WO2017047545A1 - アブレーションカテーテル - Google Patents
アブレーションカテーテル Download PDFInfo
- Publication number
- WO2017047545A1 WO2017047545A1 PCT/JP2016/076783 JP2016076783W WO2017047545A1 WO 2017047545 A1 WO2017047545 A1 WO 2017047545A1 JP 2016076783 W JP2016076783 W JP 2016076783W WO 2017047545 A1 WO2017047545 A1 WO 2017047545A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ablation catheter
- expansion body
- balloon
- peltier element
- shaft
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
Definitions
- the present invention relates to an ablation catheter.
- catheter ablation is known as a treatment method for arrhythmias such as atrial fibrillation, atrial flutter, paroxysmal supraventricular tachycardia, atrial tachycardia, ventricular tachycardia, and premature ventricular contraction.
- catheter ablation “catheter myocardial cauterization” that prevents abnormal electrical signals from being transmitted to the entire heart by cauterizing myocardial tissue causing arrhythmia and myocardial tissue causing arrhythmia”
- Catheter myocardial freezing cauterization freezing coagulation ablation
- Patent Document 1 describes an ablation catheter used for cryocoagulation ablation.
- the ablation catheter of Patent Document 1 includes a double-structured balloon including an inner balloon and an outer balloon. By forming a hole in the inner balloon by a cutting means, the coolant in the inner balloon is used as the outer balloon. It can be exhausted through.
- the expanded balloon is brought into contact with the myocardial tissue (target site) causing arrhythmia, and a coolant (for example, nitrous oxide, liquid nitrogen, The target site can be frozen and solidified by introducing argon or the like.
- a coolant for example, nitrous oxide, liquid nitrogen
- An object of the present invention is to provide an ablation catheter excellent in convenience.
- the cooling unit includes a Peltier element cooling unit that cools a heat generating part of the Peltier element.
- the myocardial tissue causing arrhythmia can be frozen and solidified by the cooling unit. Therefore, a coolant as in the conventional configuration is not necessary, and accordingly, a device for supplying and recovering the coolant is also unnecessary.
- the cooling unit has a Peltier element
- the temperature of the Peltier element can be controlled by energization, so that temperature management can be performed with higher accuracy.
- the ablation catheter is excellent in convenience.
- FIG. 1 is a perspective view of an ablation catheter according to the first embodiment of the present invention.
- FIG. 2 is a cross-sectional view of the ablation catheter shown in FIG.
- FIG. 3 is a cross-sectional view of the ablation catheter shown in FIG.
- FIG. 4 is a cross-sectional view of the ablation catheter shown in FIG.
- FIG. 5 is a diagram for explaining a technique of cryocoagulation ablation using the ablation catheter shown in FIG.
- FIG. 6 is a view for explaining a technique of cryocoagulation ablation using the ablation catheter shown in FIG.
- FIG. 7 is a view for explaining a technique of cryocoagulation ablation using the ablation catheter shown in FIG. FIG.
- FIG. 8 is a diagram for explaining a technique of cryocoagulation ablation using the ablation catheter shown in FIG.
- FIG. 9 is a diagram for explaining a technique of cryocoagulation ablation using the ablation catheter shown in FIG.
- FIG. 10 is a perspective view of an ablation catheter according to the second embodiment of the present invention.
- FIG. 11 is a cross-sectional view of an ablation catheter according to the third embodiment of the present invention.
- FIG. 1 is a perspective view of an ablation catheter according to the first embodiment of the present invention.
- 2, 3 and 4 are cross-sectional views of the ablation catheter shown in FIG. 1, respectively.
- FIG. 5 to FIG. 9 are diagrams for explaining the procedure of cryocoagulation ablation using the ablation catheter shown in FIG.
- the right side in FIG. 1 is also referred to as “tip”, and the left side is also referred to as “base end”.
- An ablation catheter system 100 shown in FIG. 1 is a medical device used for “frozen coagulation ablation (catheter myocardial cryoablation)” which is a treatment method for atrial fibrillation which is a kind of arrhythmia.
- frozen coagulation ablation a frozen cautery line (frostbite) is formed at the junction between the pulmonary vein and the left atrium, and the abnormal signal is confined in the pulmonary vein so that the abnormal signal is not transmitted to the atrium.
- frostbite frozen cautery line
- Such freezing and coagulation ablation is said to be effective in that electrical disconnection is possible while maintaining the physical strength of the myocardial tissue.
- Catheter myocardial cauterization which is another treatment method for atrial fibrillation, it requires less skill of the operator, and the operation time tends to be shorter. It can be said that this is a treatment with less burden.
- frozen coagulation ablation is not limited to the treatment of atrial fibrillation, but for the treatment of other arrhythmias (atrial flutter, paroxysmal supraventricular tachycardia, atrial tachycardia, ventricular tachycardia, ventricular extrasystole, etc.) Can also be applied.
- arrhythmias atrial flutter, paroxysmal supraventricular tachycardia, atrial tachycardia, ventricular tachycardia, ventricular extrasystole, etc.
- the ablation catheter system 100 includes an ablation catheter 200, a refrigerant supply device 300 and a heat insulating agent supply device 400 connected to the ablation catheter 200.
- the coolant C can be supplied from the coolant supply device 300 to the ablation catheter 200
- the heat insulating agent I can be supplied from the heat insulating agent supply device 400 to the ablation catheter 200.
- the ablation catheter 200 includes a long shaft 210 having flexibility, a cooling unit 240 provided at the tip of the shaft 210, and a sheath (regulator) 230 into which the shaft 210 is inserted. And having.
- the cooling unit 240 includes a Peltier element 250, an expansion body 260 cooled by the Peltier element 250, a balloon 270 that covers the expansion body 260, and Peltier element cooling that cools the Peltier element 250.
- a plurality of Peltier elements 250 are arranged along the circumferential direction of the shaft 210. As shown in FIG. 2, the outer surface (surface opposite to the shaft 210) of each Peltier element 250 becomes the heat absorbing portion 251, and the inner surface (surface on the shaft 210 side) becomes the heat generating portion 252.
- the Peltier elements 250 are energized.
- the arrangement and number of the Peltier elements 250 are not particularly limited. For example, one Peltier element 250 may be arranged so as to go around the shaft 210.
- the expansion body 260 is a net-like tubular body made of a linear body 261. Further, the expansion body 260 is expanded with respect to the shaft 210 in a natural state (a state in which an external force is not substantially applied. The state shown in FIG. 1). Moreover, it is preferable that the linear body 261 has shape memory property (pseudoelasticity). Thereby, the expansion body 260 can be easily expanded from the contraction state mentioned later.
- the expansion body 260 is in contact with the heat absorbing portion 251 of the Peltier element 250 (that is, is thermally connected), and is cooled by the Peltier element 250. Therefore, the expanded portion 260 in the expanded state cooled by the Peltier element 250 is brought into contact with the bonded portion between the left atrium and the pulmonary vein, whereby the bonded portion can be efficiently frozen and solidified.
- the constituent material of the linear body 261 is not particularly limited, but a material having excellent thermal conductivity is preferably used.
- the expansion body 260 can be efficiently cooled by using a material having excellent thermal conductivity.
- materials include aluminum, nickel, titanium, gold, silver, copper, platinum, iridium, tungsten, stainless steel, nickel-titanium alloy, nickel-aluminum alloy, inconel, cobalt-chromium alloy, cobalt-nickel.
- Examples include various metal materials such as alloys, and thermally conductive resin materials such as PPS (polyphenylene sulfide) -based composite materials and unsaturated polyester-based composite materials.
- PPS polyphenylene sulfide
- the configuration of the expansion body 260 is not particularly limited as long as it can be cooled by the Peltier element 250 and can contact the junction between the left atrium and the pulmonary vein.
- the extended body 260 may not have a configuration in which the plurality of linear bodies 261 intersect in a mesh pattern, but may have a configuration in which the plurality of linear bodies 261 are arranged in parallel with each other along the circumferential direction of the shaft 210.
- the balloon 270 is an expansion body that can be expanded / contracted, and covers the Peltier element 250 and the expansion body 260.
- the balloon 270 is expanded, and the heat insulating agent I is circulated in the balloon 270 in the expanded state.
- heat exchange between the expansion body 260 and the blood can be suppressed, and the blood is hardly cooled. Therefore, the freezing and coagulation of blood by the cooling unit 240 can be suppressed.
- the expansion body 260 can efficiently freeze and solidify the junction between the left atrium and the pulmonary vein.
- the constituent material of the balloon 270 is not particularly limited.
- thermoplastic resins such as polyolefin, polyester such as polyethylene terephthalate, polyvinyl chloride, polyurethane, polyurethane elastomer, nylon elastomer (polyamide elastomer), silicone rubber, latex rubber (natural) Rubber) and the like can be used.
- the balloon 270 may have a double structure so that safety can be ensured even if it ruptures (that is, the outflow of the heat insulating agent I into the body) can be ensured. That is, the balloon 270 may be configured to include an inner balloon and an outer balloon that covers the inner balloon. Moreover, it may be a triple or more structure.
- the heat insulating agent I is not particularly limited as long as the heat exchange between the expansion body 260 and blood can be suppressed as compared with the case where the expansion body 260 and blood directly touch each other.
- a saline solution saline solution
- Carbon dioxide silica airgel
- the temperature of the heat insulating agent I is preferably not less than the blood coagulation point and not more than the blood temperature, specifically about 10 ° C. to 30 ° C. Thereby, the freezing and coagulation of blood can be more effectively suppressed.
- the Peltier element cooling unit 280 has a flow path 281 that is provided on the shaft 210 and passes through the vicinity of the heat generating unit 252 of the Peltier element 250. Then, by circulating the refrigerant C through the flow path 281, the heat generating portion 252 of the Peltier element 250 can be cooled. In particular, in this embodiment, since the heat generating part 252 of the Peltier element 250 faces the flow path 281, the heat generating part 252 can be effectively cooled. Thus, by cooling the heat generating portion 252 of the Peltier element 250, it is possible to suppress a decrease in the cooling efficiency of the Peltier element 250.
- the arrangement of the Peltier element 250 is not particularly limited as long as the heat generating part 252 is arranged to be cooled by the Peltier element cooling part 280.
- the heat generating part 252 is located in the flow path 281. It may be arranged. With such an arrangement, the heat generating portion 252 can be cooled more effectively.
- the flow path 281 has a supply path 282 for supplying the refrigerant C to the vicinity of the Peltier element 250 and a recovery path 283 for recovering the refrigerant C used for cooling the Peltier element 250.
- the supply path 282 and the recovery path 283 are arranged side by side in the radial direction of the shaft 210, and the recovery path 283 is located on the outer peripheral side of the shaft 210 relative to the supply path 282.
- the recovery path 283 is a flow path for recovering the refrigerant C provided for cooling the Peltier element 250, so that the temperature of the refrigerant C flowing in the recovery path 283 flows in the supply path 282. It is higher than the temperature of C.
- the outer peripheral surface of the shaft 210 is less likely to be cooled by the refrigerant C, and the blood is less likely to be cooled by the shaft 210.
- the Peltier element cooling unit 280 is not particularly limited as long as the heat generating unit 252 of the Peltier element 250 can be cooled.
- the arrangement of the supply path 282 and the collection path 283 may be reversed. Further, the supply path 282 and the recovery path 283 may be arranged side by side in the circumferential direction of the shaft 210.
- the refrigerant C circulating in the flow path 281 is not particularly limited as long as the heat generating portion 252 of the Peltier element 250 can be cooled.
- water, saline (saline), antifreeze such as ethylene glycol, or the like can be used. Can be used.
- the shaft 210 has a tubular shape, and a lumen 211 is formed by a lumen.
- the lumen 211 is used to insert a guide wire or an electrode catheter used during the operation or to supply a contrast medium.
- the shaft 210 has a flow path 213 for supplying the heat insulating agent I into the balloon 270 and a flow path 214 for collecting the heat insulating agent I in the balloon 270, as shown in FIG. And having. While supplying the heat insulating agent I from the flow path 213 into the balloon 270, the heat insulating agent I in the balloon 270 is recovered from the flow path 214, thereby expanding the balloon 270 and circulating the heat insulating agent I in the balloon 270. be able to. Note that the heat insulating agent I may be simply supplied without being circulated in the balloon 270.
- the constituent material of the shaft 210 is not particularly limited.
- various resin materials such as polyamide, polyester, polyurethane, soft polyvinyl chloride, ABS resin, AS resin, polytetrafluoroethylene, and other resin materials, styrene , Polyolefin-based, polyurethane-based, polyester-based, polyamide-based, fluororubber-based, chlorinated polyethylene-based thermoplastic elastomers, and combinations of two or more of these (polymer alloys, polymer blends, laminates) Body, etc.) can be used.
- the sheath 230 has a tubular shape and is arranged around the shaft 210. In other words, the shaft 210 is inserted into the sheath 230. Further, the sheath 230 is slidable with respect to the shaft 210.
- the sheath 230 covers the expansion body 260 and the balloon 270 in an initial state (a state when the ablation catheter 200 is inserted into the living body). Therefore, the expansion body 260 maintains a contracted state from the natural state due to elastic deformation, and the balloon 270 also maintains a contracted state. Thus, if the expansion body 260 and the balloon 270 are covered with the sheath 230 in the initial state, the ablation catheter 200 can be smoothly inserted into the living body.
- the sheath 230 is slid to the proximal end side of the shaft 210 to expose the expansion body 260 and the balloon 270 from the sheath 230, so that the expansion body 260 is expanded by its restoring force.
- the balloon 270 becomes expandable.
- the constituent material of the sheath 230 is not particularly limited, and for example, the same material as the shaft 210 can be used.
- the ablation catheter system 100 has been described above. According to such an ablation catheter system 100, it is not necessary to use a coolant (nitrous oxide, liquid nitrogen, argon, etc.) as used in the conventional configuration, so there is no need to prepare a dedicated device.
- a coolant nitrogen oxide, liquid nitrogen, argon, etc.
- the device configuration is simplified and higher convenience can be exhibited.
- temperature management can be performed with higher accuracy.
- the configuration in which the cooling unit 240 includes the Peltier element 250 has been described, but the configuration of the cooling unit 240 is not particularly limited.
- the configuration of the cooling unit 240 is not particularly limited.
- the linear body 261 constituting the expansion body 260 may be formed into a tubular shape, and the expansion body 260 may be cooled by directly introducing the refrigerant C into the linear body 261.
- the right atrium 910 punctures the septal portion of the atrium and opens a hole that leads to the left atrium 920.
- the ablation catheter 200 is introduced into the left atrium 920 from the right atrium 910 together with a steerable sheath (not shown) that can be bent.
- the sheath 230 is slid to the proximal end side of the shaft 210 to expose the expansion body 260 and the balloon 270. Then, the expansion body 260 expands with a restoring force. The expansion of the expansion body 260 stops when the restoring force of the expansion body 260 and the contraction force of the balloon 270 are balanced, and the balanced state is maintained.
- the heat insulating agent I is circulated in the balloon 270.
- the balloon 270 is further expanded, and the expansion body 260 is further expanded in the balloon 270 as the balloon 270 is expanded.
- the expanded body 260 in the expanded state is brought into contact with the joint portion 940 between the left atrium 920 and the pulmonary vein 930 via the balloon 270.
- an electrode catheter (cardiac electrophysiology catheter) 800 is placed in the pulmonary vein 930 through the lumen 211. Then, the potential of the pulmonary vein 930 is measured by the electrode catheter 800, or electrical stimulation is applied to the pulmonary vein 930 to induce atrial fibrillation, thereby elucidating the mechanism of atrial fibrillation.
- a contrast agent is introduced into the pulmonary vein 930 through the lumen 211, and it is confirmed that the balloon 270 is in contact (contact) with the joint 940.
- the expansion body 260 is cooled by the Peltier element 250, and the joint portion 940 is cooled by, for example, about ⁇ 70 ° C. to ⁇ 20 ° C. by the cooled expansion body 260.
- the joint 940 is frozen and solidified, and a frozen cautery line 941 is formed at the joint 940 as shown in FIG.
- the joint 940 can be efficiently frozen and solidified by the expansion body 260. Further, since heat exchange between the expansion body 260 and blood or contrast medium is suppressed by the heat insulating agent I circulating in the balloon 270, coagulation of blood or contrast medium can be suppressed. On the other hand, since heat of blood or contrast medium is not easily transmitted to the expansion body 260, the temperature rise of the expansion body 260 can be suppressed, and the joint portion 940 can be frozen and solidified more effectively.
- the electrode catheter 800 and the ablation catheter 200 are removed from the living body. Thereby, freezing solidification ablation is complete
- the technique for one joint 940 out of the four joints 940 has been described, but the same technique may be performed for the remaining three joints 940.
- the balloon 270 that has been frozen and adhered to the joint 940 (tissue) must be peeled off immediately.
- the expansion body 260 is immediately warmed by reversing the direction of the current to the Peltier element 250. Can be released in a shorter time. Therefore, the safety of the device is improved.
- FIG. 10 is a perspective view of an ablation catheter according to the second embodiment of the present invention.
- the second embodiment will be described with reference to this drawing. However, the difference from the above-described embodiment will be mainly described, and the description of the same matters will be omitted.
- This embodiment is mainly the same as the first embodiment described above except that the configuration of the cooling unit is different.
- the cooling unit 240 includes a Peltier element 250, an expansion body 260 that is cooled by the Peltier element 250, and a Peltier element cooling unit 280 that cools the Peltier element 250. That is, the cooling unit 240 has a configuration in which the balloon 270 is omitted from the configuration of the first embodiment described above. Although not shown, the flow paths 213 and 214 are also omitted from the shaft 210 when the balloon 270 is omitted.
- the ablation catheter 200 is more convenient.
- FIG. 11 is a cross-sectional view of an ablation catheter according to the third embodiment of the present invention.
- the third embodiment will be described with reference to this figure, but the description will focus on the differences from the above-described embodiment, and the description of the same matters will be omitted.
- This embodiment is mainly the same as the second embodiment described above except that the configuration of the cooling unit is different.
- the cooling unit 240 includes a Peltier element 250, an expansion body 260 that is cooled by the Peltier element 250, a Peltier element cooling unit 280 that cools the Peltier element 250, and the expansion body 260.
- a cooling suppression unit 290 that suppresses cooling of blood. That is, the cooling unit 240 has a configuration in which a cooling suppression unit 290 is added to the configuration of the second embodiment described above. Therefore, only the cooling suppression unit 290 will be described below.
- the cooling suppression unit 290 includes a heated expansion body 290A located on the distal end side of the expansion body 260 and a heated expansion body 290B located on the proximal end side of the expansion body 260.
- These heated expansion bodies 290 ⁇ / b> A and 290 ⁇ / b> B are each a mesh-like tubular body made of a linear body 291.
- each of the heated expansion bodies 290A and 290B expands with respect to the shaft 210 in a natural state.
- the maximum diameters of the heated expansion bodies 290A and 290B are designed to be approximately equal to or smaller than the maximum diameter of the expansion body 260.
- Such heated expansion bodies 290A and 290B are in contact with the heat generating portion 252 of the Peltier element 250 (thermally connected), and are heated by the Peltier element 250. Therefore, blood can be warmed by the heated expansion bodies 290A and 290B, and coagulation of blood by the expansion body 260 can be suppressed.
- the apparatus configuration is simplified and the heat generated from the Peltier element 250 is effectively used. can do.
- the heated expansion bodies 290A and 290B are covered with the sheath 230 together with the expansion body 260, and maintain a contracted state from the natural state due to elastic deformation.
- the ablation catheter of the present invention has been described based on the illustrated embodiment.
- the present invention is not limited to this, and the configuration of each part may be replaced with an arbitrary configuration having the same function. Can do.
- any other component may be added to the present invention. Moreover, you may combine each embodiment suitably.
- the ablation catheter of the present invention is characterized by having a long shaft and a coolable cooling part provided on the shaft. According to such a configuration, the myocardial tissue causing arrhythmia can be frozen and solidified by the cooling unit. Therefore, a coolant as in the conventional configuration is not necessary, and accordingly, a device for supplying and recovering the coolant is also unnecessary.
- the cooling unit has a Peltier element
- the temperature of the Peltier element can be controlled by energization, so that temperature management can be performed with higher accuracy.
