the electrophysiological catheter can also spray freezing liquid to the inner surface of the balloon when the first heating element is not in operation, to achieve frozen ablation of the target tissue, thereby achieving the target
  • the combined ablation of hot and cold tissues improves the therapeutic effect of ablation.
  • there is no need to insert and remove the electrophysiological catheter back and forth which reduces the secondary injury caused by the catheter insertion and extraction to the patient and increases the effect of surgical treatment.
  • the ablation and thermal ablation of the same tissue can be performed at the same position without adjusting the balloon position, which can overcome the problem of incomplete ablation when cryoablation alone or thermal ablation alone, thereby improving treatment The effect also shortens the operation time and improves the operation efficiency.
  • the invention controls the cold and hot ablation through the control device to switch freely, the operation is more convenient, and the operation efficiency is high.
  • the electrophysiological catheter further includes a second heating element and a second temperature sensor, and the fluid that has just flowed into the electrophysiological catheter can be preheated by the second heating element, so that the temperature of the fluid at the distal end of the catheter can be abruptly changed to the human body Injury caused to ensure product safety and improve heating efficiency.
  • FIG. 1 is a schematic diagram of cardiac ablation performed by an ablation system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of renal artery ablation performed by an ablation system according to an embodiment of the present invention
  • 3a is a schematic diagram of the overall structure of an electrophysiological catheter according to an embodiment of the present invention.
  • 3b is a schematic structural diagram of the distal end of an electrophysiological catheter according to an embodiment of the present invention.
  • 3c is a schematic structural diagram of the proximal end of the electrophysiological catheter according to an embodiment of the present invention.
  • 3d is a schematic diagram of the structure of a balloon according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of an ablation system according to a preferred embodiment of the present invention.
  • FIG. 6 is a flow chart when the ablation system of the embodiment of the present invention works in the freezing ablation mode
  • FIG. 7 is a flow chart when the ablation system of the embodiment of the present invention works in the thermal ablation mode.
  • 100-control device 110-refrigeration control unit; 120-heating control unit;
  • 200-ablation energy output device 210-refrigeration unit; 220-heating unit; 230-fluid output channel; 240-fluid source; 250-fluid input channel;
  • 300-electrophysiology catheter 301 catheter body; 302-balloon; 303-first heating element; 303a-second spiral structure; 303b-second longitudinal extension; 304-first temperature sensor; 305-fluid delivery tube; 305a-first spiral structure; 305b-first longitudinal extension; 305c-fluid ejection port; 306-second heating element; 306a-third spiral structure; 306b-third longitudinal extension; 307-second temperature sensor; 308-handle; 3081-lumen interface; 3082-heating energy input and output interface; 3083-temperature sensor communication interface; 3084-fluid input interface; 3085-fluid output interface; 309-outer tube; 310-mandrel; 311-developing Identification; 312-third heating element; 313-third temperature sensor; 314-fourth temperature sensor;
  • A-pulmonary vein B-renal artery ostium; C-renal artery; Q-predetermined area; L-lead.
  • proximal and distal refer to the relative orientation, relative position, and orientation of the elements or actions relative to each other from the perspective of the doctor using the product, although “proximal” and “distal” are not limitations sexual, but “proximal” usually refers to the end of the product that is close to the doctor during normal operation, and “distal” usually refers to the end that first enters the patient's body.
  • proximal usually refers to the end of the product that is close to the doctor during normal operation
  • distal usually refers to the end that first enters the patient's body.
  • the singular forms “a”, “an”, and “the” include plural objects unless the content clearly dictates otherwise.
  • the term “or” is generally used in a sense that includes “and/or” unless the content clearly dictates otherwise.
  • the present invention provides an electrophysiological catheter, including a catheter body and a balloon disposed at a distal end of the catheter body, the electrophysiological catheter further includes a first heating element and A first temperature sensor, and the catheter body includes a fluid delivery tube; the distal end of the fluid delivery tube is disposed in the balloon for releasing fluid to the balloon; the first heating element is disposed in the The distal end of the fluid delivery tube is used to heat the fluid in the fluid delivery tube; the first temperature sensor is disposed on the distal end of the catheter body or on the first heating element for collecting Temperature information of the catheter body or the first heating element; wherein: when the first heating element is in operation, the fluid delivery tube is used to release thermal ablation gas to the balloon when the first heating element When not in operation, the fluid delivery tube is used to release frozen liquid to the balloon.
  • an ablation system including a control device, an ablation energy output device, and an electrophysiological catheter; the ablation energy output device communicates with the electrophysiological catheter and is used to provide fluid to the electrophysiological catheter;
  • the control device is configured to control the ablation energy output device to selectively provide a first fluid or a second fluid to the fluid delivery tube, the second fluid being a frozen liquid;
  • the control device is further configured to control the operation of the first heating element when the ablation energy output device provides the first fluid to the fluid delivery tube so that the first heating element pair enters the fluid delivery tube Heating of the first fluid, so that the fluid delivery tube jets hot ablation gas toward the balloon, and at the same time, the control device controls the heating temperature of the first heating element according to the temperature information fed back by the first temperature sensor, to Making the temperature of the balloon surface within a preset thermal ablation temperature range;
  • control device is further configured to control the first heating element not to work when the ablation energy output device provides the second fluid to the fluid delivery tube, so that the fluid delivery tube is sprayed toward the balloon The frozen liquid.
  • FIG. 1 is a schematic diagram of cardiac ablation provided by an ablation system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of renal artery ablation performed by an ablation system of an embodiment of the present invention.
  • an embodiment of the present invention provides an ablation system 10 including a control device 100, an ablation energy output device 200, and an electrophysiological catheter 300, wherein the ablation energy output device 200 is in fluid communication with the electrophysiological catheter 300 To provide ablation fluid to the electrophysiological catheter 300.
  • the control device 100 is connected to the ablation energy output device 200, and the ablation energy output device 200 is connected to the electrophysiology catheter 300.
  • the control device 100 may also be connected to the ablation energy output device 200 and the electrophysiological catheter 300, respectively.
  • the control device 100 and the ablation energy output device 200 may be integrated in the same device. The present invention does not limit this.
  • the ablation system 10 is used to perform a combination of cold and hot ablation on the target tissue to improve the therapeutic effect of the ablation, and the target tissue may be a heart cavity or a renal artery, etc., which is not specifically limited.
  • the ablation system 10 can be applied to cardiac cavity treatment, and the electrophysiological catheter 300 can be inserted into the heart cavity through intervention to ablate the pulmonary vein A (that is, use a balloon to seal the pulmonary vein ablation) to achieve heart rhythm.
  • Abnormal treatment As shown in FIG. 2, the ablation system 10 may be applied to the renal artery, the electrophysiological catheter 300 may be placed into the renal artery ostium B by intervention, and the renal artery C may be ablated to adjust the renal artery blood pressure.
  • the electrophysiological catheter 300 includes a catheter body 301, a balloon 302, a first heating element 303, and a first temperature sensor 304.
  • the balloon 302 is disposed on the catheter body 301 and located at the distal end of the catheter body 301.
  • the catheter body 301 includes a fluid delivery tube 305, and the distal end of the fluid delivery tube 305 is disposed in the balloon 302 for spraying a freezing liquid or hot ablation gas toward the inner surface of the balloon 302.
  • the material of the balloon 302 may be a material with better temperature resistance, such as polyester, nylon, or fluoroplastic.
  • the first heating element 303 is disposed on the fluid delivery tube 305, specifically at the distal end of the fluid delivery tube 305, and the first heating element 303 is also disposed inside the balloon 302, thereby ensuring product safety.
  • the first heating element 303 is used to heat the fluid in the fluid delivery tube 305 so that the fluid delivery tube 305 sprays thermal ablation gas toward the inner surface of the balloon 302.
  • the first temperature sensor 304 is disposed at the distal end of the catheter body 301 to collect the temperature information of the catheter body 301; or the first temperature sensor 304 is disposed at the first heating element 303 to collect the temperature of the first heating element 303 Information; alternatively, two or more first temperature sensors 304 are simultaneously provided on the distal end of the catheter body 301 and the first heating element 303 for collecting temperature information of the catheter body 301 and the first heating element 303 at the same time .
  • the first temperature sensor 304 is preferably disposed on the fluid delivery tube 305 and disposed near the distal end of the first heating element 303.
  • control device 100 controls the ablation energy output device 200 to selectively provide the first fluid or the second fluid to the electrophysiological catheter 300.
  • the second fluid here is a frozen liquid, that is, a refrigerated liquid; the first fluid may be a frozen liquid, or a liquid or gas or gas-liquid mixture that has not been refrigerated at a normal temperature.
  • the control device 100 controls the ablation energy output device 200 to directly supply the cryogenic liquid to the electrophysiological catheter 300. At this time, the control device 100 also controls the first heating element 303 Without heating, the fluid delivery tube 305 directly ejects the frozen liquid (ie, the second fluid) provided by the ablation energy output device 200 toward the inner surface of the balloon 302.
  • the control device 100 controls the ablation energy output device 200 to provide the first fluid to the electrophysiological catheter 300, and the control device 100 also controls the first heating element 303 to the fluid delivery tube
  • the first fluid in 305 is heated, so that the fluid delivery tube 305 directly ejects the hot ablation gas toward the inner surface of the balloon 302.
  • the control device 100 also controls the heating temperature of the first heating element 303 according to the temperature information fed back by the first temperature sensor 304, so that the temperature of the balloon surface reaches the preset thermal ablation temperature. Ensure thermal ablation.
  • the ablation system 10 does not need to adjust the position of the balloon when performing cryoablation and thermal ablation, for example, when the pulmonary vein A is ablated. Therefore, cryoablation and thermal ablation can be performed on the same target tissue at the same position. It can effectively prevent the recurrence of arrhythmia, improve the ablation effect, and also save the operation time and improve the operation efficiency.
  • the electrophysiological catheter 300 is inserted into the renal artery orifice B through step 1, and then the inside of the balloon 302 is inflated through step 2 to inflate it, and then the balloon seal is confirmed through step 3
  • Blocking situation specifically, the blocking state of the balloon is judged by the blocking state of the blood flow in the renal artery. If the blood flow is completely blocked, it means that the outer surface of the balloon is in good contact with the tissue wall).
  • the position of the balloon is readjusted until the state shown in step 4 is reached: the balloon is in good contact with the tissue wall, and the ablation energy output device 200 can be controlled to provide the first fluid or the second fluid to the electrophysiological catheter 300.
  • the ablation energy output device 200 delivers a freezing liquid (ie, a second fluid) to the electrophysiological catheter 300 to reduce the temperature of the balloon surface to the temperature required for freezing ablation (for example, is -40°C to -60°C) to freeze-ablate the target tissue.
  • a freezing liquid ie, a second fluid
  • the freezing ablation can be performed one or more times, and the doctor determines the time and number of freezing ablation based on the patient's electrocardiogram, which is not specifically limited in the present invention.
  • the ablation system 10 in order to more completely eliminate abnormal ECG tissue, after performing one or more freezing ablation, the ablation system 10 enters the thermal ablation mode, so that the control device 100 controls the first heating element 303 to the fluid delivery tube 305
  • the first fluid is heated to raise the temperature of the balloon surface to the temperature required for thermal ablation (for example, 50°C to 80°C), thereby performing thermal ablation on the target tissue.
  • the number and time of thermal ablation are also set according to the actual surgical needs, and the invention is not limited thereto.
  • the ablation system 10 has the functions of freezing ablation and thermal ablation at the same time, which is convenient for performing at least one thermal ablation after one or more freezing ablation, so that the abnormal electrocardiographic tissue is ablated more thoroughly, thereby improving the therapeutic effect of ablation.
