WO2019202976A1 - 密閉型圧縮機および冷凍サイクル装置 - Google Patents

密閉型圧縮機および冷凍サイクル装置 Download PDF

Info

Publication number
WO2019202976A1
WO2019202976A1 PCT/JP2019/014694 JP2019014694W WO2019202976A1 WO 2019202976 A1 WO2019202976 A1 WO 2019202976A1 JP 2019014694 W JP2019014694 W JP 2019014694W WO 2019202976 A1 WO2019202976 A1 WO 2019202976A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
injection
opening
cylinder chamber
introduction
Prior art date
Application number
PCT/JP2019/014694
Other languages
English (en)
French (fr)
Inventor
平山 卓也
木村 茂喜
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to EP19789323.3A priority Critical patent/EP3783225B1/en
Priority to CN201980026962.5A priority patent/CN112055785B/zh
Publication of WO2019202976A1 publication Critical patent/WO2019202976A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0007Injection of a fluid in the working chamber for sealing, cooling and lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle

Definitions

  • Embodiments of the present invention relate to a hermetic compressor and a refrigeration cycle apparatus having an injection flow path.
  • Such a hermetic compressor may be provided with a check valve in the middle of the injection flow path in order to reduce the compression loss caused by the backflow of the compressed refrigerant from the cylinder chamber to the injection flow path.
  • the injection flow paths of the compressors described in Patent Document 1 and Patent Document 2 are an introduction path for introducing liquid refrigerant into the compression mechanism portion, and an injection path for injecting liquid refrigerant guided through the introduction path into the cylinder chamber. And.
  • the introduction path extends in the radial direction.
  • the injection path extends in the axial direction of the rotation shaft of the compressor. In this case, in order to make the introduction path and the injection path communicate with each other, the degree of freedom in designing the installation position of the injection flow path is limited.
  • the injection flow path of the compressor described in Patent Document 1 includes a communication pipe connected from the gas injection pipe and a gas injection flow path for injecting a refrigerant into the cylinder chamber.
  • the check valve is provided in a direction orthogonal to the flow direction of the communication pipe. Therefore, a slight gap is formed between the communication pipe and the check valve. This gap causes the compressed refrigerant to flow backward and causes a compression loss.
  • the problem to be solved by the present invention is to increase the degree of design freedom for the position connecting the introduction path and the injection path of the injection flow path, improve the manufacturability, and suppress the back flow of the refrigerant from the check valve of the injection flow path.
  • a compressor with high compression efficiency is provided.
  • a hermetic compressor includes a hermetic case and a compression mechanism unit accommodated in the hermetic case, and the compression mechanism unit includes a cylinder chamber.
  • a closing member fixed to one end surface of the cylinder and closing the cylinder chamber, an end plate overlaid on the closing member, an injection flow path for supplying a refrigerant into the cylinder chamber, and flowing into the cylinder chamber
  • a roller for compressing the refrigerant and a check valve device provided in the injection flow path, wherein the injection flow path is provided in the closing member and opens to the cylinder chamber, An injection path having the other end opened to the end plate side, a communication path provided between the closing member and the end plate and connected to the injection path, the closing member and the end One end connected to the communication path by opening in the direction in which the closing member and the end plate overlap with each other, and the other end to which an injection introduction pipe communicating with the outside of the sealed case is connected
  • the check valve device includes a reed valve that opens and close
  • a hermetic compressor according to an embodiment of the present invention includes a discharge hole that discharges the refrigerant compressed in the cylinder chamber into a sealed case, and a discharge valve that opens and closes the discharge hole. It is preferable that the valve device opens the communication passage side opening of the introduction passage with a differential pressure larger than a differential pressure at which the discharge valve opens the discharge hole.
  • the reed valve of the hermetic compressor according to the embodiment of the present invention includes a fixed support portion fixed by the fixing member, an opening / closing portion that opens and closes an opening portion on the communication path side of the introduction path, and the fixed support portion. And a lead portion that connects the opening / closing portion, and the fixed support portion is radially outside the rotating shaft that connects the motor portion that drives the compression mechanism portion and the compression mechanism portion rather than the cylinder chamber. It is preferable that it is provided at a position that does not overlap the injection flow path when viewed from the axial direction of the rotating shaft.
  • the check valve device of the hermetic compressor according to the embodiment of the present invention is provided in the communication path, and the volume of the check valve device is obtained by removing the volume of the check valve device from the communication path. It is preferably larger than the space volume.
  • At least a part of the communication path of the hermetic compressor according to the embodiment of the present invention is located below the opening on the communication path side of the injection path.
  • the compression mechanism unit of the hermetic compressor according to the embodiment of the present invention includes a plurality of the cylinders and includes the injection flow path between the plurality of cylinders.
  • the shaft of the rotating shaft that closes the cylinder chamber between the plurality of cylinders and connects the motor unit and the compression mechanism unit that drives the compression mechanism unit. It is preferable that two partition plates arranged in the direction are provided, one of the partition plates is the closing member, and the other is the end plate.
  • the injection path of the hermetic compressor according to the embodiment of the present invention has one end that opens to the cylinder chamber of one of the cylinders, is provided in the end plate, and opens to the cylinder chamber of the other cylinder. It is preferable to provide an auxiliary injection path having the other end opened to the communication path.
  • a refrigeration cycle apparatus includes a hermetic compressor, a radiator connected to the hermetic compressor, and an expansion connected to the radiator. And a heat absorber connected between the expansion device and the hermetic compressor.
  • the degree of freedom in designing the position connecting the introduction path and the injection path of the injection flow path is increased, the productivity is improved, and the back flow of the refrigerant from the check valve of the injection flow path is suppressed.
  • a compressor with high compression efficiency can be provided.
  • FIG. 1 is a diagram showing an internal structure of a hermetic compressor and a configuration diagram of a refrigeration cycle of a refrigeration cycle apparatus.
  • the refrigeration cycle 1 includes a hermetic compressor 2 (hereinafter referred to as “compressor 2”), a condenser 3 that is a radiator, an expansion device 4, an evaporator 5 that is a heat absorber, and a compressor 2.
  • compressor 2 compresses the gas refrigerant.
  • the condenser 3 condenses the gas refrigerant discharged from the compressor 2 into a liquid refrigerant.
  • the expansion device 4 is a decompressor that decompresses the refrigerant.
  • the evaporator 5 evaporates the liquid refrigerant into a gas refrigerant.
  • the accumulator 6 separates the gas refrigerant and the liquid refrigerant and supplies the gas refrigerant to the compressor 2.
  • the refrigeration cycle 1 includes an injection pipe 7 for guiding the liquid refrigerant that has passed through the condenser 3 to the compressor 2.
  • the injection pipe 7 is connected to an injection flow path 40 provided in the compressor 2.
  • the injection pipe 7 is provided with an adjusting valve 8 for reducing the pressure of the refrigerant guided from the downstream side of the condenser 3 and adjusting the injection flow rate.
  • the compressor 2 includes a sealed case 10, an electric motor unit 14 provided on the upper side in the sealed case 10, and a compression mechanism unit 17 provided on the lower side in the sealed case 10.
  • the electric motor unit 14 includes a stator (stator) 15 fixed in the sealed case 10 and a rotor (rotor) 16 fixed to the rotating shaft 12.
  • the rotor 16 of the electric motor unit 14 is provided at one end of the rotating shaft 12, and the eccentric portion 13 is provided at the other end of the rotating shaft 12.
  • the compression mechanism portion 17 is provided at a position corresponding to the eccentric portion 13. Therefore, the electric motor unit 14 and the compression mechanism unit 17 are connected by the rotary shaft 12.
  • the compression mechanism 17 has a cylinder 18 fixed to the sealed case 10.
  • a cylinder chamber 19 is formed inside the cylinder 18.
  • a main bearing 25 is provided on the upper side of the cylinder 18.
  • a sub-bearing 26 that is a closing member is provided below the cylinder 18.
  • a muffler 27 that forms a muffler chamber 28 surrounding the periphery is attached to the flange portion 25 f of the main bearing 25.
  • the eccentric portion 13 of the rotating shaft 12 is disposed in the cylinder chamber 19, the eccentric portion 13 of the rotating shaft 12 is disposed.
  • a roller 22 is rotatably fitted to the eccentric portion 13.
  • the roller 22 rotates eccentrically while bringing its outer peripheral wall into line contact with the inner peripheral surface of the cylinder 18 via an oil film.
  • a blade groove 24 is formed in the cylinder 18.
  • a blade 23 is disposed in the blade groove 24. As shown in FIG. 2, the blade 23 reciprocates in the blade groove 24 while pressing the tip of the blade 23 against the outer peripheral wall of the roller 22. The blade 23 is pushed in such a direction that its tip is pressed against the outer peripheral wall of the roller 22.
  • the blade 23 partitions the cylinder chamber 19 into two spaces 19a and 19b.
  • the cylinder 18 is formed with a suction port 20 that guides the gas refrigerant supplied from the accumulator 6 to the cylinder chamber 19.
  • a suction chamber 19a Of the spaces partitioned by the blades 23, the one connected to the suction port 20 is called a suction chamber 19a, and the other is called a compression chamber 19b. That is, as shown in FIG. 2, the roller 22 rotates counterclockwise in plan view.
  • the suction port 20 is provided on the left side of the blade 23.
  • a suction chamber 19 a is disposed on the left side of the cylinder chamber 19, and a compression chamber 19 b is disposed on the right side of the cylinder chamber 19.
  • the main bearing 25 is provided with a discharge port 25a shown in FIG. 3 and a discharge valve 25b for opening and closing the discharge port 25a.
  • the discharge port 25 a discharges the refrigerant compressed in the cylinder chamber 19 into the sealed case 10 via the muffler chamber 28 in the muffler 27.
  • the discharge valve 25 b is provided on the upper surface of the main bearing 25.
  • the discharge valve 25b is a reed valve.
  • the discharge valve 25b opens and closes the discharge port 25a by the differential pressure between the compression chamber 19b and the muffler chamber 28. That is, the discharge valve 25b opens the discharge port 25a when the pressure in the compression chamber 19b becomes higher than the pressure in the sealed case 10 by a predetermined value or more.
  • the compressed refrigerant discharged into the sealed case 10 is discharged to the outside of the compressor 2 through the discharge pipe 11.
  • the discharge port may be provided in the auxiliary bearing 26.
  • the second muffler (not shown), the cylinder 18 and the main bearing 25 are passed through the flange portion 26f of the auxiliary bearing 26, and the second muffler chamber formed by the second muffler and the flange portion 25f of the main bearing 25 are provided.
  • a passage connecting the muffler chamber 28 of the muffler 27 is provided. The compressed refrigerant discharged from the discharge port of the auxiliary bearing 26 into the muffler chamber merges with the compressed refrigerant in the muffler chamber 28 on the main bearing 25 side through the passage.
  • the injection pipe 7 of the first embodiment guides the liquid refrigerant condensed by the condenser 3 of the refrigeration cycle 1 to the compressor 2.
  • the liquid refrigerant that has passed through the injection pipe 7 flows into the injection flow path 40 and is injected into the cylinder chamber 19.
  • 4 and 5 are longitudinal sectional views along the direction in which the reed valve 60 of the check valve device 44 extends.
  • the part shown with the dashed-dotted line is an imaginary line.
  • the injection flow path 40 includes an injection path 41, a communication path 42, and an introduction path 49.
  • Each of the flow paths 41, 42, and 49 overlaps the auxiliary bearing 26 that closes the lower side of the cylinder chamber 19 and the lower side of the flange portion 26 f of the auxiliary bearing 26, and is fixed to the cylinder 18 by the fastening bolt 31. And an end plate 30.
  • the injection path 41 is provided in the auxiliary bearing 26.
  • the injection path 41 has a first opening 51 that opens to the cylinder chamber 19 and a second opening 52 that opens to the end plate 30 side.
  • the first opening 51 injects an intermediate-pressure liquid refrigerant into the cylinder chamber 19.
  • the first opening 51 is provided at a position that is opened and closed by the lower surface of the roller 22 in the cylinder chamber 19.
  • the communication path 42 is formed by the end plate 30 and the auxiliary bearing 26.
  • a groove 43 is provided on the upper end surface of the end plate 30.
  • the communication path 42 is a groove 43 that is closed by overlapping the end plate 30 on the auxiliary bearing 26.
  • the communication path 42 is connected to the injection path 41 through the second opening 52 of the injection path 41.
  • the introduction path 49 is provided horizontally in the radial direction of the auxiliary bearing 26.
  • a third opening 53 that opens in the axial direction toward the communication path 42 is provided on one end side of the introduction path 49.
  • the other end 54 of the introduction path 49 is open to the outer peripheral surface of the auxiliary bearing 26.
  • An injection introduction pipe 70 connected to the outside of the sealed case 10 is connected to the other end 54 of the introduction path 49.
  • the injection introduction pipe 70 is connected to the injection pipe 7 outside the sealed case 10.
  • the cross-sectional area of the third opening 53 of the introduction path 49 is larger than the cross-sectional area of the first opening 51 of the injection path 41.
  • a check valve device 44 is provided in the communication path 42.
  • the check valve device 44 includes a reed valve 60, a valve pressing member 64 that regulates the opening degree of the reed valve 60, and a fixing member 65 that fixes the reed valve 60 and the valve pressing member 64.
  • the reed valve 60 is provided at one end of the reed valve 60 and fixed to the flange portion 26 f of the auxiliary bearing 26, and the reed valve 60 is provided at the other end of the reed valve 60 and the third opening of the introduction passage 49.
  • An opening / closing portion 62 that opens and closes 53 and a lead portion 63 that connects the fixed support portion 61 and the opening / closing portion 62 are provided.
  • the fixing member 65 is, for example, a rivet.
  • FIG. 4 shows the injection flow path 40 when the check valve device 44 closes the third opening 53 of the introduction path 49.
  • FIG. 5 shows the injection flow path 40 when the check valve device 44 opens the third opening 53.
  • the fixed support portion 61 of the reed valve 60 is fixed to the flange portion 26f of the auxiliary bearing 26 together with the valve presser 64 by a fixing member 65, for example, a rivet. That is, the fixed support portion 61 is fixed to the auxiliary bearing 26 provided with the introduction path 49.
  • the fixed surface of the reed valve 60 and the valve seat surface 45a of the check valve device 44 are provided on the same surface. Therefore, the opening / closing portion 62 of the reed valve 60 is positioned with high accuracy with respect to the valve seat surface 45a.
  • FIG. 6 is a cross-sectional view taken along line AA in FIG. 4 and shows the positional relationship between the injection flow path 40 and the check valve device 44.
  • the fixed support 61 is provided at a position that does not overlap the injection flow path 40 when viewed from the axial direction of the rotary shaft 12.
  • the fixing support portion 61 is fixed by the fixing member 65, the fixing member 65 penetrates the auxiliary bearing 26. For this reason, there is a possibility that leakage may occur due to the fixing member 65 crossing the introduction path 49 and the flow path may be obstructed.
  • the fixed support portion 61 is disposed outside the cylinder chamber 19 in the radial direction of the rotary shaft 12 and provided at a position that does not overlap the injection flow path 40 when viewed from the axial direction of the rotary shaft 12. It can be surely prevented.
  • the check valve device 44 opens and closes the third opening 53 of the introduction path 49 by the differential pressure between the introduction path 49 and the communication path 42.
  • the communication path 42 is connected to the cylinder chamber 19 via the injection path 41. That is, when the pressure in the compression chamber 19 b is larger than the pressure in the introduction path 49, the check valve device 44 closes the third opening 53 of the introduction path 49, and the pressure in the compression chamber 19 b is greater than the pressure in the introduction path 49. Is smaller than the predetermined value, the check valve device 44 opens the third opening 53 of the introduction passage 49.
  • This predetermined value is larger than the differential pressure between the pressure in the compression chamber 19b and the pressure in the sealed case 10 at which the discharge port 25a opens. Opening and closing due to the differential pressure between the check valve device 44 and the discharge port 25a is determined by the spring constants of the reed valve 60 and the discharge valve 25b, the size of the valve member, the size of the discharge hole, and the like.
  • the rotor 16 is rotated by energizing the motor unit 14 of the compressor 2.
  • the compression mechanism unit 17 is driven via the rotation shaft 12.
  • the gas refrigerant separated by the accumulator 6 is sucked into the suction chamber 19 a of the cylinder chamber 19.
  • the roller 22 passes the position of the suction port 20, and at the same time, the first opening 51 of the injection path 41 formed in the cylinder 18 is opened.
  • the gas refrigerant sucked from the suction port 20 is compressed by the rotation of the roller 22.
  • liquid refrigerant having an intermediate pressure is injected into the compression chamber 19b from the first opening 51 of the injection path 41 that is opened and closed by the rotation of the roller 22.
  • the intermediate-pressure liquid refrigerant injected into the compression chamber 19b evaporates in the compression chamber 19b, cools the refrigerant in the compression chamber 19b, and is discharged from the discharge port 25a together with the refrigerant sucked from the suction port 20.
  • the refrigerant discharged from the discharge port 25a is discharged to the outside of the compressor 2 through the muffler chamber 28. A part of the refrigerant condensed in the condenser 3 is guided to the compressor 2 through the injection pipe 7.
  • the liquid refrigerant guided to the compressor 2 through the injection pipe 7 first flows into the introduction path 49 through the injection introduction pipe 70 of the injection flow path 40.
  • the liquid refrigerant that has flowed into the introduction path 49 flows toward the third opening 53 of the introduction path 49.
  • the third opening 53 of the introduction passage 49 is normally closed by the check valve device 44. That is, the liquid refrigerant that has flowed into the introduction path 49 does not flow into the communication path 42.
  • the opening / closing part 62 of the reed valve 60 of the check valve device 44 is pushed into the communication passage 42 side, and The third opening 53 opens. Then, the liquid refrigerant in the introduction path 49 flows into the communication path 42.
  • the check valve device 44 closes the third opening 53.
  • the liquid refrigerant that has flowed into the communication path 42 flows into the injection path 41 through the second opening 52 of the injection path 41.
  • the liquid refrigerant flowing into the injection path 41 is injected into the cylinder chamber 19 when the first opening 51 of the injection path 41 opened and closed by the lower surface of the roller 22 rotating in the cylinder chamber 19 is opened. .
  • the injection flow path 40 of the first embodiment includes an injection path 41 and an introduction path 49 in the sub-bearing 26 and a communication path 42 in the end plate 30, but the sub-bearing 26 and the end plate 30 are combined to communicate with each other.
  • the passage 42 is defined, the third opening 53 of the introduction passage 49 is opened in the axial direction of the rotary shaft 12, the valve seat surface 45 a of the check valve device 44 in the communication passage 42, the auxiliary bearing 26, and the end plate 30.
  • the groove portion 43 may be provided in the flange portion 26 f of the auxiliary bearing 26 and the end plate 30 may be fixed to form the communication path 42.
  • the third opening 53 opens in the axial direction.
  • the valve seat surface 45a of the check valve device 44, the joint surface of the end plate 30 and the auxiliary bearing 26 are the same surface.
  • the reed valve 60 opens and closes from above the third opening 53.
  • the injection flow path 40 is formed from the introduction path 49, the communication path 42, and the injection path 41. These flow paths 41, 42, 49 are provided in the auxiliary bearing 26 and the end plate 30. The introduction path 49 and the injection path 41 are communicated with each other through a communication path 42. Therefore, the freedom degree of design about the position which connects the introduction path 49 and the injection path 41 can be raised.
  • the cross-sectional area of the third opening 53 of the introduction path 49 is larger than the cross-sectional area of the first opening 51 of the injection path 41.
  • the flow rate on the introduction path 49 side of the liquid refrigerant becomes larger than the flow rate on the injection path 41 side, and the liquid refrigerant is easily injected into the cylinder chamber 19. Further, since the flow path resistance of the check valve device 44 is reduced, the flow path loss can be reduced. Therefore, the cooling capacity is improved and the reliability of the compressor is improved.
  • a check valve device 44 for preventing the backflow of the compressed refrigerant from the cylinder chamber 19 to the introduction path 49 is provided in the communication path 42 so as to open and close the third opening of the introduction path 49, and the reed valve. 60 open / close portions 62 open and close in the axial direction. Therefore, the backflow is reliably prevented, and the flow path loss is reduced.
  • this joint surface has a small surface roughness and is formed with high accuracy. Since the valve seat surface 45a of the check valve device 44 is provided on the joint surface, the sealing performance can be improved.
  • the reed valve 60 has a thin plate shape and is fixed in a cantilever shape by a fixed support portion 61. Therefore, the reed valve 60 is excellent in responsiveness. In other words, the check valve device 44 opens and closes the third opening 53 in accordance with the pressure fluctuation of the compression chamber 19b, but the deviation of the opening and closing timing is suppressed to the minimum, and the reduction of the injection flow rate is prevented. Further, the reed valve 60 is fixed by a fixed support portion 61. Therefore, the opening / closing part 62 can stably open and close the third opening 53. And the dent and wear resulting from the irregular motion of the opening-and-closing part 62 are prevented.
  • the volume V of the check valve device 44 is the sum of the volumes of the reed valve 60, the valve retainer 64, and the fixing member 65, and the space volume C of the communication passage 42 is the size of the groove 43.
  • the volume V of the check valve device 44 is larger than the substantial space volume S of the communication passage 42 obtained by removing the volume V of the check valve device 44 from the space volume C of the communication passage 42.
  • the substantial space volume S of the communication passage 42 is smaller than the volume V of the check valve device 44. Therefore, the amount of compressed refrigerant that flows back from the cylinder chamber 19 to the injection flow path 40 is reduced, and the compression loss is suppressed.
  • the introduction path 49 and the communication path 42 are provided on the auxiliary bearing 26 side, and the communication path 42 is positioned below the second opening 52 of the injection path 41 as shown in FIG. . Therefore, lubricating oil accumulates in the communication path 42, and the substantial space volume S of the communication path 42 is further reduced. The performance degradation of the compressor when not injected into the cylinder chamber 19 is suppressed.
  • the injection path 41 is located on an extension line connecting the center of the fixed support portion 61 of the reed valve 60 and an arbitrary point of the third opening 53 of the introduction path 49.
  • the injection path 41 is provided in this range, when the reed valve 60 is injected through the third opening 53, the refrigerant that has flowed into the communication path 42 enters the second opening 52 that opens into the injection path 41. It flows almost linearly. Therefore, the flow path resistance is suppressed, and the reduction of the injection flow rate is prevented.
  • the compressor 2 of the second embodiment includes two cylinders 18A and 18B in the compression mechanism unit 17.
  • the A cylinder 18A is positioned on the lower side, and the B cylinder 18B is positioned on the upper side.
  • a partition plate 32 is provided between the two cylinders 18A and 18B.
  • the partition plate 32 partitions the two cylinders 18A and 18B, and the partition plate 32 that closes the cylinder chamber 19A of the A cylinder 18A and the cylinder chamber 19B of the B cylinder 18B includes two overlapping partition plate members 32A and 32B. I have.
  • the compressor 2 of the second embodiment includes an injection flow path 40 provided in the partition plate 32. That is, the partition plate 32 functions as a closing member that closes the cylinder chamber 19B of the B cylinder 18B and an end plate that closes the cylinder chamber 19A of the A cylinder 18A.
  • the partition plate member 32B is provided with an injection path 41 for injecting liquid refrigerant into the cylinder chamber 19B.
  • the partition plate member 32A is provided with an auxiliary injection path 50 for injecting liquid refrigerant into the cylinder chamber 19A.
  • the injection path 41 has a first opening 51 that opens to the cylinder chamber 19B of the B cylinder 18B, and a second opening 52 that opens to the communication path 42.
  • the auxiliary injection path 50 includes a fifth opening 71 that opens to the cylinder chamber 19 ⁇ / b> A of the A cylinder 18 ⁇ / b> A, and a sixth opening 72 that opens to the communication path 42.
  • the communication path 42 is formed by a partition plate member 32B and a partition plate member 32A.
  • a groove 43 is provided in the partition member 32B.
  • the communication path 42 is a groove 43 that is blocked by overlapping the partition plate member 32A on the partition plate member 32B.
  • the groove 43 is closed by the end face of the partition plate member 32A.
  • the introduction path 49 is provided horizontally in the radial direction on the partition plate member 32A. On one end side of the introduction path 49, a third opening 53 that opens in the axial direction in the communication path 42 is provided.
  • the other end 54 of the introduction path 49 opens to the outer peripheral surface of the partition plate member 32A.
  • An injection introduction pipe 70 connected to the outside of the sealed case 10 is connected to the other end 54 of the introduction path 49.
  • the injection introduction pipe 70 is connected to the injection pipe 7 outside the sealed case 10.
  • the communication path 42 of the compressor 2 of the second embodiment is disposed above the third opening 53 of the introduction path 49.
  • the communication passage 42 is provided with a check valve device 44 that opens and closes the third opening 53 of the introduction passage 49.
  • the check valve device 44 of the second embodiment the fixed support portion 61 and the valve presser 64 of the reed valve 60 are fixed to the partition plate member 32A provided with the introduction path 49 by the fixing member 65.
  • the fixed surface of the reed valve 60 and the valve seat surface 45a of the check valve device 44 are provided on the same surface.
  • the liquid refrigerant flowing through the injection pipe 7 passes through the injection introduction pipe 70, the introduction path 49, the communication path 42, the injection path 41, and the auxiliary injection path 50 in the same manner as in the first embodiment. It is injected into each cylinder chamber 19A, 19B.
  • the check valve device 44 opens and closes the third opening 53 of the introduction passage 49 by the differential pressure between the pressure in the introduction passage 49 and the pressure in each cylinder chamber 19A, 19B.
  • the injection flow path 40 is formed in the partition plate 32 which consists of two partition plate members 32A and 32B.
  • the liquid refrigerant can be supplied to the cylinder chambers 19A and 19B.
  • a check valve device is provided in the third opening 53 of the introduction path 49 before the liquid refrigerant flowing into the injection flow path 40 branches into the injection path 41 and the auxiliary injection path 50. 44. Therefore, the compressor 2 of the second embodiment can prevent the backflow from the cylinder chambers 19A and 19B with one check valve device 44.
  • the main bearing 25 and the sub-bearing 26 are each provided with a discharge port 25a and a discharge valve 25b for discharging compressed refrigerant, and the muffler chamber and the main bearing 26 on the sub-bearing 26 side are provided.
  • a passage that connects the muffler chamber 28 on the bearing 25 side may be provided.
  • each discharge valve opens the discharge port 25a by the differential pressure between each cylinder chamber 19A, 19B and the sealed case 10.
  • the differential pressure at which the check valve device 44 provided in the injection flow path 40 opens the third opening 53 is larger than the differential pressure at which the discharge port 25a is opened.
  • the injection flow path 40 that guides the liquid refrigerant to the cylinder chamber 19 of the compression mechanism unit 17 includes the injection introduction pipe 70, the introduction path 49, the injection path 41, and the like.
  • the introduction path 49 and the communication path 42 connecting the injection path 41 and the introduction path 49 are provided.
  • the communication path 42 is formed by combining two members of the closing members 26 and 32A and the end plates 30 and 32B.
  • the introduction path 49 can be formed in either the closing member 26, 32A or the end plate 30, 32B. That is, it is possible to increase the degree of freedom in designing the communication position between the introduction path 49 and the injection path 41.
  • the check valve device 44 provided in the communication path 42 opens and closes the third opening 53 of the introduction path 49 that opens in the axial direction of the rotary shaft 12.
  • the valve seat surface 45a is provided on the same surface as the closing members 26 and 32A and the end plates 30 and 32B which have a small surface roughness and are formed with high accuracy. Therefore, the sealing performance of the valve seat surface 45a can be improved. Therefore, the reverse flow of the refrigerant from the check valve device 44 can be prevented.
  • the check valve device 44 includes a reed valve 60. Therefore, the deviation of the opening / closing timing at the time of injection is suppressed to the minimum, and the reduction of the injection flow rate is prevented. Furthermore, dents and wear due to irregular movement of the opening / closing part 62 are suppressed.
  • the check valve device 44 is fixed to a member provided with the introduction path 49. Therefore, the fixed surface of the reed valve 60 and the valve seat surface 45a of the check valve device 44 are provided on the same surface.
  • the opening / closing part 62 of the reed valve 60 can be positioned with high accuracy with respect to the valve seat surface 45a.
  • the fixed support portion 61 of the reed valve 60 is provided outside the cylinder chamber 19 in the radial direction of the rotating shaft 12 and at a position that does not overlap the injection flow path 40 when viewed from the axial direction of the rotating shaft 12. Therefore, it is possible to reliably prevent the fixing member 65 that fixes the fixing support portion 61 from being leaked or obstructing the flow path by passing through the cylinder chamber 19 or the introduction path 49.
  • the fixing member 65 uses a rivet in the embodiment, but may be other screw fixing.
  • the cross-sectional area of the third opening 53 of the introduction path 49 is formed larger than the cross-sectional area of the first opening 51 of the injection path 41.
  • the flow rate of the introduction channel 49 becomes larger than the flow rate of the injection channel 41, and the refrigerant flowing through the injection channel 40 is easily injected into the cylinder chamber 19.
  • the cross section of the third opening 53 of the introduction passage 49 by increasing the cross section of the third opening 53 of the introduction passage 49, the flow resistance of the liquid refrigerant by the check valve device 44 is reduced. Therefore, flow path loss can be reduced.
  • the compressor 2 of the embodiment can be applied even when it has a plurality of cylinder chambers 19.
  • Two partition plate members 32A and 32B are stacked in the axial direction, and the injection flow path 40 is provided in each partition plate member 32A and 32B.
  • the structure of the compressor 2 is simplified, the productivity is improved, and the cost is reduced.
  • the compressor 2 of the embodiment is a rotary compressor using the blade 23 and the roller 22, but the injection flow path 40 of the embodiment is added to a swing type compressor in which the blade 23 and the roller 22 are integrated. The same effect can be obtained when applying.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

インジェクション流路の導入路と注入路とを繋げる位置について設計自由度を高くし、製造性を向上させるとともに、インジェクション流路の逆止弁からの冷媒の逆流を抑制して圧縮効率の高い圧縮機を提供する。インジェクション流路(40)は、シリンダ室(19)に開口する注入路(41)と、注入路(41)に繋がる連通路(42)と、連通路(42)に軸方向から開口する一端側と、密閉ケース外部に繋がるインジェクション導入管(70)が接続される他端(54)と、を有する導入路(49)と、導入路(49)の連通路(42)側の開口部(53)を開閉し、シリンダ室(19)から導入路(49)への冷媒の流れを阻止する逆止弁装置(44)と、を備えている。逆止弁装置(44)は、リード弁(60)と、リード弁(60)の開度を規制する弁押さえ(64)と、リード弁(60)と弁押さえ(64)と、を固定する固定部材(65)と、を備えている。

Description

密閉型圧縮機および冷凍サイクル装置
 本発明の実施形態は、インジェクション流路を備えた密閉型圧縮機および冷凍サイクル装置に関する。
 従来、密閉型圧縮機において、冷却を目的として、圧縮機構部のシリンダ室に冷凍サイクル内の中間圧の液冷媒を導くインジェクション流路を備える場合がある。この中間圧の液冷媒は、シリンダ室で蒸発し、シリンダ室から吐出される吐出冷媒の温度を低下させる。
 このような密閉型圧縮機は、シリンダ室からインジェクション流路へ圧縮された冷媒が逆流することによる圧縮損失を低減するために、インジェクション流路の途中に、逆止弁を備える場合がある。
実開昭62-173585号公報 特許5760836号公報
 特許文献1と特許文献2に記載の圧縮機のインジェクション流路は、液冷媒を圧縮機構部へ導入する導入路と、この導入路を通って導かれた液冷媒をシリンダ室に注入する注入路と、を備えている。導入路は径方向に延びている。注入路は、圧縮機の回転軸の軸方向に延びている。この場合、導入路と注入路とを連通させるために、インジェクション流路の設置位置の設計自由度が制限されてしまう。
 また、特許文献1に記載の圧縮機のインジェクション流路は、ガスインジェクション管から繋がる連通管と、シリンダ室に冷媒を注入するガスインジェクション流路と、を備えている。逆止弁は、連通管の流れ方向と直交する方向に設けられる。そのため、連通管と逆止弁との間にはわずかに隙間ができる。この隙間は、圧縮冷媒を逆流させ、圧縮損失を発生させてしまう。
 特許文献2に記載の圧縮機のインジェクション流路は、インジェクション導入路の途中にスライド弁を精度よく挿入する必要がある。そのため、特許文献2に記載の圧縮機のインジェクション流路の製造性は極めて悪い。
 本発明が解決する課題は、インジェクション流路の導入路と注入路とを繋げる位置について設計自由度を高くし、製造性を向上させるとともに、インジェクション流路の逆止弁からの冷媒の逆流を抑制して圧縮効率の高い圧縮機を提供することである。
 上記課題を達成するために、本実施形態に係る密閉型圧縮機は、密閉ケースと、前記密閉ケース内に収容される圧縮機構部と、を備え、前記圧縮機構部は、シリンダ室を有するシリンダと、前記シリンダの一方の端面に固定され、前記シリンダ室を閉塞する閉塞部材と、前記閉塞部材に重ねられる端板と、前記シリンダ室内に冷媒を供給するインジェクション流路と、前記シリンダ室内に流入した冷媒を圧縮するローラと、前記インジェクション流路に設けられた逆止弁装置と、を有し、前記インジェクション流路は、前記閉塞部材に設けられ、かつ前記シリンダ室に開口する一端と、前記端板側に開口する他端と、を有する注入路と、前記閉塞部材と前記端板との間に設けられて前記注入路に繋がる連通路と、前記閉塞部材および前記端板のいずれか一方に設けられ、かつ前記閉塞部材と前記端板とが重なる方向に開口して前記連通路に繋がる一端と、前記密閉ケースの外部に連通するインジェクション導入管が接続される他端と、を有する導入路と、を有し、前記逆止弁装置は、前記導入路を開閉するリード弁と、前記リード弁の開度を規制する弁押さえと、前記リード弁と前記弁押さえを固定する固定部材と、を備え、前記リード弁と前記弁押さえとは、前記導入路が設けられる前記閉塞部材または前記端板に固定されている。
 また、本発明の実施形態に係る密閉型圧縮機は、前記リード弁の弁座面と前記閉塞部材と前記端板との接合面とが、同一面であることが好ましい。
 さらに、本発明の実施形態に係る密閉型圧縮機は、前記シリンダ室で圧縮された冷媒を密閉ケース内に吐出する吐出孔と、前記吐出孔を開閉する吐出弁と、を備え、前記逆止弁装置は、前記吐出弁が前記吐出孔を開く差圧よりも大きい差圧で前記導入路の連通路側開口部を開くことが好ましい。
 本発明の実施形態に係る密閉型圧縮機の前記リード弁は、前記固定部材で固定される固定支持部と、前記導入路の連通路側の開口部を開閉する開閉部と、前記固定支持部と前記開閉部とを連結するリード部と、を有し、前記固定支持部は、前記シリンダ室よりも前記圧縮機構部を駆動する電動機部と圧縮機構部とを連結する回転軸の径方向外側に配置されるとともに、前記回転軸の軸方向から見て前記インジェクション流路に重ならない位置に設けられていることが好ましい。
 本発明の実施形態に係る密閉型圧縮機の前記逆止弁装置は、前記連通路内に設けられ、前記逆止弁装置の体積は、前記連通路から前記逆止弁装置の体積を除いた空間容積よりも大きいことが好ましい。
 本発明の実施形態に係る密閉型圧縮機の前記連通路の少なくとも一部が、前記注入路の連通路側の開口部より下方に位置することが好ましい。
 本発明の実施形態に係る密閉型圧縮機の前記圧縮機構部は、前記シリンダを複数有し、前記複数のシリンダの間に前記インジェクション流路を備えることが好ましい。
 また、本発明の実施形態に係る密閉型圧縮機は、前記複数のシリンダの間に前記シリンダ室を閉塞し、前記圧縮機構部を駆動する電動機部と圧縮機構部とを連結する回転軸の軸方向に並ぶ2つの仕切板を備え、前記仕切板の一方は前記閉塞部材であって、他方は前記端板であることが好ましい。
 本発明の実施形態に係る密閉型圧縮機の前記注入路は、一方の前記シリンダの前記シリンダ室に開口し、前記端板に設けられ、かつ他方の前記シリンダの前記シリンダ室に開口する一端と、前記連通路に開口する他端と、を有する補助注入路を備えることが好ましい。
 また、上記課題を達成するために、本発明の実施形態に係る冷凍サイクル装置は、前記密閉型圧縮機と、前記密閉型圧縮機に接続される放熱器と、前記放熱器に接続される膨張装置と、前記膨張装置と前記密閉型圧縮機の間に接続される吸熱器と、を備えている。
 本発明によれば、インジェクション流路の導入路と注入路とを繋げる位置について設計自由度を高くし、製造性を向上させるとともに、インジェクション流路の逆止弁からの冷媒の逆流を抑制して圧縮効率の高い圧縮機を提供できる。
第1の実施形態に係る密閉型圧縮機の内部構造を示す図および冷凍サイクル装置の冷凍サイクル構成図である。 同実施形態に係る圧縮機構部の平面図である。 同実施形態に係る主軸受の平面図である。 同実施形態に係る逆止弁装置が閉じているときのインジェクション流路の構造を示す図である。 同実施形態に係る逆止弁装置が開いているときのインジェクション回路の構造を示す図である。 同実施形態に係るインジェクション流路と逆止弁装置の位置関係を示す図である。 第2の実施形態に係る密閉型圧縮機の内部構造を示す図および冷凍サイクル装置の冷凍サイクル構成図である。 同実施形態に係る逆止弁装置が開いているときのインジェクション回路の構造を示す図である。
 以下、発明を実施するための実施形態について図を参照して説明する。なお、複数の図面中、同一または相当する構成には同一の符号が付されている。
(第1の実施形態)
 第1の実施形態の密閉型圧縮機について、図1から図6を参照して説明する。
 図1は、密閉型圧縮機の内部構造を示す図および冷凍サイクル装置の冷凍サイクル構成図である。
 冷凍サイクル1は、密閉型圧縮機2(以下、「圧縮機2」という。)と、放熱器である凝縮器3と、膨張装置4と、吸熱器である蒸発器5と、圧縮機2に取り付けられるアキュームレータ6と、圧縮機2、凝縮器3、膨張装置4、蒸発器5、およびアキュームレータ6を順に接続する冷媒配管と、を備えている。圧縮機2はガス冷媒を圧縮する。凝縮器3は圧縮機2から吐出されるガス冷媒を凝縮して液冷媒にする。膨張装置4は冷媒を減圧する減圧器である。蒸発器5は液冷媒を蒸発してガス冷媒にする。アキュームレータ6はガス冷媒と液冷媒とを分離し、ガス冷媒を圧縮機2に供給する。また、冷凍サイクル1は、凝縮器3を通った液冷媒を圧縮機2へ導くためのインジェクション管7を備えている。インジェクション管7は、圧縮機2に設けられるインジェクション流路40に繋がっている。インジェクション管7には、凝縮器3の下流側から導かれる冷媒の圧力を減圧するとともに、インジェクション流量を調整する調整弁8が設けられている。
 圧縮機2は、密閉ケース10と、密閉ケース10内の上部側に設けられた電動機部14と、密閉ケース10内の下部側に設けられた圧縮機構部17と、を備えている。電動機部14は、密閉ケース10内に固定されたステータ(固定子)15と、回転軸12に固定されたロータ(回転子)16と、を有している。回転軸12の一方の端部には電動機部14のロータ16が設けられ、回転軸12の他方の端部には偏心部13が設けられている。圧縮機構部17は、偏心部13に対応する位置に設けられている。したがって、電動機部14と圧縮機構部17とは回転軸12で連結されている。
 圧縮機構部17は、密閉ケース10に固定されたシリンダ18を有している。シリンダ18の内側にはシリンダ室19が形成されている。シリンダ18の上側には主軸受25が設けられている。シリンダ18の下側には、閉塞部材である副軸受26が設けられている。主軸受25のフランジ部25fには、この周囲を囲むマフラ室28を形成するマフラ27が取り付けられている。
 シリンダ室19内には、回転軸12の偏心部13が配置されている。偏心部13には、ローラ22が回転自在に嵌合されている。ローラ22は、回転軸12の回転時に、その外周壁をシリンダ18の内周面に油膜を介して線接触させながら偏心回転する。シリンダ18には、ブレード溝24が形成されている。ブレード溝24にはブレード23が配置されている。図2に示すように、ブレード23は、その先端部をローラ22の外周壁に押し当てながら、ブレード溝24を往復動する。ブレード23は、その先端部をローラ22の外周壁に押し当てる方向へ押し込まれている。ブレード23は、シリンダ室19を2つの空間19a、19bに仕切っている。
 さらに、シリンダ18には、アキュームレータ6から供給されるガス冷媒をシリンダ室19に導く吸込みポート20が形成されている。ブレード23によって仕切られた空間のうち、吸込みポート20に繋がっている方を吸込み室19aと言い、他方を圧縮室19bという。すなわち、図2に示すように、平面視でローラ22は反時計回りに回転する。このとき吸込みポート20はブレード23の左側に設けられる。シリンダ室19の左側に吸込み室19aが配置され、シリンダ室19の右側に圧縮室19bが配置される。
 また、主軸受25には、図3に示す吐出ポート25aと、吐出ポート25aを開閉する吐出弁25bが設けられている。吐出ポート25aは、シリンダ室19で圧縮された冷媒を、マフラ27内のマフラ室28を介して密閉ケース10内に吐出する。吐出弁25bは、主軸受25の上面に設けられている。吐出弁25bはリード弁である。吐出弁25bは、圧縮室19bとマフラ室28との差圧により吐出ポート25aを開閉する。つまり、吐出弁25bは、圧縮室19b内の圧力が密閉ケース10内の圧力より所定値以上高くなったときに、吐出ポート25aを開く。密閉ケース10内に吐出された圧縮冷媒は、吐出管11を通って圧縮機2の外部へ吐出される。
 なお、吐出ポートは副軸受26に設けられていても良い。このとき、副軸受26のフランジ部26fに図示しない第二マフラと、シリンダ18および主軸受25を貫通して、第二マフラが形成する第二マフラ室と主軸受25のフランジ部25fに設けられたマフラ27のマフラ室28とを繋げる通路と、が設けられる。副軸受26の吐出ポートからマフラ室に吐出された圧縮冷媒は、通路を介して主軸受25側のマフラ室28の圧縮冷媒に合流する。
 次にインジェクション管7およびインジェクション流路40について説明する。第1の実施形態のインジェクション管7は、冷凍サイクル1の凝縮器3で凝縮された液冷媒を圧縮機2に導く。インジェクション管7を通った液冷媒は、インジェクション流路40に流入し、シリンダ室19に注入される。
 図4および図5は、逆止弁装置44のリード弁60が伸びる方向に沿った縦断面図である。なお、一点鎖線で示した箇所は想像線である。
 インジェクション流路40は、注入路41と、連通路42と、導入路49とから構成されている。それぞれの流路41、42、49は、シリンダ室19の下側を閉塞する副軸受26と、副軸受26のフランジ部26fの下側に重ねられ、かつ締結ボルト31によってシリンダ18に固定される端板30と、に設けられている。
 注入路41は、副軸受26に設けられている。注入路41は、シリンダ室19に開口する第1の開口部51と、端板30側に開口する第2の開口部52と、を有している。第1の開口部51は、シリンダ室19に中間圧の液冷媒を注入する。第1の開口部51は、シリンダ室19内のローラ22の下面によって開閉される位置に設けられている。
 連通路42は、端板30と副軸受26とによって形成されている。端板30の上端面には溝部43が設けられている。連通路42は、端板30を副軸受26に重ねることで塞がれた溝部43である。連通路42は、注入路41の第2の開口部52を通じて注入路41に繋がっている。
 導入路49は、副軸受26の径方向に水平に設けられている。導入路49の一端側には、連通路42に向かって軸方向に開口する第3の開口部53が設けられている。導入路49の他端54は、副軸受26の外周面に開口している。導入路49の他端54には、密閉ケース10の外部に繋がるインジェクション導入管70が接続されている。インジェクション導入管70は、密閉ケース10の外部でインジェクション管7に接続されている。導入路49の第3の開口部53の断面積は、注入路41の第1の開口部51の断面積よりも大きい。
 連通路42内には、逆止弁装置44が設けられている。逆止弁装置44は、リード弁60と、リード弁60の開度を規制する弁押さえ64と、リード弁60と弁押さえ64とを固定する固定部材65と、を備えている。リード弁60は、リード弁60の一端に設けられて副軸受26のフランジ部26fに固定される固定支持部61と、リード弁60の他端に設けられて導入路49の第3の開口部53を開閉する開閉部62と、固定支持部61と開閉部62を連結するリード部63と、を備えている。固定部材65は、例えばリベットである。
 図4は、逆止弁装置44が導入路49の第3の開口部53を閉じているときのインジェクション流路40を示している。図5は、逆止弁装置44が第3の開口部53を開いているときのインジェクション流路40を示している。
 リード弁60の固定支持部61は、固定部材65、例えばリベットで、弁押さえ64とともに副軸受26のフランジ部26fに固定されている。つまり、固定支持部61は、導入路49が設けられる副軸受26に固定されている。リード弁60の固定面と逆止弁装置44の弁座面45aとが同一面に設けられている。そのため、リード弁60の開閉部62は、弁座面45aに対して高精度に隙間なく位置する。
 固定支持部61は、シリンダ室19よりも回転軸12の径方向に外側に配置されている。図6は、図4のA―A線における断面図であり、インジェクション流路40と逆止弁装置44との位置関係を示している。固定支持部61は、回転軸12の軸方向から見てインジェクション流路40に重ならない位置に設けられている。固定支持部61を固定部材65で固定する場合、固定部材65が副軸受26を貫通する。そのため、固定部材65が導入路49を横切ることによるリークの発生や流路の障害となる恐れがある。しかしながら、固定支持部61を、シリンダ室19よりも回転軸12の径方向に外側に配置し、かつ回転軸12の軸方向から見てインジェクション流路40に重ならない位置に設けることで、これを確実に防止することができる。
 逆止弁装置44は、導入路49と連通路42との差圧により導入路49の第3の開口部53を開閉する。連通路42は、注入路41を介してシリンダ室19に繋がっている。つまり、圧縮室19bの圧力が導入路49の圧力よりも大きいとき、逆止弁装置44は、導入路49の第3の開口部53を閉じ、圧縮室19bの圧力が導入路49の圧力よりも所定値以上に小さいとき、逆止弁装置44は、導入路49の第3の開口部53を開く。
 この所定値は、吐出ポート25aが開く、圧縮室19bの圧力と密閉ケース10内の圧力との差圧よりも大きい。逆止弁装置44および吐出ポート25aの差圧による開閉は、リード弁60および吐出弁25bのそれぞれのばね定数や、弁部材の大きさ、吐出孔の大きさ等によって決まる。
 このような構成において、圧縮機2の電動機部14に通電することにより、ロータ16が回転する。ロータ16の回転に伴って、回転軸12を介して圧縮機構部17が駆動される。圧縮機構部17が駆動されると、アキュームレータ6で分離したガス冷媒がシリンダ室19の吸込み室19aに吸い込まれる。シリンダ室19内のローラ22の回転により、ローラ22が吸込みポート20の位置を通り過ぎると同時に、シリンダ18に形成される注入路41の第1の開口部51が開口される。吸込みポート20から吸込まれたガス冷媒は、ローラ22の回転によって圧縮される。このとき、ローラ22の回転により開閉される注入路41の第1の開口部51から、中間圧の液冷媒が圧縮室19bに注入される。圧縮室19bに注入された中間圧の液冷媒は、圧縮室19bで蒸発して圧縮室19b内の冷媒を冷却し、吸込みポート20から吸込まれた冷媒と一緒に吐出ポート25aから吐出される。吐出ポート25aから吐出された冷媒は、マフラ室28を通って圧縮機2外部に吐出される。凝縮器3で凝縮された冷媒の一部が、インジェクション管7を通って圧縮機2に導かれる。
 インジェクション管7を通って圧縮機2に導かれた液冷媒は、まずインジェクション流路40のインジェクション導入管70を通じて導入路49に流入する。導入路49に流入した液冷媒は、導入路49の第3の開口部53に向かって流れる。しかしながら、導入路49の第3の開口部53は、通常、逆止弁装置44によって塞がれている。つまり、導入路49に流入した液冷媒は、連通路42へ流れ込まない。そして、圧縮室19bの圧力が導入路49の圧力よりも所定値以上に小さくなったとき、逆止弁装置44のリード弁60の開閉部62が連通路42側に押し込まれ、導入路49の第3の開口部53が開く。そうすると、導入路49内の液冷媒が連通路42に流入する。再び圧縮室19bの圧力が導入路49の圧力よりも大きくなると、逆止弁装置44が第3の開口部53を塞ぐ。
 連通路42に流入した液冷媒は、注入路41の第2の開口部52を通って注入路41に流入する。注入路41に流入した液冷媒は、前述したとおり、シリンダ室19内を回転するローラ22の下面により開閉する注入路41の第1の開口部51が開口したとき、シリンダ室19へ注入される。
 第1の実施形態のインジェクション流路40は、副軸受26に注入路41と導入路49とを備え、端板30に連通路42を備えるが、副軸受26と端板30とを組み合わせて連通路42を画定し、導入路49の第3の開口部53を回転軸12の軸方向に開口し、連通路42内の逆止弁装置44の弁座面45aと副軸受26と端板30との接合面とが同一面であれば良い。例えば、副軸受26のフランジ部26fに溝部43を設け、端板30を固定して連通路42を形成しても良い。この場合、導入路49を端板30に形成すれば、第3の開口部53は軸方向に開口する。逆止弁装置44の弁座面45aと端板30と副軸受26との接合面とは、同一面である。リード弁60は、第3の開口部53の上側から開閉する。
 第1の実施形態の圧縮機2によれば、インジェクション流路40は、導入路49、連通路42および注入路41から形成される。これらの流路41、42、49が副軸受26と端板30に設けられる。導入路49と注入路41とは、連通路42で連絡される。そのため、導入路49と注入路41とを繋げる位置についての設計の自由度を高めることができる。
 導入路49の第3の開口部53の断面積は、注入路41の第1の開口部51の断面積よりも大きいことが好ましい。液冷媒の導入路49側の流量が注入路41側の流量より大きくなり、液冷媒がシリンダ室19に注入されやすくなる。また、逆止弁装置44の流路抵抗が小さくなるため、流路損失を低減できる。よって、冷却能力が向上し、圧縮機の信頼性が向上する。
 さらに、シリンダ室19から導入路49への圧縮冷媒の逆流を防ぐ逆止弁装置44のが、導入路49の第3の開口部を開閉するように、連通路42に設けられ、かつリード弁60の開閉部62が軸方向に開閉する。そのため、確実に逆流が防がれ、流路損失が低減される。
 また、連通路42を形成する副軸受26と端板30との接合面には、シールが必要である。そのため、この接合面は、面粗さが小さく、高精度に形成されている。この接合面に逆止弁装置44の弁座面45aが設けられているので、シール性を高めることができる。
 リード弁60は薄板状であって、片持ち梁状に固定支持部61で固定されている。そのため、リード弁60は、応答性に優れている。つまり、逆止弁装置44は第3の開口部53を圧縮室19bの圧力変動に伴って開閉するが、開閉のタイミングのずれが最小限に抑制され、インジェクション流量の低下が防がれる。さらに、リード弁60は、固定支持部61で固定されている。そのため、開閉部62は、第3の開口部53を安定して開閉することができる。そして、開閉部62の不規則な動きに起因する打痕や摩耗が防止される。
 また、逆止弁装置44の体積Vをリード弁60、弁押さえ64、および固定部材65の体積の合計とし、連通路42の空間容積Cを溝部43の大きさとする。このとき、逆止弁装置44の体積Vは、連通路42の空間容積Cから逆止弁装置44の体積Vを除いた連通路42の実質の空間容積Sよりも大きい。換言すると、連通路42の実質の空間容積Sは、逆止弁装置44の体積V以下に小さい。そのため、シリンダ室19からインジェクション流路40へ逆流する圧縮冷媒量が少なくなって、圧縮損失が抑えられる。
 第1の実施形態では、副軸受26側に導入路49と連通路42を設け、図3に示すように連通路42が注入路41の第2の開口部52よりも下方に位置している。そのため、連通路42に潤滑油が溜まり、連通路42の実質の空間容積Sをさらに低減する。シリンダ室19へインジェクションしていない場合の圧縮機の性能低下が抑制される。
 さらに、図6に示すように、注入路41は、リード弁60の固定支持部61中心と導入路49の第3の開口部53の任意の点を結んだ延長線上に位置している。この範囲に注入路41を設けると、リード弁60が第3の開口部53を開口してインジェクションされるとき、連通路42に流入した冷媒が注入路41に開口する第2の開口部52に略直線的に流れる。そのため、流路抵抗が抑えられ、インジェクション流量の低下が防がれる。
(第2の実施形態)
 第2の実施形態の圧縮機2について図7および図8に基いて説明する。第1の実施形態と同一又は類似する要素には同一の符号を付し、重複する説明は適宜省略する。
 第2の実施形態の圧縮機2は、圧縮機構部17に2つのシリンダ18A、18Bを備えている。下側にAシリンダ18Aが位置し、上側にBシリンダ18Bが位置している。2つのシリンダ18A、18Bの間には、仕切り板32が設けられている。仕切り板32は、2つのシリンダ18A、18Bを仕切り、Aシリンダ18Aのシリンダ室19Aと、Bシリンダ18Bのシリンダ室19Bと、を閉塞する仕切り板32は、重なる2つの仕切り板部材32A、32Bを備えている。
 第2の実施形態の圧縮機2は、仕切り板32に設けられたインジェクション流路40を備えている。つまり、仕切り板32は、Bシリンダ18Bのシリンダ室19Bを閉塞する閉塞部材と、Aシリンダ18Aのシリンダ室19Aを閉塞する端板として機能する。
 図7および図8に示すように、仕切り板部材32Bには、シリンダ室19Bに液冷媒を注入する注入路41が設けられている。仕切り板部材32Aには、シリンダ室19Aに液冷媒を注入する補助注入路50が設けられている。注入路41は、Bシリンダ18Bのシリンダ室19Bに開口する第1の開口部51と、連通路42に開口する第2の開口部52と、を有している。補助注入路50は、Aシリンダ18Aのシリンダ室19Aに開口する第5の開口部71と、連通路42に開口する第6の開口部72と、を有している。連通路42は、仕切り板部材32Bと仕切り板部材32Aとによって形成されている。仕切り板部材32Bには、溝部43が設けられている。連通路42は、仕切り板部材32Bに仕切り板部材32Aを重ねることで塞がれた溝部43である。溝部43は、仕切り板部材32Aの端面で塞がれている。導入路49は、仕切り板部材32Aに径方向に水平に設けられている。導入路49の一端側には、連通路42に軸方向に開口する第3の開口部53が設けられている。導入路49の他端54は、仕切り板部材32Aの外周面に開口している。導入路49の他端54には、密閉ケース10の外部に繋がるインジェクション導入管70が接続されている。インジェクション導入管70は、密閉ケース10の外部でインジェクション管7に接続されている。
 第2実施形態の圧縮機2の連通路42は、導入路49の第3の開口部53の上側に配置されている。連通路42には、導入路49の第3の開口部53を開閉する逆止弁装置44が設けられている。第2の実施形態の逆止弁装置44では、リード弁60の固定支持部61と弁押さえ64とが導入路49が設けられる仕切り板部材32Aに固定部材65で固定されている。リード弁60の固定面と逆止弁装置44の弁座面45aとが、同一面に設けられている。
 このような構成において、インジェクション管7を流れる液冷媒は、第1の実施形態と同様にして、インジェクション導入管70、導入路49、連通路42、注入路41、補助注入路50を通って、各シリンダ室19A、19Bに注入される。このとき、逆止弁装置44は、導入路49の圧力と各シリンダ室19A、19Bの圧力との差圧によって導入路49の第3の開口部53を開閉する。
 第2実施形態の圧縮機2によれば、2つのシリンダ18A、18Bを有するロータリ圧縮機であっても、2つの仕切り板部材32A、32Bからなる仕切り板32にインジェクション流路40を形成することにより、各シリンダ室19A、19Bに液冷媒を供給することができる。
 第2実施形態の圧縮機2は、インジェクション流路40に流入した液冷媒が、注入路41と補助注入路50とに分岐する前の導入路49の第3の開口部53に逆止弁装置44を備えている。そのため、第2実施形態の圧縮機2は、1つの逆止弁装置44で各シリンダ室19A、19Bからの逆流を阻止できる。
 また、第1の実施形態の圧縮機と同様に、主軸受25と副軸受26とのそれぞれに圧縮冷媒を吐出する吐出ポート25aおよび吐出弁25bを設け、かつ副軸受26側のマフラ室と主軸受25側のマフラ室28とを繋げる通路を設けても良い。さらに、各シリンダ18A、18Bの仕切り板32の端面に吐出ポートおよび吐出弁を設けても良い。仕切り板32の端面に吐出された冷媒は、副軸受26側のマフラ室と主軸受25側のマフラ室28とを繋げる通路に合流することが好ましい。このとき、各吐出弁は各シリンダ室19A、19Bと密閉ケース10との差圧により吐出ポート25aを開く。そして、インジェクション流路40に設けられる逆止弁装置44が第3の開口部53を開く差圧は、吐出ポート25aを開く差圧よりも大きい。
 以上説明した少なくとも一つの実施形態の圧縮機2によれば、液冷媒を圧縮機構部17のシリンダ室19に導くインジェクション流路40は、インジェクション導入管70と、導入路49と、注入路41と、導入路49と、注入路41と導入路49とを連絡する連通路42と、を備えている。連通路42は閉塞部材26、32Aと端板30、32Bの2つの部材を組み合わせて形成される。導入路49は、閉塞部材26、32Aまたは端板30、32Bのどちらかに形成することができる。つまり、導入路49と注入路41の連通位置について設計自由度を高めることが可能である。連通路42に備えられる逆止弁装置44は、回転軸12の軸方向に開口する導入路49の第3の開口部53を開閉する。弁座面45aは面粗さが小さく高精度に形成された閉塞部材26、32Aと端板30、32Bと同一面に設けられている。そのため、弁座面45aのシール性を高めることができる。したがって、逆止弁装置44からの冷媒の逆流を防止することができる。
 逆止弁装置44はリード弁60を備えている。そのため、インジェクション時に開閉のタイミングのずれが最小限に抑制され、インジェクション流量の低下が防がれる。さらに、開閉部62の不規則な動きに起因する打痕や摩耗は抑制される。
 逆止弁装置44は、導入路49が設けられる部材に固定される。そのため、リード弁60の固定面と逆止弁装置44の弁座面45aとが同一面に設けられる。リード弁60の開閉部62を弁座面45aに対し、高精度に隙間なく位置させることができる。
 リード弁60の固定支持部61は、シリンダ室19よりも回転軸12の径方向に外側で、かつ回転軸12の軸方向から見てインジェクション流路40に重ならない位置に設けられる。そのため、固定支持部61を固定する固定部材65が、シリンダ室19や導入路49を貫通することによるリークの発生や流路の障害となることが確実に防止される。固定部材65は、実施形態ではリベットを用いたが、その他のねじ固定でも良い。
 また、連通路42の空間容積Sを小さくすることで、シリンダ室19からインジェクション流路40へ逆流する圧縮冷媒量が減る、そのため、圧縮損失が抑制されるとともに、シリンダ室19へインジェクションしていない場合の圧縮機の性能低下が抑制される。
 また、導入路49の第3の開口部53の断面積を注入路41の第1の開口部51の断面積よりも大きく形成する。これにより導入路49の流速が注入路41の流速より大きくなり、インジェクション流路40を流れる冷媒がシリンダ室19に注入されやすくなる。また、導入路49の第3の開口部53の断面を大きくすることで、液冷媒の逆止弁装置44による流路抵抗が小さくなる。そのため、流路損失を低減することができる。以上のような構成とすることで、冷却能力が向上し、信頼性の高い圧縮機2を提供することができる。
 実施形態の圧縮機2は複数のシリンダ室19を有する場合でも適用できる。軸方向に2つの仕切り板部材32A、32Bを重ねて、それぞれの仕切り板部材32A、32Bにインジェクション流路40が設けられる。このような構造とすることで、1つの逆止弁装置44で複数のシリンダ室19からの逆流を阻止できる。そのため、圧縮機2の構造が簡素化され、製造性が向上し、低コスト化が図られる。
 また、実施形態の圧縮機2は、ブレード23とローラ22とを用いたロータリ圧縮機であるが、ブレード23とローラ22とが一体となったスイング式の圧縮機に実施形態のインジェクション流路40を適用した場合にも同等の効果が得られる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1…冷凍サイクル、2…圧縮機、3…凝縮器、4…膨張装置、5…蒸発器、6…アキュームレータ、7…インジェクション管、10…密閉ケース、12…回転軸、14…電動機部、17…圧縮機構部、18…シリンダ、19…シリンダ室、22…ローラ、23…ブレード、25…主軸受、26…副軸受、30…端板、32…仕切り板、32A、32B…仕切り板部材、40…インジェクション流路、41…注入路、42…連通路、44…逆止弁装置、49…導入路、50…補助注入路、51…第1の開口部、52…第2の開口部、53…第3の開口部、54…導入路の他端、60…リード弁、61…固定支持部、62…開閉部、63…リード部、64…弁押さえ、65…固定部材、C…連通路の容積、V…逆止弁装置の体積 

Claims (10)

  1. 密閉ケースと、
     前記密閉ケース内に収容される圧縮機構部と、を備え、
     前記圧縮機構部は、
      シリンダ室を有するシリンダと、
      前記シリンダの一方の端面に固定され、前記シリンダ室を閉塞する閉塞部材と、
      前記閉塞部材に重ねられる端板と、
      前記シリンダ室内に冷媒を供給するインジェクション流路と、
      前記シリンダ室内に流入した冷媒を圧縮するローラと、
      前記インジェクション流路に設けられた逆止弁装置と、を有し、
     前記インジェクション流路は、
      前記閉塞部材に設けられ、かつ前記シリンダ室に開口する一端と、前記端板側に開口する他端と、を有する注入路と、
      前記閉塞部材と前記端板との間に設けられて前記注入路に繋がる連通路と、
      前記閉塞部材および前記端板のいずれか一方に設けられ、かつ前記閉塞部材と前記端板とが重なる方向に開口して前記連通路に繋がる一端と、前記密閉ケースの外部に連通するインジェクション導入管が接続される他端と、を有する導入路と、を有し、
     前記逆止弁装置は、
      前記導入路を開閉するリード弁と、
      前記リード弁の開度を規制する弁押さえと、
      前記リード弁と前記弁押さえを固定する固定部材と、を備え、
     前記リード弁と前記弁押さえとは、前記導入路が設けられる前記閉塞部材または前記端板に固定される密閉型圧縮機。
  2. 前記リード弁の弁座面と前記閉塞部材と前記端板との接合面とが、同一面である請求項1に記載の密閉型圧縮機。
  3. 前記シリンダ室で圧縮された冷媒を密閉ケース内に吐出する吐出孔と、前記吐出孔を開閉する吐出弁と、を備え、
     前記逆止弁装置は、前記吐出弁が前記吐出孔を開く差圧よりも大きい差圧で前記導入路の連通路側開口部を開く請求項1または2に記載の密閉型圧縮機。
  4. 前記リード弁は、
     前記固定部材で固定される固定支持部と、
     前記導入路の連通路側の開口部を開閉する開閉部と、
     前記固定支持部と前記開閉部とを連結するリード部と、を有し、
    前記固定支持部は、
     前記シリンダ室よりも前記圧縮機構部を駆動する電動機部と圧縮機構部とを連結する回転軸の径方向外側に配置されるとともに、前記回転軸の軸方向から見て前記インジェクション流路に重ならない位置に設けられる請求項1から3のいずれか1項に記載の密閉型圧縮機。
  5. 前記逆止弁装置は、前記連通路内に設けられ、
    前記逆止弁装置の体積は、前記連通路から前記逆止弁装置の体積を除いた空間容積よりも大きい請求項1から4のいずれか1項に記載の密閉型圧縮機。
  6. 前記連通路の少なくとも一部が、前記注入路の連通路側の開口部より下方に位置する請求項5に記載の密閉型圧縮機。
  7. 前記圧縮機構部は、前記シリンダを複数有し、
    前記複数のシリンダの間に前記インジェクション流路を備える請求項1から6のいずれか1項に記載の密閉型圧縮機。
  8. 前記複数のシリンダの間に前記シリンダ室を閉塞し、前記圧縮機構部を駆動する電動機部と圧縮機構部とを連結する回転軸の軸方向に並ぶ2つの仕切板を備え、
    前記仕切板の一方は前記閉塞部材であって、他方は前記端板である請求項7に記載の密閉型圧縮機。
  9. 前記注入路は、一方の前記シリンダの前記シリンダ室に開口し、
    前記端板に設けられ、かつ他方の前記シリンダの前記シリンダ室に開口する一端と、前記連通路に開口する他端と、を有する補助注入路を備える請求項7または8に記載の密閉型圧縮機。
  10. 請求項1から9のいずれか1項に記載の密閉型圧縮機と、
     前記密閉型圧縮機に接続される放熱器と、
     前記放熱器に接続される膨張装置と、
     前記膨張装置と前記密閉型圧縮機の間に接続される吸熱器と、を備える冷凍サイクル装置。
PCT/JP2019/014694 2018-04-20 2019-04-02 密閉型圧縮機および冷凍サイクル装置 WO2019202976A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19789323.3A EP3783225B1 (en) 2018-04-20 2019-04-02 Hermetic compressor and refrigeration cycle apparatus
CN201980026962.5A CN112055785B (zh) 2018-04-20 2019-04-02 密闭型压缩机以及制冷循环装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018081100A JP7066495B2 (ja) 2018-04-20 2018-04-20 密閉型圧縮機及び冷凍サイクル装置
JP2018-081100 2018-04-20

Publications (1)

Publication Number Publication Date
WO2019202976A1 true WO2019202976A1 (ja) 2019-10-24

Family

ID=68239451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014694 WO2019202976A1 (ja) 2018-04-20 2019-04-02 密閉型圧縮機および冷凍サイクル装置

Country Status (4)

Country Link
EP (1) EP3783225B1 (ja)
JP (1) JP7066495B2 (ja)
CN (1) CN112055785B (ja)
WO (1) WO2019202976A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157121A1 (ja) * 2020-02-03 2021-08-12 パナソニックIpマネジメント株式会社 インジェクション機構付き圧縮機
JP7424258B2 (ja) 2020-09-28 2024-01-30 株式会社富士通ゼネラル ロータリ圧縮機
WO2024029566A1 (ja) * 2022-08-04 2024-02-08 三菱重工サーマルシステムズ株式会社 ロータリー圧縮機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160987U (ja) * 1981-04-03 1982-10-08
JPS5760836B2 (ja) 1975-07-15 1982-12-21 Nippon Denki Kk
JPS58148295A (ja) * 1982-02-26 1983-09-03 Daikin Ind Ltd 冷凍装置
JPS5997291U (ja) * 1982-12-21 1984-07-02 ダイキン工業株式会社 可変容量形圧縮機
JPS62173585U (ja) 1986-04-23 1987-11-04

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3568712A (en) * 1969-04-01 1971-03-09 Gen Electric Suction valve for rotary compressor
JPH0337391A (ja) * 1989-07-04 1991-02-18 Hitachi Ltd ロータリ圧縮機
WO2012004992A1 (ja) * 2010-07-08 2012-01-12 パナソニック株式会社 ロータリ圧縮機及び冷凍サイクル装置
US9909587B2 (en) * 2013-09-30 2018-03-06 Guangdong Meizhi Compressor Co., Ltd. Refrigerant filling rotary compressor
CN105065273B (zh) * 2015-08-24 2017-06-13 广东美芝制冷设备有限公司 旋转式压缩机和具有其的冷冻循环装置
CN206221275U (zh) * 2016-11-29 2017-06-06 广东美芝精密制造有限公司 压缩机及具有其的制冷系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760836B2 (ja) 1975-07-15 1982-12-21 Nippon Denki Kk
JPS57160987U (ja) * 1981-04-03 1982-10-08
JPS58148295A (ja) * 1982-02-26 1983-09-03 Daikin Ind Ltd 冷凍装置
JPS5997291U (ja) * 1982-12-21 1984-07-02 ダイキン工業株式会社 可変容量形圧縮機
JPS62173585U (ja) 1986-04-23 1987-11-04

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3783225A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157121A1 (ja) * 2020-02-03 2021-08-12 パナソニックIpマネジメント株式会社 インジェクション機構付き圧縮機
JP7398642B2 (ja) 2020-02-03 2023-12-15 パナソニックIpマネジメント株式会社 インジェクション機構付き圧縮機
JP7424258B2 (ja) 2020-09-28 2024-01-30 株式会社富士通ゼネラル ロータリ圧縮機
WO2024029566A1 (ja) * 2022-08-04 2024-02-08 三菱重工サーマルシステムズ株式会社 ロータリー圧縮機

Also Published As

Publication number Publication date
EP3783225A4 (en) 2022-03-23
CN112055785B (zh) 2022-05-31
EP3783225A1 (en) 2021-02-24
EP3783225B1 (en) 2023-05-10
JP2019190302A (ja) 2019-10-31
JP7066495B2 (ja) 2022-05-13
CN112055785A (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2019202976A1 (ja) 密閉型圧縮機および冷凍サイクル装置
JP5586537B2 (ja) ロータリ二段圧縮機
WO2009098874A1 (ja) 圧縮機及び冷凍装置
JP6886522B2 (ja) 密閉型圧縮機及び冷凍サイクル装置
JP2015175258A (ja) 回転式圧縮機及び冷凍サイクル装置
AU2005314950B2 (en) Rotary compressor with reduced refrigeration gas leak during compression while preventing seizure
JP6267360B2 (ja) 回転式圧縮機及び冷凍サイクル装置
JP2005207306A (ja) 2気筒回転圧縮機
JP2019167839A (ja) 密閉型圧縮機及び冷凍サイクル装置
JP4930314B2 (ja) 容積型膨張機、膨張機一体型圧縮機、および冷凍サイクル装置
WO2019171508A1 (ja) ロータリ圧縮機
CN112262259B (zh) 旋转式压缩机
JP5727348B2 (ja) 気体圧縮機
CN110520625B (zh) 密闭型压缩机以及制冷循环装置
WO2016121021A1 (ja) スクリュー圧縮機
JP7398642B2 (ja) インジェクション機構付き圧縮機
WO2018003431A1 (ja) 多段圧縮機
WO2022269752A1 (ja) ロータリ圧縮機および冷凍サイクル装置
JP2019132254A (ja) 回転式圧縮機、および冷凍サイクル装置
JP6430904B2 (ja) 圧縮機及び冷凍サイクル装置
WO2021038738A1 (ja) スクロール圧縮機
CN115962127A (zh) 旋转式压缩机以及制冷循环装置
KR20200142758A (ko) 스크롤형 압축기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19789323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019789323

Country of ref document: EP