- the ablation catheter is excellent in convenience.
- the ablation catheter of the present invention has industrial applicability.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Otolaryngology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
アブレーションカテーテル(200)は長尺なシャフト(210)の先端部に冷却部(240)を有する。冷却部(240)は複数のペルチェ素子(250)、拡張体(260)及びバルーン(270)を有する。シャフト(210)の表面には複数のペルチェ素子(250)が配置されている。ペルチェ素子(250)の吸熱部(251)には管状の拡張体(260)が接触している。バルーン(270)はペルチェ素子(250)及び拡張体(260)を覆っている。ペルチェ素子(250)に電圧を印加すると、吸熱部(251)からその反対側の発熱部(252)に熱が移動する。その結果、吸熱部(251)に接する拡張体(260)が冷却される。左心房(920)と肺静脈(930)の接合部(940)はバルーン(270)を介して拡張体(260)によって冷凍凝固される。発熱部(252)に移動した熱は、シャフト(210)内の流路(281)を流れる冷媒(C)によって運び去られる。
Description
本発明は、アブレーションカテーテルに関するものである。
従来から、心房細動、心房粗動、発作性上室性頻拍、心房頻拍、心室頻拍、心室期外収縮等の不整脈の治療法として「カテーテルアブレーション」が知られている。また、カテーテルアブレーションとして、不整脈の原因となっている心筋組織を焼灼することで異常電気信号が心臓全体に伝わらないようにする「カテーテル心筋焼灼術」と、不整脈の原因となっている心筋組織を冷凍凝固することで異常電気信号が心臓全体に伝わらないようにする「カテーテル心筋冷凍焼灼術(冷凍凝固アブレーション)」と、が知られている。
特許文献1には、冷凍凝固アブレーションに用いられるアブレーションカテーテルが記載されている。特許文献1のアブレーションカテーテルは、内側バルーンおよび外側バルーンを備えた二重構造のバルーンを備えており、切断手段によって内側バルーンに孔を形成することで、内側バルーン内の冷却剤を、外側バルーンを介して排気することができるようになっている。このようなアブレーションカテーテルを用いれば、拡張したバルーンを不整脈の原因となっている心筋組織(対象部位)に当接させた状態で、内側バルーン内に冷却剤(例えば、亜酸化窒素、液体窒素、アルゴン等)を導入することで、前記対象部位を冷凍凝固することができる。
しかしながら、このようなアブレーションカテーテルでは、内側バルーン内に冷却剤を導入したり、内側バルーン内の冷却剤を回収したりする専用を装置が必要となり、利便性が悪いという問題がある。
本発明の目的は、利便性に優れるアブレーションカテーテルを提供することにある。
このような目的は、下記(1)~(8)の本発明により達成される。
(1)長尺なシャフトと、
前記シャフトに設けられた冷却可能な冷却部と、を有することを特徴とするアブレーションカテーテル。
(1)長尺なシャフトと、
前記シャフトに設けられた冷却可能な冷却部と、を有することを特徴とするアブレーションカテーテル。
(2) 前記冷却部は、ペルチェ素子を備える上記(1)に記載のアブレーションカテーテル。
(3) 前記冷却部は、前記ペルチェ素子の吸熱部に接続され、拡張可能な拡張体を有する上記(2)に記載のアブレーションカテーテル。
(4) 前記拡張体は、線状体からなる網目状の管状体である上記(3)に記載のアブレーションカテーテル。
(5) 前記拡張体の周囲に位置し、前記拡張体を収縮状態とする規制部を有する上記(3)または(4)に記載のアブレーションカテーテル。
(6) 前記冷却部は、前記拡張体を覆い、拡張可能なバルーンを有する上記(3)ないし(5)のいずれかに記載のアブレーションカテーテル。
(7) 前記バルーン内には断熱剤が導入される上記(6)に記載のアブレーションカテーテル。
(8) 前記冷却部は、前記ペルチェ素子の発熱部を冷却するペルチェ素子冷却部を有する上記(1)ないし(7)のいずれかに記載のアブレーションカテーテル。
本発明によれば、冷却部によって、不整脈の原因となっている心筋組織を冷凍凝固することができる。そのため、従来の構成のような冷却剤が不要となり、それに伴って、冷却剤を供給、回収する装置も不要となる。特に、冷却部がペルチェ素子を有する場合、通電によりペルチェ素子の温度を制御することができるため、温度管理をより精度よく行うこともできる。以上より、利便性に優れたアブレーションカテーテルとなる。
以下、本発明のアブレーションカテーテルを添付図面に示す好適な実施形態に基づいて詳細に説明する。
<第1実施形態>
まず、本発明の第1実施形態に係るアブレーションカテーテルを説明する。
まず、本発明の第1実施形態に係るアブレーションカテーテルを説明する。
図1は、本発明の第1実施形態に係るアブレーションカテーテルの斜視図である。図2、図3および図4は、それぞれ、図1に示すアブレーションカテーテルの断面図である。図5ないし図9は、それぞれ、図1に示すアブレーションカテーテルを用いた冷凍凝固アブレーションの手技を説明する図である。なお、以下では、説明の便宜上、図1中の右側を「先端」、左側を「基端」とも言う。
≪アブレーションカテーテルシステム≫
図1に示すアブレーションカテーテルシステム100は、不整脈の一種である心房細動の治療法である「冷凍凝固アブレーション(カテーテル心筋冷凍焼灼術)」に用いられる医療機器である。ここで、心房細動の引き金となる異常信号の多くが、肺静脈の周囲から発現することが知られている。そのため、冷凍凝固アブレーションでは、肺静脈と左心房の接合部に冷凍焼灼線(凍傷)を形成し、異常信号を肺静脈の中に閉じ込め、異常信号が心房へ伝わらないようにする。詳しい治療法について、後に詳述する。
図1に示すアブレーションカテーテルシステム100は、不整脈の一種である心房細動の治療法である「冷凍凝固アブレーション(カテーテル心筋冷凍焼灼術)」に用いられる医療機器である。ここで、心房細動の引き金となる異常信号の多くが、肺静脈の周囲から発現することが知られている。そのため、冷凍凝固アブレーションでは、肺静脈と左心房の接合部に冷凍焼灼線(凍傷)を形成し、異常信号を肺静脈の中に閉じ込め、異常信号が心房へ伝わらないようにする。詳しい治療法について、後に詳述する。
このような冷凍凝固アブレーションは、心筋組織の物理的な強度を保ったままで電気的な断絶が可能となる点で有効であると言われている。また、心房細動の他の治療法である「カテーテル心筋焼灼術」と比較して術者の熟練度を必要とせず、また、手術時間も短く済む傾向にある点で、安全でかつ患者への負担が少ない治療法であるとも言える。
なお、冷凍凝固アブレーションは、心房細動の治療に限定されず、他の不整脈(心房粗動、発作性上室性頻拍、心房頻拍、心室頻拍、心室期外収縮等)の治療にも適用することができる。
アブレーションカテーテルシステム100は、図1に示すように、アブレーションカテーテル200と、アブレーションカテーテル200に接続される冷媒供給装置300および断熱剤供給装置400と、を有する。このようなアブレーションカテーテルシステム100では、冷媒供給装置300からアブレーションカテーテル200へ冷媒Cを供給すると共に、断熱剤供給装置400からアブレーションカテーテル200へ断熱剤Iを供給することができる。
アブレーションカテーテル200は、図1に示すように、可撓性を有する長尺なシャフト210と、シャフト210の先端部に設けられた冷却部240と、シャフト210が挿入されたシース(規制部)230と、を有する。
冷却部240は、図1および図2に示すように、ペルチェ素子250と、ペルチェ素子250によって冷却される拡張体260と、拡張体260を覆うバルーン270と、ペルチェ素子250を冷却するペルチェ素子冷却部280と、ペルチェ素子250に電圧を印加する電圧印加部(図示せず)と、を有する。
