WO2009098874A1 - 圧縮機及び冷凍装置 - Google Patents

圧縮機及び冷凍装置 Download PDF

Info

Publication number
WO2009098874A1
WO2009098874A1 PCT/JP2009/000433 JP2009000433W WO2009098874A1 WO 2009098874 A1 WO2009098874 A1 WO 2009098874A1 JP 2009000433 W JP2009000433 W JP 2009000433W WO 2009098874 A1 WO2009098874 A1 WO 2009098874A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression chamber
stage compression
refrigerant
chamber
end plate
Prior art date
Application number
PCT/JP2009/000433
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Furusho
Yoshitaka Shibamoto
Takashi Shimizu
Takazou Sotojima
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP09707901.6A priority Critical patent/EP2251546A4/en
Priority to CN200980104142XA priority patent/CN101939548B/zh
Priority to US12/865,666 priority patent/US8419395B2/en
Publication of WO2009098874A1 publication Critical patent/WO2009098874A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/04Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents of internal-axis type
    • F01C1/045Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents of internal-axis type having a C-shaped piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/04Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents of internal-axis type
    • F04C18/045Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents of internal-axis type having a C-shaped piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/322Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/324Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the inner member and reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • F04C27/006Elements specially adapted for sealing of the lateral faces of intermeshing-engagement type pumps, e.g. gear pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/22Fluid gaseous, i.e. compressible
    • F04C2210/222Carbon dioxide (CO2)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/261Carbon dioxide (CO2)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump

Definitions

  • the present invention relates to a compressor that performs two-stage compression of a refrigerant, and a refrigeration apparatus provided with the compressor.
  • compressors of this type are connected to an intermediate injection passage for introducing the intermediate pressure refrigerant of the refrigerant circuit into the high-stage compression chamber on the refrigerant circuit performing the refrigeration cycle.
  • Patent Document 1 discloses a compressor including two fluid machines.
  • this compressor two compression chambers are formed in each of the first fluid machine and the second fluid machine.
  • the first compression chamber of the first fluid machine and the second compression chamber of the second fluid machine become the low-stage compression chamber, and the first fluid machine first
  • the third compression chamber and the fourth compression chamber of the second fluid machine become the higher-stage compression chamber.
  • the intermediate pressure refrigerant from the intermediate injection passage is mixed with the refrigerant compressed in the first compression chamber and the second compression chamber and sent to the third compression chamber and the fourth compression chamber.
  • a cylinder is a movable member, and a housing provided with a piston is a fixed member.
  • a compression chamber is formed between the end plate portion of the movable member and the end plate portion of the fixed member.
  • the refrigerant discharged from the low-stage compression chamber and the refrigerant from the intermediate injection passage flow into the high-stage compression chamber, whereas the injection operation is stopped.
  • the volume of the refrigerant sucked into the high-stage compression chamber is constant both during and after the intermediate injection operation, it is lower when the injection operation is stopped than when the injection operation is performed.
  • the compression ratio of the refrigerant in the compression chamber becomes small.
  • the pressure of the intermediate pressure refrigerant discharged from the low-stage side compression chamber becomes low. Accordingly, the pressure on the discharge side of the compression chamber on the lower stage side and the pressure on the suction side of the compression chamber on the higher stage side are reduced, so that the separation force is reduced.
  • the pressing force is set so that the movable member does not separate from the fixed member during the execution of the injection operation in which the separating force becomes larger. Therefore, in the conventional compressor, the pressing force is excessive with respect to the separation force while the injection operation is stopped, and the energy loss in the compression mechanism is increased due to the friction generated between the movable member and the fixed member.
  • the present invention has been made in view of such a point, and an object of the present invention is to reduce energy loss of the compression mechanism while the intermediate injection operation is stopped in a compressor that performs two-stage compression of refrigerant.
  • the refrigerant compressed in the low-stage compression chamber (61, 62) by forming the low-stage compression chamber (61, 62) and the high-stage compression chamber (63, 64) is formed.
  • a compression mechanism (30) for further compression in the compression chambers (63, 64) on the higher stage side is provided, and the intermediate pressure refrigerant of the refrigerant circuit (10) is supplied to the lower stage with respect to the refrigerant circuit (10) performing the refrigeration cycle.
  • the compressor (20) provided with the intermediate injection passage (18) connected between the compression chamber (61, 62) on the side and the compression chamber (63, 64) on the higher stage side is the object.
  • the compression mechanism (30) is provided with a fixed end plate portion (51a, 52a, 55a, 56a) facing the compression chamber (61-64) on the base end side.
  • 55a, 56a) includes a movable member (51, 52, 55, 56) provided on the base end side, and the movable member (51, 52, 55, 56) is eccentrically rotated to compress the refrigerant.
  • the compression mechanism (30) is formed on the back side of the movable side end plate (51a, 52a, 55a, 56a) and is formed on the discharge side of the lower-stage compression chamber (61, 62).
  • the intermediate pressure back pressure chamber (85,95) communicated with the internal pressure back pressure chamber (85,95) by applying the internal pressure of the intermediate pressure back pressure chamber (85,95) to the movable side end plate portion (51a, 52a, 55a, 56a).
  • the member (51, 52, 55, 56) is configured to be pressed against the fixing member (51, 52, 55, 56).
  • the compression mechanism (30) includes the fixed member (51, 52, 55, 56) and the movable member (51, 52, 55, 56), respectively. While providing the 1st mechanism part (24) and the 2nd mechanism part (25), the above-mentioned intermediate pressure back pressure chamber (85, 95) is the above-mentioned 1st mechanism part (24) and the above-mentioned 2nd mechanism part (25). It is formed on the back side of at least one of the movable side end plate portions (51a, 52a, 55a, 56a).
  • the low-stage compression chamber (61) is provided in each of the first mechanism portion (24) and the second mechanism portion (25).
  • 62) and the higher-stage compression chamber (63, 64) are formed, while the intermediate-pressure back pressure chamber (85, 95) includes the first mechanism portion (24) and the second mechanism. It is formed on the back side of both movable side end plate parts (51a, 52a, 55a, 56a) of the part (25).
  • the low-stage compression chamber (61, 62) is formed only in the first mechanism portion (24), so that the high-stage The compression chamber (63, 64) on the side is formed only in the second mechanism portion (25), while the intermediate pressure back pressure chamber (85, 95) is the movable side end plate of the second mechanism portion (25). It is formed on the back side of the part (55a, 56a).
  • the intermediate pressure back pressure chamber (85, 95) is also formed on the back side of the movable end plate portion (51a, 52a) of the first mechanism portion (24). Has been.
  • the low-stage compression chamber (61, 62) is formed only in the first mechanism portion (24), and the high stage The compression chamber (63, 64) on the side is formed only in the second mechanism portion (25), while the intermediate pressure back pressure chamber (85, 95) is the movable side end plate of the first mechanism portion (24). It is formed on the back side of the part (51a, 52a).
  • the compression mechanism (30) includes only one pair of the fixed member (51, 52, 55, 56) and the movable member (51, 52, 55, 56).
  • the eighth invention is configured such that, in any one of the first to seventh inventions, the carbon dioxide refrigerant is compressed by the compression mechanism (30).
  • a ninth invention includes a refrigerant circuit (10) that is provided with the compressor (20) of any one of the first to eighth inventions and performs a refrigeration cycle, and the refrigerant circuit (10) includes the compression circuit.
  • An intermediate injection passage (18) for introducing intermediate pressure refrigerant into the compression chamber (63, 64) on the higher stage side of the machine (20), and an opening / closing mechanism (16) for opening and closing the intermediate injection passage (18) The refrigeration apparatus (1) provided.
  • the pressure of the intermediate-pressure refrigerant is lower when the intermediate injection operation is stopped than when the intermediate injection operation is being performed.
  • the pressing force acting on the movable member (51, 52, 55, 56) is smaller than that during execution of the intermediate injection operation due to the presence of the intermediate pressure back pressure chamber (85, 95) on the back surface. Smaller when the intermediate injection operation is stopped.
  • the separation force acting on the movable member (51, 52, 55, 56) is smaller when the intermediate injection operation is stopped than when the intermediate injection operation is being performed, as described above.
  • the compression mechanism (30) includes the first mechanism portion (24) and the second mechanism portion (25). Both the first mechanism portion (24) and the second mechanism portion (25) have a fixed member (51, 52, 55, 56) and a movable member (51, 52, 55, 56).
  • An intermediate pressure back pressure chamber (85, 95) is provided on the back side of at least one of the movable end plate portions (51a, 52a, 55a, 56a) of the first mechanism portion (24) and the second mechanism portion (25). Is formed.
  • the lower mechanism side compression chamber (61, 62) and the higher stage compression are provided in each mechanism part (24, 25) of the first mechanism part (24) and the second mechanism part (25). Both chambers (63, 64) are formed.
  • An intermediate pressure back pressure chamber (85, 95) is formed on the back side of the movable side end plate portions (51a, 52a, 55a, 56a) of both the first mechanism portion (24) and the second mechanism portion (25). Has been.
  • the intermediate pressure back pressure chamber (55a, 56a) is provided on the back side of the movable end plate portion (55a, 56a) of the second mechanism portion (25) in which the high-stage compression chamber (63, 64) is formed. 85, 95) are formed.
  • the pressure of the intermediate pressure refrigerant decreases, so the pressure on the discharge side of the low-stage compression chamber (61, 62) and The pressure on the suction side of the high-stage compression chamber (63, 64) decreases.
  • the pressure drops by the same value on the discharge side of the low-stage compression chamber (61, 62) and on the suction side of the high-stage compression chamber (63, 64).
  • the higher-stage compression chambers (63, 64) are more susceptible to changes in the pressure of the intermediate-pressure refrigerant than the lower-stage compression chambers (61, 62), and the intermediate injection operation is stopped. Increase rate of separation force increases.
  • the change rate of the separation force due to the stop of the intermediate injection operation is larger than that of the first mechanism portion (24), and the rear surface of the movable side end plate portion (55a, 56a) of the second mechanism portion (25). On the side, an intermediate pressure back pressure chamber (85, 95) is formed.
  • the intermediate pressure back pressure chamber (51a, 52a) is provided on the back side of the movable end plate portion (51a, 52a) of the first mechanism portion (24) in which the low-stage compression chamber (61, 62) is formed. 85, 95) are formed.
  • the intermediate pressure back pressure chamber (85, 95) is formed not only on the second mechanism portion (25) but also on the back side of the movable side end plate portions (51a, 52a) of the first mechanism portion (24).
  • the compression ratio of the refrigerant in the lower-stage compression chambers (61, 62) is smaller when the injection operation is stopped than when the injection operation is being performed.
  • the intermediate pressure back pressure chamber is provided on the back side of the movable end plate portion (51a, 52a) of the first mechanism portion (24) in which the amount of work required to compress the refrigerant decreases with the stop of the injection operation. (85, 95) is formed so that the pressing force acting on the movable member (51, 52, 55, 56) is reduced during the stop of the intermediate injection operation.
  • the movable side end plate (51a, 52a) of the first mechanism (24) reduces the amount of work required for refrigerant compression as the injection operation stops.
  • An intermediate pressure back pressure chamber (85, 95) is formed on the back side so that the pressing force acting on the movable member (51, 52, 55, 56) is reduced while the intermediate injection operation is stopped.
  • the compression mechanism (30) includes only one pair of fixed members (51, 52, 55, 56) and movable members (51, 52, 55, 56).
  • the movable side end plate portion (51a, 52a, 55a) of the movable member (51, 52, 55, 56) 56a) is formed with an intermediate pressure back pressure chamber (85, 95) on the back side.
  • the carbon dioxide refrigerant is compressed by the compression mechanism (30).
  • the carbon dioxide refrigerant is compressed in two stages in the low-stage compression chamber (61, 62) and the high-stage compression chamber (63, 64).
  • the ninth invention when the open / close mechanism (16) sets the intermediate injection passage (18) to the open state, the intermediate pressure refrigerant is introduced into the high-stage compression chambers (63, 64) of the compressor (20). An injection operation is performed. On the other hand, when the opening / closing mechanism (16) sets the intermediate injection passage (18) to the closed state, the intermediate injection operation is stopped.
  • the compressor (20) of the refrigeration apparatus (1) that performs the intermediate injection operation the compressor (20) of any one of the first to eighth inventions, that is, the intermediate injection operation is stopped.
  • a compressor (20) in which the pressing force acting on the movable member (51, 52, 55, 56) is reduced is applied.
  • the intermediate pressure back pressure chamber (85, 95) is formed on the back side of the movable side end plate portion (51a, 52a, 55a, 56a), thereby acting on the movable member (51, 52, 55, 56).
  • the pressing force acting on the movable members (51, 52, 55, 56) is made small during the stop of the intermediate injection operation in which the separating force is small.
  • the movable side end plate portion (51a) is compared with the second mechanism portion (25) in which the rate of change of the separation force due to the stop of the intermediate injection operation is larger than that of the first mechanism portion (24).
  • 52a, 55a, 56a) are formed with intermediate pressure back pressure chambers (85, 95) on the back side. That is, if the intermediate pressure back pressure chamber (85, 95) is not formed on the back side of the movable side end plate portion (51a, 52a, 55a, 56a) as in the present invention, it is compared with the first mechanism portion (24).
  • not only the second mechanism portion (25) but also the back side of the movable end plate portion (51a, 52a) of the first mechanism portion (24) is provided with the intermediate pressure back pressure chamber (85, 95) is formed. Accordingly, not only the second mechanism portion (25) but also the first mechanism portion (24) can reduce the energy loss during the stop of the intermediate injection operation, so that the energy loss of the compression mechanism (30) can be reduced. it can.
  • the intermediate pressure back pressure chambers (85, 95) are formed in this way so that the pressing force acting on the movable members (51, 52, 55, 56) is reduced during the stop of the intermediate injection operation.
  • the low-stage side is accompanied by the stop of the injection operation.
  • the frictional force generated between the movable member and the fixed member is increased despite the reduction in the amount of work required to compress the refrigerant. For this reason, in the mechanism part in which the low-stage side compression chamber is formed, the compression efficiency during the stop of the injection operation is greatly reduced.
  • the pressing force acting on the movable member (51, 52, 55, 56) of the first mechanism portion (24) is small while the intermediate injection operation is stopped. Become. For this reason, compared with the conventional compressor, since the frictional force produced by the difference of pressing force and separation force becomes small, the fall of the compression efficiency during the stop of injection operation can be suppressed.
  • the pressing force acting on the movable member (51, 52, 55, 56) while the intermediate injection operation is stopped.
  • a compressor (20) with a smaller value is applied. For this reason, since the energy loss of the compressor (20) during the stop of the intermediate injection operation is reduced, the operating efficiency of the refrigeration apparatus (1) can be improved.
  • FIG. 1 is a piping system diagram of a refrigerant circuit of an air conditioner according to the first embodiment.
  • FIG. 2 is a longitudinal sectional view of the compressor according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the first mechanism unit (second mechanism unit) according to the first embodiment.
  • FIG. 4 is an enlarged cross-sectional view of the pressing mechanism according to Embodiment 1 (Embodiment 2).
  • FIG. 5 is a piping diagram of the refrigerant circuit of the air conditioner according to the second embodiment.
  • FIG. 6 is a longitudinal sectional view of the compressor according to the second embodiment.
  • FIG. 7 is a cross-sectional view of the first mechanism unit (second mechanism unit) according to the second embodiment.
  • FIG. 1 is a piping system diagram of a refrigerant circuit of an air conditioner according to the first embodiment.
  • FIG. 2 is a longitudinal sectional view of the compressor according to the first embodiment.
  • FIG. 3 is a cross-sectional view of
  • FIG. 8 is a longitudinal sectional view of the compressor according to the third embodiment.
  • FIG. 9 is a cross-sectional view of the first mechanism unit (second mechanism unit) according to the third embodiment.
  • FIG. 10 is an enlarged cross-sectional view of the pressing mechanism according to the third embodiment.
  • FIG. 11 is a piping diagram of a refrigerant circuit of an air conditioner according to another embodiment.
  • the refrigeration apparatus is an air conditioner (1) that performs switching between indoor heating and cooling.
  • the air conditioner (1) includes a refrigerant circuit (10) that performs a refrigeration cycle by circulating refrigerant, and constitutes a so-called heat pump type air conditioner.
  • the refrigerant circuit (10) is filled with carbon dioxide as a refrigerant.
  • the refrigerant circuit (10) includes a compressor (20), an indoor heat exchanger (11), an expansion valve (12), and an outdoor heat exchanger (13) as main components. Is provided.
  • the indoor heat exchanger (11) is installed in the indoor unit.
  • the indoor heat exchanger (11) exchanges heat between indoor air blown by an indoor fan (not shown) and the refrigerant.
  • the outdoor heat exchanger (13) is provided in the outdoor unit.
  • the outdoor heat exchanger (13) exchanges heat between the outdoor air blown by an outdoor fan (not shown) and the refrigerant.
  • the expansion valve (12) is provided between a second end of an internal heat exchanger (15) described later and a bridge circuit (19) described later.
  • the expansion valve (12) is an electronic expansion valve whose opening degree is adjustable.
  • the refrigerant circuit (10) is provided with a four-way switching valve (14), a bridge circuit (19), an internal heat exchanger (15), a pressure reducing valve (16), and a liquid receiver (17). .
  • the four-way switching valve (14) has four ports from first to fourth.
  • the four-way selector valve (14) has its first port connected to the discharge pipe (31) of the compressor (20), its second port connected to the indoor heat exchanger (11), and its third port It is connected to the suction pipe (32) of the compressor (20) via the liquid receiver (17), and its fourth port is connected to the outdoor heat exchanger (13).
  • the four-way selector valve (14) is in a first state (FIG. 1) in which the first port (P1) and the second port (P2) communicate with each other and the third port (P3) and the fourth port (P4) communicate with each other.
  • the second port (P2) and the third port (P3) at the same time as the first port (P1) and the fourth port (P4) communicate with each other (the broken line shown in FIG. 1). (Status) can be switched.
  • the bridge circuit (19) is a circuit in which the first connection line (19a), the second connection line (19b), the third connection line (19c), and the fourth connection line (19d) are connected in a bridge shape.
  • the first connection line (19a) connects the outdoor heat exchanger (13) and one end side of the internal heat exchanger (15).
  • the second connection line (19b) connects the indoor heat exchanger (11) and one end side of the internal heat exchanger (15).
  • the third connection line (19c) connects the outdoor heat exchanger (13) and the other end side of the internal heat exchanger (15).
  • the fourth connection line (19d) connects the indoor heat exchanger (11) and the other end side of the internal heat exchanger (15).
  • the first connection line (19a) is provided with a first check valve (CV1) that prohibits the flow of refrigerant from one end of the internal heat exchanger (15) toward the outdoor heat exchanger (13).
  • the second connection line (19b) is provided with a second check valve (CV2) that prohibits the flow of refrigerant from one end of the internal heat exchanger (15) toward the indoor heat exchanger (11).
  • the third connection line (19c) is provided with a third check valve (CV3) that prohibits the flow of refrigerant from the outdoor heat exchanger (13) toward the other end of the internal heat exchanger (15).
  • the fourth connection line (19d) is provided with a fourth check valve (CV4) that prohibits the flow of refrigerant from the indoor heat exchanger (11) toward the other end of the internal heat exchanger (15). .
  • the internal heat exchanger (15) constitutes a double pipe heat exchanger having a first heat exchange channel (15a) and a second heat exchange channel (15b).
  • the first heat exchange channel (15a) includes a first end of a bridge circuit (19) to which an outlet end of the first connection line (19a) and an outlet end of the second connection line (19b) are connected, and a third It arrange
  • the second heat exchange channel (15b) is disposed so as to straddle the intermediate injection pipe (18) branched from between the internal heat exchanger (15) and the first end of the bridge circuit (19).
  • the intermediate injection pipe (18) forms an intermediate injection passage and is connected to an intermediate pressure communication pipe (33) described later.
  • the intermediate injection pipe (18) is provided with a pressure reducing valve (16) constituting an opening / closing mechanism on the upstream side of the internal heat exchanger (15).
  • the high-pressure liquid refrigerant flowing through the first heat exchange channel (15a) and the intermediate pressure refrigerant flowing through the second heat exchange channel (15b) can exchange heat. ing.
  • the compressor (20) is configured as a compressor for carbon dioxide refrigerant.
  • the compressor (20) includes a compression mechanism (30) including a first mechanism part (24) and a second mechanism part (25).
  • a low-stage compression chamber (61, 62) and a high-stage compression chamber (63, 64) are formed in each mechanism (24, 25), respectively. Details of the compressor (20) will be described later.
  • a plurality of pipes are connected to the compressor (20). Specifically, the first suction branch pipe (42a) branched from the suction pipe (32) is connected to the suction side of the lower-stage compression chamber (61) of the first mechanism section (24). A second suction branch pipe (42b) branched from the suction pipe (32) is connected to the suction side of the lower stage compression chamber (62) of the second mechanism section (25). Further, an intermediate pressure communication pipe (33) is connected to the discharge side of the compression chamber (61) on the lower stage side of the second mechanism section (25). The discharge side of the compression chamber (62) on the lower stage side of the second mechanism portion (25) is the discharge side of the compression chamber (61) on the lower stage side of the first mechanism portion (24) inside the compressor (20).
  • a first intermediate branch pipe (43a) branched from the intermediate pressure communication pipe (33) is connected to the suction side of the higher-stage compression chamber (63) of the first mechanism section (24).
  • a second intermediate branch pipe (43b) branched from the intermediate pressure communication pipe (33) is connected to the suction side of the higher-stage compression chamber (64) of the second mechanism section (25).
  • a connection pipe (69) connected to an intermediate connection passage (79) described later is branched.
  • the first mechanism portion (24) and the second mechanism portion (25) are the cylinder (52,56) of the cylinder (52,56) and the piston (53,57). Is a piston fixed system that moves eccentrically. This point is the same in the second embodiment described later.
  • the compressor (20) is provided with a vertically long and sealed casing-like casing (21).
  • An electric motor (22) and a compression mechanism (30) are housed inside the casing (21).
  • the compressor (20) is a so-called high-pressure dome type compressor in which the inside of the casing (21) is filled with a high-pressure refrigerant.
  • the electric motor (22) includes a stator (26) and a rotor (27).
  • the stator (26) is fixed to the body of the casing (21).
  • the rotor (27) is disposed inside the stator (26) and is connected to the main shaft portion (23a) of the drive shaft (23).
  • the rotational speed of the electric motor (22) is variable by inverter control. That is, the electric motor (22) is composed of an inverter compressor having a variable capacity.
  • the drive shaft (23) is formed with a first eccentric part (23b) located near its lower part and a second eccentric part (23c) located near its central part.
  • the first eccentric part (23b) and the second eccentric part (23c) are each eccentric from the axis of the main shaft part (23a) of the drive shaft (23).
  • the first eccentric portion (23b) and the second eccentric portion (23c) are 180 ° out of phase with each other about the axis of the drive shaft (23).
  • the compression mechanism (30) is arranged below the electric motor (22).
  • the compression mechanism (30) includes a first mechanism part (24) closer to the bottom of the casing (21) and a second mechanism part (25) closer to the electric motor (22).
  • the first mechanism portion (24) includes a first housing (51) fixed to the casing (21) and a first cylinder (52) housed in the first housing (51).
  • the first housing (51) constitutes a fixed member
  • the first cylinder (52) constitutes a movable member.
  • the first housing (51) includes a disk-shaped fixed side end plate portion (51a) and an annular first piston (53) protruding upward from the upper surface of the fixed side end plate portion (51a).
  • the first cylinder (52) is movable with a disc-shaped movable side end plate part (52a), an annular inner cylinder part (52b) protruding downward from the inner peripheral end of the movable side end plate part (52a), and And an annular outer cylinder portion (52c) protruding downward from the outer peripheral end portion of the side end plate portion (52a).
  • the first eccentric part (23b) is fitted to the inner cylinder part (52b) of the first cylinder (52).
  • the first cylinder (52) is configured to rotate eccentrically about the axis of the main shaft (23a) as the drive shaft (23) rotates.
  • the first cylinder (52) has an annular first cylinder chamber (54) between the outer peripheral surface of the inner cylinder portion (52b) and the inner peripheral surface of the outer cylinder portion (52c). .
  • a first piston (53) is disposed in the first cylinder chamber (54).
  • the first cylinder chamber (54) includes a first low-stage compression chamber (61) formed between the outer peripheral surface of the first piston (53) and the outer wall of the first cylinder chamber (54),
  • the first piston (53) is partitioned into a first higher-stage compression chamber (63) formed between the inner peripheral surface of the first piston (53) and the inner wall of the first cylinder chamber (54).
  • the first cylinder (52) has a first cylinder (52c) in communication with the suction space (38) outside the first cylinder (52) and the first low-stage compression chamber (61).
  • a communication path (59) is formed.
  • the first cylinder (52) is provided with a blade (45) extending from the inner peripheral surface of the outer cylinder portion (52c) to the outer peripheral surface of the inner cylinder portion (52b).
  • the blade (45) divides the first low-stage compression chamber (61) and the first high-stage compression chamber (63) into a low-pressure chamber on the suction side and a high-pressure chamber on the discharge side.
  • the first piston (53) has a C shape in which a part of the annular shape is divided, and the blade (45) is inserted through the divided portion.
  • semicircular bushes (46, 46) are fitted to the dividing portion of the piston (53) so as to sandwich the blade (45).
  • the bushes (46, 46) are configured to be swingable at the end of the piston (53).
  • the cylinder (52) can move forward and backward in the extending direction of the blade (45), and can swing with the bushes (46, 46).
  • the drive shaft (23) rotates
  • the cylinder (52) rotates eccentrically in the order of (A) to (D) in FIG. 3, and the first low-stage compression chamber (61) and the first high-stage compression chamber ( 63)
  • the refrigerant is compressed.
  • the second mechanism part (25) is composed of the same mechanical elements as the first mechanism part (24).
  • the second mechanism part (25) is provided upside down with respect to the first mechanism part (24) with the middle plate (41) interposed therebetween.
  • the second mechanism portion (25) includes a second housing (55) fixed to the casing (21), and a second cylinder (56) housed in the second housing (55). Yes.
  • the second housing (55) constitutes a fixed member
  • the second cylinder (56) constitutes a movable member.
  • the second housing (55) includes a disk-shaped fixed side end plate portion (55a) and an annular second piston (57) protruding downward from the lower surface of the fixed side end plate portion (55a).
  • the second cylinder (56) includes a disc-shaped end plate portion (56a), an annular inner cylinder portion (56b) protruding upward from the inner peripheral end of the end plate portion (56a), and an end plate portion (56a). And an annular outer cylinder portion (56c) projecting upward from the outer peripheral end portion of the.
  • the second eccentric portion (23c) is fitted to the inner cylinder portion (56b) of the second cylinder (56).
  • the second cylinder (56) is configured to rotate eccentrically about the axis of the main shaft (23a) as the drive shaft (23) rotates.
  • the second cylinder (56) has an annular second cylinder chamber (58) between the outer peripheral surface of the inner cylinder portion (56b) and the inner peripheral surface of the outer cylinder portion (56c). .
  • a second piston (57) is disposed in the second cylinder chamber (58).
  • the second cylinder chamber (58) includes a second low-stage compression chamber (62) formed between the outer peripheral surface of the second piston (57) and the outer wall of the second cylinder chamber (58),
  • the second piston (57) is partitioned into a second higher-stage compression chamber (64) formed between the inner peripheral surface of the second piston (57) and the inner wall of the second cylinder chamber (58).
  • a second cylinder (56c) of the second cylinder (56) communicates with the suction space (39) outside the second cylinder (56) and the second low-stage compression chamber (62).
  • a communication path (60) is formed.
  • each mechanism part of a 1st mechanism part (24) and a 2nd mechanism part (25) is the suction volume ratio of the compression chamber (63,64) of a high stage side with respect to the compression chamber (61,62) of a low stage side. Is designed to be a value between 0.8 and 1.3 (eg 1.0).
  • the casing (21) includes a discharge pipe (31), a first suction branch pipe (42a), a second suction branch pipe (42b), an intermediate pressure communication pipe (33), a first intermediate branch pipe (43a), and a first Two intermediate branch pipes (43b) pass therethrough.
  • the discharge pipe (31) passes through the top, and the other pipes (42, 43) pass through the trunk.
  • the discharge pipe (31) opens into an internal space (37) that becomes a high-pressure space when the compressor (20) is operated.
  • a first suction branch pipe (42a) and a first intermediate branch pipe (43a) are connected to the first mechanism section (24).
  • the first suction branch pipe (42a) is connected to the suction side of the first low-stage compression chamber (61) via the first communication passage (59).
  • the discharge side of the first low-stage compression chamber (61) is connected to the first housing (51), the middle plate (41), and the communication passage (49) formed across the second housing (55). 2 It is connected to the discharge side of the lower stage compression chamber (62).
  • the first intermediate branch pipe (43a) is connected to the suction side of the first higher stage compression chamber (63).
  • the discharge side of the first higher stage compression chamber (63) is connected to the internal space (37) through a communication passage (not shown).
  • an outer discharge port (65) and an inner discharge port (66) are formed in the first housing (51).
  • the outer discharge port (65) communicates the discharge side of the first low-stage compression chamber (61) with the communication passage (49).
  • the outer discharge port (65) is provided with a first discharge valve (67).
  • the first discharge valve (67) opens the outer discharge port (65) when the refrigerant pressure on the discharge side of the first low-stage compression chamber (61) becomes equal to or higher than the refrigerant pressure on the communication passage (49) side. It is configured.
  • the inner discharge port (66) communicates the discharge side of the first higher-stage compression chamber (63) with the inner space (37).
  • the inner discharge port (66) is provided with a second discharge valve (68).
  • the second discharge valve (68) opens the inner discharge port (66) when the refrigerant pressure on the discharge side of the first higher stage compression chamber (63) becomes equal to or higher than the refrigerant pressure in the internal space (37) of the casing (21). It is comprised so that it may open.
  • the second suction branch pipe (42b), the intermediate pressure communication pipe (33), and the second intermediate branch pipe (43b) are connected to the second mechanism section (25).
  • the second suction branch pipe (42b) is connected to the suction side of the second low-stage compression chamber (62) via the second communication path (60).
  • the intermediate pressure communication pipe (33) is connected to the discharge side of the second low-stage compression chamber (62).
  • the second intermediate branch pipe (43b) is connected to the suction side of the second higher-stage compression chamber (64).
  • the discharge side of the second higher stage compression chamber (64) is connected to the internal space (37) through a communication passage (not shown).
  • an outer discharge port (75) and an inner discharge port (76) are formed in the second housing (55).
  • the outer discharge port (75) communicates the discharge side of the second low-stage compression chamber (62) and the intermediate pressure communication pipe (33).
  • the outer discharge port (75) is provided with a third discharge valve (77).
  • the third discharge valve (77) opens the outer discharge port (75) when the refrigerant pressure on the discharge side of the second low-stage compression chamber (62) becomes equal to or higher than the refrigerant pressure on the intermediate pressure communication pipe (33) side. It is configured as follows.
  • the inner discharge port (76) communicates the discharge side of the second higher stage compression chamber (64) with the inner space (37) of the casing (21).
  • the inner discharge port (76) is provided with a fourth discharge valve (78).
  • the fourth discharge valve (78) opens the inner discharge port (76) when the refrigerant pressure on the discharge side of the second higher stage compression chamber (64) becomes equal to or higher than the refrigerant pressure in the internal space (37) of the casing (21). It is comprised so that it may open.
  • an oil sump for storing refrigeration oil is formed at the bottom of the casing (21).
  • An oil pump (28) that is immersed in an oil reservoir is provided at the lower end of the drive shaft (23).
  • An oil supply passage (not shown) through which the refrigeration oil sucked up by the oil pump (28) flows is formed inside the drive shaft (23). In this compressor (20), as the drive shaft (23) rotates, the refrigerating machine oil sucked up by the oil pump (28) passes through the oil supply passage through the sliding portions and the drive shafts (23 ).
  • a pressing mechanism (80, 90) is provided on the middle plate (41).
  • the pressing mechanism (80, 90) includes a first pressing portion (80) provided for the first mechanism portion (24) and a second pressing portion (90 for the second mechanism portion (25)). ).
  • the first pressing portion (80) is configured to press the first cylinder (52) against the first housing (51).
  • the first pressing portion (80) is provided inside the middle plate (41) and the first inner seal ring (81a) and the first outer seal ring (81b) that form the first intermediate pressure back pressure chamber (85). And an intermediate connection passage (79) formed.
  • the first inner seal ring (81a) and the first outer seal ring (81b) constitute a partition member.
  • the first inner seal ring (81a) has a first inner annular groove (83) formed on the lower surface of the middle plate (41) so as to surround the insertion hole of the middle plate (41) in which the drive shaft (23) is inserted. It is inserted in.
  • the first outer seal ring (81b) is fitted into a first outer annular groove (84) formed on the lower surface of the middle plate (41) so as to surround the first inner annular groove (83).
  • the first inner annular groove (83) and the first outer annular groove (84) are arranged concentrically.
  • the first intermediate pressure back pressure chamber (85) includes an outer periphery of the first inner annular groove (83) and a first outer annular groove (between the lower surface of the middle plate (41) and the upper surface of the first cylinder (52). 84) and the inner circumference.
  • the intermediate connection passage (79) opens to the outer peripheral surface of the middle plate (41), and one end thereof is connected to the connection pipe (69).
  • the intermediate connection passage (79) includes a main passage (79a) extending inward from the outer peripheral surface of the middle plate (41), a first branch passage (79b) branching downward at the inner end of the main passage (79a), The second passage (79c) branches upward at the inner end of the passage (79a).
  • the first branch passage (79b) opens to the first intermediate pressure back pressure chamber (85) on the lower surface of the middle plate (41).
  • the second branch passage (79c) opens to the second intermediate pressure back pressure chamber (95) described later on the upper surface of the middle plate (41).
  • the first intermediate pressure back pressure chamber (85) communicates with the connecting pipe (69) through the first branch passage (79b) and the main passage (79a). For this reason, the intermediate pressure refrigerant toward the second higher-stage compression chamber (64) is introduced into the first intermediate pressure back pressure chamber (85). Further, high-pressure refrigerating machine oil from the drive shaft (23) side is introduced into the first inner seal ring (81a). The outside of the first outer seal ring (81b) communicates with the suction space (38).
  • the first pressing portion (80) includes a high-pressure refrigeration oil inside the first inner seal ring (81a), an intermediate pressure refrigerant in the first intermediate pressure back pressure chamber (85), and a first outer seal ring (81b). The first cylinder (52) is pressed against the first housing (51) by the low-pressure refrigerant outside.
  • the second pressing part 90 (90) is configured to press the second cylinder (56) against the second housing (55).
  • the second pressing portion 90 (90) includes a second inner seal ring (91a) and a second outer seal ring (91b) that form a second intermediate pressure back pressure chamber (95), and the intermediate connection passage (79). It has.
  • the second inner seal ring (91a) and the second outer seal ring (91b) constitute a partition member.
  • the first pressing portion (80) and the second pressing portion rod (90) share the main passage (79a) of the intermediate connection passage (79).
  • the second inner seal ring (91a) is fitted in a second inner annular groove (93) formed on the upper surface of the middle plate (41) so as to surround the insertion hole of the middle plate (41).
  • the second outer seal ring (91b) is fitted into a second outer annular groove (94) formed on the upper surface of the middle plate (41) so as to surround the second inner annular groove (93).
  • the second inner annular groove (93) and the second outer annular groove (94) are arranged concentrically.
  • the second intermediate pressure back pressure chamber (95) includes an outer periphery of the second inner annular groove (93) and a second outer annular groove (between the upper surface of the middle plate (41) and the lower surface of the second cylinder (56). 94) and the inner circumference.
  • the second intermediate pressure back pressure chamber (95) communicates with the connecting pipe (69) through the second branch passage (79c) and the main passage (79a). For this reason, the intermediate pressure refrigerant toward the second higher-stage compression chamber (64) is introduced into the second intermediate pressure back pressure chamber (95). Further, high-pressure refrigerating machine oil from the drive shaft (23) side is introduced inside the second inner seal ring (91a). The outside of the second outer seal ring (91b) communicates with the suction space (39).
  • the second pressing member (90) includes a high-pressure refrigeration oil inside the second inner seal ring (91a), an intermediate pressure refrigerant in the second intermediate pressure back pressure chamber (95), and a second outer seal ring (91b). The second cylinder (56) is pressed against the second housing (55) by the low-pressure refrigerant outside.
  • each cylinder (52, 56) of each mechanism (24, 25) is moved to each piston (53, 57) as the drive shaft (23) rotates. Is relatively eccentric.
  • the volumes of the compression chambers (61 to 64) of the first mechanism portion (24) and the second mechanism portion (25) periodically change, so that the first mechanism portion (24) and the second mechanism portion.
  • the refrigerant is compressed in the compression chambers (61 to 64) of (25).
  • the four-way switching valve (14) is set to the first state, and the opening degree of the expansion valve (12) is appropriately adjusted.
  • the compressor (20) is operated in this state, the refrigerant circuit (10) has a refrigeration cycle in which the indoor heat exchanger (11) serves as a radiator and the outdoor heat exchanger (13) serves as an evaporator. Done.
  • a supercritical refrigeration cycle is performed in which the high pressure of the refrigeration cycle is higher than the critical pressure of the carbon dioxide refrigerant. This also applies to the following cooling operation.
  • the pressure reducing valve (16) when the required heating capacity is relatively large, the pressure reducing valve (16) is set to an open state.
  • the refrigeration cycle is passed through the intermediate injection pipe (18) to the compression chamber (63, 64) on the higher stage side of each mechanism (24, 25) of the compressor (20).
  • An intermediate injection operation for injecting the intermediate pressure refrigerant is performed.
  • the opening of the pressure reducing valve (16) is adjusted as appropriate.
  • the pressure reducing valve (16) is set to the closed state, and the intermediate injection operation is stopped.
  • the high-pressure refrigerant discharged from the discharge pipe (31) of the compressor (20) flows through the indoor heat exchanger (11) via the four-way switching valve (14).
  • the indoor heat exchanger (11) the refrigerant radiates heat to the indoor air. As a result, the room is heated.
  • the refrigerant cooled by the indoor heat exchanger (11) flows through the first heat exchange flow path (15a) of the internal heat exchanger (15) and is decompressed to a low pressure by the expansion valve (12). Flow through exchanger (13). In the outdoor heat exchanger (13), the refrigerant absorbs heat from the outdoor air and evaporates. The refrigerant evaporated in the outdoor heat exchanger (13) is sent to the suction side of the compressor (20) via the liquid receiver (17).
  • the refrigerant that has flowed to the suction side of the compressor (20) is divided into the first suction branch pipe (42a) and the second suction branch pipe (42b).
  • the refrigerant flowing into the first suction branch pipe (42a) is compressed in the first lower stage compression chamber (61) of the first mechanism section (24).
  • the refrigerant flowing into the second suction branch pipe (42b) is compressed in the second lower stage compression chamber (62) of the second mechanism section (25).
  • the refrigerant compressed in the low-stage compression chambers (61, 62) flows through the intermediate pressure communication pipe (33) after merging, and the first intermediate branch pipe (43a) and the second intermediate branch pipe (43b).
  • the heat of the refrigerant on the first heat exchange channel (15a) side is applied to the refrigerant on the second heat exchange channel (15b) side, and this second heat exchange flow
  • the refrigerant on the path (15b) side evaporates.
  • the refrigerant evaporated in the second heat exchange channel (15b) merges with the refrigerant compressed in each lower stage compression chamber (61, 62) and is compressed in each higher stage compression chamber (63, 64).
  • the pressing part (80, 90) provided for each mechanism part (24, 25) is configured so that the intermediate pressure back pressure chamber (85, 95) is moved to the movable side end plate part (51a, 52a, 55a, 56a) is provided with a seal ring (81, 91) formed on the back side.
  • the cylinders (52, 56) of the mechanism portions (24, 25) are pressed against the housing (51, 55) by the pressure of the intermediate pressure refrigerant in the intermediate pressure back pressure chamber (85, 95).
  • the pressure of the intermediate-pressure refrigerant is lower when the intermediate injection operation is stopped than when the intermediate injection operation is being performed.
  • each pressing portion (80, 90) is lower when the intermediate injection operation is stopped than when the intermediate injection operation is being executed.
  • the separation force acting on the cylinders (52, 56) is smaller when the intermediate injection operation is stopped than when the intermediate injection operation is performed.
  • the four-way switching valve (14) is set to the second state, and the opening degree of the expansion valve (12) is appropriately adjusted.
  • the compressor (20) is operated in this state, the refrigerant circuit (10) has a refrigeration cycle in which the outdoor heat exchanger (13) serves as a radiator and the indoor heat exchanger (11) serves as an evaporator. Done.
  • the injection operation can be executed as in the heating operation, but only the operation during the stop of the injection operation will be described below.
  • the high-pressure refrigerant discharged from the discharge pipe (31) of the compressor (20) flows through the outdoor heat exchanger (13) via the four-way switching valve (14).
  • the outdoor heat exchanger (13) the refrigerant radiates heat to the outdoor air.
  • the refrigerant cooled by the outdoor heat exchanger (13) is depressurized to a low pressure by the expansion valve (12) and then flows through the indoor heat exchanger (11).
  • the indoor heat exchanger (11) the refrigerant absorbs heat from the indoor air and evaporates. As a result, the room is cooled.
  • the refrigerant evaporated in the indoor heat exchanger (11) is sent to the suction side of the compressor (20) via the liquid receiver (17).
  • the first mechanism part (24) and the second mechanism part (25) respectively compress the refrigerant in two stages.
  • the refrigerant compressed by each mechanism (24, 25) is discharged again from the discharge pipe (31).
  • the cylinder is provided by providing the seal ring (81, 91) that forms the intermediate pressure back pressure chamber (85, 95) on the back side of the movable side end plate portion (51a, 55a).
  • the pressing force of the pressing mechanism (80, 90) is reduced during the stop of the intermediate injection operation in which the separation force acting on (52, 56) is reduced.
  • the pressing mechanism (80, The pressing force of 90) is substantially constant, whereas in the compressor (20) of the first embodiment, the pressing force is reduced while the intermediate injection operation is stopped. Therefore, the pressing force when the intermediate injection operation is stopped. And the difference in separation force becomes smaller. Accordingly, since the frictional force generated by the difference between the pressing force and the separation force is reduced while the intermediate injection operation is stopped, the energy loss of the compression mechanism (30) can be reduced.
  • the compressor (20) of the refrigeration apparatus (1) that performs the intermediate injection operation is a compressor (20) in which the pressing force of the pressing mechanism (80, 90) is reduced during the stop of the intermediate injection operation. ) Is applied. For this reason, since the energy loss of the compressor (20) during the stop of the intermediate injection operation is reduced, the operating efficiency of the refrigeration apparatus (1) can be improved.
  • Embodiment 2 >> The air conditioner (1) of the second embodiment is different from the first embodiment in the configuration of the compressor (20). Below, a different point from the said Embodiment 1 is demonstrated.
  • the first low-stage compression chamber (61) and the second low-stage compression chamber (62) are formed in the first mechanism portion (24).
  • the first higher stage compression chamber (63) and the second higher stage compression chamber (64) are formed in the second mechanism section (25).
  • the suction pipe (32) is connected to the suction side of the first mechanism section (24).
  • the discharge side of the first mechanism part (24) is connected to the suction side of the second mechanism part (25) via the intermediate pressure communication pipe (33).
  • the first low-stage compression chamber (between the outer peripheral surface of the first piston (53) and the outer wall of the first cylinder chamber (54). 61) is formed, and a second low-stage compression chamber (62) is formed between the inner peripheral surface of the first piston (53) and the inner wall of the first cylinder chamber (54).
  • a first outer communication passage (59a) is formed in the outer cylinder portion (52c), and a first inner communication passage (59b) is formed in the inner cylinder portion (52b).
  • the first outer communication passage (59a) communicates the suction space (38) outside the first cylinder (52) with the suction side of the first low-stage compression chamber (61).
  • the first inner communication path (59b) communicates the suction side of the first low-stage compression chamber (61) and the suction side of the second low-stage compression chamber (62).
  • the suction side of the first low-stage compression chamber (61) is connected to the suction pipe (32) via the first outer communication path (59a).
  • the suction side of the second low-stage compression chamber (62) is connected to the suction pipe (32) via the first outer communication path (59a) and the first inner communication path (59b).
  • the outer discharge port (65) and the inner discharge port (66) are formed in the first housing (51).
  • the outer discharge port (65) communicates the discharge side of the first low-stage compression chamber (61) and the first discharge space (46).
  • the outer discharge port (65) is provided with a first discharge valve (67).
  • the first discharge valve (67) opens the outer discharge port (65) when the refrigerant pressure on the discharge side of the first low-stage compression chamber (61) becomes equal to or higher than the refrigerant pressure in the first discharge space (46). It is configured.
  • the inner discharge port (66) communicates the discharge side of the second lower stage compression chamber (62) and the first discharge space (46).
  • the inner discharge port (66) is provided with a second discharge valve (68).
  • the second discharge valve (68) opens the inner discharge port (66) when the refrigerant pressure on the discharge side of the second low-stage compression chamber (62) becomes equal to or higher than the refrigerant pressure in the first discharge space (46). It is configured.
  • An intermediate pressure communication pipe (33) is opened in the first discharge space (46).
  • a first higher-stage compression chamber (63) is formed between the outer peripheral surface of the second piston (57) and the outer wall of the second cylinder chamber (58), and the second piston ( 57) is formed between the inner peripheral surface of 57) and the inner wall of the second cylinder chamber (58).
  • the second outer communication path (60a) is formed in the outer cylinder part (56c), and the second inner communication path (60b) is formed in the inner cylinder part (56b).
  • the second outer communication passage (60a) communicates the suction space (39) outside the second cylinder (56) with the suction side of the first higher stage compression chamber (63).
  • the second inner communication path (60b) communicates the suction side of the first higher stage compression chamber (63) and the suction side of the second higher stage compression chamber (64).
  • the suction side of the first higher stage compression chamber (63) is connected to the intermediate pressure communication pipe (33) through the second outer communication path (60a).
  • the suction side of the second higher-stage compression chamber (64) is connected to the intermediate pressure communication pipe (33) via the second outer communication path (60a) and the second inner communication path (60b).
  • the outer discharge port (75) and the inner discharge port (76) are formed in the second housing (55).
  • the outer discharge port (75) communicates the discharge side of the first higher stage compression chamber (63) and the second discharge space (47).
  • the outer discharge port (75) is provided with a third discharge valve (77).
  • the third discharge valve (77) opens the outer discharge port (75) when the refrigerant pressure on the discharge side of the first higher stage compression chamber (63) becomes equal to or higher than the refrigerant pressure in the second discharge space (47). It is configured.
  • the inner discharge port (76) communicates the discharge side of the second higher-stage compression chamber (64) and the second discharge space (47).
  • the inner discharge port (76) is provided with a fourth discharge valve (78).
  • the fourth discharge valve (78) opens the inner discharge port (76) when the refrigerant pressure on the discharge side of the second higher-stage compression chamber (64) becomes equal to or higher than the refrigerant pressure in the second discharge space (47). It is configured.
  • the second discharge space (47) communicates with the internal space (37).
  • the configuration of the pressing mechanism (80, 90) of the second embodiment is the same as that of the first embodiment.
  • the 1st pressing part (80) provided with respect to the 1st mechanism part (24) in which only the low stage side compression chamber (61,62) was formed is an intermediate pressure back pressure chamber ( 85)
  • the first inner seal ring (81a) and the first outer seal ring (81b) are provided.
  • the second pressing portion (90) provided for the second mechanism portion (25) in which only the high-stage compression chamber (63, 64) is formed forms an intermediate pressure back pressure chamber (95).
  • the second inner seal ring (91a) and the second outer seal ring (91b) are provided.
  • the suction volume ratio of the high-stage compression chamber (63, 64) to the low-stage compression chamber (61, 62) is 1.0, for example, the low-stage compression chamber (61, 62) is stopped while the intermediate injection operation is stopped.
  • the pressure on the suction side and the discharge side of the side compression chamber (61, 62) becomes equal, and the pressure of the intermediate pressure refrigerant becomes equal to the pressure of the refrigerant sucked into the low-stage compression chamber (61, 62). That is, while the intermediate injection operation is stopped, the first cylinder (52) is idled without the refrigerant being substantially compressed by the first mechanism (24).
  • the pressing force of the first pressing portion (80) is reduced during the stop of the intermediate injection operation, the energy loss in the idling first cylinder (52) is reduced.
  • the movable side end plate portion is different from the second mechanism portion (25) in which the rate of change of the separation force due to the stop of the intermediate injection operation is larger than that of the first mechanism portion (24).
  • a seal ring (91) is provided on the back side of (56a). That is, if the intermediate pressure back pressure chamber (85, 95) is not formed on the back side of the movable end plate portion (52a, 56a) by the partition member (81, 91) of the second embodiment, the first mechanism portion (24 Compared with the second mechanism part (25) where the energy loss due to the difference between the pressing force and the separation force is larger when the intermediate injection operation is stopped, the seal ring (91 ) Is provided. For this reason, since the effect of forming the intermediate pressure back pressure chamber (85, 95) is greater in the second mechanism part (25) than in the first mechanism part (24), the energy loss of the compression mechanism (30) Can be effectively reduced.
  • the seal ring (81) is provided not only on the second mechanism portion (25) but also on the back side of the movable end plate portion (52a) of the first mechanism portion (24). Accordingly, not only the second mechanism portion (25) but also the first mechanism portion (24) can reduce the energy loss during the stop of the intermediate injection operation, so that the energy loss of the compression mechanism (30) can be reduced. it can.
  • the seal ring (81) is provided on the back side of the movable end plate portion (52a) of the first mechanism portion (24) in which the amount of work required for compressing the refrigerant decreases with the stop of the injection operation.
  • the pressing force acting on the movable member (52) is reduced during the stop of the intermediate injection operation. For this reason, in the 1st mechanism part (24), since the frictional force which arises by the difference of pressing force and separation force becomes small compared with the conventional compressor, it suppresses the fall of compression efficiency during stop of injection operation. Can do.
  • Embodiment 3 of this invention is an air conditioner (1) provided with the compressor (20) which concerns on this invention.
  • the compressor (20) of the third embodiment is different from the first and second embodiments in that each mechanism (24, 25) includes a cylinder (52, 56) and a piston (53, 57) with a piston (53, 57). 57) is a piston movable system that rotates eccentrically. Below, a different point from the said Embodiment 2 is demonstrated.
  • the first mechanism portion (24) has a first cylinder (52) as a fixing member fixed to the casing (21) and an annular first piston (53). And a first movable member (51) driven by the drive shaft (23).
  • the first mechanism portion (24) is provided so that the back surface of a movable side end plate portion (51a), which will be described later, faces the second mechanism portion (25).
  • the first cylinder (52) has a disk-shaped fixed side end plate part (52a), an annular inner cylinder part (52b) projecting upward from an inward position of the upper surface of the fixed side end plate part (52a), and a first cylinder (52a) And an annular outer cylinder portion (52c) protruding upward from the outer peripheral portion of the upper surface of the side end plate portion (52a).
  • the first cylinder (52) has an annular first cylinder chamber (54) between the inner cylinder part (52b) and the outer cylinder part (52c).
  • the first movable member (51) has a disk-like movable side end plate part (51a), the above-described first piston (53), and the inner peripheral end of the lower surface of the movable side end plate part (51a). And an annular protrusion (51b) that protrudes.
  • the movable end plate portion (51a) faces the first cylinder chamber (54) together with the fixed side end plate portion (52a).
  • the first piston (53) protrudes downward from a position slightly closer to the outer periphery of the lower surface of the movable side end plate portion (51a).
  • the first piston (53) is eccentric with respect to the first cylinder (52) and is housed in the first cylinder chamber (54).
  • the first cylinder chamber (54) is disposed outside the first low-stage compression chamber (61). And an inner second low-stage compression chamber (62).
  • the first piston (53) and the first cylinder (52) are in a state where the outer peripheral surface of the first piston (53) and the inner peripheral surface of the outer cylinder part (52c) are substantially in contact at one point (strictly Has a micron-order gap, but leakage of refrigerant in the gap does not cause a problem), and the inner peripheral surface of the first piston (53) and the inner cylinder portion are positioned 180 degrees out of phase with the contact points.
  • the outer peripheral surface of (52b) is substantially in contact with one point. This point is the same in the second mechanism portion (25), and is the same in each mechanism portion (24, 25) of the above embodiment.
  • the first eccentric portion (23b) is fitted to the annular protrusion (51b).
  • the first movable member (51) rotates eccentrically around the axis of the main shaft (23a) as the drive shaft (23) rotates.
  • a space (99) is formed between the annular protrusion (51b) and the inner cylinder part (52b). In this space (99), the refrigerant is compressed. Absent.
  • the first mechanism portion (24) includes a blade (45) extending from the outer peripheral surface of the inner cylinder portion (52b) to the inner peripheral surface of the outer cylinder portion (52c).
  • the blade (45) is integrated with the first cylinder (52).
  • the blade (45) is disposed in the first cylinder chamber (54), and divides the first low-stage compression chamber (61) into a low-pressure chamber (61a) and a high-pressure chamber (61b), and the second low-stage compression
  • the chamber (62) is divided into a low pressure chamber (62a) and a high pressure chamber (62b).
  • the blade (45) is inserted through the part of the C-shaped first piston (53) in which the annular part is parted.
  • semicircular bushes (46, 46) are fitted into the divided portions of the first piston (53) so as to sandwich the blade (45).
  • the bushes (46, 46) are configured to be swingable with respect to the end surface of the first piston (53). Thereby, the first piston (53) can move forward and backward in the extending direction of the blade (45) and can swing together with the bushes (46, 46).
  • the suction pipe (32) is connected to the first mechanism part (24).
  • the suction pipe (32) is connected to a first connection passage (86) formed in the fixed side end plate part (52a).
  • the first connection passage (86) has an inlet side extending in the radial direction of the fixed side end plate portion (52a), bent upward in the middle, and an outlet side extending in the axial direction of the fixed side end plate portion (52a).
  • the outlet end of the first connection passage (86) opens to both the first low-stage compression chamber (61) and the second low-stage compression chamber (62).
  • the first mechanism section (24) includes an outer discharge port (65) for discharging refrigerant from the outer first low-stage compression chamber (61) and an inner second low-stage compression chamber (62).
  • An inner discharge port (66) for discharging the refrigerant and a first discharge space (46) in which both the outer discharge port (65) and the inner discharge port (66) are open are formed.
  • the outer discharge port (65) communicates the high pressure chamber (61b) of the first low-stage compression chamber (61) with the first discharge space (46).
  • the outer discharge port (65) is provided with a first discharge valve (67).
  • the inner discharge port (66) communicates the high pressure chamber (62b) of the second low-stage compression chamber (62) with the first discharge space (46).
  • the inner discharge port (66) is provided with a second discharge valve (68).
  • An inlet end of the intermediate pressure communication pipe (33) is opened in the first discharge space (46).
  • the second mechanism part (25) is composed of the same mechanical elements as the first mechanism part (24).
  • the second mechanism part (25) is provided upside down with respect to the first mechanism part (24) with a middle plate (41) described later interposed therebetween.
  • the second mechanism portion (25) has a second cylinder (56) as a fixing member fixed to the casing (21) and an annular second piston (57), and has a drive shaft (23). And a second movable member (55) driven by.
  • the second mechanism portion (25) is provided so that the back surface of a movable side end plate portion (55a) described later faces the first mechanism portion (24) side.
  • the second cylinder (56) is fixed to a disk-shaped fixed side end plate portion (56a), an annular inner cylinder portion (56b) projecting downward from an inward position of the lower surface of the fixed side end plate portion (56a), An annular outer cylinder portion (56c) protruding downward from the outer peripheral portion of the lower surface of the side end plate portion (56a).
  • the second cylinder (56) has an annular second cylinder chamber (58) between the inner cylinder part (56b) and the outer cylinder part (56c).
  • the second movable member (55) extends upward from the inner peripheral end of the upper surface of the disk-shaped movable side end plate portion (55a), the above-described second piston (57), and the movable side end plate portion (55a).
  • the movable side end plate part (55a) faces the second cylinder chamber (58) together with the fixed side end plate part (56a).
  • the second piston (57) protrudes upward from a position slightly closer to the outer periphery of the upper surface of the movable side end plate portion (55a).
  • the second piston (57) is eccentric with respect to the second cylinder (56) and is accommodated in the second cylinder chamber (58), and the second cylinder chamber (58) is disposed outside the first high-stage compression chamber (63). And an inner second high-stage compression chamber (64).
  • the second eccentric portion (23c) is fitted to the annular protrusion (55b).
  • the second movable member (55) rotates eccentrically about the axis of the main shaft (23a) as the drive shaft (23) rotates.
  • a space (100) is formed between the annular protrusion (55b) and the inner cylinder portion (56b). In this space (100), the refrigerant is compressed. Absent.
  • the second mechanism part (25) includes a blade (45) extending from the outer peripheral surface of the inner cylinder part (56b) to the inner peripheral surface of the outer cylinder part (56c).
  • the blade (45) is integrated with the second cylinder (56).
  • the blade (45) is disposed in the second cylinder chamber (58), and divides the first high-stage compression chamber (63) into a low-pressure chamber (63a) and a high-pressure chamber (63b), and the second high-stage compression
  • the chamber (64) is divided into a low pressure chamber (64a) and a high pressure chamber (64b).
  • the blade (45) is inserted through the part of the C-shaped second piston (57) in which a part of the annular shape is parted.
  • semicircular bushes (46, 46) are fitted into the divided portions of the second piston (57) so as to sandwich the blade (45).
  • the bushes (46, 46) are configured to be swingable with respect to the end surface of the second piston (57).
  • the second piston (57) can advance and retreat in the extending direction of the blade (45) and can swing together with the bushes (46, 46).
  • the intermediate pressure communication pipe (33) is connected to the second mechanism part (25).
  • the intermediate pressure communication pipe (33) is connected to a second connection passage (87) formed in the fixed side end plate part (56a).
  • the second connection passage (87) has an inlet side extending in the radial direction of the fixed side end plate portion (56a), bent downward in the middle, and an outlet side extending in the axial direction of the fixed side end plate portion (56a).
  • the outlet end of the second connection passage (87) opens to both the first higher stage compression chamber (63) and the second higher stage compression chamber (64).
  • the second mechanism (25) includes an outer discharge port (75) for discharging refrigerant from the outer first high-stage compression chamber (63), and an inner second high-stage compression chamber (64).
  • An inner discharge port (76) for discharging the refrigerant and a second discharge space (47) in which both the outer discharge port (75) and the inner discharge port (76) are open are formed.
  • the outer discharge port (75) communicates the high pressure chamber (63b) of the first higher stage compression chamber (63) with the second discharge space (47).
  • the outer discharge port (75) is provided with a third discharge valve (77).
  • the inner discharge port (76) communicates the high pressure chamber (64b) of the second higher-stage compression chamber (64) with the second discharge space (47).
  • the inner discharge port (76) is provided with a fourth discharge valve (78).
  • the second discharge space (47) communicates with the discharge pipe (31) through the internal space (37).
  • the middle plate (41) is provided with a pressing mechanism (80, 90) comprising a first pressing portion (80) and a second pressing portion (90) as shown in FIG. ing.
  • a pressing mechanism (80, 90) comprising a first pressing portion (80) and a second pressing portion (90) as shown in FIG. ing.
  • each pressing part (80,90) is the same as the said Embodiment 1 and 2, description is abbreviate
  • the refrigerant filled in the refrigerant circuit (10) may be a refrigerant other than carbon dioxide (for example, a fluorocarbon refrigerant).
  • the compressor (20) is configured for a chlorofluorocarbon refrigerant.
  • the compressor for chlorofluorocarbon refrigerant (20) has a smaller suction volume ratio of the higher-stage compression chamber (63,64) to the lower-stage compression chamber (61,62) than the compressor for carbon dioxide. (For example, 0.7).
  • an intermediate-pressure gas refrigerant to be sent to the compressor (20) may be obtained using a gas-liquid separator (40).
  • the compressor (20) may be a low-pressure dome type compressor.
  • the back pressure chamber (85) may be formed, or the intermediate pressure back pressure chamber (95) is formed only on the back side of the movable end plate portion (55a, 56a) of the second mechanism portion (25). May be.
  • one of the mechanism portions (24, 25) is a mechanism in which the movable member (51, 52, 55, 56) and the fixed member (51, 52, 55, 56) have no end plate portion.
  • an intermediate pressure back pressure chamber (85, 95) is formed on the back side of the movable side end plate portion (51a, 52a, 55a, 56a) of the mechanism portion (24, 25) having the end plate portion.
  • the compression mechanism (30) may have only one mechanism part (24,25).
  • one of the mechanism parts (24, 25) or both of the mechanism parts (24, 25) may be configured by a scroll type fluid machine.
  • an intermediate pressure back pressure chamber (85, 95) is formed on the back side of the movable scroll (52, 56) of the scroll type fluid machine.
  • the present invention is useful for a compressor that performs two-stage compression of a refrigerant and a refrigeration apparatus provided with the compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

 固定側鏡板部(51a,52a,55a,56a)が基端側に設けられた固定部材(51,52,55,56)に対して、可動側鏡板部(51a,52a,55a,56a)が基端側に設けられた可動部材(51,52,55,56)を、固定部材(51,52,55,56)に押し付けながら偏心回転運動させることによって、冷媒の二段圧縮が行われる圧縮機構(30)を備える圧縮機(20)において、可動側鏡板部(51a,52a,55a,56a)の背面側に、低段側の圧縮室(61,62)に連通する中間圧背圧室(85,95)を形成する。

Description

圧縮機及び冷凍装置
 本発明は、冷媒の二段圧縮を行う圧縮機、及びその圧縮機が設けられた冷凍装置に関するものである。
 従来より、低段側の圧縮室と高段側の圧縮室とで順番に冷媒を圧縮する圧縮機が知られている。この種の圧縮機には、冷凍サイクルを行う冷媒回路上でその冷媒回路の中間圧冷媒を高段側の圧縮室へ導入するための中間インジェクション通路が接続されるものがある。
 例えば、特許文献1には、2つの流体機械を備える圧縮機が開示されている。この圧縮機では、第1の流体機械と第2の流体機械のそれぞれに2つの圧縮室が形成されている。冷媒を二段圧縮する二段圧縮動作では、第1の流体機械の第1圧縮室と第2の流体機械の第2圧縮室が低段側の圧縮室になり、第1の流体機械の第3圧縮室と第2の流体機械の第4圧縮室が高段側の圧縮室になる。二段圧縮動作では、中間インジェクション通路からの中間圧冷媒が、第1圧縮室及び第2圧縮室で圧縮された冷媒に混じって、第3圧縮室及び第4圧縮室へ送られる。
 また、特許文献1の圧縮機の各流体機械では、シリンダが可動部材になり、ピストンが設けられたハウジングが固定部材になっている。各流体機械では、可動部材の鏡板部と固定部材の鏡板部との間に圧縮室が形成されている。
 このような鏡板部を有する圧縮機では、冷媒を圧縮する際に、可動部材の鏡板部の前面に圧縮室の冷媒の圧力が離反力として作用する。このため、鏡板部を有する圧縮機は、この離反力によって可動部材が固定部材から離れないように、高圧の冷凍機油を可動部材の鏡板部の背面に導入して、その高圧の冷凍機油によって可動部材を固定部材に押し付けるように構成されていた。
特開2007-239666号公報
 しかし、鏡板部を有する従来の圧縮機では、冷媒回路上で中間インジェクション通路が接続された場合に、中間インジェクション通路からの冷媒を高段側の圧縮室へ導入する中間インジェクション動作の停止中に、固定部材に対して可動部材を押し付ける押付力が離反力に対して過大になるという問題がある。
 具体的に、中間インジェクション動作の実行中は、低段側の圧縮室から吐出された冷媒と中間インジェクション通路からの冷媒とが高段側の圧縮室に流入するのに対して、インジェクション動作の停止中は、低段側の圧縮室から吐出された冷媒だけが高段側の圧縮室に流入する。ところが、高段側の圧縮室が吸入する冷媒の体積は中間インジェクション動作の実行中も停止中も一定であるため、インジェクション動作の実行中に比べてインジェクション動作の停止中の方が、低段側の圧縮室における冷媒の圧縮比が小さくなる。このため、低段側の圧縮室から吐出される中間圧冷媒の圧力が低くなる。従って、低段側の圧縮室の吐出側の圧力及び高段側の圧縮室の吸入側の圧力が低くなるので、離反力が小さくなる。
 一方、押付力は、離反力が大きくなる方のインジェクション動作の実行中に固定部材から可動部材が離れないように設定される。従って、従来の圧縮機では、インジェクション動作の停止中に押付力が離反力に対して過大になってしまい、可動部材と固定部材の間に生じる摩擦によって圧縮機構におけるエネルギー損失が大きくなっていた。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、冷媒の二段圧縮を行う圧縮機において、中間インジェクション動作の停止中における圧縮機構のエネルギー損失を低減させることにある。
 第1の発明は、低段側の圧縮室(61,62)と高段側の圧縮室(63,64)とを形成して低段側の圧縮室(61,62)で圧縮した冷媒を高段側の圧縮室(63,64)で更に圧縮する圧縮機構(30)を備え、冷凍サイクルを行う冷媒回路(10)に対して、該冷媒回路(10)の中間圧冷媒を上記低段側の圧縮室(61,62)と高段側の圧縮室(63,64)との間に中間インジェクション通路(18)を接続した状態で設けられる圧縮機(20)を対象とする。
 そして、この圧縮機(20)では、上記圧縮機構(30)が、上記圧縮室(61~64)に面する固定側鏡板部(51a,52a,55a,56a)が基端側に設けられた固定部材(51,52,55,56)と、該圧縮室(61~64)を挟んで該固定側鏡板部(51a,52a,55a,56a)に対面する可動側鏡板部(51a,52a,55a,56a)が基端側に設けられた可動部材(51,52,55,56)とを備え、該可動部材(51,52,55,56)を偏心回転させて冷媒を圧縮するように構成され、更に、上記圧縮機構(30)は、上記可動側鏡板部(51a,52a,55a,56a)の背面に臨んで形成されて上記低段側の圧縮室(61,62)の吐出側に連通する中間圧背圧室(85,95)を備え、該中間圧背圧室(85,95)の内圧を該可動側鏡板部(51a,52a,55a,56a)に作用させて上記可動部材(51,52,55,56)を上記固定部材(51,52,55,56)に押し付けるように構成されている。
 第2の発明は、上記第1の発明において、上記圧縮機構(30)が、それぞれが上記固定部材(51,52,55,56)及び上記可動部材(51,52,55,56)を有する第1機構部(24)及び第2機構部(25)を備える一方、上記中間圧背圧室(85,95)は、上記第1機構部(24)及び上記第2機構部(25)のうち少なくとも一方の可動側鏡板部(51a,52a,55a,56a)の背面側に形成されている。
 第3の発明は、上記第2の発明において、上記圧縮機構(30)では、上記第1機構部(24)及び上記第2機構部(25)のそれぞれに上記低段側の圧縮室(61,62)と上記高段側の圧縮室(63,64)の両方が形成される一方、上記中間圧背圧室(85,95)は、上記第1機構部(24)及び上記第2機構部(25)の両方の可動側鏡板部(51a,52a,55a,56a)の背面側にそれぞれ形成されている。
 第4の発明は、上記第2の発明において、上記圧縮機構(30)では、上記低段側の圧縮室(61,62)が上記第1機構部(24)だけに形成されて上記高段側の圧縮室(63,64)が上記第2機構部(25)だけに形成される一方、上記中間圧背圧室(85,95)は、上記第2機構部(25)の可動側鏡板部(55a,56a)の背面側に形成されている。
 第5の発明は、上記第4の発明において、上記中間圧背圧室(85,95)が、上記第1機構部(24)の可動側鏡板部(51a,52a)の背面側にも形成されている。
 第6の発明は、上記第2の発明において、上記圧縮機構(30)では、上記低段側の圧縮室(61,62)が上記第1機構部(24)だけに形成されて上記高段側の圧縮室(63,64)が上記第2機構部(25)だけに形成される一方、上記中間圧背圧室(85,95)は、上記第1機構部(24)の可動側鏡板部(51a,52a)の背面側に形成されている。
 第7の発明は、上記第1の発明において、上記圧縮機構(30)が、上記固定部材(51,52,55,56)及び上記可動部材(51,52,55,56)を一対のみ備え、該固定部材(51,52,55,56)の固定側鏡板部(51a,52a,55a,56a)と可動部材(51,52,55,56)の可動側鏡板部(51a,52a,55a,56a)との間に上記低段側の圧縮室(61,62)と上記高段側の圧縮室(63,64)の両方が形成されている。
 第8の発明は、上記第1乃至第7の何れか1つの発明において、上記圧縮機構(30)によって二酸化炭素冷媒を圧縮するように構成されている。
 第9の発明は、第1乃至第8の何れか1つの発明の圧縮機(20)が設けられて冷凍サイクルを行う冷媒回路(10)を備え、上記冷媒回路(10)には、上記圧縮機(20)の高段側の圧縮室(63,64)へ中間圧冷媒を導入するための中間インジェクション通路(18)と、該中間インジェクション通路(18)を開閉する開閉機構(16)とが設けられている冷凍装置(1)である。
   -作用-
 第1の発明では、可動側鏡板部(51a,52a,55a,56a)の背面側に中間圧背圧室(85,95)が形成される可動部材(51,52,55,56)が、中間圧背圧室(85,95)内の中間圧冷媒の圧力によって固定部材(51,52,55,56)に押し付けられる。ここで、上述したように、中間圧冷媒の圧力は、中間インジェクション動作の実行中に比べて、中間インジェクション動作の停止中の方が低くなる。このため、可動部材(51,52,55,56)に作用する押付力は、中間圧背圧室(85,95)が背面に存在していることによって、中間インジェクション動作の実行中に比べて中間インジェクション動作の停止中の方が小さくなる。一方、可動部材(51,52,55,56)に作用する離反力は、上述したように、中間インジェクション動作の実行中に比べて中間インジェクション動作の停止中の方が小さくなる。この第1の発明では、可動部材(51,52,55,56)に作用する離反力が小さくなる中間インジェクション動作の停止中に、可動部材(51,52,55,56)に作用する押付力が小さくなるようにしている。
 第2の発明では、圧縮機構(30)が第1機構部(24)及び第2機構部(25)を備えている。第1機構部(24)及び第2機構部(25)は、両方とも固定部材(51,52,55,56)と可動部材(51,52,55,56)を有している。第1機構部(24)及び第2機構部(25)のうち少なくとも一方の可動側鏡板部(51a,52a,55a,56a)の背面側には、中間圧背圧室(85,95)が形成されている。従って、可動側鏡板部(51a,52a,55a,56a)の背面側に中間圧背圧室(85,95)が形成されている可動部材(51,52,55,56)に作用する押付力は、上記離反力が小さくなる中間インジェクション動作の停止中に小さくなる。
 第3の発明では、第1機構部(24)及び上記第2機構部(25)の各機構部(24,25)に、低段側の圧縮室(61,62)と高段側の圧縮室(63,64)の両方が形成されている。そして、第1機構部(24)及び第2機構部(25)の両方の可動側鏡板部(51a,52a,55a,56a)の背面側に、中間圧背圧室(85,95)が形成されている。
 第4の発明では、高段側の圧縮室(63,64)が形成されている第2機構部(25)の可動側鏡板部(55a,56a)の背面側に、中間圧背圧室(85,95)が形成されている。ここで、中間インジェクション動作を実行している状態から中間インジェクション動作を停止した場合には、中間圧冷媒の圧力が減少するので、低段側の圧縮室(61,62)の吐出側の圧力及び高段側の圧縮室(63,64)の吸入側の圧力が低下する。低段側の圧縮室(61,62)の吐出側と高段側の圧縮室(63,64)の吸入側とでは、同じ値だけ圧力が低下する。このとき、低段側の圧縮室(61,62)に比べて高段側の圧縮室(63,64)の方が、中間圧冷媒の圧力変化の影響を受けやすく、中間インジェクション動作の停止による離反力の変化率が大きくなる。この第4の発明では、第1機構部(24)に比べて中間インジェクション動作の停止による離反力の変化率が大きくなる第2機構部(25)の可動側鏡板部(55a,56a)の背面側に、中間圧背圧室(85,95)が形成されている。
 第5の発明では、低段側の圧縮室(61,62)が形成されている第1機構部(24)の可動側鏡板部(51a,52a)の背面側に、中間圧背圧室(85,95)が形成されている。中間圧背圧室(85,95)は、第2機構部(25)だけでなく、第1機構部(24)の可動側鏡板部(51a,52a)の背面側にも形成されている。ここで、上述したように、インジェクション動作の実行中に比べてインジェクション動作の停止中の方が、低段側の圧縮室(61,62)における冷媒の圧縮比が小さくなる。従って、第1機構部(24)では、インジェクション動作の停止に伴って冷媒の圧縮に要する仕事量が減少する。この第5の発明では、インジェクション動作の停止に伴って冷媒の圧縮に要する仕事量が減少する第1機構部(24)の可動側鏡板部(51a,52a)の背面側に中間圧背圧室(85,95)を形成して、中間インジェクション動作の停止中に、可動部材(51,52,55,56)に作用する押付力が小さくなるようにしている。
 第6の発明では、上記第5の発明と同様に、インジェクション動作の停止に伴って冷媒の圧縮に要する仕事量が減少する第1機構部(24)の可動側鏡板部(51a,52a)の背面側に中間圧背圧室(85,95)を形成して、中間インジェクション動作の停止中に、可動部材(51,52,55,56)に作用する押付力が小さくなるようにしている。
 第7の発明では、圧縮機構(30)が、固定部材(51,52,55,56)及び可動部材(51,52,55,56)を一対のみ備えている。その一対の固定部材(51,52,55,56)及び可動部材(51,52,55,56)のうち可動部材(51,52,55,56)の可動側鏡板部(51a,52a,55a,56a)の背面側には、中間圧背圧室(85,95)が形成されている。
 第8の発明では、圧縮機構(30)で二酸化炭素冷媒が圧縮される。二酸化炭素冷媒は、低段側の圧縮室(61,62)と高段側の圧縮室(63,64)とで二段圧縮される。
 第9の発明では、開閉機構(16)が中間インジェクション通路(18)を開状態に設定すると、圧縮機(20)の高段側の圧縮室(63,64)へ中間圧冷媒を導入する中間インジェクション動作が行われる。一方、開閉機構(16)が中間インジェクション通路(18)を閉状態に設定すると、中間インジェクション動作が停止される。この第9の発明では、中間インジェクション動作を行う冷凍装置(1)の圧縮機(20)として、第1乃至第8の何れか1つの発明の圧縮機(20)、つまり中間インジェクション動作の停止中に可動部材(51,52,55,56)に作用する押付力が小さくなる圧縮機(20)が適用されている。
 本発明では、可動側鏡板部(51a,52a,55a,56a)の背面側に中間圧背圧室(85,95)を形成することで、可動部材(51,52,55,56)に作用する離反力が小さくなる中間インジェクション動作の停止中に、可動部材(51,52,55,56)に作用する押付力が小さくなるようにしている。このため、可動側鏡板部(51a,52a,55a,56a)に背面側に導入した高圧の流体(冷凍機油又は高圧冷媒)のみによって押付力を得るようにしている従来の圧縮機では、中間インジェクション動作を停止する前後で押付力が概ね一定であるのに対して、本発明の圧縮機(20)では、中間インジェクション動作の停止中に押付力が小さくなるので、中間インジェクション動作の停止中における押付力と離反力の差が小さくなる。従って、中間インジェクション動作の停止中に、押付力と離反力の差によって生じる摩擦力が小さくなるので、圧縮機構(30)のエネルギー損失を低減させることができる。
 また、上記第4の発明では、第1機構部(24)に比べて中間インジェクション動作の停止による離反力の変化率が大きくなる第2機構部(25)に対して、可動側鏡板部(51a,52a,55a,56a)の背面側に中間圧背圧室(85,95)が形成されている。つまり、本発明のように可動側鏡板部(51a,52a,55a,56a)の背面側に中間圧背圧室(85,95)を形成しなければ、第1機構部(24)に比べて中間インジェクション動作の停止中に押付力と離反力の差によるエネルギー損失が大きくなる第2機構部(25)に対して、可動側鏡板部(55a,56a)の背面側に中間圧背圧室(85,95)が形成されている。このため、中間圧背圧室(85,95)を形成することの効果が第1機構部(24)よりも第2機構部(25)の方が大きいので、圧縮機構(30)のエネルギー損失を効果的に低減させることができる。
 また、上記第5の発明では、第2機構部(25)だけでなく第1機構部(24)の可動側鏡板部(51a,52a)の背面側にも、中間圧背圧室(85,95)が形成されている。従って、第2機構部(25)だけでなく第1機構部(24)でも中間インジェクション動作の停止中のエネルギー損失を低減させることができるので、圧縮機構(30)のエネルギー損失を低減させることができる。
 また、上記第5、第6の各発明では、インジェクション動作の停止に伴って冷媒の圧縮に要する仕事量が減少する第1機構部(24)の可動側鏡板部(51a,52a)の背面側に中間圧背圧室(85,95)を形成して、中間インジェクション動作の停止中に、可動部材(51,52,55,56)に作用する押付力が小さくなるようにしている。ここで、可動側鏡板部に背面側に導入した高圧の流体(冷凍機油又は高圧冷媒)のみによって押付力を得るようにしている従来の圧縮機では、インジェクション動作の停止に伴って、低段側圧縮室が形成される方の機構部において、冷媒の圧縮に要する仕事量が減少するにも拘わらず、可動部材と固定部材の間に生じる摩擦力が増加する。このため、低段側圧縮室が形成される方の機構部では、インジェクション動作の停止中の圧縮効率が大きく低下してしまう。これに対して、この第5、第6の各発明では、中間インジェクション動作の停止中に、第1機構部(24)の可動部材(51,52,55,56)に作用する押付力が小さくなる。このため、従来の圧縮機に比べて、押付力と離反力の差によって生じる摩擦力が小さくなるので、インジェクション動作の停止中の圧縮効率の低下を抑制することができる。
 また、上記第9の発明では、中間インジェクション動作を行う冷凍装置(1)の圧縮機(20)として、中間インジェクション動作の停止中に可動部材(51,52,55,56)に作用する押付力が小さくなる圧縮機(20)が適用されている。このため、中間インジェクション動作の停止中における圧縮機(20)のエネルギー損失が小さくなるので、冷凍装置(1)の運転効率を向上させることができる。
図1は、実施形態1に係る空調機の冷媒回路の配管系統図である。 図2は、実施形態1に係る圧縮機の縦断面図である。 図3は、実施形態1に係る第1機構部(第2機構部)の横断面図である。 図4は、実施形態1(実施形態2)に係る押付機構の拡大断面図である。 図5は、実施形態2に係る空調機の冷媒回路の配管系統図である。 図6は、実施形態2に係る圧縮機の縦断面図である。 図7は、実施形態2に係る第1機構部(第2機構部)の横断面図である。 図8は、実施形態3に係る圧縮機の縦断面図である。 図9は、実施形態3に係る第1機構部(第2機構部)の横断面図である。 図10は、実施形態3に係る押付機構の拡大断面図である。 図11は、その他の実施形態に係る空調機の冷媒回路の配管系統図である。
符号の説明
 1  空調機
 10 冷媒回路
 20 圧縮機
 40 ミドルプレート
 79 中間接続通路
 80 第1押付部
 81 シールリング
 85 中間圧背圧室
 90 第2押付部
 91 シールリング
 95 中間圧背圧室
 以下、本発明の実施形態を図面に基づいて詳細に説明する。
  《実施形態1》
 本発明の実施形態1に係る冷凍装置は、室内の暖房と冷房とを切り換えて行う空調機(1)である。この空調機(1)は、冷媒が循環して冷凍サイクルを行う冷媒回路(10)を備えており、いわゆるヒートポンプ式の空調機を構成している。冷媒回路(10)には、冷媒として二酸化炭素が充填されている。
 図1に示すように、冷媒回路(10)には、主な構成機器として、圧縮機(20)、室内熱交換器(11)、膨張弁(12)、及び室外熱交換器(13)が設けられている。
 室内熱交換器(11)は室内機に設けられている。この室内熱交換器(11)は、室内ファン(図示省略)が送風する室内空気と冷媒とを熱交換させる。一方、室外熱交換器(13)は室外機に設けられている。この室外熱交換器(13)は、室外ファン(図示省略)が送風する室外空気と冷媒とを熱交換させる。また、膨張弁(12)は、後述する内部熱交換器(15)と後述するブリッジ回路(19)の第2端の間に設けられている。この膨張弁(12)は、その開度が調節可能な電子膨張弁で構成されている。
 また、冷媒回路(10)には、四路切換弁(14)、ブリッジ回路(19)、内部熱交換器(15)、減圧弁(16)、及び受液器(17)が設けられている。
 四路切換弁(14)は、第1から第4までの4つのポートを備えている。四路切換弁(14)は、その第1ポートが圧縮機(20)の吐出管(31)と接続し、その第2ポートが室内熱交換器(11)と接続し、その第3ポートが受液器(17)を介して圧縮機(20)の吸入管(32)と接続し、その第4ポートが室外熱交換器(13)と接続している。この四路切換弁(14)は、第1ポート(P1)と第2ポート(P2)が連通すると同時に第3ポート(P3)と第4ポート(P4)が連通する第1状態(図1に示す実線の状態)と、第1ポート(P1)と第4ポート(P4)が連通すると同時に第2ポート(P2)と第3ポート(P3)が連通する第2状態(図1に示す破線の状態)との切り換えを行うことが可能に構成されている。
 ブリッジ回路(19)は、第1接続ライン(19a)と第2接続ライン(19b)と第3接続ライン(19c)と第4接続ライン(19d)とをブリッジ状に接続した回路である。第1接続ライン(19a)は、室外熱交換器(13)と内部熱交換器(15)の一端側とを接続している。第2接続ライン(19b)は、室内熱交換器(11)と内部熱交換器(15)の一端側とを接続している。第3接続ライン(19c)は、室外熱交換器(13)と内部熱交換器(15)の他端側とを接続している。第4接続ライン(19d)は、室内熱交換器(11)と内部熱交換器(15)の他端側とを接続している。
 第1接続ライン(19a)には、内部熱交換器(15)の一端側から室外熱交換器(13)へ向かう冷媒の流れを禁止する第1逆止弁(CV1)が設けられている。第2接続ライン(19b)には、内部熱交換器(15)の一端側から室内熱交換器(11)へ向かう冷媒の流れを禁止する第2逆止弁(CV2)が設けられている。第3接続ライン(19c)には、室外熱交換器(13)から内部熱交換器(15)の他端側へ向かう冷媒の流れを禁止する第3逆止弁(CV3)が設けられている。第4接続ライン(19d)には、室内熱交換器(11)から内部熱交換器(15)の他端側へ向かう冷媒の流れを禁止する第4逆止弁(CV4)が設けられている。
 内部熱交換器(15)は、第1熱交換用流路(15a)と第2熱交換用流路(15b)とを有する二重管熱交換器を構成している。第1熱交換用流路(15a)は、第1接続ライン(19a)の出口端と第2接続ライン(19b)の出口端が接続されたブリッジ回路(19)の第1端と、第3接続ライン(19c)の入口端と第4接続ライン(19d)の入口端が接続されたブリッジ回路(19)の第2端とを結ぶ冷媒配管に跨るように配置されている。第2熱交換用流路(15b)は、内部熱交換器(15)とブリッジ回路(19)の第1端の間から分岐する中間インジェクション配管(18)に跨るように配置されている。中間インジェクション配管(18)は、中間インジェクション通路を構成しており、後述する中間圧連絡管(33)に接続されている。中間インジェクション配管(18)には、内部熱交換器(15)の上流側に、開閉機構を構成する減圧弁(16)が設けられている。そして、内部熱交換器(15)では、第1熱交換用流路(15a)を流れる高圧液冷媒と、第2熱交換用流路(15b)を流れる中間圧冷媒とが熱交換可能となっている。
 本実施形態1では、圧縮機(20)が二酸化炭素冷媒用の圧縮機として構成されている。圧縮機(20)は、第1機構部(24)と第2機構部(25)とから構成された圧縮機構(30)を備えている。各機構部(24,25)には低段側の圧縮室(61,62)及び高段側の圧縮室(63,64)がそれぞれ形成されている。なお、圧縮機(20)の詳細については後述する。
 圧縮機(20)には複数の配管が接続されている。具体的に、第1機構部(24)の低段側の圧縮室(61)の吸入側には、吸入管(32)から分岐した第1吸入分岐管(42a)が接続されている。第2機構部(25)の低段側の圧縮室(62)の吸入側には、吸入管(32)から分岐した第2吸入分岐管(42b)が接続されている。また、第2機構部(25)の低段側の圧縮室(61)の吐出側には、中間圧連絡管(33)が接続されている。第2機構部(25)の低段側の圧縮室(62)の吐出側は、圧縮機(20)の内部で第1機構部(24)の低段側の圧縮室(61)の吐出側に連通している。また、第1機構部(24)の高段側の圧縮室(63)の吸入側には、中間圧連絡管(33)から分岐した第1中間分岐管(43a)が接続されている。第2機構部(25)の高段側の圧縮室(64)の吸入側には、中間圧連絡管(33)から分岐した第2中間分岐管(43b)が接続されている。第2中間分岐管(43b)からは、後述する中間接続通路(79)に接続する接続管(69)が分岐している。
  〈圧縮機の構成〉
 本実施形態1の圧縮機(20)は、第1機構部(24)及び第2機構部(25)が、シリンダ(52,56)とピストン(53,57)のうちシリンダ(52,56)が偏心回転運動するピストン固定方式になっている。なお、この点は、後述する実施形態2でも同じである。
 図2に示すように、圧縮機(20)は、縦長で密閉容器状のケーシング(21)を備えている。ケーシング(21)の内部には、電動機(22)と圧縮機構(30)とが収納されている。この圧縮機(20)は、ケーシング(21)内が高圧の冷媒で満たされる、いわゆる高圧ドーム式の圧縮機で構成されている。
 電動機(22)は、ステータ(26)とロータ(27)とを備えている。ステータ(26)は、ケーシング(21)の胴部に固定されている。一方、ロータ(27)は、ステータ(26)の内側に配置され、駆動軸(23)の主軸部(23a)に連結されている。なお、電動機(22)の回転速度は、インバータ制御によって可変となっている。つまり、電動機(22)は容量が可変なインバータ式の圧縮機で構成されている。
 駆動軸(23)には、その下部寄りに位置する第1偏心部(23b)と、その中央部寄りに位置する第2偏心部(23c)とが形成されている。第1偏心部(23b)と第2偏心部(23c)とは、それぞれ駆動軸(23)の主軸部(23a)の軸心から偏心している。また、第1偏心部(23b)と第2偏心部(23c)とは、駆動軸(23)の軸心を中心として互いに180°位相がずれている。
 圧縮機構(30)は、電動機(22)の下側に配置されている。圧縮機構(30)は、ケーシング(21)の底部側寄りの第1機構部(24)と、電動機(22)側寄りの第2機構部(25)とを備えている。
 第1機構部(24)は、ケーシング(21)に固定される第1ハウジング(51)と、この第1ハウジング(51)内に収納される第1シリンダ(52)とを備えている。第1ハウジング(51)は固定部材を構成し、第1シリンダ(52)は可動部材を構成している。
 第1ハウジング(51)は、円盤状の固定側鏡板部(51a)と、固定側鏡板部(51a)の上面から上方に突出する環状の第1ピストン(53)とを備えている。一方、第1シリンダ(52)は、円盤状の可動側鏡板部(52a)と、可動側鏡板部(52a)の内周端部から下方に突出する環状の内側シリンダ部(52b)と、可動側鏡板部(52a)の外周端部から下方に突出する環状の外側シリンダ部(52c)とを備えている。第1シリンダ(52)の内側シリンダ部(52b)には、第1偏心部(23b)が嵌合している。そして、第1シリンダ(52)は、駆動軸(23)の回転に伴い主軸部(23a)の軸心を中心として偏心回転するように構成されている。
 また、第1シリンダ(52)には、その内側シリンダ部(52b)の外周面と外側シリンダ部(52c)の内周面との間に環状の第1シリンダ室(54)が形成されている。そして、第1シリンダ室(54)には、第1ピストン(53)が配置されている。その結果、第1シリンダ室(54)は、第1ピストン(53)の外周面と第1シリンダ室(54)の外壁との間に形成される第1低段側圧縮室(61)と、第1ピストン(53)の内周面と第1シリンダ室(54)の内壁との間に形成される第1高段側圧縮室(63)とに区画されている。また、第1シリンダ(52)の外側シリンダ部(52c)には、第1シリンダ(52)の外側の吸入空間(38)と、第1低段側圧縮室(61)とを連通させる第1連通路(59)が形成されている。
 図3に示すように、第1シリンダ(52)には、外側シリンダ部(52c)の内周面から内側シリンダ部(52b)の外周面まで延びるブレード(45)が設けられている。ブレード(45)は、第1低段側圧縮室(61)及び第1高段側圧縮室(63)を、吸入側となる低圧室と吐出側となる高圧室とに区画している。一方、第1ピストン(53)は、環状の一部が分断されたC型形状をしており、この分断箇所にブレード(45)が挿通されている。また、ピストン(53)の分断箇所には、ブレード(45)を挟むように半円形状のブッシュ(46,46)が嵌合している。ブッシュ(46,46)はピストン(53)の端部で揺動自在に構成されている。以上の構成により、シリンダ(52)は、ブレード(45)の延伸方向に進退可能となり、また、ブッシュ(46,46)とともに揺動可能となる。駆動軸(23)が回転すると、シリンダ(52)は、図3の(A)から(D)の順に偏心回転し、第1低段側圧縮室(61)及び第1高段側圧縮室(63)で冷媒が圧縮される。
 第2機構部(25)は、第1機構部(24)と同じ機械要素によって構成されている。第2機構部(25)は、ミドルプレート(41)を挟んで、第1機構部(24)とは上下反転した状態で設けられている。
 具体的に、第2機構部(25)は、ケーシング(21)に固定される第2ハウジング(55)と、第2ハウジング(55)内に収納される第2シリンダ(56)とを備えている。第2ハウジング(55)は固定部材を構成し、第2シリンダ(56)は可動部材を構成している。
 第2ハウジング(55)は、円盤状の固定側鏡板部(55a)と、固定側鏡板部(55a)の下面から下方に突出する環状の第2ピストン(57)とを備えている。一方、第2シリンダ(56)は、円盤状の鏡板部(56a)と、鏡板部(56a)の内周端部から上方に突出する環状の内側シリンダ部(56b)と、鏡板部(56a)の外周端部から上方に突出する環状の外側シリンダ部(56c)とを備えている。第2シリンダ(56)の内側シリンダ部(56b)には、第2偏心部(23c)が嵌合している。そして、第2シリンダ(56)は、駆動軸(23)の回転に伴い主軸部(23a)の軸心を中心として偏心回転するように構成されている。
 また、第2シリンダ(56)には、その内側シリンダ部(56b)の外周面と外側シリンダ部(56c)の内周面との間に環状の第2シリンダ室(58)が形成されている。そして、第2シリンダ室(58)には、第2ピストン(57)が配置されている。その結果、第2シリンダ室(58)は、第2ピストン(57)の外周面と第2シリンダ室(58)の外壁との間に形成される第2低段側圧縮室(62)と、第2ピストン(57)の内周面と第2シリンダ室(58)の内壁との間に形成される第2高段側圧縮室(64)とに区画されている。また、第2シリンダ(56)の外側シリンダ部(56c)には、第2シリンダ(56)の外側の吸入空間(39)と、第2低段側圧縮室(62)とを連通させる第2連通路(60)が形成されている。
 第2機構部(25)は、駆動軸(23)が回転すると、第1機構部(24)と同様に、第2シリンダ(56)が偏心回転する。その結果、第2低段側圧縮室(62)及び第2高段側圧縮室(64)で冷媒が圧縮される。
 なお、第1機構部(24)及び第2機構部(25)の各機構部は、低段側の圧縮室(61,62)に対する高段側の圧縮室(63,64)の吸入容積比が0.8~1.3の間の値(例えば1.0)になるように設計されている。
 ケーシング(21)には、吐出管(31)、第1吸入分岐管(42a)、第2吸入分岐管(42b)、中間圧連絡管(33)、第1中間分岐管(43a)、及び第2中間分岐管(43b)が貫通している。ケーシング(21)では、吐出管(31)が頂部を貫通し、他の管(42,43)は胴部を貫通している。吐出管(31)は、圧縮機(20)の運転時に高圧空間となる内部空間(37)に開口している。
 第1機構部(24)には、第1吸入分岐管(42a)及び第1中間分岐管(43a)が接続されている。第1吸入分岐管(42a)は、第1連通路(59)を介して第1低段側圧縮室(61)の吸入側と繋がっている。第1低段側圧縮室(61)の吐出側は、第1ハウジング(51)、ミドルプレート(41)、及び第2ハウジング(55)に亘って形成された連絡通路(49)を介して第2低段側圧縮室(62)の吐出側と繋がっている。また、第1中間分岐管(43a)は、第1高段側圧縮室(63)の吸入側と繋がっている。なお、第1高段側圧縮室(63)の吐出側は、図示しない連絡通路を通じて、内部空間(37)と繋がっている。
 また、第1機構部(24)には、外側吐出ポート(65)及び内側吐出ポート(66)が第1ハウジング(51)に形成されている。外側吐出ポート(65)は、第1低段側圧縮室(61)の吐出側と連絡通路(49)とを連通している。外側吐出ポート(65)には、第1吐出弁(67)が設けられている。第1吐出弁(67)は、第1低段側圧縮室(61)の吐出側の冷媒圧力が連絡通路(49)側の冷媒圧力以上になると、外側吐出ポート(65)を開口するように構成されている。一方、内側吐出ポート(66)は、第1高段側圧縮室(63)の吐出側と内部空間(37)とを連通している。内側吐出ポート(66)には、第2吐出弁(68)が設けられている。第2吐出弁(68)は、第1高段側圧縮室(63)の吐出側の冷媒圧力がケーシング(21)の内部空間(37)の冷媒圧力以上になると、内側吐出ポート(66)を開口するように構成されている。
 第2機構部(25)には、第2吸入分岐管(42b)、中間圧連絡管(33)及び第2中間分岐管(43b)が接続されている。第2吸入分岐管(42b)は、第2連通路(60)を介して第2低段側圧縮室(62)の吸入側と繋がっている。中間圧連絡管(33)は、第2低段側圧縮室(62)の吐出側と繋がっている。また、第2中間分岐管(43b)は、第2高段側圧縮室(64)の吸入側と繋がっている。なお、第2高段側圧縮室(64)の吐出側は、図示しない連絡通路を通じて、内部空間(37)と繋がっている。
 また、第2機構部(25)には、第1機構部(24)と同様に、外側吐出ポート(75)及び内側吐出ポート(76)が第2ハウジング(55)に形成されている。外側吐出ポート(75)は、第2低段側圧縮室(62)の吐出側と中間圧連絡管(33)とを連通している。外側吐出ポート(75)には、第3吐出弁(77)が設けられている。第3吐出弁(77)は、第2低段側圧縮室(62)の吐出側の冷媒圧力が中間圧連絡管(33)側の冷媒圧力以上になると、外側吐出ポート(75)を開口するように構成されている。一方、内側吐出ポート(76)は、第2高段側圧縮室(64)の吐出側とケーシング(21)の内部空間(37)とを連通している。内側吐出ポート(76)には、第4吐出弁(78)が設けられている。第4吐出弁(78)は、第2高段側圧縮室(64)の吐出側の冷媒圧力がケーシング(21)の内部空間(37)の冷媒圧力以上になると、内側吐出ポート(76)を開口するように構成されている。
 また、ケーシング(21)の底部には、冷凍機油が貯留される油溜まりが形成されている。また、駆動軸(23)の下端には、油溜まりに浸漬する油ポンプ(28)が設けられている。駆動軸(23)の内部には、油ポンプ(28)が吸い上げた冷凍機油が流通する給油通路(図示省略)が形成されている。この圧縮機(20)では、駆動軸(23)の回転に伴って、油ポンプ(28)が吸い上げた冷凍機油が給油通路を通じて各機構部(24,25)の摺動部及び駆動軸(23)の軸受部に供給される。
 本実施形態では、図4に示すように、ミドルプレート(41)に押付機構(80,90)が設けられている。押付機構(80,90)は、第1機構部(24)に対して設けられた第1押付部(80)と、第2機構部(25)に対して設けられた第2押付部(90)とから構成されている。
 第1押付部(80)は、第1ハウジング(51)に対して第1シリンダ(52)を押し付けるように構成されている。第1押付部(80)は、第1中間圧背圧室(85)を互いに形成する第1内側シールリング(81a)及び第1外側シールリング(81b)と、ミドルプレート(41)の内部に形成された中間接続通路(79)とを備えている。第1内側シールリング(81a)及び第1外側シールリング(81b)は、区画部材を構成している。
 第1内側シールリング(81a)は、駆動軸(23)が挿入されたミドルプレート(41)の挿通孔を囲うようにミドルプレート(41)の下面に形成された第1内側環状溝(83)に嵌め込まれている。一方、第1外側シールリング(81b)は、第1内側環状溝(83)を囲うようにミドルプレート(41)の下面に形成された第1外側環状溝(84)に嵌め込まれている。第1内側環状溝(83)及び第1外側環状溝(84)は同心に配置されている。第1中間圧背圧室(85)は、ミドルプレート(41)の下面と第1シリンダ(52)の上面との間において、第1内側環状溝(83)の外周と第1外側環状溝(84)の内周との間に形成されている。
 中間接続通路(79)は、一端がミドルプレート(41)の外周面に開口し、その一端で接続管(69)に接続されている。中間接続通路(79)は、ミドルプレート(41)の外周面から内側に延びる本通路(79a)と、本通路(79a)の内側端で下側に分岐する第1分岐通路(79b)と、本通路(79a)の内側端で上側に分岐する第2分岐通路(79c)とから構成されている。第1分岐通路(79b)は、ミドルプレート(41)の下面で第1中間圧背圧室(85)に開口している。第2分岐通路(79c)は、ミドルプレート(41)の上面で、後述する第2中間圧背圧室(95)に開口している。
 第1中間圧背圧室(85)は、第1分岐通路(79b)及び本通路(79a)を介して接続管(69)に連通している。このため、第1中間圧背圧室(85)には、第2高段側圧縮室(64)へ向かう中間圧冷媒が導入される。また、第1内側シールリング(81a)の内側には、駆動軸(23)側からの高圧の冷凍機油が導入される。また、第1外側シールリング(81b)の外側は、吸入空間(38)に連通している。第1押付部(80)は、第1内側シールリング(81a)の内側の高圧の冷凍機油と、第1中間圧背圧室(85)の中間圧冷媒と、第1外側シールリング(81b)の外側の低圧冷媒とによって、第1シリンダ(52)を第1ハウジング(51)に押し付けるように構成されている。
 また、第2押付部 (90)は、第2ハウジング(55)に対して第2シリンダ(56)を押し付けるように構成されている。第2押付部 (90)は、第2中間圧背圧室(95)を互いに形成する第2内側シールリング(91a)及び第2外側シールリング(91b)と、上記中間接続通路(79)とを備えている。第2内側シールリング(91a)及び第2外側シールリング(91b)は区画部材を構成している。押付機構(80,90)では、第1押付部(80)と第2押付部 (90)とで、中間接続通路(79)の本通路(79a)が共用されている。
 第2内側シールリング(91a)は、ミドルプレート(41)の挿通孔を囲うようにミドルプレート(41)の上面に形成された第2内側環状溝(93)に嵌め込まれている。一方、第2外側シールリング(91b)は、第2内側環状溝(93)を囲うようにミドルプレート(41)の上面に形成された第2外側環状溝(94)に嵌め込まれている。第2内側環状溝(93)及び第2外側環状溝(94)は同心に配置されている。第2中間圧背圧室(95)は、ミドルプレート(41)の上面と第2シリンダ(56)の下面との間において、第2内側環状溝(93)の外周と第2外側環状溝(94)の内周との間に形成されている。
 第2中間圧背圧室(95)は、第2分岐通路(79c)及び本通路(79a)を介して接続管(69)に連通している。このため、第2中間圧背圧室(95)には、第2高段側圧縮室(64)へ向かう中間圧冷媒が導入される。また、第2内側シールリング(91a)の内側には、駆動軸(23)側からの高圧の冷凍機油が導入される。また、第2外側シールリング(91b)の外側は、吸入空間(39)に連通している。第2押付部 (90)は、第2内側シールリング(91a)の内側の高圧の冷凍機油と、第2中間圧背圧室(95)の中間圧冷媒と、第2外側シールリング(91b)の外側の低圧冷媒とによって、第2シリンダ(56)を第2ハウジング(55)に押し付けるように構成されている。
 以上の構成により、本実施形態の圧縮機(20)では、駆動軸(23)の回転に伴い、各機構部(24,25)の各シリンダ(52,56)が各ピストン(53,57)に対して相対的に偏心回転運動を行う。その結果、第1機構部(24)及び第2機構部(25)の各圧縮室(61~64)の容積が周期的に変化することによって、第1機構部(24)及び第2機構部(25)の各圧縮室(61~64)で冷媒が圧縮される。
  -運転動作-
 次に、実施形態1に係る空調機(1)の運転動作について説明する。この空調機(1)では、以下に述べる暖房運転や冷房運転等が切り換え可能となっている。
  (暖房運転)
 空調機(1)の暖房運転では、四路切換弁(14)が第1状態に設定されると共に、膨張弁(12)の開度が適宜調節される。この状態で、圧縮機(20)の運転が行われると、冷媒回路(10)では室内熱交換器(11)が放熱器となって室外熱交換器(13)が蒸発器となる冷凍サイクルが行われる。なお、この空調機(1)では、冷凍サイクルの高圧圧力が二酸化炭素冷媒の臨界圧力よりも高くなる超臨界の冷凍サイクルが行われる。この点は、以下の冷房運転も同じである。
 なお、この空調機(1)では、必要となる暖房能力が比較的大きい場合には、減圧弁(16)が開状態に設定される。減圧弁(16)が開状態に設定されると、中間インジェクション配管(18)を通じて圧縮機(20)の各機構部(24,25)の高段側の圧縮室(63,64)に冷凍サイクルの中間圧冷媒を注入する中間インジェクション動作が実行される。中間インジェクション動作の実行中は、減圧弁(16)の開度が適宜調節される。一方、必要となる暖房能力が比較的小さい場合には、減圧弁(16)が閉状態に設定され、中間インジェクション動作が停止される。
 まず、中間インジェクション動作の停止中の冷媒の流れについて説明する。圧縮機(20)の吐出管(31)から吐出された高圧冷媒は、四路切換弁(14)を経由して室内熱交換器(11)を流れる。室内熱交換器(11)では、冷媒が室内空気へ放熱する。その結果、室内の暖房が行われる。
 室内熱交換器(11)で冷却された冷媒は、内部熱交換器(15)の第1熱交換用流路(15a)を流れ、膨張弁(12)で低圧まで減圧された後、室外熱交換器(13)を流れる。室外熱交換器(13)では、冷媒が室外空気から吸熱して蒸発する。室外熱交換器(13)で蒸発した冷媒は、受液器(17)を経由して、圧縮機(20)の吸入側へ送られる。
 圧縮機(20)の吸入側へ流れた冷媒は、第1吸入分岐管(42a)及び第2吸入分岐管(42b)へ分流する。第1吸入分岐管(42a)に流入した冷媒は、第1機構部(24)の第1低段側圧縮室(61)内で圧縮される。第2吸入分岐管(42b)に流入した冷媒は、第2機構部(25)の第2低段側圧縮室(62)内で圧縮される。各低段側の圧縮室(61,62)で圧縮された冷媒は、合流後に中間圧連絡管(33)を流通して、第1中間分岐管(43a)及び第2中間分岐管(43b)へ分流する。第1中間分岐管(43a)に流入した冷媒は、第1機構部(24)の第1高段側圧縮室(63)内で圧縮される。第2中間分岐管(43b)に流入した冷媒は、第2機構部(25)の第2高段側圧縮室(64)内で圧縮される。各高段側の圧縮室(63,64)で圧縮された冷媒は、共にケーシング(21)の内部空間(37)に流れ込み、吐出管(31)から吐出される。
 続いて、中間インジェクション動作の実行中の冷媒の流れについて説明する。以下では、中間インジェクション動作の停止中と異なる点について説明する。中間インジェクション動作の実行中は、室内熱交換器(11)で冷却された冷媒の一部が、減圧弁(16)で中間圧まで減圧された後に第2熱交換用流路(15b)へ流入する。このため、内部熱交換器(15)では、高圧の冷媒が第1熱交換用流路(15a)を流通して、中間圧冷媒が第2熱交換用流路(15b)を流通する状態になる。内部熱交換器(15)では、第1熱交換用流路(15a)側の冷媒の熱が、第2熱交換用流路(15b)側の冷媒に付与され、この第2熱交換用流路(15b)側の冷媒が蒸発する。第2熱交換用流路(15b)で蒸発した冷媒は、各低段側圧縮室(61,62)で圧縮された冷媒と合流し、各高段側圧縮室(63,64)で圧縮される。
 本実施形態では、各機構部(24,25)に対して設けられた押付部(80,90)が、中間圧背圧室(85,95)を可動側鏡板部(51a,52a,55a,56a)の背面側に形成するシールリング(81,91)を備えている。各機構部(24,25)のシリンダ(52,56)は、中間圧背圧室(85,95)内の中間圧冷媒の圧力によってハウジング(51,55)に押し付けられる。ここで、上述したように、中間圧冷媒の圧力は、中間インジェクション動作の実行中に比べて、中間インジェクション動作の停止中の方が低くなる。このため、各押付部(80,90)の押付力は、中間インジェクション動作の実行中に比べて中間インジェクション動作の停止中の方が低くなる。一方、シリンダ(52,56)に作用する離反力は、上述したように、中間インジェクション動作の実行中に比べて中間インジェクション動作の停止中の方が小さくなる。本実施形態では、各機構部(24,25)の可動側鏡板部(51a,52a,55a,56a)の背面側にシールリング(81,91)を設けることで、可動部材(51,52,55,56)に作用する離反力が小さくなる中間インジェクション動作の停止中に、押付機構(80,90)の押付力が小さくなるようにしている。
  (冷房運転)
 空調機(1)の冷房運転では、四路切換弁(14)が第2状態に設定されると共に、膨張弁(12)の開度が適宜調節される。この状態で、圧縮機(20)の運転が行われると、冷媒回路(10)では室外熱交換器(13)が放熱器となって室内熱交換器(11)が蒸発器となる冷凍サイクルが行われる。なお、冷房運転でも暖房運転と同様にインジェクション動作が実行可能であるが、以下ではインジェクション動作の停止中のみについて説明する。
 具体的に、圧縮機(20)の吐出管(31)から吐出された高圧冷媒は、四路切換弁(14)を経由して室外熱交換器(13)を流れる。室外熱交換器(13)では、冷媒が室外空気へ放熱する。室外熱交換器(13)で冷却された冷媒は、膨張弁(12)で低圧まで減圧された後、室内熱交換器(11)を流れる。室内熱交換器(11)では、冷媒が室内空気から吸熱して蒸発する。その結果、室内の冷房が行われる。室内熱交換器(11)で蒸発した冷媒は、受液器(17)を経由して圧縮機(20)の吸入側へ送られる。
 圧縮機(20)では、冷房運転と同様に、第1機構部(24)及び第2機構部(25)でそれぞれ冷媒が二段圧縮される。各機構部(24,25)で圧縮された冷媒は、吐出管(31)から再び吐出される。
  -実施形態1の効果-
 以上のように、上記実施形態1では、中間圧背圧室(85,95)を可動側鏡板部(51a,55a)の背面側に形成するシールリング(81,91)を設けることで、シリンダ(52,56)に作用する離反力が小さくなる中間インジェクション動作の停止中に、押付機構(80,90)の押付力が小さくなる。このため、可動側鏡板部(52a,56a)に背面側に導入した高圧冷凍機油のみによって押付力を得るようにしている従来の圧縮機では、中間インジェクション動作を停止する前後で押付機構(80,90)の押付力が概ね一定であるのに対して、この実施形態1の圧縮機(20)では、中間インジェクション動作の停止中に押付力が小さくなるので、中間インジェクション動作の停止中における押付力と離反力の差が小さくなる。従って、中間インジェクション動作の停止中に、押付力と離反力の差によって生じる摩擦力が小さくなるので、圧縮機構(30)のエネルギー損失を低減させることができる。
 また、上記実施形態1では、中間インジェクション動作を行う冷凍装置(1)の圧縮機(20)として、中間インジェクション動作の停止中に押付機構(80,90)の押付力が小さくなる圧縮機(20)が適用されている。このため、中間インジェクション動作の停止中における圧縮機(20)のエネルギー損失が小さくなるので、冷凍装置(1)の運転効率を向上させることができる。
  《実施形態2》
 実施形態2の空調機(1)は、上記実施形態1と圧縮機(20)の構成が異なるものである。以下では、上記実施形態1と異なる点について説明する。
 実施形態2の圧縮機(20)では、図5に示すように、第1機構部(24)に第1低段側圧縮室(61)及び第2低段側圧縮室(62)が形成され、第2機構部(25)に第1高段側圧縮室(63)及び第2高段側圧縮室(64)が形成されている。
 第1機構部(24)の吸入側には、吸入管(32)が接続されている。第1機構部(24)の吐出側は、中間圧連絡管(33)を介して、第2機構部(25)の吸入側に接続されている。
 図6及び図7に示すように、第1機構部(24)では、第1ピストン(53)の外周面と第1シリンダ室(54)の外壁との間に第1低段側圧縮室(61)が形成され、第1ピストン(53)の内周面と第1シリンダ室(54)の内壁との間に第2低段側圧縮室(62)が形成されている。
 また、第1シリンダ(52)では、外側シリンダ部(52c)に第1外側連通路(59a)が形成され、内側シリンダ部(52b)に第1内側連通路(59b)が形成されている。第1外側連通路(59a)は、第1シリンダ(52)の外側の吸入空間(38)と、第1低段側圧縮室(61)の吸入側とを連通している。第1内側連通路(59b)は、第1低段側圧縮室(61)の吸入側と第2低段側圧縮室(62)の吸入側とを連通している。第1機構部(24)では、第1低段側圧縮室(61)の吸入側が、第1外側連通路(59a)を介して吸入管(32)と繋がっている。第2低段側圧縮室(62)の吸入側が、第1外側連通路(59a)及び第1内側連通路(59b)を介して吸入管(32)と繋がっている。
 また、第1機構部(24)では、外側吐出ポート(65)及び内側吐出ポート(66)が第1ハウジング(51)に形成されている。外側吐出ポート(65)は、第1低段側圧縮室(61)の吐出側と第1吐出空間(46)とを連通している。外側吐出ポート(65)には、第1吐出弁(67)が設けられている。第1吐出弁(67)は、第1低段側圧縮室(61)の吐出側の冷媒圧力が第1吐出空間(46)の冷媒圧力以上になると、外側吐出ポート(65)を開口するように構成されている。一方、内側吐出ポート(66)は、第2低段側圧縮室(62)の吐出側と第1吐出空間(46)とを連通している。内側吐出ポート(66)には、第2吐出弁(68)が設けられている。第2吐出弁(68)は、第2低段側圧縮室(62)の吐出側の冷媒圧力が第1吐出空間(46)の冷媒圧力以上になると、内側吐出ポート(66)を開口するように構成されている。第1吐出空間(46)には中間圧連絡管(33)が開口している。
 第2機構部(25)では、第2ピストン(57)の外周面と第2シリンダ室(58)の外壁との間に第1高段側圧縮室(63)が形成され、第2ピストン(57)の内周面と第2シリンダ室(58)の内壁との間に第2高段側圧縮室(64)が形成されている。
 また、第2シリンダ(56)では、外側シリンダ部(56c)に第2外側連通路(60a)が形成され、内側シリンダ部(56b)に第2内側連通路(60b)が形成されている。第2外側連通路(60a)は、第2シリンダ(56)の外側の吸入空間(39)と、第1高段側圧縮室(63)の吸入側とを連通している。第2内側連通路(60b)は、第1高段側圧縮室(63)の吸入側と第2高段側圧縮室(64)の吸入側とを連通している。第2機構部(25)では、第1高段側圧縮室(63)の吸入側が、第2外側連通路(60a)を介して中間圧連絡管(33)と繋がっている。第2高段側圧縮室(64)の吸入側が、第2外側連通路(60a)及び第2内側連通路(60b)を介して中間圧連絡管(33)と繋がっている。
 また、第2機構部(25)では、外側吐出ポート(75)及び内側吐出ポート(76)が第2ハウジング(55)に形成されている。外側吐出ポート(75)は、第1高段側圧縮室(63)の吐出側と第2吐出空間(47)とを連通している。外側吐出ポート(75)には、第3吐出弁(77)が設けられている。第3吐出弁(77)は、第1高段側圧縮室(63)の吐出側の冷媒圧力が第2吐出空間(47)の冷媒圧力以上になると、外側吐出ポート(75)を開口するように構成されている。一方、内側吐出ポート(76)は、第2高段側圧縮室(64)の吐出側と第2吐出空間(47)とを連通している。内側吐出ポート(76)には、第4吐出弁(78)が設けられている。第4吐出弁(78)は、第2高段側圧縮室(64)の吐出側の冷媒圧力が第2吐出空間(47)の冷媒圧力以上になると、内側吐出ポート(76)を開口するように構成されている。第2吐出空間(47)は内部空間(37)に連通している。
 なお、本実施形態2の押付機構(80,90)の構成は、実施形態1と同じである。本実施形態2では、低段側の圧縮室(61,62)だけが形成された第1機構部(24)に対して設けられた第1押付部(80)が、中間圧背圧室(85)を形成する第1内側シールリング(81a)及び第1外側シールリング(81b)を備えている。また、高段側の圧縮室(63,64)だけが形成された第2機構部(25)に対して設けられた第2押付部(90)が、中間圧背圧室(95)を形成する第2内側シールリング(91a)及び第2外側シールリング(91b)を備えている。このため、各機構部(24,25)では、シリンダ(52,56)に作用する離反力が小さくなる中間インジェクション動作の停止中に、押付機構(80,90)の押付力が小さくなる。
 ここで、低段側の圧縮室(61,62)に対する高段側の圧縮室(63,64)の吸入容積比が例えば1.0の場合には、中間インジェクション動作の停止中に、低段側圧縮室(61,62)の吸入側と吐出側の圧力が等しくなり、中間圧冷媒の圧力は低段側圧縮室(61,62)に吸入される冷媒の圧力と等しくなる。つまり、中間インジェクション動作の停止中は、第1機構部(24)で冷媒が実質的に圧縮されずに、第1シリンダ(52)が空回りする状態になる。この実施形態2では、中間インジェクション動作の停止中において、第1押付部(80)の押付力が小さくなるので、空回りする第1シリンダ(52)におけるエネルギー損失が低減される。
  -実施形態2の効果-
 以上のように、上記実施形態2では、第1機構部(24)に比べて中間インジェクション動作の停止による離反力の変化率が大きくなる第2機構部(25)に対して、可動側鏡板部(56a)の背面側にシールリング(91)が設けられている。つまり、本実施形態2の区画部材(81,91)によって可動側鏡板部(52a,56a)の背面側に中間圧背圧室(85,95)を形成しなければ、第1機構部(24)に比べて中間インジェクション動作の停止中に押付力と離反力の差によるエネルギー損失が大きくなる第2機構部(25)に対して、可動側鏡板部(56a)の背面側にシールリング(91)が設けられている。このため、中間圧背圧室(85,95)を形成することの効果が第1機構部(24)よりも第2機構部(25)の方が大きいので、圧縮機構(30)のエネルギー損失を効果的に低減させることができる。
 また、上記実施形態2では、第2機構部(25)だけでなく第1機構部(24)の可動側鏡板部(52a)の背面側にもシールリング(81)が設けられている。従って、第2機構部(25)だけでなく第1機構部(24)でも中間インジェクション動作の停止中のエネルギー損失を低減させることができるので、圧縮機構(30)のエネルギー損失を低減させることができる。
 また、上記実施形態2では、インジェクション動作の停止に伴って冷媒の圧縮に要する仕事量が減少する第1機構部(24)の可動側鏡板部(52a)の背面側にシールリング(81)を設け、中間インジェクション動作の停止中に、可動部材(52)に作用する押付力が小さくなるようにしている。このため、第1機構部(24)では、従来の圧縮機に比べて、押付力と離反力の差によって生じる摩擦力が小さくなるので、インジェクション動作の停止中の圧縮効率の低下を抑制することができる。
  《実施形態3》
 本発明の実施形態3は、本発明に係る圧縮機(20)を備える空調機(1)である。実施形態3の圧縮機(20)は、上記実施形態1及び2とは異なり、各機構部(24,25)が、シリンダ(52,56)とピストン(53,57)のうちピストン(53,57)が偏心回転運動するピストン可動方式になっている。以下では、上記実施形態2と異なる点について説明する。
 第1機構部(24)は、図8及び図9に示すように、ケーシング(21)に固定される固定部材としての第1シリンダ(52)と、環状の第1ピストン(53)を有して駆動軸(23)によって駆動する第1可動部材(51)とを備えている。第1機構部(24)は、後述する可動側鏡板部(51a)の背面が第2機構部(25)側を向くように設けられている。
 第1シリンダ(52)は、円盤状の固定側鏡板部(52a)と、固定側鏡板部(52a)の上面の内寄りの位置から上方に突出する環状の内側シリンダ部(52b)と、固定側鏡板部(52a)の上面の外周部から上方に突出する環状の外側シリンダ部(52c)とを備えている。第1シリンダ(52)は、内側シリンダ部(52b)と外側シリンダ部(52c)との間に、環状の第1シリンダ室(54)を有している。
 一方、第1可動部材(51)は、円盤状の可動側鏡板部(51a)と、上述の第1ピストン(53)と、可動側鏡板部(51a)の下面の内周端部から下方に突出する環状突出部(51b)とを備えている。可動側鏡板部(51a)は、固定側鏡板部(52a)と共に、第1シリンダ室(54)に面している。第1ピストン(53)は、可動側鏡板部(51a)の下面のやや外周寄りの位置から下方に突出している。第1ピストン(53)は、第1シリンダ(52)に対して偏心して第1シリンダ室(54)に収納され、第1シリンダ室(54)を外側の第1低段側圧縮室(61)と内側の第2低段側圧縮室(62)とに区画している。
 なお、第1ピストン(53)と第1シリンダ(52)とは、第1ピストン(53)の外周面と外側シリンダ部(52c)の内周面とが1点で実質的に接する状態(厳密にはミクロンオーダーの隙間があるが、その隙間での冷媒の漏れが問題にならない状態)において、その接点と位相が180°異なる位置で、第1ピストン(53)の内周面と内側シリンダ部(52b)の外周面とが1点で実質的に接するようになっている。この点は、第2機構部(25)においても同じであり、上記実施形態の各機構部(24,25)においても同じである。
 環状突出部(51b)には、第1偏心部(23b)が嵌合している。第1可動部材(51)は、駆動軸(23)の回転に伴い主軸部(23a)の軸心を中心として偏心回転する。なお、第1機構部(24)では、環状突出部(51b)と内側シリンダ部(52b)との間に空間(99)が形成されるが、この空間(99)では冷媒の圧縮は行われない。
 また、第1機構部(24)は、図9に示すように、内側シリンダ部(52b)の外周面から外側シリンダ部(52c)の内周面まで延びるブレード(45)を備えている。ブレード(45)は、第1シリンダ(52)と一体になっている。ブレード(45)は、第1シリンダ室(54)に配置され、第1低段側圧縮室(61)を低圧室(61a)と高圧室(61b)とに区画し、第2低段側圧縮室(62)を低圧室(62a)と高圧室(62b)とに区画している。ブレード(45)は、環状の一部が分断されたC型形状の第1ピストン(53)の分断箇所を挿通している。また、第1ピストン(53)の分断箇所には、ブレード(45)を挟むように半円形状のブッシュ(46,46)が嵌合している。ブッシュ(46,46)は、第1ピストン(53)の端面に対して揺動自在に構成されている。これにより、第1ピストン(53)は、ブレード(45)の延伸方向に進退可能で且つブッシュ(46,46)と共に揺動可能になっている。
 第1機構部(24)には、吸入管(32)が接続されている。吸入管(32)は、固定側鏡板部(52a)に形成された第1接続通路(86)に接続されている。第1接続通路(86)は、入口側が固定側鏡板部(52a)の径方向に延び、途中で上方へ折れ曲がって、出口側が固定側鏡板部(52a)の軸方向に延びている。第1接続通路(86)の出口端は、第1低段側圧縮室(61)と第2低段側圧縮室(62)の両方に開口している。
 また、第1機構部(24)には、外側の第1低段側圧縮室(61)から冷媒を吐出させる外側吐出ポート(65)と、内側の第2低段側圧縮室(62)から冷媒を吐出させる内側吐出ポート(66)と、外側吐出ポート(65)及び内側吐出ポート(66)の両方が開口する第1吐出空間(46)とが形成されている。外側吐出ポート(65)は、第1低段側圧縮室(61)の高圧室(61b)と第1吐出空間(46)とを連通している。外側吐出ポート(65)には、第1吐出弁(67)が設けられている。一方、内側吐出ポート(66)は、第2低段側圧縮室(62)の高圧室(62b)と第1吐出空間(46)とを連通している。内側吐出ポート(66)には、第2吐出弁(68)が設けられている。第1吐出空間(46)には、中間圧連絡管(33)の入口端が開口している。
 以上の構成により、駆動軸(23)が回転すると、第1ピストン(53)は、図9の(A)から(H)の順に偏心回転する。そして、その偏心回転に伴って、第1低段側圧縮室(61)及び第2低段側圧縮室(62)では、吸入管(32)を通じて導入された低圧の冷媒が圧縮される。第1低段側圧縮室(61)及び第2低段側圧縮室(62)から吐出された冷媒は、中間圧連絡管(33)に流入する。
 第2機構部(25)は、第1機構部(24)と同じ機械要素によって構成されている。第2機構部(25)は、後述するミドルプレート(41)を挟んで、第1機構部(24)とは上下反転した状態で設けられている。
 具体的に、第2機構部(25)は、ケーシング(21)に固定される固定部材としての第2シリンダ(56)と、環状の第2ピストン(57)を有して駆動軸(23)によって駆動する第2可動部材(55)とを備えている。第2機構部(25)は、後述する可動側鏡板部(55a)の背面が第1機構部(24)側を向くように設けられている。
 第2シリンダ(56)は、円盤状の固定側鏡板部(56a)と、固定側鏡板部(56a)の下面の内寄りの位置から下方に突出する環状の内側シリンダ部(56b)と、固定側鏡板部(56a)の下面の外周部から下方に突出する環状の外側シリンダ部(56c)とを備えている。第2シリンダ(56)は、内側シリンダ部(56b)と外側シリンダ部(56c)との間に、環状の第2シリンダ室(58)を有している。
 一方、第2可動部材(55)は、円盤状の可動側鏡板部(55a)と、上述の第2ピストン(57)と、可動側鏡板部(55a)の上面の内周端部から上方に突出する環状突出部(55b)とを備えている。可動側鏡板部(55a)は、固定側鏡板部(56a)と共に、第2シリンダ室(58)に面している。第2ピストン(57)は、可動側鏡板部(55a)の上面のやや外周寄りの位置から上方に突出している。第2ピストン(57)は、第2シリンダ(56)に対して偏心して第2シリンダ室(58)に収納され、第2シリンダ室(58)を外側の第1高段側圧縮室(63)と内側の第2高段側圧縮室(64)とに区画している。環状突出部(55b)には、第2偏心部(23c)が嵌合している。第2可動部材(55)は、駆動軸(23)の回転に伴い主軸部(23a)の軸心を中心として偏心回転する。なお、第2機構部(25)では、環状突出部(55b)と内側シリンダ部(56b)との間に空間(100)が形成されるが、この空間(100)では冷媒の圧縮は行われない。
 また、第2機構部(25)は、内側シリンダ部(56b)の外周面から外側シリンダ部(56c)の内周面まで延びるブレード(45)を備えている。ブレード(45)は、第2シリンダ(56)と一体になっている。ブレード(45)は、第2シリンダ室(58)に配置され、第1高段側圧縮室(63)を低圧室(63a)と高圧室(63b)とに区画し、第2高段側圧縮室(64)を低圧室(64a)と高圧室(64b)とに区画している。ブレード(45)は、環状の一部が分断されたC型形状の第2ピストン(57)の分断箇所を挿通している。また、第2ピストン(57)の分断箇所には、ブレード(45)を挟むように半円形状のブッシュ(46,46)が嵌合している。ブッシュ(46,46)は第2ピストン(57)の端面に対して揺動自在に構成されている。これにより、第2ピストン(57)は、ブレード(45)の延伸方向に進退可能で且つブッシュ(46,46)と共に揺動可能になっている。
 第2機構部(25)には、中間圧連絡管(33)が接続されている。中間圧連絡管(33)は、固定側鏡板部(56a)に形成された第2接続通路(87)に接続されている。第2接続通路(87)は、入口側が固定側鏡板部(56a)の径方向に延び、途中で下方へ折れ曲がって、出口側が固定側鏡板部(56a)の軸方向に延びている。第2接続通路(87)の出口端は、第1高段側圧縮室(63)と第2高段側圧縮室(64)の両方に開口している。
 また、第2機構部(25)には、外側の第1高段側圧縮室(63)から冷媒を吐出させる外側吐出ポート(75)と、内側の第2高段側圧縮室(64)から冷媒を吐出させる内側吐出ポート(76)と、外側吐出ポート(75)及び内側吐出ポート(76)の両方が開口する第2吐出空間(47)とが形成されている。外側吐出ポート(75)は、第1高段側圧縮室(63)の高圧室(63b)と第2吐出空間(47)とを連通している。外側吐出ポート(75)には、第3吐出弁(77)が設けられている。一方、内側吐出ポート(76)は、第2高段側圧縮室(64)の高圧室(64b)と第2吐出空間(47)とを連通している。内側吐出ポート(76)には、第4吐出弁(78)が設けられている。第2吐出空間(47)は、内部空間(37)を介して、吐出管(31)に連通している。
 以上の構成により、駆動軸(23)が回転すると、第2ピストン(57)は、第1ピストン(53)と同様に、偏心回転する。そして、その偏心回転に伴って、第1高段側圧縮室(63)及び第2高段側圧縮室(64)では、中間圧連絡管(33)を通じて導入された中間圧の冷媒が圧縮される。第1高段側圧縮室(63)及び第2高段側圧縮室(64)から吐出された冷媒は、吐出管(31)に流入する。
 また、本実施形態3では、ミドルプレート(41)に、図10に示すように、第1押付部(80)と第2押付部(90)とからなる押付機構(80,90)が設けられている。なお、各押付部(80,90)の構成は、上記実施形態1及び2と同じであるため、説明は省略する。
 《その他の実施形態》
 上述した各実施形態については、以下のような構成としてもよい。
 上記実施形態について、冷媒回路(10)に充填される冷媒が二酸化炭素以外の冷媒(例えばフロン冷媒)であってもよい。この場合、圧縮機(20)はフロン冷媒用に構成される。フロン冷媒用の圧縮機(20)は、低段側の圧縮室(61,62)に対する高段側の圧縮室(63,64)の吸入容積比が二酸化炭素用の圧縮機に比べて小さな値(例えば0.7)になるように設計される。
 また、上記実施形態について、図11に示すように、気液分離器(40)を用いて、圧縮機(20)へ送る中間圧のガス冷媒を得るようにしてもよい。
 また、上記実施形態について、圧縮機(20)が低圧ドーム型の圧縮機であってもよい。
 また、上記実施形態2及び3について、第1機構部(24)と第2機構部(25)のうち第1機構部(24)の可動側鏡板部(51a,52a)の背面側だけに中間圧背圧室(85)が形成されていてもよいし、第2機構部(25)の可動側鏡板部(55a,56a)の背面側だけに中間圧背圧室(95)が形成されていてもよい。
 また、上記実施形態について、機構部(24,25)のうち一方が、可動部材(51,52,55,56)と固定部材(51,52,55,56)に鏡板部がないタイプの機構部(例えば、ロータリ式の流体機械)であってもよい。この場合、鏡板部がある方の機構部(24,25)の可動側鏡板部(51a,52a,55a,56a)の背面側に中間圧背圧室(85,95)が形成される。
 また、上記実施形態1について、圧縮機構(30)が機構部(24,25)を1つだけ有していてもよい。
 また、上記実施形態2について、機構部(24,25)の一方、又は機構部(24,25)の両方が、スクロール式の流体機械により構成されていてもよい。この場合、スクロール式の流体機械の可動スクロール(52,56)の背面側に中間圧背圧室(85,95)が形成される。
 なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 以上説明したように、本発明は、冷媒の二段圧縮を行う圧縮機、及びその圧縮機が設けられた冷凍装置について有用である。

Claims (9)

  1.  低段側の圧縮室(61,62)と高段側の圧縮室(63,64)とを形成して低段側の圧縮室(61,62)で圧縮した冷媒を高段側の圧縮室(63,64)で更に圧縮する圧縮機構(30)を備え、
     冷凍サイクルを行う冷媒回路(10)に対して、該冷媒回路(10)の中間圧冷媒を上記低段側の圧縮室(61,62)と高段側の圧縮室(63,64)との間に注入するための中間インジェクション通路(18)を接続した状態で設けられる圧縮機であって、
     上記圧縮機構(30)は、上記圧縮室(61~64)に面する固定側鏡板部(51a,52a,55a,56a)が基端側に設けられた固定部材(51,52,55,56)と、該圧縮室(61~64)を挟んで該固定側鏡板部(51a,52a,55a,56a)に対面する可動側鏡板部(51a,52a,55a,56a)が基端側に設けられた可動部材(51,52,55,56)とを備え、該可動部材(51,52,55,56)を偏心回転させて冷媒を圧縮するように構成され、
     更に、上記圧縮機構(30)は、上記可動側鏡板部(51a,52a,55a,56a)の背面に臨んで形成されて上記低段側の圧縮室(61,62)の吐出側に連通する中間圧背圧室(85,95)を備え、該中間圧背圧室(85,95)の内圧を該可動側鏡板部(51a,52a,55a,56a)に作用させて上記可動部材(51,52,55,56)を上記固定部材(51,52,55,56)に押し付けるように構成されていることを特徴とする圧縮機。
  2.  請求項1において、
     上記圧縮機構(30)は、それぞれが上記固定部材(51,52,55,56)及び上記可動部材(51,52,55,56)を有する第1機構部(24)及び第2機構部(25)を備える一方、
     上記中間圧背圧室(85,95)は、上記第1機構部(24)及び上記第2機構部(25)のうち少なくとも一方の可動側鏡板部(51a,52a,55a,56a)の背面側に形成されていることを特徴とする圧縮機。
  3.  請求項2において、
     上記圧縮機構(30)では、上記第1機構部(24)及び上記第2機構部(25)のそれぞれに上記低段側の圧縮室(61,62)と上記高段側の圧縮室(63,64)の両方が形成される一方、
     上記中間圧背圧室(85,95)は、上記第1機構部(24)及び上記第2機構部(25)の両方の可動側鏡板部(51a,52a,55a,56a)の背面側にそれぞれ形成されていることを特徴とする圧縮機。
  4.  請求項2において、
     上記圧縮機構(30)では、上記低段側の圧縮室(61,62)が上記第1機構部(24)だけに形成されて上記高段側の圧縮室(63,64)が上記第2機構部(25)だけに形成される一方、
     上記中間圧背圧室(85,95)は、上記第2機構部(25)の可動側鏡板部(55a,56a)の背面側に形成されていることを特徴とする圧縮機。
  5.  請求項4において、
     上記中間圧背圧室(85,95)は、上記第1機構部(24)の可動側鏡板部(51a,52a)の背面側にも形成されていることを特徴とする圧縮機。
  6.  請求項2において、
     上記圧縮機構(30)では、上記低段側の圧縮室(61,62)が上記第1機構部(24)だけに形成されて上記高段側の圧縮室(63,64)が上記第2機構部(25)だけに形成される一方、
     上記中間圧背圧室(85,95)は、上記第1機構部(24)の可動側鏡板部(51a,52a)の背面側に形成されていることを特徴とする圧縮機。
  7.  請求項1において、
     上記圧縮機構(30)は、上記固定部材(51,52,55,56)及び上記可動部材(51,52,55,56)を一対のみ備え、該固定部材(51,52,55,56)の固定側鏡板部(51a,52a,55a,56a)と可動部材(51,52,55,56)の可動側鏡板部(51a,52a,55a,56a)との間に上記低段側の圧縮室(61,62)と上記高段側の圧縮室(63,64)の両方が形成されていることを特徴とする圧縮機。
  8.  請求項1において、
     上記圧縮機構(30)によって二酸化炭素冷媒を圧縮するように構成されていることを特徴とする圧縮機。
  9.  請求項1に記載の圧縮機(20)が設けられて冷凍サイクルを行う冷媒回路(10)を備え、
     上記冷媒回路(10)には、上記圧縮機(20)の高段側の圧縮室(63,64)へ中間圧冷媒を導入するための中間インジェクション通路(18)と、該中間インジェクション通路(18)を開閉する開閉機構(16)とが設けられていることを特徴とする冷凍装置。
PCT/JP2009/000433 2008-02-04 2009-02-04 圧縮機及び冷凍装置 WO2009098874A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09707901.6A EP2251546A4 (en) 2008-02-04 2009-02-04 COMPRESSORS AND FREEZERS
CN200980104142XA CN101939548B (zh) 2008-02-04 2009-02-04 压缩机及制冷装置
US12/865,666 US8419395B2 (en) 2008-02-04 2009-02-04 Compressor and refrigeration apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008023704 2008-02-04
JP2008-023704 2008-02-04
JP2008-250950 2008-09-29
JP2008250950A JP4367567B2 (ja) 2008-02-04 2008-09-29 圧縮機及び冷凍装置

Publications (1)

Publication Number Publication Date
WO2009098874A1 true WO2009098874A1 (ja) 2009-08-13

Family

ID=40951954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000433 WO2009098874A1 (ja) 2008-02-04 2009-02-04 圧縮機及び冷凍装置

Country Status (5)

Country Link
US (1) US8419395B2 (ja)
EP (1) EP2251546A4 (ja)
JP (1) JP4367567B2 (ja)
CN (1) CN101939548B (ja)
WO (1) WO2009098874A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4962585B2 (ja) 2010-03-19 2012-06-27 ダイキン工業株式会社 回転式圧縮機
JP5423538B2 (ja) * 2010-03-31 2014-02-19 ダイキン工業株式会社 回転式圧縮機
JP2013019274A (ja) * 2011-07-07 2013-01-31 Nippon Soken Inc 2段スクロール圧縮機
JP6089571B2 (ja) * 2012-10-17 2017-03-08 ダイキン工業株式会社 回転式圧縮機
KR101984514B1 (ko) * 2012-12-28 2019-05-31 엘지전자 주식회사 압축기
KR101983049B1 (ko) * 2012-12-28 2019-09-03 엘지전자 주식회사 압축기
KR101973623B1 (ko) * 2012-12-28 2019-04-29 엘지전자 주식회사 압축기
KR101970528B1 (ko) * 2012-12-28 2019-04-19 엘지전자 주식회사 압축기
KR101978960B1 (ko) * 2012-12-28 2019-05-16 엘지전자 주식회사 압축기
US9309862B2 (en) * 2013-11-25 2016-04-12 Halliburton Energy Services, Inc. Nutating fluid-mechanical energy converter
KR102339600B1 (ko) * 2017-05-26 2021-12-15 엘지전자 주식회사 로터리 압축기
WO2022152228A1 (zh) * 2021-01-18 2022-07-21 艾默生环境优化技术(苏州)有限公司 涡旋压缩机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173585U (ja) * 1986-04-23 1987-11-04
JP2005320927A (ja) * 2004-05-11 2005-11-17 Daikin Ind Ltd 回転式圧縮機
JP2005320929A (ja) * 2004-05-11 2005-11-17 Daikin Ind Ltd 回転式流体機械
JP2007239666A (ja) 2006-03-09 2007-09-20 Daikin Ind Ltd 冷凍装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329788A (en) * 1992-07-13 1994-07-19 Copeland Corporation Scroll compressor with liquid injection
JP3509299B2 (ja) * 1995-06-20 2004-03-22 株式会社日立製作所 スクロール圧縮機
JP4729773B2 (ja) * 1999-12-06 2011-07-20 ダイキン工業株式会社 スクロール型圧縮機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173585U (ja) * 1986-04-23 1987-11-04
JP2005320927A (ja) * 2004-05-11 2005-11-17 Daikin Ind Ltd 回転式圧縮機
JP2005320929A (ja) * 2004-05-11 2005-11-17 Daikin Ind Ltd 回転式流体機械
JP2007239666A (ja) 2006-03-09 2007-09-20 Daikin Ind Ltd 冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2251546A4

Also Published As

Publication number Publication date
CN101939548B (zh) 2012-10-24
US8419395B2 (en) 2013-04-16
JP2009209928A (ja) 2009-09-17
US20100319394A1 (en) 2010-12-23
EP2251546A4 (en) 2015-08-19
EP2251546A1 (en) 2010-11-17
JP4367567B2 (ja) 2009-11-18
CN101939548A (zh) 2011-01-05

Similar Documents

Publication Publication Date Title
JP4367567B2 (ja) 圧縮機及び冷凍装置
JP4396773B2 (ja) 流体機械
JP5040907B2 (ja) 冷凍装置
JP5306478B2 (ja) ヒートポンプ装置、二段圧縮機及びヒートポンプ装置の運転方法
WO2006013959A1 (ja) 容積型膨張機及び流体機械
KR102051096B1 (ko) 2단 스크롤 압축기 및 이를 적용한 냉동사이클 장치
JP2008286037A (ja) ロータリ圧縮機およびヒートポンプシステム
JP2008520902A (ja) 容量可変型ロータリ圧縮機
JP2000054975A (ja) 2段圧縮機
JP2008303858A (ja) スクロール圧縮機
JP5515289B2 (ja) 冷凍装置
JP5338314B2 (ja) 圧縮機および冷凍装置
JP2012127565A (ja) 冷凍サイクル装置
JP5401899B2 (ja) 冷凍装置
JP2012093017A (ja) 冷凍サイクル装置
JP2010156246A (ja) 圧縮機
JP5321055B2 (ja) 冷凍装置
JP2012088040A (ja) 冷凍装置
JP2011047567A (ja) 冷凍装置
JP2001207983A (ja) 気体圧縮機
KR100677527B1 (ko) 로터리 압축기
JP4617810B2 (ja) 回転式膨張機及び流体機械
JP2011058387A (ja) 回転式圧縮機
JP2013024194A (ja) 冷凍装置
JP5835299B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104142.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707901

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009707901

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009707901

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12865666

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE