WO2019050167A2 - 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지 - Google Patents
리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지 Download PDFInfo
- Publication number
- WO2019050167A2 WO2019050167A2 PCT/KR2018/008948 KR2018008948W WO2019050167A2 WO 2019050167 A2 WO2019050167 A2 WO 2019050167A2 KR 2018008948 W KR2018008948 W KR 2018008948W WO 2019050167 A2 WO2019050167 A2 WO 2019050167A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- additive
- cyclic
- active material
- group
- secondary battery
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- Examples of the positive electrode active material of the lithium secondary battery include LiCoO 2 , LiMn 2 O 4 , LiNi 1-x Co x O 2 (0 ⁇ x ⁇ 1), lithium and a transition metal having a structure capable of intercalating lithium ions Oxide is mainly used.
- anode active material various types of carbon-based materials including artificial, natural graphite, and hard carbon capable of lithium insertion / desorption are mainly used.
- an organic solvent in which a lithium salt is dissolved is used as the electrolyte of the lithium secondary battery.
- One embodiment is to provide a non-aqueous electrolyte for a lithium secondary battery capable of improving a resistance increase rate when storing a lithium secondary battery at a high temperature and improving an output retention rate and reducing a gas generation amount.
- Another embodiment is to provide a lithium secondary battery comprising the electrolyte.
- a non-aqueous organic solvent Lithium salts; A first additive comprising at least one of compounds represented by the following formulas (1) to (4); And a cyclic sulfide based compound, wherein the mixing ratio of the first additive and the second additive is 0.2: 1 to 10: 1 by weight.
- R 1 to R 9 independently represent a primary, secondary or tertiary alkyl group, alkenyl group or aryl group, X is hydrogen or a halogen atom,
- n is an integer of 0 to 3
- n1 and m2 are each independently an integer of 0 to 3)
- the mixing ratio of the first additive and the second additive may be 0.5: 1 to 5: 1 by weight.
- the second additive is selected from the group consisting of 1,3-propensulfone, ethylene sulfate, methylene methane disulfonate, 1,4-butane sultone, 2,4-butane sultone, ethylene sulfite, propylene sulfite, Lt; / RTI >
- the second additive may comprise a cyclic first additive comprising a cyclic sulfide-based compound and a cyclic second additive comprising a cyclic compound-based compound.
- the cyclic first additive and the cyclic second additive are selected from the group consisting of 1,3-propanesultone, ethylene sulfate, methylene methane disulfonate, 1,4-butane sultone, 2,4-butane sultone, ethylene sulfite, , Sulfolane or a combination thereof, and the cyclic first additive and the cyclic second additive may be different from each other.
- the mixing ratio of the cyclic first additive and the cyclic second additive may be 0.5: 1 to 1: 1 by weight.
- the content of the first additive may be 0.5 wt% to 5 wt% with respect to the total weight of the electrolyte.
- the content of the second additive may be 0.5% by weight to 5% by weight based on the total weight of the electrolyte.
- the first additive may be a compound represented by Formula 1, a compound represented by Formula 3, or a combination thereof.
- a negative electrode comprising: a negative electrode comprising a negative electrode active material; A cathode comprising a cathode active material; And a lithium secondary battery comprising the electrolyte.
- the cathode active material may be a lithium nickel based compound.
- the cathode active material may be a lithium nickel compound represented by the following formula (5).
- the non-aqueous electrolyte for a lithium secondary battery can provide a lithium secondary battery which can improve the resistance increase rate at high temperature storage, improve the output retention rate, reduce the gas generation amount, and exhibit improved high temperature storage characteristics.
- FIG. 1 is a schematic view of a lithium secondary battery according to an embodiment of the present invention.
- One embodiment of the present invention includes a non-aqueous organic solvent; Lithium salts; A first additive comprising at least one of compounds represented by the following formulas (1) to (4); And a second additive comprising a cyclic sulfide-based compound.
- the mixing ratio of the first additive and the second additive may be 0.2: 1 to 10: 1 by weight.
- the mixing ratio of the first additive and the second additive may be 0.5: 1 to 5: 1 by weight.
- R 1 to R 9 independently represent a primary, secondary or tertiary alkyl group, alkenyl group or aryl group, X is hydrogen or a halogen atom,
- n is an integer of 0 to 3
- n1 and m2 are each independently an integer of 0 to 3;
- the alkyl group may be a C1 to C9 alkyl group
- the alkenyl group may be a C2 to C9 alkenyl group
- the aryl group may be a C6 to C12 aryl group.
- the halogen atom may be F, Cl, Br, I or a combination thereof.
- the content of the first additive may be 0.5 wt% to 5 wt% with respect to the total weight of the electrolyte.
- the content of the first additive is included in the above range, it is possible to exhibit an appropriate resistance increase rate at the time of high-temperature storage. If the content of the first additive is out of the above range, the rate of increase in resistance during storage at a high temperature may be remarkably increased.
- the content of the second additive may be 0.5% by weight to 5% by weight based on the total weight of the electrolyte.
- the content of the second additive is within the above range, the Li + migration is further promoted and the cycle life characteristics can be further improved. If the content of the second additive is out of the above range, the Li + migration is inhibited and the cycle life characteristics can be lowered.
- the second additive is selected from the group consisting of 1,3-propensulfone, ethylene sulfate, methylene methane disulfonate, 1,4-butane sultone, 2,4-butane sultone, ethylene sulfite, propylene sulfite, Based cyclic sulfide-based compound.
- the second additive may be a cyclic sulfide compound, and may include two or more thereof. That is, the second additive may include a cyclic first additive including a cyclic sulfide-based compound and a cyclic second additive including a cyclic compound-based compound. When the second additive contains two or more species, the gas content generated at the time of high temperature storage can be more effectively reduced.
- the cyclic first additive and the cyclic second additive may be one of the sulfur compound-based compounds, and the cyclic first additive and the cyclic second additive may be different from each other.
- the cyclic first additive may be 1,3-propenesultone, 1,4-butane sultone, 2,4-butane sultone, 1,3-propane sultone or a combination thereof, Ethylene sulfate, methylene methane disulfate, ethylene sulfonate, propylene sulfite, sulfolane, or combinations thereof.
- the mixing ratio of the cyclic first additive and the cyclic second additive may be 0.5: 1 to 1: 1 by weight.
- the mixing ratio of the cyclic first additive and the cyclic second additive is within the above range, it is possible to exhibit a more appropriate rate of resistance increase at the time of high-temperature storage. If the mixing ratio of the cyclic first additive and the cyclic second additive is out of the above range, that is, if the content of the cyclic first additive is lower or higher than the above range, the rate of resistance increase .
- the first additive may be a compound represented by Formula 1, a compound represented by Formula 3, or a combination thereof.
- the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
- non-aqueous organic solvent a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based or aprotic solvent may be used.
- Examples of the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), methyl ethyl carbonate (MEC) EC), propylene carbonate (PC), and butylene carbonate (BC).
- Examples of the ester solvent include methyl acetate, ethyl acetate, n-propyl acetate, dimethylacetate, methyl propionate, ethyl propionate, propyl propionate,? -Butyrolactone, decanolide, Lactone, mevalonolactone, caprolactone, and the like may be used.
- ether solvent examples include dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, and tetrahydrofuran.
- ketone solvent cyclohexanone may be used have.
- T-CN is a linear, branched or cyclic hydrocarbon group having 2 to 20 carbon atoms, A double bond aromatic ring or an ether bond
- amides such as dimethylformamide, dioxolanes such as 1,3-dioxolane, and sulfolanes.
- the non-aqueous organic solvent may be used alone or in combination.
- the mixing ratio in the case of mixing one or more of them can be suitably adjusted in accordance with the performance of a desired battery, and this can be widely understood by those skilled in the art.
- a mixed solvent of a cyclic carbonate and a chain carbonate a mixed solvent of a cyclic carbonate and a propionate solvent, or a mixed solvent of a cyclic carbonate, a chain carbonate and a propionate
- a mixed solvent of a solvent may be used.
- the propionate solvent methyl propionate, ethyl propionate, propyl propionate or a combination thereof may be used.
- cyclic carbonate and the chain carbonate or the cyclic carbonate and the propionate solvent are used in a mixed manner, mixing in a volume ratio of 1: 1 to 1: 9 may be used to improve the performance of the electrolytic solution.
- cyclic carbonate, chain carbonate and propionate solvent are mixed and used, they may be mixed at a ratio of 1: 1: 1 to 3: 3: 4.
- the mixing ratio of the solvents may be appropriately adjusted depending on the desired physical properties.
- the non-aqueous organic solvent may further include an aromatic hydrocarbon-based organic solvent in the carbonate-based solvent.
- the carbonate-based solvent and the aromatic hydrocarbon-based organic solvent may be mixed in a volume ratio of 1: 1 to 30: 1.
- the aromatic hydrocarbon-based organic solvent may be an aromatic hydrocarbon-based compound represented by the following formula (6).