ペルチェ素子250は、シャフト210の周方向に沿って複数配置されている。そして、図2に示すように、各ペルチェ素子250の外側の面(シャフト210と反対側の面)が吸熱部251となり、内側の面(シャフト210側の面)が発熱部252となるように、各ペルチェ素子250に通電する。なお、ペルチェ素子250の配置や数としては、特に限定されず、例えば、1つのペルチェ素子250がシャフト210を周回するように配置されていてもよい。
拡張体260は、線状体261からなる網目状の管状体である。また、拡張体260は、自然状態(外力が実質的に加わっていない状態。図1に示す状態。)ではシャフト210に対して拡張している。また、線状体261は、形状記憶性(擬弾性)を有することが好ましい。これにより、拡張体260を後述する収縮状態から簡単に拡張させることができる。
また、拡張体260は、ペルチェ素子250の吸熱部251と接触しており(すなわち、熱的に接続されており)、ペルチェ素子250によって冷却される。そのため、ペルチェ素子250によって冷却された拡張状態の拡張体260を左心房と肺静脈との接合部に当接させることで、接合部を効率的に冷凍凝固することができる。
線状体261の構成材料としては、特に限定されないが、熱伝導性に優れる材料を用いることが好ましい。熱伝導性に優れる材料を用いることで、拡張体260を効率的に冷却することができる。このような材料としては、例えば、アルミニウム、ニッケル、チタン、金、銀、銅、プラチナ、イリジウム、タングステン、ステンレス鋼、ニッケル-チタン合金、ニッケル-アルミニウム合金、インコネル、コバルト-クロム合金、コバルト-ニッケル合金等の各種金属材料や、PPS(ポリフェニレンサルファイド)系複合材、不飽和ポリエステル系複合材等の熱伝導性樹脂材料等が挙げられる。特に、線状体261に形状記憶性を持たせたい場合には、ニッケル-チタン合金や銅-亜鉛-アルミニウム合金(特に、ニッケル-チタン合金)を好適に用いることができる。
なお、拡張体260の構成としては、ペルチェ素子250によって冷却でき、かつ、左心房と肺静脈との接合部に当接可能な構成であれば、特に限定されない。例えば、拡張体260は、複数の線状体261が網目状に交差する構成ではなく、複数の線状体261がシャフト210の周方向に沿って互いに平行に配置された構成でもよい。
バルーン270は、拡張/収縮自在な拡張体であり、ペルチェ素子250および拡張体260を覆っている。術中ではバルーン270を拡張し、拡張状態のバルーン270内に断熱剤Iを循環させる。バルーン270内に断熱剤Iを循環させることで、拡張体260と血液との熱交換を抑制することができ、血液が冷却され難くなる。そのため、冷却部240による血液の冷凍凝固を抑制することができる。反対に、血液の熱が拡張体260に伝わり難くなるため、拡張体260の昇温を抑制することができる。そのため、拡張体260によって、左心房と肺静脈との接合部を効率的に冷凍凝固することができる。
バルーン270の構成材料としては、特に限定されず、例えば、ポリオレフィン、ポリエチレンテレフタレート等のポリエステル、ポリ塩化ビニル、ポリウレタン、ポリウレタンエラストマー、ナイロンエラストマー(ポリアミドエラストマー)等の熱可塑性樹脂、シリコーンゴム、ラテッスクゴム(天然ゴム)等を用いることができる。
なお、バルーン270は、破裂しても安全性を確保(すなわち、断熱剤Iの体内への流出を防止)することができるように2重構造となっていてもよい。すなわち、バルーン270は、内側バルーンと、この内側バルーンを覆う外側バルーンと、を有する構成となっていてもよい。また、3重以上の構造となっていてもよい。
断熱剤Iとしては、拡張体260と血液との熱交換を、拡張体260と血液とが直接触れる場合と比較して抑制することができれば、特に限定されず、例えば、生食液(生理食塩水)、二酸化炭素、シリカエアロゲル、後述する造影剤等を用いることができる。また、このような断熱剤Iの温度(バルーン270内での温度)としては、血液の凝固点以上、血液の温度以下、具体的には10℃~30℃程度であることが好ましい。これにより、血液の冷凍凝固をより効果的に抑制することができる。
ペルチェ素子冷却部280は、シャフト210に設けられ、ペルチェ素子250の発熱部252近傍を通過する流路281を有する。そして、この流路281に冷媒Cを循環させることで、ペルチェ素子250の発熱部252を冷却することができる。特に、本実施形態では、ペルチェ素子250の発熱部252が流路281と対向しているため、発熱部252を効果的に冷却することができる。このように、ペルチェ素子250の発熱部252を冷却することで、ペルチェ素子250の冷却効率の低下を抑制することができる。
なお、ペルチェ素子250の配置は、発熱部252がペルチェ素子冷却部280で冷却されるように配置されていれば、特に限定されず、例えば、発熱部252が流路281内に位置するように配置されていてもよい。このような配置とすることで、より効果的に発熱部252を冷却することができる。
流路281は、冷媒Cをペルチェ素子250近傍に供給する供給路282と、ペルチェ素子250の冷却の用に供された冷媒Cを回収する回収路283と、を有する。また、供給路282と回収路283は、シャフト210の径方向に並んで配置され、さらに、回収路283が供給路282よりもシャフト210の外周側に位置している。前述したように、回収路283は、ペルチェ素子250の冷却の用に供された冷媒Cを回収する流路であるため、回収路283内を流れる冷媒Cの温度が供給路282内を流れる冷媒Cの温度よりも高い。そのため、例えば、供給路282と回収路283の配置が逆の場合と比較して、シャフト210の外周面が冷媒Cによって冷却され難くなり、シャフト210によって血液が冷却され難くなる。
なお、ペルチェ素子冷却部280としては、ペルチェ素子250の発熱部252を冷却することができれば、特に限定されない。例えば、供給路282と回収路283の配置を逆にしてもよい。また、供給路282と回収路283をシャフト210の周方向に並べて配置してもよい。
流路281内を循環させる冷媒Cとしては、ペルチェ素子250の発熱部252を冷却することができれば、特に限定されず、例えば、水、生食液(生理食塩水)、エチレングリコール等の不凍液等を用いることができる。
シャフト210は、管状をなし、内腔によってルーメン211が形成されている。ルーメン211は、術中に用いられるガイドワイヤや電極カテーテルを挿入したり、造影剤を供給したりするのに用いられる。
また、シャフト210は、上述した流路281に加えて、図3に示すように、バルーン270内に断熱剤Iを供給する流路213と、バルーン270内の断熱剤Iを回収する流路214と、を有する。流路213からバルーン270内に断熱剤Iを供給しつつ、バルーン270内の断熱剤Iを流路214から回収することで、バルーン270を拡張させると共に、バルーン270内に断熱剤Iを循環させることができる。なお、バルーン270内に断熱剤Iを循環させずに、ただ供給するたけでもよい。
シャフト210の構成材料としては、特に限定されず、例えば、ポリアミド、ポリエステル、ポリウレタン、軟質ポリ塩化ビニル、ABS樹脂、AS樹脂、ポリテトラフルオロエチレン等のフッ素系樹脂等の各種樹脂材料や、スチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、フッ素ゴム系、塩素化ポリエチレン系等の各種熱可塑性エラストマー、さらには、これらのうちの2種以上を組合せたもの(ポリマーアロイ、ポリマーブレンド、積層体等)を用いることができる。
シース230は、管状をなし、シャフト210の周囲に配置されている。言い換えれば、シース230内にシャフト210が挿入されている。また、シース230は、シャフト210に対してスライド可能である。
また、シース230は、図4に示すように、初期状態(アブレーションカテーテル200を生体内に挿入する際の状態)において、拡張体260およびバルーン270を覆っている。そのため、拡張体260は、弾性変形によって自然状態よりも収縮した状態を維持し、バルーン270も収縮した状態を維持する。このように、初期状態において、シース230によって拡張体260およびバルーン270を覆っておけば、アブレーションカテーテル200の生体内への挿入がスムーズとなる。アブレーションカテーテル200を目的箇所まで挿入した後、シース230をシャフト210の基端側へスライドさせてシース230から拡張体260およびバルーン270を露出させれば、拡張体260がその復元力によって拡張すると共に、バルーン270が拡張可能な状態となる。
シース230の構成材料としては、特に限定されず、例えば、シャフト210と同様の材料を用いることができる。
以上、アブレーションカテーテルシステム100について説明した。このようなアブレーションカテーテルシステム100によれば、従来の構成で用いられているような冷却剤(亜酸化窒素、液体窒素、アルゴン等)を用いる必要がないため、専用の機器を用意する必要がなく、装置構成が簡単となり、より高い利便性を発揮することができる。また、通電によりペルチェ素子250の温度を制御することができるため、温度管理をより精度よく行うこともできる。
なお、本実施形態では、冷却部240がペルチェ素子250を有する構成について説明したが、冷却部240の構成としては、特に限定されない。例えば、熱伝導性に優れる金属部材等をペルチェ素子250に替えて配置し、流路281に冷媒Cを循環させることで、前記金属部材を冷却し、これにより、拡張体260を冷却してもよい。また、例えば、拡張体260を構成する線状体261を管状にし、線状体261内に冷媒Cを直接導入することで、拡張体260を冷却してもよい。
≪冷凍凝固アブレーション≫
次に、上述したアブレーションカテーテルシステム100を用いた冷凍凝固アブレーションについて説明する。
次に、上述したアブレーションカテーテルシステム100を用いた冷凍凝固アブレーションについて説明する。
まず、図5に示すように、例えば、ブロッケンブロー法(経心房中隔穿刺法)を用いて右心房910から心房の中隔部分を穿刺して左心房920に通じる孔を開け、この孔を介してアブレーションカテーテル200を湾曲操作可能なステアラブルシース(図示せず)と共に右心房910から左心房920へ導入する。
次に、シース230をシャフト210の基端側へスライドさせ、拡張体260およびバルーン270を露出させる。すると、拡張体260が復元力によって拡張する。なお、拡張体260の拡張は、拡張体260の復元力とバルーン270の収縮力とが釣り合ったところで止まり、釣り合った状態が維持される。
次に、バルーン270内に断熱剤Iを循環させる。これにより、バルーン270がさらに拡張し、このバルーン270の拡張に伴って、バルーン270内で拡張体260がさらに拡張する。次に、図6に示すように、バルーン270を介して拡張状態の拡張体260を左心房920と肺静脈930との接合部940に当接させる。
次に、ルーメン211を介して、図7に示すように、肺静脈930内に電極カテーテル(心臓電気生理検査カテーテル)800を配置する。そして、電極カテーテル800によって肺静脈930の電位を測定したり、肺静脈930に電気刺激を与えて心房細動を誘発させたりして、心房細動の機序を解明する。
次に、ルーメン211を介して、肺静脈930内に造影剤を導入し、バルーン270が接合部940に当接(密着)していることを確認する。
次に、ペルチェ素子250によって拡張体260を冷却し、冷却された拡張体260によって接合部940を例えば-70℃~-20℃程度で冷却する。これにより、接合部940が冷凍凝固され、図8に示すように、接合部940に冷凍焼灼線941が形成される。
なお、拡張体260を接合部940に当接させた状態では、図9に示すように、拡張体260と接合部940の間にバルーン270しか介在していないため、すなわち、断熱剤Iが介在していないため、拡張体260によって、接合部940を効率的に冷凍凝固することができる。また、バルーン270内を循環する断熱剤Iによって、拡張体260と血液や造影剤との熱交換が抑制されているため、血液や造影剤の凝固を抑制することができる。また反対に、血液や造影剤の熱が拡張体260に伝わり難いため、拡張体260の昇温を抑制でき、接合部940をより効果的に冷凍凝固することができる。
最後に、異常信号が肺静脈930の中に閉じこめられていることを確認した後、電極カテーテル800およびアブレーションカテーテル200を生体から抜去する。これにより、冷凍凝固アブレーションが終了する。なお、上述では、4つ存在する接合部940のうちの1つの接合部940に対する手技を説明したが、残りの3つの接合部940についても同様の手技を行えばよい。
なお、緊急時には、接合部940(組織)に冷凍接着したバルーン270をすぐに剥がさなければならないが、その際は、ペルチェ素子250への電流の向きを反転させることで、拡張体260を直ちに温めることができ、より短時間で接着を解除することができる。そのため、装置の安全性が向上する。
<第2実施形態>
次に、本発明の第2実施形態に係るアブレーションカテーテルについて説明する。
次に、本発明の第2実施形態に係るアブレーションカテーテルについて説明する。
図10は、本発明の第2実施形態に係るアブレーションカテーテルの斜視図である。
以下、この図を参照して第2実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
以下、この図を参照して第2実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
本実施形態は、主に、冷却部の構成が異なること以外は、前述した第1実施形態と同様である。
本実施形態の冷却部240は、図10に示すように、ペルチェ素子250と、ペルチェ素子250によって冷却される拡張体260と、ペルチェ素子250を冷却するペルチェ素子冷却部280と、を有する。すなわち、冷却部240は、前述した第1実施形態の構成からバルーン270を省略した構成となっている。また、図示しないが、バルーン270を省略したことに伴って、シャフト210から流路213、214も省略されている。
このような構成によれば、バルーン270内へ断熱剤Iを供給する断熱剤供給装置400を容易する必要がないため、より利便性の高いアブレーションカテーテル200となる。
以上のような第2実施形態によっても、前述した第1実施形態と同様の効果を発揮することができる。
<第3実施形態>
次に、本発明の第3実施形態に係るアブレーションカテーテルについて説明する。
次に、本発明の第3実施形態に係るアブレーションカテーテルについて説明する。
図11は、本発明の第3実施形態に係るアブレーションカテーテルの断面図である。
以下、この図を参照して第3実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
以下、この図を参照して第3実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
本実施形態は、主に、冷却部の構成が異なること以外は、前述した第2実施形態と同様である。
本実施形態の冷却部240は、図11に示すように、ペルチェ素子250と、ペルチェ素子250によって冷却される拡張体260と、ペルチェ素子250を冷却するペルチェ素子冷却部280と、拡張体260による血液の冷却を抑制する冷却抑制部290と、を有する。すなわち、冷却部240は、前述した第2実施形態の構成に、冷却抑制部290を加えた構成となっている。したがって、以下では、冷却抑制部290についてのみ説明する。
冷却抑制部290は、拡張体260の先端側に位置する被加熱拡張体290Aと、拡張体260の基端側に位置する被加熱拡張体290Bと、を有する。これら被加熱拡張体290A、290Bは、それぞれ、線状体291からなる網目状の管状体である。また、被加熱拡張体290A、290Bは、それぞれ、自然状態においてシャフト210に対して拡張している。また、被加熱拡張体290A、290Bの最大径は、拡張体260の最大径とほぼ等しいか、それよりも小さく設計されている。
このような被加熱拡張体290A、290Bは、ペルチェ素子250の発熱部252と接触しており(熱的に接続されており)、ペルチェ素子250によって加熱される。そのため、被加熱拡張体290A、290Bによって血液を温めることができ、拡張体260による血液の凝固を抑制することができる。特に、本実施形態のように、被加熱拡張体290A、290Bの熱源としてペルチェ素子250の発熱部252を利用することで、装置構成が簡単となると共に、ペルチェ素子250から発生する熱を有効利用することができる。
なお、図示しないが、初期状態では、被加熱拡張体290A、290Bは、拡張体260と共にシース230で覆われており、弾性変形によって自然状態よりも収縮した状態を維持している。
以上のような第3実施形態によっても、前述した第1実施形態と同様の効果を発揮することができる。
以上、本発明のアブレーションカテーテルを図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置換することができる。また、本発明に、他の任意の構成物が付加されていてもよい。また、各実施形態を適宜組み合わせてもよい。
本発明のアブレーションカテーテルは、長尺なシャフトと、前記シャフトに設けられた冷却可能な冷却部と、を有することを特徴とする。このような構成によれば、冷却部によって、不整脈の原因となっている心筋組織を冷凍凝固することができる。そのため、従来の構成のような冷却剤が不要となり、それに伴って、冷却剤を供給、回収する装置も不要となる。特に、冷却部がペルチェ素子を有する場合、通電によりペルチェ素子の温度を制御することができるため、温度管理をより精度よく行うこともできる。以上より、利便性に優れたアブレーションカテーテルとなる。
したがって、本発明のアブレーションカテーテルは、産業上の利用可能性を有している。
100 アブレーションカテーテルシステム
200 アブレーションカテーテル
210 シャフト
211 ルーメン
213 流路
214 流路
230 シース
240 冷却部
250 ペルチェ素子
251 吸熱部
252 発熱部
260 拡張体
261 線状体
270 バルーン
280 ペルチェ素子冷却部
281 流路
282 供給路
283 回収路
290 冷却抑制部
290A 被加熱拡張体
290B 被加熱拡張体
291 線状体
300 冷媒供給装置
400 断熱剤供給装置
800 電極カテーテル
910 右心房
920 左心房
930 肺静脈
940 接合部
941 冷凍焼灼線
C 冷媒
I 断熱剤
200 アブレーションカテーテル
210 シャフト
211 ルーメン
213 流路
214 流路
230 シース
240 冷却部
250 ペルチェ素子
251 吸熱部
252 発熱部
260 拡張体
261 線状体
270 バルーン
280 ペルチェ素子冷却部
281 流路
282 供給路
283 回収路
290 冷却抑制部
290A 被加熱拡張体
290B 被加熱拡張体
291 線状体
300 冷媒供給装置
400 断熱剤供給装置
800 電極カテーテル
910 右心房
920 左心房
930 肺静脈
940 接合部
941 冷凍焼灼線
C 冷媒
I 断熱剤
Claims (8)
- 長尺なシャフトと、
前記シャフトに設けられた冷却可能な冷却部と、を有することを特徴とするアブレーションカテーテル。 - 前記冷却部は、ペルチェ素子を備える請求項1に記載のアブレーションカテーテル。
- 前記冷却部は、前記ペルチェ素子の吸熱部に接続され、拡張可能な拡張体を有する請求項2に記載のアブレーションカテーテル。
- 前記拡張体は、線状体からなる網目状の管状体である請求項3に記載のアブレーションカテーテル。
- 前記拡張体の周囲に位置し、前記拡張体を収縮状態とする規制部を有する請求項3または4に記載のアブレーションカテーテル。
- 前記冷却部は、前記拡張体を覆い、拡張可能なバルーンを有する請求項3ないし5のいずれか1項に記載のアブレーションカテーテル。
- 前記バルーン内には断熱剤が導入される請求項6に記載のアブレーションカテーテル。
- 前記冷却部は、前記ペルチェ素子の発熱部を冷却するペルチェ素子冷却部を有する請求項2ないし7のいずれか1項に記載のアブレーションカテーテル。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015180702 | 2015-09-14 | ||
JP2015-180702 | 2015-09-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017047545A1 true WO2017047545A1 (ja) | 2017-03-23 |
Family
ID=58288823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/076783 WO2017047545A1 (ja) | 2015-09-14 | 2016-09-12 | アブレーションカテーテル |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017047545A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107456269A (zh) * | 2017-09-05 | 2017-12-12 | 康沣生物科技(上海)有限公司 | 一种冷冻消融导管 |
US10028781B2 (en) | 2013-09-30 | 2018-07-24 | Arrinex, Inc. | Apparatus and methods for treating rhinitis |
US10159538B2 (en) | 2014-07-25 | 2018-12-25 | Arrinex, Inc. | Apparatus and method for treating rhinitis |
WO2019052342A1 (zh) * | 2017-09-12 | 2019-03-21 | 康沣生物科技(上海)有限公司 | 冷冻消融导管及系统 |
US10939965B1 (en) | 2016-07-20 | 2021-03-09 | Arrinex, Inc. | Devices and methods for treating a nerve of the nasal cavity using image guidance |
US11026738B2 (en) | 2016-06-15 | 2021-06-08 | Arrinex, Inc. | Devices and methods for treating a lateral surface of a nasal cavity |
US11253312B2 (en) | 2016-10-17 | 2022-02-22 | Arrinex, Inc. | Integrated nasal nerve detector ablation-apparatus, nasal nerve locator, and methods of use |
US11278356B2 (en) | 2017-04-28 | 2022-03-22 | Arrinex, Inc. | Systems and methods for locating blood vessels in the treatment of rhinitis |
US11602260B2 (en) | 2016-02-11 | 2023-03-14 | Arrinex, Inc. | Method and device for image guided post-nasal nerve ablation |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011520515A (ja) * | 2008-05-13 | 2011-07-21 | ボストン サイエンティフィック サイムド,インコーポレイテッド | アブレーションバルーンをデリバリーシース内に後退させるための装置 |
WO2012140439A1 (en) * | 2011-04-13 | 2012-10-18 | Cryotherapeutics Gmbh | Plaque stabilisation using cryoenergy |
WO2013164820A1 (en) * | 2012-04-30 | 2013-11-07 | Berger Thermal Research Ltd | Cyrocatheter with coolant fluid cooled thermoelectric module |
-
2016
- 2016-09-12 WO PCT/JP2016/076783 patent/WO2017047545A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011520515A (ja) * | 2008-05-13 | 2011-07-21 | ボストン サイエンティフィック サイムド,インコーポレイテッド | アブレーションバルーンをデリバリーシース内に後退させるための装置 |
WO2012140439A1 (en) * | 2011-04-13 | 2012-10-18 | Cryotherapeutics Gmbh | Plaque stabilisation using cryoenergy |
WO2013164820A1 (en) * | 2012-04-30 | 2013-11-07 | Berger Thermal Research Ltd | Cyrocatheter with coolant fluid cooled thermoelectric module |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10512498B2 (en) | 2013-09-30 | 2019-12-24 | Arrinex, Inc. | Apparatus and methods for treating rhinitis |
US10028781B2 (en) | 2013-09-30 | 2018-07-24 | Arrinex, Inc. | Apparatus and methods for treating rhinitis |
US10307200B2 (en) | 2013-09-30 | 2019-06-04 | Arrinex, Inc. | Apparatus and methods for treating rhinitis |
US10448985B2 (en) | 2013-09-30 | 2019-10-22 | Arrinex, Inc. | Apparatus and methods for treating rhinitis |
US10159538B2 (en) | 2014-07-25 | 2018-12-25 | Arrinex, Inc. | Apparatus and method for treating rhinitis |
US10470837B2 (en) | 2014-07-25 | 2019-11-12 | Arrinex, Inc. | Apparatus and method for treating rhinitis |
US11602260B2 (en) | 2016-02-11 | 2023-03-14 | Arrinex, Inc. | Method and device for image guided post-nasal nerve ablation |
US11026738B2 (en) | 2016-06-15 | 2021-06-08 | Arrinex, Inc. | Devices and methods for treating a lateral surface of a nasal cavity |
US10939965B1 (en) | 2016-07-20 | 2021-03-09 | Arrinex, Inc. | Devices and methods for treating a nerve of the nasal cavity using image guidance |
US11253312B2 (en) | 2016-10-17 | 2022-02-22 | Arrinex, Inc. | Integrated nasal nerve detector ablation-apparatus, nasal nerve locator, and methods of use |
US11786292B2 (en) | 2016-10-17 | 2023-10-17 | Arrinex, Inc. | Integrated nasal nerve detector ablation-apparatus, nasal nerve locator, and methods of use |
US11278356B2 (en) | 2017-04-28 | 2022-03-22 | Arrinex, Inc. | Systems and methods for locating blood vessels in the treatment of rhinitis |
CN107456269A (zh) * | 2017-09-05 | 2017-12-12 | 康沣生物科技(上海)有限公司 | 一种冷冻消融导管 |
CN107456269B (zh) * | 2017-09-05 | 2019-08-20 | 康沣生物科技(上海)有限公司 | 一种冷冻消融导管 |
WO2019052342A1 (zh) * | 2017-09-12 | 2019-03-21 | 康沣生物科技(上海)有限公司 | 冷冻消融导管及系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017047545A1 (ja) | アブレーションカテーテル | |
WO2017047543A1 (ja) | アブレーションカテーテル | |
US20230414279A1 (en) | Ablation catheters and related systems and methods | |
JP5870694B2 (ja) | 電位測定用カテーテル | |
US11564725B2 (en) | Ablation catheter having a shape memory stylet | |
JP6903723B2 (ja) | 領域分割されたバルーン付きカテーテル | |
US12102382B2 (en) | Biased electrodes for improved tissue contact and current delivery | |
EP1341463B1 (en) | Ablation catheter assembly for isolating a pulmonary vein | |
US9492216B2 (en) | Handle for an ablation device | |
CN105050523B (zh) | 开放式灌注消融导管 | |
JP6308683B2 (ja) | バルーン型アブレーションカテーテル | |
US20050177151A1 (en) | Irrigation sheath | |
US20140316398A1 (en) | Systems and methods related to selective heating of cryogenic balloons for targeted cryogenic neuromodulation | |
ES2765703T3 (es) | Catéter con una sección de desvío que se activa mediante calor para adoptar una configuración 'entrenada' y método para su fabricación | |
US9345529B2 (en) | Mapping wire with heating element to allow axial movement during cryoballoon ablation | |
EP2415496A1 (en) | Guide wire and balloon-equipped ablation catheter system with same | |
WO2019181612A1 (ja) | 医療デバイス | |
JPWO2020035919A1 (ja) | バルーン型電極カテーテル | |
EP4408319A1 (en) | Multi-modality ablation catheter having a shape memory stylet | |
JP2004305735A (ja) | 凍結切除カテーテル用の機械拡張型螺旋状凍結チップ | |
JP4062935B2 (ja) | バルーン付アブレーションカテーテル | |
US11090100B2 (en) | Catheter with micro-peltier cooling components | |
JP2022040096A (ja) | 近位電極の冷却 | |
JP6905230B2 (ja) | 塞栓術装置 | |
JP2018201607A (ja) | ステント型治療装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16846416 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16846416 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |