WO2019049932A1 - セリウム系研磨材用原料の製造方法、及びセリウム系研磨材の製造方法 - Google Patents

セリウム系研磨材用原料の製造方法、及びセリウム系研磨材の製造方法 Download PDF

Info

Publication number
WO2019049932A1
WO2019049932A1 PCT/JP2018/033034 JP2018033034W WO2019049932A1 WO 2019049932 A1 WO2019049932 A1 WO 2019049932A1 JP 2018033034 W JP2018033034 W JP 2018033034W WO 2019049932 A1 WO2019049932 A1 WO 2019049932A1
Authority
WO
WIPO (PCT)
Prior art keywords
cerium
based abrasive
rare earth
raw material
mass
Prior art date
Application number
PCT/JP2018/033034
Other languages
English (en)
French (fr)
Inventor
知之 増田
正輝 深山
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to MYPI2020001213A priority Critical patent/MY192996A/en
Priority to KR1020207003396A priority patent/KR102423338B1/ko
Priority to JP2019540995A priority patent/JP6839767B2/ja
Priority to CN201880058079.XA priority patent/CN111051463B/zh
Publication of WO2019049932A1 publication Critical patent/WO2019049932A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/241Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion containing two or more rare earth metals, e.g. NdPrO3 or LaNdPrO3
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/253Halides
    • C01F17/265Fluorides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives

Definitions

  • the present invention relates to a method of producing a raw material used for producing a cerium-based abrasive used for polishing a glass material such as a liquid crystal panel, a hard disk, a glass substrate used for a filter for cutting specific frequencies, a glass substrate for an optical lens. And a method of producing a cerium-based abrasive.
  • Glass materials are used in various applications, and depending on the application, surface polishing may be required.
  • glass materials such as liquid crystal panels, hard disks, glass substrates used for filters for cutting specific frequencies, glass substrates for optical lenses, etc. are highly accurate and highly efficient surface polishing without causing defects such as polishing scratches. Is required.
  • a cerium-based abrasive is widely used because of its excellent polishing efficiency.
  • a cerium-based abrasive has conventionally been produced by adding water to a mixed oxide rare earth raw material, wet-pulverizing, and then sequentially passing through each process of drying, firing, crushing and classification (for example, Patent Document 1) reference).
  • the cerium-based abrasive In order to produce the cerium-based abrasive at low cost, it is desirable to produce it by a method with higher production efficiency. For this reason, in the conventional production method as described above, in the step of mixing the raw material and water and wet-pulverizing, the solid content concentration in the slurry in which the mixed oxide rare earth material and water are mixed is made as high as possible. It is desirable to be able to shorten the drying process of
  • the preparation amount of the mixed oxidized rare earth raw material is increased and the solid content concentration in the slurry is increased, the viscosity of the slurry tends to be high, and it tends to be difficult to make the slurry uniform due to stirring and mixing. For this reason, it is difficult to increase the preparation amount of the mixed oxidized rare earth raw material per batch in the wet grinding process, and further, in the process of drying the slurry having a high water content, the dried product obtained in one batch However, the drying efficiency was poor.
  • the present inventors repeatedly study the method of increasing the preparation amount of the mixed oxide rare earth material in the wet grinding process, and perform the predetermined treatment on the mixed oxide rare earth material. Was found to be effective.
  • the present invention in the production of a cerium-based abrasive, the present invention produces a raw material for a cerium-based abrasive which can improve the production efficiency by increasing the preparation amount of the mixed oxide rare earth per batch in the grinding step. And a method of producing a cerium based abrasive.
  • the present invention can increase the preparation amount of the mixed oxide rare earth in the wet grinding process by subjecting the mixed oxide rare earth raw material to the dry crushing process in the production of the cerium-based abrasive, thereby improving the production efficiency It is based on having found that it can do.
  • the present invention provides the following [1] to [13].
  • the content in oxide conversion of all the rare earth elements is 80 mass% or more, and the content in oxide conversion quantity of cerium to the content in the oxide conversion quantity of all the rare earth elements is 50 mass%
  • the light bulk density is more than 0.60 g / cm 3 and 1.50 g / cm 3 or less, and the particle diameter at a 50% cumulative value of volume distribution is 2 ⁇ m or more
  • a method for producing a raw material for a cerium-based abrasive comprising obtaining a raw material for a cerium-based abrasive comprising a crushed product of 20 ⁇ m or less.
  • [2] The method for producing a raw material for a cerium-based abrasive according to the above [1], wherein the light bulk density of the crushed product is 0.80 g / cm 3 or more.
  • [3] The method for producing a raw material for a cerium-based abrasive according to the above [1] or [2], wherein the mixed oxide rare earth contains one or more selected from lanthanum, neodymium, and praseodymium.
  • a method of producing a cerium based abrasive comprising the step of pulverizing the raw material for a cerium based abrasive obtained by the production method according to any one of the above [1] to [3].
  • Method of producing a polishing material [5] The method for producing a cerium-based abrasive according to [4], including the step of adding a rare earth fluoride to the cerium-based abrasive material before pulverizing the cerium-based abrasive material. [6] The method for producing a cerium-based abrasive according to the above [4] or [5], wherein the step of grinding the raw material for a cerium-based abrasive is a wet grinding step.
  • a step of adding a rare earth fluoride to the raw material for a cerium-based abrasive before grinding the raw material for a cerium-based abrasive comprising the step of adding the rare earth fluoride to the raw material for the cerium-based abrasive
  • the cerium-based abrasive according to any one of the above [5] to [12], which is added so that the amount of the rare earth fluoride in the total 100 mass% of the rare earth fluoride is 1 to 40 mass%. Manufacturing method.
  • the raw material for cerium based abrasives of this invention the raw material which can improve the production efficiency of cerium based abrasives can be provided.
  • the preparation amount of the mixed oxide rare earth per batch in the grinding step can be increased, so that the production efficiency can be increased.
  • production costs can be reduced.
  • the method for producing a raw material for a cerium-based abrasive according to the present invention has an oxide-equivalent content of all rare earth elements (hereinafter, also referred to as "TREO" (abbreviation of Total Rare Earth Oxide)) of 80% by mass or more. And the bulk density is more than 0.60 g / cm 3 1.50 g / cm according to the process of subjecting the mixed oxide rare earth having a content of 50 mass% or more in terms of an oxide equivalent of cerium to TREO.
  • TREO oxide-equivalent content of all rare earth elements
  • a raw material for a cerium-based abrasive comprising a crushed material having a particle diameter of 2 ⁇ m or more and 20 ⁇ m or less at a cumulative volume of 50 cm 3 or less and a volume distribution of 50% or less is obtained.
  • TREO said by this invention can be measured by oxalate precipitation, baking, and a weight method, and, specifically, it can be measured by the method as described in the Example mentioned later.
  • the content of the rare earth element can be measured by instrumental analysis such as high frequency inductively coupled plasma (ICP) analysis or fluorescent X-ray analysis, and in the present invention, the measured value by ICP emission spectral analysis (ICP-AES) A value obtained by converting a rare earth element as an oxide is regarded as an oxide equivalent.
  • ICP inductively coupled plasma
  • ICP-AES ICP emission spectral analysis
  • the mixed oxide rare earth used in the present invention has 80% by mass or more of TREO, and has a content of 50% by mass or more in terms of oxide amount of cerium based on TREO.
  • “mixing" of "mixed oxide rare earth” said to this specification means that multiple types of rare earth elements are contained.
  • TREO in the mixed oxide rare earth is preferably 83% by mass or more, and more preferably 85% by mass or more.
  • the mixed rare earth oxide is preferably composed mainly of cerium out of all the rare earth elements contained, and the content of cerium in terms of oxide with respect to TREO is preferably 53% by mass or more, More preferably, it is 55 mass% or more.
  • the mixed oxide rare earth may contain a rare earth element other than cerium, and examples of the rare earth element include lanthanum, neodymium, praseodymium and the like.
  • the mixed oxide rare earth can be obtained by firing a mixed light rare earth compound such as mixed carbon dioxide, mixed monooxycarbonate, mixed oxalates, mixed hydroxide, and the like.
  • mixing said here is also synonymous with “mixing” of the mixed oxide rare earth mentioned above.
  • the mixed light rare earth compound those in which the content of impurity components of non-rare earth components such as alkali metals, alkaline earth metals and radioactive substances, and medium heavy rare earths are reduced are preferable. Is more preferable.
  • a mixed carbon dioxide rare earth having 45 to 55% by mass of TREO and a content of about 55% by mass in terms of oxide of cerium based on TREO is preferably used.
  • “medium-weight rare earth” said by this specification refers to the rare earth elements whose atomic number is larger than promethium (Pm). Rare earth elements other than medium heavy rare earth are called "light rare earth”.
  • the method of preparing the mixed light rare earth compound is not particularly limited.
  • the mixed light rare earth compound is obtained, for example, by separating and reducing the content of impurity components other than rare earth elements and medium heavy rare earth from ore containing rare earth elements by chemical treatment.
  • the ore containing a rare earth element for example, a rare earth concentrate or the like obtained from a raw material ore such as natural bastnaesite or monazite containing a large amount of cerium is suitably used.
  • a sulfuric acid culture method is a general method as a chemical treatment method for reducing the content of impurity components.
  • the sulfuric acid culture method is a method in which the ground material ore thus ground is roasted together with sulfuric acid to form a sulfate, and the sulfate is dissolved in water to remove impurity components as insolubles.
  • the content of the impurity component is preferably reduced to 1% by mass or less in the mixed light rare earth compound.
  • a solvent extraction method is generally used as a chemical treatment method for reducing the content of medium heavy rare earth.
  • an alkali such as sodium hydroxide is used to form a mixed dilute earth, which is dissolved with hydrochloric acid to form a mixed dilute earth solution
  • a mixed dilute earth which is dissolved with hydrochloric acid to form a mixed dilute earth solution
  • each content of cerium and other light rare earths can be adjusted as necessary using known methods such as adjustment of the degree of extraction and use of additives and the like.
  • the content of medium heavy rare earth is preferably reduced to 1% by mass or less in the mixed light rare earth compound.
  • the mixed light rare earth compound is subjected to a treatment to reduce the content of impurity components, and then mixed carbonated rare earth made into carbonate using sodium carbonate, ammonium bicarbonate etc. and / or oxalic acid etc. It may contain mixed oxalate rare earth as acid salt.
  • the firing temperature when firing the mixed light rare earth compound to obtain the mixed oxide can be appropriately adjusted according to the composition of the mixed light rare earth compound, but is preferably 500 to 1100 ° C., more preferably The temperature is 500 to 1000 ° C., more preferably 600 to 900 ° C.
  • the firing time is preferably 0.5 to 48 hours, more preferably 1 to 40 hours, and still more preferably 1.5 to 30 hours.
  • the firing atmosphere is preferably in the air.
  • mixed oxide rare earth is also marketed and you may use a commercial item as a raw material for obtaining a crushed product.
  • mixed oxide rare earths of commercial products there are cases where mixed carbon dioxide, mixed monooxycarbonate rare earth, mixed oxalic acid rare earth, etc., which are the raw materials for production, remain.
  • the mixed oxide rare earth is subjected to dry crushing treatment to obtain a raw material for a cerium-based abrasive consisting of crushed material.
  • the mixed oxide rare earth particles which are aggregating are made to have a predetermined light bulk density and particle size.
  • the particle diameter of the ordinary mixed rare earth oxide obtained as described above is about 5 to 30 ⁇ m, and the crystallite diameter is usually 30 to 150 ⁇ .
  • the crystallite diameter can be obtained by calculation from the half-value width of the main peak with an X-ray diffractometer using the Scheller equation.
  • agglomerated particles having a particle size larger than the particle size of primary particles of polycrystal are obtained.
  • the dry crushing process for obtaining crushed products composed of such particles is distinguished from "crushing" in the crushing step described later.
  • the dry grinding process can be performed using a known dry crushing (grinding) apparatus. From the viewpoint of obtaining particles of a predetermined property, for example, a hammer mill (atomizer), a pin mill or the like is suitably used.
  • the amount of mixed oxide rare earth can not be increased.
  • the light bulk density of the crushed product is preferably 0.80 g / cm 3 or more And more preferably 0.85 g / cm 3 or more.
  • the upper limit of the light bulk density of the crushed product is preferably 1.30 g / cm 3 or less, more preferably 1.00 g / cm 3 or less, from the viewpoint of easy handling.
  • the raw material for a cerium-based abrasive consisting of the crushed product has an average particle diameter of 2 to 20 ⁇ m, preferably 2 to 18 ⁇ m, and more preferably 3 to 15 ⁇ m.
  • the “average particle size” in the present invention refers to the particle size at a 50% cumulative value of the volume distribution, and is also expressed as “D50”.
  • the average particle size can be measured by a laser diffraction scattering method. Specifically, it is a value measured by the microtrack particle size distribution analyzer described in the following examples. If the average particle size of the crushed product is less than 2 ⁇ m, the particles are too fine to be handled, which is not preferable for practical use.
  • the method for producing a cerium-based abrasive according to the present invention is characterized by including the step of grinding the raw material for cerium-based abrasive obtained as described above.
  • the raw material for a cerium-based abrasive comprising the crushed product of the mixed oxide rare earth as described above, the production efficiency in the production of a cerium-based abrasive can be improved.
  • the grinding process of the raw material for a cerium-based abrasive in the method for producing a cerium-based abrasive according to the present invention may be either a dry grinding process or a wet grinding process, but a wet grinding process is preferable for the following reason.
  • ⁇ Wet grinding process> In the method for producing a cerium-based abrasive, in particular, by using the raw material for a cerium-based abrasive comprising the crushed product in the wet grinding step, an increase in the viscosity of the slurry when mixed with water is suppressed, so one batch It is possible to increase the preparation amount of the per capita mixed oxide rare earth, and also to improve the drying efficiency in the subsequent step of drying the slurry. That is, the raw material for a cerium-based abrasive obtained as described above can particularly contribute to the improvement effect of the production efficiency of the cerium-based abrasive by being subjected to the wet grinding process.
  • the wet grinding process is performed by a medium mill such as a wet ball mill (bead mill) or the like from the viewpoint of uniformly mixing, in the case of adding other components other than the crushed product, as described later.
  • a medium mill such as a wet ball mill (bead mill) or the like from the viewpoint of uniformly mixing, in the case of adding other components other than the crushed product, as described later.
  • the dispersion medium water is suitably used, but from the viewpoint of improving the dispersibility, a mixed solvent with an alcohol or the like may be used.
  • the raw material slurry of the cerium-based abrasive obtained by the wet pulverizing process preferably uses water as a dispersion medium and has a solid content concentration of 55% by mass or more, and more preferably, from the viewpoint of productivity improvement and production cost. It is 57 mass% or more, More preferably, it is 60 mass% or more.
  • the term “solid content” as used herein refers to the crushed product when the object to be wet-milled is only the crushed product, and when other components other than the crushed product are added, as described later, It refers to the sum of solid content of the ingredients and crushed material.
  • the particle diameter of the solid component in the raw material slurry is preferably 0.3 to 10 ⁇ m, more preferably 0.5 to 7 ⁇ m, in terms of handleability in the subsequent steps, etc. More preferably, it is 0.5 to 5 ⁇ m.
  • the cerium-based abrasive may be composed of only the components of the crushed product, or may further contain components other than the components of the crushed product from the viewpoint of improving the polishing characteristics of the abrasive, for example,
  • a fluorine component is added.
  • components other than the components of the crushed product are preferably added to the crushed product before crushing the crushed product so as to be uniformly mixed with the crushed product.
  • a fluorine component it is added to the crushed product, it is preferable to add a rare earth fluoride to the crushed product. That is, it is preferable to include the step of adding the rare earth fluoride to the raw material for the cerium-based abrasive before grinding the raw material for the cerium-based abrasive consisting of a crushed product of the mixed oxide.
  • the rare earth fluoride is added as the fluorine component for the purpose of increasing the fluorine atom content of the cerium-based abrasive.
  • the cerium-based abrasive contains fluorine, the polishing characteristics such as the polishing rate can be improved. If rare earth fluoride is used, a cerium-based abrasive containing fluorine can be manufactured safely and easily at low cost, as compared with direct use of a fluoride such as ammonium fluoride or hydrofluoric acid.
  • the rare earth fluoride preferably has TREO of 80% by mass or more, more preferably 83% by mass or more, and still more preferably 85% by mass or more. Further, the rare earth fluoride is preferably one containing cerium as a main component among all the rare earth elements contained, and the content of the cerium in terms of oxide relative to TREO is preferably 50% by mass or more, and more preferably Preferably it is 53 mass% or more, More preferably, it is 55 mass% or more.
  • the fluorine atom content in the rare earth fluoride is preferably 10 to 30% by mass, more preferably 15 to 30% by mass, and still more preferably 20 to 30% by mass.
  • a mixed fluoride rare earth obtained by adding a fluoride such as hydrofluoric acid, ammonium fluoride or ammonium acid fluoride to the above-mentioned mixed light rare earth compound and heat treating it Can be used.
  • a fluoride such as hydrofluoric acid, ammonium fluoride or ammonium acid fluoride
  • mixing said here is also synonymous with “mixing” of the mixed oxide rare earth mentioned above.
  • the heat treatment is preferably performed at a temperature of 400 ° C. or less from the viewpoint of obtaining a cerium-based abrasive that is homogeneous and has excellent polishing characteristics.
  • the heat treatment atmosphere is preferably in the air.
  • the amount of the rare earth fluoride added to the raw material for a cerium-based abrasive consisting of the crushed product is appropriately determined according to the fluorine atom content required for the cerium-based abrasive to be produced. From the viewpoint of obtaining excellent polishing characteristics, the amount of the rare earth fluoride is preferably 1 to 40% by mass in the total 100% by mass of the crushed product and the rare earth fluoride, and more preferably. Is 3 to 35% by mass, more preferably 5 to 30% by mass.
  • the method for producing a cerium-based abrasive according to the present invention includes a step of performing drying, firing, crushing and classification in this order after the wet pulverizing step. That is, after the slurry obtained in the wet pulverizing step is dried, it is preferably fired, crushed and classified to produce a cerium-based abrasive. According to the manufacturing method through such steps, since the slurry has a high solid content concentration, the drying efficiency is also improved, and thus the production efficiency of the cerium-based abrasive is improved, and the manufacturing cost is also reduced. Can.
  • the firing temperature is preferably 600 to 1200 ° C., more preferably 650 to 1150 ° C., and still more preferably 700 to 1100 ° C., from the viewpoint of obtaining a cerium-based abrasive that is homogeneous and has excellent polishing characteristics. is there.
  • the firing time at the target set temperature is preferably 0.1 to 10 hours, more preferably 0.5 to 6 hours, and still more preferably 0.5 to 4 hours.
  • the firing atmosphere is preferably in the air.
  • the cerium-based abrasive obtained by the production method of the present invention has a TREO of preferably 85% by mass or more, more preferably 90% by mass or more from the viewpoint of polishing characteristics, and the oxide conversion amount of cerium relative to the TREO
  • the content of is preferably 55 to 95% by mass, more preferably 60 to 95% by mass.
  • the cerium-based abrasive preferably contains lanthanum, neodymium and praseodymium. In this case, the content of lanthanum in terms of oxide relative to TREO is 5 to 40% by mass, and the oxide equivalent of neodymium relative to TREO is preferred.
  • the content in terms of the amount is 0.01 to 5% by mass, and the content in terms of oxide of praseodymium relative to TREO is 0.01 to 5% by mass.
  • the cerium-based abrasive preferably contains a fluorine atom from the viewpoint of achieving excellent polishing characteristics, and in this case, the content of the fluorine atom is 0.5 to 10% by mass. preferable.
  • the cerium-based abrasive preferably has an average particle diameter (D50) of 0.3 to 5.0 ⁇ m, more preferably 0.5 to 4.0 ⁇ m, and further preferably, although it depends on the object to be polished and the polishing conditions. Is 0.5 to 3.0 ⁇ m.
  • the cerium-based abrasive is usually handled in the form of powder, but at the time of polishing, for example, it is dispersed in a dispersion medium such as water and used in the state of slurry.
  • a dispersion medium such as water and used in the state of slurry.
  • the dispersion concentration of the abrasive in the slurry is appropriately adjusted depending on the object to be polished, the polishing conditions and the like, but is usually 1 to 30% by mass.
  • water or a water-soluble organic solvent such as alcohol, acetone or tetrahydrofuran is suitably used, and usually water is used.
  • glycols such as ethylene glycol and polyethylene glycol, if necessary, for the purpose of improving dispersibility, preventing sedimentation, improving stability, and improving workability; tripolyphosphoric acid, hexametaphosphate, etc.
  • Additives such as phosphates of polymers; dispersants of polymers such as polyacrylates; cellulose ethers such as methylcellulose and carboxymethylcellulose; water-soluble polymers such as polyvinyl alcohol; can do.
  • the amount of each additive to be added is usually 0.01 to 20 parts by mass, preferably 0.05 to 15 parts by mass, with respect to 100 parts by mass of the abrasive in the slurry. More preferably, it is 0.1 to 10 parts by mass.
  • the cerium-based abrasive When the cerium-based abrasive is used, a high polishing rate can be maintained while suppressing polishing scratches (scratch) generated on the polishing surface of a glass substrate or the like, and efficient polishing can be performed.
  • the cerium-based abrasives are various glass materials and glass products, in particular, glass substrates for optical disks and magnetic disks, glass substrates for liquid crystal displays, glass substrates for color filters and photomasks, glass substrates for optical lenses, etc. It is suitably used for finish polishing.
  • Example 1 1500 kg of the raw material A was introduced into an atomizer (manufactured by Fuji Electric Co., Ltd. (now Fuji Paudal Co., Ltd., model number “EII 7.5”)), and dry crushing processing (1) was performed at a rotation speed of 8000 rpm.
  • Examples 2 to 5 In Example 1, using the raw materials B to E in place of the raw material A, the dry disintegration treatment (1) was performed in the same manner as in Example 1 except the above.
  • Example 6 In Example 1, the rotation speed of the atomizer was 5000 rpm, and in the same manner as in Example 1 except for this, the dry crushing process (2) was performed.
  • Example 7 In Example 2, the rotation speed of the atomizer was 5000 rpm, and in the same manner as in Example 2 except for this, the dry crushing process (2) was performed.
  • Comparative Examples 1 to 3 The raw materials A to C, which were not subjected to the dry crushing process, were referred to as comparative examples 1 to 3, respectively.
  • ⁇ Average particle size (D50)> The particle size distribution was measured by a laser diffraction scattering method using a microtrack particle size distribution analyzer “MT3300II” (manufactured by Nikkiso Co., Ltd.), and the particle diameter (D50) at a 50% cumulative value of the volume distribution was taken as the average particle diameter.
  • Evaluation criteria are as follows. A: It is a viscosity which can be easily stirred by hand, and becomes a uniform slurry. B: Slurry is formed, but manual stirring is somewhat difficult. C: It can not be stirred at all and does not form a slurry. In the case of the evaluations A and B, it can be said that it is possible to obtain a uniform slurry in wet grinding. In the case of evaluation C, it is difficult to obtain a uniform slurry in wet grinding.
  • the raw material for cerium-based abrasives (Examples 1 to 7) consisting of crushed material having a predetermined light bulk density and average particle diameter, which was subjected to dry crushing processing, was in the slurry. Even when the concentration of the crushed material (solid content) of the mixed oxide is increased, a uniform slurry can be obtained. Therefore, if the raw material for cerium based abrasives is used, it becomes possible to increase the preparation amount of the mixed oxide rare earth in the wet grinding process.
  • Example 8 After hydrofluoric acid was added to and mixed with the mixed light rare earth compound obtained in Example 1 (production process of the raw material A), heat treatment was carried out at 400 ° C. in the atmosphere for 2 hours to obtain mixed mixed rare earth.
  • the mixed rare earth fluoride has 83% by mass of TREO, the content of the oxide equivalent of cerium ([CeO 2 ]) to the TREO is 65% by mass, and the fluorine atom content is 26%. It was mass%.
  • Comparative example 4 A total of 1000 kg of water and a total of 1000 kg of the mixture of the mixed rare earth undivided in Comparative Example 2 and the mixture of the same mixed dilute fluoride as in Example 8 (mixing mass ratio 76:24) are stirred and mixed in a slurry tank, A mixed slurry was obtained by mixing and grinding for 19 hours in a ball mill (medium: balls made of zirconia with a diameter of 5 mm) for 19 hours. This mixed slurry was dried, fired, crushed and classified in the same manner as in Example 8 to produce a cerium-based abrasive.
  • the solid content concentration in the slurry was 50% by mass as the upper limit of the preparation amount.
  • the preparation amount can be increased to a solid content concentration of about 61 mass% in the slurry, and uniform It has been recognized that the processing time of wet grinding until a mixed slurry can be obtained can be shortened.
  • a cerium-based abrasive manufactured from a mixed slurry having a high solid content concentration using a crushed product of mixed oxide rare earth as a raw material is a conventional method using an unbroken product of mixed oxide rare earth as a raw material
  • the composition, physical properties and polishing characteristics were found to be similar to the manufactured cerium-based abrasive (Comparative Example 4). From this, it can be said that the production method of the present invention can improve the production efficiency without reducing the polishing characteristics of the cerium-based abrasive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Crushing And Pulverization Processes (AREA)

Abstract

全希土類元素の酸化物換算での含有量が80質量%以であり、前記全希土類元素の酸化物換算での含有量に対するセリウムの酸化物換算量での含有量が50質量%以上である混合酸化希土を乾式解砕処理する工程により、軽装かさ密度が0.60g/cm3超1.50g/cm3以下、かつ、体積分布50%累積値での粒子径が2μm以上20μm以下の解砕品からなるセリウム系研磨材用原料を製造し、また、該セリウム系研磨材用原料を粉砕する工程を含む製造方法によりセリウム系研磨材を製造する。

Description

セリウム系研磨材用原料の製造方法、及びセリウム系研磨材の製造方法
 本発明は、液晶パネル、ハードディスク、特定周波数カット用フィルター等に使用されるガラス基板、光学レンズ用ガラス基板等のガラス材の研磨に用いられるセリウム系研磨材の製造に用いられる原料の製造方法、及びセリウム系研磨材の製造方法に関する。
 ガラス材は、様々な用途に用いられており、その用途によっては表面研磨が必要な場合がある。特に、液晶パネル、ハードディスク、特定周波数カット用フィルター等に使用されるガラス基板、光学レンズ用ガラス基板等のガラス材は、研磨傷等の欠陥を生じることなく、高精度かつ高効率での表面研磨が求められている。
 このようなガラス材の表面研磨には、研磨効率に優れていることから、セリウム系研磨材が多用されている。
 セリウム系研磨材は、従来、混合酸化希土原料に水を加えて湿式粉砕し、その後、乾燥、焼成、解砕及び分級の各工程を順次経ることにより製造されていた(例えば、特許文献1参照)。
特開2002-224949号公報
 セリウム系研磨材を低コストで製造するためには、より生産効率の高い方法で製造することが望ましい。このため、従来の上記のような製造方法では、原料及び水を混合して湿式粉砕する工程において、混合酸化希土原料及び水を混合したスラリーにおける固形分濃度をできるだけ高くし、さらに、その次の乾燥工程を短時間化できることが望ましい。
 しかしながら、混合酸化希土原料の仕込み量を多くし、スラリー中の固形分濃度を高くすると、スラリーは粘性が高くなり、撹拌混合等により均一化することが困難となる傾向にある。
 このため、湿式粉砕工程において、1バッチ当たりの混合酸化希土原料の仕込み量を増加させることは困難であり、さらに、水分含有量が多いスラリーを乾燥する工程でも、1バッチで得られる乾燥品の量を増加させることはできず、乾燥効率にも劣る等の課題を有していた。
 上記のような課題に対して、本発明者らは、湿式粉砕工程における混合酸化希土原料の仕込み量を増加させる方法について検討を重ね、混合酸化希土原料に所定の処理を施しておくことが効果的であることを見出した。
 すなわち、本発明は、セリウム系研磨材の製造において、粉砕工程における1バッチ当たりの混合酸化希土の仕込み量を増加させることにより、生産効率を向上させることができるセリウム系研磨材用原料を製造する方法、及びセリウム系研磨材の製造方法を提供することを目的とする。
 本発明は、セリウム系研磨材の製造において、混合酸化希土原料に乾式解砕処理を施すことにより、湿式粉砕工程における混合酸化希土の仕込み量を増加させることができ、生産効率を向上させることができることを見出したことに基づくものである。
 すなわち、本発明は、以下の[1]~[13]を提供するものである。
[1]全希土類元素の酸化物換算での含有量が80質量%以上であり、前記全希土類元素の酸化物換算量での含有量に対するセリウムの酸化物換算量での含有量が50質量%以上である混合酸化希土を乾式解砕処理する工程により、軽装かさ密度が0.60g/cm3超1.50g/cm3以下、かつ、体積分布50%累積値での粒子径が2μm以上20μm以下の解砕品からなるセリウム系研磨材用原料を得ることを特徴とするセリウム系研磨材用原料の製造方法。
[2]前記解砕品の軽装かさ密度が0.80g/cm3以上である、上記[1]に記載のセリウム系研磨材用原料の製造方法。
[3]前記混合酸化希土が、ランタン、ネオジム、及びプラセオジムから選ばれる1種以上を含む、上記[1]又は[2]に記載のセリウム系研磨剤用原料の製造方法。
[4]セリウム系研磨材の製造方法において、上記[1]~[3]のいずれかに記載の製造方法により得られたセリウム系研磨材用原料を粉砕する工程を含むことを特徴とするセリウム系研磨材の製造方法。
[5]前記セリウム系研磨材用原料を粉砕する前に、前記セリウム系研磨材用原料にフッ化希土を添加する工程を含む、上記[4]に記載のセリウム系研磨材の製造方法。
[6]前記セリウム系研磨材用原料を粉砕する工程が湿式粉砕工程である、上記[4]又は[5]に記載のセリウム系研磨材の製造方法。
[7]前記湿式粉砕工程により、水を分散媒とし、固形分濃度が55質量%以上である、前記セリウム系研磨材用原料を含むスラリーを得る、上記[6]に記載のセリウム系研磨材の製造方法。
[8]前記湿式粉砕工程の後、乾燥、焼成、解砕及び分級をこの順に行う工程を含む、上記[6]又は[7]に記載のセリウム系研磨材の製造方法。
[9]前記湿式粉砕工程の後、600~1200℃で焼成する、上記[8]に記載のセリウム系研磨剤の製造方法。 
[10]前記湿式粉砕工程の後、0.1~10時間焼成する、上記[8]又は[9]に記載のセリウム系研磨剤の製造方法。
[11]前記セリウム系研磨材用原料を粉砕する前に、前記セリウム系研磨材用原料にフッ化希土を添加する工程を含み、前記フッ化希土が、全希土類元素の酸化物換算量での含有量が80質量%以上である、上記[5]~[10]のいずれかに記載のセリウム系研磨剤の製造方法。
[12]前記セリウム系研磨材用原料を粉砕する前に、前記セリウム系研磨材用原料にフッ化希土を添加する工程を含み、前記フッ化希土中のフッ素原子含有量が、10~30%である、上記[5]~[11]のいずれかに記載のセリウム系研磨剤の製造方法。
[13]前記セリウム系研磨材用原料を粉砕する前に、前記セリウム系研磨材用原料にフッ化希土を添加する工程を含み、前記フッ化希土を、前記セリウム系研磨材用原料とフッ化希土の合計100質量%のうちのフッ化希土の量が、1~40質量%となるように添加する、上記[5]~[12]のいずれかに記載のセリウム系研磨剤の製造方法。
 本発明のセリウム系研磨材用原料の製造方法によれば、セリウム系研磨材の生産効率を向上させることができる原料を提供することができる。
 また、前記セリウム系研磨材用原料を用いた本発明のセリウム系研磨材の製造方法によれば、粉砕工程における1バッチ当たりの混合酸化希土の仕込み量を増加させることができるため、生産効率を向上させることができ、さらに、生産コストの低減化も図ることができる。
 以下、本発明を詳細に説明する。
[セリウム系研磨材用原料の製造方法]
 本発明のセリウム系研磨材用原料の製造方法は、全希土類元素の酸化物換算量での含有量(以下、「TREO」(Total Rare Earth Oxideの略)とも言う。)が80質量%以上であり、前記TREOに対するセリウムの酸化物換算量での含有量が50質量%以上である混合酸化希土を乾式解砕処理する工程により、軽装かさ密度が0.60g/cm3超1.50g/cm3以下、かつ、体積分布50%累積値での粒子径が2μm以上20μm以下の解砕品からなるセリウム系研磨材用原料を得ることを特徴とするものである。
 このように混合酸化希土を乾式解砕処理することにより、セリウム系研磨材の生産効率を向上させることができるセリウム系研磨材用原料が得られる。
 なお、本発明で言うTREOは、シュウ酸塩沈殿、焼成及び重量法により測定することができ、具体的には、後述する実施例に記載の方法により測定することができる。
 また、希土類元素の含有量は、高周波誘導結合プラズマ(ICP)分析や蛍光X線分析等の機器分析により測定することができ、本発明では、ICP発光分光分析(ICP-AES)による測定値から、希土類元素を酸化物として換算した値を酸化物換算量とする。
(混合酸化希土)
 本発明で用いる混合酸化希土は、TREOが80質量%以上であり、TREOに対するセリウムの酸化物換算量での含有量が50質量%以上である。
 なお、本明細書で言う「混合酸化希土」の「混合」とは、複数種の希土類元素が含まれていることを意味する。
 セリウム系研磨材の生産効率の向上の観点から、混合酸化希土中のTREOは、83質量%以上であることが好ましく、より好ましくは85質量%以上である。
 上記と同様の観点から、混合酸化希土は、含有する全希土類元素のうちセリウムを主成分とし、TREOに対するセリウムの酸化物換算量での含有量は、53質量%以上であることが好ましく、より好ましくは55質量%以上である。
 前記混合酸化希土には、セリウム以外の希土類元素が含まれていてもよく、前記希土類元素としては、例えば、ランタン、ネオジム、プラセオジム等が挙げられる。
 前記混合酸化希土は、混合炭酸希土や混合モノオキシ炭酸希土、混合シュウ酸希土、混合水酸化希土等の混合軽希土化合物を焼成することにより得ることができる。なお、ここで言う「混合」も、上述した、混合酸化希土の「混合」と同義である。
 前記混合軽希土化合物としては、アルカリ金属、アルカリ土類金属及び放射性物質等の非希土類成分の不純物成分、並びに中重希土の含有量が低減されているものが好ましく、セリウムを主成分としているものがより好ましい。混合軽希土化合物としては、例えば、TREOが45~55質量%、前記TREOに対するセリウムの酸化物換算量での含有量が約65質量%の混合炭酸希土が好適に用いられる。
 なお、本明細書で言う「中重希土」とは、プロメチウム(Pm)より原子番号が大きい希土類元素を指す。中重希土以外の希土類元素を「軽希土」と言う。
 混合軽希土化合物の調製方法は、特に限定されるものではない。混合軽希土化合物は、例えば、希土類元素を含む鉱石から希土類元素以外の不純物成分及び中重希土の含有量を化学的処理により分離して低減させることにより得られる。
 希土類元素を含む鉱石としては、例えば、セリウムを多く含む、天然のバストネサイトやモナザイト等の原料鉱石から得られる希土精鉱等が好適に用いられる。
 混合軽希土化合物の調製において、不純物成分の含有量を低減させる化学的処理方法としては、硫酸培焼法が一般的な方法である。硫酸培焼法は、粉砕された前記原料鉱石を硫酸とともに焙焼して硫酸塩を生成し、この硫酸塩を水に溶解して不純物成分を不溶物として除去する方法である。不純物成分の含有量は、混合軽希土化合物中、1質量%以下にまで低減されることが好ましい。
 また、中重希土の含有量を低減させる化学的処理方法としては、溶媒抽出法が一般的である。具体的には、原料鉱石の不純物成分の含有量を低減させる処理を行った後、水酸化ナトリウム等のアルカリにより混合水酸化希土とし、これを塩酸で溶解して混合塩化希土水溶液として、有機溶媒を用いて溶媒抽出することにより行うことができる。溶媒抽出においては、必要に応じて、抽出の程度の調整や添加剤等の使用等の公知の方法を用いて、セリウム及びその他の軽希土の各含有量を調整することができる。中重希土の含有量は、混合軽希土化合物中、1質量%以下にまで低減されることが好ましい。
 混合軽希土化合物は、不純物成分の含有量を低減させる処理を行った後に、炭酸ナトリウムや重炭酸アンモニウム等を用いて炭酸塩とした混合炭酸希土、及び/又は、シュウ酸等用いてシュウ酸塩とした混合シュウ酸希土を含んでいてもよい。
 混合軽希土化合物を焼成して混合酸化希土を得る際の焼成温度は、混合軽希土化合物の組成に応じて適宜調整されるが、500~1100℃であることが好ましく、より好ましくは500~1000℃、さらに好ましくは600~900℃である。焼成時間は、0.5~48時間であることが好ましく、より好ましくは1~40時間、さらに好ましくは1.5~30時間である。焼成雰囲気は、大気中であることが好ましい。
 なお、混合酸化希土は、市販もされており、解砕品を得るための原料として市販品を用いてもよい。市販品の混合酸化希土中には、その製造原料である混合炭酸希土や混合モノオキシ炭酸希土、混合シュウ酸希土等が残存している場合もある。
(乾式解砕処理工程)
 本発明では、前記混合酸化希土を乾式解砕処理して、解砕品からなるセリウム系研磨材用原料を得る。
 乾式解砕処理工程においては、凝集している混合酸化希土粒子を所定の軽装かさ密度及び粒子径となるようにする。
 上記のようにして得られた通常の混合酸化希土の粒子径は、5~30μm程度であり、結晶子径は、通常、30~150Åである。結晶子径は、X線回折装置でメインピークの半価幅からシェラーの式を用いて算出することにより求められる。乾式解砕処理では、多結晶体の一次粒子の粒子径よりも大きい粒子径サイズの凝集粒子を得る。このような粒子からなる解砕品を得る乾式解砕処理は、後述する粉砕工程における「粉砕」とは区別されるものである。
 乾式粉砕処理は、公知の乾式解砕(粉砕)装置を用いて行うことができる。所定の性状の粒子を得る観点から、例えば、ハンマーミル(アトマイザー)、ピンミル等が好適に用いられる。
<軽装かさ密度>
 乾式解砕処理工程により得られた解砕品は、軽装かさ密度が0.60g/cm3超1.50g/cm3以下であり、好ましくは0.80g/cm3以上である。
 なお、本発明で言う「軽装かさ密度」とは、JIS R 9301-2-3:1999(アルミナ粉末-第2部:物性測定方法-3:軽装かさ密度及び重装かさ密度)の「3.軽装かさ密度の測定方法」に準拠した方法で測定された値を指す。
 解砕品の軽装かさ密度が0.60g/cm3以下であると、湿式粉砕等のために該解砕品を水と混合してスラリーとする際、スラリーの粘性が高くなりやすく、均一なスラリーとするための混合酸化希土の仕込み量を増加させることができない。一方、1.50g/cm3超の場合は、取り扱いが難しく、実用上好ましくない。
 湿式粉砕工程での混合酸化希土の仕込み量をより多くし、セリウム系研磨材の生産効率の向上を図る観点から、解砕品の軽装かさ密度は、0.80g/cm3以上であることが好ましく、より好ましくは0.85g/cm3以上である。また、解砕品の軽装かさ密度の上限は、取り扱い容易性の観点から、1.30g/cm3以下あることが好ましく、より好ましくは1.00g/cm3以下である。
<平均粒子径(D50)>
 前記解砕品からなるセリウム系研磨材用原料は、平均粒子径が2~20μmであり、好ましくは2~18μm、より好ましくは3~15μmである。
 なお、本発明で言う「平均粒子径」とは、体積分布50%累積値での粒子径を指し、「D50」とも表す。この平均粒子径は、レーザー回折散乱法によって測定することができる。具体的には、下記実施例に記載のマイクロトラック粒度分布計で測定した値である。
 解砕品の平均粒子径が2μm未満であると、粒子が細かすぎて取り扱い難く、実用上好ましくない。一方、20μmを超える場合は、粒子が粗すぎて、湿式粉砕等のために該解砕品を水と混合してスラリーとする際、沈降しやすく、均一なスラリーが得られ難く、また、後の粉砕工程で時間を多く要することとなるため、好ましくない。
[セリウム系研磨材の製造方法]
 本発明のセリウム系研磨材の製造方法は、上記により得られたセリウム系研磨材用原料を粉砕する工程を含むことを特徴とするものである。
 上述したような混合酸化希土の解砕品からなるセリウム系研磨材用原料を用いることにより、セリウム系研磨材の製造における生産効率を向上させることができる。
(粉砕工程)
 本発明のセリウム系研磨材の製造方法におけるセリウム系研磨材用原料の粉砕工程は、乾式粉砕工程でも湿式粉砕工程でもよいが、下記の理由により、湿式粉砕工程が好ましい。
<湿式粉砕工程>
 セリウム系研磨材の製造方法において、特に、湿式粉砕工程で、前記解砕品からなるセリウム系研磨材用原料を用いることにより、水と混合した際のスラリーの粘性の増加が抑制されるため、1バッチ当たりの混合酸化希土の仕込み量を増加させることができ、さらに、その後のスラリーの乾燥工程での乾燥効率の向上も図ることができる。すなわち、上記により得られたセリウム系研磨材用原料は、湿式粉砕工程に供されることにより、セリウム系研磨材の生産効率の向上効果に特に寄与し得る。
 湿式粉砕工程は、均質に粉砕する観点、また、後述するように、解砕品以外に他の成分を添加する場合には、均一に混合する観点から、湿式ボールミル(ビーズミル)等の媒体ミルにより行うことが好ましい。分散媒としては、水が好適に用いられるが、分散性向上の観点から、アルコール等との混合溶媒を用いてもよい。
 湿式粉砕工程により得られるセリウム系研磨材の原料スラリーは、生産性の向上及び製造コスト等の観点から、水を分散媒とし、固形分濃度が55質量%以上であることが好ましく、より好ましくは57質量%以上、さらに好ましくは60質量%以上である。なお、ここで言う「固形分」とは、湿式粉砕される対象が前記解砕品のみの場合は、該解砕品を指し、後述するように、解砕品以外に他の成分を添加する場合には、これらの成分の固形分及び解砕品の合計を指す。
 原料スラリー中の固形分の粒子径は、後の工程での取り扱い性等の観点から、平均粒子径(D50)が0.3~10μmであることが好ましく、より好ましくは0.5~7μm、さらに好ましくは0.5~5μmである。
 セリウム系研磨材は、前記解砕品の成分のみからなるものであってもよく、あるいはまた、研磨材の研磨特性の向上の観点から、前記解砕品の成分以外の成分を含んでいてもよく、例えば、フッ素成分が添加されることが好ましい。
 この場合、解砕品の成分以外の成分は、解砕品と均一に混合されるように、解砕品を粉砕する前に、解砕品に添加されることが好ましい。解砕品にフッ素成分を添加する場合には、解砕品にフッ化希土を添加することが好ましい。すなわち、混合酸化希土の解砕品からなるセリウム系研磨材用原料を粉砕する前に、該セリウム系研磨材用原料にフッ化希土を添加する工程を含むことが好ましい。
(フッ化希土)
 フッ化希土は、前記フッ素成分として、セリウム系研磨材のフッ素原子含有量を増加させる目的で添加される。
 セリウム系研磨材がフッ素を含んでいることにより、研磨速度等の研磨特性を向上させることができる。フッ化希土を用いれば、フッ化アンモニウムやフッ酸等のフッ化物を直接用いるよりも、安全かつ簡便に、低コストで、フッ素を含むセリウム系研磨材を製造することができる。
 フッ化希土は、TREOが好ましくは80質量%以上、より好ましくは83質量%以上、さらに好ましくは85質量%以上である。また、フッ化希土は、含有する全希土類元素のうちセリウムを主成分とするものであることが好ましく、TREOに対するセリウムの酸化物換算量での含有量は、好ましくは50質量%以上、より好ましくは53質量%以上、さらに好ましくは55質量%以上である。また、フッ化希土中のフッ素原子含有量は、好ましくは10~30質量%、より好ましくは15~30質量%、さらに好ましくは20~30質量%である。
 このようなフッ化希土としては、上述した混合軽希土化合物に、フッ酸、フッ化アンモニウム又は酸性フッ化アンモニウム等のフッ化物を添加して、熱処理することにより得られる混合フッ化希土を用いることができる。なお、ここで言う「混合」も、上述した、混合酸化希土の「混合」と同義である。
 前記熱処理は、均質で研磨特性に優れたセリウム系研磨材を得る観点から、400℃以下の温度であることが好ましい。熱処理雰囲気は、大気中であることが好ましい。
 前記解砕品からなるセリウム系研磨材用原料に添加されるフッ化希土の量は、製造するセリウム系研磨材に要求されるフッ素原子含有量に応じて適宜決定される。優れた研磨特性を得る観点から、前記解砕品とフッ化希土の合計100質量%のうちのフッ化希土の量が、1~40質量%となるように添加されることが好ましく、より好ましくは3~35質量%、さらに好ましくは5~30質量%である。
(湿式粉砕工程の後工程)
 本発明のセリウム系研磨材の製造方法は、前記湿式粉砕工程の後、乾燥、焼成、解砕及び分級をこの順に行う工程を含んでいることが好ましい。すなわち、前記湿式粉砕工程で得られたスラリーを乾燥した後、焼成し、解砕し、分級して、セリウム系研磨材を製造することが好ましい。
 このような工程を経る製造方法によれば、前記スラリーは固形分濃度が高いため、その乾燥効率も向上し、ひいては、セリウム系研磨材の生産効率を向上させ、製造コストの低減化も図ることができる。
 乾燥、焼成、解砕及び分級は、セリウム系研磨材の公知の製造方法で用いられている方法と同様に行うことができる。
 なお、焼成工程においては、均質で研磨特性に優れたセリウム系研磨材を得る観点から、焼成温度は、好ましくは600~1200℃、より好ましくは650~1150℃、さらに好ましくは700~1100℃である。目標設定温度での焼成時間は、好ましくは0.1~10時間、より好ましくは0.5~6時間、さらに好ましくは0.5~4時間である。焼成雰囲気は、大気中であることが好ましい。
(セリウム系研磨材)
 本発明の製造方法により得られるセリウム系研磨材は、研磨特性の観点から、TREOが、好ましくは85質量%以上、より好ましくは90質量%以上であり、前記TREOに対するセリウムの酸化物換算量での含有量が、好ましくは55~95質量%、より好ましくは60~95質量%である。
 また、セリウム系研磨材は、ランタン、ネオジム及びプラセオジムを含んでいるものが好ましく、この場合、TREOに対するランタンの酸化物換算量での含有量が5~40質量%、TREOに対するネオジムの酸化物換算量での含有量が0.01~5質量%、TREOに対するプラセオジムの酸化物換算量での含有量が0.01~5質量%であることが好ましい。
 また、セリウム系研磨材は、優れた研磨特性を有するものとする観点から、フッ素原子を含んでいることが好ましく、この場合、フッ素原子の含有量が0.5~10質量%であることが好ましい。
 セリウム系研磨材は、研磨対象や研磨条件等にもよるが、平均粒子径(D50)が0.3~5.0μmであることが好ましく、より好ましくは0.5~4.0μm、さらに好ましくは0.5~3.0μmである。
 前記セリウム系研磨材は、通常、粉末状で取り扱われるが、研磨時には、例えば、水等の分散媒に分散させて、スラリーの状態で使用される。スラリー中の研磨材の分散濃度は、研磨対象や研磨条件等によって適宜調整されるが、通常、1~30質量%である。分散媒としては、水や、アルコール、アセトン、テトラヒドロフラン等の水溶性有機溶媒が好適に用いられ、通常は、水が使用される。
 また、研磨材のスラリーには、分散性向上、沈降防止、安定性向上及び作業性向上等の目的で、必要に応じて、エチレングリコール、ポリエチレングリコール等のグリコール類;トリポリリン酸、ヘキサメタリン酸塩等のリン酸塩;ポリアクリル酸塩等の高分子分散剤、メチルセルロース、カルボキシメチルセルロース等のセルロースエーテル類;ポリビニルアルコール等の水溶性高分子等の添加剤を、研磨特性を妨げない範囲内において、添加することができる。添加剤が添加される場合の各添加剤の添加量は、スラリー中の研磨材100質量部に対して、通常、0.01~20質量部であり、好ましくは0.05~15質量部、より好ましくは0.1~10質量部である。
 前記セリウム系研磨材を用いれば、ガラス基板等の研磨面に生じる研磨傷(スクラッチ)を抑制しつつ、高い研磨速度を維持することができ、効率的な研磨を行うことができる。
 前記セリウム系研磨材は、特に、光ディスクや磁気ディスク用のガラス基板、液晶ディスプレイ用のガラス基板、カラーフィルターやフォトマスク用のガラス基板、光学レンズ用のガラス基板等、各種ガラス材及びガラス製品の仕上げ研磨に好適に用いられる。
 以下、本発明を実施例により具体的に説明するが、本発明は下記実施例に限定されるものではない。
[混合酸化希土原料の調製]
(原料A)
 TREOを47質量%、中重希土を酸化物換算で2質量%、ネオジムを酸化物換算で8質量%含有する原料鉱石(希土精鉱)を、硫酸培焼法及び溶媒抽出法により処理し、希土類元素以外の不純物成分を1質量%以下、中重希土を酸化物換算で1質量%以下に低減して、希土類元素の含有量を調整した混合軽希土化合物を得た。この混合軽希土化合物は、TREOに対して、セリウムの酸化物換算量([CeO2])での含有量が65質量%、ランタンの酸化物換算量([La23])での含有量が34質量%、ネオジムの酸化物換算量([Nd23])での含有量が0.6質量%、プラセオジムの酸化物換算量での含有量([Pr611])が0.1質量%であった。
 この混合軽希土化合物を、重炭酸アンモニウムで処理し、混合炭酸希土を得た。なお、混合炭酸希土は、TREOが49質量%であった。
 この混合炭酸希土4000kgを、シャトルキルンにて大気中で800℃で10時間熱処理し、混合酸化希土を得た。なお、混合酸化希土は、TREOが93質量%であり、該TREOに対するセリウムの酸化物換算量での含有量が65質量%であった。
(原料B~D)
 原料Aの調製に用いたのと同様の混合軽希土化合物を用いて、その処理条件及び混合炭酸希土の熱処理条件を調整することにより、下記表1に示すようなTREO及び[CeO2]/TREOである原料B~Dをそれぞれ調製した。
(原料E)
 TREOに対して、セリウムの酸化物換算量([CeO2])での含有量が59質量%、ランタンの酸化物換算量での含有量([La23])が36質量%、ネオジムの酸化物換算量での含有量([Nd23])が0.1質量%、プラセオジムの酸化物換算量での含有量([Pr611])が4.5質量%の混合軽希土化合物を用いて、その処理条件及び混合炭酸希土の熱処理条件を調整することにより、下記表1に示すようなTREO及び[CeO2]/TREOである原料Eを調製した。
[解砕品の製造]
(実施例1)
 原料A 1500kgを、アトマイザー(不二電機工業株式会社(現 不二パウダル株式会社)製、型番「EII7.5」)に投入し、回転数8000rpmで乾式解砕処理(1)を行った。
(実施例2~5)
 実施例1において、原料Aに代えて原料B~Eを用いて、それ以外は実施例1と同様にして、それぞれ、乾式解砕処理(1)を行った。
(実施例6)
 実施例1において、アトマイザーの回転数5000rpmとし、それ以外は実施例1と同様にして、それぞれ、乾式解砕処理(2)を行った。
(実施例7)
 実施例2において、アトマイザーの回転数5000rpmとし、それ以外は実施例2と同様にして、それぞれ、乾式解砕処理(2)を行った。
(比較例1~3)
 原料A~Cについて、乾式解砕処理を行わなかったものを、それぞれ、比較例1~3とした。
[解砕品及び未解砕品の物性測定]
 上記実施例で得られた解砕品からなるセリウム系研磨材用原料、及び比較例の未解砕品(原料A~C)について、軽装かさ密度及び平均粒子径(D50)を測定した。これらの測定結果を下記表1にまとめて示す。
 各測定方法は、以下のとおりである。
<軽装かさ密度>
 JIS R 9301-2-3:1999(アルミナ粉末-第2部:物性測定方法-3:軽装かさ密度及び重装かさ密度)の「3.軽装かさ密度の測定方法」に準拠した方法で測定した。
<平均粒子径(D50)>
 マイクロトラック粒度分布計「MT3300II」(日機装株式会社製)にて、レーザー回折散乱法により粒度分布測定を行い、体積分布50%累積値での粒子径(D50)を平均粒子径とした。
[スラリー調製評価]
 上記実施例で得られた解砕品からなるセリウム系研磨材用原料、及び比較例の未解砕品(原料A~C)の各試料について、それぞれ、水と混合し、スラリー調製評価を行った。
 まず、100mlビーカーに、解砕品又は未解砕品の試料40g、及び水を加えて、それぞれ、53、57及び62質量%の濃度に調整し、ガラス棒で撹拌混合し、混合物(スラリー)の状態を目視観察にて評価した。これらの評価結果を下記表1にまとめて示す。
 評価基準は以下のとおりである。
  A:手で容易に撹拌できる粘度であり、均一なスラリーになる。
  B:スラリーになるが、手での撹拌がやや困難である。
  C:まったく撹拌できず、スラリーにならない。
 評価A及びBの場合は、湿式粉砕において均一なスラリーを得ることが可能であると言える。評価Cの場合は、湿式粉砕において均一なスラリーを得ることは困難である。
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果から分かるように、乾式解砕処理された、所定の軽装かさ密度及び平均粒子径である解砕品からなるセリウム系研磨材用原料(実施例1~7)は、スラリー中の混合酸化希土の解砕品(固形分)の濃度を高くした場合においても、均一なスラリーを得ることができる。したがって、前記セリウム系研磨材用原料を用いれば、湿式粉砕工程における混合酸化希土の仕込み量を増加させることが可能となる。
[セリウム系研磨材の製造]
(実施例8)
 実施例1(原料Aの製造過程)で得られた混合軽希土化合物にフッ酸を加えて混合した後、大気中で400℃で2時間熱処理し、混合フッ化希土を得た。この混合フッ化希土は、TREOが83質量%であり、該TREOに対するセリウムの酸化物換算量([CeO2])での含有量が65質量%であり、また、フッ素原子含有量が26質量%であった。
 水1000kgと、実施例2で調製した混合酸化希土の解砕品(セリウム系研磨剤用原料)及び前記混合フッ化希土の混合物(混合質量比76:24)の合計1400kgとをスラリータンクで撹拌混合した後、湿式ボールミル(媒体:直径5mmジルコニア製ボール)にて17時間混合粉砕することにより、均一な混合スラリーが得られた。
 この混合スラリーを、ロータリーキルンに投入し、大気中で700℃で乾燥後、1000℃で焼成した。得られた焼成体を放冷後、解砕、分級して、セリウム系研磨材を製造した。
(比較例4)
 水1000kgと、比較例2の混合酸化希土の未解砕品及び実施例8と同じ混合フッ化希土の混合物(混合質量比76:24)の合計1000kgとをスラリータンクで撹拌混合した後、湿式ボールミル(媒体:直径5mmジルコニア製ボール)にて19時間混合粉砕することにより、均一な混合スラリーが得られた。
 この混合スラリーを、実施例8と同様にして乾燥、焼成、解砕及び分級して、セリウム系研磨材を製造した。
[セリウム系研磨材の組成分析]
 上記実施例及び比較例で得られた各セリウム系研磨材について、TREO、TREOに対する各希土類元素の酸化物換算量([CeO2]、[La23]、[Nd23]、[Pr611])での含有量、及びフッ素原子(F)含有量を測定した。これらの測定結果を下記表2にまとめて示す。
 各測定方法は、以下のとおりである。
<TREO>
 セリウム系研磨材を酸溶解した溶液に、アンモニア水を添加した。生成した沈殿物を、ろ過、洗浄してアルカリ金属を除去した後、再び酸溶解した。この溶液にシュウ酸を添加し、生成した沈殿物を焼成して重量法にてTREOを求めた。
<TREOに対する各希土類元素の酸化物換算量での含有量>
 セリウム系研磨材を酸溶解し、ICP-AES法で測定された各希土類元素量を、酸化物として換算した値を酸化物換算量とした。
<フッ素原子含有量>
 セリウム系研磨材をアルカリ溶融して温水抽出して、フッ素イオン計(イオン電極法)で測定した。
[セリウム系研磨材の物性測定]
 上記実施例及び比較例で得られた各セリウム系研磨材について、粒度分布及び比表面積を測定した。これらの測定結果も表2にまとめて示す。
 各測定方法は以下のとおりである。
<粒子径>
 粒度分布測定装置(ベックマン・コールター株式会社製「コールターマルチサイザー」、30μm径アパチャーチューブ)にて粒度分布測定を行い、体積分布50%累積値での粒子径(D50)を求めた。
<比表面積>
 JIS R 1626:1996(ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法)の「6.2 流動法 (3.5)一点法」に準拠して測定した。吸着質気体には窒素を用いた。
[研磨評価]
 上記実施例及び比較例で得られた各セリウム系研磨材を用いて、濃度10質量%で水に分散させた研磨材スラリーを調製した。この研磨材スラリーを用いて、下記の研磨条件で、TFT液晶ディスプレイ用無アルカリガラスの試料(50mm×50mm×厚さ1.1mm、研磨面積25cm2)を片面研磨機にて研磨し、研磨速度及び研磨傷について評価を行った。評価結果を表2にまとめて示す。
 <研磨条件>
  研磨パッド :発泡ポリウレタン
  下定盤回転数:260rpm
  研磨時圧力 :80g/cm2
  研磨時間  :20分間×3枚
 各評価方法は以下のとおりである。
<研磨速度>
 試料1枚当たり5箇所での研磨前後の厚さをマイクロメーターで測定し、厚さの減少量の平均値(ΔT[μm])を求めた。試料3枚についての[ΔT/研磨時間(20分間)]の平均値を研磨速度とした。
<研磨傷>
 微分干渉顕微鏡(オリンパス株式会社製「BX51M」)にて倍率50倍で試料の研磨面を観察して傷の本数を計測し、試料3枚についての平均値を求めた。
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、湿式粉砕工程において、混合酸化希土の未解砕品を原料として用いた場合(比較例4)は、スラリー中の固形分濃度50質量%が仕込み量のほぼ上限であったのに対して、混合酸化希土の解砕品を原料として用いた場合には(実施例8)、スラリー中の固形分濃度61質量%程度にまで、仕込み量を増加させることができ、かつ、均一な混合スラリーが得られるまでの湿式粉砕の処理時間も短縮できることが認められた。
 また、混合酸化希土の解砕品を原料として用いた固形分濃度の高い混合スラリーから製造されたセリウム系研磨材(実施例8)は、混合酸化希土の未解砕品を原料として用いた従来法で製造されたセリウム系研磨材(比較例4)と比較して、組成、物性及び研磨特性(研磨評価)は、同様であることが認められた。
 このことから、本発明の製造方法は、セリウム系研磨材の研磨特性を低下させることなく、生産効率を向上させることができるものであると言える。

Claims (13)

  1.  全希土類元素の酸化物換算量での含有量が80質量%以上であり、前記全希土類元素の酸化物換算量での含有量に対するセリウムの酸化物換算量での含有量が50質量%以上である混合酸化希土を乾式解砕処理する工程により、軽装かさ密度が0.60g/cm3超1.50g/cm3以下、かつ、体積分布50%累積値での粒子径が2μm以上20μm以下の解砕品からなるセリウム系研磨材用原料を得ることを特徴とするセリウム系研磨材用原料の製造方法。
  2.  前記解砕品の軽装かさ密度が0.80g/cm3以上である、請求項1に記載のセリウム系研磨材用原料の製造方法。
  3.  前記混合酸化希土が、ランタン、ネオジム、及びプラセオジムから選ばれる1種以上を含む、請求項1又は2に記載のセリウム系研磨剤用原料の製造方法。
  4.  セリウム系研磨材の製造方法において、請求項1~3のいずれかに記載の製造方法により得られたセリウム系研磨材用原料を粉砕する工程を含むことを特徴とするセリウム系研磨材の製造方法。
  5.  前記セリウム系研磨材用原料を粉砕する前に、前記セリウム系研磨材用原料にフッ化希土を添加する工程を含む、請求項4に記載のセリウム系研磨材の製造方法。
  6.  前記セリウム系研磨材用原料を粉砕する工程が湿式粉砕工程である、請求項4又は5に記載のセリウム系研磨材の製造方法。
  7.  前記湿式粉砕工程により、水を分散媒とし、固形分濃度が55質量%以上である、前記セリウム系研磨材用原料を含むスラリーを得る、請求項6に記載のセリウム系研磨材の製造方法。
  8.  前記湿式粉砕工程の後、乾燥、焼成、解砕及び分級をこの順に行う工程を含む、請求項6又は7に記載のセリウム系研磨材の製造方法。
  9.  前記湿式粉砕工程の後、600~1200℃で焼成する、請求項8に記載のセリウム系研磨剤の製造方法。
  10.  前記湿式粉砕工程の後、0.1~10時間焼成する、請求項8又は9に記載のセリウム系研磨剤の製造方法。
  11.  前記セリウム系研磨材用原料を粉砕する前に、前記セリウム系研磨材用原料にフッ化希土を添加する工程を含み、前記フッ化希土が、全希土類元素の酸化物換算量での含有量が80質量%以上である、請求項5~10のいずれかに記載のセリウム系研磨剤の製造方法。
  12.  前記セリウム系研磨材用原料を粉砕する前に、前記セリウム系研磨材用原料にフッ化希土を添加する工程を含み、前記フッ化希土中のフッ素原子含有量が、10~30%である、請求項5~11のいずれかに記載のセリウム系研磨剤の製造方法。
  13.  前記セリウム系研磨材用原料を粉砕する前に、前記セリウム系研磨材用原料にフッ化希土を添加する工程を含み、前記フッ化希土を、前記セリウム系研磨材用原料とフッ化希土の合計100質量%のうちのフッ化希土の量が、1~40質量%となるように添加する、請求項5~12のいずれかに記載のセリウム系研磨剤の製造方法。
PCT/JP2018/033034 2017-09-11 2018-09-06 セリウム系研磨材用原料の製造方法、及びセリウム系研磨材の製造方法 WO2019049932A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MYPI2020001213A MY192996A (en) 2017-09-11 2018-09-06 Manufacturing method for starting material for cerium-based abrasive agent, and manufacturing method for cerium-based abrasive agent
KR1020207003396A KR102423338B1 (ko) 2017-09-11 2018-09-06 세륨계 연마재용 원료의 제조 방법, 및 세륨계 연마재의 제조 방법
JP2019540995A JP6839767B2 (ja) 2017-09-11 2018-09-06 セリウム系研磨材用原料の製造方法、及びセリウム系研磨材の製造方法
CN201880058079.XA CN111051463B (zh) 2017-09-11 2018-09-06 铈系研磨材料用原料的制造方法和铈系研磨材料的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017173818 2017-09-11
JP2017-173818 2017-09-11

Publications (1)

Publication Number Publication Date
WO2019049932A1 true WO2019049932A1 (ja) 2019-03-14

Family

ID=65634044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033034 WO2019049932A1 (ja) 2017-09-11 2018-09-06 セリウム系研磨材用原料の製造方法、及びセリウム系研磨材の製造方法

Country Status (6)

Country Link
JP (1) JP6839767B2 (ja)
KR (1) KR102423338B1 (ja)
CN (1) CN111051463B (ja)
MY (1) MY192996A (ja)
TW (1) TWI695060B (ja)
WO (1) WO2019049932A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021220672A1 (ja) * 2020-04-27 2021-11-04
WO2024014425A1 (ja) * 2022-07-12 2024-01-18 株式会社レゾナック セリウム系研磨材、研磨液、研磨液の製造方法、及びガラス研磨方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073211A1 (fr) * 1999-05-28 2000-12-07 Hitachi Chemical Co., Ltd. Procede de fabrication d'oxyde de cerium, abrasif a base de cet oxyde, procede de polissage de substrat avec cet abrasif et procede de fabrication de dispositif a semiconducteur
JP2003082333A (ja) * 2001-09-17 2003-03-19 Mitsui Mining & Smelting Co Ltd セリウム系研摩材スラリー及びセリウム系研摩材スラリーの製造方法
JP2009501812A (ja) * 2005-07-20 2009-01-22 トライバッハー インダストリー アーゲー セリアを主材料としたガラス研磨組成物およびその製造方法
JP2009544559A (ja) * 2006-07-28 2009-12-17 エルジー・ケム・リミテッド 酸化セリウム粉末、その製造方法及びこれを含むcmpスラリー

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100480760B1 (ko) * 2000-10-02 2005-04-07 미쓰이 긴조꾸 고교 가부시키가이샤 세륨계 연마재 및 세륨계 연마재의 제조방법
JP3694478B2 (ja) 2000-11-30 2005-09-14 昭和電工株式会社 セリウム系研磨材及びその製造方法
TWI285674B (en) * 2000-11-30 2007-08-21 Showa Denko Kk Cerium-based abrasive and production process thereof
JP4002740B2 (ja) * 2001-05-29 2007-11-07 三井金属鉱業株式会社 セリウム系研摩材の製造方法
WO2003042321A1 (en) * 2001-11-16 2003-05-22 Showa Denko K.K. Cerium-based polish and cerium-based polish slurry
JP4236857B2 (ja) * 2002-03-22 2009-03-11 三井金属鉱業株式会社 セリウム系研摩材およびその製造方法
US7838482B2 (en) * 2003-01-31 2010-11-23 Hitachi Chemical Co. Ltd. CMP polishing compound and polishing method
JP4450424B2 (ja) * 2003-06-30 2010-04-14 三井金属鉱業株式会社 セリウム系研摩材およびその原料
JP3875668B2 (ja) * 2003-08-26 2007-01-31 三井金属鉱業株式会社 フッ素を含有するセリウム系研摩材およびその製造方法
JP2006206870A (ja) * 2004-12-28 2006-08-10 Mitsui Mining & Smelting Co Ltd セリウム系研摩材用原料及びセリウム系研摩材用原料の製造方法、並びに、セリウム系研摩材及びセリウム系研摩材の製造方法
CN101291778B (zh) * 2005-10-19 2012-06-20 日立化成工业株式会社 氧化铈浆料、氧化铈抛光浆料以及使用其抛光衬底的方法
JP4756996B2 (ja) * 2005-11-02 2011-08-24 三井金属鉱業株式会社 セリウム系研摩材
WO2007055278A1 (ja) * 2005-11-11 2007-05-18 Hitachi Chemical Co., Ltd. 酸化ケイ素用研磨剤、添加液および研磨方法
CN101511538A (zh) * 2006-09-15 2009-08-19 日立化成工业株式会社 Cmp研磨剂、cmp研磨剂用添加液以及使用了这些的基板的研磨方法
JP5237542B2 (ja) * 2006-10-03 2013-07-17 三井金属鉱業株式会社 酸化セリウム系研摩材
JP2008001907A (ja) * 2007-07-26 2008-01-10 Mitsui Mining & Smelting Co Ltd セリウム系研摩材スラリー及びセリウム系研摩材スラリーの製造方法
JP4876183B1 (ja) * 2010-09-27 2012-02-15 三井金属鉱業株式会社 セリウム系研摩材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073211A1 (fr) * 1999-05-28 2000-12-07 Hitachi Chemical Co., Ltd. Procede de fabrication d'oxyde de cerium, abrasif a base de cet oxyde, procede de polissage de substrat avec cet abrasif et procede de fabrication de dispositif a semiconducteur
JP2003082333A (ja) * 2001-09-17 2003-03-19 Mitsui Mining & Smelting Co Ltd セリウム系研摩材スラリー及びセリウム系研摩材スラリーの製造方法
JP2009501812A (ja) * 2005-07-20 2009-01-22 トライバッハー インダストリー アーゲー セリアを主材料としたガラス研磨組成物およびその製造方法
JP2009544559A (ja) * 2006-07-28 2009-12-17 エルジー・ケム・リミテッド 酸化セリウム粉末、その製造方法及びこれを含むcmpスラリー

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021220672A1 (ja) * 2020-04-27 2021-11-04
WO2021220672A1 (ja) * 2020-04-27 2021-11-04 昭和電工株式会社 セリウム系研磨材スラリー原液及びその製造方法、並びに研磨液
KR20220148919A (ko) 2020-04-27 2022-11-07 쇼와 덴코 가부시키가이샤 세륨계 연마재 슬러리 원액 및 그 제조 방법, 및 연마액
JP7400956B2 (ja) 2020-04-27 2023-12-19 株式会社レゾナック セリウム系研磨材スラリー原液及びその製造方法、並びに研磨液
WO2024014425A1 (ja) * 2022-07-12 2024-01-18 株式会社レゾナック セリウム系研磨材、研磨液、研磨液の製造方法、及びガラス研磨方法

Also Published As

Publication number Publication date
JP6839767B2 (ja) 2021-03-10
KR102423338B1 (ko) 2022-07-21
CN111051463A (zh) 2020-04-21
TW201917191A (zh) 2019-05-01
KR20200026288A (ko) 2020-03-10
MY192996A (en) 2022-09-20
JPWO2019049932A1 (ja) 2020-05-28
CN111051463B (zh) 2022-01-11
TWI695060B (zh) 2020-06-01

Similar Documents

Publication Publication Date Title
KR102090494B1 (ko) 세륨계 연마재 및 그 제조 방법
US6893477B2 (en) Cerium-based abrasive material slurry and method for producing cerium-based abrasive material slurry
JP3929481B2 (ja) 酸化セリウム系研磨材、その製造方法及び用途
US6905527B2 (en) Method of manufacturing cerium-based polishing agent
JP6839767B2 (ja) セリウム系研磨材用原料の製造方法、及びセリウム系研磨材の製造方法
JP4131870B2 (ja) 研磨材粒子の品質評価方法、ガラス研磨方法及びガラス研磨用研磨材組成物
JP2002371267A (ja) セリウム系研摩材粒子の製造方法及びセリウム系研摩材粒子
JP3875668B2 (ja) フッ素を含有するセリウム系研摩材およびその製造方法
TWI847023B (zh) 鈰系研磨材漿料原液及其製造方法,以及研磨液
JP4070180B2 (ja) セリウム系研摩材の製造方法
JP3685481B2 (ja) 粒度分布に優れたセリウム系研摩材粒子粉末、該粒子粉末を含有する研摩材スラリー及び該粒子粉末の製造方法
JP7400956B2 (ja) セリウム系研磨材スラリー原液及びその製造方法、並びに研磨液
WO2024014425A1 (ja) セリウム系研磨材、研磨液、研磨液の製造方法、及びガラス研磨方法
JP3392399B2 (ja) セリウム系研摩材、その品質検査方法および製造方法
JP2004189857A (ja) セリウム系研摩材及びセリウム系研摩材の製造方法並びにセリウム系研摩材の品質評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854706

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540995

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207003396

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854706

Country of ref document: EP

Kind code of ref document: A1