WO2019049226A1 - 密閉型圧縮機及び冷凍サイクル装置 - Google Patents

密閉型圧縮機及び冷凍サイクル装置 Download PDF

Info

Publication number
WO2019049226A1
WO2019049226A1 PCT/JP2017/032046 JP2017032046W WO2019049226A1 WO 2019049226 A1 WO2019049226 A1 WO 2019049226A1 JP 2017032046 W JP2017032046 W JP 2017032046W WO 2019049226 A1 WO2019049226 A1 WO 2019049226A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
passage
cylinder chamber
introduction
check valve
Prior art date
Application number
PCT/JP2017/032046
Other languages
English (en)
French (fr)
Inventor
平山 卓也
木村 茂喜
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to PCT/JP2017/032046 priority Critical patent/WO2019049226A1/ja
Priority to CN201780094614.2A priority patent/CN111065826B/zh
Priority to DE112017007976.4T priority patent/DE112017007976B4/de
Priority to JP2019540171A priority patent/JP6886522B2/ja
Priority to GB2002843.7A priority patent/GB2579937B/en
Publication of WO2019049226A1 publication Critical patent/WO2019049226A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0007Injection of a fluid in the working chamber for sealing, cooling and lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Definitions

  • Embodiments of the present invention relate to a hermetic compressor and a refrigeration cycle apparatus provided with an injection flow channel.
  • an injection flow path may be provided for guiding liquid refrigerant at an intermediate pressure in a refrigeration cycle to a cylinder chamber of a compression mechanism portion for the purpose of cooling.
  • the liquid refrigerant at this intermediate pressure evaporates in the cylinder chamber and reduces the temperature of the discharged refrigerant discharged from the cylinder chamber.
  • such a hermetic compressor is also equipped with a check valve in the middle of the injection flow path in order to reduce the compression loss due to the backflow of the refrigerant compressed from the cylinder chamber to the injection flow path. is there.
  • the injection flow channels of the compressors described in Patent Document 1 and Patent Document 2 include an introduction channel for introducing the liquid refrigerant into the compression mechanism and an injection channel for injecting the liquid refrigerant led through the introduction channel into the cylinder chamber.
  • the injection passage is formed in the axial direction of the rotary shaft of the compressor, and the introduction passage is formed in the radial direction. In this case, the design freedom of the position is limited in order to connect the introduction path and the injection path.
  • patent document 1 is provided with the communicating pipe
  • the problem to be solved by the present invention is to increase the design freedom for the communication position of the introduction passage and the injection passage of the injection flow passage to improve the manufacturability and to prevent the backflow of the refrigerant from the check valve of the injection flow passage. It is an object of the present invention to provide a compressor with high compression efficiency.
  • a closed type compressor of an embodiment stores an electric motor part and a compression mechanism part in a closed case.
  • the compression mechanism portion includes a cylinder having a cylinder chamber, a closing member fixed to one end face of the cylinder and closing the cylinder chamber, an end plate overlapped on the closing member, eccentrically rotating the cylinder chamber, and It has the roller which compresses the refrigerant
  • the injection channel is provided with an injection channel which is provided in the closing member and one end is open to the cylinder chamber and the other end is open to the end plate side.
  • the injection flow path is formed of an injection introduction pipe, an introduction path, a communication path and an injection path provided in the closing member and the end plate. Furthermore, the introduction passage and the injection passage are connected by the communication passage, and the design freedom can be increased with respect to the communication position of the introduction passage and the injection passage. Further, since the check valve is provided to open and close the communication passage side opening of the introduction passage located between the closing member and the end plate, it is possible to reliably prevent the back flow and reduce the flow passage loss.
  • FIG. 1 is a longitudinal sectional view of a hermetic compressor according to a first embodiment and a configuration diagram of a refrigeration cycle of a refrigeration cycle apparatus. It is a cross-sectional view of the compression mechanism part which concerns on the embodiment. It is a longitudinal cross-sectional view of the injection flow path when the non-return valve based on the embodiment is closed. It is a longitudinal cross-sectional view of the injection circuit when the non-return valve based on the embodiment is open. It is a longitudinal cross-sectional view of the sealed compressor which concerns on 2nd Embodiment, and a refrigerating-cycle block diagram of a refrigerating-cycle apparatus.
  • FIG. 7 is a plan view of the check valve as viewed in the direction of the arrows in the CC cross section of FIG. 6; It is a longitudinal cross-sectional view of the injection flow path when the non-return valve which concerns on the embodiment is open.
  • FIG. 9 is a plan view of the check valve as viewed in the direction of the arrows in the CC cross section of FIG. 8;
  • FIG. 1 is a longitudinal sectional view of a hermetic compressor and a configuration diagram of a refrigeration cycle of a refrigeration cycle apparatus.
  • the refrigeration cycle 1 includes an enclosed compressor 2 (hereinafter referred to as a compressor), a condenser 3 that is a radiator, an expansion device 4, an evaporator 5 that is a heat absorber, and an accumulator that is attached to the compressor 2 6 are connected in order by refrigerant piping.
  • the compressor 2 compresses a gas refrigerant, and the condenser 3 condenses the gas refrigerant discharged from the compressor 2 into a liquid refrigerant.
  • the expansion device 4 is a decompressor that decompresses the refrigerant.
  • the evaporator 5 evaporates the liquid refrigerant to make it a gas refrigerant.
  • the accumulator 6 separates the gas refrigerant and the liquid refrigerant, and supplies the gas refrigerant to the compressor 2.
  • an injection pipe 7 for guiding the liquid refrigerant having passed through the condenser 3 to the compressor 2 is provided, and is communicated with the injection flow path 40 provided in the compressor 2.
  • the compressor 2 includes a sealed case 10, a motor unit 14 provided on the upper side of the sealed case 10, and a compression mechanism unit 17 provided on the lower side.
  • the motor unit 14 has a stator 15 fixed in the sealed case 10 and a rotor 16 fixed to the rotating shaft 12.
  • An eccentric part 13 is provided on the opposite side of the motor part 14 to the rotating shaft 12, and a compression mechanism part 17 is provided at a position corresponding to the eccentric part 13. Therefore, the motor unit 14 and the compression mechanism unit 17 are connected by the rotating shaft 12.
  • the compression mechanism portion 17 has a cylinder 18 fixed to the sealing case 10.
  • a cylinder chamber 19 is formed inside the cylinder 18.
  • Main bearings 25 and a sub bearing 26 which is a closing member are disposed above and below the cylinder 18.
  • the flange portion 25f of the main bearing 25 is a hollow case surrounding the periphery, and a muffler 27 forming a muffler chamber 28 is attached.
  • An eccentric portion 13 of the rotary shaft 12 is located in the cylinder chamber 19, and a roller 22 is rotatably fitted to the eccentric portion 13.
  • the roller 22 is arranged to be eccentrically rotated while the outer peripheral wall is in linear contact with the inner peripheral surface of the cylinder 18 via an oil film when the rotation shaft 12 rotates.
  • a blade groove 24 is formed in the cylinder 18.
  • a blade 23 is accommodated in the blade groove 24 so as to reciprocate, and as shown in FIG. 2, the blade 23 is pressed in such a direction that the tip end portion abuts on the outer peripheral wall of the roller 22.
  • the blade 23 divides the cylinder chamber 19 into two spaces 19a and 19b.
  • a suction port 20 for guiding the gas refrigerant supplied from the accumulator 6 to the cylinder chamber 19 is formed, and in the space partitioned by the blades 23, one where the suction port 20 is located is a suction chamber 19a, The other is called a compression chamber 19b. That is, as shown in FIG. 2, the roller 22 rotates counterclockwise in the planar direction. At this time, the suction port 20 is provided on the left side of the blade 23, and the left side of the cylinder chamber 19 is the suction chamber 19a, and the right side is the compression chamber 19b.
  • the main bearing 25 is provided with a discharge port (not shown) and a discharge valve for opening and closing the discharge port.
  • a discharge port not shown
  • the discharge valve is opened, and the refrigerant in the cylinder chamber 19 is discharged to the muffler chamber 28 through the discharge port. Further, the refrigerant is discharged from the muffler chamber 28 into the closed case 10, and the compressed refrigerant discharged into the closed case 10 is discharged to the outside of the compressor 2 through the discharge pipe 11.
  • the injection pipe 7 of the first embodiment guides the liquid refrigerant condensed in the condenser 4 of the refrigeration cycle 1 to the compressor 2.
  • the liquid refrigerant having passed through the injection pipe 7 flows into the injection flow path 40 and is injected into the cylinder chamber 19.
  • the injection flow path 40 includes an injection path 41, a communication path 42, an introduction path 49, an injection introduction pipe 70, and a check valve 44 provided in the communication path 42.
  • the respective flow channels 41, 42 and 49 are provided in the end plate 30 overlapped with the sub bearing 26 closing the lower side of the cylinder chamber 19 and the lower side of the flange portion 26 f of the sub bearing 26 and fixed by the fastening bolt 31 It is done.
  • the injection pipe 7 is provided with a control valve 8 for reducing the pressure of the refrigerant introduced from the downstream side of the condenser 4 and adjusting the injection flow rate.
  • the injection passage 41 is provided in the sub bearing 26 and has a first opening 51 opened to the cylinder chamber 19 and a second opening 52 opened to the end plate 30 side. As shown in FIG. 2, the first opening 51 for injecting the liquid refrigerant at an intermediate pressure into the cylinder chamber 19 is provided at a position opened and closed by the lower surface of the roller 22 provided in the cylinder chamber 19.
  • the communication passage 42 is formed by the end plate 30 and the auxiliary bearing 26.
  • a groove 43 is provided on the upper end surface of the end plate 30, and the groove 43 becomes a communication passage 42 by overlapping the end plate 30 and the sub bearing 26.
  • the communication passage 42 is in communication with the injection passage 41 by the second opening 52 of the injection passage 41.
  • the introduction passage 49 is provided horizontally in the radial direction of the sub bearing 26 and has on one end side a third opening 53 opened in the communication passage 42 in the axial direction, and the other end 54 is the outer periphery of the sub bearing 26 It is open to the surface.
  • An injection introduction pipe 70 communicating with the outside of the sealed case 10 is connected to the other end 54 of the introduction path 49, and the injection pipe 7 is connected to the injection introduction pipe 70 outside the sealed case 10.
  • the cross-sectional area of the third opening 53 of the introduction passage 49 is formed larger than the cross-sectional area of the first opening 51 of the injection passage 41.
  • the check valve 44 opens and closes the third opening 53 of the introduction passage 49 from the communication passage 42 side.
  • the check valve 44 of the first embodiment is a disk-shaped free valve, and is biased by a spring 46.
  • the valve seat surface 45 a in contact with the sub bearing 26 of the check valve 44 is located on the same plane as the joint surface of the sub bearing 26 and the end plate 30.
  • the check valve 44 is pressed by the spring 46 in a direction to close the third opening 53.
  • FIG. 3 shows the injection channel 40 when the check valve 44 closes the third opening 53 of the introduction passage 49
  • FIG. 4 shows the case where the check valve 44 opens the third opening 53.
  • the check valve 44 opens and closes the third opening 53 of the introduction passage 49 by the pressure difference between the introduction passage 49 and the communication passage 42.
  • the communication passage 42 is in communication with the cylinder chamber 19 via the injection passage 41. That is, when the pressure in the compression chamber 19 b is larger than the pressure in the introduction passage 49, the check valve 44 closes the third opening 53 of the introduction passage 49 and the pressure in the compression chamber 19 b is smaller than the pressure in the introduction passage 49.
  • the check valve 44 is pushed out by the refrigerant pressure on the introduction passage 49 side, the third opening 53 of the introduction passage 49 is opened.
  • the rotor 16 is rotated by energizing the motor unit 14 of the compressor 2.
  • the compression mechanism unit 17 is driven via the rotation shaft 12.
  • the compression mechanism portion 17 is driven, the gas refrigerant separated by the accumulator 6 is sucked into the suction chamber 19 a of the cylinder chamber 19.
  • the rotation of the roller 22 in the cylinder chamber 19 causes the first opening 51 of the injection passage 41 formed in the cylinder 18 to open at the same time when the roller 22 passes the position of the suction port 20.
  • the gas refrigerant sucked from the suction port 20 is compressed by the rotation of the roller 22, and the liquid refrigerant having an intermediate pressure is compressed from the first opening 51 of the injection passage 41 opened and closed by the rotation of the roller 22
  • the refrigerant is injected into 19 b and evaporated in the compression chamber 19 b to cool the refrigerant in the compression chamber 19 b, and the refrigerant is discharged from the discharge port together with the refrigerant sucked from the suction port 20.
  • the refrigerant discharged from the discharge port is discharged to the outside of the compressor 2 through the muffler chamber 28, and the refrigerant condensed in the condenser 3 is introduced to the compressor 2 through the branched injection pipe 7.
  • the liquid refrigerant introduced from the injection pipe 7 first flows into the introduction path 49 via the injection introduction pipe 70 of the injection flow path 40. Then, it flows toward the third opening 53 of the introduction passage 49, and the third opening 53 of the introduction passage 49 is normally closed by the check valve 44.
  • the check valve 44 When the pressure in the introduction passage 49 becomes larger than the pressure in the cylinder chamber 19, the check valve 44 is pressed to the communication passage 42 side and the third opening 53 of the introduction passage 49 is opened, the liquid refrigerant is It flows into the communication passage 42.
  • the check valve 44 closes the third opening 53.
  • the liquid refrigerant flowing into the communication passage 42 flows into the injection passage 41 through the second opening 52 of the injection passage 41.
  • the liquid refrigerant introduced into the injection passage 41 is injected into the cylinder chamber 19 when the first opening 51 of the injection passage 41 opened and closed by the lower surface of the roller 22 rotating in the cylinder chamber 19 is opened. Ru.
  • the injection flow path 40 of the first embodiment includes the injection path 41 and the introduction path 49 in the sub bearing 26 and the communication path 42 in the end plate 30, but the combination of the sub bearing 26 and the end plate 30
  • the communication passage 42 is formed, and the third opening 53 of the introduction passage 49 is opened in the axial direction, and the valve seat surface 45a of the check valve 44 provided in the communication passage 42 is a joint between the sub bearing 26 and the end plate 30. It may be the same plane as the plane.
  • the groove portion 43 is provided in the flange portion 26 f of the sub bearing 26, and the end plate 30 is fixed to form the communication passage 42.
  • the introduction passage 49 is formed in the end plate 30, the third opening 53 is opened in the axial direction, and the valve seat 45 of the check valve 44 is in contact with the joint surface of the end plate 30 with the sub bearing 26. It is possible to open and close from the upper side of the third opening 53 on the same plane.
  • the injection flow path 40 is formed of the injection introduction pipe 70, the introduction path 49, the communication path 42 and the injection path 41. Since these flow paths are provided in the sub bearing 26 and the end plate 30, and the introduction path 49 and the injection path 41 are connected by the communication path 42, design freedom is provided for the communication position of the introduction path 49 and the injection path 41. It can be enhanced.
  • the cross sectional area of the third opening 53 of the introduction channel 49 is formed larger than the cross sectional area of the first opening 51 of the injection channel 41 for the introduction channel 49 and the injection channel 41.
  • the flow rate on the side of the introduction passage 49 of the liquid refrigerant is increased to facilitate the injection into the cylinder chamber 19.
  • the cross section of the third opening 53 of the introduction path 49 the flow path resistance by the check valve 44 of the liquid refrigerant can be reduced, so that the flow path loss can be reduced.
  • the check valve 44 for preventing the backflow of the compressed refrigerant from the cylinder chamber 19 is provided in the communication passage 42 in the axial direction so as to open and close the third opening 53 of the introduction path 49. It is possible to prevent the flow path loss.
  • the end plate 30 is fixed to the sub bearing 26 in order to form the communication passage 42, a seal is required on the joint surface thereof, so the surface roughness is small and formed with high accuracy. . If the valve seat surface 45a of the check valve 44 is provided on this joint surface, the sealing performance can be enhanced. Further, since the auxiliary bearing 26 and the end plate 30 are positioned and fixed, providing the spring 46 for restricting the movement of the check valve 44 on the end plate 30 can prevent the check valve 44 from being deviated from the opening / closing surface.
  • the check valve 44 is biased by the spring 46 in the direction of closing the third opening 53 of the introduction passage 49.
  • the spring 46 can reliably prevent the backflow from the cylinder chamber 19 to the introduction passage 49.
  • a guide not shown may be provided on the valve seat surface. This guide can prevent the check valve 44 from shifting from the third opening of the introduction passage.
  • the compressor 2 of the second embodiment will be described based on FIGS. 5 to 9. Elements that are the same as or similar to those of the first embodiment are given the same reference numerals, and redundant descriptions will be omitted as appropriate.
  • the compressor 2 according to the second embodiment has two cylinders 18A and 18B in the compression mechanism 17.
  • the A cylinder 18A is located on the lower side
  • the B cylinder 18B is located on the upper side.
  • a partition plate 32 is provided which partitions the two cylinders 18A and 18B and closes the cylinder chamber 19A of the A cylinder 18A and the cylinder chamber 19B of the B cylinder 18B.
  • the partition plate 32 is formed by overlapping two partition plate members 32A and 32B.
  • the injection channel 40 is provided in the partition plate 32. That is, the partition plate 32 functions as a closing member closing the cylinder chamber 19B of the B cylinder 18B and an end plate closing the cylinder chamber 19A of the A cylinder 18A.
  • the partition plate member 32B is provided with the injection passage 41 for injecting the liquid refrigerant into the cylinder chamber 19B
  • the partition plate member 32A is provided with the auxiliary injection passage 50 for injecting the liquid refrigerant into the cylinder chamber 19A.
  • the injection passage 41 forms a first opening 51 opening to the cylinder chamber 19B of the B cylinder 18B and a second opening 52 opening to the communication passage 42.
  • One end of the auxiliary injection passage 50 forms a fifth opening that opens into the cylinder chamber 19A of the A cylinder 18A, and the other end opens in the communication passage 42.
  • the communication passage 42 is formed by overlapping the groove 43 provided in the partition plate member 32B and the end face of the partition plate member 32A.
  • the introduction passage 49 is horizontally provided in the partition plate member 32A in the radial direction, and has the third opening 53 of the introduction passage 42 opened in the axial direction in the communication passage 42 at one end side, and the other end 54 is a partition plate member It is open at the outer peripheral surface of 32A.
  • An injection introduction pipe 70 communicating with the outside of the sealed case 10 is connected to the other end 54 of the introduction path 49, and the injection pipe 7 is connected to the injection introduction pipe 70 outside the sealed case 10.
  • the communication passage 4 is formed on the upper side of the third opening 53 of the introduction passage 49.
  • a check valve 44 for opening and closing the third opening 53 of the introduction passage 49 is provided on the communication passage 42 side.
  • the check valve 44 according to the second embodiment contacts the valve seat 45 by gravity and closes the third opening 53 of the introduction passage 49.
  • the biasing member such as the spring 46 can be omitted.
  • a biasing member such as the spring 46 may be provided.
  • a guide wall 47 is formed to guide the check valve 44 so as not to be displaced from the position of the third opening 53 of the introduction passage 49.
  • a check valve back pressure portion 48 is provided in which the depth of the guide wall 47 is smaller than the depth of the communication passage 42 so that the check valve 44 does not stick to the upper portion of the guide wall 47.
  • the liquid refrigerant flowing through the injection pipe 7 passes through the injection introduction pipe 70, the introduction path 49, the communication path 42, the injection path 41, and the auxiliary injection path 50 in the same manner as in the first embodiment. It injects into each cylinder chamber 19A, 19B.
  • the check valve 44 opens and closes the third opening 53 of the introduction passage 49 by the difference between the pressure of the introduction passage 49 and the gravity and the total pressure of the cylinders 18A and 18B.
  • FIG. 7 is a plan view of the non-return valve 44 seen in the direction of the arrows in the CC cross section of FIG.
  • FIG. 9 is a plan view of the check valve 44 seen in the direction of the arrow in the CC cross section of FIG.
  • a guide wall 47 for guiding the check valve 44 so as to close the third opening 53 of the introduction passage 49 without deviation is formed in the partition plate member 32B. As shown in FIG. 9, the guide wall 47 is formed slightly larger in diameter than the check valve 44.
  • the injection channel 40 is formed in the partition plate 32 formed of the two partition plate members 32A and 32B.
  • the liquid refrigerant can be supplied to the cylinder chambers 19A and 19B.
  • the check valve 44 is provided at the third opening 53 of the introduction passage 49 before the liquid refrigerant flowing into the injection passage 40 is branched into the injection passage 41 and the auxiliary injection passage 50. Backflow from each cylinder chamber 19A, 19B can be prevented.
  • the injection flow path 40 for guiding the liquid refrigerant to the cylinder chamber 19 of the compression mechanism 17 includes an injection introduction pipe, an introduction path 49, and an injection path 41; It is comprised from the introduction path 49 and the communicating path 42 which connects the injection path 41.
  • the communication passage 42 is formed by combining two members of the closing members 26, 32A and the end plates 30, 32B, and the introducing passage 49 can be formed in either the closing members 26, 32A or the end plates 30, 32B. It is possible to increase the degree of freedom in design of the communication position between the introduction path 49 and the injection path 41.
  • the check valve 44 provided in the communication passage 42 opens and closes the third opening 53 of the introduction passage 49 opened in the axial direction of the rotary shaft 12, and the valve seat surface 45a has a small surface roughness and is formed with high accuracy. Since the closing members 26, 32A and the end plates 30, 32B are provided in the same plane, the sealing performance of the valve seat surface 45a can be enhanced. Therefore, the backflow of the refrigerant from the check valve 44 can be prevented.
  • the check valve 44 performs the opening and closing operation with high accuracy by adopting the configuration in which the check valve 44 in the first embodiment includes the spring 46 and the configuration in which the guide wall 47 in the second embodiment. be able to.
  • the check valve 44 according to the embodiment is described for the check valve 44 including a free valve, a reed valve may be used.
  • the cross-sectional area of the third opening 53 of the introduction channel 49 is formed larger than the cross-sectional area of the first opening 51 of the injection channel 41 for the introduction channel 49 and the injection channel 41.
  • the compressor 2 according to the embodiment can be applied even in the case of having a plurality of cylinders 19, and is configured to overlap the two partition plate members 32A and 32B in the axial direction and provide the injection flow path 40 in each of them. With such a structure, it is possible to prevent the backflow from the plurality of cylinder chambers 19 with one check valve 44, so that the structure can be simplified, and the manufacturability is high, and the low cost compressor 2 can be obtained. .
  • the compressor 2 of the embodiment is a rotary compressor using the blade 23 and the roller 22
  • the injection flow passage 40 of the embodiment is formed in a swing type compressor in which the blade 23 and the rotor 22 are integrated. The same effect can be obtained in the case of

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

【課題】インジェクション流路の導入路と注入路の連通位置について設計自由度を高くして製造の最適化を図り、インジェクション流路の逆止弁の開閉を精度良く行い、低コストでかつ高品質の圧縮機を提供すること。 【解決手段】インジェクション流路を、閉塞部材に設けられ一端がシリンダ室に開口し、他端が反シリンダ室側に開口する注入路と、閉塞部材と回転軸の軸方向に閉塞部材に重ねられる端板との間に形成され、注入路と連通する連通路と、閉塞部材あるいは端板のどちらか一方に設けられ、一端側が連通路に軸方向から開口し、他端に密閉ケース外部に連通するインジェクション導入管が接続される導入路と、導入路の連通路側開口部を開閉し、シリンダ室から導入路への冷媒の流れを阻止する逆止弁から構成する。

Description

密閉型圧縮機及び冷凍サイクル装置
 本発明の実施形態は、インジェクション流路を備えた密閉型圧縮機及び冷凍サイクル装置に関する。
 従来、密閉型圧縮機において、冷却を目的として、圧縮機構部のシリンダ室に冷凍サイクル内の中間圧の液冷媒を導くインジェクション流路を備える場合がある。この中間圧の液冷媒は、シリンダ室で蒸発し、シリンダ室から吐出される吐出冷媒の温度を低下させる。
 さらに、このような密閉型圧縮機は、シリンダ室からインジェクション流路へ圧縮された冷媒が逆流することによる圧縮損失を低減するために、インジェクション流路の途中に、逆止弁を備えたものもある。
実開62-173585号公報 特許5760836号公報
 特許文献1と特許文献2に記載の圧縮機のインジェクション流路は、液冷媒を圧縮機構部へ導入する導入路と、この導入路を通って導かれた液冷媒をシリンダ室に注入する注入路からなり、注入路は圧縮機の回転軸の軸方向に形成され、導入路は径方向に形成される。この場合、導入路と注入路を連通させるために、位置の設計自由度が制限されてしまう。
 また、特許文献1は、ガスインジェクション管から繋がる連通管と、シリンダ室に冷媒を注入するガスインジェクション流路と、を備える。逆止弁は連通管の流れ方向と直交する方向に設けられるため、連通管と逆止弁との間にわずかに隙間ができ、圧縮冷媒が逆流し、圧縮損失が発生してしまう。
 特許文献2は、インジェクション導入路の途中にスライド弁を精度よく挿入する必要があり、製造性が極めて悪い。
 本発明が解決しようとする課題は、インジェクション流路の導入路と注入路の連通位置について設計自由度を高くして製造性を向上するとともに、インジェクション流路の逆止弁からの冷媒の逆流を防止して圧縮効率の高い圧縮機を提供することである。
 上記課題を達成するために、実施形態の密閉型圧縮機は、密閉ケース内に電動機部と圧縮機構部を収容する。圧縮機構部は、シリンダ室を有するシリンダと、シリンダの一方の端面に固定され、シリンダ室を閉塞する閉塞部材と、閉塞部材に重ねられる端板と、シリンダ室内を偏心回転するとともに、シリンダ室に流入した冷媒を圧縮するローラと、シリンダ室内に液冷媒を供給するインジェクション流路と、を有する。インジェクション流路は、閉塞部材に設けられ一端がシリンダ室に開口し、他端が端板側に開口する注入路を備える。さらに、閉塞部材と端板との間に形成され、注入路と連通する連通路と、閉塞部材あるいは端板のどちらか一方に設けられ、一端側が連通路に回転軸の軸方向から開口し、他端に密閉ケース外部に連通するインジェクション導入管が接続される導入路と、導入路の連通路側開口部を開閉し、シリンダ室から導入路への冷媒の流れを阻止する逆止弁とを備える。
 インジェクション流路は、閉塞部材と端板とに設けられた、インジェクション導入管と、導入路と、連通路及び注入路から形成される。さらに導入路と注入路を連通路で連絡する構造となり、導入路と注入路の連通位置について設計自由度を高めることができる。また逆止弁が閉塞部材と端板の間に位置する導入路の連通路側開口部を開閉するように備えられるので、確実に逆流を防ぎ、流路損失を低減できる。
第1の実施形態に係る密閉型圧縮機の縦断面図及び冷凍サイクル装置の冷凍サイクル構成図である。 同実施形態に係る圧縮機構部の横断面図である。 同実施形態に係る逆止弁が閉じているときのインジェクション流路の縦断面図である。 同実施形態に係る逆止弁が開いているときのインジェクション回路の縦断面図である。 第2の実施形態に係る密閉型圧縮機の縦断面図及び冷凍サイクル装置の冷凍サイクル構成図である。 同実施形態に係る逆止弁が閉じているときのインジェクション流路の縦断面図である。 図6のC-C断面で、矢印の方向に見た逆止弁の平面図である。 同実施形態に係る逆止弁が開いているときのインジェクション流路の縦断面図である。 図8のC-C断面で、矢印の方向に見た逆止弁の平面図である。
 以下、発明を実施するための実施形態について説明する。
 (第1の実施形態)
 第1の実施形態の密閉型圧縮機について、図1乃至図4を参照して説明する。図1は、密閉型圧縮機の縦断面図及び冷凍サイクル装置の冷凍サイクル構成図である。
 まず、冷凍サイクル1を説明する。冷凍サイクル1は、密閉型圧縮機2(以下、圧縮機という。)と、放熱器である凝縮器3と、膨張装置4と、吸熱器である蒸発器5と、圧縮機2に取り付けられるアキュームレータ6が冷媒配管で順に接続される。圧縮機2はガス冷媒を圧縮し、凝縮器3は圧縮機2から吐出されるガス冷媒を凝縮して液冷媒にする。膨張装置4は冷媒を減圧する減圧器である。蒸発器5は液冷媒を蒸発してガス冷媒にする。アキュームレータ6はガス冷媒と液冷媒とを分離し、ガス冷媒を圧縮機2に供給する。第1の実施形態の冷凍サイクル1では、凝縮器3を通った液冷媒を圧縮機2へ導くためのインジェクション管7が設けられ、圧縮機2に備えられるインジェクション流路40と連通する。
 圧縮機2は密閉ケース10と、密閉ケース10の上部側に設けられた電動機部14と下部側に設けられた圧縮機構部17を備えている。電動機部14は、密閉ケース10内に固定されたステータ(固定子)15と、回転軸12に固定されたロータ(回転子)16を有する。回転軸12には電動機部14の反対側に偏心部13が設けられ、偏心部13に対応する位置に圧縮機構部17が備えられる。したがって、電動機部14と圧縮機構部17は回転軸12で連結されている。
 圧縮機構部17は密閉ケース10に固定されたシリンダ18を有する。シリンダ18の内側にはシリンダ室19が形成される。シリンダ18の上下に主軸受25と、閉塞部材である副軸受26とが配置される。主軸受25のフランジ部25fには、この周囲を囲む中空のケースで、マフラ室28を形成するマフラ27が取り付けられている。
 シリンダ室19内には回転軸12の偏心部13が位置し、偏心部13にはローラ22が回転自在に嵌合されている。ローラ22は回転軸12の回転時に外周壁をシリンダ18の内周面に油膜を介して線接触させながら偏心回転するように配置されている。シリンダ18には、ブレード溝24が形成されている。ブレード溝24内には往復動しながら、図2に示すように先端部をローラ22の外周壁に当接させる方向に押圧されるブレード23が収容されている。ブレード23はシリンダ室19を2つの空間19a,19bに仕切っている。
 さらに、シリンダ18には、アキュームレータ6から供給されるガス冷媒をシリンダ室19に導く吸込みポート20が形成され、ブレード23によって仕切られた空間のうち、吸込みポート20が位置する方を吸込み室19a、他方を圧縮室19bという。すなわち、図2に示すように、平面方向にローラ22は反時計回りに回転する。このとき吸込みポート20はブレード23の左側に設けられ、シリンダ室19の左側が吸込み室19a、右側が圧縮室19bとなる。
 また、主軸受25には図示しない吐出ポートと、この吐出ポートを開閉する吐出弁が設けられている。シリンダ室19の冷媒が圧縮されて圧力が上昇すると吐出弁が開放し、吐出ポートを通ってシリンダ室19内の冷媒がマフラ室28へ吐出される。さらに、冷媒はマフラ室28から密閉ケース10内に吐出され、密閉ケース10内に吐出された圧縮冷媒は吐出管11を通って圧縮機2外部へ吐出される。
 次にインジェクション管7及びインジェクション流路40について説明する。前述したように、第1の実施形態のインジェクション管7は、冷凍サイクル1の凝縮器4で凝縮された液冷媒を圧縮機2に導く。インジェクション管7を通った液冷媒は、インジェクション流路40に流入し、シリンダ室19に注入される。
 図1及び図4に示すように、インジェクション流路40は、注入路41と、連通路42と、導入路49と、インジェクション導入管70と、連通路42に設けられる逆止弁44で構成されている。それぞれの流路41,42,49は、シリンダ室19の下側を閉塞する副軸受26と、副軸受26のフランジ部26fの下側に重ね、締結ボルト31によって固定される端板30に設けられている。また、インジェクション管7には、凝縮器4の下流側から導かれる冷媒の圧力を減圧するとともに、インジェクション流量を調整する調整弁8が設けられている。
 注入路41は副軸受26に設けられ、シリンダ室19に開口する第1の開口部51と端板30側に開口する第2の開口部52を有している。シリンダ室19に中間圧の液冷媒を注入する第1の開口部51は、図2に示すように、シリンダ室19に備えられているローラ22の下面により開閉される位置に設けられている。
 連通路42は端板30と副軸受26によって形成される。端板30の上端面に溝部43を設け、端板30と副軸受26を重ねることで溝部43が連通路42となる。連通路42は注入路41の第2の開口部52によって注入路41と連通している。
 導入路49は副軸受26の径方向に水平に設けられ、一端側に連通路42に軸方向に開口する第3の開口部53を有しているとともに、他端54は副軸受26の外周面に開口している。導入路49の他端54には密閉ケース10の外部に連通するインジェクション導入管70が接続されており、インジェクション導入管70には、密閉ケース10の外部でインジェクション管7が接続されている。導入路49の第3の開口部53の断面積は注入路41の第1の開口部51の断面積よりも大きく形成される。
 逆止弁44は導入路49の第3の開口部53を連通路42側から開閉する。第1の実施形態の逆止弁44は、円板状のフリー弁であり、ばね46によって付勢されている。逆止弁44の副軸受26に接する弁座面45aは、副軸受26と端板30の接合面と同一平面上に位置している。逆止弁44はばね46によって第3の開口部53を塞ぐ方向に押圧されている。図3は逆止弁44が導入路49の第3の開口部53を閉じているときのインジェクション流路40を示し、図4は逆止弁44が第3の開口部53を開いているときのインジェクション流路40を示している。
 逆止弁44は導入路49と連通路42の差圧により導入路49の第3の開口部53を開閉する。連通路42はシリンダ室19と注入路41を介して連通している。つまり、圧縮室19bの圧力が導入路49の圧力よりも大きいとき、逆止弁44は導入路49の第3の開口部53を閉じ、圧縮室19bの圧力が導入路49の圧力よりも小さいとき、逆止弁44は導入路49側の冷媒圧力により押し出されて導入路49の第3の開口部53を開く。
 このような構成において、圧縮機2の電動機部14に通電することによりロータ16が回転する。その回転に伴って、回転軸12を介して圧縮機構部17が駆動される。圧縮機構部17が駆動されるとアキュームレータ6で分離したガス冷媒がシリンダ室19の吸込み室19aに吸い込まれる。シリンダ室19内のローラ22の回転により、ローラ22が吸込みポート20の位置を通り過ぎると同時にシリンダ18に形成される注入路41の第1の開口部51が開口される。吸込みポート20から吸込まれたガス冷媒は、ローラ22が回転することによって圧縮されるとともに、ローラ22の回転により開閉される注入路41の第1の開口部51から中間圧の液冷媒が圧縮室19bに注入され、圧縮室19bで蒸発して圧縮室19b内の冷媒を冷却し、吸込みポート20から吸込まれた冷媒と一緒に吐出ポートから吐出される。吐出ポートから吐出された冷媒は、マフラ室28を通って圧縮機2外部に吐出され、凝縮器3で凝縮された冷媒が分岐したインジェクション管7を通って圧縮機2に導かれる。
 インジェクション管7から導かれた液冷媒は、圧縮機2において、まずインジェクション流路40のインジェクション導入管70を介し、導入路49に流入する。次に導入路49の第3の開口部53に向かって流れるが、導入路49の第3の開口部53は通常、逆止弁44により閉口している。導入路49の圧力がシリンダ室19内の圧力よりも大きくなるとき、逆止弁44が連通路42側に押圧されて導入路49の第3の開口部53が開口されると、液冷媒が連通路42に流入する。再び導入路49の圧力がシリンダ室19の圧力よりも小さくなると、逆止弁44が第3の開口部53を閉口する。
 連通路42に流入した液冷媒は注入路41の第2の開口部52を通って注入路41に流入する。注入路41に流入された液冷媒は、前述したとおり、シリンダ室19内を回転するローラ22の下面により開閉する注入路41の第1の開口部51が開口したとき、シリンダ室19へ注入される。
 第1の実施形態のインジェクション流路40は、副軸受26に注入路41と導入路49を備え、端板30に連通路42を備える構成としたが、副軸受26と端板30とを組み合わせて連通路42が形成され、導入路49の第3の開口部53を軸方向に開口し、連通路42に備えた逆止弁44の弁座面45aが副軸受26と端板30の接合面と同一面であれば良い。例えば、副軸受26のフランジ部26fに溝部43を設け、端板30を固定して連通路42を形成する。この場合、導入路49を端板30に形成すれば、第3の開口部53は軸方向に開口し、逆止弁44の弁座45は、端板30の副軸受26との接合面と同一面で、第3の開口部53の上側から開閉することができる。
 第1の実施形態の圧縮機2によれば、インジェクション流路40は、インジェクション導入管70と、導入路49と、連通路42及び注入路41から形成される。これらの流路が副軸受26と端板30に設けられ、さらに導入路49と注入路41を連通路42で連絡する構造としたため、導入路49と注入路41の連通位置について設計自由度を高めることができる。
 導入路49と注入路41について、導入路49の第3の開口部53の断面積を注入路41の第1の開口部51の断面積よりも大きく形成する。液冷媒の導入路49側の流量を大きくして、シリンダ室19に注入されやすくなる。また、導入路49の第3の開口部53の断面を大きくすることで、液冷媒の逆止弁44による流路抵抗を小さくするため、流路損失を低減することができる。よって、冷却能力が向上し、信頼性の高い圧縮機となる。
 さらに、シリンダ室19からの圧縮冷媒の逆流を防ぐ逆止弁44が、導入路49の第3の開口部53を開閉するように、連通路42に軸方向に備えられるので、確実に逆流を防ぐことができ、流路損失を低減できる。
 また、連通路42を形成するために副軸受26に端板30を固定する構造としたが、その接合面にはシールが必要であるため、面粗さが小さく、高精度に形成されている。この接合面に逆止弁44の弁座面45aを設ければ、シール性を高めることができる。さらに、副軸受26と端板30が位置決め固定されるため、端板30に逆止弁44の動きを規制するばね46を設けることにより、逆止弁44が開閉面からずれることを防止できる。
 逆止弁44は、導入路49の第3の開口部53を塞ぐ方向にばね46により押圧付勢される。このばね46によって、シリンダ室19から導入路49への逆流を確実に阻止することができる。さらに、弁座面に図示しないガイドを設けても良い。このガイドは、導入路の第3の開口部から逆止弁44のずれを防ぐことができる。
 (第2の実施形態)
 第2の実施形態の圧縮機2について図5乃至図9に基づいて説明する。第1の実施形態と同一又は類似する要素には同一の符号を付し、重複する説明は適宜省略する。
 第2の実施形態の圧縮機2は、圧縮機構部17に2つのシリンダ18A,18Bを有し、下側にAシリンダ18Aが位置し、上側にBシリンダ18Bが位置している。2つのシリンダ18A,18Bの間には、2つのシリンダ18A,18Bを仕切り、Aシリンダ18Aのシリンダ室19Aと、Bシリンダ18Bのシリンダ室19Bとを閉塞する仕切り板32が設けられている。仕切り板32は、2つの仕切り板部材32A,32Bを重ねて形成されている。
 第2の実施形態の圧縮機2は、インジェクション流路40を仕切り板32に設ける。つまり、仕切り板32は、Bシリンダ18Bのシリンダ室19Bを閉塞する閉塞部材と、Aシリンダ18Aのシリンダ室19Aを閉塞する端板として機能する。
 図6及び図8に示すように、仕切り板部材32Bにシリンダ室19Bに液冷媒を注入する注入路41が設けられ、仕切り板部材32Aにシリンダ室19Aに液冷媒を注入する補助注入路50が設けられる。注入路41はBシリンダ18Bのシリンダ室19Bに開口する第1の開口部51と、連通路42に開口する第2の開口部52と、を形成する。補助注入路50の一端はAシリンダ18Aのシリンダ室19Aに開口する第5開口部を形成し、他端は連通路42に開口している。連通路42は仕切板部材32Bに設けられた溝部43と仕切り板部材32Aの端面を重ねて形成される。導入路49は仕切り板部材32Aに径方向に水平に設けられ、一端側に連通路42に軸方向に開口する導入路42の第3の開口部53を有し、他端54は仕切り板部材32Aの外周面に開口している。導入路49の他端54には密閉ケース10の外部に連通するインジェクション導入管70が接続されており、インジェクション導入管70には、密閉ケース10の外部でインジェクション管7が接続されている。
 第2実施形態の圧縮機2では、導入路49の第3の開口部53に対して上側に連通路4が形成される。導入路49の第3の開口部53を開閉する逆止弁44を連通路42側に設ける。第2の実施形態の逆止弁44は重力で弁座45に接触し、導入路49の第3の開口部53を閉口する。導入路49の圧力が大きくなると、逆止弁44が持ちあげられ、導入路49の第3の開口部53が開口する。したがって、ばね46等の付勢部材を省略することができる。ただし、この第2実施形態の場合であっても、逆止弁44の動作を確実にするために、ばね46等の付勢部材を設けても良い。また、逆止弁44を導入路49の第3の開口部53の位置からずれないようにガイドするガイド壁47が形成される。ガイド壁47の上部に逆止弁44が貼りつかないようにガイド壁47の深さを連通路42の深さより浅くした、逆止弁背圧部48を設けている。
 このような構成において、インジェクション管7を流れる液冷媒は、第1の実施形態と同様にして、インジェクション導入管70、導入路49、連通路42、注入路41、補助注入路50を通って、各シリンダ室19A,19Bに注入される。このとき、逆止弁44は導入路49の圧力と、重力及びシリンダ18A,18Bの合計圧力の差によって導入路49の第3の開口部53を開閉する。
 図7は図6のC-C断面で、矢印の方向に見た逆止弁44の平面図である。同様に、図9は図8のC-C断面で、矢印の方向に見た逆止弁44の平面図である。また、逆止弁44が導入路49の第3の開口部53をずれることなく閉口するようにガイドするためのガイド壁47が仕切り板部材32Bに形成されている。図9に示すように、このガイド壁47は逆止弁44よりもわずかに大径に形成される。
 第2実施形態の圧縮機2によれば、2つのシリンダ18A,18Bを有するロータリ圧縮機であっても、2つの仕切り板部材32A,32Bからなる仕切り板32にインジェクション流路40を形成することにより、各シリンダ室19A,19Bに液冷媒を供給することができる。
 インジェクション流路40に流入した液冷媒が、注入路41と補助注入路50とに分岐する前の導入路49の第3の開口部53に逆止弁44を備えるため、1つの逆止弁44で各シリンダ室19A,19Bからの逆流を阻止できる。
 以上説明した少なくとも一つの実施形態の圧縮機2によれば、液冷媒を圧縮機構部17のシリンダ室19に導くインジェクション流路40が、インジェクション導入管と、導入路49と、注入路41と、導入路49と、注入路41を連絡する連通路42から構成される。連通路42は閉塞部材26,32Aと端板30,32Bの2つの部材を組み合わせて形成され、導入路49は閉塞部材26,32Aまたは端板30,32Bのどちらかに形成することができ、導入路49と注入路41の連通位置について設計自由度を高めることが可能となる。連通路42に備えられる逆止弁44は、回転軸12の軸方向に開口する導入路49の第3の開口部53を開閉し、弁座面45aは面粗さが小さく高精度に形成された閉塞部材26,32Aと端板30,32Bと同一面に設けられているため、弁座面45aのシール性を高めることができる。したがって、逆止弁44からの冷媒の逆流を防止することができる。
 さらに、第1の実施形態の逆止弁44にばね46を備えた構成や、第2の実施形態のガイド壁47を備えた構成とすることにより、逆止弁44が精度良く開閉動作を行うことができる。なお、実施形態の逆止弁44は、フリー弁からなる逆止弁44について記載したが、リード弁を用いても良い。
 また、導入路49と注入路41について、導入路49の第3の開口部53の断面積を注入路41の第1の開口部51の断面積よりも大きく形成する。これにより導入路49側の流量を大きくすることで、インジェクション流路40を流れる冷媒がシリンダ室19に注入されやすくなる。また、導入路49の第3の開口部53の断面を大きくすることで、液冷媒の逆止弁44による流路抵抗を小さくするため、流路損失を低減することができる。以上のような構成とすることで、冷却能力が向上し、信頼性の高い圧縮機2を提供することができる。
 実施形態の圧縮機2は複数のシリンダ19を有する場合でも適用でき、軸方向に2つの仕切り板部材32A,32Bを重ねて、それぞれにインジェクション流路40を設ける構成である。このような構造とすることで、1つの逆止弁44で複数のシリンダ室19からの逆流を阻止できるため、構造を簡素化した製造性が高く、低コストの圧縮機2とすることができる。
 また、実施形態の圧縮機2は、ブレード23とローラ22を用いたロータリ圧縮機としたが、ブレード23とロータ22が一体となったスイング式の圧縮機に実施形態のインジェクション流路40を形成した場合にも同等の効果が得られる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1…冷凍サイクル装置、2…圧縮機、3…凝縮器、4…膨張装置、5…蒸発器、6…アキュームレータ、7…インジェクション管、10…密閉ケース、12…回転軸、14…電動機部、17…圧縮機構部、18…シリンダ、19…シリンダ室、22…ローラ、23…ブレード、25…主軸受、26…副軸受、30…端板、32…仕切り板、32A,32B…仕切り板部材、40…インジェクション流路、41…注入路、42…連通路、44…逆止弁、47…ガイド壁、49…導入路、50…仕切り板流路、51…第1の開口部、52…第2の開口部、53…第3の開口部、54…導入路の他端。

Claims (9)

  1.  密閉ケース内に電動機部と圧縮機構部を収容し、
     前記圧縮機構部は、前記電動機部により偏心部を有する回転軸を介して駆動されるとともに、
     シリンダ室を有するシリンダと、
     前記シリンダの一方の端面に固定され、前記シリンダ室を閉塞する閉塞部材と、
     前記閉塞部材に重ねられる端板と、
     前記シリンダ室内を偏心回転するとともに、前記シリンダ室に流入した冷媒を圧縮するローラと、
     前記シリンダ室内に冷媒を供給するインジェクション流路と、を有し、
     前記インジェクション流路は、前記閉塞部材に設けられ一端が前記シリンダ室に開口し、他端が前記端板側に開口する注入路と、
     前記閉塞部材と前記端板との間に形成され、前記注入路と連通する連通路と、
     前記閉塞部材あるいは前記端板のどちらか一方に設けられ、一端側が前記連通路に前記回転軸の軸方向から開口し、他端に前記密閉ケース外部に連通するインジェクション導入管が接続される導入路と、
     前記導入路の連通路側開口部を開閉し、前記シリンダ室から前記導入路への冷媒の流れを阻止する逆止弁と、から構成される密閉型圧縮機。
  2.  前記導入路の前記連通路側開口部の断面積が、前記注入路のシリンダ室側開口部の断面積より大きく形成されている、請求項1に記載の密閉型圧縮機。
  3.  前記逆止弁の弁座面が、前記閉塞部材と前記端板の接合面と同一面である請求項1に記載の密閉型圧縮機。
  4.  前記逆止弁は前記軸方向に動いて前記導入路の連通路側開口部を開閉する請求項1に記載の密閉型圧縮機。
  5.  前記逆止弁は、付勢部材により前記導入路の連通路側開口部を塞ぐ方向に押圧されている請求項1に記載の密閉式圧縮機。
  6.  前記逆止弁が円板状であるとともに、前記連通路に前記逆止弁が前記導入路の連通路側開口部を塞ぐとき、前記逆止弁が前記連通路側開口部の位置からずれないようにガイドするガイド壁が形成される請求項1に記載の密閉型圧縮機。
  7.  前記圧縮機構部は、前記シリンダを複数有し、
     前記複数のシリンダの間に、一方のシリンダの前記シリンダ室を閉塞する前記閉塞部材と、他方のシリンダの前記シリンダ室を閉塞する前記端板及び、前記インジェクション流路を備える請求項1乃至6に記載の密閉型圧縮機。
  8.  前記端板に、一端が前記他方のシリンダの前記シリンダ室に開口し、他端が前記連通路に開口する補助注入路を設けた請求項7に記載の密閉型圧縮機。
  9.  請求項1乃至請求項8のいずれかに記載の密閉型圧縮機と、前記密閉型圧縮機に接続される放熱器と、前記放熱器に接続される膨張装置と、前記膨張装置と前記密閉型圧縮機の間に接続される吸熱器を備える冷凍サイクル装置。
PCT/JP2017/032046 2017-09-06 2017-09-06 密閉型圧縮機及び冷凍サイクル装置 WO2019049226A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2017/032046 WO2019049226A1 (ja) 2017-09-06 2017-09-06 密閉型圧縮機及び冷凍サイクル装置
CN201780094614.2A CN111065826B (zh) 2017-09-06 2017-09-06 密闭型压缩机及冷冻循环装置
DE112017007976.4T DE112017007976B4 (de) 2017-09-06 2017-09-06 Hermetischer Verdichter und Kühlkreislaufeinrichtung
JP2019540171A JP6886522B2 (ja) 2017-09-06 2017-09-06 密閉型圧縮機及び冷凍サイクル装置
GB2002843.7A GB2579937B (en) 2017-09-06 2017-09-06 Hermetic compressor and refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/032046 WO2019049226A1 (ja) 2017-09-06 2017-09-06 密閉型圧縮機及び冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2019049226A1 true WO2019049226A1 (ja) 2019-03-14

Family

ID=65633675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032046 WO2019049226A1 (ja) 2017-09-06 2017-09-06 密閉型圧縮機及び冷凍サイクル装置

Country Status (5)

Country Link
JP (1) JP6886522B2 (ja)
CN (1) CN111065826B (ja)
DE (1) DE112017007976B4 (ja)
GB (1) GB2579937B (ja)
WO (1) WO2019049226A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220136509A1 (en) * 2020-10-29 2022-05-05 Bascom Hunter Technologies, Inc. Refrigeration system having a compressor driven by a magnetic coupling
WO2024029566A1 (ja) * 2022-08-04 2024-02-08 三菱重工サーマルシステムズ株式会社 ロータリー圧縮機

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425487U (ja) * 1987-08-04 1989-02-13
JP2017101592A (ja) * 2015-12-01 2017-06-08 ダイキン工業株式会社 スクロール圧縮機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173585A (ja) 1986-01-27 1987-07-30 三洋電機株式会社 硬貨識別装置
JPS62173585U (ja) 1986-04-23 1987-11-04
JP5760836B2 (ja) 2011-08-10 2015-08-12 ダイキン工業株式会社 ロータリ圧縮機
JP6355453B2 (ja) 2014-06-27 2018-07-11 三菱電機株式会社 スクロール圧縮機
CN105065273B (zh) 2015-08-24 2017-06-13 广东美芝制冷设备有限公司 旋转式压缩机和具有其的冷冻循环装置
CN105422462B (zh) 2015-12-10 2018-04-10 安徽美芝精密制造有限公司 旋转式变容压缩机
CN108474376B (zh) 2016-01-29 2019-07-19 三菱电机株式会社 涡旋压缩机及热泵装置
CN205858676U (zh) * 2016-07-28 2017-01-04 广东美芝制冷设备有限公司 双缸压缩机

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425487U (ja) * 1987-08-04 1989-02-13
JP2017101592A (ja) * 2015-12-01 2017-06-08 ダイキン工業株式会社 スクロール圧縮機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220136509A1 (en) * 2020-10-29 2022-05-05 Bascom Hunter Technologies, Inc. Refrigeration system having a compressor driven by a magnetic coupling
US11867181B2 (en) * 2020-10-29 2024-01-09 Bascom Hunter Technologies, Inc. Refrigeration system having a compressor driven by a magnetic coupling
WO2024029566A1 (ja) * 2022-08-04 2024-02-08 三菱重工サーマルシステムズ株式会社 ロータリー圧縮機

Also Published As

Publication number Publication date
JPWO2019049226A1 (ja) 2020-08-27
DE112017007976B4 (de) 2024-04-18
DE112017007976T5 (de) 2020-06-04
GB202002843D0 (en) 2020-04-15
CN111065826B (zh) 2022-03-18
JP6886522B2 (ja) 2021-06-16
CN111065826A (zh) 2020-04-24
GB2579937B (en) 2022-05-18
GB2579937A (en) 2020-07-08

Similar Documents

Publication Publication Date Title
JP5774134B2 (ja) ベーン型圧縮機
WO2019202976A1 (ja) 密閉型圧縮機および冷凍サイクル装置
WO2019049226A1 (ja) 密閉型圧縮機及び冷凍サイクル装置
JP6083408B2 (ja) ベーン型圧縮機
JP2015175258A (ja) 回転式圧縮機及び冷凍サイクル装置
WO2016031129A1 (ja) 回転式圧縮機及び冷凍サイクル装置
CN109154297B (zh) 密闭型压缩机以及冷冻循环装置
JP6978359B2 (ja) 密閉型圧縮機及び冷凍サイクル装置
JP2005207306A (ja) 2気筒回転圧縮機
JP6267360B2 (ja) 回転式圧縮機及び冷凍サイクル装置
WO2013183545A1 (ja) 気体圧縮機
WO2015025449A1 (ja) 多段圧縮機及び冷凍サイクル装置
JP6171482B2 (ja) ベーン型圧縮機
CN111788391B (zh) 旋转式压缩机
JP2013204555A (ja) タンデム式ベーン型圧縮機
WO2016110982A1 (ja) 多気筒密閉型圧縮機
JP6467311B2 (ja) 圧縮機及び冷凍サイクル装置
JP2016037906A (ja) 高圧ドーム型圧縮機
CN116378957A (zh) 多级旋转式压缩机以及冷冻循环装置
JP6430904B2 (ja) 圧縮機及び冷凍サイクル装置
WO2022269752A1 (ja) ロータリ圧縮機および冷凍サイクル装置
JP6457303B2 (ja) 回転式圧縮機、および冷凍サイクル装置
JP2007211672A (ja) ロータリ圧縮機
JP2005351233A (ja) 気体圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924749

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540171

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202002843

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170906

122 Ep: pct application non-entry in european phase

Ref document number: 17924749

Country of ref document: EP

Kind code of ref document: A1