WO2019049258A1 - 深穴加工方法 - Google Patents

深穴加工方法 Download PDF

Info

Publication number
WO2019049258A1
WO2019049258A1 PCT/JP2017/032268 JP2017032268W WO2019049258A1 WO 2019049258 A1 WO2019049258 A1 WO 2019049258A1 JP 2017032268 W JP2017032268 W JP 2017032268W WO 2019049258 A1 WO2019049258 A1 WO 2019049258A1
Authority
WO
WIPO (PCT)
Prior art keywords
drill
deep hole
guide hole
drill body
thinning
Prior art date
Application number
PCT/JP2017/032268
Other languages
English (en)
French (fr)
Inventor
山本 剛広
Original Assignee
オーエスジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オーエスジー株式会社 filed Critical オーエスジー株式会社
Priority to US16/641,689 priority Critical patent/US20200222992A1/en
Priority to JP2018511184A priority patent/JPWO2019049258A1/ja
Priority to CN201780094584.5A priority patent/CN111093870A/zh
Priority to PCT/JP2017/032268 priority patent/WO2019049258A1/ja
Priority to EP17924329.0A priority patent/EP3680046A4/en
Priority to KR1020207005121A priority patent/KR20200033920A/ko
Publication of WO2019049258A1 publication Critical patent/WO2019049258A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/06Drills with lubricating or cooling equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B41/00Boring or drilling machines or devices specially adapted for particular work; Accessories specially adapted therefor
    • B23B41/02Boring or drilling machines or devices specially adapted for particular work; Accessories specially adapted therefor for boring deep holes; Trepanning, e.g. of gun or rifle barrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B35/00Methods for boring or drilling, or for working essentially requiring the use of boring or drilling machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/04Angles, e.g. cutting angles
    • B23B2251/043Helix angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/18Configuration of the drill point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/06Drills with lubricating or cooling equipment
    • B23B51/063Deep hole drills, e.g. ejector drills