- R 10 to R 15 are the same or different from each other and are selected from the group consisting of hydrogen, halogen, alkyl groups having 1 to 10 carbon atoms, haloalkyl groups, and combinations thereof.
- aromatic hydrocarbon-based organic solvent examples include benzene, fluorobenzene, 1,2-difluorobenzene, 1,3-difluorobenzene, 1,4-difluorobenzene, 1,2,3-tri Fluorobenzene, 1,2,4-trifluorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1 , 2,4-trichlorobenzene, iodobenzene, 1,2-diiodobenzene, 1,3-diiodobenzene, 1,4-diiodobenzene, 1,2,3-triiodobenzene,
- the solvent examples include 2,4-triiodobenzene, toluene, fluorotoluene, 2,3-difluorotoluene, 2,4-difluoro
- the electrolyte for a lithium secondary battery may further include an ethylene carbonate compound of the following formula (7) to improve battery life.
- R 16 and R 17 are each independently selected from the group consisting of hydrogen, a halogen group, a cyano group (CN), a nitro group (NO 2 ) and an alkyl group having 1 to 5 fluorinated carbon atoms, and R At least one of R 16 and R 17 is selected from the group consisting of a halogen group, a cyano group (CN), a nitro group (NO 2 ) and an alkyl group of 1 to 5 fluorinated carbon atoms, provided that R 16 and R 17 are not all hydrogen .
- ethylene carbonate-based compound examples include diethylene carbonate, diethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate, fluoroethylene carbonate, and the like, such as difluoroethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, .
- a life improving additive When such a life improving additive is further used, its amount can be appropriately adjusted.
- the lithium salt is dissolved in an organic solvent to act as a source of lithium ions in the cell to enable operation of a basic lithium secondary battery and to promote the movement of lithium ions between the anode and the cathode.
- the lithium salt Representative examples are LiPF 6, LiSbF 6, LiAsF 6 , LiN (SO 2 C 2 F 5) 2, Li (CF 3 SO 2) 2 N, LiN (SO 3 C 2 F 5) 2, LiC 4 F 9 SO 3, LiClO 4, LiAlO 2, LiAlCl 4, LiN (C x F 2x + 1 SO 2) (C y F 2y + 1 SO 2) ( where, and x and y are natural numbers, for example from 1 to 20 , One or more selected from the group consisting of LiCl, LiI, and LiB (C 2 O 4 ) 2 (lithium bis (oxalato) borate: LiBOB)
- the concentration of the lithium salt is preferably within the range of 0.1 M to 2.0 M. When the concentration of the lithium salt is within the
- Another embodiment provides a lithium secondary battery comprising the electrolyte, a cathode including the cathode active material, and a cathode including the anode active material.
- a compound capable of reversibly intercalating and deintercalating lithium (a lithiated intercalation compound) can be used.
- lithiated intercalation compound examples include the following.
- Li a A 1-b X b D 2 (0.90? A? 1.8, 0? B? 0.5); Li a A 1-b X b O 2 -c D c (0.90? A? 1.8, 0? B? 0.5, 0? C? 0.05); Li a E 1-b X b O 2 -c D c (0? B? 0.5, 0? C? 0.05); Li a E 2-b X b O 4 -c D c (0? B? 0.5, 0? C? 0.05); Li a Ni 1- b c Co b X c D ? (0.90? A? 1.8, 0? B? 0.5, 0? C? 0.5, 0 ⁇ ??
- Li a Ni 1- b c Co b X c O 2- ⁇ T ⁇ (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, 0 ⁇ ⁇ 2); Li a Ni 1- b c Co b X c O 2- ⁇ T 2 (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, 0 ⁇ ⁇ 2); Li a Ni 1-bc Mn b X c D ? (0.90? A? 1.8, 0? B? 0.5, 0? C? 0.05, 0 ⁇ ??
- Li a Ni 1-bc Mn b X c O 2- ⁇ T ⁇ (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, 0 ⁇ ⁇ 2); Li a Ni 1-bc Mn b X c O 2- ⁇ T 2 (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, 0 ⁇ ⁇ 2); Li a Ni b E c G d O 2 (0.90? A? 1.8, 0? B? 0.9, 0? C? 0.5, 0.001? D?
- Li a Ni b Co c Mn d G e O 2 (0.90? A? 1.8, 0? B? 0.9, 0? C? 0.5, 0? D? 0.5, 0.001? E? 0.1); Li a NiG b O 2 (0.90? A? 1.8, 0.001? B? 0.1) Li a CoG b O 2 (0.90? A? 1.8, 0.001? B? 0.1); Li a Mn 1-b G b O 2 (0.90? A? 1.8, 0.001? B? 0.1); Li a Mn 2 G b O 4 (0.90? A? 1.8, 0.001? B? 0.1); Li a Mn 1-g G g PO 4 (0.90??
- A is selected from the group consisting of Ni, Co, Mn, and combinations thereof;
- X is selected from the group consisting of Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth elements and combinations thereof;
- D is selected from the group consisting of O, F, S, P, and combinations thereof;
- E is selected from the group consisting of Co, Mn, and combinations thereof;
- T is selected from the group consisting of F, S, P, and combinations thereof;
- G is selected from the group consisting of Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, and combinations thereof;
- Q is selected from the group consisting of Ti, Mo, Mn, and combinations thereof;
- Z is selected from the group consisting of Cr, V, Fe, Sc, Y, and combinations thereof;
- J is selected from the group consisting of V, Cr, Mn, Co, Ni, Cu, and combinations thereof.
- a more suitable cathode active material is a lithium nickel compound.
- the lithium-nickel-based compound may be a nickel-rich compound expressed by the following general formula (5).
- the positive electrode active material is a lithium nickel compound and the electrolyte containing the first additive and the second additive is used together, the effect of reducing the resistance change rate and reducing the gas reduction rate at high temperature storage can be further improved Can be raised, and is appropriate.
- the rate of change in resistance upon storage at a high temperature is large and gas is generated in a large amount, but the electrolyte containing the first additive and the second additive,
- the use of the electrolyte containing the first additive and the second additive can further effectively maximize the effect of suppressing the rate of change in resistance and generation of gas during the storage at such a high temperature.
- the positive electrode includes a current collector and a positive electrode active material layer formed on the current collector and including a positive electrode active material.
- the content of the cathode active material may be 90 wt% to 98 wt% with respect to the total weight of the cathode active material layer.
- the cathode active material layer may further include a binder and a conductive material.
- the content of the binder and the conductive material may be 1 wt% to 5 wt% with respect to the total weight of the cathode active material layer.
- the binder serves to adhere the positive electrode active materials to each other and to adhere the positive electrode active material to the current collector.
- Representative examples of the binder include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymer containing ethylene oxide, polyvinyl pyrrolidone But are not limited to, water, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin and nylon .
- the conductive material is used for imparting conductivity to the electrode. Any conductive material may be used for the battery without causing any chemical change. Examples of the conductive material include carbon-based materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black and carbon fiber; Metal powders such as copper, nickel, aluminum, and silver, or metal-based materials such as metal fibers; Conductive polymers such as polyphenylene derivatives; Or a mixture thereof.
- the current collector may be an aluminum foil, a nickel foil or a combination thereof, but is not limited thereto.
- the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector and including a negative electrode active material.
- the negative electrode active material layer includes a negative electrode active material and a binder, and may further include a conductive material.
- the negative electrode active material a material capable of reversibly intercalating / deintercalating lithium ions, a lithium metal, an alloy of lithium metal, a material capable of doping and dedoping lithium, or a transition metal oxide may be used.
- Examples of the material capable of reversibly intercalating / deintercalating lithium ions include a carbonaceous material, that is, a carbonaceous anode active material generally used in a lithium secondary battery.
- Representative examples of the carbon-based negative electrode active material include crystalline carbon, amorphous carbon, or a combination thereof.
- Examples of the crystalline carbon include graphite such as natural graphite or artificial graphite in the form of amorphous, plate-like, flake, spherical or fibrous type.
- Examples of the amorphous carbon include soft carbon or hard carbon hard carbon, mesophase pitch carbide, fired coke, and the like.
- lithium metal alloy examples include lithium and a group consisting of Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, May be used.
- Si As the material capable of being doped and dedoped into lithium, Si, SiO x (0 ⁇ x ⁇ 2) and Si-Q alloy (Q is an alkali metal, an alkali earth metal, a Group 13 element, a Group 14 element, a Group 15 element, group elements, transition metals, rare earth elements and an element selected from the group consisting of, but not Si), Si- carbon composite, Sn, SnO 2, Sn-R (where R is an alkali metal, alkaline earth metal, 13 An element selected from the group consisting of Group IV elements, Group 14 elements, Group 15 elements, Group 16 elements, transition metals, rare earth elements, and combinations thereof, but not Sn), and Sn-carbon composites. May be mixed with SiO 2 .
- the element Q and the element R may be at least one element selected from the group consisting of Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Pb, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, Te, Po, and combinations thereof.
- lithium titanium oxide may be used.
- the negative electrode active material may be a Si-carbon composite, and the Si-carbon composite may include silicon particles and crystalline carbon.
- the average particle diameter (D50) of the silicon particles may be 10 nm to 200 nm.
- the Si-C composite may further include an amorphous carbon layer formed on at least a portion thereof.
- the mean particle diameter (D50) means the diameter of a particle having a cumulative volume of 50 vol% in the particle size distribution.
- the negative electrode active material may be a mixture of two or more kinds of negative electrode active materials.
- the negative active material may include a Si-carbon composite material as a first negative active material, . ≪ / RTI >
- mixing ratio thereof can be appropriately adjusted, but it may be appropriate to adjust the content of Si to 3 wt% to 50 wt% with respect to the total weight of the negative electrode active material .
- the content of the negative electrode active material in the negative electrode active material layer may be 95 wt% to 99 wt% with respect to the total weight of the negative electrode active material layer.
- the content of the binder in the negative electrode active material layer may be 1 wt% to 5 wt% with respect to the total weight of the negative electrode active material layer.
- the negative electrode active material may be used in an amount of 90 to 98 wt%
- the binder may be used in an amount of 1 to 5 wt%
- the conductive material may be used in an amount of 1 to 5 wt%.
- the binder serves to adhere the anode active material particles to each other and to adhere the anode active material to the current collector.
- a water-insoluble binder, a water-soluble binder, or a combination thereof may be used as the binder.
- water-insoluble binder examples include polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, a polymer containing ethylene oxide, polyvinyl pyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride , Polyethylene, polypropylene, polyamideimide, polyimide, or a combination thereof.
- water-soluble binder examples include styrene-butadiene rubber, acrylated styrene-butadiene rubber, polyvinyl alcohol, sodium polyacrylate, propylene and olefin copolymers having 2 to 8 carbon atoms, (meth) acrylic acid and (meth) Copolymers or combinations thereof.
- a cellulose-based compound capable of imparting viscosity may be further contained as a thickener.
- a cellulose-based compound capable of imparting viscosity may be further contained as a thickener.
- alkali metal Na, K or Li can be used.
- the content of the thickener may be 0.1 part by weight to 3 parts by weight based on 100 parts by weight of the negative electrode active material.
- the conductive material is used for imparting conductivity to the electrode. Any conductive material may be used for the battery without causing any chemical change. Examples of the conductive material include carbon-based materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, denka black and carbon fiber; Metal powders such as copper, nickel, aluminum, and silver, or metal-based materials such as metal fibers; Conductive polymers such as polyphenylene derivatives; Or a mixture thereof.
- the collector may be selected from the group consisting of a copper foil, a nickel foil, a stainless steel foil, a titanium foil, a nickel foam, a copper foil, a polymer substrate coated with a conductive metal, and a combination thereof.
- the positive electrode active material layer and the negative electrode active material layer are formed by mixing an anode active material, a binder and optionally a conductive material in a solvent to prepare an active material composition, and applying the active material composition to a current collector. Since the method of forming the active material layer is well known in the art, detailed description thereof will be omitted herein.
- the solvent N-methylpyrrolidone or the like can be used, but it is not limited thereto.
- water may be used as a solvent used for preparing the negative electrode active material composition.
- a separator may exist between the positive electrode and the negative electrode.
- the separator may be a polyethylene / polypropylene double layer separator, a polyethylene / polypropylene / polyethylene triple layer separator, a polypropylene / polyethylene / poly It is needless to say that a mixed multilayer film such as a propylene three-layer separator and the like can be used.
- FIG. 1 is an exploded perspective view of a lithium secondary battery according to an embodiment of the present invention.
- the lithium secondary battery according to one embodiment is described as an example of a cylindrical battery, but the present invention is not limited thereto, and may be applied to various types of cells such as a square type, a pouch type, and the like.
- a lithium secondary battery 1 includes an electrode assembly wound between a positive electrode 2 and a negative electrode 4 with a separator 3 interposed therebetween, and a case 5, and a sealing member 6 for sealing the case 5.
- the anode 10, the cathode 20 and the separator 30 may be impregnated with an electrolyte solution (not shown).
- LiPF 6 LiPF 6 was added to a mixed solvent of ethylene carbonate and ethyl methyl carbonate (20:40:40 by volume), and the first additive and the second additive were added to 100% by weight of this mixture in the composition shown in Table 1, A nonaqueous electrolyte for a lithium secondary battery was prepared.
- a nonaqueous electrolyte, a positive electrode and a negative electrode were used to prepare a conventional lithium secondary battery. At this time, the main liquid amount of the electrolytic solution was 3 g.
- the positive electrode was prepared by mixing 96 wt% of a LiNi 0.6 Co 0.2 Mn 0.2 O 2 positive active material, 2 wt% of a Ketjenblack conductive material and 2 wt% of polyvinylidene fluoride in an N-methylpyrrolidone solvent to prepare a positive electrode active material slurry , The cathode active material slurry was coated on an aluminum foil, dried and rolled.
- the negative electrode was prepared by mixing 96% by weight of artificial graphite anode active material, 2% by weight of Ketjenblack conductive material and 2% by weight of polyvinylidene fluoride in an N-methylpyrrolidone solvent to prepare a negative electrode active material slurry, Copper foil coated, dried and rolled.
- the produced lithium secondary battery was stored at 60 ⁇ ⁇ for 30 days, and the resistance before storage and the resistance after storage were measured, and the rate of change in resistance was determined. The results are shown in Table 1 below.
- the gas content generated before storage for 30 days at 60 ° C and the gas content generated after storage were respectively measured. From the measured gas content, a value reduced from the generated gas content of Comparative Example 1 was obtained, and a percentage value of the gas content value of Comparative Example 1 was obtained from the reduced value.
- Table 1 The results are shown in Table 1 below. That is, if the generated gas content of Comparative Example 1 was 10 mL and the generated gas content of Example 1 was 5.6 mL, the reduced value was 4.4 mL, so that the gas reduction rate was 44%.
- TESS is bis (triethylsilyl sulfate, represented by the following formula (I)),
- TMSES is trimethylsilyl ethane sulfonate (Formula 3a)
- ESA is ethylene sulfate
- PST is 1,3-propene sultone
- MMDS is methylene methanedisulfonate
- PSA is propylene sulfate represented by the following formula (10).
- Examples 1 to 8 using the electrolyte containing the first additive and the second additive in a weight ratio of 0.5: 1 to 5: 1 showed a low rate of change in the high temperature resistance and a high gas reduction rate have.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
리튬 이차 전지용 비수 전해질 및 이를 리튬 이차 전지에 관한 것으로서, 이 비수 전해질은 비수성 유기 용매, 리튬염, 및 화학식 1 내지 4로 표현되는 화합물 중 적어도 하나를 포함하는 제1 첨가제, 및 환형 황화물계 화합물을 포함하는 제2 첨가제를 포함하고, 상기 제1 첨가제 및 상기 제2 첨가제의 혼합비는 0.2 : 1 내지 10 : 1 중량비이다.
Description
리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
모바일 장비 또는 휴대용 전지의 수요가 증가함으로 인해 리튬 이차 전지의 고용량을 구현하기 위해 기술 개발이 지속적으로 진행되고 있다.
리튬 이차 전지의 양극 활물질로는 LiCoO2, LiMn2O4, LiNi1-xCoxO2(0 < x < 1)등과 같이 리튬 이온의 인터칼레이션이 가능한 구조를 가진 리튬과 전이 금속으로 이루어진 산화물이 주로 사용된다.
음극 활물질로는 리튬의 삽입/탈리가 가능한 인조, 천연 흑연, 하드 카본을 포함한 다양한 형태의 탄소계 재료가 주로 사용되고 있다.
리튬 이차 전지의 전해질로는 리튬염이 용해된 유기 용매가 사용되고 있다.
일 구현예는 리튬 이차 전지를 고온 저장시 저항 증가율을 개선하여 출력 유지율을 향상시키고, 가스발생량을 저감할 수 있는 리튬 이차 전지용 비수 전해질을 제공하는 것이다.
다른 일 구현예는 상기 전해질을 포함하는 리튬 이차 전지를 제공하는 것이다.
일 구현예에 따르면, 비수성 유기 용매; 리튬염; 하기 화학식 1 내지 4로 표현되는 화합물 중 적어도 하나를 포함하는 제1 첨가제; 및 환형 황화물계 화합물을 포함하는 제2 첨가제를 포함하고, 상기 제1 첨가제 및 상기 제2 첨가제의 혼합비는 0.2 : 1 내지 10 : 1 중량비인 리튬 이차 전지용 비수 전해질을 제공한다.
[화학식 1]
[화학식 2]
[화학식 3]
[화학식 4]
(상기 화학식 1 내지 4에서,
R1 내지 R9는 서로 독립적으로 1차, 2차 또는 3차 알킬기, 알케닐기 또는 아릴기이고, X는 수소 또는 할로겐 원자이고,
n는 0 내지 3의 정수이고,
m1 및 m2는 서로 독립적으로 0 내지 3의 정수임)
상기 제1 첨가제 및 상기 제2 첨가제의 혼합비는 0.5 : 1 내지 5 : 1 중량비일 수 있다.
상기 제2 첨가제는 1,3-프로펜 설톤, 에틸렌 설페이트, 메틸렌 메탄디설포네이트, 1,4-부탄설톤, 2,4-부탄설톤, 에틸렌 설파이트, 프로필렌 설파이트, 술포란 또는 이들의 조합일 수 있다.
또한, 일 구현예에 있어서, 상기 제2 첨가제는 환형 황화물계 화합물을 포함하는 환형 제1 첨가제 및 환형 화합물계 화합물을 포함하는 환형 제2 첨가제를 포함할 수 있다. 상기 환형 제1 첨가제 및 상기 환형 제2 첨가제는 1,3-프로펜 설톤, 에틸렌 설페이트, 메틸렌 메탄디설포네이트, 1,4-부탄설톤, 2,4-부탄설톤, 에틸렌 설파이트, 프로필렌 설파이트, 술포란 또는 이들의 조합이고, 상기 환형 제1 첨가제 및 상기 환형 제2 첨가제는 서로 상이한 것일 수 있다.
상기 환형 제1 첨가제 및 상기 환형 제2 첨가제의 혼합비는 0.5 : 1 내지 1 : 1 중량비일 수 있다.
상기 제1 첨가제의 함량은 상기 전해질 전체 중량에 대하여 0.5 중량% 내지 5 중량%일 수 있다.
상기 제2 첨가제의 함량은 상기 전해질 전체 중량에 대하여 0.5 중량% 내지 5 중량%일 수 있다.
상기 제1 첨가제는 상기 화학식 1로 표현되는 화합물, 상기 화학식 3으로 표현되는 화합물 또는 이들의 조합일 수 있다.
다른 일 구현예에 따르면, 음극 활물질을 포함하는 음극; 양극 활물질을 포함하는 양극; 및 상기 전해질을 포함하는 리튬 이차 전지를 제공한다.
일 구현예에서, 상기 양극 활물질은 양극 활물질은 리튬 니켈계 화합물일 수 있다.
상기 양극 활물질은 하기 화학식 5의 리튬 니켈계 화합물일 수 있다.
[화학식 5]
Lia1Nix1Coy1Mez1O2
(상기 화학식 3에서,
0.9 ≤ a1 ≤ 1.1, 0.6 ≤ x1 ≤ 0.90, 0 ≤ y1 ≤ 0.3, 0 ≤ z1 ≤ 0.3, x1 + y1 + z1 =1)이고, A는 Mn 또는 Al이다
기타 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
일 구현예에 따른 리튬 이차 전지용 비수 전해질은 고온 저장시 저항 증가율을 개선하여 출력 유지율을 향상시키고, 가스 발생량을 저감시킬 수 있으며, 이에 개선된 고온 저장 특성을 나타내는 리튬 이차 전지를 제공할 수 있다.
도 1은 본 발명의 일 구현예에 따른 리튬 이차 전지를 개략적으로 나타낸 도면.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.
본 발명의 일 구현예는 비수성 유기 용매; 리튬염; 하기 화학식 1 내지 4로 표현되는 화합물 중 적어도 하나를 포함하는 제1 첨가제; 및 환형 황화물계 화합물을 포함하는 제2 첨가제를 포함하는 전해질을 제공한다. 특히, 상기 제1 첨가제 및 상기 제2 첨가제의 혼합비는 0.2 : 1 내지 10 : 1 중량비일 수 있다. 일 구현예에 따르면, 상기 제1 첨가제 및 상기 제2 첨가제의 혼합비는 0.5 : 1 내지 5 : 1 중량비일 수 있다. 상기 제1 첨가제 및 상기 제2 첨가제의 혼합비가 상기 범위에 포함되는 경우에는, 고온 저장시 보다 적절한 저항 증가율을 나타낼 수 있다. 만약, 상기 제1 첨가제 및 상기 제2 첨가제의 혼합비가 상기 범위를 벗어나면, 즉 제1 첨가제의 함량이 너무 작거나 과량인 경우, 고온 저장시 저항 증가율이 현저하게 저하하여 적절하지 않을 수 있다.
[화학식 1]
[화학식 2]
[화학식 3]
[화학식 4]
상기 화학식 1 내지 4에서,
R1 내지 R9는 서로 독립적으로 1차, 2차 또는 3차 알킬기, 알케닐기 또는 아릴기이고, X는 수소 또는 할로겐 원자이고,
n는 0 내지 3의 정수이고,
m1 및 m2는 서로 독립적으로 0 내지 3의 정수이다.
상기 알킬기는 C1 내지 C9의 알킬기이고, 상기 알케닐기는 C2 내지 C9의 알케닐기이고, 상기 아릴기는 C6 내지 C12의 아릴기일 수 있다.
상기 할로겐 원자는 F, Cl, Br, I 또는 이들의 조합일 수 있다.
이와 같이, 제1 첨가제와 제2 첨가제를 함께, 특히 상기 범위로 사용하는 경우, 고온 저장시 저항 증가를 효과적으로 억제할 수 있고, 발생하는 가스 함량을 효과적으로 억제할 수 있어 적절하다.
상기 제1 첨가제의 함량은 상기 전해질 전체 중량에 대하여 0.5 중량% 내지 5 중량%일 수 있다. 상기 제1 첨가제의 함량이 상기 범위에 포함되는 경우에는, 고온 저장시 보다 적절한 저항 증가율을 나타낼 수 있다. 만약, 상기 제1 첨가제의 함량이 상기 범위를 벗어나는 경우에는 고온 저장시 저항 증가율이 현저하게 증가할 수 있다.
상기 제2 첨가제의 함량은 상기 전해질 전체 중량에 대하여 0.5 중량% 내지 5 중량%일 수 있다. 상기 제2 첨가제의 함량이 상기 범위에 포함되는 경우에는 Li+ 이동을 보다 촉진하여, 사이클 수명 특성을 보다 향상시킬 수 있다. 만약, 상기 제2 첨가제의 함량이 상기 범위를 벗어나는 경우에는 Li+ 이동을 저해하여, 사이클 수명 특성을 저하시킬 수 있다.
상기 제2 첨가제는 1,3-프로펜 설톤, 에틸렌 설페이트, 메틸렌 메탄디설포네이트, 1,4-부탄설톤, 2,4-부탄설톤, 에틸렌 설파이트, 프로필렌 설파이트, 술포란 또는 이들의 조합인 환형 황화물계 화합물일 수 있다.
상기 제2 첨가제는 환형 황화물계 화합물로서, 이를 2종 이상 포함할 수도 있다. 즉, 상기 제2 첨가제는 환형 황화물계 화합물을 포함하는 환형 제1 첨가제 및 환형 화합물계 화합물을 포함하는 환형 제2 첨가제를 포함할 수 있다. 제2 첨가제로 2종 이상 포함하는 경우, 고온 저장시, 발생되는 가스 함량을 보다 효과적으로 저감시킬 수 있다.
상기 환형 제1 첨가제 및 상기 환형 제2 첨가제는 상기 황화합물계 화합물의 일 종일 수 있으며, 상기 환형 제1 첨가제 및 상기 환형 제2 첨가제는 서로 상이할 수 있다.
상기 환형 제1 첨가제로는 1,3-프로펜 설톤, 1,4-부탄설톤, 2,4-부탄설톤, 1,3-프로판설톤 또는 이들의 조합일 수 있고, 상기 환형 제2 첨가제로는 에틸렌 설페이트, 메틸렌 메탄디설페이트, 에틸렌 설포네이트, 프로필렌 설파이트, 술포란 또는 이들의 조합일 수 있다.
이와 같이, 환형 황화합물계 화합물을 두 종 이상 사용하는 경우, 상기 환형 제1 첨가제 및 상기 환형 제2 첨가제의 혼합비는 0.5 : 1 내지 1 : 1 중량비일 수 있다. 상기 환형 제1 첨가제 및 상기 환형 제2 첨가제의 혼합비가 상기 범위에 포함되는 경우, 고온 저장시 보다 적절한 저항 증가율을 나타낼 수 있다. 만약, 상기 환형 제1 첨가제 및 상기 환형 제2 첨가제의 혼합비가 상기 범위를 벗어나는 경우, 즉, 상기 환형 제1 첨가제의 함량이 상기 범위보다 낮거나, 높은 경우에는 고온 저장시 저항 증가율이 현저하게 상승될 수 있다.
일 구현예에 있어서, 상기 제1 첨가제는 상기 화학식 1로 표현되는 화합물, 상기 화학식 3으로 표현되는 화합물 또는 이들의 조합일 수 있다.
상기 비수성 유기 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.
상기 비수성 유기 용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계, 또는 비프로톤성 용매를 사용할 수 있다.
상기 카보네이트계 용매로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 사용될 수 있다. 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 디메틸아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, 프로필프로피오네이트, γ-부티로락톤, 데카놀라이드(decanolide), 발레로락톤, 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등이 사용될 수 있다.
상기 에테르계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있으며, 상기 케톤계 용매로는 시클로헥사논 등이 사용될 수 있다.
상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등이 사용될 수 있으며, 상기 비프로톤성 용매로는 T-CN(T는 탄소수 2 내지 20의 직쇄상, 분지상, 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류, 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류, 설포란(sulfolane)류 등이 사용될 수 있다.
상기 비수성 유기 용매는 단독으로 또는 하나 이상 혼합하여 사용할 수 있다. 하나 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.
상기 비수성 유기용매를 혼합하여 사용하는 경우, 환형(cyclic) 카보네이트와 사슬형(chain) 카보네이트의 혼합 용매 환형 카보네이트와 프로피오네이트계 용매의 혼합 용매 또는 환형 카보네이트, 사슬형 카보네이트 및 프로피오네이트계 용매의 혼합 용매를 사용할 수 있다. 상기 프로피오네이트계 용매로는 메틸프로피오네이트, 에틸프로피오네이트, 프로필프로피오네이트 또는 이들의 조합을 사용할 수 있다.
이때, 환형 카보네이트와 사슬형 카보네이트 또는 환형 카보네이트와 프로피오네이트계 용매를 혼합 사용하는 경우에는 1:1 내지 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다. 또한, 환형 카보네이트, 사슬형 카보네이트 및 프로피오네이트계 용매를 혼합하여 사용하는 경우에는 1:1:1 내지 3:3:4 부피비로 혼합하여 사용할 수 있다. 물론, 상기 용매들의 혼합비는 원하는 물성에 따라 적절하게 조절할 수도 있다.
상기 비수성 유기용매는 상기 카보네이트계 용매에 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카보네이트계 용매와 방향족 탄화수소계 유기용매는 1:1 내지 30:1의 부피비로 혼합될 수 있다.
상기 방향족 탄화수소계 유기용매로는 하기 화학식 6의 방향족 탄화수소계 화합물이 사용될 수 있다.
[화학식 6]
(상기 화학식 6에서, R10 내지 R15는 서로 동일하거나 상이하며 수소, 할로겐, 탄소수 1 내지 10의 알킬기, 할로알킬기 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.)
상기 방향족 탄화수소계 유기용매의 구체적인 예로는 벤젠, 플루오로벤젠, 1,2-디플루오로벤젠, 1,3-디플루오로벤젠, 1,4-디플루오로벤젠, 1,2,3-트리플루오로벤젠, 1,2,4-트리플루오로벤젠, 클로로벤젠, 1,2-디클로로벤젠, 1,3-디클로로벤젠, 1,4-디클로로벤젠, 1,2,3-트리클로로벤젠, 1,2,4-트리클로로벤젠, 아이오도벤젠, 1,2-디아이오도벤젠, 1,3-디아이오도벤젠, 1,4-디아이오도벤젠, 1,2,3-트리아이오도벤젠, 1,2,4-트리아이오도벤젠, 톨루엔, 플루오로톨루엔, 2,3-디플루오로톨루엔, 2,4-디플루오로톨루엔, 2,5-디플루오로톨루엔, 2,3,4-트리플루오로톨루엔, 2,3,5-트리플루오로톨루엔, 클로로톨루엔, 2,3-디클로로톨루엔, 2,4-디클로로톨루엔, 2,5-디클로로톨루엔, 2,3,4-트리클로로톨루엔, 2,3,5-트리클로로톨루엔, 아이오도톨루엔, 2,3-디아이오도톨루엔, 2,4-디아이오도톨루엔, 2,5-디아이오도톨루엔, 2,3,4-트리아이오도톨루엔, 2,3,5-트리아이오도톨루엔, 자일렌, 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.
상기 리튬 이차 전지용 전해질은 전지 수명을 향상시키기 위하여 하기 화학식 7의 에틸렌 카보네이트계 화합물을 더욱 포함할 수도 있다.
[화학식 7]
(상기 화학식 7에서, R16 및 R17은 각각 독립적으로 수소, 할로겐기, 시아노기(CN), 니트로기(NO2) 및 불소화된 탄소수 1 내지 5의 알킬기로 이루어진 군에서 선택되며, 상기 R16 및 R17 중 적어도 하나는 할로겐기, 시아노기(CN), 니트로기(NO2) 및 불소화된 탄소수 1 내지 5의 알킬기로 이루어진 군에서 선택되고, 단 R16 및 R17이 모두 수소는 아니다.)
상기 에틸렌 카보네이트계 화합물의 대표적인 예로는 디플루오로 에틸렌카보네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트, 시아노에틸렌 카보네이트 또는 플루오로에틸렌 카보네이트 등을 들 수 있다. 이러한 수명 향상 첨가제를 더욱 사용하는 경우 그 사용량은 적절하게 조절할 수 있다.
상기 리튬염은 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. 이러한 리튬염의 대표적인 예로는 LiPF6, LiSbF6, LiAsF6, LiN(SO2C2F5)2, Li(CF3SO2)2N, LiN(SO3C2F5)2, LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수이며, 예를 들면 1 내지 20의 정수임), LiCl, LiI 및 LiB(C2O4)2(리튬 비스옥살레이트 보레이트(lithium bis(oxalato) borate: LiBOB)로 이루어진 군에서 선택되는 하나 또는 둘 이상을 지지(supporting) 전해염으로 포함한다. 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
다른 일 구현예는 상기 전해질, 양극 활물질을 포함하는 양극 및 음극 활물질을 포함하는 음극을 포함하는 리튬 이차 전지를 제공한다.
상기 양극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)을 사용할 수 있다. 상기 리티에이티드 인터칼레이션 화합물로는 하기 예를 들 수 있다.
LiaA1-bXbD2(0.90 ≤ a ≤1.8, 0 ≤ b ≤ 0.5); LiaA1-bXbO2-cDc(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5,0 ≤ c ≤ 0.05); LiaE1-bXbO2-cDc(0 ≤ b ≤ 0.5,0 ≤ c ≤ 0.05); LiaE2-bXbO4-cDc(0 ≤ b ≤ 0.5,0 ≤ c ≤ 0.05); LiaNi1-b-cCobXcDα(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.5, 0 < α ≤2); LiaNi1-b-cCobXcO2-αTα(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2); LiaNi1-b-cCobXcO2-αT2(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤0.5, 0 ≤ c ≤ 0.05, 0 < α < 2); LiaNi1-b-cMnbXcDα(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤2); LiaNi1-b-cMnbXcO2-αTα(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2); LiaNi1-b-cMnbXcO2-αT2(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤0.5, 0 ≤ c ≤ 0.05, 0 < α < 2); LiaNibEcGdO2(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0.001 ≤ d ≤ 0.1); LiaNibCocMndGeO2(0.90 ≤ a ≤ 1.8,0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤ 0.5, 0.001 ≤ e ≤ 0.1); LiaNiGbO2(0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1) LiaCoGbO2(0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1); LiaMn1-bGbO2(0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1); LiaMn2GbO4(0.90 ≤ a ≤ 1.8,0.001 ≤ b ≤ 0.1); LiaMn1-gGgPO4(0.90 ≤ a ≤ 1.8, 0 ≤ g ≤ 0.5); QO2; QS2; LiQS2; V2O5; LiV2O5; LiZO2; LiNiVO4 Li(3-f)J2(PO4)3(0 ≤ f ≤2); Li(3-f)Fe2(PO4)3(0 ≤ f ≤ 2); LiaFePO4(0.90 ≤ a ≤ 1.8)
상기 화학식에 있어서, A는 Ni, Co, Mn, 및 이들의 조합으로 이루어진 군에서 선택되고; X는 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되고; D는 O, F, S, P, 및 이들의 조합으로 이루어진 군에서 선택되고; E는 Co, Mn, 및 이들의 조합으로 이루어진 군에서 선택되고; T는 F, S, P, 및 이들의 조합으로 이루어진 군에서 선택되고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, 및 이들의 조합으로 이루어진 군에서 선택되고; Q는 Ti, Mo, Mn, 및 이들의 조합으로 이루어진 군에서 선택되고; Z는 Cr, V, Fe, Sc, Y, 및 이들의 조합으로 이루어진 군에서 선택되며; J는 V, Cr, Mn, Co, Ni, Cu, 및 이들의 조합으로 이루어진 군에서 선택된다.
보다 적절한 양극 활물질로는 리튬 니켈계 화합물을 들 수 있다. 상기 리튬 니켈계 화합물은 하기 화학식 5로 표현되는 니켈 함량이 많은 화합물일 수 있다.
[화학식 5]
Lia1Nix1Coy1Mnz1O2
상기 화학식 5에서,
0.9 ≤ a1 ≤ 1.1, 0.6 ≤ x1 ≤ 0.9, 0 ≤ y1 ≤ 0.3, 0 ≤ z1 ≤ 0.3, x1 + y1 + z1 =1.
이와 같이, 양극 활물질을 리튬 니켈계 화합물을 사용하면서, 제1 첨가제 및 제2 첨가제를 포함하는 전해질을 함께 사용하는 경우, 고온 저장시 저항 변화율을 감소시키고, 가스 저감율을 억제할 수 있는 효과를 더욱 상승시킬 수 있어, 적절하다.
특히, 상기 양극 활물질로 상기 화학식 5의 리튬 니켈계 화합물을 사용하는 경우, 고온 저장시 저항 변화율이 크고, 가스가 많이 발생하나, 일 구현예 따른 제1 첨가제 및 제2 첨가제를 포함하는 전해질을 함께 사용하게 되면, 이러한 고온 저장시 저항 변화율 및 가스 발생을 효과적으로 억제할 수 있기에, 제1 첨가제 및 제2 첨가제를 포함하는 전해질을 사용함에 따른 효과를 더욱 극대화할 수 있어, 바람직하다.
상기 양극은 전류 집전체 및 이 전류 집전체에 형성되고, 양극 활물질을 포함하는 양극 활물질 층을 포함한다.
상기 양극에서, 상기 양극 활물질의 함량은 양극 활물질 층 전체 중량에 대하여 90 중량% 내지 98 중량%일 수 있다.
일 구현예에 있어서, 상기 양극 활물질 층은 바인더 및 도전재를 더욱 포함할 수 있다. 이때, 상기 바인더 및 도전재의 함량은 양극 활물질 층 전체 중량에 대하여 각각 1 중량% 내지 5 중량%일 수 있다.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 한다. 상기 바인더 대표적인 예로는 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하다. 도전재의 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 들 수 있다.
상기 전류 집전체로는 알루미늄 박, 니켈 박 또는 이들의 조합을 사용할 수 있으나 이에 한정되는 것은 아니다.
상기 음극은 전류 집전체 및 이 전류 집전체에 형성되고, 음극 활물질을 포함하는 음극 활물질 층을 포함한다.
상기 음극 활물질 층은 음극 활물질과 바인더를 포함하며, 선택적으로 도전재를 더욱 포함할 수 있다.
상기 음극 활물질로는 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬에 도프 및 탈도프 가능한 물질 또는 전이 금속 산화물을 사용할 수 있다.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질로는, 그 예로 탄소 물질, 즉 리튬 이차 전지에서 일반적으로 사용되는 탄소계 음극 활물질을 들 수 있다. 탄소계 음극 활물질의 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 린편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 리튬 금속의 합금으로는 리튬과, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다.
상기 리튬에 도프 및 탈도프 가능한 물질로는 Si, SiOx(0 < x < 2), Si-Q 합금(상기 Q는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Si-탄소 복합체, Sn, SnO2, Sn-R(상기 R은 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님), Sn-탄소 복합체 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Q 및 R로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
상기 전이 금속 산화물로는 리튬 티타늄 산화물을 사용할 수 있다.
일 구현예에 따르면, 상기 음극 활물질은 Si-탄소 복합체일 수 있고, 이 Si-탄소 복합체는 실리콘 입자와 결정질 탄소를 포함할 수 있다. 이 실리콘 입자의 평균 입경(D50)은 10nm 내지 200nm일 수 있다. 상기 Si-C 복합체는 적어도 일부분에 형성된 비정질 탄소층을 더욱 포함할 수 있다. 본 명세서에서 별도의 정의가 없는 한, 평균 입자 직경(D50)은 입도 분포에서 누적 체적이 50 부피%인 입자의 지름을 의미한다.
다른 일 구현예에 따르면, 상기 음극 활물질은 2종 이상의 음극 활물질을 혼합하여 사용할 수 있고, 일 예를 들면, 제1 음극 활물질로 Si-탄소 복합체를 포함할 수 있고, 제2 음극 활물질로 결정질 탄소를 포함할 수 있다. 음극 활물질로 2종 이상의 음극 활물질을 혼합하여 사용하는 경우, 이들의 혼합비는 적절하게 조절할 수 있으나, 음극 활물질 전체 중량에 대하여 Si의 함량이 3 중량% 내지 50 중량%가 되도록 조절하는 것이 적절할 수 있다.
상기 음극 활물질 층에서 음극 활물질의 함량은 음극 활물질 층 전체 중량에 대하여 95 중량% 내지 99 중량%일 수 있다. 상기 음극 활물질 층에서 바인더의 함량은 음극 활물질 층 전체 중량에 대하여 1 중량% 내지 5 중량%일 수 있다. 또한 도전재를 더욱 포함하는 경우에는 음극 활물질을 90 중량% 내지 98 중량%, 바인더를 1 내지 5 중량%, 도전재를 1 중량% 내지 5 중량% 사용할 수 있다.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 한다. 상기 바인더로는 비수용성 바인더, 수용성 바인더 또는 이들의 조합을 사용할 수 있다.
상기 비수용성 바인더로는 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 폴리아미드이미드, 폴리이미드 또는 이들의 조합을 들 수 있다.
상기 수용성 바인더로는 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 폴리비닐알콜, 폴리아크릴산 나트륨, 프로필렌과 탄소수가 2 내지 8의 올레핀 공중합체, (메타)아크릴산과 (메타)아크릴산알킬에스테르의 공중합체 또는 이들의 조합을 들 수 있다.
상기 음극 바인더로 수용성 바인더를 사용하는 경우, 점성을 부여할 수 있는 셀룰로즈 계열 화합물을 증점제로 더욱 포함할 수 있다. 이 셀룰로즈 계열 화합물로는 카르복시메틸 셀룰로즈, 하이드록시프로필메틸 셀룰로즈, 메틸 셀룰로즈, 또는 이들의 알칼리 금속염 등을 1종 이상 혼합하여 사용할 수 있다. 상기 알칼리 금속으로는 Na, K 또는 Li를 사용할 수 있다. 이러한 증점제 사용 함량은 음극 활물질 100 중량부에 대하여 0.1 중량부 내지 3 중량부일 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하다. 도전재의 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 덴카 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 들 수 있다.
상기 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체(foam), 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
상기 양극 활물질 층 및 음극 활물질 층은 음극 활물질, 바인더 및 선택적으로 도전재를 용매 중에서 혼합하여 활물질 조성물을 제조하고, 이 활물질 조성물을 전류 집전체에 도포하여 형성한다. 이와 같은 활물질 층 형성 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다. 상기 용매로는 N-메틸피롤리돈 등을 사용할 수 있으나 이에 한정되는 것은 아니다. 또한 음극 활물질 층에 수용성 바인더를 사용하는 경우, 음극 활물질 조성물 제조시 사용되는 용매로 물을 사용할 수 있다.
리튬 이차 전지의 종류에 따라 양극과 음극 사이에 세퍼레이터가 존재할 수도 있다. 이러한 세퍼레이터로는 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌/폴리프로필렌 2층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이터, 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이터 등과 같은 혼합 다층막이 사용될 수 있음은 물론이다.
도 1에 본 발명의 일 구현예에 따른 리튬 이차 전지의 분해 사시도를 나타내었다. 일 구현예에 따른 리튬 이차 전지는 원통형인 것을 예로 설명하지만, 본 발명이 이에 제한되는 것은 아니며, 각형, 파우치형 등 다양한 형태의 전지에 적용될 수 있다.
도 1을 참고하면, 일 구현예에 따른 리튬 이차 전지(1)는 양극(2)과 음극(4) 사이에 세퍼레이터(3)를 개재하여 귄취된 전극 조립체와, 상기 전극 조립체가 내장되는 케이스(5)와, 케이스(5)를 봉입하는 봉입 부재(6)을 포함할 수 있다. 상기 양극(10), 상기 음극(20) 및 상기 세퍼레이터(30)는 전해액(미도시)에 함침되어 있을 수 있다.
이하 본 발명의 실시예 및 비교예를 기재한다. 그러한 하기한 실시예는 본 발명의 일 실시예일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.
(실시예 1 내지 8 및 비교예 1 내지 6)
1.15M LiPF6를 에틸렌 카보네이트, 에틸메틸 카보네이트의 혼합 용매(20:40:40 부피비)에 첨가하고, 이 혼합물 100 중량%에 제1 첨가제 및 제2 첨가제를 하기 표 1에 나타낸 조성으로 첨가하여, 리튬 이차 전지용 비수 전해질을 제조하였다.
상기 비수 전해질, 양극 및 음극을 이용하여, 통상의 방법으로 원통령 리튬 이차 전지를 제조하였다. 이때, 전해액 주액량은 3g으로 하였다.
상기 양극은 LiNi0.6Co0.2Mn0.2O2 양극 활물질 96 중량%, 케첸 블랙 도전재 2 중량% 및 폴리비닐리덴 플루오라이드 2 중량%를 N-메틸피롤리돈 용매 중에서 혼합하여 양극활물질 슬러리를 제조하고, 상기 양극 활물질 슬러리를 알루미늄박에 코팅, 건조 및 압연하여 제조하였다.
상기 음극은 인조 흑연 음극 활물질 96 중량%, 케첸 블랙 도전재 2 중량% 및 폴리비닐리덴 플루오라이드 2 중량%를 N-메틸피롤리돈 용매 중에서 혼합하여 음극활물질 슬러리를 제조하고, 상기 음극 활물질 슬러리를 구리박에 코팅, 건조 및 압연하여 제조하였다.
제조된 리튬 이차 전지를 60℃에서 30일간 저장하고, 저장 전 저항 및 저장 후 저항을 각각 측정하여, 저항 변화율을 구하였다. 그 결과를 하기 표 1에 나타내었다.
또한, 60℃에서 30일간 저장 전 발생되는 가스 함량 및 저장 후 발생되는 가스 함량을 각각 측정하였다. 측정된 가스 함량으로부터 비교예 1의 발생된 가스 함량보다 감소된 값을 구하고, 이 감소된 값으로부터 비교예 1의 가스 함량값에 대한 퍼센트값을 구한 후, 이 결과를 하기 표 1에 나타내었다. 즉, 비교예 1의 발생된 가스 함량이 10 mL이고, 실시예 1의 발생된 가스 함량이 5.6 mL이면, 감소된 값이 4.4 mL이기에, 가스 저감율을 44%이었다.
첨가제 1 | 첨가제 2 | 제1첨가제/제2첨가제 중량비 | 60℃ 저장 30일후저항 변화율 | 60℃ 저장 30일후 가스 저감율 | |||||
TESS | TMSES | 환형 제1첨가제 | 환형 제2첨가제 | ||||||
PST | ESA | MMDS | PSA | ||||||
실시예1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 : 1 | 22% | 44% |
실시예2 | 1 | 0 | 0.5 | 0 | 0 | 0 | 2 : 1 | 20% | 55% |
실시예3 | 1 | 0 | 0 | 0 | 1 | 0 | 1 : 1 | 16% | 25% |
실시예4 | 1 | 0 | 0.5 | 1 | 0 | 0 | 0.67 : 1 | 20% | 60% |
실시예5 | 1 | 0 | 1 | 1 | 0 | 0 | 0.5 : 1 | 18% | 60% |
실시예6 | 1 | 0 | 0.5 | 0 | 1 | 0 | 0.67 : 1 | 16% | 58% |
실시예7 | 1 | 0 | 2 | 0 | 0 | 0 | 0.5 : 1 | 20% | 70% |
실시예8 | 0 | 1 | 1 | 1 | 0 | 0 | 0.5 : 1 | 20% | 65% |
실시예9 | 5 | 0 | 1 | 0 | 0 | 0 | 5 : 1 | 23% | 50% |
비교예1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 40% | 0% |
비교예2 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 30% | 15% |
비교예3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 25% | 20% |
비교예4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 30% | 17% |
비교예5 | 1 | 0 | 0 | 5.5 | 0 | 0 | 0.18 : 1 | 55% | 40% |
비교예6 | 1 | 0 | 1 | 4.5 | 0 | 0 | 0.18 : 1 | 50% | 50% |
비교예7 | 12 | 0 | 1 | 0 | 0 | 0 | 12 : 1 | 80% | 25% |
비교예8 | 1 | 0 | 0 | 1 | 0 | 2 | 0.3 : 1 | 40% | 15% |
상기 표 1에서, TESS는 비스(트리에틸실릴 설페이트)(bis(triethylsilyl sulfate, 하기 화학식 1a임)이고,
TMSES는 트리메틸실릴에탄설포네이트(trimethylsilyl ethane sulfonate, 하기 화학식 3a임)이고,
ESA는 에틸렌 설페이트(ethylene sulfate)이고,
PST는 1,3-프로펜 설톤(1,3-propene sultone)이고,
MMDS는 메틸렌 메탄디설포네이트(methylene methanedisulfonate)이고,
PSA는 하기 화학식 10의 프로필렌 설페이트(propylene sulfate)이다.
[화학식 1a]
[화학식 3a]
[화학식 10]
상기 표 1에 나타낸 것과 같이, 제1 첨가제 및 제2 첨가제를 0.5 : 1 내지 5:1 중량비로 포함하는 전해질을 사용한 실시예 1 내지 8의 고온 저항 변화율이 낮고, 가스 저감율이 높게 나타났음을 알 수 있다.
그 반면, 제1 첨가제 및 제2 첨가제를 포함하지 않는 전해질을 사용한 비교예 1의 경우에는, 고온 저장 저항 변화율이 높고, 가스 저감은 나타나지 않음을 알 수 있다.
또한, 제1 첨가제만을 포함하는 전해질을 사용한 비교예 2 및 3의 경우, 또한 제2 첨가제만을 포함하는 전해질을 사용한 비교예 4의 경우에는, 고온 저장 변화율이 다소 높고, 가스 저감율은 다소 낮음을 알 수 있다.
제1 첨가제 및 제2 첨가제를 함께 포함하더라도, 그 혼합비가 0.18 : 1 중량비로서, 0.2: 1 내지 10: 1 중량비를 벗어나는 비교예 5 및 6의 경우, 가스 저감율은 적절한 수준으로 나타났으나, 고온 저장 저항 변화율이 매우 크게 나타났다.
또한, 제2 첨가제로 프로필렌 설페이트를 사용한 비교예 8의 경우, 고온 저장 변화율이 높으면서, 가스 저감율은 낮음을 알 수 있다.본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
Claims (12)
- 비수성 유기 용매;리튬염;하기 화학식 1 내지 4로 표현되는 화합물 중 적어도 하나를 포함하는 제1 첨가제; 및환형 황화물계 화합물을 포함하는 제2 첨가제를 포함하고,상기 제1 첨가제 및 상기 제2 첨가제의 혼합비는 0.2 : 1 내지 10 : 1 중량비인 리튬 이차 전지용 비수 전해질.[화학식 1][화학식 2][화학식 3][화학식 4](상기 화학식 1 내지 4에서,R1 내지 R9는 서로 독립적으로 1차, 2차 또는 3차 알킬기, 알케닐기 또는 아릴기이고, X는 수소 또는 할로겐 원자이고,n는 0 내지 3의 정수이고,m1 및 m2는 서로 독립적으로 0 내지 3의 정수임)
- 제1항에 있어서,상기 제1 첨가제 및 상기 제2 첨가제의 혼합비는 0.5 : 1 내지 5 : 1 중량비인 리튬 이차 전지용 비수 전해질.
- 제1항에 있어서,상기 제2 첨가제는 1,3-프로펜 설톤, 에틸렌 설페이트, 메틸렌 메탄디설포네이트, 1,4-부탄설톤, 2,4-부탄설톤, 에틸렌 설파이트, 프로필렌 설파이트, 술포란 또는 이들의 조합인 리튬 이차 전지용 비수 전해질.
- 제1항에 있어서,상기 제2 첨가제는 환형 황화물계 화합물을 포함하는 환형 제1 첨가제 및 환형 화합물계 화합물을 포함하는 환형 제2 첨가제를 포함하는 리튬 이차 전지용 비수 전해질.
- 제4항에 있어서,상기 환형 제1 첨가제 및 상기 환형 제2 첨가제는 1,3-프로펜 설톤, 에틸렌 설페이트, 메틸렌 메탄디설포네이트, 1,4-부탄설톤, 2,4-부탄설톤, 에틸렌 설파이트, 프로필렌 설파이트, 술포란 또는 이들의 조합이고, 상기 환형 제1 첨가제 및 상기 환형 제2 첨가제는 서로 상이한 것인 리튬 이차 전지용 비수 전해질.
- 제4항에 있어서,상기 환형 제1 첨가제 및 상기 환형 제2 첨가제의 혼합비는 0.5 : 1 내지 1 : 1 중량비인 리튬 이차 전지용 비수 전해질.
- 제1항에 있어서,상기 제1 첨가제의 함량은 상기 전해질 전체 중량에 대하여 0.5 중량% 내지 5 중량%인 리튬 이차 전지용 비수 전해질.
- 제1항에 있어서,상기 제2 첨가제의 함량은 상기 전해질 전체 중량에 대하여 0.5 중량% 내지 5 중량%인 리튬 이차 전지용 전해질.
- 제1항에 있어서,상기 제1 첨가제는 상기 화학식 1로 표현되는 화합물, 상기 화학식 3으로 표현되는 화합물 또는 이들의 조합인 리튬 이차 전지용 비수 전해질.
- 음극 활물질을 포함하는 음극;양극 활물질을 포함하는 양극; 및제1항 내지 제9항 중 어느 한 항의 비수 전해질을 포함하는 리튬 이차 전지.
- 제10항에 있어서,상기 양극 활물질은 리튬 니켈계 화합물인 리튬 이차 전지.
- 제11항에 있어서,상기 양극 활물질은 하기 화학식 5의 리튬 니켈계 화합물인 리튬 이차 전지.[화학식 5]Lia1Nix1Coy1Mnz1O2(상기 화학식 5에서,0.9 ≤ a1 ≤ 1.1, 0.6 ≤ x1 ≤ 0.9, 0 ≤ y1 ≤ 0.3, 0 ≤ z1 ≤ 0.3, x1 + y1 + z1 =1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/638,514 US11557791B2 (en) | 2017-09-06 | 2018-08-07 | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170113934A KR20190027188A (ko) | 2017-09-06 | 2017-09-06 | 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지 |
KR10-2017-0113934 | 2017-09-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2019050167A2 true WO2019050167A2 (ko) | 2019-03-14 |
WO2019050167A3 WO2019050167A3 (ko) | 2019-05-09 |
Family
ID=65634406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/008948 WO2019050167A2 (ko) | 2017-09-06 | 2018-08-07 | 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11557791B2 (ko) |
KR (2) | KR20190027188A (ko) |
WO (1) | WO2019050167A2 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102488602B1 (ko) * | 2017-09-06 | 2023-01-12 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1195834B1 (en) | 2000-10-03 | 2010-09-15 | Central Glass Company, Limited | Electrolyte for electrochemical device |
JP2002222648A (ja) | 2001-01-24 | 2002-08-09 | Toshiba Corp | 正極活物質,その製造方法およびリチウムイオン二次電池 |
JP4448275B2 (ja) | 2001-05-11 | 2010-04-07 | 三星エスディアイ株式会社 | リチウム二次電池用電解液及びこれを含むリチウム二次電池 |
JP4797403B2 (ja) * | 2005-03-01 | 2011-10-19 | 三菱化学株式会社 | 非水系電解液二次電池及び非水系電解液二次電池用電解液 |
JP5671773B2 (ja) | 2005-12-02 | 2015-02-18 | 三菱化学株式会社 | リチウムイオン二次電池 |
US20080193852A1 (en) | 2006-02-03 | 2008-08-14 | Sanyo Electric Co., Ltd. | Nonaqueous Electrolyte Secondary Battery |
JP4241815B2 (ja) | 2006-12-07 | 2009-03-18 | ソニー株式会社 | 電解液および電池 |
JP4379743B2 (ja) | 2006-12-08 | 2009-12-09 | ソニー株式会社 | 電解液および二次電池 |
JP5549438B2 (ja) | 2009-07-30 | 2014-07-16 | 三菱化学株式会社 | 非水系電解液及びそれを用いた非水系電解液二次電池 |
WO2011096450A1 (ja) | 2010-02-03 | 2011-08-11 | 宇部興産株式会社 | 非水電解液、それを用いた電気化学素子、及びそれに用いられるアルキニル化合物 |
KR101268478B1 (ko) * | 2010-03-08 | 2013-06-04 | 한국원자력연구원 | Dkk3 발현 또는 활성 억제제를 함유하는 암 예방 및 치료용 조성물 |
KR101212203B1 (ko) | 2010-03-16 | 2012-12-13 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지 |
US9350048B2 (en) | 2011-03-23 | 2016-05-24 | Samsung Sdi Co., Ltd. | Electrolyte for a lithium rechargeable battery, lithium rechargeable battery including the same, and method of manufacturing a lithium rechargeable battery |
US20120315536A1 (en) | 2011-06-09 | 2012-12-13 | Wildcat Discovery Technologies, Inc. | Materials for Battery Electrolytes and Methods for Use |
CN103107355B (zh) | 2013-02-03 | 2015-12-09 | 宁德新能源科技有限公司 | 锂离子电池及其电解液 |
JP5729525B2 (ja) | 2013-04-01 | 2015-06-03 | 宇部興産株式会社 | 非水電解液及びそれを用いた蓄電デバイス |
CN106063015B (zh) | 2013-07-19 | 2020-09-15 | 巴斯夫欧洲公司 | 反应性烷氧基硼酸锂在锂离子电池组用电解质中作为电解质添加剂的用途 |
JP2015072856A (ja) | 2013-10-04 | 2015-04-16 | 旭化成株式会社 | 非水蓄電デバイス用電解液及びリチウムイオン二次電池 |
KR20160040708A (ko) | 2013-12-25 | 2016-04-14 | 아사히 가세이 가부시키가이샤 | 실릴기 함유 화합물을 포함하는 전해액 첨가용 조성물, 이 조성물을 포함하는 비수 축전 디바이스용 전해액 및 이 전해액을 포함하는 리튬 이온 이차 전지 |
KR101612603B1 (ko) | 2014-03-19 | 2016-04-14 | 오씨아이 주식회사 | 탄소-실리콘 복합체, 이를 포함하는 이차전지용 음극활물질 및 탄소-실리콘 복합체를 제조하는 방법 |
WO2015145521A1 (ja) | 2014-03-24 | 2015-10-01 | 株式会社 東芝 | 非水電解質電池用負極活物質、非水電解質二次電池用負極、非水電解質二次電池及び電池パック |
CN104600362A (zh) * | 2015-02-05 | 2015-05-06 | 深圳市三讯电子有限公司 | 一种动力电池及其锂离子电解液 |
JP2016197508A (ja) | 2015-04-02 | 2016-11-24 | 旭化成株式会社 | 非水電解液添加剤、非水電解液、リチウムイオン二次電池 |
JP2017045724A (ja) | 2015-08-28 | 2017-03-02 | 三井化学株式会社 | 電池用非水電解液及びリチウム二次電池 |
US20180241084A1 (en) | 2015-08-28 | 2018-08-23 | Mitsui Chemicals, Inc. | Non-aqueous electrolyte solution for battery and lithium secondary battery |
KR102582754B1 (ko) | 2015-09-11 | 2023-09-26 | 선천 캡쳄 테크놀로지 컴퍼니 리미티드 | 이차전지용 전해액 첨가제, 이를 포함하는 전해액 및 이차전지 |
KR102537225B1 (ko) | 2015-10-23 | 2023-05-30 | 삼성전자주식회사 | 복합 음극 활물질, 상기 복합 음극 활물질을 포함하는 음극 및 상기 음극을 포함하는 리튬 이차전지 |
CN105336987A (zh) | 2015-11-17 | 2016-02-17 | 深圳新宙邦科技股份有限公司 | 一种锂离子电池非水电解液及锂离子电池 |
JP2017168347A (ja) | 2016-03-17 | 2017-09-21 | 富山薬品工業株式会社 | 蓄電デバイス用非水電解液 |
CN105655640B (zh) | 2016-03-28 | 2018-11-02 | 宁德新能源科技有限公司 | 一种非水电解液以及含有该电解液的锂离子电池 |
CN108242557B (zh) | 2016-12-26 | 2020-08-28 | 宁德时代新能源科技股份有限公司 | 电解液及二次电池 |
-
2017
- 2017-09-06 KR KR1020170113934A patent/KR20190027188A/ko active Application Filing
-
2018
- 2018-08-07 WO PCT/KR2018/008948 patent/WO2019050167A2/ko active Application Filing
- 2018-08-07 US US16/638,514 patent/US11557791B2/en active Active
-
2023
- 2023-05-08 KR KR1020230059291A patent/KR102621815B1/ko active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR102621815B1 (ko) | 2024-01-04 |
KR20190027188A (ko) | 2019-03-14 |
US20200365940A1 (en) | 2020-11-19 |
WO2019050167A3 (ko) | 2019-05-09 |
KR20230068374A (ko) | 2023-05-17 |
US11557791B2 (en) | 2023-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018062719A1 (ko) | 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지 | |
WO2019093634A1 (ko) | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 | |
KR101056441B1 (ko) | 첨가제를 포함하는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지 | |
WO2020009340A1 (ko) | 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지 | |
WO2018084526A2 (ko) | 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지 | |
WO2019050161A1 (ko) | 리튬 이차 전지 | |
WO2019139271A1 (ko) | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 | |
WO2019013521A2 (ko) | 리튬 이차 전지 | |
WO2019013525A2 (ko) | 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지 | |
WO2021194074A1 (ko) | 리튬 이차 전지의 전해질용 첨가제, 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지 | |
WO2019050162A1 (ko) | 리튬 이차 전지 | |
WO2018074684A1 (ko) | 리튬 이차 전지 | |
WO2022080809A1 (ko) | 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지 | |
WO2019050160A1 (ko) | 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지 | |
WO2019088503A1 (ko) | 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지 | |
WO2021225321A1 (ko) | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 | |
WO2018199429A1 (ko) | 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지 | |
WO2018026153A1 (ko) | 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 | |
WO2019194407A1 (ko) | 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지 | |
WO2023027431A1 (ko) | 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지 | |
WO2022097939A1 (ko) | 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지 | |
KR20230068374A (ko) | 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지 | |
WO2021177589A1 (ko) | 리튬 이차 전지용 음극 및 리튬 이차 전지 | |
WO2021118085A1 (ko) | 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지 | |
WO2019208928A1 (ko) | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18853827 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18853827 Country of ref document: EP Kind code of ref document: A2 |