  • the control device 100 controls the cold and hot ablation to switch freely, the operation is more convenient, and the operation efficiency is high.
  • the fluid delivery tube 305 specifically includes a distal first spiral structure 305a and a first longitudinally extending portion 305b in fluid communication with the first spiral structure 305a.
  • the first spiral structure 305a is provided with a plurality of fluid ejection ports 305c.
  • the plurality of fluid ejection ports 305c are used to eject fluid in different directions, so that the balloon surface is uniformly cooled or heated.
  • the first spiral structure 305a includes more than two windings.
  • the plurality of fluid ejection ports 305c are circumferentially spaced on the farthest coil of the first spiral structure 305a, or the plurality of fluid ejection ports 305c are on different coils of the first spiral structure 305a ( ( May be adjacent windings or non-adjacent windings) circumferentially spaced, or multiple fluid ejection openings 305c may be circumferentially spaced on the same winding and simultaneously on different windings Set at circumferential intervals, these can achieve the effect of spraying fluids at different angles.
  • the plurality of fluid ejection ports 305c also provide a helical ejection along the axis of the first helical structure 305a, so that the balloon surface is cooled or heated more uniformly, further improving the effect of the ablation treatment.
  • the fluid in the liquid, gaseous, or mixed state leaves the fluid ejection port 305c, the fluid expands and/or fills the lumen of the balloon 302, bringing the balloon surface to the temperature required for ablation, and then After heat exchange, it is discharged through the duct body 301.
  • the catheter body 301 further includes a fluid discharge pipe (not shown), which communicates with the inside of the balloon 302 for recovering the fluid after heat exchange.
  • the first longitudinally extending portion 305b extends along the axial direction of the catheter body 301 and is used to communicate with the ablation energy output device 200.
  • the first heating element 303 is disposed at the distal end of the first longitudinally extending portion 305b, and is preferably disposed near the first spiral structure 305a, so that the fluid is heated by the first heating element 303 before flowing into the first spiral structure 305a After the heating, the first spiral structure 305a is sprayed toward the inner surface of the balloon, which can minimize the loss of heat and ensure the heating efficiency.
  • the number of the first heating elements 303 may be plural, and the plurality of first heating elements 303 may be arranged side by side along the axial direction of the fluid delivery tube 305.
  • the first heating element 303 specifically includes a second spiral structure 303a and a second longitudinally extending portion 303b connected to the second spiral structure 303a.
  • the second spiral structure 303a is disposed around the first longitudinally extending portion 305b, and all the second spiral structures 303a are located inside the balloon 320, thereby ensuring the safety of the product.
  • the second helical structure 303a may be a resistance wire or an induction coil, which can heat the fluid in the fluid delivery tube 305 in the energized state
  • the second longitudinally extending portion 303b may be a wire with an insulating layer on the outside of the wire.
  • the second longitudinally extending portion 303b extends along the tube wall of the first longitudinally extending portion 305b all the way to the proximal end of the catheter body 301, and is then connected to the electrical input and output interface on the proximal end of the catheter body, thereby connecting with the control device 100 or ablation
  • the energy output device 200 is connected, and thus receives external electrical energy input.
  • the first temperature sensor 304 is disposed on the first spiral structure 305a of the fluid delivery tube 305, and is more preferably disposed near the distal end of the second spiral structure 303a.
  • the number of the first temperature sensors 304 may be plural, and are arranged at different positions on the first spiral structure 305a.
  • the first temperature sensor 304 may also be disposed on the first longitudinally extending portion 305b of the fluid delivery tube 305, and is preferably disposed near the distal end of the second spiral structure 303a.
  • the number and position of the first temperature sensor 304 can be flexibly configured according to actual needs, which is not specifically limited in the present invention.
  • the electrophysiological catheter 300 preferably further includes a second heating element 306 disposed on the fluid delivery tube 305, specifically disposed at the proximal end of the fluid delivery tube 305, that is, the proximal end of the first longitudinally extending portion 305b, more preferably
  • the second heating element 306 is provided in the handle 308 described below to ensure the safety of the product.
  • the second heating element 306 is used to heat the fluid that has just flowed into the fluid delivery tube 305, so that the part of the fluid is first heated to a safe temperature that the human body can tolerate (for example, about 37°C), and then the part of the fluid passes through the The heating of the heating element 303 reaches a relatively high ablation temperature.
  • the number of the second heating elements 306 may be plural, and the plurality of second heating elements 306 are preferably arranged side by side along the axial direction of the fluid delivery tube 305.
  • the second heating element 306 includes a third spiral structure 306a and a third longitudinally extending portion 306b connected to the third spiral structure 306a.
  • the third spiral structure 306a is disposed around the first longitudinally extending portion 305b, and all the third spiral structures 306a are located in the handle 308 to ensure the safety of the product.
  • the third spiral structure 306a may also be a resistance wire or an induction coil, which also achieves heating in the energized state.
  • the third longitudinally extending portion 306b may also be a wire, arranged along the wall of the fluid delivery tube 305, and the proximal end is connected to the electrical input and output interface on the proximal end of the catheter body, so as to be connected to the control device 100 or the ablation energy output device 200 Connect and receive external power input.
  • the electrophysiological catheter 300 further includes a second temperature sensor 307.
  • the second temperature sensor 307 may be disposed at the proximal end of the catheter body 301 for collecting temperature information of the catheter body 30; or, the second temperature sensor 307 may be disposed on the second heating element 306 for collecting the temperature of the second heating element 306 Temperature information; alternatively, two or more second temperature sensors 307 are provided on the proximal end of the catheter body 301 and the second heating element 306 at the same time, for simultaneously collecting the temperature of the catheter body 301 and the second heating element 306 information. And the temperature information fed back by the second temperature sensor 307 is fed back to the control device 100 through the electrical connection line.
  • the control device 100 controls the heating temperature of the second heating element 306 according to the temperature information fed back by the second temperature sensor 307.
  • the second temperature sensor 307 is disposed on the fluid delivery tube 305 and is arranged near the distal end of the second heating element 306, more specifically, the second temperature sensor 307 is near the third spiral structure 306a of the second heating element 306 Remote placement.
  • a second temperature sensor 307 may be arranged between the third spiral structures 306a of the second heating element 306.
  • the number and position of the second temperature sensor 307 can also be flexibly configured according to actual needs, and the present invention does not specifically limit this.
  • the electrophysiological catheter 300 further includes a handle 308, which is disposed on the catheter body 301 and located at the proximal end of the catheter body 301, and is used to control the rotation and bending of the entire catheter body 301.
  • the handle 308 is provided with a plurality of interfaces, preferably including: at least one electrical input and output interface; at least one fluid input interface; at least one fluid output interface; and at least one lumen interface.
  • the handle 308 specifically includes: a lumen interface 3081 for inserting guide wires, mapping catheters, contrast medium delivery, and other instruments; two electrical input and output interfaces, respectively, a heating energy input and output interface 3082, And a temperature sensor communication interface 3083; a fluid input interface 3084; and a fluid output interface 3085.
  • All heating elements can be connected to the same heating energy input and output interface 3082. At this time, the heating energy input and output interface 3082 is provided with different current channels corresponding to different heating elements. All temperature sensors can be connected to the same temperature sensor communication interface 3083, and the temperature sensor communication interface 3083 is also provided with different data channels corresponding to different temperature sensors.
  • the fluid input interface 3084 is in fluid communication with the fluid delivery tube 305, and the fluid input interface 3084 is further connected to the ablation energy output device 200, so that the fluid provided by the ablation energy output device 200 can be sent into the electrophysiological catheter 300.
  • the fluid output interface 3085 is in fluid communication with the fluid discharge pipe in the aforementioned catheter body 301, and is used to discharge the ablated fluid out of the catheter.
  • the catheter body 301 further includes an outer tube 309 and a core rod 310, a handle 308 is provided on the outer tube 309, and the fluid delivery tube 305 and the core rod 310 are passed through the outer tube 309 side by side.
  • the core rod 310 has a hollow structure and is movably disposed in the outer tube 309, and the core rod 310 can be moved in the outer tube 309 by adjusting the handle 308 to complete the release and withdrawal of the balloon 302 from the sheath.
  • the proximal end of the mandrel 310 communicates with the lumen interface 3081 on the handle 308 and is used to deliver related instruments such as guide wires, mapping catheters, or contrast fluid.
  • the distal end of the core rod 310 extends out of the outer tube 309 and is connected to the distal end of the balloon 302, and the proximal end of the balloon 302 is connected to the outer tube 309, and the fluid discharge pipe is provided between the core rod 310 and the outer Tube 309.
  • the distal end of the core rod 310 is provided with a developing mark 311, and the material of the developing mark 311 is a metallic developing material.
  • a doctor can confirm the position of the balloon 302 relative to the sheath by the developing mark 311 with the aid of a developing device.
  • the fluid delivery tube 305 is bonded to the outside of the core rod 310, however, the fluid delivery tube 305 may alternatively be fixed to the core rod 310 only by surrounding the core rod 310 by the first spiral structure 305a, so that the The fluid delivery tube 305 and the mandrel 310 move axially relative to each other.
  • the electrophysiological catheter 300 further includes a third heating element 312, which is disposed on the balloon 302 and is used to heat a predetermined area Q.
  • the predetermined area Q is a heating area on the target tissue.
  • the third heating element 312 may be disposed on the outer surface of the balloon 302, may also be disposed on the inner surface of the balloon 302, or may be disposed between the inner surface and the outer surface of the double-layer balloon, preferably, the third heating element 312 is disposed on the inner surface or between the inner surface and the outer surface of the balloon 302, so as to avoid the third heating element 312 directly contacting the target tissue, causing problems such as shedding, and improving the safety of the product.
  • the number of the third heating elements 312 may be plural, and the plurality of third heating elements 312 are preferably evenly distributed on the balloon 302, for example, evenly arranged in the circumferential direction. All the third heating elements 312 can be started simultaneously for heating, or only partially started for heating, which can be determined according to actual needs. It should be noted that the number and position of the third heating element 312 can be determined according to actual needs.
  • the third heating element 312 is specifically an ablation electrode, and is connected to the heating energy input and output interface 3082 at the proximal end of the electrophysiological catheter 300 through a lead L.
  • the electrophysiological catheter 300 further includes a third temperature sensor 313, which is also disposed on the balloon 302 and used to collect temperature information of the third heating element 312.
  • the third temperature sensor 313 is disposed near the third heating element 312, for example, a third temperature sensor 313 is arranged between two adjacent third heating elements 312.
  • the temperature information fed back by the third temperature sensor 313 is fed back to the control device 100 through the electrical connection line.
  • the control device 100 controls the heating temperature of the third heating element 312 according to the temperature information of the third heating element 312 fed back by the third temperature sensor 313, thereby adjusting the ablation temperature of the target tissue.
  • the temperature information of the third heating element 312 is the temperature information of the balloon surface.
  • the electrophysiological catheter 300 further includes a fourth temperature sensor 314 for collecting temperature information of the balloon 302 or the catheter body 301.
  • the fourth temperature sensor 314 is disposed on the balloon 302, or the catheter body 301, or two or more fourth temperature sensors 314 are disposed on the balloon 302 and the catheter body 301 at the same time.
  • the fourth temperature sensor 314 When the fourth temperature sensor 314 is disposed in the catheter body 301, it may be specifically disposed at the distal end of the core rod 310 and located inside the balloon 302.
  • the fourth temperature sensor 314 is connected to the temperature sensor communication interface 3083 on the handle 308, and the temperature sensor communication interface 3083 can be connected to the control device 100.
  • control device 100 can also control the temperature of freezing ablation or thermal ablation according to the temperature information of the balloon fed back by the fourth temperature sensor 314. It should be noted that all the temperature sensors mentioned above may be connected to the same temperature sensor communication interface, or may be connected to different temperature sensor communication interfaces. Similarly, all the above heating elements may be connected to the same heating energy input and output interface, or may be connected to different heating energy input and output interfaces.
  • the ablation system 10 further includes a display device connected to the control device 100 for displaying in real time any feedback of the first temperature sensor 304, the second temperature sensor 307, the third temperature sensor 313, and the fourth temperature sensor 314 Temperature information, so that the doctor can adjust the energy of freezing ablation or thermal ablation according to the temperature information.
  • FIG. 5 provides a structural block diagram of the preferred ablation system 10 of this embodiment.
  • the control device 100 includes a control unit, and the control unit preferably includes a refrigeration control unit 110 and a heating control unit 120.
  • the ablation energy output device 200 preferably includes a refrigeration unit 210, a heating unit 220, a fluid output channel 230, a fluid source 240, and a fluid input channel 250.
  • the fluid source 240 is specifically a container for storing ablation fluid, and the fluid here is preferably carbon dioxide or nitrous oxide.
  • the use of carbon dioxide or nitrous oxide can effectively shorten the natural rewarming time after each ablation and improve the surgical efficiency.
  • the fluid source 240 communicates with the fluid input channel 250 and the fluid output channel 230, respectively.
  • the fluid input channel 250 is used to input fluid provided from the outside into the fluid source 240, but in practical applications, the fluid input channel 250 may not be provided.
  • the fluid output channel 230 is in turn used to output the fluid in the fluid source 240 to the electrophysiological catheter.
  • the fluid output channel 230 is specifically connected to the fluid input interface 3084 on the electrophysiological catheter 300.
  • the refrigeration unit 210 is disposed on the fluid output channel 230 for cooling the fluid transported in the fluid output channel 230.
  • the refrigeration unit 210 may be a compressor or other refrigeration devices, and the structure of the present invention is not specifically limited.
  • the refrigeration unit 210 is used to communicate with the refrigeration control unit 110 to control the working state of the refrigeration unit 210 through the refrigeration control unit 110.
  • the heating unit 220 is used to electrically connect with the electrophysiological catheter 300 and is used to provide heating energy to all or some heating elements.
  • the heating unit 220 may be specifically connected to the heating energy input and output interface 3082 on the electrophysiological catheter 300.
  • the heating unit 220 is also used to communicate with the heating control unit 120 to control the energy output state of the heating unit 220 through the heating control unit 120.
  • the heating unit 220 may be a high-frequency energy source (high-frequency heating power supply), electrically connected to at least one of the first heating element 303, the second heating element 306, and the third heating element 312 on the electrophysiological catheter 300 for These heating elements are supplied with high-frequency high-voltage current for heating.
  • the heating unit 220 may also be a common power source, and is electrically connected to at least one of the first heating element 303 and the second heating element 306 on the electrophysiological catheter 300, and is used to provide heating current to these heating elements.
  • the current may be AC current or DC current.
  • the refrigeration unit 210 and the heating unit 220 can work at the same time.
  • the refrigeration unit 210 and the heating unit 220 are working normally.
  • the fluid output channel 230 is directed to the electrophysiology by the refrigeration unit 210
  • the catheter 300 provides a frozen liquid
  • the heating unit 220 also supplies current to the first heating element 303 on the electrophysiological catheter 300, or simultaneously supplies current to the first heating element 303 and the second heating element 306 to flow through the electrophysiological catheter After being heated by these heating elements, the 300 frozen liquid is transformed into hot ablation gas and sprayed toward the balloon 302.
  • the cooling unit 210 does not work, and the heating unit 220 works normally.
  • the fluid output channel 230 provides the first fluid (which may be a gas) to the electrophysiological catheter 300 , Liquid or gas-liquid mixture), and the heating unit 220 supplies current to the first heating element 303 on the electrophysiological catheter 300, or to the first heating element 303 and the second heating element 306 at the same time, so as to flow through the electrophysiological catheter 300
  • the heating unit 220 does not work, and only the cooling unit 210 cools alone.
  • the refrigeration control unit 110 is used to control the operation of the refrigeration unit 210 according to the received freezing and ablation instruction, so that the fluid output channel 230 provides the freezing liquid (ie, the second fluid) to the electrophysiological catheter 300.
  • the heating control unit 120 is used to control the operation of the heating unit 220 according to the received thermal ablation instruction, and the cooling control unit 110 selectively controls the operation or non-operation of the cooling unit 210, so that the fluid output channel 230 provides the electrophysiological catheter 300 After the first fluid, and thus the first fluid, heats up in the fluid delivery tube 305, it is sprayed toward the inner surface of the balloon 302.
  • a thermal ablation button and a freezing ablation button can be provided on the handle 308 or the computer interface.
  • the thermal ablation instruction is issued to the heating control unit 120, and when the operator starts When the freeze ablation button is issued, a freeze ablation command is issued to the refrigeration control unit 110.
  • the computer interface may be set on the control device 100 or the ablation energy output device 200.
  • the cooling control unit 110 sends a cooling signal to the cooling unit 210, and the cooling unit 210 performs cooling according to the received cooling signal.
  • the heating control unit 120 sends a heating signal to the heating unit 220, and the heating unit 220 sends the first heating element 303, the second heating element 306, and the third heating element according to the received heating signal At least one of the output currents in 312 is heated.
  • the refrigeration control unit 110 controls the refrigeration unit 210 to adjust its refrigeration temperature according to the temperature information fed back by one or two of the fourth temperature sensor 314 and the third temperature sensor 313, thereby controlling the ball
  • the temperature of the capsule surface is within the preset freezing and ablation temperature range.
  • the heating control unit 120 controls the heating according to the temperature information fed back by at least one of the first temperature sensor 304, the second temperature sensor 307, the third temperature sensor 313, and the fourth temperature sensor 314
  • the thermal unit 220 adjusts the heating temperature of at least one of the first heating element 303 and the second heating element 306, thereby controlling the temperature of the balloon surface to be within a preset thermal ablation temperature range.
  • the heating control unit 120 controls the heating unit 220 to adjust the third heating element 312 according to the temperature information fed back by one or two of the third temperature sensor 313 and the fourth temperature sensor 314 To control the temperature of the third heating element 312 when thermally ablating the target tissue.
  • the ablation system 10 specifically includes a freezing ablation mode and a thermal ablation mode.
  • the freezing ablation process in step 400 is started.
  • the process includes the following steps:
  • Step 401 The fluid source outputs fluid to the fluid output channel
  • Step 402 The refrigeration control unit controls the refrigeration of the refrigeration unit
  • Step 403 After cooling, the fluid is brought to a preset cooling temperature
  • Step 404 spray the freezing fluid onto the inner surface of the balloon; here, steps 401, 402, 403, and 404 can actually be performed at the same time, that is, the cooling liquid is sprayed onto the inner surface of the balloon at the same time when the cooling is started;
  • Step 405 During the cooling process, the cooling control unit controls the cooling temperature of the cooling unit according to the temperature information fed back by at least one of the third temperature sensor 313 and the fourth temperature sensor 314 in real time;
  • Step 406 The temperature of the balloon surface reaches the temperature required for freezing and ablation (for example, -10°C to -60°C), and after a period of time (for example, 120 to 180 seconds), the freezing and ablation can be ended.
  • the temperature required for freezing and ablation for example, -10°C to -60°C
  • a period of time for example, 120 to 180 seconds
  • the doctor determines whether to perform the next freeze ablation or directly enter the thermal ablation mode (step 500).
  • the balloon 302 needs to be naturally warmed to the body temperature in the body in advance (step 407) before the next freeze ablation can be performed.
  • the thermal ablation process in step 500 is started.
  • the process includes the following steps:
  • Step 501 The fluid source outputs fluid to the fluid output channel
  • Step 502 The heating control unit controls the heating unit to supply current to the first heating element, or to provide current to the first heating element and the second heating element simultaneously;
  • Step 503 After the second heating, the fluid reaches the preset heating temperature
  • Step 504 spray the thermal ablation gas onto the inner surface of the balloon; here, steps 501, 502, 503, and 504 can also be performed at the same time, that is, when heating is performed, the thermal ablation gas is sprayed onto the inner surface of the balloon;
  • Step 505 During the heating process, the heating control unit 120 controls the heating based on the temperature information fed back by at least one of the first temperature sensor 304, the second temperature sensor 307, the third temperature sensor 313, and the fourth temperature sensor in real time The current output state of the unit 220, thereby adjusting the heating temperature of the first heating element 303, or adjusting the heating temperatures of the first heating element 303 and the second heating element 306 at the same time;
  • Step 506 The temperature of the balloon surface reaches the temperature required for thermal ablation (for example, 50°C to 80°C), and after a period of time (for example, 10 to 50 seconds), the thermal ablation can be ended. Similarly, after each thermal ablation, the balloon will naturally reheat to body temperature in the body (step 507).
  • the temperature required for thermal ablation for example, 50°C to 80°C
  • a period of time for example, 10 to 50 seconds
  • the thermal ablation can also be implemented in the following manner: the heating control unit 120 controls the heating unit 220 to work, so as to output high-frequency and high-pressure to the third heating element 312 The current causes the third heating element 312 to ablate the target tissue with the ablation electrode, thereby achieving the purpose of eliminating abnormal ECG tissue.
  • the ablation energy output device 200 still provides the first fluid to the electrophysiological catheter 300, while the first heating element 303 and the second heating element 306 continue to work. While the physiological catheter 300 sprays the thermal ablation gas, it also cauterizes the target tissue through the third heating element 312 to achieve thermal ablation of the target tissue.
  • the ablation energy output device 200 stops providing any fluid to the electrophysiological catheter 300, allowing the third heating element 312 to thermally ablate the target tissue alone.
  • the ablation energy output device 200 and the control device 100 can be integrated into one device. Inside the device, the two are communicatively connected, and
  • the control unit can use existing controllers, processors, and other control devices.
  • the temperature sensor can be implemented with a thermocouple.
  • the balloon can be a single-layer balloon, a double-layer balloon, and a standard can be set on the balloon. Test electrode.
  • the doctor in the heating process, can mainly adjust the temperature of the balloon fed back by the fourth temperature sensor, combined with the temperature information of the heating element fed back by other temperature sensors, to adjust Corresponding to the heating temperature of the heating element, this can make quick and accurate adjustments to the equipment, the temperature adjustment efficiency is high, and the effect is good.
  • the temperature returned by all temperature sensors can be displayed on the screen in real time, which is convenient for doctors to view and makes temperature adjustment more intuitive and convenient.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Otolaryngology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Cardiology (AREA)
  • Surgical Instruments (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

一种电生理导管(300)及消融系统(10),可实现冷热联合消融,改善消融治疗的效果。其中消融系统(10)包括控制装置(100)、消融能量输出装置(200)和电生理导管(300)。实际应用时,控制装置(100)控制消融能量输出装置(200)选择性地向电生理导管(300)提供第一流体或第二流体,第二流体为冷冻液体,当消融能量输出装置(200)提供第一流体时,控制装置(100)控制电生理导管(300)上的第一加热元件(303)工作,以使第一加热元件(303)对进入电生理导管(300)的流体进行加热,而向球囊(302)内表面喷射热消融气体,实现目标组织的热消融,且当消融能量输出装置(200)提供冷冻液体时,控制装置(100)则控制第一加热元件(303)不工作,以向球囊(302)内表面直接喷射冷冻液体,实现目标组织的冷冻消融。

Description

电生理导管及消融系统 技术领域
本发明涉及医疗器械技术领域,具体涉及一种电生理导管及消融系统。
背景技术
房颤患者具有很高的脑卒中风险,当房颤时,心房不规律地快速跳动,失去了收缩功能,血液容易在心房内淤滞而形成血栓,血栓脱落,随动脉进入脑中,即发生脑卒中。通过介入导管对肺静脉施以能量进行消融,从而隔离肺静脉电位,可以达到治疗的效果。高血压具有发病率高、知晓率低、危害大的特点。实验数据已证明高血压与患者的肾交感神经兴奋性偏高有关。通过消融阻断肾交感神经,不但能够使血压下降,并且还能够对交感神经过度激活造成的慢性器官特异性疾病产生影响。
可以采用冷冻球囊消融的方式进行消融。冷冻球囊消融基于解剖学考虑,利用球囊与组织的接触进行冷冻,且具有一次性、连续性等特点。具体的,采用冷冻球囊导管,在导管的远端设置球囊,近端连接冷冻设备。手术过程中,术者将冷冻球囊导管经皮穿刺入路放置进入心腔,到达肺静脉口,并使球囊充盈,调整球囊外壁与心肌组织接触,进而冷冻球囊导管内进液管将冷冻液体直接向球囊内表面喷射,冷冻液受心肌温度传导热影响迅速气化吸热,使与球囊接触的心肌组织降温产生冷冻消融。除了冷冻消融外,还可以采用消融电极进行热消融。消融电极的消融手术方式与冷冻球囊消融手术方式相似,具体采用消融电极球囊导管,在导管的远端设置球囊,在近端连接消融设备。手术过程中,术者将消融电极球囊导管经皮穿刺入路放置进入心腔,到达肺静脉口,并使球囊充盈,调整球囊外壁与心肌组织接触,进而通过消融电极使心肌组织受热产生热消融。
发明人发现,现有还会在冷冻消融导管的内部设置加热丝,以通过加热丝的加热缩短冷冻复温的过程,进而缩短整个手术时间。除此之外,现有技术中还提出了消除对组织进行烧灼的球囊消融导管的球囊表面温度的不均匀问题,以此改善消融的治疗效果。但是,在现有技术中,都采用了单一的消 融方式,即冷消融或热消融,消融的治疗效果仍不理想。
发明内容
本发明的目的在于提供一种电生理导管及消融系统,旨在通过一套消融系统实现对目标组织的冷热联合消融,改善消融的治疗效果。
为实现上述目的,本发明提供一种电生理导管,包括导管体以及设置于所述导管体之远端的球囊,所述电生理导管还包括第一加热元件和第一温度传感器,且所述导管体包括流体输送管件;所述流体输送管件的远端设置于所述球囊内,用于向所述球囊释放流体;所述第一加热元件设置于所述流体输送管件的远端,用于对所述流体输送管件中的流体进行加热;所述第一温度传感器设置于所述导管体的远端或所述第一加热元件上,用于采集所述导管体或所述第一加热元件的温度信息;其中:
当所述第一加热元件工作时,所述流体输送管件用于向所述球囊释放热消融气体,且当所述第一加热元件不工作时,所述流体输送管件用于向所述球囊释放冷冻液体。
可选的,所述电生理导管还包括第二加热元件和第二温度传感器;所述第二加热元件设置于所述流体输送管件的近端,用于对进入所述流体输送管件的流体进行预加热;所述第二温度传感器设置于所述导管体的近端或所述第二加热元件上,用于采集所述导管体或所述第二加热元件的温度信息;其中:
当所述第一加热元件和所述第二加热元件同时工作时,所述流体输送管件用于向所述球囊释放热消融气体,且当所述第一加热元件和所述第二加热元件均不工作时,所述流体输送管件用于向所述球囊释放冷冻液体。
可选的,所述流体输送管件包括第一螺旋结构和与所述第一螺旋结构连通的第一纵向延伸部分;所述第一加热元件设置于所述第一纵向延伸部分上;所述第一温度传感器设置于所述流体输送管件上,并靠近所述第一加热元件的远端。
可选的,所述第一螺旋结构上设置有多个流体喷射口,多个所述流体喷 射口用于朝不同方向喷射流体。
可选的,所述电生理导管还包括手柄,与所述导管体的近端连接,且所述第二加热元件设置于所述手柄中。
可选的,所述手柄包括至少一个电性输入输出接口,一个流体输入接口和一个流体输出接口;
所述流体输入接口与所述流体输送管件的近端相连通;所述第一加热元件、第一温度传感器、第二加热元件及第二温度传感器与所述至少一个电性输入输出接口连接;所述流体输出接口用于将导管体内的流体排出所述导管体。
可选的,所述第二温度传感器设置于所述流体输送管件上,并靠近所述第二加热元件的远端。
可选的,所述第一加热元件包括第二螺旋结构和与所述第二螺旋结构电连接的第二纵向延伸部分,所述第二螺旋结构围绕所述流体输送管件设置,所述第二纵向延伸部分沿着所述流体输送管件的管壁延伸并与所述导管体近端上的一电性输入输出接口连接。
可选的,所述第一加热元件和/或所述第二加热元件为电阻丝或感应线圈。
可选的,所述电生理导管还包括第三加热元件和第三温度传感器;所述第三加热元件设置于所述球囊上,用于对一目标区域进行加热;所述第三温度传感器设置于所述球囊上,用于采集所述第三加热元件的温度信息。
可选的,所述电生理导管还包括第四温度传感器,所述第四温度传感器设置于所述球囊和/或所述导管体上,用于采集所述球囊和/或所述导管体的温度信息。
可选的,所述导管体还包括外管和中空的芯杆,所述流体输送管件和所述芯杆均穿设于所述外管内,且所述芯杆可活动地设置于所述外管内;所述球囊的远端与所述芯杆连接,所述球囊的近端与所述外管连接;且所述流体输送管件的远端螺旋缠绕于所述芯杆上。
为实现上述目的,本发明还提供一种消融系统,包括控制装置、消融能量输出装置以及所述的电生理导管;所述消融能量输出装置与所述电生理导 管相连通,用于向所述电生理导管提供流体;
所述控制装置被配置为,控制所述消融能量输出装置选择性地向流体输送管件提供第一流体或第二流体,所述第二流体为冷冻液体;
所述控制装置还被配置为,当所述消融能量输出装置向流体输送管件提供所述第一流体时,控制第一加热元件工作,以使所述第一加热元件对进入所述流体输送管件的第一流体进行加热,而使所述流体输送管件向球囊喷射热消融气体,同时所述控制装置根据第一温度传感器反馈回的温度信息,控制所述第一加热元件的加热温度,以使所述球囊表面的温度在预设的热消融温度范围内;
并且所述控制装置还被配置为,当所述消融能量输出装置向流体输送管件提供所述第二流体时,控制第一加热元件不工作,以使所述流体输送管件向所述球囊喷射冷冻液体。
可选的,当所述电生理导管还包括第二加热元件和第二温度传感器时;
所述控制装置还被配置为,当所述消融能量输出装置向所述流体输送管件提供所述第一流体时,还控制所述第二加热元件工作,以使所述第二加热元件对刚进入所述流体输送管件的流体进行预加热,同时所述控制装置还根据第二温度传感器反馈回的温度信息,控制所述第二加热元件的加热温度。
可选的,所述消融能量输出装置包括制热单元、制冷单元、流体输出通道和流体源;
所述流体源用于存储流体;所述流体输出通道与所述流体源相连通,用于输出所述流体源中的流体;所述制冷单元设置于所述流体输出通道上,用于对所述流体输出通道中的流体进行制冷;所述制热单元用于向所述第一加热元件和/或所述第二加热元件提供加热用的能量;
所述控制装置还被配置为,当所述消融能量输出装置向所述流体输送管件提供所述第二流体时,控制所述制冷单元对所述流体输出通道中的流体进行制冷,以使所述消融能量输出装置向流体输送管件提供所述冷冻液体;
所述控制装置还被配置为,当所述消融能量输出装置向所述流体输送管件提供所述第一流体时,控制所述制热单元向所述第一加热元件提供加热用 的能量或向所述第一加热元件和所述第二加热元件提供加热用的能量,以使所述第一加热元件,或所述第一加热元件和所述第二加热元件对所述流体输出通道中的流体进行加热。
可选的,所述预设的热消融温度范围为50℃到80℃。
可选的,所述流体为二氧化碳或一氧化二氮。
可选的,所述制冷单元为压缩机,所述制热单元为高频加热源或供电阻丝加热的普通电源。
可选的,所述控制装置包括制冷控制单元和制热控制单元;
所述制冷单元用于根据所述制冷控制单元发出的一制冷信号,对所述流体输出通道中的流体进行制冷;所述制热单元用于根据所述制热控制单元发出的一制热信号,向所述第一加热元件和/或所述第二加热元件提供加热用的能量。
可选的,所述电生理导管还包括第三加热元件和第三温度传感器,均设置于所述球囊上;
所述控制装置还被配置为,当所述消融能量输出装置停止向所述流体输送管件提供流体,或当所述消融能量输出装置向所述流体输送管件提供所述第一流体时,控制所述制热单元向所述第三加热元件提供加热用的能量,使所述第三加热元件对一目标组织进行加热,同时所述控制装置还根据所述第三温度传感器反馈回的第三加热元件的温度信息,控制所述第三加热元件的加热温度。
可选的,所述电生理导管还包括第四温度传感器,设置于所述球囊和/或所述导管体上;
所述控制装置还被配置为,用于根据所述第四温度传感器反馈回的球囊和/或所述导管体的温度信息,调节冷冻消融或热消融温度。
可选的,所述消融系统还包括一显示装置,用于显示所述第一温度传感器、所述第二温度传感器、所述第三温度传感器及所述第四温度传感器中的任一项反馈回的温度信息。
可选的,所述控制装置被配置为,控制所述消融能量输出装置向所述电 生理导管提供所述第二流体并持续一段时间后,再控制所述消融能量输出装置向所述电生理导管提供所述第一流体,同时控制所述消融能量输出装置向所述第一加热元件提供加热用的能量或向所述第一加热元件和所述第二加热元件提供加热用的能量,以在至少一次冷冻消融后实施至少一次热消融。
在上述电生理导管和消融系统中,通过在流体输送管件的远端设置第一加热元件,实现了对流体输送管件中流体进行加热的目的,使得流体输送管件的远端能够向球囊内表面喷射热消融气体,实现目标组织的热消融,并且该电生理导管在第一加热元件不工作时,还可向球囊内表面喷射冷冻液体,实现目标组织的冷冻消融,由此实现了对目标组织的冷热联合消融,改善了消融的治疗效果。并且,冷热消融转换时,无需来回插拔电生理导管,减少了导管插拔对患者造成的二次伤害,增加了手术治疗的效果。
此外,冷热消融切换时,无需调整球囊位置,在同一位置即可对相同组织实施冷冻消融和热消融,这样可克服单独冷冻消融或单独热消融时存在的消融不彻底问题,从而改善治疗效果,同时也缩短了手术时间,提高了手术效率。另外本发明通过控制装置控制冷热消融进行自由切换,操作较为方便,手术效率高。
进一步优选的,所述电生理导管还包括第二加热元件和第二温度传感器,通过第二加热元件可对刚流入电生理导管的流体进行预加热,这样可避免导管远端流体温度突变对人体造成的伤害,以此确保产品的安全性,并提高加热效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的消融系统进行心脏消融的示意图;
图2是本发明实施例的消融系统进行肾动脉消融的示意图;
图3a是本发明实施例的电生理导管的整体结构示意图;
图3b是本发明实施例的电生理导管之远端的结构示意图;
图3c是本发明实施例的电生理导管之近端的结构示意图;
图3d是本发明实施例的球囊的结构示意图;
图4是本发明实施例的消融系统的工作原理示意图;
图5是本发明优选实施例的消融系统的结构框图;
图6是本发明实施例的消融系统工作于冷冻消融模式时的流程图;
图7是本发明实施例的消融系统工作于热消融模式时的流程图。
附图说明如下:
10-消融系统;
100-控制装置;110-制冷控制单元;120-制热控制单元;
200-消融能量输出装置;210-制冷单元;220-制热单元;230-流体输出通道;240-流体源;250-流体输入通道;
300-电生理导管;301导管体;302-球囊;303-第一加热元件;303a-第二螺旋结构;303b-第二纵向延伸部分;304-第一温度传感器;305-流体输送管件;305a-第一螺旋结构;305b-第一纵向延伸部分;305c-流体喷射口;306-第二加热元件;306a-第三螺旋结构;306b-第三纵向延伸部分;307-第二温度传感器;308-手柄;3081-内腔接口;3082-加热能量输入输出接口;3083-温度传感器通讯接口;3084-流体输入接口;3085-流体输出接口;309-外管;310-芯杆;311-显影标识;312-第三加热元件;313-第三温度传感器;314-第四温度传感器;
A-肺静脉;B-肾动脉口部;C-肾动脉;Q-预定区域;L-导线。
具体实施方式
为使本发明的内容更加清楚易懂,以下结合说明书附图对本发明做进一步说明。当然本发明并不局限于该具体实施例,本领域的技术人员所熟知的一般替换也涵盖在本发明的保护范围内。其次,本发明利用示意图进行了详细的表述,但这些示意图仅为了便于详述本发明实例,不应对此作为本发明 的限定。
本文中,“近端”和“远端”是从使用产品的医生角度来看相对于彼此的元件或动作的相对方位、相对位置、方向,尽管“近端”和“远端”并非是限制性的,但是“近端”通常指该产品在正常操作过程中靠近医生的一端,而“远端”通常是指首先进入患者体内的一端。如在本说明书和所附权利要求中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,除非内容另外明确指出外。如在本说明书和所附权利要求中所使用的,术语“或”通常是以包括“和/或”的含义而进行使用的,除非内容另外明确指出外。
正如背景技术所述,现有技术没有提供任何实现冷和热联合消融的技术方案。
经过进一步研究,在其中一个实施例中,本发明提供了一种电生理导管,包括导管体以及设置于所述导管体之远端的球囊,所述电生理导管还包括第一加热元件和第一温度传感器,且所述导管体包括流体输送管件;所述流体输送管件的远端设置于所述球囊内,用于向所述球囊释放流体;所述第一加热元件设置于所述流体输送管件的远端,用于对所述流体输送管件中的流体进行加热;所述第一温度传感器设置于所述导管体的远端或所述第一加热元件上,用于采集所述导管体或所述第一加热元件的温度信息;其中:当所述第一加热元件工作时,所述流体输送管件用于向所述球囊释放热消融气体,当所述第一加热元件不工作时,所述流体输送管件用于向所述球囊释放冷冻液体。
进一步的,还提供了一种消融系统,包括控制装置、消融能量输出装置以及电生理导管;所述消融能量输出装置与所述电生理导管相连通,用于向所述电生理导管提供流体;
所述控制装置被配置为,控制所述消融能量输出装置选择性地向流体输送管件提供第一流体或第二流体,所述第二流体为冷冻液体;
所述控制装置还被配置为,当所述消融能量输出装置向流体输送管件提供所述第一流体时,控制第一加热元件工作,以使所述第一加热元件对进入所述流体输送管件的第一流体进行加热,而使所述流体输送管件向球囊喷射 热消融气体,同时所述控制装置根据第一温度传感器反馈回的温度信息,控制所述第一加热元件的加热温度,以使所述球囊表面的温度在预设的热消融温度范围内;
并且所述控制装置还被配置为,当所述消融能量输出装置向流体输送管件提供所述第二流体时,控制第一加热元件不工作,以使所述流体输送管件向所述球囊喷射所述冷冻液体。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
首先参考图1和图2,图1为本发明实施例提供的消融系统进行心脏消融的示意图,图2本发明实施例的消融系统进行肾动脉消融的示意图。
如图1和图2所示,本发明实施例提供一种消融系统10,包括:控制装置100、消融能量输出装置200和电生理导管300,其中消融能量输出装置200与电生理导管300流体连通,以向电生理导管300提供消融用的流体。在一些实施例中,控制装置100与消融能量输出装置200连接,而消融能量输出装置200又与电生理导管300连接。在另一些实施例中,控制装置100也可以分别与消融能量输出装置200和电生理导管300连接。在还有一些实施例中,控制装置100与消融能量输出装置200可整合在同一设备中。本发明对此不做限制。
消融系统10用于对目标组织进行冷热联合消融,以改善消融的治疗效果,而目标组织可以是心腔或肾动脉等,具体不作限制。例如图1所示,可将消融系统10应用于心腔治疗,将电生理导管300通过介入方式置入心腔内部,以对肺静脉A进行消融(即利用球囊封堵肺静脉消融),实现心律失常的治疗。或者如图2所示,也可将消融系统10应用于肾动脉,将电生理导管300通过介入方式置于入肾动脉口部B,对肾动脉C进行消融,以此调节肾动脉血压。
接下来结合图3a至图3d,对电生理导管300的结构作进一步的描述说明。
如图3a和图3b所示,电生理导管300包括导管体301、球囊302、第一加热元件303和第一温度传感器304。球囊302设置于导管体301上并位于导管体301的远端。导管体301包括流体输送管件305,流体输送管件305的远 端设置于球囊302内,用于向球囊302的内表面喷射冷冻液体或热消融气体。球囊302的材料可以是聚酯、尼龙或氟塑料等耐温性较好的材料。
第一加热元件303设置于流体输送管件305上,具体设置于流体输送管件305的远端,且第一加热元件303也设置于球囊302的内部,从而确保产品的安全性。第一加热元件303用于对流体输送管件305中的流体进行加热,以使流体输送管件305向球囊302的内表面喷射热消融气体。同时第一温度传感器304设置于导管体301的远端,用于采集导管体301的温度信息;或者第一温度传感器304设置于第一加热元件303上,用于采集第一加热元件303的温度信息;又或者,两个或两个以上的第一温度传感器304同时设置于导管体301的远端和第一加热元件303上,用于同时采集导管体301和第一加热元件303的温度信息。本发明实施例中,第一温度传感器304较佳地设置于流体输送管件305上,并靠近第一加热元件303的远端布置。
实际应用时,控制装置100控制消融能量输出装置200选择性地向电生理导管300提供第一流体或第二流体。这里的第二流体为冷冻液体,即经过制冷的液体;第一流体可以是冷冻液体,也可以是未经过制冷在常温状态下的液体或气体或气液混合。
更具体来说,当应用消融系统10对目标组织进行冷冻消融时,控制装置100控制消融能量输出装置200向电生理导管300直接提供冷冻液体,此时,控制装置100还控制第一加热元件303不加热,从而使流体输送管件305直接将消融能量输出装置200所提供的冷冻液体(即第二流体)向球囊302内表面喷射。那么,当应用消融系统100对目标组织进行热消融时,控制装置100则控制消融能量输出装置200向电生理导管300提供第一流体,同时控制装置100还控制第一加热元件303对流体输送管件305中的第一流体进行加热,从而使流体输送管件305直接将热消融气体向球囊302内表面喷射。并且在热消融过程中,控制装置100还根据第一温度传感器304反馈回的温度信息,控制第一加热元件303的加热温度,从而使球囊表面的温度达到预设的热消融温度,以此确保热消融效果。这里,消融系统10在进行冷冻消融和热消融时,例如对肺静脉A进行消融时,可不调整球囊的位置,故可在同一 位置对相同目标组织实施冷冻消融和热消融,这样的消融方式,可有效防止心律失常复发,改善消融效果,而且也节省了手术时间,提高了手术效率。
再进一步的,以肾动脉消融为例,结合图4对消融系统10的工作原理做进一步的说明。
如图2和图4所示,首先通过步骤1将电生理导管300插入到肾动脉口部B,之后,通过步骤2向球囊302的内部充气使其充盈,接着通过步骤3确认球囊封堵情况(具体通过肾动脉中血流的封堵状况来判断球囊的封堵状态,若血流被完全封堵,则说明球囊外表面与组织壁接触良好),若球囊封堵不理想,则重新调整球囊位置,直至到达步骤4所示的状态:球囊与组织壁接触良好,进而便可控制消融能量输出设备200向电生理导管300提供第一流体或第二流体。
在步骤4之后,以先实施冷冻消融为例,消融能量输出设备200向电生理导管300输送冷冻液体(即第二流体),使球囊表面的温度下降到冷冻消融所需的温度(例如是-40℃到-60℃),从而对目标组织实施冷冻消融。冷冻消融可实施一次或多次,主要由医生根据患者的心电图情况来确定冷冻消融的时间和次数,本发明对此不作具体的限制。在实际应用时,为了能够更彻底地消除心电异常组织,在实施一次或多次冷冻消融后,消融系统10进入热消融模式,使控制装置100控制第一加热元件303对流体输送管件305中的第一流体进行加热,使球囊表面的温度提升到热消融所需的温度(例如是50℃到80℃),从而对目标组织实施热消融。热消融的次数和时间亦根据实际手术需要进行设置,本发明对此也不作限定。这样,使得消融系统10同时具备冷冻消融和热消融的功能,便于在一次或多次冷冻消融后,实施至少一次热消融,使心电异常组织被消融的更彻底,从而提升消融的治疗效果。并且冷热消融转换时,无需来回插拔电生理导管300,减少了导管插拔对患者造成的二次伤害,增加了手术治疗的效果。同时,通过控制装置100控制冷热消融进行自由切换,操作较为方便,手术效率高。
进一步的,流体输送管件305具体包括远端的第一螺旋结构305a和与第一螺旋结构305a流体连通的第一纵向延伸部分305b。第一螺旋结构305a上 设置有多个流体喷射口305c,多个流体喷射口305c用于朝不同的方向喷射流体,使球囊表面均匀受冷或者受热。第一螺旋结构305a包括两个以上的绕圈。在一实施例中,多个流体喷射口305c在第一螺旋结构305a的最远绕圈上沿周向间隔设置,或者,多个流体喷射口305c在第一螺旋结构305a的不同绕圈上(可以是相邻绕圈或不相邻绕圈)沿周向间隔设置,又或者,多个流体喷射口305c既可在同一个绕圈上沿周向间隔设置,又同时在不同绕圈上沿周向间隔设置,这些均可达到朝不同的角度喷射流体的效果。更优选的,多个流体喷射口305c在沿第一螺旋结构305a的轴线方向上还提供螺旋形的喷射,使球囊表面受冷或者受热更均匀,进一步提升消融治疗的效果。于是,当处于液态、气态或混合态的流体离开流体喷射口305c时,流体使球囊302的内腔扩大和/或充满球囊内腔,使球囊表面达到消融所需的温度,然后在热交换后通过导管体301排出。导管体301还包括流体排放管道(未图示),与球囊302内部连通,用于回收热交换后的流体。第一纵向延伸部分305b沿着导管体301的轴向延伸,并用于与消融能量输出装置200相连通。
本发明实施例中,第一加热元件303设置于第一纵向延伸部分305b的远端,并优选靠近第一螺旋结构305a设置,使流体在流入第一螺旋结构305a之前被第一加热元件303加热,加热后即刻通过第一螺旋结构305a向球囊内表面喷射,如此可最大程度地减少热量的流失,保证加热效率。第一加热元件303的数量可以是多个,多个第一加热元件303可沿流体输送管件305的轴向并排设置。
进一步的,第一加热元件303具体包括第二螺旋结构303a和与第二螺旋结构303a连接的第二纵向延伸部分303b。其中,第二螺旋结构303a围绕第一纵向延伸部分305b设置,且所有第二螺旋结构303a均位于球囊320的内部,从而确保产品的安全性。可选的,第二螺旋结构303a可以是电阻丝或感应线圈,在通电状态下即可加热流体输送管件305中的流体,第二纵向延伸部分303b可以是导线,导线外部带有绝缘层。同时第二纵向延伸部分303b沿着第一纵向延伸部分305b的管壁一直延伸至导管体301的近端,进而与导管体近端上的电性输入输出接口连接,从而与控制装置100或消融能量输出 装置200相连接,并以此接收外部的电能输入。
进一步的,在一些实施例中,第一温度传感器304设置在流体输送管件305的第一螺旋结构305a上,更优选靠近第二螺旋结构303a的远端布置。第一温度传感器304的数量可以是多个,以在第一螺旋结构305a上的不同位置设置。在另一些实施例中,第一温度传感器304也可以布置在流体输送管件305的第一纵向延伸部分305b上,并优选靠近第二螺旋结构303a的远端布置。在其他实施例中,还可以是,至少一个第一温度传感器304布置在第一螺旋结构305a上,同时至少一个第一温度传感器304布置在第一纵向延伸部分305b上。但是,第一温度传感器304的数量和位置可以根据实际需要进行灵活配置,本发明对此不作具体的限定。
继续参阅图3a,电生理导管300优选还包括第二加热元件306,设置在流体输送管件305上,具体设置在流体输送管件305的近端,即第一纵向延伸部分305b的近端,更优选第二加热元件306设置于下述手柄308中,确保产品的安全性。第二加热元件306用于对刚流入流体输送管件305的流体进行加热,使该部分流体首先被加热到人体可以耐受的安全温度(例如37℃左右),之后,该部分流体再进过第一加热元件303的加热达到较高的消融温度,这样做可以避免流体在导管远端突然升温过大对人体造成伤害,从而确保产品的安全性,同时也可提升加热效率。第二加热元件306的数量可以是多个,多个第二加热元件306优选沿流体输送管件305的轴向并排设置。
进一步的,如图3c所示,第二加热元件306包括第三螺旋结构306a和与第三螺旋结构306a连接的第三纵向延伸部分306b。其中,所述第三螺旋结构306a围绕第一纵向延伸部分305b设置,且所有第三螺旋结构306a均位于手柄308中,确保产品的安全性。可选的,所述第三螺旋结构306a亦可以是电阻丝或感应线圈,同样在通电状态下实现加热。第三纵向延伸部分306b亦可以是导线,沿着流体输送管件305的管壁布置,且近端与导管体近端上的电性输入输出接口连接,从而与控制装置100或消融能量输出装置200相连接,并以此接收外部的电能输入。
继续参阅图3c,电生理导管300还包括第二温度传感器307。第二温度 传感器307可设置于导管体301的近端,用于采集导管体30的温度信息;或者,第二温度传感器307设置于第二加热元件306上,用于采集第二加热元件306的温度信息;又或者,两个或两个以上的第二温度传感器307同时设置于导管体301的近端和第二加热元件306上,用于同时采集导管体301和第二加热元件306的温度信息。并且第二温度传感器307反馈回的温度信息通过电连接线路反馈至控制装置100。进而控制装置100根据第二温度传感器307反馈回的温度信息,控制第二加热元件306的加热温度。优选的,第二温度传感器307设置于流体输送管件305上,并靠近第二加热元件306的远端布置,更具体的,第二温度传感器307靠近第二加热元件306之第三螺旋结构306a的远端布置。当第二加热元件306为多个时,可在第二加热元件306的第三螺旋结构306a之间布置一个第二温度传感器307。同理,第二温度传感器307的数量和位置也可以根据实际需要进行灵活配置,本发明对此也不作具体的限定。
接下来参阅图3a和图3c,电生理导管300还包括手柄308,设置于导管体301上并位于导管体301的近端,用于控制整个导管体301的转动和弯曲等操作。并且,手柄308上设置有多个接口,优选包括:至少一个电性输入输出接口;至少一个流体输入接口;至少一个流体输出接口;以及至少一个内腔接口。本发明实施例中,手柄308具体包括:一个内腔接口3081,用来插入导丝、标测导管、输送造影剂等器械;两个电性输入输出接口,分别是加热能量输入输出接口3082,以及温度传感器通讯接口3083;一个流体输入接口3084;以及一个流体输出接口3085。
所有加热元件可与同一个加热能量输入输出接口3082连接,此时,该加热能量输入输出接口3082设置有与相对应的不同的电流通道,供不同的加热元件使用。所有温度传感器可与同一个温度传感器通讯接口3083连接,且该温度传感器通讯接口3083也设置有与相对应的不同的数据通道,供不同的温度传感器使用。流体输入接口3084与流体输送管件305流体连通,流体输入接口3084进而与消融能量输出装置200连接,即可将消融能量输出装置200提供的流体送入电生理导管300。流体输出接口3085与前述导管体301中的 流体排放管道流体连通,用于将消融后的流体排出导管。
更进一步的,导管体301还包括外管309和芯杆310,手柄308设置在外管309上,流体输送管件305和芯杆310并排地穿设于外管309中。其中,芯杆310为中空结构且可活动地设置在外管309内,且通过调节手柄308可使芯杆310在外管309内移动,以完成球囊302出鞘释放和入鞘回撤。芯杆310的近端与手柄308上的内腔接口3081相连通,用来输送相关器械如导丝、标测导管或造影液等。实际应用时,芯杆310的远端伸出外管309并与球囊302的远端连接,而球囊302的近端则与外管309连接,流体排放管道设置于所述芯杆310和外管309之间。优选的,芯杆310的远端设置有显影标识311,显影标识311的材料为金属显影材料,术中,医生可借助于显影设备,由显影标识311确认球囊302相对于鞘管的位置。本发明实施例中,流体输送管件305粘结于芯杆310的外部,然而该流体输送管件305也可替代地仅仅通过由第一螺旋结构305a环绕芯杆310而固定于芯杆310,使得该流体输送管件305和芯杆310相对于彼此轴向移动。
参阅图3d,并结合图3a,电生理导管300还包括第三加热元件312,设置在球囊302上,用于对一预定区域Q进行加热。这里,预定区域Q为目标组织上的一加热区域。第三加热元件312可以设置于球囊302的外表面,也可以设置于球囊302的内表面,也可设置于双层球囊的内表面和外表面之间,优选的,第三加热元件312设置于球囊302的内表面或者是内表面和外表面之间,这样可以避免第三加热元件312直接与目标组织接触,造成脱落等问题,提高产品的安全性。第三加热元件312的数量可以为多个,多个第三加热元件312优选均匀分布于球囊302上,例如在周向上均匀布置。所有第三加热元件312可以同时启动进行加热,也可以只部分启动进行加热,此可以根据实际需要确定。需要说明的是,第三加热元件312的数量和位置可以根据实际需要进行确定。可选的,第三加热元件312具体是消融电极,通过导线L与电生理导管300近端的加热能量输入输出接口3082连接。
进一步的,电生理导管300还包括第三温度传感器313,亦设置在球囊302上,用于采集第三加热元件312的温度信息。优选的,第三温度传感器 313设置在第三加热元件312的附近,例如在相邻两个第三加热元件312之间布置一个第三温度传感器313。并且第三温度传感器313反馈回的温度信息通过电连接线路反馈至控制装置100。进而控制装置100根据第三温度传感器313反馈回的第三加热元件312的温度信息,控制第三加热元件312的加热温度,以此调控目标组织的消融温度。这里,第三加热元件312的温度信息即是球囊表面的温度信息。
更进一步的,电生理导管300还包括第四温度传感器314,用于采集球囊302或导管体301的温度信息。第四温度传感器314设置于球囊302上,或者设置于导管体301上,又或者,两个或两个以上第四温度传感器314同时设置于球囊302和导管体301上。其中当第四温度传感器314设置于导管体301时,具体可设置在芯杆310的远端并位于球囊302的内部。第四温度传感器314与手柄308上的温度传感器通讯接口3083连接,温度传感器通讯接口3083可与控制装置100连接。进而控制装置100还可根据第四温度传感器314反馈回的球囊的温度信息,控制冷冻消融或热消融的温度。需要说明的是,上述提到的所有温度传感器可以是连接同一个温度传感器通讯接口,也可以是连接不同的温度传感器通讯接口。同样的,上述所有加热元件可以是连接同一个加热能量输入输出接口,也可以是连接不同的加热能量输入输出接口。
进一步的,消融系统10还包括一显示装置,与控制装置100连接,用于实时显示第一温度传感器304、第二温度传感器307、第三温度传感器313及第四温度传感器314中任一个反馈回的温度信息,以便医生根据这些温度信息,调节冷冻消融或热消融的能量。
接下来结合图5至图7,对消融系统10的结构和工作流程作更进一步的描述说明。
图5提供了本实施例优选的消融系统10的结构框图,如图5所示,控制装置100包括控制单元,所述控制单元优选包括制冷控制单元110和制热控制单元120。消融能量输出装置200优选包括制冷单元210、制热单元220、流体输出通道230、流体源240和流体输入通道250。
流体源240具体为一容器,用于存储消融用的流体,这里的流体优选为 二氧化碳或一氧化二氮。二氧化碳或一氧化二氮的使用可有效缩短每一次消融后的自然复温时间,提高手术效率。流体源240分别与流体输入通道250和流体输出通道230连通。流体输入通道250用于将外界提供的流体输入流体源240,但实际应用时,流体输入通道250可不作设置。流体输出通道230进而用于向电生理导管输出流体源240中的流体。流体输出通道230具体与电生理导管300上的流体输入接口3084连接。
制冷单元210设置于流体输出通道230上,用于对流体输出通道230中输送的流体进行制冷。制冷单元210可以是压缩机或其它制冷装置,本发明对其结构不作具体限定。制冷单元210用于与制冷控制单元110通讯连接,以通过制冷控制单元110控制制冷单元210的工作状态。
制热单元220用于与电生理导管300电连接,用于向所有加热元件或部分加热元件提供加热用的能量。制热单元220具体与电生理导管300上的加热能量输入输出接口3082连接即可。此外,制热单元220还用于与制热控制单元120通讯连接,以通过制热控制单元120控制制热单元220的能量输出状态。制热单元220可以是高频能量源(高频加热电源),与电生理导管300上的第一加热元件303、第二加热元件306和第三加热元件312中的至少一个电连接,用于向这些加热元件提供加热用的高频高压电流。制热单元220还可以是普通电源,与电生理导管300上的第一加热元件303和第二加热元件306中的至少一个电连接,用于向这些加热元件提供加热用的电流,电流可以是交流电流或直流电流。
实际应用时,制冷单元210和制热单元220可同时工作,例如在实施热消融时,制冷单元210和制热单元220均正常工作,此时,通过制冷单元210使流体输出通道230向电生理导管300提供冷冻液体,同时制热单元220亦向电生理导管300上的第一加热元件303提供电流,或同时向第一加热元件303和第二加热元件306提供电流,使流经电生理导管300的冷冻液体经过这些加热元件的加热后,转变为热消融气体向球囊302喷射。较佳地,在一些实施例中,在实施热消融时,制冷单元210不工作,而制热单元220正常工作,此时,流体输出通道230向电生理导管300提供第一流体(可以是气体、 液体或气液混合),而制热单元220向电生理导管300上的第一加热元件303,或同时向第一加热元件303和第二加热元件306提供电流,使流经电生理导管300的第一流体经过这些加热元件的加热后,转变为热消融气体向球囊302喷射。然而,应知晓的是,冷冻消融时,制热单元220并不工作,仅制冷单元210单独制冷。
更进一步来说,制冷控制单元110用于根据接收到冷冻消融的指令,控制制冷单元210工作,使流体输出通道230向电生理导管300提供冷冻液体(即第二流体)。而制热控制单元120用于根据接收到热消融的指令,控制制热单元220工作,同时制冷控制单元110选择性控制制冷单元210工作或不工作,使流体输出通道230向电生理导管300提供第一流体,进而第一流体在流体输送管件305中升温后,向球囊302内表面喷射。本发明实施例中,可在手柄308或电脑界面上设置热消融按钮和冷冻消融按钮,当操作者启动热消融按钮时,即向制热控制单元120发出热消融的指令,而当操作者启动冷冻消融按钮时,即向制冷控制单元110发出冷冻消融的指令。其中电脑界面可以设置在控制装置100或消融能量输出装置200上。
在一非限制性的操作中,制冷控制单元110向制冷单元210发出一制冷信号,制冷单元210根据接收到的所述制冷信号进行制冷。类似的,制热控制单元120向制热单元220发出一制热信号,制热单元220根据接收到的所述制热信号,向第一加热元件303、第二加热元件306、第三加热元件312中的至少一个输出电流进行加热。
进一步的,在冷冻消融时,制冷控制单元110根据第四温度传感器314和第三温度传感313中的一个或二个反馈回的温度信息,控制制冷单元210调节其制冷温度,以此控制球囊表面的温度在预设的冷冻消融温度范围内。
进一步的,在热消融过程中,制热控制单元120根据第一温度传感器304、第二温度传感器307、第三温度传感器313以及第四温度传感器314中的至少一个反馈回的温度信息,控制制热单元220调节第一加热元件303和第二加热元件306中的至少一个的加热温度,以此控制球囊表面的温度在预设的热消融温度范围内。
更进一步的,在热消融过程中,制热控制单元120根据第三温度传感器313和第四温度传感器314中的一个或二个反馈回的温度信息,控制制热单元220调节第三加热元件312的加热温度,以此控制第三加热元件312在热消融目标组织时的温度。
本发明实施例中,消融系统10具体包括冷冻消融模式和热消融模式。
在一实施例中,如图6所示,当消融系统10进入冷冻消融模式时,即开始步骤400中的冷冻消融流程,该流程包括以下步骤:
步骤401:流体源向流体输出通道输出流体;
步骤402:制冷控制单元控制制冷单元制冷;
步骤403:经过制冷后,使流体到达预设的制冷温度;
步骤404:向球囊内表面喷射冷冻流体;这里,步骤401、402、403、404实际上可同时进行,即开设制冷的同时向球囊内表面喷射冷冻液体;
步骤405:制冷过程中,制冷控制单元实时根据第三温度传感器313和第四温度传感器314中的至少一个反馈回的温度信息,控制制冷单元的制冷温度;
步骤406:球囊表面的温度到达冷冻消融所需的温度(例如是-10℃~-60℃),并维持一段时间后(例如是120~180秒),即可结束冷冻消融。
完成一次冷冻消融后,根据实际冷冻消融的效果,医生确定是否进行下一次的冷冻消融或直接进入热消融模式(步骤500)。但是,应知晓的是,每次冷冻消融后,球囊302需要事先在体内自然复温到体温(步骤407),才可实施下一次的冷冻消融。
在另一实施例中,如图7所示,当消融系统10进入热消融模式,则开始步骤500中的热消融流程,该流程包括以下步骤:
步骤501:流体源向流体输出通道输出流体;
步骤502:制热控制单元控制制热单元工作,以向第一加热元件提供电流,或同时向第一加热元件与第二加热元件提供电流;
步骤503:经过二次加热后,流体到达预设的制热温度;
步骤504:向球囊内表面喷射热消融气体;这里,步骤501、502、503、 504也可同时进行,即开设制热的同时向球囊内表面喷射热消融气体;
步骤505:制热过程中,制热控制单元120实时根据第一温度传感器304、第二温度传感器307、第三温度传感器313以及第四温度传感器中的至少一个反馈回的温度信息,控制制热单元220的电流输出状态,从而调整第一加热元件303的加热温度,或同时调整第一加热元件303和第二加热元件306的加热温度;
步骤506:球囊表面的温度到达热消融所需的温度(例如是50℃~80℃),并维持一段时间后(例如是10~50秒),即可结束热消融。同理,每一次热消融后,球囊也将在体内自然复温到体温(步骤507)。
在另一实施例中,当消融系统10进入热消融模式,则还可通过以下方式实施热消融:制热控制单元120控制制热单元220工作,以向第三加热元件312输出高频高压的电流,使第三加热元件312利用消融电极对目标组织进行烧灼,从而达到消除心电异常组织的目的。本发明实施例中,当第三加热元件312工作时,消融能量输出装置200依然向电生理导管300提供第一流体,同时第一加热元件303和第二加热元件306继续工作,这样做使电生理导管300在喷射热消融气体的同时,还通过第三加热元件312对目标组织进行烧灼,实现目标组织的热消融。在另有一些实施例中,当第三加热元件312工作时,消融能量输出装置200停止向电生理导管300提供任何流体,使第三加热元件312单独对目标组织进行热消融。
最后,本发明较佳实施例如上所述,但不限于上述实施例所限定的范围,例如消融能量输出装置200和控制装置100可以集成在一个设备中,在设备内部,两者通讯连接,又例如,控制单元可以采用现有的控制器、处理器等控制装置,此外,温度传感器可选择热电偶来实现,球囊可以是单层球囊、双层球囊,球囊上还可设置标测电极。除此之外,在较佳的方案中,在制热过程中,医生可主要根据第四温度传感器反馈回的球囊温度信息,并结合其他温度传感器反馈回的加热元件的温度信息,来调节对应加热元件的加热温度,这样可对设备做出快速和准确的调节,温度调节的效率高,效果好。并且,所有温度传感器反馈回的温度可实时在屏幕上显示,便于医生观看,使 得温度调节更为直观方便。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (23)

  1. 一种电生理导管,包括导管体以及设置于所述导管体之远端的球囊,其特征在于,所述电生理导管还包括第一加热元件和第一温度传感器,且所述导管体包括流体输送管件;所述流体输送管件的远端设置于所述球囊内,用于向所述球囊释放流体;所述第一加热元件设置于所述流体输送管件的远端,用于对所述流体输送管件中的流体进行加热;所述第一温度传感器设置于所述导管体的远端或所述第一加热元件上,用于采集所述导管体或所述第一加热元件的温度信息;其中:
    当所述第一加热元件工作时,所述流体输送管件用于向所述球囊释放热消融气体,当所述第一加热元件不工作时,所述流体输送管件用于向所述球囊释放冷冻液体。
  2. 根据权利要求1所述的电生理导管,其特征在于,所述电生理导管还包括第二加热元件和第二温度传感器;所述第二加热元件设置于所述流体输送管件的近端,用于对进入所述流体输送管件的流体进行预加热;所述第二温度传感器设置于所述导管体的近端或所述第二加热元件上,用于采集所述导管体或所述第二加热元件的温度信息;其中:
    当所述第一加热元件和所述第二加热元件同时工作时,所述流体输送管件用于向所述球囊释放热消融气体,且当所述第一加热元件和所述第二加热元件均不工作时,所述流体输送管件用于向所述球囊释放冷冻液体。
  3. 根据权利要求2所述的电生理导管,其特征在于,所述流体输送管件包括第一螺旋结构和与所述第一螺旋结构连通的第一纵向延伸部分;所述第一加热元件设置于所述第一纵向延伸部分上;所述第一温度传感器设置于所述流体输送管件上,并靠近所述第一加热元件的远端。
  4. 根据权利要求3所述的电生理导管,其特征在于,所述第一螺旋结构上设置有多个流体喷射口,多个所述流体喷射口用于朝不同方向喷射流体。
  5. 根据权利要求2所述的电生理导管,其特征在于,所述电生理导管还包括手柄,与所述导管体的近端连接,且所述第二加热元件设置于所述手柄 中。
  6. 根据权利要求5所述的电生理导管,其特征在于,所述手柄包括至少一个电性输入输出接口,一个流体输入接口和一个流体输出接口;
    所述流体输入接口与所述流体输送管件的近端相连通;所述第一加热元件、第一温度传感器、第二加热元件及第二温度传感器与所述至少一个电性输入输出接口连接;所述流体输出接口用于将导管体内的流体排出所述导管体。
  7. 根据权利要求2所述的电生理导管,其特征在于,所述第二温度传感器设置于所述流体输送管件上,并靠近所述第二加热元件的远端。
  8. 根据权利要求1或2所述的电生理导管,其特征在于,所述第一加热元件包括第二螺旋结构和与所述第二螺旋结构电连接的第二纵向延伸部分,所述第二螺旋结构围绕所述流体输送管件设置,所述第二纵向延伸部分沿着所述流体输送管件的管壁延伸并与所述导管体近端上的一电性输入输出接口连接。
  9. 根据权利要求2所述的电生理导管,其特征在于,所述第一加热元件和/或所述第二加热元件为电阻丝或感应线圈。
  10. 根据权利要求1或2所述的电生理导管,其特征在于,所述电生理导管还包括第三加热元件和第三温度传感器;所述第三加热元件设置于所述球囊上,用于对一目标区域进行加热;所述第三温度传感器设置于所述球囊上,用于采集所述第三加热元件的温度信息。
  11. 根据权利要求1或2所述的电生理导管,其特征在于,所述电生理导管还包括第四温度传感器,所述第四温度传感器设置于所述球囊和/或所述导管体上,用于采集所述球囊和/或所述导管体的温度信息。
  12. 根据权利要求1或2所述的电生理导管,其特征在于,所述导管体还包括外管和中空的芯杆,所述流体输送管件和所述芯杆均穿设于所述外管内,且所述芯杆可活动地设置于所述外管内;所述球囊的远端与所述芯杆连接,所述球囊的近端与所述外管连接;且所述流体输送管件的远端螺旋缠绕于所述芯杆上。
  13. 一种消融系统,其特征在于,包括控制装置、消融能量输出装置以及根据权利要求1-12中任一项所述的电生理导管;所述消融能量输出装置与所述电生理导管相连通,用于向所述电生理导管提供流体;
    所述控制装置被配置为,控制所述消融能量输出装置选择性地向流体输送管件提供第一流体或第二流体,所述第二流体为冷冻液体;
    所述控制装置还被配置为,当所述消融能量输出装置向流体输送管件提供所述第一流体时,控制第一加热元件工作,以使所述第一加热元件对进入所述流体输送管件的第一流体进行加热,而使所述流体输送管件向球囊喷射热消融气体,同时所述控制装置根据第一温度传感器反馈回的温度信息,控制所述第一加热元件的加热温度,以使所述球囊表面的温度在预设的热消融温度范围内;
    并且所述控制装置还被配置为,当所述消融能量输出装置向流体输送管件提供所述第二流体时,控制第一加热元件不工作,以使所述流体输送管件向所述球囊喷射所述冷冻液体。
  14. 根据权利要求13所述的消融系统,其特征在于,所述电生理导管还包括第二加热元件和第二温度传感器;所述第二加热元件设置于所述流体输送管件的近端;所述第二温度传感器设置于所述导管体的近端或所述第二加热元件上;
    所述控制装置还被配置为,当所述消融能量输出装置向所述流体输送管件提供所述第一流体时,还控制所述第二加热元件工作,以使所述第二加热元件对刚进入所述流体输送管件的流体进行预加热,同时所述控制装置还根据第二温度传感器反馈回的温度信息,控制所述第二加热元件的加热温度。
  15. 根据权利要求14所述的消融系统,其特征在于,所述消融能量输出装置包括流体源、制热单元、制冷单元和流体输出通道;
    所述流体源用于存储流体;所述流体输出通道与所述流体源相连通,用于输出所述流体源中的流体;所述制冷单元设置于所述流体输出通道上,用 于对所述流体输出通道中的流体进行制冷;所述制热单元用于向所述第一加热元件和/或所述第二加热元件提供加热用的能量;
    所述控制装置还被配置为,当所述消融能量输出装置向所述流体输送管件提供所述第二流体时,控制所述制冷单元对所述流体输出通道中的流体进行制冷,以使所述消融能量输出装置向流体输送管件提供所述冷冻液体;
    所述控制装置还被配置为,当所述消融能量输出装置向所述流体输送管件提供所述第一流体时,控制所述制热单元向所述第一加热元件提供加热用的能量或向所述第一加热元件和所述第二加热元件提供加热用的能量,以使所述第一加热元件,或所述第一加热元件和所述第二加热元件对所述流体输出通道中的流体进行加热。
  16. 根据权利要求15所述的消融系统,其特征在于,所述预设的热消融温度范围为50℃到80℃。
  17. 根据权利要求15所述的消融系统,其特征在于,所述流体为二氧化碳或一氧化二氮。
  18. 根据权利要求15所述的消融系统,其特征在于,所述制冷单元为压缩机,所述制热单元为高频加热源或供电阻丝加热的普通电源。
  19. 根据权利要求15所述的消融系统,其特征在于,所述控制装置包括制冷控制单元和制热控制单元;
    所述制冷单元用于根据所述制冷控制单元发出的一制冷信号,对所述流体输出通道中的流体进行制冷;所述制热单元用于根据所述制热控制单元发出的一制热信号,向所述第一加热元件和/或所述第二加热元件提供加热用的能量。
  20. 根据权利要求15所述的消融系统,其特征在于,所述电生理导管还包括第三加热元件和第三温度传感器,均设置于所述球囊上;
    所述控制装置还被配置为,当所述消融能量输出装置停止向所述流体输送管件提供流体,或当所述消融能量输出装置向所述流体输送管件提供所述 第一流体时,控制所述制热单元向所述第三加热元件提供加热用的能量,使所述第三加热元件对一目标组织进行加热,同时所述控制装置还根据所述第三温度传感器反馈回的第三加热元件的温度信息,控制所述第三加热元件的加热温度。
  21. 根据权利要求20所述的消融系统,其特征在于,所述电生理导管还包括第四温度传感器,设置于所述球囊和/或所述导管体上;
    所述控制装置还被配置为,用于根据所述第四温度传感器反馈回的球囊和/或所述导管体的温度信息,调节冷冻消融或热消融温度。
  22. 根据权利要求21所述的消融系统,其特征在于,所述消融系统还包括一显示装置,用于显示所述第一温度传感器、所述第二温度传感器、所述第三温度传感器及所述第四温度传感器中的任一项反馈回的温度信息。
  23. 根据权利要求14-22中任一项所述的消融系统,其特征在于,所述控制装置被配置为,控制所述消融能量输出装置向所述电生理导管提供所述第二流体并持续一段时间后,再控制所述消融能量输出装置向所述电生理导管提供所述第一流体,同时控制所述消融能量输出装置向所述第一加热元件提供加热用的能量或向所述第一加热元件和所述第二加热元件提供加热用的能量,以在至少一次冷冻消融后实施至少一次热消融。
PCT/CN2019/118882 2018-12-28 2019-11-15 电生理导管及消融系统 WO2020134683A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19903360.6A EP3903705A4 (en) 2018-12-28 2019-11-15 ELECTROPHYSIOLOGICAL CATHETER AND ABLATION SYSTEM
US17/419,219 US20220110669A1 (en) 2018-12-28 2019-11-15 Balloon catheter and ablation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811653052.3A CN111374751B (zh) 2018-12-28 2018-12-28 电生理导管及消融系统
CN201811653052.3 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020134683A1 true WO2020134683A1 (zh) 2020-07-02

Family

ID=71129673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/118882 WO2020134683A1 (zh) 2018-12-28 2019-11-15 电生理导管及消融系统

Country Status (4)

Country Link
US (1) US20220110669A1 (zh)
EP (1) EP3903705A4 (zh)
CN (1) CN111374751B (zh)
WO (1) WO2020134683A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111973264A (zh) * 2020-09-23 2020-11-24 上海导向医疗系统有限公司 冷冻消融系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230300949A1 (en) * 2022-03-17 2023-09-21 Varian Medical Systems, Inc. Apparatuses and methods for sequential heating of cryo-fluid in cryoablation systems
CN116636922B (zh) * 2023-05-12 2024-05-03 心诺普医疗技术(北京)有限公司 磁感应热消融球囊导管及消融方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103442631A (zh) * 2010-11-27 2013-12-11 Securus医药集团股份有限公司 消融和温度测量设备
CN103917184A (zh) * 2011-10-27 2014-07-09 美敦力 带有射频末梢的低温气囊器械
CN105228542A (zh) * 2013-03-13 2016-01-06 康沣生物科技(上海)有限公司 冷冻消融治疗系统
CN106061421A (zh) * 2013-12-06 2016-10-26 美敦力 用来监测肺静脉消融和阻塞的远端球囊阻抗和温度记录
US20170312027A1 (en) * 2016-05-02 2017-11-02 Affera, Inc. Catheter sensing and irrigating
WO2018089773A1 (en) * 2016-11-10 2018-05-17 Fractyl Laboratories, Inc. Systems, devices, and methods for performing medical procedures in the intestine
CN108135645A (zh) * 2015-10-20 2018-06-08 美敦力 在冷冻消融过程中的温度和应变测量技术
CN108366820A (zh) * 2015-10-26 2018-08-03 纽韦弗医疗设备公司 能量递送系统及其用途

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500174B1 (en) * 1997-07-08 2002-12-31 Atrionix, Inc. Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member
US7527622B2 (en) * 1999-08-23 2009-05-05 Cryocath Technologies Inc. Endovascular cryotreatment catheter
US7617005B2 (en) * 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
TWI235073B (en) * 2002-08-20 2005-07-01 Toray Industries Catheter for treating cardiac arrhythmias
CA2551752A1 (en) * 2004-01-06 2005-07-21 Toray Industries, Inc. Balloon catheter
CN2671511Y (zh) * 2004-01-16 2005-01-19 黄栋杰 子宫热球治疗仪
US20070149959A1 (en) * 2005-12-23 2007-06-28 Sanarus Medical, Inc. Cryoprobe for low pressure systems
JP5444840B2 (ja) * 2009-05-21 2014-03-19 東レ株式会社 バルーン付きアブレーションカテーテル及びバルーン付きアブレーションカテーテルシステム
US7938822B1 (en) * 2010-05-12 2011-05-10 Icecure Medical Ltd. Heating and cooling of cryosurgical instrument using a single cryogen
US20120029512A1 (en) * 2010-07-30 2012-02-02 Willard Martin R Balloon with surface electrodes and integral cooling for renal nerve ablation
CN103547229B (zh) * 2010-08-05 2017-09-26 美敦力Af卢森堡有限责任公司 用于肾神经调制的低温消融装置、系统及方法
CN202637100U (zh) * 2012-05-31 2013-01-02 屈百鸣 一种冷冻球囊消融导管
US9636172B2 (en) * 2013-05-31 2017-05-02 Medtronic Cryocath Lp Compliant balloon with liquid injection
US9622806B2 (en) * 2013-07-15 2017-04-18 Medtronic Cryocath Lp Heated electrodes for continued visualization of pulmonary vein potentials
US10098685B2 (en) * 2013-10-30 2018-10-16 Medtronic Cryocath Lp Feedback system for cryoablation of cardiac tissue
US10441338B2 (en) * 2014-01-14 2019-10-15 Medtronic Cryocath Lp Balloon catheter with fluid injection elements
US10799280B2 (en) * 2015-10-22 2020-10-13 Medtronic Cryocath Lp Post ablation tissue analysis technique
CN106880400B (zh) * 2015-12-16 2020-10-23 上海微创电生理医疗科技股份有限公司 电生理导管及射频消融系统
US20180333192A1 (en) * 2017-05-16 2018-11-22 St. Jude Medical, Cardiology Division, Inc. Apparatus and system for heated ablation balloon
WO2018226751A1 (en) * 2017-06-05 2018-12-13 St. Jude Medical, Cardiology Division, Inc. Balloon-in-basket ablation catheter
CN207693670U (zh) * 2017-06-12 2018-08-07 康沣生物科技(上海)有限公司 一种带电极的冷冻消融系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103442631A (zh) * 2010-11-27 2013-12-11 Securus医药集团股份有限公司 消融和温度测量设备
CN103917184A (zh) * 2011-10-27 2014-07-09 美敦力 带有射频末梢的低温气囊器械
CN105228542A (zh) * 2013-03-13 2016-01-06 康沣生物科技(上海)有限公司 冷冻消融治疗系统
CN106061421A (zh) * 2013-12-06 2016-10-26 美敦力 用来监测肺静脉消融和阻塞的远端球囊阻抗和温度记录
CN108135645A (zh) * 2015-10-20 2018-06-08 美敦力 在冷冻消融过程中的温度和应变测量技术
CN108366820A (zh) * 2015-10-26 2018-08-03 纽韦弗医疗设备公司 能量递送系统及其用途
US20170312027A1 (en) * 2016-05-02 2017-11-02 Affera, Inc. Catheter sensing and irrigating
WO2018089773A1 (en) * 2016-11-10 2018-05-17 Fractyl Laboratories, Inc. Systems, devices, and methods for performing medical procedures in the intestine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3903705A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111973264A (zh) * 2020-09-23 2020-11-24 上海导向医疗系统有限公司 冷冻消融系统

Also Published As

Publication number Publication date
CN111374751A (zh) 2020-07-07
EP3903705A4 (en) 2022-02-23
US20220110669A1 (en) 2022-04-14
CN111374751B (zh) 2021-05-28
EP3903705A1 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
US8632529B2 (en) Ablation devices and methods of use
CA2181891C (en) Cryogenic mapping and ablation catheter
US9510888B2 (en) Cryogenic balloon device with electroporation treatment region
US10588682B2 (en) Apparatus and methods related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls
US8679105B2 (en) Device and method for pulmonary vein isolation
JP2017176879A (ja) 多セグメント型アブレーション電極を有する灌注式アブレーションカテーテル
EP2704653B1 (en) Adiabatic cooling system for medical devices
US20120089047A1 (en) Cryoablation apparatuses, systems, and methods for renal neuromodulation
JP2013528445A (ja) 高周波による経カテーテルアブレーション中の安定化のための可逆的に接着するカテーテル
WO2019052342A1 (zh) 冷冻消融导管及系统
WO2020134683A1 (zh) 电生理导管及消融系统
CA3233036A1 (en) Multi-modality ablation catheter having a shape memory stylet
US20230355290A1 (en) Cryoablation probe assembly having fluid sheath and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019903360

Country of ref document: EP

Effective date: 20210728