Definitions

  • the present invention relates to a deep hole machining method.
  • a guide hole having a diameter slightly larger than that of the deep hole and a depth smaller than the deep hole is formed before the deep hole is formed.
  • the drill mounted on the spindle of the machine tool is inserted into the guide hole while being rotated at low speed in the rotational direction at the time of cutting.
  • the tip of the drill is inserted in front of the bottom of the guide hole, the drill is rotated at the cutting speed and cutting is performed as it is to form a deep hole.
  • An object of the present invention is to provide a deep hole machining method capable of suppressing damage to a drill main body during machining while forming a deep hole using a drill capable of improving rigidity and chip dischargeability. It is.
  • a deep hole machining method for forming a deep hole in a work by a machine tool equipped with a drill, wherein the drill is a drill body rotated about an axis, and the drill body
  • the plurality of discharge grooves provided in a spiral shape having a twist angle of 15 ° or more and 35 ° or less on the outer peripheral surface from the tip end portion to the base end portion, and the inner surface of the discharge groove facing the rotation direction side of the drill body
  • the drill is a twist drill having a discharge groove twist angle of 15 ° or more and 35 ° or less, and, for example, has a high chip evacuation performance, high machining efficiency, and a long tool life as compared to a gun drill.
  • a deep hole is formed using such a drill, if centrifugal force acts on the deflection of the drill body due to its own weight, the drill may swing.
  • By rotating the drill body at a lower speed than in the process of machining in the insertion step it is possible to suppress swinging of the drill.
  • the drill whose turning is suppressed easily inserts the tip into the guide hole formed in advance.
  • the drill By inserting the tip of the drill into the guide hole, the drill rotates with both ends supported by the guide hole and the machine tool, so that deflection of the drill body can be corrected.
  • the tip end By rotating the drill body in the reverse direction and inserting it into the guide hole from the heel side where the drill bit is not attached along the guide hole, the tip end abuts on the peripheral edge of the guide hole, or the inner wall It is possible to prevent contact with the drill body and to prevent the progress of the damage of the drill body, and the breakage and breakage.
  • the drill body rotates in the reverse direction in the insertion step, it is possible to prevent the cutting edge from biting into the work when the cutting edge of the drill body contacts the peripheral edge portion or inner wall of the guide hole, and it is possible to suppress breakage of the cutting edge.
  • the drill does not reach the outer peripheral surface of the drill main body, and has a gash portion connected to the discharge groove on the inner peripheral side with respect to the outer peripheral surface. This makes it possible for the drill to enhance the chip dischargeability, since the chips are prone to curling and being separated. Therefore, it is possible to prevent the drill body from being broken when forming the deep hole.
  • the groove length L of the discharge groove may be 30 D or more.
  • the influence of the bending of the drill body due to its own weight is more likely to occur as the groove length L increases, that is, as the drill body length increases.
  • the inner diameter d of the guide hole may be D + 0.03 mm or less, and the depth W may be 3D or more.
  • the inner diameter d is larger than D + 0.03 mm, the stability when the cutting edge and the thinning edge bite into the work in the deep hole forming process is low.
  • the depth W is less than 3D, the deviation between the opening position on the start end side of the deep hole in the work and the opening position on the end side is larger than in the case of 3D or more, and the formation accuracy of the deep hole is low.
  • the drill is a rake surface of the thinning blade, and a cross-sectional circle is provided at a portion where the thinning surface connecting the thinning blade and the discharge groove is connected to the gasch surface of the gash portion.
  • An arc-shaped arc groove may be provided, and a twist angle of the discharge groove may be 25 °.
  • Drills with a discharge groove twist angle of 25 ° are more rigid than general drills with a twist angle of 30 °, but their chip dischargeability is reduced.
  • By providing the arc groove in the drill it is possible to widen the tip pocket in the gash portion, and it is possible to enhance the chip dischargeability.
  • the effect of preventing breakage of the drill body in the deep hole forming step can be more remarkably exhibited.
  • FIG. 2 is a side view of a drill 1;
  • FIG. 5 is a front view of the tip of the drill 1;
  • FIG. 2 is a side view of a drill 101.
  • FIG. 10 is a front view of the tip portion of the drill 101.
  • FIG. 2 is a schematic configuration diagram of a machine tool 200. It is a flowchart of NC program for deep hole processing. It is a graph which shows a vibration when a deep hole is formed with a 20-degree twist angle drill. It is a graph which shows a vibration when a deep hole is formed by the drill with a twist angle of 25 degrees. It is a graph which shows a vibration when a deep hole is formed with the drill of 30 degrees of twist angles.
  • the drill 1 is an example of a two-bladed drill in which two cutting edges 5 are formed at the tip.
  • the drill 101 is an example of a three-edged drill in which three cutting edges 105 are formed at the tip.
  • the drill 1 is formed of a hard material such as cemented carbide or high speed tool steel (high speed).
  • the drill 1 includes a shank 2 and a body 3 extending from the shank 2 along an axial center AX.
  • the shank 2 is a portion for holding the drill 1 on the spindle 206 (see FIG. 5) of the machine tool 200, and the shank 2 side with respect to the body 3 is the rear end side of the drill 1.
  • two discharge grooves 4 for discharging chips are formed in a spiral shape.
  • the drill 1 is a twist drill formed so that the twist angle ⁇ of the discharge groove 4 is in the range of 15 ° or more and 35 ° or less. The smaller the twist angle ⁇ , the higher the rigidity of the body 3 but the lower the chip dischargeability.
  • the discharge groove 4 is opened at the tip of the body 3 and two cutting edges 5 are formed in the opening.
  • the drill 1 is also applied to a so-called long drill having a groove length L of 10 times or more (10 D or more) with respect to the outer diameter D, for example, a length of 30 D or more.
  • the drill 1 cuts a workpiece (workpiece) with the cutting edge 5 by rotating around the axis AX and forms a deep hole while discharging chips with the discharge groove 4.
  • the rotational direction T of the drill 1 at the time of processing is a counterclockwise direction in a front view. That is, the machine tool 200 (see FIG. 5) holding the drill 1 on the main shaft 206 rotates the main shaft 206 to the right to cut the workpiece.
  • the cutting edge 5 is formed at a ridge line portion where an inner surface 41 facing the rotational direction T side of the discharge groove 4 intersects with the flank 6 of the tip of the drill 1.
  • the cutting edge 5 has a substantially S-shape in a front view.
  • the inner surface 41 in the vicinity of the cutting edge 5 of the inner surface 41 of the discharge groove 4 is a so-called rake surface which scraps off the chips cut by the cutting edge 5 and flows it to the discharge groove 4.
  • a portion of the inner surface 41 of the discharge groove 4 where the inner surface 41 on the cutting edge 5 side and the outer peripheral surface 31 of the body 3 intersect is the leading edge 33.
  • a portion where the inner surface 41 opposite to the cutting edge 5 intersects the outer peripheral surface 31 is a heel 34.
  • the outer circumferential surface 31 is provided with a spine 32 with a smaller diameter than the outer diameter D of the drill 1 at an intermediate portion between the leading edge 33 and the heel 34.
  • the drill 1 has two oil holes 11 extending helically in the body 3 along the discharge groove 4. Two oil holes 11 pass through the interior of the drill 1 from the rear end of the shank 2 to the tip of the drill 1 and open to the flank 6 respectively.
  • the cutting oil supplied into the oil hole 11 at the time of processing reduces cutting resistance and suppresses heat generation and processing torque.
  • the chips flow through the discharge groove 4 together with the cutting oil and are discharged smoothly.
  • the tip of the drill 1 is subjected to a thinning process to reduce the thickness of the heart near the chisel 9.
  • a thinning process for example, while rotating the grinding wheel, the opening portion of the discharge groove 4 is cut from the inner end 51 which is the inner end on the axial center AX side of the cutting edge 5 to the chisel 9 side to form the thinning edge 7 It is a process.
  • the thinning blade 7 is formed while moving the grinding wheel and the drill 1 relative to each other, and extends from the inner end 51 of the cutting blade 5 toward the chisel 9 in an arc shape in a front view.
  • a thinning surface 71 which is a rake surface facing the rotation direction T side of the thinning blade 7 is formed at the tip of the drill 1.
  • the grinding wheel is moved relative to the drill 1 toward the heel 34 side, and is further scraped to form the flush portion 8 connected to the discharge groove 4.
  • the ridge line where the gash surface 81 which is the inner surface of the gash portion 8 intersects with the flank 6 of the tip of the drill 1 is arc-shaped from the inner end 72 which is the inner end on the axis AX side of the thinning blade 7 It extends and is connected to the discharge groove 4 on the inner side in the radial direction than the outer peripheral surface 31. That is, the gash surface 81 is formed in a curved surface that is recessed inward. Therefore, the gash portion 8 can secure a large capacity of the tip pocket for accommodating the chips cut by the thinning blade 7 and can smoothly deliver the chips to the discharge groove 4 without clogging.
  • chips generated by the thinning blade 7 extending in the vicinity of the chisel 9 biting into the work are scooped off by the thinning surface 71 and pushed out to the gasch portion 8.
  • the chips are rounded and curled at the curved gash surface 81, cut at the leading edge 33 and delivered to the discharge groove 4.
  • the chips may be elongated without being cut at the leading edge 33.
  • the drill 1 since the end on the outer peripheral side of the gash portion 8 does not reach the outer peripheral surface 31 of the drill 1, chips are less likely to flow to the outer peripheral surface 31 and reach between the outer peripheral surface 31 and the inner surface of the deep hole It is difficult to do. Therefore, the drill 1 can smoothly discharge from the discharge groove 4 and reduce cutting resistance by cutting the chips relatively small and rounding small. Therefore, the drill 1 can be prevented from being broken when forming a deep hole.
  • a circular arc groove 10 is formed in a portion where the gash surface 81 and the thinning surface 71 are connected.
  • the arc groove 10 extends straight from the vicinity of the chisel 9 toward the discharge groove 4 and the cross section in the extending direction has an arc shape.
  • the arc groove 10 is cut by the thinning blade 7 and the chips scraped off by the thinning surface 71 are smoothly flowed to the discharge groove 4.
  • the drill 1 has the arc groove 10 between the gash surface 81 and the thinning surface 71 so that chips can be smoothly pushed out from the thinning surface 71 to the gasch portion 8.
  • the arc groove 10 is formed such that the radius of curvature R of the cross section is in the range of 0.01 D or more and 0.03 D or less.
  • the radius of curvature R is less than 0.01 D, it tends to be caught when chips are pushed out from the thinning surface 71 to the gash portion 8, and there is a risk that the dischargeability of the chips from the gash portion 8 to the discharge groove 4 may decrease.
  • the curvature radius R is larger than 0.03 D, in the chip pocket formed by the arc groove 10, the thinning surface 71, and the gas surface 81, the cross section where the arc groove 10 smoothly connects the thinning surface 71 and the gas surface 81 To form the shape, it is necessary to form the arc groove 10 at a shallower position. In this case, if the diameter and the width of the chisel 9 are formed in accordance with the standard, the thickness of the thinning blade 7 becomes thin, and there is a possibility that sudden breakage may occur due to stress concentration.
  • the three-bladed drill 101 will be described. Although the three-blade drill 101 and the two-blade drill 1 have different numbers of blades, the basic configuration is substantially the same, so in the following, the description of the drill 101 will be simplified.
  • the drill 101 has three discharge grooves 104 formed in a spiral on the outer peripheral surface 131 of the body 103.
  • the drill 101 is a twist drill formed so that the twist angle ⁇ of the discharge groove 104 is in the range of 15 ° or more and 35 ° or less.
  • Three cutting edges 105 are formed at the opening of the discharge groove 104 at the tip of the body 103.
  • the cutting edge 105 is formed at a ridge line portion where the inner surface 141 facing the rotational direction T side of the discharge groove 104 intersects with the flank 106 of the tip of the drill 101.
  • Each of three oil holes 111 helically extending in the body 103 along the discharge groove 104 opens in the flank surface 106.
  • a thinning process is applied to the tip of the drill 101 to form a thinning blade 107. Further, in the gash portion 108 formed by the thinning process, a ridge line between the gash surface 181 and the flank surface 106 extends in an arc shape from the chisel 109 side, and is connected to the discharge groove 104 inside in the radial direction than the outer peripheral surface 131.
  • An arc groove 110 is formed at a portion where the gash surface 181 and the thinning surface 171 are connected.
  • the arc groove 110 has an arc shape in cross section and extends straight from the vicinity of the chisel 109 to the discharge groove 104.
  • the arc groove 110 is formed so that the curvature radius R of the cross section is in the range of 0.01 D or more and 0.03 D or less, as in the drill 1.
  • the machine tool 200 which mounts the drill 1 or the drill 101 and processes a deep hole will be described.
  • the left and right direction in the drawing is the front and back direction of the machine tool 200
  • the front and back direction in the drawing is the left and right direction of the machine tool 200.
  • the drill 1 is attached to the machine tool 200.
  • the machine tool 200 is a horizontal machining center that processes a workpiece by bringing a tool relatively close from the side of the workpiece.
  • the machine tool 200 includes a bed 201, a column 202, an X-axis moving mechanism 203, a Y-axis moving mechanism 204, a spindle motor 205, a main shaft 206, a holder 207, a table 208, a Z-axis moving mechanism 209, a tool changer 210, a controller 211, etc.
  • the bed 201 is a substantially rectangular base made of metal.
  • the column 202 is erected on the rear end of the bed 201.
  • the spindle motor 205 is provided on the front side of the column 202, and moves in the horizontal direction and the vertical direction by the X-axis moving mechanism 203 and the Y-axis moving mechanism 204.
  • the spindle 206 extends to the front of the spindle motor 205 and rotates about the front-rear direction by driving the spindle motor 205.
  • a holder 207 is fixed to the tip of the main shaft 206.
  • the holder 207 holds the shank 2 in a state where the axis AX of the drill 1 is in the front-rear direction and the front end portion is directed forward.
  • the drill 1 rotates with the drive of the spindle motor 205.
  • the table 208 is provided on the bed 201 on the front side of the column 202.
  • the table 208 has the work M placed on the upper surface, and is moved in the front-rear direction by the Z-axis moving mechanism 209.
  • the tool changer 210 is provided on the left side of the column 202, and exchanges a drill 220 for forming a guide hole, which will be described later, a holder 221 in a holding state, and a holder 207 in a state holding the drill 1 according to an instruction of the controller 211. , Set to the main shaft 206.
  • the controller 211 is mounted with a numerical control device (not shown) including a CPU, a ROM, a RAM, and a storage device, and according to an NC program, an X axis moving mechanism 203, a Y axis moving mechanism 204, a spindle motor 205, and a Z axis moving mechanism 209. Control the operation of Therefore, the drill 1 can move relative to the work M in the front-rear direction, the left-right direction, and the up-down direction, and can rotate about the front-rear direction.
  • the machine tool 200 is provided with a protective cover or the like that covers the entire apparatus.
  • the drill 1 is a long drill having a groove length L of, for example, 30 D or more.
  • the machine tool 200 holds the drill 1 in a state in which the axis AX of the drill 1 is extended in the front-rear direction, that is, sideways, and processes the workpiece M. Therefore, in the drill 1, there is a possibility that the body 3 may become wrinkled at the time of processing due to the influence of the bending due to its own weight.
  • the drill 1 may have a bow in the body 3 due to the vibration associated with the drive of the machine tool 200.
  • the machine tool 200 forms the guide hole with the drill 220 before forming the deep hole with the drill 1.
  • the guide hole has a depth W of 3D or more with respect to the outer diameter D of the drill 1 and an inner diameter d of D + 0.03 mm or less.
  • the depth W is less than 3D, the difference between the opening position on the start end side of the deep hole in the work M and the opening position on the end end may be larger than in the case of 3D or more, and the formation accuracy of the deep hole decreases. there is a possibility.
  • the inner diameter d is larger than D + 0.03 mm, the stability when the cutting blade 5 and the thinning blade 7 bite into the workpiece M when forming the deep hole may be low.
  • the drill 1 has the arc-shaped gash portion 8 connected to the discharge groove 4 on the inner peripheral side of the outer peripheral surface 31 and the connection portion between the thinning surface 71 and the gash surface 81 And the discharge groove 4 has a twist angle ⁇ of 25 °.
  • the drill 1 having a twist angle ⁇ of 25 ° is more rigid than a conventional drill, and thus is less likely to bend.
  • the drill 1 can secure both the chip dischargeability and rigidity by improving it by having the gash portion 8 and the arc groove 10 of the present shape. can do.
  • the numerical control device of the controller 211 reads an NC program stored in the storage device into the RAM and executes various operations. As shown in FIG. 6, the controller 211 drives the tool changer 210, and sets the holder 221 holding the drill 220 on the main shaft 206 (S1). The outer diameter of the drill 220 is d, which is larger than the outer diameter D of the drill 1 and not greater than D + 0.03 mm. The controller 211 controls the drive of the X-axis moving mechanism 203 and the Y-axis moving mechanism 204, and moves the tip of the drill 220 to the rear of the planned formation position of the deep hole in the work M (S2).
  • the controller 211 controls the drive of the spindle motor 205, and positively rotates (rotates in the rotational direction T) the spindle 206 holding the drill 220 at the rotational speed at the time of processing (S3).
  • the controller 211 controls the drive of the Z-axis moving mechanism 209, and moves the table 208 on which the workpiece M is placed backward (S5).
  • the tip of the drill 220 contacts the rear surface of the work M, and the work M is cut to start forming a guide hole.
  • the depth W of the guide hole is set to, for example, 3D.
  • the controller 211 continues the movement of the table 208 and the work M until the position of the table 208 moves a distance corresponding to the depth W further backward from the contact position of the work M and the drill 220 (S6: NO).
  • the controller 211 moves the table 208 forward (S7).
  • the workpiece M in which the guide hole is formed moves forward, and the drill 220 is extracted from the guide hole.
  • the controller 211 stops the drive of the spindle motor 205 and stops the rotation of the spindle 206 (S8).
  • the controller 211 drives the tool changer 210, and sets the holder 207 holding the drill 1 on the main shaft 206 (S10).
  • the controller 211 controls the drive of the spindle motor 205, and reversely rotates the spindle 206 holding the drill 1 at a guide speed lower than the rotational speed at the time of processing (rotation in the direction opposite to the rotational direction T) (S11).
  • the drill 1 is a long drill having a groove length L of, for example, 30 D or more. Therefore, the drill 1 is easily bent by its own weight by being held by the machine tool 200 with the axis AX in the horizontal direction. In S11, it is possible to suppress runout of the drill 1 by rotating the drill 1 at a lower guide speed than at the time of processing.
  • the controller 211 controls the drive of the Z-axis moving mechanism 209, and moves the table 208 on which the work M is placed backward (S12).
  • the tip of the drill 1 is inserted into a guide hole formed in the work M.
  • the drill 1 in which swinging is suppressed easily inserts the tip into the guide hole.
  • the distal end portion of the drill 1 is inserted into the guide hole, so that the drill 1 rotates while being supported by the guide hole and the spindle motor 205 at its both ends, so that the deflection is corrected. Further, the drill 1 is inserted into the guide hole from the heel 34 side where the cutting edge 5 of the drill 1 is not attached by being reversely rotated so as to be along the guide hole.
  • the drill 1 can suppress that the tip end portion abuts on the peripheral edge portion of the guide hole or contact with the inner wall, and can prevent the progress of damage, breakage and breakage. Furthermore, since the drill 1 is reversely rotated, the cutting edge can be prevented from biting into the workpiece M when the cutting edge 5 contacts the peripheral edge portion or the inner wall of the guide hole, and the loss of the cutting edge can be suppressed.
  • the controller 211 continues the movement of the table 208 and the work M to the rear by a distance slightly shorter than the depth W of the guide hole after the tip of the drill 1 is positioned at the opening of the guide hole (S13: NO ).
  • the controller 211 stops the movement of the table 208 and the work M ( S15).
  • the controller 211 controls the drive of the spindle motor 205, and positively rotates (rotates in the rotational direction T) the spindle 206 holding the drill 1 at the rotational speed at the time of processing (S16).
  • the controller 211 controls the drive of the Z-axis moving mechanism 209, and moves the table 208 on which the workpiece M is placed backward (S17).
  • the tip of the drill 1 contacts the bottom of the guide hole, the work M is cut, and formation of a deep hole is started.
  • the deep hole is set to a predetermined depth, for example, a depth corresponding to 90% of the groove length L.
  • the controller 211 continues moving the table 208 and the workpiece M backward by a distance corresponding to a predetermined depth (S18: NO).
  • the table 208 and the workpiece M move backward by a length corresponding to a predetermined depth, and when the formation of the deep hole is completed (S18: YES), the controller 211 moves the table 208 forward (S20).
  • the workpiece M in which the deep hole is formed moves forward, and the drill 1 is extracted from the deep hole.
  • the controller 211 stops the drive of the spindle motor 205 and stops the rotation of the spindle 206 (S21).
  • the controller 211 In the case where deep holes are continuously formed according to the NC program (S22: YES), the controller 211 returns the process to S1. When the formation of the deep hole is ended (S22: NO), the controller 211 ends the execution of the NC program.
  • the deep hole machining method using the drill 101 is also similar to the case of using the drill 1.
  • the drills 1 and 101 are twist drills having a twist angle of 15 ° to 35 ° for the discharge grooves 4 and 104.
  • chip dischargeability is high and machining efficiency is high.
  • the tool life is also long.
  • the drill 1, 101 may swing.
  • the drill 1 or 101 By inserting the tip of the drill 1 or 101 into the guide hole, the drill 1 or 101 rotates with both ends supported by the guide hole and the spindle motor 205, so that deflection can be corrected. Also, by rotating the drill 1 101 in the reverse direction and inserting it into the guide hole from the heel 34 side where the cutting edge 5 105 of the drill 1 101 is not attached, the tip end portion is the guide hole It is possible to suppress contact with the peripheral portion of the drill or contact with the inner wall, and to prevent the progress of the damage of the drill 1, 101, and the breakage / breakage.
  • the drills 1 and 101 rotate in the reverse direction in the insertion step, the cutting edges can be prevented from biting the workpiece M when the cutting edges 5 and 105 of the drills 1 and 101 contact the peripheral edge portion or inner wall of the guide hole. , Loss of the cutting edge 5, 105 can be suppressed.
  • the drill 1, 101 does not reach the outer peripheral surface 31, 131 of the drill 1, 101 and has the gash portions 8, 108 connected to the discharge grooves 4, 104 on the inner peripheral side of the outer peripheral surface 31, 131. Thereby, since the chips are easily curled and separated, the drill 1, 101 can enhance the chip dischargeability. Therefore, it is possible to prevent the drills 1 and 101 from being broken when forming the deep holes.
  • the influence of the bending of the drill 1, 101 due to its own weight is more likely to occur as the groove length L becomes longer, ie, as the length of the drill 1, 101 becomes longer.
  • the drill 1 or 101 with a groove length L of 30 D or more according to the deep hole drilling method according to the present application the effect of preventing breakage of the drill 1 or 101 in the insertion step can be more remarkably exhibited. it can.
  • the stability when the cutting edges 5 and 105 and the thinning edges 7 and 107 bite into the work M in the deep hole forming step is low.
  • the depth W is less than 3D, the deviation between the opening position on the start end side and the opening position on the end side of the deep hole in the work M is larger than in the case of 3D or more, and the formation accuracy of the deep hole is lowered.
  • the drills 1 and 101 having a twist angle of 25 ° for the discharge groove 4 are higher in rigidity than the general drill having a twist angle of 30 °, but the chip dischargeability is reduced.
  • By providing the arc grooves 10 and 110 in the drills 1 and 101 it is possible to widen the tip pockets in the gash portions 8 and 108, and it is possible to enhance the chip discharge performance.
  • By processing the workpiece M by the deep hole machining method of the configuration of the present application using such drills 1 and 101 the effect of preventing breakage of the drills 1 and 101 in the deep hole forming step can be more remarkably exhibited.
  • the drills 1 and 101 may have a rotational direction T at the time of processing in a clockwise direction in front view.
  • the drill 1, 101 may not have the arc groove 10, 110.
  • the twist angle ⁇ of the discharge grooves 4 and 104 is preferably 25 °, but may be in the range of 15 ° to 35 °.
  • a first test was conducted to confirm the effect of forming the twist angle ⁇ of the discharge groove at 25 °.
  • drills of the present invention having the outer diameter D of 66, the groove length L of 60 D, and the twist angles ⁇ of 20 °, 25 °, 30 °, and 35 ° were prepared. .
  • Each drill is formed at its tip end with a gasch portion connected to the discharge groove on the inner peripheral side with respect to the outer peripheral surface, and has an arc groove.
  • the magnitude of vibration when a through hole was formed in the work M (SCM 440 equivalent material) with each drill was measured by the deep hole forming method according to the present application.
  • the results of the first test are shown in the graphs of FIGS. 7-10.
  • the time shown on the horizontal axis is the elapsed time from the start of processing.
  • the gasshed using a drill with a twist angle ⁇ of 25 °, which is more rigid than a common drill, and connected to the discharge groove at the tip on the inner peripheral side than the outer peripheral surface It was confirmed that by forming a portion and having an arc groove to enhance chip dischargeability, it was possible to suppress vibration at the time of deep hole formation and to perform stable processing.
  • the second test and the third test were conducted.
  • the behavior at the time of biting due to the diameter difference between the inner diameter d of the guide hole and the outer diameter D of the drill was confirmed in the deep hole forming step.
  • a plurality of guide holes having different inner diameters d were formed in advance, and a deep hole was formed by inserting a drill of the present configuration having an outer diameter D of 5.95.983 and a groove length L of 50D into the guide holes.
  • 2 mm was formed from the bottom of the guide hole, the processing of the deep hole was stopped, and after the drill was extracted, the bite state was observed.
  • the results of the second test are shown in the table of FIG.
  • the outer diameter D is 5.983 mm and the groove length L is 50D.
  • the deviation between the front surface and the back opening position was measured.
  • deep holes each having a length of 300 mm were formed in approximately 45 holes in each of three groups A to C under different conditions.
  • Group A was a drill having a twist angle ⁇ of 30 °, and a guide hole having an inner diameter d of 6.03 mm and a depth W of 3D was formed, and then a 45-hole through hole was formed.
  • the difference between the inner diameter d and the outer diameter D of the drill is 0.047 mm.
  • Group B was a drill having a twist angle ⁇ of 30 °, and a guide hole having an inner diameter d of 6.01 mm and a depth W of 5D was formed, and then a 45-hole through hole was formed.
  • the difference in diameter between the inner diameter d and the outer diameter D of the drill is 0.027 mm.
  • Group C was a drill having a twist angle ⁇ of 25 °, and a guide hole having an inner diameter d of 6.01 mm and a depth W of 5D was formed and then a through hole of 42 was formed.
  • the difference in diameter between the inner diameter d and the outer diameter D of the drill is 0.027 mm.
  • the results of the third test are shown in the graph of FIG.
  • the number of holes shown on the horizontal axis is obtained by arranging the distribution of positional deviation of through holes in each of the groups A to C in the order of large positional deviation.
  • the line graph representing the result of B shows the result of group A showing the positional deviation of each through hole when the guide hole having the inner diameter d of 6.03 mm and the depth W of 3D is formed using the drill of the same configuration. Generally, it is shifted downward from the line graph to represent.
  • group C shows the positional deviation of each through hole in the case of forming a guide hole having an inner diameter d of 6.01 mm and a depth W of 5D using a drill having a twist angle ⁇ of 25 °.
  • the line graph is generally shifted downward, though slightly, than the line graph representing the result of group B. From this, prior to forming the through hole (deep hole), the cutting edge and the cutting hole are formed by forming a guide hole having an inner diameter d of D + 0.03 mm or less and a depth W of 5 D or more. Since the stability when the thinning blade bites into the workpiece M is enhanced, it has been confirmed that the positional deviation of the through hole can be reduced. Then, by setting the twist angle ⁇ of the drill to 25 ° rather than 30 °, it is possible to ensure that the rigidity of the drill itself can be confirmed, and therefore it has been confirmed that positional deviation of the through hole can be further reduced.
  • the positional deviation of the through holes of group A was generally larger than the positional deviation of the through holes of group B.
  • the positional deviation of the through hole shifts to the upper side of group A more than the difference between group A and group B. It has been found that the positional deviation of the through hole tends to increase if the biting state of the drill at the time of deep hole formation is poor. In other words, if the biting condition of the drill at the time of deep hole formation is good, the positional deviation falls within a relatively small range. And according to the result of Example 2 (refer to FIG.
  • a fourth test was performed to confirm the effect of inserting the drill into the guide hole by reverse rotation in the insertion step.
  • two samples of the drill of the present application configuration with an outer diameter D of ⁇ 9 and a groove length L of 50 D were prepared.
  • One of the drills was inserted into a guide hole having an inner diameter d of 9 9 and a depth W of 5 D in a positive rotation, and durability was compared when multiple blind holes of 430 mm were continuously formed in the work material.
  • the other drill was inserted into the same size guide hole by reverse rotation, and the durability was compared when a plurality of 430 mm blind holes were continuously formed in the work material.
  • the fourth test was conducted under the following conditions.
  • Work material SCM440 equivalent material Use machine: Horizontal machining center Machining depth: 430 mm dead cutting oil: water soluble cutting oil (dilution ratio 20 times)
  • One drill inserted in the guide hole in the normal rotation in the insertion step was broken in the process of forming the 30th hole. As shown in FIG. 13, one of the drills had a large wear on the leading edge when the 22 holes were formed. On the other hand, the other drill inserted in the guide hole by reverse rotation in the insertion step did not break even if the 60th hole was formed. As shown in FIG. 14, the other drill had less wear on the leading edge than the one drill even after forming 60 holes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Drilling Tools (AREA)
  • Drilling And Boring (AREA)

Abstract

ドリルは、ねじれ角25°の排出溝を備え、溝長が30D以上のロングドリルである。ドリルの先端部にはシンニング処理が施され、外周面よりも径方向内側において排出溝に接続するギャッシュ部が形成される。シンニング面とギャッシュ面とが接続する部分には円弧溝が形成され、切りくず排出性が高められる。深穴形成時、案内穴形成工程において内径dがD+0.03mm以下で深さWが3D以上の案内穴が形成される(S2~S6)。挿入工程ではドリルが逆回転され、案内穴に、底部手前まで挿入される(S11~S13)。深穴形成工程ではドリルが正回転され、案内穴の底部から切削が行われて深穴が形成される(S16~S18)。

Description

深穴加工方法
 本発明は深穴加工方法に関する。
 従来、ワークに深さが深い深穴を形成する場合、深穴の形成前に、深穴よりも若干径が大きく深さが浅い案内穴が形成される。工作機械の主軸に装着されたドリルは、切削時の回転方向に低速で回転された状態で、案内穴に挿入される。ドリルの先端部が案内穴の底部手前まで挿入されると、ドリルは切削時の速度で回転され、そのまま切削が行われることにより、深穴が形成される。
 特に30D以上の深穴を形成する場合、切りくずの排出溝が外周面にて螺旋状に形成されたツイストドリルは、穴が深いほど加工中に切りくずが詰まりやすくなるため、排出溝が直線状に形成されたガンドリルが用いられる(例えば特許文献1参照)。特許文献1では、加工段階に応じてクーラントの供給を最適化することで、切りくずの排出性を確保している。
特許第4990650号公報
 しかしながら、ガンドリルは加工能率を上げることができず、また工具寿命も短いため、ツイストドリルの使用が望まれていた。
 本発明の目的は、剛性と切りくずの排出性を高めることができるドリルを用いて深穴を形成しつつ、加工時のドリル本体の損傷を抑制できるようにした深穴加工方法を提供することである。
 本発明の一態様によれば、ドリルを装着した工作機械でワークに深穴を形成する深穴加工方法であって、前記ドリルは、軸心を中心に回転されるドリル本体と、前記ドリル本体の先端部から基端部へ向けて、外周面に、ねじれ角が15°以上35°以下の螺旋状に設けられる複数の排出溝と、前記ドリル本体の回転方向側を向く前記排出溝の内面と、前記先端部における前記ドリル本体の逃げ面との稜線部分に形成される切れ刃と、前記ドリル本体の前記先端部に施されるシンニング処理によって設けられ、前記切れ刃の内端から前記ドリル本体の先端部分であるチゼル部へ向けて延びるシンニング刃と、前記シンニング処理によって設けられ、前記逃げ面との稜線が前記シンニング刃の内端から円弧状に延び、前記ドリル本体の前記外周面よりも内周側で前記排出溝に接続するギャッシュ部とを備えており、前記工作機械による前記ドリルを用いた前記ワークの加工において、前記ワークに前記ドリル本体の前記先端部を挿入可能であり、前記ドリル本体の外径Dよりも大きな内径dを有し、且つ深さがWの案内穴を、予め他のドリルを用いて形成する案内穴形成工程と、前記ドリル本体を切削時の回転方向とは反対の逆転方向に加工時よりも低速で回転しつつ、前記ドリル本体の前記先端部を前記案内穴の底部手前まで挿入する挿入工程と、前記ドリル本体を切削時の回転方向である正転方向に回転しつつ、前記案内穴を更に切削し、前記深穴を形成する深穴形成工程とを含むことを特徴とする深穴加工方法が提供される。
 ドリルは、排出溝のねじれ角が15°以上35°以下のツイストドリルであり、例えばガンドリルと比べると切りくず排出性が高く、加工能率が高く、また工具寿命も長い。このようなドリルを用い、深穴を形成する際に、自重によるドリル本体の撓みに遠心力が作用すると、ドリルが振れ回りすることがある。挿入工程においてドリル本体を加工時よりも低速で回転することで、ドリルの振れ回りを抑制できる。振れ回りが抑制されたドリルは、予め形成した案内穴に先端部を挿入しやすい。ドリルの先端部が案内穴に挿入されることによって、ドリルは案内穴と工作機械によって両端が支持された状態で回転するので、ドリル本体の撓みを矯正することができる。また、ドリル本体を逆転方向に回転し、ドリルの切れ刃がついていないヒール側から案内穴に沿わせるように案内穴に挿入することで、先端部が案内穴の周縁部分に当接したり、内壁に接触したりすることを抑制し、ドリル本体の損傷の進行、欠損・折損を防止できる。更に、挿入工程ではドリル本体が逆転方向に回転するので、ドリル本体の切れ刃が案内穴の周縁部分や内壁に接触した時に刃先がワークに食い付くことを防止でき、切れ刃の欠損を抑制できる。また、ドリルは、ドリル本体の外周面に達せず、外周面よりも内周側で排出溝に接続するギャッシュ部を有する。これにより、切りくずがカールしやすく且つ分断されやすくなるので、ドリルは、切りくずの排出性を高めることができる。故に、深穴の形成時に、ドリル本体が折損することを防止できる。
 本態様において、前記排出溝の溝長Lは、30D以上であってもよい。自重によるドリル本体の撓みの影響は、溝長Lが長くなるほど、すなわちドリル本体の長さが長くなるほど生じやすい。溝長Lが30D以上のドリルを用いて本願構成の深穴加工方法によってワークを加工することで、挿入工程におけるドリル本体の折損の防止効果をより顕著に発揮することができる。
 本態様において、前記案内穴の前記内径dは、D+0.03mm以下であり、前記深さWは、3D以上であってもよい。内径dがD+0.03mmより大きい場合、深穴形成工程において切れ刃及びシンニング刃がワークに食い付く際の安定性が低くなる。深さWが3D未満の場合、ワークにおける深穴の始端側の開口位置と終端側の開口位置とのずれが3D以上の場合よりも大きく、深穴の形成精度が低くなる。
 本態様において、前記ドリルは、前記シンニング刃のすくい面であり、前記シンニング刃と前記排出溝との間を接続するシンニング面と、前記ギャッシュ部のギャッシュ面とが接続する部分に設けられる断面円弧状の円弧溝を備え、前記排出溝のねじれ角は25°であってもよい。排出溝のねじれ角が25°のドリルは、ねじれ角が30°の一般的なドリルよりも剛性は高いが切りくずの排出性が低下する。このドリルに円弧溝を設けたことで、ギャッシュ部におけるチップポケットを広げることができ、切りくずの排出性を高めることができる。このようなドリルを用いて本願構成の深穴加工方法によってワークを加工することで、深穴形成工程におけるドリル本体の折損の防止効果をより顕著に発揮することができる。
ドリル1の側面図である。 ドリル1の先端部の正面図である。 ドリル101の側面図である。 ドリル101の先端部の正面図である。 工作機械200の概略的な構成図である。 深穴加工用NCプログラムのフローチャートである。 ねじれ角20°のドリルで深穴を形成したときの振動を示すグラフである。 ねじれ角25°のドリルで深穴を形成したときの振動を示すグラフである。 ねじれ角30°のドリルで深穴を形成したときの振動を示すグラフである。 ねじれ角35°のドリルで深穴を形成したときの振動を示すグラフである。 案内穴の内径dとドリルの外径Dの径差と食い付きの状況を示す表である。 案内穴の大きさと貫通穴の開口部の位置ずれとの関係を示すグラフである。 挿入工程で正回転したドリルの先端部を22穴形成後に撮影した図である。 挿入工程で逆回転したドリルの先端部を60穴形成後に撮影した図である。
 以下、本発明に係る深穴加工方法によって深穴を形成する際に用いられるドリル1、101について、図面を参照して説明する。ドリル1は、先端部に2つの切れ刃5が形成された2枚刃ドリルの一例である。ドリル101は、先端部に3つの切れ刃105が形成された3枚刃ドリルの一例である。
 まず、2枚刃のドリル1について説明する。図1に示すように、ドリル1は、超硬合金や高速度工具鋼(ハイス)等の硬質材料から形成される。ドリル1は、シャンク2と、シャンク2から軸心AXに沿って延設されたボディ3を備える。シャンク2は工作機械200の主軸206(図5参照)にドリル1を保持する部分であり、ボディ3に対してシャンク2側がドリル1の後端側である。ボディ3の外周面31には、切りくずを排出するための2条の排出溝4が螺旋状に形成される。ドリル1は、排出溝4のねじれ角θが15°以上35°以下の範囲内となるように形成されたツイストドリルである。なお、ねじれ角θは、小さいほどボディ3の剛性は高まるが、切りくずの排出性が低下する。
 排出溝4はボディ3の先端部において開口し、開口部分に2枚の切れ刃5が形成される。ドリル1は、外径Dに対する溝長Lが10倍以上(10D以上)の長さを有し、例えば30D以上の長さを有する、所謂ロングドリルにも適用される。ドリル1は、軸心AXを中心に回転することによって被削物(ワーク)を切れ刃5で切削し、切りくずを排出溝4で排出しながら深穴を形成する。加工時のドリル1の回転方向Tは、正面視で反時計回り方向である。すなわちドリル1を主軸206に保持した工作機械200(図5参照)は、主軸206を右回転してワークを切削する。
 図1、図2に示すように、切れ刃5は、排出溝4の回転方向T側を向く内面41と、ドリル1の先端部の逃げ面6とが交差する稜線部分に形成される。切れ刃5は正面視略S字形状を呈する。排出溝4の内面41のうち切れ刃5付近の内面41は、切れ刃5が切削した切りくずをすくい取って排出溝4に流す、所謂すくい面である。排出溝4の内面41のうち切れ刃5側の内面41と、ボディ3の外周面31とが交差する部分は、リーディングエッジ33である。切れ刃5とは反対側の内面41と外周面31とが交差する部分は、ヒール34である。外周面31には、リーディングエッジ33とヒール34との間の中間部分に、ドリル1の外径Dよりも小径の背抜き32が設けられる。背抜き32が設けられることによって、ドリル1は、深穴の形成時に深穴の内面とボディ3の外周面31との接触による摩擦抵抗を低減し、発熱や加工トルクを抑制することができる。
 ドリル1は、排出溝4に沿ってボディ3内を螺旋状に延びる2本の油穴11を有する。2本の油穴11はシャンク2の後端からドリル1の先端までドリル1内を貫通し、夫々、逃げ面6に開口する。加工時に油穴11内に供給される切削油は、切削抵抗を低減し、発熱や加工トルクを抑制する。また、切りくずは、切削油と共に排出溝4を流れ、円滑に排出される。
 ドリル1の先端部には、チゼル9付近の心厚を薄くするためのシンニング処理が施される。シンニング処理は、例えば研削砥石を回転させながら排出溝4の開口部分を切れ刃5の軸心AX側の内側の端部である内端51からチゼル9側に削り込み、シンニング刃7を形成する処理である。シンニング刃7は、研削砥石とドリル1を相対的に移動させつつ形成され、切れ刃5の内端51からチゼル9へ向けて正面視円弧状に延びる。シンニング刃7の形成によって、ドリル1の先端部には、シンニング刃7の回転方向T側を向くすくい面であるシンニング面71が形成される。
 シンニング処理では、シンニング刃7を形成した後、研削砥石をヒール34側へ向けてドリル1と相対的に移動させて更に削り込み、排出溝4に接続するギャッシュ部8が形成される。ギャッシュ部8の内面であるギャッシュ面81と、ドリル1の先端部の逃げ面6とが交差する稜線は、シンニング刃7の軸心AX側の内側の端部である内端72から円弧状に延び、外周面31よりも径方向の内側において排出溝4に接続する。即ちギャッシュ面81は、内側に凹む曲面に形成される。よってギャッシュ部8は、シンニング刃7で切削した切りくずを収容するチップポケットの容量をより大きく確保でき、詰まることなく円滑に切りくずを排出溝4に送り出すことができる。
 加工時、チゼル9付近に延びるシンニング刃7がワークに食い込んで発生する切りくずは、シンニング面71によってすくい取られ、ギャッシュ部8に押し出される。切りくずは曲面を呈するギャッシュ面81で丸められてカールし、リーディングエッジ33で切断されて、排出溝4に送り出される。このとき、ドリル1の外周面31と深穴の内面との間に切りくずが入り込んでしまうと、切りくずは、リーディングエッジ33で切断されずに長く伸びてしまうことがある。ドリル1は、ギャッシュ部8が外周側の端部がドリル1の外周面31に達していないので、切りくずが外周面31側に流れにくく、外周面31と深穴の内面との間に到達しにくい。故にドリル1は、切りくずを比較的小さく切断し、且つ小さく丸めることで、排出溝4から円滑に排出し、切削抵抗を低減することができる。よってドリル1は、深穴の形成時に折損することを防止できる。
 ギャッシュ面81と、シンニング面71とが接続する部分には、円弧溝10が形成される。円弧溝10はチゼル9付近から排出溝4へ向けて真っ直ぐ延び、延伸方向の断面が円弧状を呈する。円弧溝10は、シンニング刃7が切削し、シンニング面71ですくい取った切りくずを円滑に排出溝4へ流す。ドリル1は、ギャッシュ面81とシンニング面71の間に円弧溝10を備えたことで、切りくずをシンニング面71からギャッシュ部8に円滑に押し出すことができる。なお、円弧溝10は、断面の曲率半径Rが0.01D以上0.03D以下の範囲内となるように形成される。曲率半径Rが0.01D未満の場合、切りくずがシンニング面71からギャッシュ部8に押し出される際に引っ掛かりやすくなり、ギャッシュ部8から排出溝4への切りくずの排出性が低下する虞がある。一方、曲率半径Rが0.03Dより大きい場合、円弧溝10とシンニング面71とギャッシュ面81とで形成されるチップポケットにおいて、円弧溝10がシンニング面71とギャッシュ面81を滑らかに接続する断面形状を構成するには、円弧溝10を、より浅い位置に形成する必要がある。この場合、チゼル9の径や幅を規格に従って形成すると、シンニング刃7の厚みが薄くなり、応力集中により突発折損する虞がある。
 次に、3枚刃のドリル101について説明する。3枚刃のドリル101と2枚刃のドリル1とは刃数が異なるが、基本的な構成は略同じであるので、以下では、ドリル101の説明を簡略化して行う。
 図3、図4に示すように、ドリル101は、ボディ103の外周面131に3条の排出溝104を螺旋状に形成したものである。ドリル101は、排出溝104のねじれ角θが15°以上35°以下の範囲内となるように形成されたツイストドリルである。ボディ103の先端部には、排出溝104の開口部分に3枚の切れ刃105が形成される。切れ刃105は、排出溝104の回転方向T側を向く内面141と、ドリル101の先端部の逃げ面106とが交差する稜線部分に形成される。逃げ面106には、排出溝104に沿ってボディ103内を螺旋状に延びる3本の油穴111の夫々が開口する。ドリル101の先端部にはシンニング処理が施され、シンニング刃107が形成される。また、シンニング処理によって形成されるギャッシュ部108は、ギャッシュ面181と逃げ面106との稜線がチゼル109側から円弧状に延び、外周面131よりも径方向の内側において排出溝104に接続する。
 ギャッシュ面181と、シンニング面171とが接続する部分には、円弧溝110が形成される。円弧溝110は断面円弧状で、チゼル109付近から排出溝104へ向けて真っ直ぐ延びる。なお、円弧溝110は、ドリル1と同様に、断面の曲率半径Rが0.01D以上0.03D以下の範囲内となるように形成される。
 次に、ドリル1又はドリル101を装着し、深穴を加工する工作機械200について説明する。なお、便宜上、紙面左右方向を工作機械200の前後方向とし、紙面裏表方向を工作機械200の左右方向とする。また、便宜上、工作機械200にはドリル1が装着されるものとする。
 図5に示すように、工作機械200は、工具をワークの側方から相対的に近づけてワークを加工する横型マシニングセンタである。工作機械200は、ベッド201、コラム202、X軸移動機構203、Y軸移動機構204、主軸モータ205、主軸206、ホルダ207、テーブル208、Z軸移動機構209、工具交換装置210、コントローラ211等を備える。ベッド201は、金属製の略直方体状の土台である。コラム202はベッド201の後端部上において立設する。主軸モータ205はコラム202の前面側に設けられ、X軸移動機構203とY軸移動機構204により、左右方向及び上下方向に移動する。主軸206は主軸モータ205の前方に延び、主軸モータ205の駆動によって前後方向を軸に回転する。主軸206の先端部にはホルダ207が固定される。ホルダ207はドリル1の軸心AXを前後方向に沿わせ、先端部を前方へ向けた状態で、シャンク2を保持する。ドリル1は、主軸モータ205の駆動に伴い回転する。
 テーブル208はベッド201上でコラム202の前側に設けられる。テーブル208はワークMを上面に載置し、Z軸移動機構209により、前後方向に移動する。工具交換装置210はコラム202の左側に設けられ、後述する案内穴を形成するためのドリル220と保持した状態のホルダ221と、ドリル1を保持した状態のホルダ207をコントローラ211の指示に従って交換し、主軸206にセットする。コントローラ211は、CPU、ROM、RAM、記憶装置を備える数値制御装置(図示略)を搭載し、NCプログラムに従って、X軸移動機構203、Y軸移動機構204、主軸モータ205、Z軸移動機構209の動作を制御する。従って、ドリル1は、ワークMに対して相対的に前後方向、左右方向及び上下方向に移動することができ、且つ前後方向を軸に回転することができる。また、図示しないが、工作機械200は、装置全体を覆う保護カバー等を備える。
 次に、工作機械200のコントローラ211が、NCプログラムに従い、ドリル1でワークMに深穴を形成する過程について説明する。ドリル1は、溝長Lが、例えば30D以上のロングドリルである。工作機械200は、ドリル1の軸心AXを前後方向、すなわち側方に延ばした状態でドリル1を保持し、ワークMを加工する。従ってドリル1には、自重による撓みの影響により、加工時にボディ3にしなりが生ずる可能性がある。また、ドリル1は、工作機械200の駆動に伴う振動によって、ボディ3にしなりが生ずる可能性がある。
 故に本実施形態の深穴加工方法によれば、工作機械200は、ドリル1で深穴を形成する前に、ドリル220で案内穴を形成する。案内穴は、ドリル1の外径Dに対する深さWが3D以上であり、内径dが、D+0.03mm以下に形成される。深さWが3D未満の場合、ワークMにおける深穴の始端側の開口位置と終端側の開口位置とのずれが3D以上の場合よりも大きくなる虞があり、深穴の形成精度が低くなる可能性がある。また、内径dがD+0.03mmより大きい場合、深穴の形成時に切れ刃5とシンニング刃7がワークMに食い付く際の安定性が低くなる可能性がある。
 また、深穴加工方法によれば、ドリル1は、外周面31よりも内周側で排出溝4に接続する円弧状のギャッシュ部8を有し、且つシンニング面71とギャッシュ面81の接続部分に円弧溝10を有し、更に、排出溝4のねじれ角θが25°であるものが用いられる。排出溝4のねじれ角θが25°のドリル1は、従来のドリルよりも剛性が高いので、撓みにくい。また、切りくずの排出性は従来のドリルよりも低下するが、本願形状のギャッシュ部8と円弧溝10を有することによって向上することによって、ドリル1は、切りくずの排出性と剛性を共に確保することができる。
 コントローラ211の数値制御装置は、記憶装置に記憶するNCプログラムをRAMに読み込んで、各種動作を実行する。図6に示すように、コントローラ211は工具交換装置210を駆動し、ドリル220を保持したホルダ221を主軸206にセットする(S1)。ドリル220の外径はdであり、ドリル1の外径Dよりも大きく、D+0.03mm以下である。コントローラ211は、X軸移動機構203とY軸移動機構204の駆動を制御し、ドリル220の先端部をワークMにおける深穴の形成予定位置の後方に移動する(S2)。
 [案内穴形成工程] コントローラ211は主軸モータ205の駆動を制御し、ドリル220を保持する主軸206を加工時の回転速度で正回転(回転方向Tに回転)する(S3)。コントローラ211はZ軸移動機構209の駆動を制御し、ワークMを載置するテーブル208を後方に移動する(S5)。ドリル220の先端部がワークMの後面に接触し、ワークMが切削されて、案内穴の形成が開始される。案内穴の深さWは、例えば3Dに設定される。テーブル208の位置がワークMとドリル220の接触位置から更に後方へ深さWに相当する距離を移動するまで、コントローラ211はテーブル208及びワークMの移動を継続する(S6:NO)。
 案内穴の深さWが3Dに達して案内穴の形成が完了すると(S6:YES)、コントローラ211はテーブル208を前方に移動する(S7)。案内穴が形成されたワークMは前方に移動し、ドリル220が案内穴から抜き出される。コントローラ211は主軸モータ205の駆動を停止し、主軸206の回転を停止する(S8)。
 コントローラ211は工具交換装置210を駆動し、ドリル1を保持したホルダ207を主軸206にセットする(S10)。コントローラ211は主軸モータ205の駆動を制御し、ドリル1を保持する主軸206を加工時の回転速度よりも低い案内速度で逆回転(回転方向Tとは反対方向に回転)する(S11)。前述したように、ドリル1は、溝長Lが、例えば30D以上のロングドリルである。故にドリル1は、軸心AXを横向きにして工作機械200に保持されることによって、自重で撓みやすい。S11では、ドリル1を加工時よりも低速の案内速度で回転することによって、ドリル1の振れ回りを抑制することができる。
 [挿入工程] コントローラ211はZ軸移動機構209の駆動を制御し、ワークMを載置するテーブル208を後方に移動する(S12)。ドリル1の先端部がワークMに形成された案内穴に挿入される。振れ回りが抑制されたドリル1は、先端部を案内穴に挿入しやすい。ドリル1の先端部が案内穴に挿入されることによって、ドリル1は、案内穴と主軸モータ205に両端を支持されつつ回転するので、撓みが矯正される。また、ドリル1は、逆回転することによって、ドリル1の切れ刃5がついていないヒール34側から案内穴に沿わせるように案内穴に挿入される。故にドリル1は、先端部が案内穴の周縁部分に当接したり、内壁に接触したりすることを抑制し、損傷の進行、欠損・折損を防止できる。更に、ドリル1が逆回転するので、切れ刃5が案内穴の周縁部分や内壁に接触した時に刃先がワークMに食い付くことを防止でき、切れ刃の欠損を抑制できる。
 コントローラ211は、ドリル1の先端が案内穴の開口部分に位置してから、案内穴の深さWよりも若干短い距離分、テーブル208及びワークMの後方への移動を継続する(S13:NO)。テーブル208が深さWよりも若干短い距離分移動し、ドリル1の先端部が案内穴の底部手前に到達すると(S13:YES)、コントローラ211は、テーブル208及びワークMの移動を停止する(S15)。
 [深穴形成工程] コントローラ211は主軸モータ205の駆動を制御し、ドリル1を保持する主軸206を加工時の回転速度で正回転(回転方向Tに回転)する(S16)。コントローラ211はZ軸移動機構209の駆動を制御し、ワークMを載置するテーブル208を後方に移動する(S17)。ドリル1の先端部は案内穴の底面に接触し、ワークMが切削され、深穴の形成が開始される。深穴は、所定の深さ、例えば溝長Lの90%の長さに相当する深さに設定される。コントローラ211は、ドリル1の先端が案内穴の開口部分に位置してから、所定の深さに相当する距離分、テーブル208及びワークMの後方への移動を継続する(S18:NO)。
 テーブル208及びワークMが所定の深さに相当する長さ分、後方に移動し、深穴の形成が完了すると(S18:YES)、コントローラ211は、テーブル208を前方へ移動する(S20)。深穴が形成されたワークMは前方へ移動し、ドリル1が深穴から抜き出される。コントローラ211は主軸モータ205の駆動を停止し、主軸206の回転を停止する(S21)。
 NCプログラムに従い、深穴の形成を連続して行う場合には(S22:YES)、コントローラ211は処理をS1に戻す。深穴の形成を終了する場合には(S22:NO)、コントローラ211はNCプログラムの実行を終了する。なお、ドリル101を用いた深穴加工方法についても、ドリル1を用いた場合と同様である。
 以上説明したように、ドリル1、101は、排出溝4、104のねじれ角が15°以上35°以下のツイストドリルであり、例えばガンドリルと比べると切りくず排出性が高く、加工能率が高く、また工具寿命も長い。このようなドリル1、101を用い、深穴を形成する際に、自重によるドリル1、101の撓みに遠心力が作用すると、ドリル1、101が振れ回りすることがある。本願構成の深穴加工方法では、挿入工程においてドリル1、101を加工時よりも低速で回転することで、ドリル1、101の振れ回りを抑制できる。振れ回りが抑制されたドリル1、101は、先端部を案内穴に挿入しやすい。ドリル1、101の先端部が案内穴に挿入されることによって、ドリル1、101は案内穴と主軸モータ205に両端が支持された状態で回転するので、撓みを矯正することができる。また、ドリル1、101を逆転方向に回転し、ドリル1、101の切れ刃5、105がついていないヒール34側から案内穴に沿わせるように案内穴に挿入することで、先端部が案内穴の周縁部分に当接したり、内壁に接触したりすることを抑制し、ドリル1、101の損傷の進行、欠損・折損を防止できる。更に、挿入工程ではドリル1、101が逆転方向に回転するので、ドリル1、101の切れ刃5、105が案内穴の周縁部分や内壁に接触した時に刃先がワークMに食い付くことを防止でき、切れ刃5、105の欠損を抑制できる。また、ドリル1、101は、ドリル1、101の外周面31、131に達せず、外周面31、131よりも内周側で排出溝4、104に接続するギャッシュ部8、108を有する。これにより、切りくずがカールしやすく且つ分断されやすくなるので、ドリル1、101は、切りくずの排出性を高めることができる。故に、深穴の形成時に、ドリル1、101が折損することを防止できる。
 自重によるドリル1、101の撓みの影響は、溝長Lが長くなるほど、すなわちドリル1、101の長さが長くなるほど生じやすい。溝長Lが30D以上のドリル1、101を用いて本願構成の深穴加工方法に従ってワークMを加工することで、挿入工程におけるドリル1、101の折損の防止効果をより顕著に発揮することができる。
 内径dがD+0.03mmより大きい場合、深穴形成工程において切れ刃5、105及びシンニング刃7、107がワークMに食い付く際の安定性が低くなる。深さWが3D未満の場合、ワークMにおける深穴の始端側の開口位置と終端側の開口位置とのずれが3D以上の場合よりも大きく、深穴の形成精度が低くなる。
 排出溝4のねじれ角が25°のドリル1、101は、ねじれ角が30°の一般的なドリルよりも剛性は高いが切りくずの排出性が低下する。このドリル1、101に円弧溝10、110を設けたことで、ギャッシュ部8、108におけるチップポケットを広げることができ、切りくずの排出性を高めることができる。このようなドリル1、101を用いて本願構成の深穴加工方法によってワークMを加工することで、深穴形成工程におけるドリル1、101の折損の防止効果をより顕著に発揮することができる。
 なお、本発明は上記の各実施形態に限定されるものではなく、種々の変更が可能である。ドリル1、101は、加工時の回転方向Tが、正面視で時計回り方向のものであってもよい。ドリル1、101は、円弧溝10、110がなくてもよい。排出溝4、104のねじれ角θは25°が好適であるが、15°以上35°以下の範囲であってもよい。
 以上説明したドリル1、101と同様の構成のサンプルを用い、本願構成の深穴加工方法に従ってワークMに深穴を形成することの効果を確認するため各種評価試験を行った。
 まず、深穴の形成に用いるドリルとして、排出溝のねじれ角θを25°に形成することによる効果を確認する第一試験を行った。第一試験では、試験用サンプルとして、外径DがΦ6で溝長Lが60Dであり、ねじれ角θを20°、25°、30°、35°に形成した本願構成のドリルを夫々用意した。各ドリルは、先端部に、外周面よりも内周側で排出溝に接続するギャッシュ部が形成され、且つ円弧溝を有する。第一試験では、本願構成の深穴形成方法によって各ドリルでワークM(SCM440相当材)に貫通穴を形成したときの振動の大きさを測定した。第一試験の結果を図7~図10のグラフに示す。なお、横軸に示す時間は、加工開始からの経過時間である。
 図8に示すように、ねじれ角θが25°のドリルは、深穴形成時(8~45秒)の振動が比較的小さい状態で維持され、振動状態の細かな変化(所謂びびり)も少なかった。これに対し、図7に示すように、ねじれ角θが20°のドリルは、深穴形成時(18~40秒)の振動が比較的小さい状態で維持され、形成開始から中頃までは(18~35秒)、びびりも少なかったが、後半(35~40秒)において、びびりが大きくなった。これは、ねじれ角θが25°のドリルと比べ、剛性が高いものの、切りくずの排出性がねじれ角θが25°のドリルよりも劣るため、終盤において切りくずの詰まりが発生したものと考えられる。また、図9に示すように、ねじれ角θが30°のドリルは、深穴形成時(8~44秒)の振動が比較的小さい状態で維持されたが、開始当初(10~15秒)と後半(33~40秒)において、びびりがみられた。これは、ねじれ角θが25°のドリルと比べ、剛性が低いことによるものと考えられる。図10に示すように、ねじれ角θが35°のドリルは、深穴形成時(7~42秒)の振動が比較的大きい状態で生じ、びびりも発生した。これは、ねじれ角θが25°のドリルと比べ、更に剛性が低いことによるものと考えられる。第一試験の結果によれば、一般的なドリルよりも剛性を高められる、ねじれ角θが25°のドリルを用い、且つ先端部に、外周面よりも内周側で排出溝に接続するギャッシュ部が形成され、且つ円弧溝を有することで切りくずの排出性を高めることによって、深穴形成時の振動を抑え、安定した加工が行えることが確認できた。
 次に、本願構成の深穴加工方法において、案内穴形成工程において案内穴を形成することによる効果を確認するため、第二試験と第三試験を行った。まず、第二試験では、深穴形成工程において、案内穴の内径dとドリルの外径Dとの径差による食い付き時の挙動を確認した。試験では、予め内径dの異なる複数の案内穴を形成し、外径DがΦ5.983で、溝長Lが50Dの本願構成のドリルを案内穴に挿入して深穴を形成した。そして、案内穴の底部から2mm形成したところで深穴の加工を停止し、ドリルを抜き出した後、食い付き状態を観察した。第二試験の結果を図11の表に示す。
 図11に示すように、案内穴の内径dとドリルの外径Dとの径差が0.031mm以下の案内穴(1、2、3、7、9、12番)では、深穴形成時の食い付きが良好であった。これに対し、案内穴の内径dとドリルの外径Dとの径差が0.049mm以上の案内穴(4、5、6、8、10、11番)では、深穴形成時の食い付きにおいて軸ぶれが生ずる等の不良があった。第二試験の結果によれば、案内穴の内径dとドリルの外径Dとの径差を0.03mm以下にすると、深穴形成時のドリルの食い付きが良好であることが確認できた。
 次に、第三試験では、外径Dが5.983mmで、溝長Lが50Dの本願構成のドリルを用い、本願構成の深穴加工方法によって貫通穴を形成したときに、被削材の表面と、裏面の開口位置とのずれを測定した。なお、第三試験では、条件の異なる3つのグループA~Cにおいて、長さが300mmの深穴を夫々略45穴形成した。グループAは、ねじれ角θを30°に形成したドリルで、内径dが6.03mm、深さWが3Dの案内穴を作成した上で45穴の貫通穴を形成した。内径dとドリルの外径Dとの径差は0.047mmである。グループBは、ねじれ角θを30°に形成したドリルで、内径dが6.01mm、深さWが5Dの案内穴を作成した上で45穴の貫通穴を形成した。内径dとドリルの外径Dとの径差は0.027mmである。グループCは、ねじれ角θを25°に形成したドリルで、内径dが6.01mm、深さWが5Dの案内穴を作成した上で42穴の貫通穴を形成した。内径dとドリルの外径Dとの径差は0.027mmである。第三試験の結果を図12のグラフに示す。なお、横軸に示す穴数は、各グループA~Cの夫々における貫通穴の位置ずれの分布を、位置ずれの大きかった順に並べたものである。
 図12に示すように、ねじれ角θを30°に形成したドリルを用い、内径dが6.01mmで深さWが5Dの案内穴を形成した場合の各貫通穴の位置ずれを示す、グループBの結果を表す折れ線グラフは、同構成のドリルを用い、内径dが6.03mmで深さWが3Dの案内穴を形成した場合の各貫通穴の位置ずれを示す、グループAの結果を表す折れ線グラフよりも、全般的に、下方にシフトしている。また、ねじれ角θを25°に形成したドリルを用い、内径dが6.01mmで深さWが5Dの案内穴を形成した場合の各貫通穴の位置ずれを示す、グループCの結果を表す折れ線グラフは、グループBの結果を表す折れ線グラフよりも僅かながら、全般的に、下方にシフトしている。このことから、貫通穴(深穴)を形成するのに先立ち、内径dをD+0.03mm以下とし、深さWを5D以上とする案内穴を形成することによって、貫通穴形成時に、切れ刃及びシンニング刃がワークMに食い付く際の安定性が高められるため、貫通穴の位置ずれを小さくできることが確認できた。そして、ドリルのねじれ角θを30°よりも25°にすることによって、ドリル自体の剛性を確保できるため、貫通穴の位置ずれを更に小さくできることが確認できた。
 なお、グループAの貫通穴の位置ずれは、グループBの貫通穴の位置ずれよりも全般的に大きかった。図示しないが、案内穴の深さWを3D未満とした場合の貫通穴の位置ずれは、グループAとグループBの差分よりも更に大きくグループAの上方にシフトする。貫通穴の位置ずれは、深穴形成時のドリルの食い付き状態が不良であると、大きくなる傾向にあることが分かっている。言い換えると、深穴形成時のドリルの食い付き状態が良好な状態であるならば、位置ずれは比較的小さな範囲に収まる。そして、実施例2の結果(図11参照)によれば、案内穴の深さWが3Dであっても、案内穴の内径dとドリルの外径Dとの径差が0.03mm以下なら、深穴形成時のドリルの食い付き状態は良好である。即ちグループAは、グループBよりも貫通穴の位置ずれが全般的に大きいが、許容範囲にあるといえる。従って、案内穴の深さWは、3D以上であれば十分に、貫通穴の位置ずれを小さくできる。
 次に、本願構成の深穴加工方法において、挿入工程においてドリルを逆回転で案内穴に挿入することによる効果を確認するため、第四試験を行った。第四試験では、外径DがΦ9で、溝長Lが50Dの本願構成のドリルを2サンプル作成した。一方のドリルは、内径dがΦ9で深さWが5Dの案内穴に正回転で挿入しつつ、430mmの止り穴を被削材に連続して複数形成した時の耐久性を比較した。他方のドリルは、同じ大きさの案内穴に逆回転で挿入しつつ、430mmの止り穴を被削材に連続して複数形成した時の耐久性を比較した。なお、第四試験は、以下の条件により行った。
被削材:SCM440相当材
使用機械:横型マシニングセンタ
加工深さ:430mm止り
切削油:水溶性切削油剤(希釈率20倍)
 挿入工程で案内穴に正回転で挿入した一方のドリルは、30穴目を形成する過程で折損した。図13に示すように、一方のドリルは、22穴を形成した時点でリーディングエッジがすでに大きく摩耗していた。これに対し、挿入工程で案内穴に逆回転で挿入した他方のドリルは、60穴目を形成しても、折損しなかった。図14に示すように、他方のドリルは、60穴を形成した後でもリーディングエッジの摩耗が一方のドリルよりも少なかった。第四試験の結果によれば、挿入工程においてドリルを逆回転で案内穴に挿入することによって、ドリルの先端部が案内穴の周縁部分に当接したり、内壁に接触したりすることを抑制し、ドリルの損傷の進行、欠損・折損を防止できることが確認できた。

Claims (4)

  1.  ドリルを装着した工作機械でワークに深穴を形成する深穴加工方法であって、
     前記ドリルは、
      軸心を中心に回転されるドリル本体と、
      前記ドリル本体の先端部から基端部へ向けて、外周面に、ねじれ角が15°以上35°以下の螺旋状に設けられる複数の排出溝と、
      前記ドリル本体の回転方向側を向く前記排出溝の内面と、前記先端部における前記ドリル本体の逃げ面との稜線部分に形成される切れ刃と、
      前記ドリル本体の前記先端部に施されるシンニング処理によって設けられ、前記切れ刃の内端から前記ドリル本体の先端部分であるチゼル部へ向けて延びるシンニング刃と、
      前記シンニング処理によって設けられ、前記逃げ面との稜線が前記シンニング刃の内端から円弧状に延び、前記ドリル本体の前記外周面よりも内周側で前記排出溝に接続するギャッシュ部と
    を備えており、
     前記工作機械による前記ドリルを用いた前記ワークの加工において、
      前記ワークに前記ドリル本体の前記先端部を挿入可能であり、前記ドリル本体の外径Dよりも大きな内径dを有し、且つ深さがWの案内穴を、予め他のドリルを用いて形成する案内穴形成工程と、
      前記ドリル本体を切削時の回転方向とは反対の逆転方向に加工時よりも低速で回転しつつ、前記ドリル本体の前記先端部を前記案内穴の底部手前まで挿入する挿入工程と、
      前記ドリル本体を切削時の回転方向である正転方向に回転しつつ、前記案内穴を更に切削し、前記深穴を形成する深穴形成工程と
    を含むことを特徴とする深穴加工方法。
  2.  前記排出溝の溝長Lは、30D以上であることを特徴とする請求項1に記載の深穴加工方法。
  3.  前記案内穴の前記内径dは、D+0.03mm以下であり、前記深さWは、3D以上であることを特徴とする請求項1又は2に記載の深穴加工方法。
  4.  前記ドリルは、前記シンニング刃のすくい面であり、前記シンニング刃と前記排出溝との間を接続するシンニング面と、前記ギャッシュ部のギャッシュ面とが接続する部分に設けられる断面円弧状の円弧溝を備え、
     前記排出溝のねじれ角は25°であることを特徴とする請求項1から3のいずれかに記載の深穴加工方法。
PCT/JP2017/032268 2017-09-07 2017-09-07 深穴加工方法 WO2019049258A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/641,689 US20200222992A1 (en) 2017-09-07 2017-09-07 Deep hole machining method
JP2018511184A JPWO2019049258A1 (ja) 2017-09-07 2017-09-07 深穴加工方法
CN201780094584.5A CN111093870A (zh) 2017-09-07 2017-09-07 深孔加工方法
PCT/JP2017/032268 WO2019049258A1 (ja) 2017-09-07 2017-09-07 深穴加工方法
EP17924329.0A EP3680046A4 (en) 2017-09-07 2017-09-07 DEEP HOLE MACHINING PROCESS
KR1020207005121A KR20200033920A (ko) 2017-09-07 2017-09-07 깊은 구멍 가공 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/032268 WO2019049258A1 (ja) 2017-09-07 2017-09-07 深穴加工方法

Publications (1)

Publication Number Publication Date
WO2019049258A1 true WO2019049258A1 (ja) 2019-03-14

Family

ID=65633734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032268 WO2019049258A1 (ja) 2017-09-07 2017-09-07 深穴加工方法

Country Status (6)

Country Link
US (1) US20200222992A1 (ja)
EP (1) EP3680046A4 (ja)
JP (1) JPWO2019049258A1 (ja)
KR (1) KR20200033920A (ja)
CN (1) CN111093870A (ja)
WO (1) WO2019049258A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111347090B (zh) * 2020-04-07 2021-08-06 四川源维机械科技有限公司 用于加工舵面组件中的深孔的方法
CN112008101A (zh) * 2020-07-16 2020-12-01 上海航天精密机械研究所 一种超细深长孔钻削加工方法
CN112372024A (zh) * 2020-08-27 2021-02-19 沈阳富创精密设备股份有限公司 一种内冷钻头加工超过30倍径长度深孔的加工方法
CN112895239A (zh) * 2021-01-18 2021-06-04 山东玲珑机电有限公司 一种微细气孔模具加工方法及微细气孔模具
CN113732366B (zh) * 2021-08-26 2022-11-29 中国工程物理研究院激光聚变研究中心 一种深小孔内壁超声振动加工刀具及其制备方法
CN113878135B (zh) * 2021-10-11 2024-03-29 宜昌船舶柴油机有限公司 异型零件超长孔镗削加工方法
CN114226779B (zh) * 2021-12-11 2024-01-23 贵州凯星液力传动机械有限公司 一种长悬深偏心台阶小孔的加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263912U (ja) * 1988-11-02 1990-05-14
JP2005342829A (ja) * 2004-06-02 2005-12-15 Honda Motor Co Ltd 深穴加工装置及びその加工方法
JP2008188726A (ja) * 2007-02-06 2008-08-21 Toshiba Mach Co Ltd スライドコア穴の加工方法およびスライドコア穴加工に用いる計測・補正システム
JP2008213064A (ja) * 2007-03-01 2008-09-18 Toshiba Mach Co Ltd 深穴加工方法および装置
JP2016087451A (ja) * 2014-11-03 2016-05-23 セブ ソシエテ アノニム センサを中に置くトンネルを調理用容器内に穿設するための方法およびその方法によって作り出される容器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006018322A1 (de) * 2006-04-19 2007-10-25 Günther & Co. GmbH Verfahren zum Einbringen eines Tieflochs und Pilotbohrer hierfür
DE102008049509A1 (de) * 2008-09-19 2010-03-25 Mk-Tools-Service Gmbh Bohrer
US10150168B2 (en) * 2015-03-23 2018-12-11 Honda Motor Co., Ltd. Drill
CN204657565U (zh) * 2015-05-18 2015-09-23 浙江欣兴工具有限公司 可换刀头式钻头
CN105598509A (zh) * 2016-03-07 2016-05-25 大连理工大学 一种碳纤维增强复合材料高质量制孔的专用钻头
CN106216728A (zh) * 2016-08-23 2016-12-14 贵州航天乌江机电设备有限责任公司 一种在钛合金材料上钻孔的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263912U (ja) * 1988-11-02 1990-05-14
JP2005342829A (ja) * 2004-06-02 2005-12-15 Honda Motor Co Ltd 深穴加工装置及びその加工方法
JP2008188726A (ja) * 2007-02-06 2008-08-21 Toshiba Mach Co Ltd スライドコア穴の加工方法およびスライドコア穴加工に用いる計測・補正システム
JP2008213064A (ja) * 2007-03-01 2008-09-18 Toshiba Mach Co Ltd 深穴加工方法および装置
JP4990650B2 (ja) 2007-03-01 2012-08-01 東芝機械株式会社 深穴加工方法および装置
JP2016087451A (ja) * 2014-11-03 2016-05-23 セブ ソシエテ アノニム センサを中に置くトンネルを調理用容器内に穿設するための方法およびその方法によって作り出される容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3680046A4

Also Published As

Publication number Publication date
EP3680046A1 (en) 2020-07-15
US20200222992A1 (en) 2020-07-16
KR20200033920A (ko) 2020-03-30
JPWO2019049258A1 (ja) 2019-11-07
CN111093870A (zh) 2020-05-01
EP3680046A4 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
WO2019049258A1 (ja) 深穴加工方法
JP5365298B2 (ja) ドリル用インサートおよびインサートドリル
JP5194637B2 (ja) エンドミル
JP2008279547A (ja) 溝加工方法および総形回転切削工具
WO2018079489A1 (ja) 切削工具及び切削加工物の製造方法
JP6588625B2 (ja) ドリル
JP2011073129A (ja) 穴あけ用ドリル
JP2010234462A (ja) エンドミル
JP2010105119A (ja) ドリルリーマ
JP5287426B2 (ja) 切削工具
JP2009255202A (ja) 深穴切削用ドリルヘッド
WO2008050389A1 (en) Drill
JP2020044616A (ja) 炭素繊維複合材用ドリル
JP4034034B2 (ja) 穴加工方法および穴加工工具
JPWO2019244711A1 (ja) エンドミル
JP4666282B2 (ja) ドリル
JP2014069246A (ja) ドリル及び穴明け方法
JP2009241239A (ja) ドリルおよび穴あけ加工方法
JP2007290105A (ja) エンドミル
JP5085189B2 (ja) 穴あけ工具及び穴あけ加工方法
JP7052176B1 (ja) 切削工具
JP2005305618A (ja) 刃先交換式回転工具
WO2023032180A1 (ja) ドリル
JP2008149412A (ja) ドリル
JP6753174B2 (ja) ドリル

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018511184

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207005121

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017924329

Country of ref document: EP

Effective date: 20200407