JP4729773B2 - スクロール型圧縮機 - Google Patents

スクロール型圧縮機 Download PDF

Info

Publication number
JP4729773B2
JP4729773B2 JP34625499A JP34625499A JP4729773B2 JP 4729773 B2 JP4729773 B2 JP 4729773B2 JP 34625499 A JP34625499 A JP 34625499A JP 34625499 A JP34625499 A JP 34625499A JP 4729773 B2 JP4729773 B2 JP 4729773B2
Authority
JP
Japan
Prior art keywords
pressure
scroll
discharge
compression
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34625499A
Other languages
English (en)
Other versions
JP2001165069A (ja
Inventor
祥孝 芝本
幹央 梶原
洋 北浦
傑 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP34625499A priority Critical patent/JP4729773B2/ja
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to US09/890,884 priority patent/US6607367B1/en
Priority to EP09152502A priority patent/EP2055957B1/en
Priority to CN00803512A priority patent/CN1114761C/zh
Priority to KR10-2001-7009736A priority patent/KR100463283B1/ko
Priority to PCT/JP2000/006927 priority patent/WO2001042658A1/ja
Priority to ES00964667T priority patent/ES2377392T3/es
Priority to EP00964667A priority patent/EP1158166B1/en
Publication of JP2001165069A publication Critical patent/JP2001165069A/ja
Application granted granted Critical
Publication of JP4729773B2 publication Critical patent/JP4729773B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/16Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders

Description

【0001】
【発明の属する技術分野】
本発明はスクロール型圧縮機に関し、特に固定スクロールと可動スクロールとのシール性を高め、内部リークの抑制されるスクロール型圧縮機に関するものである。
【0002】
【従来の技術】
従来のスクロール型圧縮機の一例として、特開平6−330864号公報に記載されたスクロール型圧縮機について説明する。
【0003】
図8を参照して、スクロール型圧縮機のケーシング101内の上部には、可動スクロール103と固定スクロール102とが支持されている。可動スクロール103の鏡板131には可動スクロール歯132が突設されている。固定スクロール102の鏡板121には固定スクロール歯122が突設されている。可動スクロール歯132と固定スクロール歯122とが噛合うことで圧縮室が形成される。
【0004】
固定スクロール102の外周部分には、吸入管107から送られた冷媒ガスを、圧縮室へ取込むための吸入口180が設けられている。固定スクロール102の中央付近には、圧縮されて高圧となった冷媒ガスを吐出するための吐出口123が形成されている。
【0005】
ケーシング101内の下部には、モータ104が設けられている。そのモータ104から延びる駆動軸141が可動スクロール103の下方に固定された軸受ハウジング105に軸受支持されている。可動スクロール103の鏡板131に設けられたボス部133が駆動軸141の上端部分に挿嵌されている。
【0006】
軸受ハウジング105と可動スクロール103との間には背圧室109が形成されている。この背圧室109には、高圧(吐出圧力)が作用している。可動スクロール103と軸受ハウジング105との間には、シールリング170が設けられている。
【0007】
このシールリング170は、高圧の背圧室109と、可動スクロール103と固定スクロール102とが配置されている低圧(吸入圧力)の空間とをシールしている。このため、シールリング170より内側の可動スクロール103の鏡板131の背面には吐出圧力が作用し、シールリング170より外側の背面には吸入圧力が作用することになる。
【0008】
固定スクロール102の鏡板121には、過圧縮を防止するために圧縮途中の圧縮室の冷媒ガスを吐出室101Aへ逃がすためのリリーフポート110とリリーフ弁111とが設けられている。
【0009】
また、固定スクロール102には、吐出口123の上部側を覆うカバー体124が固定ボルトにより取付けられている。カバー体124はケーシング101内上部側に固定された支持板106に連結されている。支持板106には吐出口123に連通する連通孔161が設けられている。
【0010】
連通孔161が開口しているケーシング101の吐出室101Aと、軸受ハウジング105より下方の空間101Bとが、連絡路101Cで連通されている。その空間101Bには、高圧の冷媒ガスをケーシング101の外へ送出すための吐出管108が開口している。
【0011】
次に上述したスクロール型圧縮機の動作について説明する。
モータ104の回転に伴い、可動スクロール103が固定スクロール102に対して公転駆動し、可動スクロール歯132と固定スクロール歯122とによって形成される圧縮室が、外周部から中心部に向かって渦巻き状に収縮しながら移動する。
【0012】
この動作により、吸入管107から吸入口180を経て圧縮室に送込まれた低圧の冷媒ガスが圧縮されて高圧の冷媒ガスになる。高圧の冷媒ガスは、吐出口123から吐出する。吐出口123から吐出した冷媒ガスは、連通孔161、吐出室101Aおよび連絡路101Cを経て空間101Bに流れ込む。空間101Bに流れ込んだ冷媒ガスは、吐出管108よりケーシング101の外へ送出される。
【0013】
次に、この動作における可動スクロール103の鏡板131に作用する圧力について説明する。鏡板131には、一方から圧縮室内の流体の圧力が作用し、他方から背面圧力が作用する。図9は鏡板131の位置に対する圧縮室内の圧力分布と背面の圧力分布を模式的に示したものである。
【0014】
上述したように、圧縮室は外周部から中心部に向かって渦巻き状に収縮しながら移動する。このため、吸入行程中の最外周の圧縮室から圧縮途中の圧縮室を経て、吐出行程中の圧縮室に至るにしたがい、圧縮室の圧力が上昇する。
【0015】
したがって、吸入行程中の圧縮室の圧力が最も低く吸入圧力Psとなり、吐出行程中の圧力が最も高く吐出圧力Pdとなる。圧縮途中の圧縮室の圧力は、吸入圧力Psと吐出圧力Pdとの間の圧力Pmとなる。
【0016】
これにより、可動スクロール103の鏡板131には、上記圧力に基づいて可動スクロールと固定スクロールとを引離そうとする力(離反力)が作用することになる。
【0017】
一方、鏡板131には、上述したように、鏡板131の背面のシールリング170より内側の領域では吐出圧力Pdが作用し、外側の領域では吸入圧力Psが作用している。
【0018】
これにより、可動スクロール103の鏡板131には上記圧力に基づいて、離反力とは反対の向きに、可動スクロール103を固定スクロール102の側に押付けようとする力(押付力)が作用することになる。
【0019】
標準的な運転圧力比でスクロール型圧縮機が運転される場合には、図9に示すような圧力分布となる。したがって、この場合では、離反力に比べて十分な押付力が得られて、可動スクロール103が固定スクロール102から離反することが防止される。そして、各スクロール歯122、132がそれぞれ鏡板121、131に密着することで、内部リークを抑制することができる。
【0020】
なお、運転圧力比とは、スクロール型圧縮機に蒸発器および凝縮器を含めた冷凍サイクルにより決まる圧力比であり、具体的には、凝縮圧力で決定される吐出圧力Pdを蒸発圧力で決定される吸入圧力Psで除した値である。
【0021】
標準的な運転圧力比とは、この値が各スクロール歯122、132により決まる設計圧力比と同レベルである状態をいい、具体的には、この値が約2〜5の範囲にある状態をいう。
【0022】
【発明が解決しようとする課題】
上述したように、スクロール型圧縮機が標準的な運転圧力比で運転される場合には、離反力に比べて十分な押付力が得られて、内部リークを抑制することができる。
【0023】
しかしながら、運転圧力比の値が約2以下であるような低運転圧力比で運転される場合には、以下に示すような問題があった。このような運転圧力比は、設計圧力比よりも小さくなる場合であり、具体的には、吸入圧力Psが吐出圧力Pdに比べて相対的に高くなる場合や、吐出圧力Pdが吸入圧力Psに比べて相対的に低くなる場合である。したがって、この場合には、吐出圧力が下がるために圧縮途中の圧縮室の圧力が吐出圧力よりも高くなることがある。
【0024】
このような低運転圧力比の場合における鏡板131の位置に対する圧縮室内の圧力分布と背面の圧力分布について説明する。図10に示すように、吸入行程中の圧縮室の圧力が最も低く吸入圧力Psであり、圧縮途中の圧縮室の圧力が最も高く圧力Pmとなる。吐出行程中の圧縮室の圧力は、吸入圧力Psと圧力Pmとの間の吐出圧力Pdとなる。鏡板131には、これらの圧力に基づいて離反力が作用することになる。
【0025】
一方、鏡板131には、背圧力としてシールリング170より内側の領域では吐出圧力Pdが作用し、外側の領域では吸入圧力Psが作用している。鏡板131には、これらの圧力に基づいて押付力が作用することになる。
【0026】
離反力と押付力とを比べると、吐出圧力Pdが圧縮途中の圧力Pmよりも低くなるため、離反力に対して押付力が十分ではなくなる。このため、各スクロール歯122、132がそれぞれ鏡板121、131に良好に密着しなくなり、高圧側の圧縮室から低圧側の圧縮室に向かって内部リークが発生することがあった。
【0027】
また、上記スクロール型圧縮機の場合では、圧縮途中の圧縮室において、所定の圧力以上になった場合(過圧縮)に、リリーフ弁111を開いて、その圧縮室の冷媒ガスをリリーフポート110を経て吐出室101Aへ流すことができる。これにより、圧縮途中の圧縮室の圧力は、吐出圧力Pd程度にまで下がることになる。
【0028】
ところが、リリーフポート110に通じている圧縮室の後(外側)に続く圧縮室の圧力は、吸入圧力Psよりも高い状態にある。このため、リリーフポート110に通じている圧縮室の圧力が、吐出圧力Pd程度にまで下がったとはいえ、離反力に対して押付力が十分ではなく、内部リークが発生することがあった。
【0029】
本発明は、上記問題点を解決するためになされたものであり、離反力に対して十分な押付力が得られ、内部リークの低減されるスクロール型圧縮機を提供することを目的とする。
【0030】
【課題を解決するための手段】
請求項1に記載されたスクロール型圧縮機は、固定スクロールおよび可動スクロールと、吸入口と、吐出口と、アンローダ部と、制御手段と、第1背圧室とを備えている。固定スクロールおよび可動スクロールは圧縮室を形成している。吸入口は圧縮室に流体を送込んでいる。吐出口は圧縮室にて圧縮された流体を吐出する。アンローダ部は、圧縮途中の圧縮室内の流体を吸入口の側へ導く。制御手段はアンローダ部を動作させる。第1背圧室は固定スクロールおよび可動スクロールのいずれか一方のスクロールの背面に設けられ、吐出口より吐出した吐出圧力を有する流体が導かれる。制御手段は、吸入圧力および吐出圧力を検知、算出または予測し、検知、算出または予測された吸入圧力および吐出圧力に基づいて、固定スクロールと可動スクロールとを引離そうとする離反力と、一方のスクロールを他方のスクロールに押付けようとする押付力とを比較し、そして、押付力が離反力に対して不足した時または不足しそうな時にアンローダ部を動作させて、圧縮途中の圧縮室内の流体を吸入口の側へ開放する。
【0031】
この請求項1に記載されたスクロール型圧縮機によれば、たとえば低運転圧力比にて運転される場合に過圧縮現象が発生するなどして離反力が押付力以上になろうとする場合には、制御部でこれを検知してアンローダ部を動作させることにより、圧縮途中の圧縮室の流体が吸入口の側へ導かれる。これにより、押付力が下がっても離反力が下がることで相対的には十分な押付力が得られて圧縮室の内部リークを抑制することができる。また、過圧縮現象も緩和することができる。
【0032】
請求項2に記載されたスクロール型圧縮機の制御手段では、吐出圧力および吸入圧力は、ケーシングの外において、吐出した流体を送り出す吐出管と流体を受入れる吸入管との間に接続される蒸発器および凝縮器をそれぞれ流れる流体の温度から算出されるのが好ましい。
【0033】
この請求項2に記載されたスクロール型圧縮機によれば、蒸発器を流れる流体の温度から得られる蒸発温度と、凝縮器を流れる流体の温度から得られる凝縮温度とから、それぞれ蒸発圧力と凝縮圧力とが一意的に求められる。その蒸発圧力および凝縮圧力は、それぞれ吸入圧力および吐出圧力に略等しい。これにより、蒸発器を流れる流体の温度と凝縮器を流れる流体の温度とを測定することで、容易に吸入圧力と吐出圧力とを求めることができる。
【0034】
請求項3に記載されたスクロール型圧縮機のアンローダ部は、圧縮途中の圧縮室と吸入口の側の領域とを連通する第1通路の途中に設けられ、吐出圧力の流体または吸入圧力の流体により第1通路の開閉動作を行うための第1開閉部を有し、吸入圧力の流体が第1開閉部に導かれることにより、第1開閉部が開かれ、吐出圧力の流体が第1開閉部に導かれることにより、第1開閉部が閉じられるのが好ましい。
【0035】
この請求項3に記載されたスクロール型圧縮機によれば、第1開閉部の開閉動作を、流体の圧力を利用し吐出圧力の流体と吸入圧力の流体とを切替えることによって容易に行うことができる。
【0036】
請求項4に記載されたスクロール型圧縮機は、第1背圧室が設けられているスクロールの背面に、吐出圧力の流体が減圧されて導かれる第2背圧室をさらに備えていることが好ましい。
【0037】
この請求項4に記載されたスクロール型圧縮機によれば、吐出圧力の流体が減圧されることで、第2背圧室内の圧力は吐出圧力と吸入圧力との間の圧力になる。これにより、第2背圧室内の圧力が吸入圧力である場合と比べて、さらに十分な押付力が得られて、内部リークの発生を効果的に抑制することができる。また、第1背圧室および第2背圧室の圧力をすべて吐出圧力とする場合よりも、通常の運転圧力比にて運転される場合の押付力は小さくなるため、一方のスクロールを他方のスクロールに押付け過ぎることもない。
【0038】
請求項5に記載されたスクロール型圧縮機は、第1背圧室と第2背圧室とをシールするシール部材を備え、吐出圧力の流体は、第1背圧室からシール部材近傍の隙間を介して第2背圧室へ流れ込むことで減圧されることが好ましい。
【0039】
この請求項5に記載されたスクロール型圧縮機によれば、複雑な機構を必要とせずに流体を容易に減圧することができる。
【0040】
請求項6に記載されたスクロール型圧縮機では、可動スクロールを駆動するための電動機は可変速型電動機であることが好ましい。
【0041】
この請求項6に記載されたスクロール型圧縮機によれば、電動機の回転数を上げることで、たとえばデフロスト運転を短時間で終了させることができる。
【0042】
請求項7に記載されたスクロール型圧縮機は、圧縮途中の圧縮室内の流体を吐出口の側の領域へ直接導くためのリリーフポートと、リリーフポートの途中または出口に設けられ、圧縮途中の圧縮室内の圧力が吐出口側の圧力よりも高くなった場合に、リリーフポートを開放するリリーフ弁とを有していることが好ましい。
【0043】
この請求項7に記載されたスクロール型圧縮機によれば、アンローダ部を動作させても非常に運転圧力比が小さい場合には、過圧縮現象が発生することがあり、この場合に過圧縮を起こしている圧縮室の流体が吐出口の側の領域に開放されて、過圧縮現象をより緩和することができる。
【0050】
【発明の実施の形態】
実施の形態1
本発明の実施の形態1に係るスクロール型圧縮機について説明する。まず、スクロール型圧縮機を含めた冷凍サイクルの構成について説明する。図1を参照して、一般に冷凍サイクルは、スクロール型圧縮機1、凝縮器35、膨張弁34および蒸発器33の4つの主要な機器によって構成されている。
【0051】
凝縮器35の一端側がスクロール型圧縮機の吐出管21に接続され、他端側が膨張弁34を介して蒸発器33の一端側に接続されている。蒸発器33の他端側は吸入管20に接続されている。スクロール型圧縮機1では、吸入管20より吸入した低圧の冷媒ガスをスクロール圧縮部にて圧縮し、高圧となった冷媒ガスを吐出管21より送出す。
【0052】
そのスクロール型圧縮機1には、圧縮途中の冷媒ガスを吸入口の側へ導くためのアンローダ機構11が設けられている。そのアンローダ機構11を動作させるための制御部31が設けられている。蒸発器33および凝縮器35には、蒸発器33または凝縮器35をそれぞれ流れる流体(冷媒)の温度を測定するための温度センサ37a、37bがそれぞれ取付けられている。そして、これらの温度センサ37a、37bは制御部31に接続されている。
【0053】
吐出管21と吸入管20との間にはバイパス30が設けられ、そのバイパス30の途中から分岐させた配管がアンローダ機構11に接続されている。
【0054】
その分岐点と吸入管20との間には、高圧の冷媒ガスをアンローダ機構11に送込むための電磁弁32が設けられている。電磁弁32には、これを開閉するために制御部31からの信号が入力される。電磁弁32が閉じていると吐出管21内の吐出圧力が、アンローダ機構11のピストンのスクロールが配置されている側とは反対側の部分に作用する。電磁弁32が開くとアンローダ機構11のピストンのその部分には、吸入圧力が作用する。また、バイパス30の吐出管21と分岐点との間には、減圧キャピラリ36が設けられている。
【0055】
次にスクロール型圧縮機1についてさらに詳しく説明する。図2を参照して、スクロール型圧縮機のケーシング22内の上部には、可動スクロール4と固定スクロール2とが支持されている。可動スクロール4の鏡板4bには可動スクロール歯4aが突設されている。固定スクロール2の鏡板2bには固定スクロール歯2aが突設されている。可動スクロール歯4aと固定スクロール歯2aとが噛合うことで圧縮室16が形成される。
【0056】
固定スクロール2の外周部分には、吸入管20から送られた冷媒ガスを、圧縮室16へ送込むための吸入口13が設けられている。可動スクロール4の中央付近には、圧縮されて高圧となった冷媒ガスを吐出するための吐出口9が設けられている。
【0057】
ケーシング22内のモータ24から延びる駆動軸5の上端側が、架構6に軸受支持されている。駆動軸5の偏心軸部5bが、可動スクロール4の鏡板4bに設けられたボス部4cに固定された軸受ピンメタル51内面に回転可能に挿入されたスライドブシュ52の内孔に挿嵌されている。
【0058】
駆動軸5には、吐出口9から吐出する冷媒ガスを導くための吐出ガス通路5aと吐出ガス出口(図示せず)とが形成されている。ケーシング22内に流れ出た高圧の冷媒ガスを、ケーシング22の外へ送出すための吐出管21が設けられている。
【0059】
架構6と可動スクロール4との間には第1背圧室14、第2背圧室15が形成されている。第1背圧室14はクランク室7であり、ボス部4および偏心軸部5bが収容されている。第2背圧室は、第1背圧室の外周に形成されている。第1背圧室と第2背圧室とは、シールリング8によってシールされている。第1背圧室14には、高圧(吐出圧力)が作用している。第2背圧室には、連通孔10を介して吸入圧力の冷媒ガスが流れ込み、吸入圧力が作用している。
【0060】
したがって、シールリング8より内側の可動スクロール4の鏡板4bの背面には吐出圧力が作用し、シールリング8より外側の背面には吸入圧力が作用することになる。
【0061】
固定スクロール2の鏡板2bには、圧縮途中の圧縮室16aの冷媒ガスを吸入口13の側へ導くためのアンローダ機構11が設けられている。鏡板2bには、ドーム22a内の空間を介してその圧縮室16aと吸入口13の側とを結ぶための通路12a、12bが設けられている。通路12aの途中にはシリンダ11aが形成され、ピストン11bが装着されている。そのピストン11bの一方側にはばね11cが配置され、ピストン11bの他方側には、バイパス30から分岐した配管が接続されている。
【0062】
次に上述したスクロール型圧縮機の動作について説明する。
モータ24の回転に伴い、可動スクロール4が固定スクロール2に対して公転駆動し、可動スクロール歯4aと固定スクロール歯2aとによって形成される圧縮室16が、外周部から中心部に向かって渦巻き状に収縮しながら移動する。
【0063】
これにより、吸入管20から吸入口13を経て圧縮室16に送込まれた低圧の冷媒ガスが圧縮されて高圧の冷媒ガスになる。高圧の冷媒ガスは、吐出口8から吐出する。吐出口8から吐出した冷媒ガスは、駆動軸5に設けられた吐出ガス通路5aを通り、吐出ガス出口(図示せず)からケーシング22内に流れ込む。
【0064】
ケーシング22内に流れ込んだ冷媒ガスは、吐出管21よりケーシング101の外へ送出される。スクロール型圧縮機では、このような一連の圧縮動作が行われる。
【0065】
次に、この一連の圧縮動作における制御部31の処理について、図3に示すフローチャートに基づいて詳しく説明する。制御部31では、ステップS1において、吸入圧力と吐出圧力の検出、算出または予測が行われる。これには、まず蒸発器33に設けられた温度センサ37aによって得られる蒸発温度Teのデータから蒸発圧力Peが求められる。また、凝縮器35に設けられた温度センサ37bによって得られる凝縮温度Tcから凝縮圧力Pcが求められる。吸入圧力Psは蒸発圧力Peにほぼ等しい。吐出圧力Pdはほぼ凝縮圧力Pcにほぼ等しい。このようにして、吸入圧力Psと吐出圧力Pdとが求められる。
【0066】
次に、求められた吸入圧力Psと吐出圧力Pdに基づいて、ステップS2において押付力と離反力が算出される。第1背圧室14により、吐出圧力Pdが作用する鏡板4bの面積(駆動軸方向の投影面積)をSdとし、第2背圧室15により、吸入圧力Psが作用する鏡板4bの面積をSs1とすると、押付力Fbpは、次の式で与えられる。
【0067】
Fbp=Pd・Sd+Ps・Ss1
一方、離反力は、各圧縮室に作用する圧力と、その圧力が作用する面積との積の総和として求められる。すなわち、可動スクロール4と固定スクロール2とで形成される圧縮室内の圧力をPcとし、その圧力が作用する鏡板4bの面積(駆動軸方向の投影面積)をScとし、吸入圧力Psが作用する鏡板4bの面積をSs2とすると、離反力Fthは、次の式で与えられる。
【0068】
Fth=ΣPc・Sc+Ps・Ss2
なお、圧縮室内の圧力Pcは、概ね次の式で与えられる。
【0069】
Pc=(Vs/Vc)k・Ps
ここで、Vcは圧力が吸入圧力Pcになっている圧縮室の体積であり、Vsは吸入完了時点(圧縮開始時点)の圧縮室の体積である。この体積Vc、Vsは、スクロール歯の形状により幾何学的に決定される。また、kは比熱比である。
このようにして、吸入圧力Psと吐出圧力Pdとに基づいて、押付力Fbpと離反力Fthとが求められる。
【0070】
次に、ステップS3において離反力が押付力以上であるか否かが判断される。離反力が押付力よりも小さいと判断される場合にはステップS4に進み、電磁弁32に対してこれを閉じる信号が送られる。
【0071】
一方、ステップS3において、離反力が押付力以上であると判断される場合にはステップS5に進み、電磁弁32に対してこれを開ける信号が送られる。
制御部31では、このような処理が適当な周期をもって繰り返し行われる。
【0072】
スクロール型圧縮機の圧縮動作において、標準的な運転圧力比にて運転される場合には、従来の技術の項において説明したように離反力に対して押付力が十分に大きい。このため、制御部31ではステップ3からステップ4に進み、電磁弁32は閉じられるか、あるいは閉じられた状態が維持される。
【0073】
この場合には、ピストン11bには背圧として吐出圧力Pdが作用するためピストン11bは下方に押付けられてアンローダ機構11は動作しない。そして、離反力に対して押付力が十分に大きいことで、各スクロール歯2a、4aと鏡板2b、4bとの密着性が確保され、内部リークの発生が抑制される。
【0074】
次に、スクロール型圧縮機が、低運転圧力比にて運転される場合には、過圧縮現象が発生して離反力が押付力以上になってアンローダ機構11が動作する。この場合について詳しく説明する。
【0075】
低運転圧力比とは、前述したように、運転圧力比が設計圧力比よりも小さい状態で運転される場合であり、その値が約3以下であるような状態である。この場合には、吐出圧力Pdが下がるために、圧縮途中の圧縮室の圧力が最も高くなって、過圧縮現象が発生することがある。特に、その値が2以下であるような運転状態では、過圧縮現象が非常に顕著になる。
【0076】
このときの、可動スクロール4の鏡板4bに作用する力の分布について説明する。まず、鏡板4bの背面側においては、シールリング8よりも内側の領域では、吐出圧力Pdが作用し、外側の領域では吸入圧力Psが作用している。鏡板4bにはこれらの力に基づいて押付力が作用する。そして、低運転圧力比の場合には吐出圧力が下がるため、標準的な運転圧力比の場合よりも押付力が低下する。
【0077】
一方、鏡板4bには、吸入行程中の吸入圧力Ps、圧縮途中の圧力Pmおよび吐出行程中の吐出圧力Pdに基づいて離反力が作用する。吐出圧力Pdが圧縮途中の圧力Pmよりも下がるため、離反力に対して押付力が十分ではなくなる。
【0078】
このとき、離反力が押付力以上になろうとすると、制御部31から電磁弁32に対してこれを開にする信号が送られる。電磁弁32が開くと、ピストン11bには背圧として吸入圧力Psが作用する。そして、ピストン11bはばね11cの弾性力により上昇して、圧縮途中の圧縮室16aと吸入口13側とが通路12aおよびドーム22a内空間を通じて繋がることになる。
【0079】
これにより、鏡板4bの位置に対する圧縮室内の圧力分布は、図4に示すように、圧縮途中の圧縮室16a内の圧力が吸入圧力Ps程度にまで下がって、離反力が下がる。
【0080】
一方、アンローダ機構11が動作する前後において鏡板の位置に対する背面の圧力分布には変化がない。このため、押付力が低下しても、離反力が下がることで相対的には十分な押付力が得られ、各スクロール歯2a、4aが対向する鏡板2b、4bに良好に密着して内部リークの発生を抑制することができる。
【0081】
また、アンローダ機構11の動作により、圧縮の開始が遅れ各スクロール歯2a、4aで決まる設計圧力比も小さくなるため、過圧縮が低減してスクロール型圧縮機の運転効率を向上することができる。
【0082】
なお、制御部31では、吸入圧力Psおよび吐出圧力Pdを求めるために、蒸発温度Teおよび凝縮温度Tcを求めたが、この他に、スクロール型圧縮機内や冷凍サイクル内の所定の位置に適当な圧力センサを設置することで、吸入圧力Psと吐出圧力Pdを直接検出してもよい。
【0083】
また、上記制御部31では、離反力と押付力の比較によりアンローダ機構11を動作させたが、さらに、固定スクロールに対して可動スクロールが傾こうとするモーメントを考慮して、アンローダ機構11を動作させてもよい。このことについて説明する。
【0084】
上述したスクロール型圧縮機の場合、可動スクロール4の鏡板4bの一方側に可動スクロール歯4aが形成され、他方側にボス部4cが形成されている。そして、可動スクロール4を公転駆動する部分が、可動スクロール歯4aに作用する冷媒ガスの圧力荷重や可動スクロール4の重心に作用する遠心力の作用する点から離れている。このため、可動スクロール4には固定スクロール2に対して可動スクロール4を傾けるようなモーメントが発生する。
【0085】
通常、可動スクロール4に作用する押付力は、圧縮室内の圧力に基づいた離反力に対抗できるだけでなく、このモーメントに十分対抗できるように幾分大きめに設定されるが、押付力がこのモーメントに対抗することができない場合にアンローダ機構11を動作させるように制御してもよい。すなわち、可動スクロール4が固定スクロール2に対して傾きはじめる前にアンローダ機構11を動作させる。
【0086】
これにより、圧縮途中の圧縮室の圧力が吸入圧力Ps程度にまで下がるため、このモーメントが小さくなり、可動スクロール4が固定スクロール2に対して傾くことが防止される。その結果、可動スクロール4が固定スクロール2に対して傾くことに伴う内部リークを防止することができる。
【0087】
また、冷凍サイクルにおける蒸発温度Teや凝縮温度Tcが時間的に変化していく状態を検知して、押付力が不足する運転状態がこれから起こりそうになった状態で、アンローダ機構11を動作させてもよい。
【0088】
さらに、上述したスクロール型圧縮機では、デフロスト運転の場合のように吸入圧力Psと吐出圧力Pdがともに低い場合には制御部31にてアンローダ機構11を動作させて吐出する流量を低下させないように、低い吐出圧力でもアンロード機構11のばね11cの弾性力に打ち勝って、ピストン11bを押し下げられるように、ばね11cの弾性力を比較的小さいものに設定しておくことが望ましい。アンローダ機構11を動作させないことで、デフロスト運転が長時間に及ぶのを防止することができる。
【0089】
実施の形態2
本発明に実施の形態2に係るスクロール型圧縮機について説明する。図5を参照して、本スクロール型圧縮機では、特に第2背圧室15には吐出圧力Pdを減圧した中間圧力Pmbの冷媒ガス等が導かれる。固定スクロール2には、吸入圧力室16bまたはスクロール最外周の吸入圧力に近い圧力の圧縮室へ第2背圧室15の冷媒ガスを導くための通路42が形成されている。
【0090】
通路42の途中にはシリンダ40が形成され、ピストン41が装着されている。そのピストン41の一方側には、ばね43が配置され、吸入圧力Psとばね43の弾性力が作用している。ピストン41の他方側には、ピストン背圧として第2背圧室15の圧力が作用している。
【0091】
その第2背圧室15には、第1背圧室14内の高圧の冷媒ガスがシールリング8近傍の隙間から減圧されて流れ込む。また、冷媒ガスの他に、ボス部4c等へ供給されたほぼ吐出圧力を有する潤滑油も流れ込む。なお、このスクロール型圧縮機には、図1に示された制御部等が接続されている。
【0092】
これ以外の構成については、実施の形態1において説明した図1および図2に示すスクロール型圧縮機と同様なので、同一部材には同一符号を付しその説明を省略する。
【0093】
次にこのスクロール型圧縮機の一連の圧縮動作は、実施の形態1において説明したスクロール型圧縮機の圧縮動作と同様である。その圧縮動作においては、制御部31により図3に示すフローチャートにしたがって所定の処理が行われる。
【0094】
ここで、スクロール型圧縮機が標準的な運転圧力比にて運転される場合には、実施の形態1において説明したように、離反力に対して押付力が十分に大きいため、アンローダ機構11は動作しない。そして、離反力に対して押付力が十分に大きいことで、各スクロール歯2a、4aと鏡板2b、4bとの密着性が確保され、内部リークの発生が抑制される。
【0095】
次に、スクロール型圧縮機が低運転圧力比にて運転される場合には、アンローダ機構11が動作する。この場合について詳しく説明する。
【0096】
本スクロール型圧縮機の場合では、特に第1背圧室14内の高圧の冷媒ガスが、シールリング8近傍の隙間から減圧されて第2背圧室に流入する。冷媒ガスの流入により、第2背圧室内の圧力が上昇する。
【0097】
そして、第2背圧室内の圧力が、ばね43の弾性力とピストン41に作用する吸入圧力Psとの和よりも大きくなると、ピストン41が上昇して第1背圧室15と吸入圧力室16bまたはスクロール最外周の吸入圧力に近い圧力の圧縮室とが通路42を介して繋がることになる。そして、第2背圧室15内の冷媒ガスが吸入圧力室16bへ流れ込む。
【0098】
冷媒ガスが吸入圧力室16bに流れ込むことで第2背圧室内の圧力が下がり、ピストン41が下降して通路42が閉じられる。そして、第2背圧室15には、シールリング8の隙間を介して冷媒ガスが流れ込む。以下同様の動作が繰り返されることで、第2背圧室の圧力は、吐出圧力Pdと吸入圧力Psとの間の中間圧力Pmbに維持される。
【0099】
スクロール型圧縮機が低運転圧力比で運転される場合には、アンローダ機構11が動作して、圧縮室16a内の冷媒ガスが吸入口13の側へ導かれる。これにより、鏡板4bには、図6に示すように、吸入行程中の吸入圧力Psおよび吐出行程中の吐出圧力Pdに基づいて離反力が作用する。
【0100】
一方の鏡板4bの背面には、第1背圧室内の吐出圧力Pdと第2背圧室内の中間圧力Pmbに基づいて押付力が作用する。離反力は実施の形態1におけるスクロール型圧縮機の場合と実質的に同じである。ところが、押付力は第2背圧室15内の圧力が吐出圧力Pdと吸入圧力Psとの間の中間圧力Pmbである。
【0101】
このため、対応する圧力が吸入圧力Psである実施の形態1の場合のスクロール型圧縮機と比べると、押付力がより強くなり、各スクロール歯2a、4aが対向する鏡板2b、4bにさらに良好に密着して、内部リークの発生を効果的に抑制することができる。
【0102】
なお、このスクロール型圧縮機では、第2背圧室15内の圧力をばね43のばね定数を選択することで適当な圧力に調整するとともに、第1背圧室14および第2背圧室の受圧面積を調整することにより、特に、高運転圧力比の場合に、押付力が離反力に比べて過大になって、圧縮効率が低下したり、各スクロール歯2a、4aが対向する鏡板2b、4bに焼付くなどの不都合を防止することができる。
【0103】
このスクロール型圧縮機でも、可動スクロールの傾きに関するモーメントやデフロスト運転などを考慮してアンローダ機構11を制御することで、実施の形態1において説明した効果と同様の効果を得ることができる。
【0104】
実施の形態3
本実施の形態では、自動的にアンロード機構を動作させることのできるスクロール型圧縮機について説明する。
【0105】
図7を参照して、アンローダ機構11は固定スクロール2の鏡板2bに設けられている。鏡板2bには、ドーム22a内の空間を介して圧縮室16aと吸入口側とを結ぶための通路12dが設けられている。通路12dの途中にはシリンダ11aが形成され、ピストン11bが装着されている。
【0106】
そのピストン11bの一方側にはばね11cが配置され、吸入圧力Psとばね11cによる弾性力が作用している。ピストン11bの他方側は、吐出行程中の圧縮室と連通され、ピストン背圧として概ね吐出圧力Pdが作用している。固定スクロール2には、第2背圧室15と吸入口側とを連通する連通路が設けられている。これ以外の構成については、実施の形態1において説明したスクロール型圧縮機と同様なので、同一部材には同一符号を付しその説明を省略する。
【0107】
このスクロール型圧縮機の一連の圧縮動作も、実施の形態1において説明したスクロール型圧縮機の圧縮動作と同様である。
【0108】
このスクロール型圧縮機が標準的な運転圧力比にて運転される場合には、吐出圧力Pdが比較的大きいために、吐出圧力Pdと吸入圧力Psとの差圧に基づいてピストン11bの受圧面に作用する力が、ばね11cに基づく弾性力よりも大きい。
【0109】
したがって、この場合には、ピストン11bは紙面に向かって左の端に位置して、アンローダ機構11は動作しない。このため、圧縮室16aは密閉された状態であり、圧縮室16aの圧力は圧縮途中の中間圧力Pmになる。
【0110】
そして、離反力に対して押付力が十分に大きいことで、各スクロール歯2a、4aと鏡板2b、4bとの密着性が確保され、内部リークの発生が抑制される。
【0111】
次に、スクロール型圧縮機が低運転圧力比にて運転される場合には、アンローダ機構11が自動的に動作する。この場合について詳しく説明する。
【0112】
低運転圧力比の運転状況では、吐出圧力Pdが下がるために、圧縮途中の圧縮室の圧力が最も高くなって、過圧縮現象が発生することがある。
【0113】
吐出圧力Pdが圧縮途中の圧力Pmよりも下がることで、吐出圧力Pdと吸入圧力Psとの差圧に基づいてピストン11bの受圧面に作用する力が、ばね11cに基づく弾性力よりも小さくなれば、ピストン11bは紙面に向かって右の方向に自動的に変位してアンローダ機構11が動作する。これにより、圧縮室16aと吸入口13の側とが繋がり、圧縮室16aの圧力はほぼ吸入圧力Psになる。
【0114】
したがって、この場合の可動スクロール4の鏡板4bに作用する圧縮室の圧力分布は、図3に示す分布と実質的に同じになる。
【0115】
一方、鏡板4bに作用する背面室の圧力分布においては、実施の形態1において説明したように、シールリング8よりも内側の領域では、吐出圧力Pdが作用し、外側の領域では吸入圧力Psが作用している。鏡板4bにはこれらの力に基づいて押付力が作用する。この押付力は、アンローダ機構11が動作する前後において変化がない。
【0116】
このように圧縮室16a内の圧力Pmが吸入圧力Ps程度にまで下がることで、離反力も下がる。また、圧縮室16a内の圧力が下がることで、過圧縮現象も緩和される。
【0117】
したがって、押付力が低下しても離反力が下がることで相対的には十分な押付力が得られて、各スクロール歯2a、4aが対向する鏡板2b、4bに良好に密着して内部リークの発生を抑制することができる。
【0118】
ところで、このアンローダ機構11におけるばね11cとしては、弾性力が比較的小さいものが望ましい。このことについて説明する。
【0119】
たとえば、デフロスト運転の場合のように、吐出圧力Pdおよび吸入圧力Psがともに低い場合に、ばねの弾性力がこれらの圧力に基づく力に比較して大きい場合には、ばねの弾性力が支配的になる。
【0120】
この場合には、運転圧力比がたとえ大きくてもばねの弾性力によって自動的にピストン11cが紙面に向かって右端に移動して、アンローダ機構11が動作してしまう。
【0121】
そうすると、デフロスト運転に長時間を要することになる。また、この場合に、インバータ制御により高速運転を行おうとすると、デフロスト運転では吐出量も少ないため、モータを非常に高速回転させる必要があり、モータの信頼性、騒音および振動が問題になる。
【0122】
そこで、ばね11cとしては、低運転圧力比の運転状況下で各スクロール歯2a、4aと対向する鏡板4b、2bとが大きく離反しない程度まで、アンローダ機構11が動作しないような小さい弾性力を有しているものを選択するのが望ましい。
【0123】
このようなばね11cを設けることで、デフロスト運転時にも、アンローダ機構11が動作することはなく、デフロスト運転を短時間で終えることができる。
【0124】
また、実施の形態2において説明したスクロール型圧縮機のように、第2背圧室15に、シールリング8近傍の隙間を介して第1背圧室14内の流体を減圧して導くとともに、第2背圧室15内の圧力を吸入圧力Psと吐出圧力Pdとの間の圧力に保持するための所定の機構を設けてもよい。
【0125】
この場合にも、第2背圧室15に対応する背圧が大きくなることで押付力がより強くなり、各スクロール歯2a、4aが対向する鏡板2b、4bにさらに良好に密着して、内部リークの発生を効果的に抑制することができる。
【0126】
なお、上記各実施の形態においては、可動スクロールを固定スクロールの側に押付ける場合について説明したが、固定スクロールを可動スクロールの側に押付けるような構成に対しても、上述した制御部やアンローダ機構等を設けることによって、内部リークを抑制することができる。
【0127】
また、上述した各スクロール型圧縮機において、従来のスクロール型圧縮機のように、圧縮途中の圧縮室の冷媒ガスを吐出口の側へ開放するリリーフポートとリリーフ弁(いずれも図示せず)を設けてもよい。
【0128】
リリーフポートおよびリリーフ弁により過圧縮が抑制されるとともに、アンローダ機構11により、通路12a、12dに通じている圧縮室の後(外側)に続く圧縮室の圧力が吸入圧力程度にまで下がることで、離反力に対して十分な押付力が得られて、従来のスクロール型圧縮機の場合よりも確実に内部リークの発生を抑制することができる。
【0129】
また、アンローダ機構11を動作させても非常に運転圧力比が小さい場合には、過圧縮現象が発生することがあり、この場合に過圧縮を起こしている圧縮室の冷媒ガスが吐出口13の側の領域に開放されて、過圧縮現象をより緩和することができる。
【0130】
さらに、スクロール型圧縮機を駆動する電動機を可変速型電動機(インバータ制御)とし、アンロード機構を動作させずに、デフロスト運転時に電動機の回転数を上げて、スクロール型圧縮機の吐出量を増加させることで、より短時間で終了させることができる。
【0131】
また、一般的に運転圧力比が低いときには、冷凍空調機では熱負荷も小さく、スクロール型圧縮機の吐出量が少ないほうが消費電力低減の観点から好ましく、本スクロール型圧縮機では、インバータ制御によりモータ24の回転数を低くし、しかも、アンロード機構11を動作させることにより、適正な吐出量が得られて過圧縮が少ない効率の高い圧縮が可能になる。
【0132】
さらに、各実施の形態では、アンローダ機構は圧縮途中の圧縮室16aと吸入圧力室または吸入口側の領域とを連絡する通路に設けたと説明してきたが、この通路は、スクロールの最外周で形成される圧縮が開始する状態の部屋から、ある程度圧縮が進行した状態の部屋までを連絡するように設けられるのが、予圧縮損失を最小限に抑えるうえで望ましい。
【0133】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味およびすべての変更が含まれることが意図される。
【0134】
【発明の効果】
請求項1に記載されたスクロール型圧縮機によれば、たとえば低運転圧力比にて運転される場合に過圧縮現象が発生するなどして離反力が押付力以上になろうとする場合には、制御部でこれを検知してアンローダ部を動作させることにより、圧縮途中の圧縮室の流体が吸入口の側へ導かれる。これにより、押付力が下がっても離反力が下がることで相対的には十分な押付力が得られて圧縮室の内部リークを抑制することができる。また、過圧縮現象も緩和することができる。
【0135】
請求項2に記載されたスクロール型圧縮機によれば、蒸発器を流れる流体の温度から得られる蒸発温度と、凝縮器を流れる流体の温度から得られる凝縮温度とから、それぞれ蒸発圧力と凝縮圧力とが一意的に求められる。その蒸発圧力および凝縮圧力は、それぞれ吸入圧力および吐出圧力に略等しい。これにより、蒸発器を流れる流体の温度と凝縮器を流れる流体の温度とを測定することで、容易に吸入圧力と吐出圧力とを求めることができる。
【0136】
請求項3に記載されたスクロール型圧縮機によれば、第1開閉部の開閉動作を、流体の圧力を利用し吐出圧力の流体と吸入圧力の流体とを切替えることによって容易に行うことができる。
【0137】
請求項4に記載されたスクロール型圧縮機によれば、吐出圧力の流体が減圧されることで、第2背圧室内の圧力は吐出圧力と吸入圧力との間の圧力になる。これにより、第2背圧室内の圧力が吸入圧力である場合と比べて、さらに十分な押付力が得られて、内部リークの発生を効果的に抑制することができる。また、第1背圧室および第2背圧室の圧力をすべて吐出圧力とする場合よりも、通常の運転圧力比にて運転される場合の押付力は小さくなるため、一方のスクロールを他方のスクロールに押付け過ぎることもない。
【0138】
請求項5に記載されたスクロール型圧縮機によれば、複雑な機構を必要とせずに流体を容易に減圧することができる。
【0139】
請求項6に記載されたスクロール型圧縮機によれば、電動機の回転数を上げることで、たとえばデフロスト運転を短時間で終了させることができる。
【0140】
請求項7に記載されたスクロール型圧縮機によれば、アンローダ部を動作させても非常に運転圧力比が小さい場合には、過圧縮現象が発生することがあり、この場合に過圧縮を起こしている圧縮室の流体が吐出口の側の領域に開放されて、過圧縮現象をより緩和することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1に係るスクロール型圧縮機を含む冷凍サイクルの構成を示す図である。
【図2】 同実施の形態において、図1に示すスクロール型圧縮機の部分縦断面図である。
【図3】 同実施の形態において、制御部のフローチャートを示す図である。
【図4】 同実施の形態において、可動スクロールの位置に対する圧縮室圧力と背圧力の分布を示す図である。
【図5】 本発明の実施の形態2に係るスクロール型圧縮機の部分縦断面図である。
【図6】 同実施の形態において、可動スクロールの位置に対する圧縮室圧力と背圧力の分布を示す図である。
【図7】 本発明の実施の形態3に係るスクロール型圧縮機の部分縦断面図である。
【図8】 従来のスクロール型圧縮機の部分縦断面図である。
【図9】 従来のスクロール型圧縮機において、可動スクロールの位置に対する圧縮室圧力と背圧力の分布を示す図である。
【図10】 従来のスクロール型圧縮機において、問題点を説明するための可動スクロールの位置に対する圧縮室圧力と背圧力の分布を示す図である。
【符号の説明】
1 スクロール型圧縮機、2 固定スクロール、2a 固定スクロール歯、2b鏡板、4 可動スクロール、4a 可動スクロール歯、4b 鏡板、4c ボス部、5 駆動軸、5a 吐出ガス通路、5b 偏心軸部、6 架構、7 クランク室、8 シールリング、9 吐出口、10 連通路、11 アンローダ機構、11a シリンダ、11b ピストン、11c ばね、12a〜12d 通路、13 吸入口、14 第1背圧室、15 第2背圧室、16,16a、16b圧縮室、20 吸入管、21 吐出管、22 ケーシング、22a ドーム、24 モータ、30 バイパス、31 制御部、32 電磁弁、33 蒸発器、34 膨張弁、35 凝縮器、36 減圧キャピラリ、37a、37b 温度センサ、40 シリンダ、41 ピストン、42 通路、43 ばね、51 ピンメタル、52 スライドブシュ。

Claims (7)

  1. 圧縮室(16、16a)を形成するための固定スクロール(2)および可動スクロール(4)と、
    前記圧縮室(16、16a)に流体を吸込むための吸入口(13)と、
    前記圧縮室(16、16a)にて圧縮された流体を吐出するための吐出口(9)と、
    圧縮途中の圧縮室(16a)内の流体を、前記吸入口(13)の側へ導くためのアンローダ部(11)と、
    前記アンローダ部(11)を動作させうる制御手段(31)と、
    前記固定スクロール(2)および前記可動スクロール(4)のいずれか一方のスクロールの背面に設けられ、前記吐出口(9)より吐出した吐出圧力を有する流体が導かれる第1背圧室(14)と
    を備え、
    前記制御手段(31)は、
    前記吸入圧力および前記吐出圧力を検知、算出または予測し、
    検知、算出または予測された前記吸入圧力および前記吐出圧力に基づいて、固定スクロール(2)と可動スクロール(4)とを引離そうとする離反力と、一方のスクロールを他方のスクロールに押付けようとする押付力とを比較し、
    前記押付力が前記離反力に対して不足した時または不足しそうな時に、前記アンローダ部(11)を動作させて、圧縮途中の前記圧縮室(16a)内の流体を前記吸入口(13)の側へ開放する、スクロール型圧縮機。
  2. 前記制御手段(31)では、前記吐出圧力および前吸入圧力は、前記ケーシング(22)の外において、吐出した流体を送り出す吐出管(21)と流体を受入れる吸入管(20)との間に接続される蒸発器(33)および凝縮器(35)をそれぞれ流れる流体の温度から算出または予測される、請求項1記載のスクロール型圧縮機。
  3. 前記アンローダ部(11)は、
    圧縮途中の前記圧縮室(16a)と前記吸入口(13)の側の領域とを連通する第1通路(12a、12b)の途中に設けられ、前記吐出圧力の流体または前記吸入圧力の流体により前記第1通路(12a)の開閉動作を行うための第1開閉部(11)を有し、
    前記吸入圧力の流体が前記第1開閉部(11)に導かれることにより、前記第1開閉部(11)が開かれ、
    前記吐出圧力の流体が前記第1開閉部(11)に導かれることにより、前記第1開閉部(11)が閉じられる、請求項1または2に記載のスクロール型圧縮機。
  4. 前記いずれか一方のスクロールの背面に、前記吐出圧力の流体が減圧されて導かれる第2背圧室(15)をさらに備えた、請求項1〜3のいずれかに記載のスクロール型圧縮機。
  5. 前記第1背圧室(14)と前記第2背圧室(15)とをシールするシール部材(8)を備え、
    前記吐出圧力の流体は、前記第1背圧室(14)から前記シール部材(8)近傍の隙間を介して前記第2背圧室(15)へ流れ込むことで減圧される、請求項4記載のスクロール型圧縮機。
  6. 前記可動スクロール(4)を駆動するための電動機(24)は可変速型電動機(24)である、請求項1〜5のいずれかに記載のスクロール型圧縮機。
  7. 圧縮途中の前記圧縮室内の流体を前記吐出口(9)の側の領域へ直接導くためのリリーフポートと、
    前記リリーフポートの途中または出口に設けられ、圧縮途中の前記圧縮室内の圧力が前記吐出口(9)側の圧力よりも高くなった場合に、前記リリーフポートを開放するリリーフ弁と
    を有する、請求項1〜6のいずれかに記載のスクロール型圧縮機。
JP34625499A 1999-12-06 1999-12-06 スクロール型圧縮機 Expired - Fee Related JP4729773B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP34625499A JP4729773B2 (ja) 1999-12-06 1999-12-06 スクロール型圧縮機
EP09152502A EP2055957B1 (en) 1999-12-06 2000-10-04 Scroll Compressor
CN00803512A CN1114761C (zh) 1999-12-06 2000-10-04 涡卷式压缩机
KR10-2001-7009736A KR100463283B1 (ko) 1999-12-06 2000-10-04 스크롤형 압축기
US09/890,884 US6607367B1 (en) 1999-12-06 2000-10-04 Scroll type compressor
PCT/JP2000/006927 WO2001042658A1 (fr) 1999-12-06 2000-10-04 Compresseur du type a volutes
ES00964667T ES2377392T3 (es) 1999-12-06 2000-10-04 Compresor de tipo de espirales
EP00964667A EP1158166B1 (en) 1999-12-06 2000-10-04 Scroll type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34625499A JP4729773B2 (ja) 1999-12-06 1999-12-06 スクロール型圧縮機

Publications (2)

Publication Number Publication Date
JP2001165069A JP2001165069A (ja) 2001-06-19
JP4729773B2 true JP4729773B2 (ja) 2011-07-20

Family

ID=18382162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34625499A Expired - Fee Related JP4729773B2 (ja) 1999-12-06 1999-12-06 スクロール型圧縮機

Country Status (7)

Country Link
US (1) US6607367B1 (ja)
EP (2) EP1158166B1 (ja)
JP (1) JP4729773B2 (ja)
KR (1) KR100463283B1 (ja)
CN (1) CN1114761C (ja)
ES (1) ES2377392T3 (ja)
WO (1) WO2001042658A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005009734A (ja) * 2003-06-18 2005-01-13 Sanden Corp 冷凍サイクルにおける圧縮機吸入冷媒圧力算出装置
US7841845B2 (en) * 2005-05-16 2010-11-30 Emerson Climate Technologies, Inc. Open drive scroll machine
US7866964B2 (en) * 2005-05-20 2011-01-11 Emerson Climate Technologies, Inc. Sensor for hermetic machine
JP5022010B2 (ja) * 2006-12-05 2012-09-12 日立アプライアンス株式会社 スクロール圧縮機
US8262372B2 (en) 2007-05-10 2012-09-11 Emerson Climate Technologies, Inc. Compressor hermetic terminal
US8939734B2 (en) * 2007-08-28 2015-01-27 Emerson Climate Technologies, Inc. Molded plug for a compressor
JP4367567B2 (ja) * 2008-02-04 2009-11-18 ダイキン工業株式会社 圧縮機及び冷凍装置
US20100028184A1 (en) * 2008-07-31 2010-02-04 Hahn Gregory W Temperature protection switch biased against scroll compressor shell
US8939735B2 (en) * 2009-03-27 2015-01-27 Emerson Climate Technologies, Inc. Compressor plug assembly
US8308448B2 (en) * 2009-12-08 2012-11-13 Danfoss Scroll Technologies Llc Scroll compressor capacity modulation with hybrid solenoid and fluid control
US20120177514A1 (en) * 2011-01-12 2012-07-12 Hahn Gregory W Discharge pressure estimation for compressor
US9480177B2 (en) 2012-07-27 2016-10-25 Emerson Climate Technologies, Inc. Compressor protection module
US8931288B2 (en) * 2012-10-19 2015-01-13 Lennox Industries Inc. Pressure regulation of an air conditioner
JP6578504B2 (ja) * 2013-04-30 2019-09-25 パナソニックIpマネジメント株式会社 スクロール圧縮機
KR102008939B1 (ko) * 2014-07-07 2019-08-08 한온시스템 주식회사 배압실 밀봉용 밀봉실을 구비한 스크롤 압축기
CN105275804B (zh) * 2015-10-15 2017-10-10 珠海格力节能环保制冷技术研究中心有限公司 涡旋压缩机的变容机构及涡旋压缩机
US10082137B2 (en) * 2016-01-14 2018-09-25 Caterpillar Inc. Over pressure relief system for fluid ends
DE102016217358A1 (de) 2016-09-12 2018-03-15 Volkswagen Aktiengesellschaft Scrollverdichter
US10240840B2 (en) 2016-12-22 2019-03-26 Emerson Climate Technologies, Inc. Scroll unloading detection system
JP2020153296A (ja) * 2019-03-20 2020-09-24 サンデン・オートモーティブコンポーネント株式会社 スクロール圧縮機
CN109899286A (zh) * 2019-03-26 2019-06-18 杭州思旋科技有限公司 一种具有浮动电磁机构的涡旋流体位移装置
JP6809582B1 (ja) * 2019-08-30 2021-01-06 ダイキン工業株式会社 スクロール圧縮機
EP3992461B1 (en) * 2019-08-30 2023-10-11 Daikin Industries, Ltd. Scroll compressor
US11131491B1 (en) 2020-08-07 2021-09-28 Emerson Climate Technologies, Inc. Systems and methods for multi-stage operation of a compressor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122386A (ja) 1982-01-13 1983-07-21 Hitachi Ltd スクロ−ル圧縮機
JPS6075796A (ja) * 1983-10-03 1985-04-30 Hitachi Ltd スクロ−ル圧縮機
US4596520A (en) * 1983-12-14 1986-06-24 Hitachi, Ltd. Hermetic scroll compressor with pressure differential control means for a back-pressure chamber
JPS60249684A (ja) * 1984-05-25 1985-12-10 Daikin Ind Ltd スクロール圧縮機
JPS6153486A (ja) * 1984-08-22 1986-03-17 Hitachi Ltd スクロ−ル圧縮機
JP3103673B2 (ja) * 1992-07-09 2000-10-30 東芝キヤリア株式会社 スクロール式圧縮機
JPH06330864A (ja) 1993-05-19 1994-11-29 Daikin Ind Ltd スクロール圧縮機
US5613841A (en) * 1995-06-07 1997-03-25 Copeland Corporation Capacity modulated scroll machine
US5741120A (en) * 1995-06-07 1998-04-21 Copeland Corporation Capacity modulated scroll machine
JP3591101B2 (ja) * 1995-12-19 2004-11-17 ダイキン工業株式会社 スクロール形流体機械
JPH10110689A (ja) 1996-10-04 1998-04-28 Hitachi Ltd 密閉形スクロール圧縮機
US6478550B2 (en) * 1998-06-12 2002-11-12 Daikin Industries, Ltd. Multi-stage capacity-controlled scroll compressor
JP3820824B2 (ja) * 1999-12-06 2006-09-13 ダイキン工業株式会社 スクロール型圧縮機

Also Published As

Publication number Publication date
EP1158166A4 (en) 2004-05-19
KR20010093314A (ko) 2001-10-27
ES2377392T3 (es) 2012-03-27
EP1158166B1 (en) 2011-12-07
KR100463283B1 (ko) 2004-12-29
US6607367B1 (en) 2003-08-19
EP2055957B1 (en) 2010-08-18
CN1339088A (zh) 2002-03-06
EP2055957A1 (en) 2009-05-06
EP1158166A1 (en) 2001-11-28
CN1114761C (zh) 2003-07-16
JP2001165069A (ja) 2001-06-19
WO2001042658A1 (fr) 2001-06-14

Similar Documents

Publication Publication Date Title
JP4729773B2 (ja) スクロール型圧縮機
JP3635794B2 (ja) スクロール気体圧縮機
US7931453B2 (en) Capacity variable device for rotary compressor and driving method of air conditioner having the same
JP4611763B2 (ja) スクロール圧縮機の容量可変装置
KR100916229B1 (ko) 스크롤 압축기의 모드 전환장치
EP1467100A2 (en) Hermetic compressors
WO2003074879A1 (en) Scroll compressor
KR100920980B1 (ko) 스크롤 압축기의 용량 가변장치
EP2423508B1 (en) capacity control for a screw compressor
JP2959457B2 (ja) スクロール気体圧縮機
WO2009051380A2 (en) Scroll compressor
JP2002221171A (ja) スクロール圧縮機
JPH11303776A (ja) スクロール圧縮機およびそれを用いた冷凍サイクル
JP2674562B2 (ja) 給油制御手段を備えたスクロール冷媒圧縮機
KR100504912B1 (ko) 압축기의 내부압력조절밸브
JP2006009640A (ja) スクロール圧縮機
JP3635826B2 (ja) スクロール圧縮機
KR101397081B1 (ko) 스크롤 압축기의 용량 가변장치
KR100677527B1 (ko) 로터리 압축기
JP2000345976A (ja) スクロール型圧縮機の弁構造
JP5071355B2 (ja) スクロール圧縮機
JP2004270667A (ja) スクロール圧縮機
KR0118797Y1 (ko) 밀폐형 회전압축기의 토출장치
JP5671691B2 (ja) スクロール圧縮機
JP3236355B2 (ja) 回転式圧縮機の吐出弁機構

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4729773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees