WO2019045102A1 - 複動式摩擦攪拌接合装置の運転方法及び複動式摩擦攪拌接合装置 - Google Patents

複動式摩擦攪拌接合装置の運転方法及び複動式摩擦攪拌接合装置 Download PDF

Info

Publication number
WO2019045102A1
WO2019045102A1 PCT/JP2018/032639 JP2018032639W WO2019045102A1 WO 2019045102 A1 WO2019045102 A1 WO 2019045102A1 JP 2018032639 W JP2018032639 W JP 2018032639W WO 2019045102 A1 WO2019045102 A1 WO 2019045102A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction stir
stir welding
double
shoulder
pin member
Prior art date
Application number
PCT/JP2018/032639
Other languages
English (en)
French (fr)
Inventor
豪生 岡田
脩平 吉川
将弘 三宅
雅弘 ▲高▼木
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to EP21210594.4A priority Critical patent/EP3981537A1/en
Priority to EP18850285.0A priority patent/EP3680051B1/en
Priority to US16/644,356 priority patent/US11633802B2/en
Priority to KR1020207008709A priority patent/KR102315903B1/ko
Priority to JP2019539706A priority patent/JP7030127B2/ja
Priority to CN201880057387.0A priority patent/CN111107957B/zh
Publication of WO2019045102A1 publication Critical patent/WO2019045102A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • B23K20/125Rotary tool drive mechanism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • B23K20/1255Tools therefor, e.g. characterised by the shape of the probe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/127Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding friction stir welding involving a mechanical connection

Definitions

  • the present invention relates to a method of operating a double-acting friction stir welding apparatus and a double-acting friction stir welding apparatus.
  • FSW is used to soften and stir an object to be bonded by friction heat due to rotation of a joining tool consisting of a center pin and a shoulder pin, and the center pin is inserted into the shoulder pin and
  • a joining tool consisting of a center pin and a shoulder pin
  • a welding tool is rotated by a stirring motor
  • the surface of the center pin and the inner surface of the shoulder pin are cleaned in order to remove dust adhering between the shoulder pin and the center pin during friction stir welding (joining). This prevents the malfunction of the center pin.
  • Patent Document 1 the method of cleaning the joining tool of FSW disclosed in Patent Document 1 has a first problem that it is insufficient from the viewpoint of prolonging the life of the joining tool.
  • the operating method of the double-acting type friction stir welding apparatus can increase the bonding strength even when bonding using frictional heat to a plurality of members made of different materials.
  • a second object is to provide a double-acting friction stir welding apparatus.
  • an operating method of a double-acting friction stir welding apparatus softens a material to be joined having a first member and a second member with frictional heat.
  • a shoulder member, a jointing tool together with the shoulder member, a cylindrical pin member concentrically inserted into the central through hole of the shoulder member, and the pin member relative to the shoulder member It comprises: an advancing and retracting mechanism for advancing and retracting; a rotating mechanism for rotating the joining tool about the central axis of the pin member; and an advancing and retracting mechanism for advancing and retracting the joining tool in the extending direction of the central axis of the pin member; To the rotation mechanism Friction stir welding the workpieces by rotation of the joining tool, advancing and retracting the pin member with respect to the shoulder member by the advancing and retracting mechanism, and advancing and retracting the joining tool by the advancing and retracting mechanism (A); Based on the level of adhesion parameters that correlate with the degree of adhesion of the material of the article to the outer peripheral surface of the pin member and the inner peripheral surface of the central through hole of the shoulder member generated by friction stir welding Cleaning at least one of the outer peripheral surface of the pin member and the inner peripheral surface of the central through hole of the shoulder
  • cleaning based on the level of adhesion parameters refers to a form of monitoring and cleaning adhesion parameters, and in advance examining adhesion parameters to determine cleaning timing, and setting adhesion parameters. It includes the form of cleaning without monitoring.
  • the cleaning timing includes one or more specific timings, irregular timings, and periodic timings.
  • the number of strokes until the welding tool breaks is substantially the life of the welding tool, and the current of the drive motor of the pin member when raising the pin member increases as the number of strokes increases.
  • the pin member or shoulder member breaks when it increases and reaches some large absolute value.
  • an adhesion parameter that correlates the degree of adhesion of the material of the object to be bonded to the outer peripheral surface of the pin member and the inner peripheral surface of the center through hole of the shoulder member generated by friction stir welding An example of According to the above configuration, the level of the adhesion parameter which correlates with the degree of adhesion of the material of the object to be bonded to the outer peripheral surface of the pin member and the inner peripheral surface of the center through hole of the shoulder member generated by friction stir welding To clean at least one of the outer peripheral surface of the pin member and the inner peripheral surface of the central through hole of the shoulder member, so that the level of adhesion parameters to be cleaned is set to a level lower than that at which the bonding tool breaks. By doing this, breakage of the bonding tool can be suppressed. As a result, the life of the bonding tool can be extended.
  • the adhesion parameter may be a parameter whose absolute value increases in response to an increase in the amount of adhesion, and a first threshold may be provided for the absolute value of the adhesion parameter.
  • the driving method may further include (C) warning that the adhesion parameter is equal to or more than a first threshold, and the (B) may be performed after the (C).
  • the "warning" includes a warning by a message by voice, characters, etc. and a warning by a warning.
  • the adhesion parameter is a parameter whose absolute value increases corresponding to an increase in the amount of adhesion to the welding tool, and warns that the adhesion parameter is equal to or more than the first threshold, and then Since the welding tool is cleaned at the above, by setting the first threshold to a level lower than the level at which the welding tool breaks, it is possible to preferably suppress the breakage of the welding tool.
  • the method may further include prohibiting operation of the bonding tool when the adhesion parameter is equal to or greater than a second threshold that is greater than the first threshold.
  • prohibiting operation of the welding tool includes stopping the welding tool in operation and not operating the welding tool in stop.
  • the operation of the welding tool is prohibited when the cleaning is not carried out even if a warning is given, so by setting the second threshold to a level lower than the breaking level of the welding tool, it is ensured. Breaking of the welding tool can be suppressed.
  • the adhesion parameter is a parameter whose absolute value increases in response to the increase in the amount of adhesion, and the operation method is such that the increase amount of the adhesion parameter per predetermined period becomes equal to or more than a predetermined value
  • the method may further include (D) performing at least one of warning and operation inhibition of the welding tool.
  • At least one of the alarm and the stop of the welding tool is performed when the adhesion parameter shows an increasing tendency above the allowable limit, so the material of the object to be welded is set by appropriately setting the predetermined value.
  • the amount of adhesion to the welding tool increases rapidly as the number of friction stir welding increases, breakage of the welding tool can be suitably suppressed.
  • the adhesion parameter may be a current value of a motor which is provided in the retracting mechanism and drives the pin member to retract relative to the shoulder member.
  • the adhesion parameter may be the number of times of friction stir welding the pair of objects to be bonded.
  • the adhesion parameter may be stress generated in the pin member or the shoulder member.
  • the double-acting friction stir welding apparatus comprises a cylindrical shoulder member having a cylindrical central through hole concentrically extending in the central portion, and the shoulder member.
  • the controller comprises: a rotating mechanism for rotating a tool about the central axis of the pin member; an advancing and retracting mechanism for advancing and retracting the joining tool in the extending direction of the central axis of the pin member;
  • the rotation of the joining tool by controlling the rotation mechanism, the projection and retraction of the pin member with respect to the shoulder member by controlling the projection and retraction mechanism, and the contact by controlling the advancing and retracting mechanism
  • the object is friction stir welded by advancing and retracting the tool (A), and the object to be welded to the outer peripheral surface of the pin member generated by the friction stir welding and the inner peripheral surface of
  • the adhesion parameter is correlated with the degree of adhesion of the material of the object to be bonded to the outer peripheral surface of the pin member and the inner peripheral surface of the center through hole of the shoulder member generated by friction stir welding.
  • the operation method of the double-acting friction stir welding apparatus is a double-acting friction stir welding apparatus having members, which is joined by softening an object to be joined with frictional heat.
  • the double-acting friction stir welding apparatus comprises a cylindrical shoulder member having a cylindrical central through hole concentrically extending in a central portion, and a welding tool together with the shoulder member.
  • the predetermined timing includes one or more specific timings, irregular timings, and periodic timings.
  • cleaning timing specifically, for example, when maintenance is performed periodically or irregularly, cleaning may be performed, and cleaning may be performed after finishing the friction stir welding operation for one day. It may be executed.
  • a double-acting friction stir welding apparatus is a double-acting friction joint in which a workpiece having a first member and a second member is softened by softening with friction heat.
  • the double-acting friction stir welding apparatus comprises a cylindrical shoulder member having a cylindrical central through hole concentrically extending in a central portion, and a welding tool together with the shoulder member.
  • the apparatus is configured to perform friction stir welding of the workpiece (A) and perform at least one of warning, operation inhibition of the welding tool, and cleaning of the welding tool at a predetermined timing (E).
  • the predetermined timing includes one or more specific timings, irregular timings, and periodic timings.
  • cleaning timing specifically, for example, when maintenance is performed periodically or irregularly, cleaning may be performed, and cleaning may be performed after finishing the friction stir welding operation for one day. It may be executed.
  • the first member is disposed to face the welding tool, and (A) is made of a material of a type different from that of the two members, and (A) causes the rotation mechanism and the rotation mechanism to cause the welding tool to press the workpiece of the workpiece while rotating the welding tool;
  • the advancing / retreating mechanism operates (A1), the tip end of the welding tool reaches a predetermined first position set in advance so that the softened second member pierces the softened first member.
  • the protrusion / retraction mechanism operates (A2)
  • the protrusion / retraction mechanism, the rotation mechanism, and the advancing / retracting mechanism operate (A3) so as to pull out from the bonded portion in a state in which the welding tool is rotated. And.
  • joint strength may be able to be improved.
  • the first member is disposed to face the welding tool, and the second member and Are made of different types of materials, and the rotation mechanism and the advancing / retracting mechanism are configured such that the welding tool presses the workpiece of the workpiece while the welding tool is rotated. So that the softened second member penetrates the softened first member so that the tip of the welding tool reaches a predetermined first position set in advance.
  • the protrusion / retraction mechanism, the rotation mechanism, and the advancing / retracting mechanism operate (A3) such that the protrusion / retraction mechanism operates (A2) and the welding tool is pulled out from the joined portion in a state where the welding tool is rotated.
  • A3 such that the protrusion / retraction mechanism operates (A2) and the welding tool is pulled out from the joined portion in a state where the welding tool is rotated.
  • joint strength may be able to be improved.
  • the life of the welding tool can be extended.
  • friction heat is used to join a plurality of members made of different materials. Even in this case, the bonding strength can be increased.
  • FIG. 1 is a side view schematically showing a hardware configuration of a double-acting friction stir welding apparatus according to a first embodiment.
  • FIG. 2 is a block diagram showing a configuration of a control system of the double-acting type friction stir welding apparatus of FIG. 3 (a) to 3 (f) are schematic views showing an example of the friction stir welding operation of the double-acting friction stir welding apparatus of FIG.
  • FIG. 4 is a graph showing the change in the current value of the motor for driving the pin member to appear and retract with respect to the number of strokes.
  • FIG. 5A is a photograph showing adhesion of the material of the article to the outer peripheral surface of the pin member.
  • FIG. 5B is a photograph showing adhesion of the material of the object to be bonded to the inner peripheral surface of the central through hole of the shoulder member.
  • FIG. 6 is a flowchart showing stop control of an alarm and a welding tool based on adhesion parameters of the double-acting friction stir welding apparatus of FIG.
  • FIG. 7 is a side view schematically showing a hardware configuration of a double-acting friction stir welding apparatus according to a second embodiment.
  • FIG. 8 is a block diagram showing a configuration of a control system of the double-acting type friction stir welding apparatus of FIG.
  • FIG. 9 is a side view schematically showing a hardware configuration of a double-acting friction stir welding apparatus according to a third embodiment.
  • FIG. 10 is a block diagram showing a configuration of a control system of the double-acting type friction stir welding apparatus of FIG.
  • FIG. 11 is a schematic view showing a schematic configuration of a double-acting friction stir welding apparatus according to a seventh embodiment.
  • FIG. 12 is a block diagram schematically showing a control configuration of the double-acting type friction stir welding apparatus shown in FIG.
  • FIG. 13 is a flow chart showing an example of the operation of the double-acting type friction stir welding apparatus according to the seventh embodiment.
  • FIG. 14A is a process chart schematically showing an example of each process of friction stir welding by the double-acting friction stir welding apparatus shown in FIG. 14:
  • B is process drawing which shows typically an example of each process of friction stir welding by the double-acting type friction stir welding apparatus shown in FIG.
  • FIG. 15 is a flow chart showing an example of the operation of the double-acting type friction stir welding apparatus of Modification 1 of Embodiment 7.
  • FIG. 16A is a process chart schematically showing an example of each step of friction stir welding by the double-acting friction stir welding device of the present modification 1.
  • FIG. 16B is a process chart schematically showing an example of each step of friction stir welding by the double-acting friction stir welding device of the present modification 1.
  • FIG. 17 is a block diagram showing a schematic configuration of a double-acting friction stir welding apparatus according to an eighth embodiment.
  • FIG. 18 is a flowchart showing an example of the operation of the double-acting friction stir welding apparatus according to the eighth embodiment.
  • FIG. 19 is a block diagram showing a schematic configuration of a double-acting type friction stir welding apparatus according to a ninth embodiment.
  • FIG. 20 is a flow chart showing an example of the operation of the double-acting type friction stir welding apparatus according to the ninth embodiment.
  • FIG. 21 is a flow chart showing an example of the operation of the double-acting type friction stir welding apparatus according to the tenth embodiment.
  • the life of the pin member is ended by breaking. That is, the number of strokes until the pin member breaks is substantially the life of the pin member.
  • the inventor has found that the increase in the current of the drive motor of the pin member is caused by the adhesion of the material (aluminum alloy) of the object to be bonded to the outer peripheral surface of the pin member and the inner peripheral surface of the center through hole of the shoulder member. It was inferred that aluminum was removed (cleaned) adhering to the outer peripheral surface of the pin member of the welding tool and the inner peripheral surface of the center through hole of the shoulder member, where the driving motor increased the current due to the hitting point. As a result, the current of the drive motor decreased. The joining tool has reached 40,000 Rt, but the pin member has not yet broken. This experiment is ongoing.
  • Patent Document 1 Parting of the technology described in Patent Document 1 in the present invention
  • FSW spot bonding by FSW
  • Patent Document 1 does not mention at all the timing (frequency) of cleaning of the welding tool. In the first place, Patent Document 1 makes no mention (does not recognize) that cleaning of the welding tool affects the life of the welding tool.
  • the timing may be too late and a joining tool may be broken before cleaning. Therefore, the cleaning method of Patent Document 1 can not prolong the life of the bonding tool.
  • FIG. 1 is a side view schematically showing a hardware configuration of a double-acting friction stir welding apparatus according to a first embodiment. Although there is no directionality in the double-acting friction stir welding apparatus, the vertical direction in FIG. 1 will be described as the vertical direction of the double-acting friction stir welding apparatus below for the convenience of description.
  • a double-acting friction stir welding apparatus 50A comprises: a cylindrical shoulder member 12 having a cylindrical central through hole 13 extending concentrically at the central portion;
  • the cylindrical pin member 11 and the pin member 11 which constitute the joining tool 51 together with the shoulder member 12 and which is inserted into the center through hole 13 of the shoulder member 12 concentrically with the shoulder member 12 Joining and retreating mechanism (pin drive unit 531), joining tool 51, and rotation mechanism (521, 533) rotating together the joining and retreating mechanism (pin drive unit 531) around central axis Xr of pin member 11, jointing
  • the object 60 is configured to be friction stir welded by advancing and retreating 51.
  • the double-acting friction stir welding apparatus 50A further has the degree of adhesion of the material of the article 60 to the outer circumferential surface of the pin member 11 and the inner circumferential surface of the center through hole 13 of the shoulder member 12 generated by friction stir welding. And at least one of disabling the operation of the warning and welding tool 51 and / or cleaning of the welding tool 51 based on the level of adhesion parameters that are correlated with each other.
  • the warning and the stop of the welding tool 51 one mode of operation inhibition
  • the double-acting friction stir welding apparatus 50A is configured here as an end effector attached to the tip of a robot arm, specifically, a welding gun.
  • the double-acting friction stir welding apparatus 50A may be configured in a form other than a welding gun.
  • the double-acting friction stir welding apparatus 50A includes a C-shaped C-shaped frame 55.
  • the C-shaped frame 55 is attached to the end of the robot arm.
  • a shoulder driving unit 532 is provided at an upper end portion of the C-shaped frame 55.
  • the shoulder drive unit 532 includes, for example, a servomotor and an elevation mechanism.
  • a movable body 522 is connected to the shoulder drive unit 532 so as to be able to move up and down.
  • a ball screw, a rack pinion, etc. are illustrated as a raising / lowering mechanism.
  • the movable body 522 is formed in a disk shape here.
  • a clamp drive unit 41 is provided on the outer peripheral portion of the movable body 522 so as to extend downward.
  • the clamp drive part 41 is comprised, for example by the coiled compression spring.
  • a cylindrical clamp member 54 is provided at the lower end of the clamp drive unit 41 so as to extend downward.
  • the clamp member 54 is provided such that the central axis coincides with a predetermined rotational axis Xr.
  • the predetermined rotation axis extends in the vertical direction. Therefore, the extending direction of the predetermined rotation axis is the same as the moving direction of the movable body 522.
  • a rotation drive unit 533 is provided at the center of the movable body 522.
  • the rotation drive unit 533 is configured by a motor.
  • the rotational axis of rotational drive by the rotational drive unit 533 coincides with a predetermined rotational axis Xr.
  • a rotary body 521 is connected to the rotation drive unit 533.
  • the rotating body 521 is formed in a disk shape.
  • a shoulder member 12 is provided on the outer peripheral portion of the rotating body 521 so as to extend downward.
  • the shoulder member 12 is formed in a cylindrical shape, and a cylindrical central through hole 13 extending concentrically in the central portion is formed.
  • the upper portion of the central through hole 13 is formed to have a large diameter, and the remaining portion is formed to have a smaller diameter than the upper portion.
  • the shoulder member 12 is concentrically inserted into the inner space of the clamp member 54. Accordingly, the central axis of the shoulder member 12 coincides with the predetermined rotational axis.
  • the movable body 522 and the rotating body 521 constitute a bonding tool fixing portion 52.
  • a pin driving portion 531 is provided at the upper part of the center through hole 13 of the shoulder member 12.
  • the pin drive unit 531 includes, for example, a servomotor and an elevation mechanism.
  • the pin member 11 is connected to the pin drive unit 531 so as to be able to move up and down.
  • a ball screw, a rack pinion, etc. are illustrated as a raising / lowering mechanism.
  • the pin member 11 is formed in a cylindrical shape, and the upper end portion thereof is connected to the pin drive portion 531.
  • the pin member 11 is inserted in the center through hole 13 of the shoulder member 12 concentrically with the shoulder member 12. Accordingly, the central axis Xr of the pin member 11 coincides with the predetermined rotational axis.
  • the pin member 11 is configured such that the lower end surface 11 a is positioned at the same height as the lower end surface 12 a of the shoulder member 12 when the pin member 11 is located at the reference position.
  • the pin drive unit 531 constitutes a projection / retraction mechanism.
  • the pin member 11 and the shoulder member 12 are made of cemented carbide, tool steel, high-speed steel, ceramics or the like.
  • the pin member 11 and the shoulder member 12 are made of cemented carbide.
  • a surface coating layer is formed on the outer peripheral surface of the pin member 11 and the inner peripheral surface of the center through hole 13 of the shoulder member 12. Examples of materials for the surface covering layer include diamond and hydrogen-free DLC.
  • the surface coating layer is provided to lower the affinity of the pin member 11 and the shoulder member 12 to aluminum as a material of a workpiece.
  • the pin member 11 and the shoulder member 12 constitute a bonding tool 51.
  • the rotation drive unit 533 rotates the rotating body 521
  • the shoulder member 12 and the pin member 11 rotate together. Therefore, the rotation drive unit 533 and the rotating body 521 constitute a “rotation mechanism” of the welding tool 51.
  • the clamp member 54 and the welding tool 51 When the pin member 11 is at the reference position, the clamp member 54 and the welding tool 51 have the lower end surface 54a of the clamp member 54 lower than the lower end surface 11a of the pin member 11 and the lower end surface 12a of the shoulder member 12 by a predetermined dimension. It is configured to be located. That is, a step is provided between the lower end surface 54 a of the clamp member 54 and the lower end surface 11 a of the pin member 11 and the lower end surface 12 a of the shoulder member 12.
  • a backing member 56 is provided at the lower end portion of the C-shaped frame 55.
  • the backing member 56 is provided to face the lower ends of the clamp member 54 and the welding tool 51. Then, the article 60 is disposed on the support surface 56 a of the backing member 56.
  • the shoulder drive unit 532 raises and lowers the movable body 522, the welding tool 51, the “projecting and retracting mechanism” (pin drive unit 531), the “rotation mechanism” (533, 521), and the clamp member 54 contact the workpiece 60. Move against and against. Therefore, the shoulder drive unit 532 and the movable body 522 constitute an “advancement / retraction mechanism” of the welding tool 51.
  • the lower end surface 54a of the clamp member 54 first abuts on the article 60 due to the above-described step, and thereafter, The lower end surface 11 a of the pin member 11 and the lower end surface 12 a of the shoulder member 12 abut on the workpiece 60.
  • the compression spring which comprises the clamp drive part 41 is compressed by the above-mentioned level
  • FIG. 2 is a block diagram showing a configuration of a control system of the double-acting type friction stir welding apparatus of FIG.
  • the double-acting friction stir welding apparatus 50A includes a tool drive unit 53, an alarm unit 33, a control unit 21, a storage unit 31, and an input unit 32.
  • the adhesion parameter is a parameter that correlates with the degree of adhesion of the material of the article 60 to the outer peripheral surface of the pin member 11 and the inner peripheral surface of the center through hole 13 of the shoulder member 12 generated by friction stir welding.
  • the current value hereinafter referred to as motor current value
  • Stress generated in the pin member 11 or the shoulder member 12 is illustrated.
  • the absolute values of these parameters are parameters that increase in absolute value (level increases) in response to the amount of adhesion increasing (level increasing).
  • the level of the adhesion parameter is specified by its absolute value.
  • the motor current value of the pin drive unit 531 is used as the adhesion parameter.
  • the tool driving unit 53 includes a pin driving unit 531, a shoulder driving unit 532, and a rotation driving unit 533.
  • the alarm unit 33 has a function of notifying (warning) the operator that the adhesion parameter has reached a level at which the welding tool 51 should be watched for breakage.
  • the alarm unit 33 includes, for example, a buzzer, a signal tower, patrol lights (registered trademark), a speaker, and the like.
  • the alarm unit 33 is installed, for example, at an appropriate place of a work place where the double-acting type friction stir welding apparatus 50A is used.
  • the input unit 32 is used to input a start command, a stop command, a first threshold and a second threshold of the adhesion parameter, and the like.
  • the input unit 32 includes, for example, input devices such as a touch panel, a mouse, and a keyboard.
  • the input unit 32 is installed, for example, at an appropriate place of a work place where the double-acting type friction stir welding apparatus 50A is used.
  • the control unit 21 and the storage unit 31 are integrally configured as a controller.
  • the control unit 21 controls the operation of the tool driving unit 53 by reading and executing a predetermined control program stored in the storage unit 31 storage unit. Further, the control unit 21 causes the storage unit 31 to store the first threshold and the second threshold of the adhesion parameter input from the input unit 32.
  • the controller including the control unit 21 and the storage unit 31 may be configured as a single controller that performs centralized control, or may be configured as a plurality of controllers that perform distributed control in cooperation with each other.
  • the controller (the control unit 21 and the storage unit 31) is configured by, for example, a microcontroller, an MPU, an FPGA (Field Programmable Gate Array), a PLC (Programmable Logic Controller), or the like.
  • the control unit 21 and the storage unit 31 are respectively configured by an operation unit and a memory of these operation units (processors).
  • the controller (the control unit 21 and the storage unit 31) is installed, for example, at an appropriate place of a work place where the double-acting type friction stir welding apparatus 50A is used.
  • control unit 21 controls the position of the servomotors constituting the pin drive unit 531 and the shoulder drive unit 532.
  • the control unit 21 also controls the rotation of the motor that constitutes the rotation drive unit 533.
  • control unit 21 monitors the adhesion parameter (motor current value (absolute value) of the pin drive unit 531 pin), and causes the alarm unit 33 to issue an alarm when the adhesion parameter becomes equal to or more than the first threshold. And, when the adhesion parameter becomes equal to or higher than the second threshold value, the double-acting stirring friction stir welding apparatus 50A is stopped.
  • 3 (a) to 3 (f) are schematic views showing an example of the friction stir welding operation of the double-acting friction stir welding apparatus of FIG. Below, the form which overlap
  • the arrow p indicates the moving direction of the welding tool 51 (corresponding to the direction of the broken arrow P1 to P2 in FIG.
  • the black arrow indicates the welding tool (pin
  • the direction of rotation of the member 11 and the shoulder member 12) is shown, and the block arrows indicate the direction in which the force is applied to the metal plates 61 and 62.
  • a force is applied to the metal plates 61 and 62 from the backing member 56, for the sake of convenience of explanation, they are not illustrated in FIGS. 3 (a) to 3 (f).
  • the shoulder member 12 has a dotted pattern. The following operation is performed by the control unit 21 controlling the tool drive unit 53, but the control unit 21 and the tool drive unit 53 will not be mentioned below.
  • the pin member 11 is press-fit into the metal plates 61 and 62 before the shoulder member 12.
  • the welding tool 51 is brought close to the metal plates 61 and 62 (arrow p in the figure), and the lower end face 54a of the clamp member 54 (FIGS. And the back surface 60c of the lower metal plate 62, and the back member 60 of the lower metal plate 62.
  • the metal plates 61 and 62 are sandwiched between the clamp member 54 and the backing member 56, and a clamping force is generated by the pressure (block arrow F in the drawing) by the clamp member 54.
  • the welding tool 51 is close to the metal plates 61, 62, and the lower end face 11a of the pin member 11 (FIGS. 3 (a) to 3 (f) have no reference numerals)
  • the lower end face 12 a (not shown in FIGS. 3A to 3 F) of the shoulder member 12 abuts on the surface 60 c of the metal plate 61.
  • the elastic force of the clamp drive part 41 comprised by a compression spring produces the clamp force of the clamp member 54.
  • the pin member 11 and the shoulder member 12 are brought into contact with the surface 60c of the metal plate 61 and rotated (black arrow in the drawing).
  • the shoulder member 12 is made to relatively project from the pin member 11 by the shoulder driving portion 532 so that the shoulder member 12 enters the inside from the surface 60 c of the metal plate 61 further. (Press fit).
  • the plastic flow portion 60 a extends from the upper metal plate 61 to the lower metal plate 62, and the softened metal material of the plastic flow portion 60 a is pushed away by the shoulder member 12, and the pin member 11 from directly below the shoulder member 12.
  • the pin member 11 retracts and floats up as viewed from the shoulder member 12.
  • the projecting shoulder member 12 is gradually retracted (retracted in) and the pin member 11 is advanced (pressed in) into the metal plate 61.
  • the pin member 11 is gradually retracted. Thereby, the recessed part which arose by press injection of the shoulder member 12 or the pin member 11 is back filled up. Finally, the lower end surface 11a of the pin member 11 and the lower end surface 12a of the shoulder member 12 are matched (equal to each other) to such an extent that a level difference hardly occurs.
  • the welding tool 51 and the backing member 56 are separated from the metal plates 61 and 62, and a series of friction stir spot welding is completed.
  • the plastic flow is stopped in the plastic flow portion 60a extending to both the metal plates 61 and 62. It becomes the part 60b. Thereby, a pair of metal plates 61 and 62 are connected by the junction part 60b.
  • the “motor current value” is a current value of a motor that constitutes the pin drive unit 531 that drives the pin member 11 in and out as described above.
  • FIG. 4 is a graph showing the change in the current value of the motor for driving the pin member to appear and retract with respect to the number of strokes.
  • the vertical axis in FIG. 4 indicates the maximum current value (hereinafter referred to as the pin axis maximum current value) at the time of hitting of the motor constituting the pin drive unit 531.
  • the “maximum current value at the time of hitting point” is the current value of the motor that constitutes the pin driving unit 531 in the process of FIG. 3C described above.
  • a curve (hereinafter referred to as a first curve) formed by connecting a rhombic plot by a straight line indicates a change in the number of strokes-pin axis maximum current value when the bonding tool 51 is not cleaned.
  • a curve (hereinafter referred to as a second curve) formed by connecting indicates a change in the number of hitting points-the maximum pin axis current value when the welding tool 51 is intermittently cleaned.
  • Points A and B in the first curve are a point at which the degree of adhesion of the welding tool 51 was observed and a point at which the pin member 11 of the welding tool 51 was broken (sheared).
  • the point pointed by the plurality (six) arrows in the second curve is the point at which the welding tool 51 has been cleaned.
  • the pin axis maximum current value increases substantially in proportion to the number of batting points, and is broken at approximately 5000 batting marks.
  • the breakage of the pin member 11 occurred when the pin member 11 was raised (pulled into (retracted into the shoulder member 12) in the process shown in FIG. 3 (c).
  • the fracture life of the pin member 11 is referred to as the fracture life of the pin member 11.
  • FIG. 5A is a photograph showing adhesion of the material of the article 60 to the outer peripheral surface of the pin member 11 at point A of the first curve.
  • FIG. 5B is a photograph showing adhesion of the material of the article 60 to the inner peripheral surface of the central through hole 13 of the shoulder member 12 at point A of the second curve.
  • an aluminum alloy which is a material of the article 60, adheres to the outer peripheral surface of the pin member 11 and the inner peripheral surface of the center through hole 13 of the shoulder member 12. .
  • the material of the article 60 enters between the outer peripheral surface of the pin member 11 and the inner peripheral surface of the center through hole 13 of the shoulder member 12, and the outer peripheral surface of the pin member 11 and the shoulder member It adheres to the inner peripheral surface of the 12 central through holes 13 respectively.
  • the stress in this case, the tensile stress
  • This increase in stress appears as an increase in the pin axis maximum current value.
  • the adhesion of the material of the workpiece 60 to the welding tool 51 increases with an increase in the number of strokes, and the stress of the pin member 11 at the time of friction stir welding is correspondingly increased. Then, when the stress exceeds the allowable stress of the pin member 11, the pin member 11 is broken.
  • the amount of adhesion to the bonding tool 51 is large when the material of the workpiece 60 is a 6000 series aluminum alloy having a plastic flowability better than that of a 5000 series aluminum alloy. From this, it is surmised that the easiness of breaking of the joining tool 51 due to the increase in the number of batting depends on the material of the article 60.
  • FIG. 6 is a flowchart showing stop control of an alarm and a welding tool based on adhesion parameters of the double-acting friction stir welding apparatus shown in FIG.
  • the alarm and stop control of the welding tool 51 (hereinafter referred to as the main control) is performed based on the adhesion parameter (here, the motor current value of the pin drive unit 531) of the control unit 21. , And the tool drive unit 53 and the alarm unit 33 are controlled.
  • the control unit 21 starts this control when friction stir welding is started, and first, determines whether or not a stop command has been received (step S1). When the stop command is received (Yes in step S1), the process proceeds to step S6, the double-acting friction stir welding apparatus 50A is stopped, and the present control is finished. When the stop command has not been received (No in step S1), the control unit 21 acquires the adhesion parameter (step S2).
  • the control unit 21 determines whether the adhesion parameter is equal to or more than a first threshold (step S3).
  • the first threshold is set to an absolute value (low level) smaller than the absolute value (level) of the adhesion parameter corresponding to the fracture life of the pin member 11 and the shoulder member 12.
  • the first threshold is determined by experiment, simulation, calculation or the like.
  • the pin axis maximum current value at which the pin member 11 breaks is 6A
  • the first threshold is 4A.
  • step S3 If the adhesion parameter is not equal to or greater than the first threshold (No in step S3), the process returns to step S1. Thereby, the control unit 21 monitors the adhesion parameter.
  • the control unit 21 determines whether the adhesion parameter is greater than or equal to the second threshold (step S4).
  • the second threshold is set to an absolute value smaller than the absolute value of the adhesion parameter corresponding to the fracture life of the pin member 11 and the shoulder member 12 and larger than the first threshold.
  • the second threshold is determined by experiment, simulation, calculation or the like.
  • the second threshold is 5A.
  • step S5 If the adhesion parameter is not equal to or greater than the second threshold (No in step S2), the control unit 21 causes an alarm to be issued (step S5), and returns to step S1.
  • the operator inputs a stop command from the input unit 32 of the double-acting friction stir welding apparatus 50A. Then, the control unit 21 stops the double-acting friction stir welding apparatus 50A (Yes in step S1, step S6).
  • the present control ends. Thereafter, the operator cleans the welding tool 51. As a result, breakage of the welding tool 51 is prevented, and the life of the welding tool 51 is extended.
  • step S2 when the adhesion parameter is equal to or higher than the second threshold (Yes in step S2), the control unit 21 stops the double-acting friction stir welding apparatus 50A, whereby the welding tool 51 is stopped (step S6). .
  • the present control ends. Thereafter, the operator cleans the welding tool 51. As a result, breakage of the welding tool 51 is prevented, and the life of the welding tool 51 is extended.
  • the control unit 21 may drive the tool driving unit 53 to cause the pin member 11 to move in and out of the shoulder member 12 to clean the bonding tool 51.
  • the control unit 21 may execute the cleaning method of the welding tool disclosed in Patent Document 1 above.
  • FIG. 7 is a side view schematically showing a hardware configuration of a double-acting friction stir welding apparatus according to a second embodiment.
  • FIG. 8 is a block diagram showing a configuration of a control system of the double-acting type friction stir welding apparatus of FIG.
  • the second embodiment differs from the first embodiment in that the adhesion parameter is the number of batting points (the number of times of friction stir welding), and the other configuration is the same as the first embodiment.
  • the adhesion parameter is the number of batting points (the number of times of friction stir welding)
  • the servomotor (not shown) of the shoulder driver 532 includes the rotary encoder 80, and the output signal from the servomotor is the controller. It is input to 21.
  • the motor of the shoulder drive unit 532 moves the welding tool 51 back and forth (down and up) once per friction stir welding, so that the control unit 21 determines the number of strokes (frictional stirring based on the output of the rotary encoder 80). Count the number of junctions). As described above, the control unit 21 monitors the number of bats as the adhesion parameter, and controls the alarm as in the first embodiment.
  • the welding tool 51 double-acting friction stir welding apparatus 50B
  • the adhesion parameter level the number of strokes
  • the double-acting friction stir welding apparatus 50B is not activated. Thereby, the operation of the bonding tool 51 is prohibited.
  • FIG. 9 is a side view schematically showing a hardware configuration of a double-acting friction stir welding apparatus according to a third embodiment.
  • FIG. 10 is a block diagram showing a configuration of a control system of the double-acting type friction stir welding apparatus of FIG.
  • the third embodiment is different from the first embodiment in that the adhesion parameter is a stress generated in the pin member 11, and the other configuration is the same as the first embodiment.
  • this difference will be described.
  • the stress sensor 81 is attached to the pin member 11, and the output signal thereof is input to the control unit 21.
  • a strain gauge is exemplified as the stress sensor 81.
  • An output signal of the stress sensor 81 is transmitted by, for example, a signal line on the rotating body 521, and a slip ring provided on the rotating shaft of the motor of the rotation driving unit 533 between the rotating body 521 and the movable body 522.
  • the brush provided on the movable body 522, and the signal line is transmitted between the brush and the control unit 21.
  • the control unit 21 detects the stress generated in the pin member 11 based on the output of the stress sensor 81.
  • control unit 21 monitors the stress generated in the pin member 11 as the adhesion parameter, and performs the alarm and the stop control of the bonding tool as in the first embodiment.
  • the stress generated in the pin member 11 may be detected indirectly by providing a stress sensor in a member for transmitting the driving force to the pin member 11.
  • the stress sensor 81 may be attached to the shoulder member 12 instead of the pin member 11.
  • the fourth embodiment is different from the first embodiment in that the control unit 21 prohibits the alarm and the operation of the welding tool when the increase amount of the adhesion parameter per predetermined period is equal to or more than a predetermined value.
  • the configuration other than this is the same as that of the first embodiment.
  • the material of the article 60 can be set by appropriately setting the predetermined value.
  • the amount of adhesion to the welding tool 51 is rapidly increased as the number of friction stir welding increases, breakage of the welding tool 51 can be suitably suppressed.
  • the double-acting type friction stir welding apparatus includes a cleaning mechanism, and the cleaning mechanism automatically cleans the welding tool 51 at a predetermined timing.
  • the predetermined timing includes one or more specific timings, irregular timings, and periodic timings.
  • the life of the welding tool 51 can be extended.
  • Embodiment 6 In the sixth embodiment, at least one of warning, prohibition of operation of the welding tool, and cleaning of the welding tool is performed at a predetermined timing by the operator or by the double-acting friction stir welding apparatus.
  • the predetermined timing includes one or more specific timings, irregular timings, and periodic timings.
  • the life of the welding tool 51 can be extended.
  • a double-acting friction stir welding apparatus is the double-acting friction stir welding apparatus according to the first to sixth embodiments, wherein the first member is disposed to face the welding tool, and
  • the controller is configured of a type of material different from that of the two members, and in (A), the controller rotates the welding mechanism so that the welding tool presses the object to be welded of the workpiece while rotating the welding tool.
  • the advancing / retreating mechanism operates (A1)
  • the softened second member is inserted and withdrawn so that the tip end of the welding tool reaches a predetermined first position set in advance so that the softened second member may pierce the softened first member.
  • the mechanism is configured to operate (A2), and the retracting mechanism, the rotating mechanism, and the advancing / retracting mechanism operate (A3) so as to pull out from the joined part while rotating the welding tool.
  • the controller immerses the pin member inward of the shoulder member and the tip of the shoulder member reaches the first position.
  • the retracting mechanism operates (A21) and (A21)
  • the tip of the shoulder member retracts from the first position
  • the pin member protrudes and retracts from the tip of the shoulder member.
  • the mechanism may be configured to perform (A22).
  • the first member may be made of a material having a lower softening temperature than the second member.
  • the first member is made of at least one material of aluminum or thermoplastic and fiber reinforced plastic
  • the second member is steel May be composed of
  • FIG. 11 is a schematic view showing a schematic configuration of a double-acting friction stir welding apparatus according to a seventh embodiment.
  • the vertical direction in the drawing is shown as the vertical direction in the double-acting friction stir welding apparatus.
  • the double-acting friction stir welding apparatus 50 includes a welding tool 51 having a pin member 11 and a shoulder member 12, a welding tool fixing portion 52, a tool driving portion 53, and a clamping member 54. , A C-shaped frame 55, a backing member 56, and a controller 100.
  • the pin member 11 and the shoulder member 12 are supported by the welding tool fixing portion 52, and are driven to move up and down in the vertical direction by the tool driving portion 53.
  • the pin member 11, the shoulder member 12, the welding tool fixing portion 52, the tool driving portion 53 and the clamp member 54 are provided on the upper portion of the C-shaped frame 55.
  • a backing member 56 is provided below the C-shaped frame 55.
  • the pin member 11 and the shoulder member 12 and the backing member 56 are attached to the C-shaped frame 55 at positions facing each other.
  • An article 60 is disposed between the pin member 11 and the shoulder member 12 and the backing member 56.
  • the welding tool fixing unit 52 includes a rotating body 521 and a movable body 522.
  • the tool driving unit 53 includes a pin driving unit 531, a shoulder driving unit 532, and a clamp driving unit 41.
  • the clamp member 54 is fixed to the movable body 522 via the clamp drive unit 41.
  • the clamp drive part 41 is comprised by the spring.
  • the pin member 11 is formed in a substantially cylindrical shape or a substantially cylindrical shape, and is supported by the rotating body 521, although not shown in detail in FIG. In addition, the pin member 11 is configured to rotate around an axis Xr that coincides with the axial center (central axis) of the pin member 11 by the rotation drive unit 533.
  • the pin member 11 is configured to be able to move forward and backward relative to the shoulder member 12 along the arrow P1 direction, that is, the direction of the axis Xr (vertical direction in FIG. 11). That is, the pin drive unit 531 constitutes an insertion / retraction mechanism that causes the pin member 11 to move in and out of the shoulder member 12.
  • the pin drive unit 531 may be configured by, for example, a linear actuator.
  • the linear motion actuator may be composed of a servomotor and a rack and pinion, or a servomotor and a ball screw.
  • the shoulder member 12 is formed in a substantially cylindrical shape having a hollow, and is supported by the rotating body 521.
  • the pin member 11 is inserted into the hollow of the shoulder member 12.
  • the shoulder member 12 is arranged to surround the outer peripheral surface of the pin member 11.
  • the shoulder member 12 is configured to rotate around the same axis Xr as the pin member 11 by the rotation drive unit 533.
  • the shoulder member 12 is configured to be movable forward and backward along the arrow P 2 direction, that is, the direction of the axis Xr by the shoulder driving unit 532.
  • the shoulder drive unit 532 may be, for example, a linear actuator.
  • the linear motion actuator may be composed of a servomotor and a rack and pinion, or a servomotor and a ball screw.
  • the pin member 11 and the shoulder member 12 are both supported by the same rotating body 521, and both rotate integrally around the axis Xr by the rotation drive unit 533. Therefore, the rotation drive unit 533 and the rotating body 521 constitute a rotation mechanism that rotates the welding tool 51 around the central axis of the pin member 11.
  • the rotating body 521 is supported by the movable body 522 via the rotation drive unit 533.
  • the shoulder drive unit 532 when the shoulder drive unit 532 is driven, the pin member 11 and the movable body 522 move forward and backward together with the shoulder member 12. Therefore, the shoulder drive unit 532 and the movable body 522 constitute an advancing and retracting mechanism for advancing and retracting the welding tool 51 in the extending direction of the central axis of the pin member 11.
  • the clamp member 54 is formed in a hollow cylindrical shape, and is provided such that its axis coincides with the axis Xr.
  • the shoulder member 12 is inserted into the hollow of the clamp member 54.
  • the substantially cylindrical shoulder member 12 is disposed so as to surround the outer peripheral surface of the pin member 11, and the substantially cylindrical clamp member 54 is disposed so as to surround the outer peripheral surface of the shoulder member 12.
  • the clamp member 54, the shoulder member 12 and the pin member 11 each have a coaxial core-like nested structure.
  • the clamp member 54 is configured to press the article 60 from one surface (surface). As described above, in the first embodiment, the clamp member 54 is supported by the movable body 522 via the clamp drive unit 41.
  • the clamp drive unit 41 is configured to bias the clamp member 54 to the backing member 56 side.
  • the clamp member 54 (including the clamp drive unit 41 and the movable body 522) is configured to be able to advance and retract in the arrow P3 direction (the same direction as the arrows P1 and P2) by the shoulder drive unit 532.
  • clamp drive part 41 was comprised with the spring in this Embodiment 1, it is not limited to this.
  • the clamp drive part 41 should just be the structure which gives urging
  • the pin member 11, the shoulder member 12, and the clamp member 54 each include a lower end surface (end surface) 11a, a lower end surface (end surface) 12a, and a lower end surface (end surface) 54a.
  • the lower end surface 11a, the lower end surface 12a, and the lower end surface 54a of the pin member 11, the shoulder member 12, and the clamp member 54 are advanced and retracted by the tool driving unit 53, respectively. Abut.
  • the backing member 56 is configured to be supported by a flat surface (support surface 56a) so as to abut the back surface of the flat article 60 to be bonded.
  • the configuration of the backing member 56 is not particularly limited as long as the backing member 56 can properly support the workpiece 60 so that the friction stir welding can be performed.
  • the backing member 56 may be configured such that, for example, the backing member 56 having a plurality of types of shapes is separately prepared, and can be removed from the C-shaped frame 55 and replaced depending on the type of the article 60 .
  • the specific configurations of the pin member 11, the shoulder member 12, the welding tool fixing portion 52, the tool driving portion 53, the clamp member 54, the C-shaped frame 55, and the backing member 56 in the seventh embodiment are the configurations described above.
  • the configuration known in the field of friction stir welding can be suitably used.
  • the pin drive unit 531 and the shoulder drive unit 532 that constitute the tool drive unit 53 are both configured by a motor and a gear mechanism etc. that are known in the field of friction stir welding. It is not limited.
  • the configuration including the clamp member 54 is adopted.
  • the present invention is not limited to this, and a configuration not including the clamp member 54 may be adopted.
  • the clamp member 54 may be configured to be detachable from the C-shaped frame 55 as needed.
  • the double-acting type friction stir welding apparatus 50 adopts a form in which it is disposed in a friction stir welding robot apparatus (not shown). Specifically, a C-shaped frame 55 is attached to the tip of a robot arm.
  • the double-acting friction stir welding apparatus 50 (including the C-shaped frame 55) is not limited to the case of being applied to a friction stir welding robot apparatus, and, for example, an NC machine tool, a large C frame,
  • the present invention can also be suitably applied to known processing equipment such as an auto riveter.
  • two or more pairs of robots include a portion other than the backing member 56 in the double-acting friction stir welding apparatus 50, a backing member 56, May be configured to face the Furthermore, as long as the friction stir welding can be stably performed on the workpiece 60, the double-acting friction stir welding apparatus 50 may adopt a form of making the workpiece 60 into a hand-held type. Alternatively, the robot may be used as a positioner of the workpiece 60.
  • FIG. 12 is a block diagram schematically showing a control configuration of the double-acting type friction stir welding apparatus shown in FIG.
  • the double-acting friction stir welding apparatus 50 includes an input unit 32 and a controller 100.
  • the controller 100 includes a control unit (arithmetic processing unit) 21 such as a CPU and a storage unit 31 such as a ROM and a RAM.
  • the input unit 32 is capable of inputting various parameters related to control of friction stir welding or other data to the controller 100, and is configured by a known input device such as a keyboard, a touch panel, and a button switch group. It is done.
  • a known input device such as a keyboard, a touch panel, and a button switch group. It is done.
  • at least data on the bonding conditions of the article 60, for example, the thickness, material, etc. of the article 60 can be input through the input unit 32.
  • the storage unit 31 stores various data in a readable manner, and the storage unit 31 is configured by a known memory, a storage device such as a hard disk, or the like.
  • the storage unit 31 does not have to be single, and may be configured as a plurality of storage devices (for example, random access memory and hard disk drive).
  • the control unit 21 and the like are configured by a microcomputer, at least a part of the storage unit 31 may be configured as an internal memory of the microcomputer or may be configured as an independent memory.
  • data may be stored in the storage unit 31 and data may be read from other than the control unit 21 or data may be written from the control unit 21 or the like. It's too late.
  • the control unit 21 is configured to control each member (each device) constituting the double-acting type friction stir welding apparatus 50. Specifically, the control unit 21 reads a predetermined control program stored in the storage unit 31 and executes the program to execute the pin control unit 531, the shoulder drive unit 532, and the rotation which constitute the tool driving unit 53. The drive unit 533 is controlled.
  • the controller 100 may be configured by a single controller 100 that performs centralized control, or may be configured by a plurality of controllers 100 that perform distributed control in cooperation with one another.
  • the controller 100 may be configured by a microcomputer, and may be configured by an MPU, a programmable logic controller (PLC), a logic circuit, and the like.
  • PLC programmable logic controller
  • FIG. 13 is a flow chart showing an example of the operation of the double-acting type friction stir welding apparatus according to the seventh embodiment.
  • 14A and 14B are process diagrams schematically showing an example of each process of friction stir welding by the double-acting friction stir welding apparatus shown in FIG.
  • the first member 61A may be made of a material having a lower softening temperature than the second member 62A.
  • first member 61A for example, at least one material of metal material (for example, aluminum), thermoplastic plastic (for example, polyamide), and fiber reinforced plastic (for example, carbon fiber reinforced plastic) may be used.
  • the second member 62A may use a metal material (for example, steel or aluminum) different from that of the first member 61A.
  • the present invention is not limited to this.
  • the shape of (the first member 61A and the second member 62A) is arbitrary, and may be, for example, a rectangular parallelepiped shape or an arc shape.
  • FIG. 14A and FIG. 14B a part of double-acting type friction stir welding apparatus is abbreviate
  • FIGS. 14A and 14B Although a force is applied from the backing member 56 to the first member 61A and the second member 62A, for convenience of explanation, they are not shown in FIGS. 14A and 14B.
  • the shoulder member 12 is hatched in order to make the distinction between the pin member 11 and the clamp member 54 clear.
  • a worker places the article W on the support surface 56 a of the backing member 56. Then, the operator operates the input unit 32 to input the joining execution of the article W to the controller 100. The robot may place the article W on the support surface 56 a of the backing member 56.
  • the controller 100 drives the rotation drive unit 533 to rotate the pin member 11 and the shoulder member 12 at a predetermined rotation number (for example, 200 to 3000 rpm) set in advance. (Step S101; see step (1) in FIG. 14A).
  • the controller 100 drives the shoulder drive unit 532 to move the pin member 11, the shoulder member 12, and the clamp member 54 closer to the object 60 while rotating the pin member 11 and the shoulder member 12
  • the lower end surface 11a of the pin member 11, the lower end surface 12a of the shoulder member 12, and the lower end surface 54a of the clamp member 54 (not shown in FIGS. 14A and 14B) abut the surface 60c of the article 60 Step S102; see step (2) in FIG. 14A).
  • the controller 100 presses the object 60 with a predetermined pressing force (for example, a predetermined value included in the range of 3 kN to 10 kN) in which the pin member 11, the shoulder member 12, and the clamp member 54 are preset.
  • a predetermined pressing force for example, a predetermined value included in the range of 3 kN to 10 kN
  • the shoulder drive unit 532 is controlled as follows.
  • the first member 61A and the second member 62A are sandwiched between the clamp member 54 and the backing member 56, and the clamp member 54 is urged toward the surface 60c of the article 60 by the contraction of the clamp drive portion 41. , Clamp force occurs.
  • the surface 60c of the article 60 is "preheated".
  • the component material in the contact region of the first member 61A is softened by heat generation due to friction, and the plastic flow portion 61B of the first member 61A is generated in the vicinity of the surface 60c of the article 60.
  • the controller 100 drives the pin driving unit 531 so that the lower end surface 11a of the pin member 11 is recessed with respect to the lower end surface 12a of the shoulder member 12 (step S103). At this time, the controller 100 controls the pin drive unit 531 so that the tip end of the shoulder member 12 reaches a predetermined first position set in advance. The position information of the tip of the shoulder member 12 is detected by a position detector (not shown) and output to the controller 100.
  • the surface in contact with the first member 61A of the second member 62A is 0%, and the surface in contact with the support surface 56a of the backing member 56 of the second member 62A is 100%.
  • the tip of the shoulder member 12 enters (press-fits) the inside of the second member 62A from the surface 60c of the article 60 (see step (3) in FIG. 14A), and plastic flow also occurs in the second member 62A. Part 62B is generated. At this time, the softened portion of the pushed-out second member 62A enters (pierces) the softened portion of the first member 61A by the tip end portion of the shoulder member 12.
  • the controller 100 drives the pin driving unit 531 such that the lower end surface 11a of the pin member 11 protrudes relative to the lower end surface 12a of the shoulder member 12 (step S104).
  • the controller 100 controls the pin driving unit 531 so that the tip end of the pin member 11 reaches a predetermined second position set in advance.
  • the second position can be set in advance by experiments and the like, and is appropriately set to a position above the plastic flow portion 62B that has entered the plastic flow portion 61B.
  • the pin member 11 gradually enters (press-fits) the first member 61A, and the shoulder member 12 retracts from the first member 61A (see step (4) in FIG. 14B).
  • the softened portion of the plastic flow portion 61B flows from immediately below the pin member 11 directly below the shoulder member 12, and the recess formed by the press-fitting of the shoulder member 12 is backfilled.
  • the controller 100 controls the pin drive unit 531 so that the lower end face 11a of the pin member 11 and the lower end face 12a of the shoulder member 12 are flush on the surface 60c of the article 60 (step S105). See step (5) in FIG. 14B). As a result, the surface 60c of the article 60 is shaped, and a substantially flat surface is obtained such that no substantial recess is produced.
  • the controller 100 causes the shoulder drive unit 532 to separate the lower end surface 11 a of the pin member 11, the lower end surface 12 a of the shoulder member 12, and the lower end surface 54 a of the clamp member 54 from the object 60. Are controlled (step S106).
  • the controller 100 controls the rotation drive unit 533 to stop the rotation of the pin member 11 and the shoulder member 12 (step S107), and performs a series of friction stir welding (bonding process of the workpiece 60). End (see step (6) in FIG. 14B).
  • the portion of the second member 62A softened by performing the friction stir welding on the workpiece W is:
  • the anchor effect is obtained such that the softened portion enters the softened portion of the first member 61A, the strength against tensile shear increases, and the peel strength relatively increases.
  • frictional heat is used for a plurality of members (the first member 61A and the second member 62A) made of different materials. Bonding may also increase bonding strength.
  • friction stir welding is performed on two members (first member 61A and second member 62A) made of different materials.
  • first member 61A and second member 62A are members made of different materials.
  • a configuration in which friction stir welding is performed on three or more members made of different materials may be adopted.
  • the controller causes the pin member to protrude from the tip of the shoulder member in (A2), and the tip of the pin is at the first position.
  • the advancing and retracting mechanism operates so as to reach (A23) and (A23)
  • the advancing and retracting mechanism operates such that the tip of the pin member retracts from the first position into the inward of the shoulder member (A24) And is configured to perform.
  • the double-acting friction stir welding apparatus of Modification Example 1 of Embodiment 7 has the same configuration as the double-acting friction stir welding apparatus according to Embodiment 7, and thus the detailed description thereof will be omitted.
  • FIG. 15 is a flow chart showing an example of the operation of the double-acting type friction stir welding apparatus of Modification 1 of Embodiment 7.
  • FIG. 16A and FIG. 16B are process drawings schematically showing an example of each step of friction stir welding by the double-acting friction stir welding device of the present modification 1.
  • the operation of the double-acting friction stir welding apparatus 50 of the first modification is basically the same as the operation of the double-acting friction stir welding apparatus 50 according to the seventh embodiment, The difference is that step S103A and step S104A are performed instead of step S103 and step S104.
  • the controller 100 drives the pin drive unit 531 such that the lower end surface 11a of the pin member 11 protrudes relative to the lower end surface 12a of the shoulder member 12 (step S103A). At this time, the controller 100 controls the pin drive unit 531 so that the tip of the pin member 11 reaches the first position.
  • the position information of the tip of the pin member 11 is detected by a position detector (not shown) and output to the controller 100.
  • the tip of the pin member 11 enters (press-fits) the inside of the second member 62A from the surface 60c of the article 60 (see step (3) in FIG. 16A), and plastic flow also occurs in the second member 62A. Part 62B is generated. At this time, the softened portion of the pushed-out second member 62A enters (pierces) the softened portion of the first member 61A by the tip end portion of the pin member 11.
  • the controller 100 drives the pin drive unit 531 so that the lower end surface 11a of the pin member 11 is recessed with respect to the lower end surface 12a of the shoulder member 12 (step S104A). At this time, the controller 100 controls the pin drive unit 531 so that the tip of the shoulder member 12 reaches a predetermined second position set in advance.
  • the shoulder member 12 gradually enters (press-fits) the first member 61A, and the pin member 11 retracts from the first member 61A (see step (4) in FIG. 16B).
  • the softened portion of the plastic flow portion 61B flows from immediately below the shoulder member 12 directly below the pin member 11, and the concave portion formed by the press-fitting of the pin member 11 is filled back.
  • controller 100 executes the processes of step S105 to step S107 as in the double-acting friction stir welding apparatus 50 according to the seventh embodiment, and a series of friction stir welding (joining process of the article 60) End the
  • the double-acting friction stir welding apparatus is the double-acting friction stir welding apparatus according to the seventh embodiment, wherein the controller is configured to penetrate the outer peripheral surface of the pin member generated by the friction stir welding and the center penetration of the shoulder member. Cleaning at least one of the outer peripheral surface of the pin member and the inner peripheral surface of the central through hole of the shoulder member based on the level of adhesion parameter correlated with the degree of adhesion of the material of the object to the inner peripheral surface of the hole (D) is further configured to be executed.
  • the adhesion parameter is a motor current value provided in the retracting mechanism and driving the pin member to retract with respect to the shoulder member. Good.
  • the adhesion parameter may be the number of times of friction stir welding of the workpieces.
  • the adhesion parameter may be stress generated in the pin member and / or the shoulder member.
  • FIG. 17 is a block diagram showing a schematic configuration of a double-acting friction stir welding apparatus according to an eighth embodiment.
  • the double-acting friction stir welding apparatus 50 according to the eighth embodiment has the same basic configuration as the double-acting friction stir welding apparatus 50 according to the seventh embodiment, but a current detector 34 Differs in that it further comprises The current detector 34 is configured to detect the current value of the servomotor constituting the pin drive unit 531, and to output the detected current value to the control unit 21 of the controller 100.
  • FIG. 18 is a flowchart showing an example of the operation of the double-acting friction stir welding apparatus according to the eighth embodiment.
  • the controller 100 determines whether a stop command of the double-acting type friction stir welding apparatus 50 is input from the operator via the input unit 32 (step S201).
  • controller 100 determines that the stop command of double-acting friction stir welding apparatus 50 is input from the operator via input unit 32 (Yes in step S201), double-acting friction stir welding apparatus 50
  • the stop process is executed (step S202), and the program ends.
  • the pin drive unit 531 and the shoulder drive unit 532 are controlled to move the pin member 11, the shoulder member 12, and the clamp member 54 to a predetermined initial position. It is possible to move and stop the rotation drive unit 533.
  • the controller 100 determines that the stop command of the double-acting friction stir welding apparatus 50 is not input from the operator via the input unit 32 (No in step S201), the adhesion parameter is set. It acquires (step S203). Specifically, in the eighth embodiment, the controller 100 acquires the current value of the motor of the pin drive unit 531 detected by the current detector 34.
  • the adhesion parameter is correlated with the degree of adhesion of the material of the article 60 to the outer peripheral surface of the pin member 11 and / or the inner peripheral surface of the center through hole 13 of the shoulder member 12 generated by friction stir welding.
  • the adhesion parameters the current value of the motor of the pin drive unit 531 that drives the pin member 11 to retract relative to the shoulder member 12, the number of strokes which is the number of times of friction stir welding, generated in the pin member 11 or shoulder member 12 Stress is illustrated.
  • the absolute values of these parameters increase in absolute value (level increases) in response to the increase in the amount of adhesion (level increases).
  • the motor current value and stress reverse in sign between these two forms. Therefore, the level of the adhesion parameter is specified by its absolute value.
  • the controller 100 may store the number of times of performing the friction stir welding in the storage unit 31, and may acquire the number of times of the friction stir welding as the adhesion parameter. Further, the controller 100 may acquire the stress detected by the stress detector installed in the pin member 11 and / or the shoulder member 12 as the adhesion parameter. A strain gauge may be used as the stress detector.
  • the controller 100 determines whether the adhesion parameter acquired in step S203 is equal to or greater than a first threshold (step S204).
  • the first threshold can be set in advance by experiment or the like.
  • a current value for example, 3A or 4A may be used from the viewpoint of suppressing the breakage of the welding tool 51.
  • the number of times the current value detected by the current detector 34 may be 3 A, and the current detected by the current detector 34 It may be the number of times the value has become 4A.
  • the stress detected by the stress detector may be used when the current value detected by the current detector 34 becomes 3A, It may be stress detected by the stress detector when the current value detected by the sensor 34 becomes 4A.
  • step S203 If the controller 100 determines that the adhesion parameter acquired in step S203 is not equal to or greater than the first threshold (No in step S204), the controller 100 returns to step S201.
  • step S205 the controller 100 executes cleaning of the welding tool 51 (step S205).
  • the controller 100 drives the shoulder drive unit 532 to cause the pin member 11 to appear and retract with respect to the shoulder member 12, thereby cleaning the welding tool 51.
  • the controller 100 may execute the cleaning method of the welding tool disclosed in Patent Document 2 described above.
  • the controller 100 controls the outer peripheral surface of the pin member 11 and the center through hole of the shoulder member 12 generated by the friction stir welding. Cleaning at least one of the outer peripheral surface of the pin member 11 and the inner peripheral surface of the central through hole of the shoulder member 12 based on the level of adhesion parameters correlated with the degree of adhesion of the material of the article 60 to the peripheral surface (D) is further configured to be executed.
  • the welding tool 51 can be cleaned before the welding tool 51 is broken, and the life of the welding tool 51 can be extended.
  • the double-acting friction stir welding apparatus is the double-acting friction stir welding apparatus according to the seventh embodiment and / or the eighth embodiment, wherein in the controller (D), the adhesion parameter is If it is equal to or more than a predetermined first threshold set in advance, a warning is issued by the alarm (D1), and after (D1), the outer peripheral surface of the pin member and the inner periphery of the central through hole of the shoulder member It is configured to perform cleaning (D2) at least one of the faces.
  • FIG. 19 An example of the double-acting friction stir welding apparatus according to the ninth embodiment will be described with reference to FIGS. 19 and 20.
  • FIG. 19 An example of the double-acting friction stir welding apparatus according to the ninth embodiment will be described with reference to FIGS. 19 and 20.
  • FIG. 19 is a block diagram showing a schematic configuration of a double-acting type friction stir welding apparatus according to a ninth embodiment.
  • the double-acting friction stir welding apparatus 50 according to the ninth embodiment has the same basic configuration as the double-acting friction stir welding apparatus 50 according to the eighth embodiment. Furthermore, the point to prepare differs.
  • the annunciator 35 is configured to notify (warning) the operator that the adhesion parameter has reached a level at which the breakage of the welding tool 51 should be warned.
  • the alarm 35 may have any configuration as long as a warning can be notified to the outside.
  • a mode of notifying to the outside for example, a mode of displaying character data or image data on a display unit (screen) of a remote control may be used, or a mode of notifying by voice using a speaker or the like may be used. It may be an aspect to notify by. In addition, it may be an aspect of notifying a smartphone, a mobile phone, a tablet computer or the like by e-mail or application via a communication network.
  • FIG. 20 is a flow chart showing an example of the operation of the double-acting type friction stir welding apparatus according to the ninth embodiment.
  • step S204 determines in step S204 that the adhesion parameter acquired in step S203 is greater than or equal to the first threshold
  • step S205 is performed after step S205A is performed.
  • step S204 when the controller 100 determines that the adhesion parameter acquired in step S203 is equal to or greater than the first threshold (Yes in step S204), the controller 100 causes the annunciator 35 to output a warning (step S205). ). As a result, the operators can know that the level at which breakage of the welding tool 51 should be watched has been reached.
  • controller 100 cleans the welding tool 51 (step S205), and returns to step S201.
  • the controller 100 is configured to notify a warning by the alarm 35.
  • the operators can know that the level at which breakage of the welding tool 51 should be watched has been reached. For this reason, before the joining tool 51 breaks, the joining tool 51 can be cleaned, and the life of the joining tool 51 can be extended.
  • the controller 100 adopts a mode in which the welding tool 51 is cleaned.
  • the present invention is not limited to this, and the operation notified that the alarm 35 is output by the alarm 35 A person or the like may adopt a mode in which the welding tool 51 is cleaned.
  • the double-acting friction stir welding apparatus according to the tenth embodiment is the double-acting friction stir welding apparatus according to any one of the seventh to ninth embodiments, wherein in the controller (D), the adhesion parameter is used. However, when it is not less than the second threshold which is larger than the first threshold, the next bonding operation of the object to be bonded is prohibited (D3).
  • the double-acting friction stir welding apparatus according to the tenth embodiment has the same configuration as the double-acting friction stir welding apparatus according to the eighth embodiment, and thus the detailed description thereof will be omitted.
  • FIG. 21 is a flow chart showing an example of the operation of the double-acting type friction stir welding apparatus according to the tenth embodiment. The following operation is performed by the control unit 21 of the controller 100 reading a program stored in the storage unit 31 when the controller 100 performs the friction stir welding operation.
  • the controller 100 determines whether or not a stop command of the double-acting friction stir welding apparatus 50 is input from the operator via the input unit 32 (step S301).
  • controller 100 determines that the stop command of double-acting friction stir welding apparatus 50 is input from the operator via input unit 32 (Yes in step S301), double-acting friction stir welding apparatus 50
  • the stop process is executed (step S302), and the program ends.
  • the controller 100 determines that the stop command of the double-acting friction stir welding apparatus 50 is not input from the operator via the input unit 32 (No in step S301), the adhesion parameter is set. It acquires (step S303).
  • step S304 determines whether the adhesion parameter acquired in step S303 is equal to or more than a first threshold. If the controller 100 determines that the adhesion parameter acquired in step S303 is not equal to or greater than the first threshold (No in step S304), the controller 100 returns to step S201.
  • step S303 determines that the adhesion parameter acquired in step S303 is greater than or equal to the first threshold (Yes in step S304)
  • the adhesion parameter acquired in step S303 is greater than or equal to the second threshold It is determined whether or not (step S305).
  • the second threshold value can be set in advance by experiments etc., and is smaller than the absolute value of the adhesion parameter corresponding to the fracture life of the pin member 11 and the shoulder member 12 as described later, and the first threshold value Set to a larger absolute value.
  • the second threshold may be, for example, 5 A or 5.5 A from the viewpoint of suppressing breakage of the welding tool 51 when a current value is employed as the adhesion parameter.
  • the number of times the current value detected by the current detector 34 may be 5 A, and the current detected by the current detector 34 It may be the number of times the value has become 5.5A.
  • the stress detected by the stress detector may be used when the current value detected by the current detector 34 becomes 5 A, so It may be stress detected by the stress detector when the current value detected by the sensor 34 becomes 5.5A.
  • step S303 When the controller 100 determines that the adhesion parameter acquired in step S303 is not equal to or greater than the second threshold (No in step S305), the controller 100 executes cleaning of the welding tool 51 (step S306), and proceeds to step S301. Return. The controller 100 may cause the alarm 35 to output a warning before cleaning the welding tool 51.
  • step S303 when it is determined that the adhesion parameter acquired in step S303 is equal to or greater than the second threshold (Yes in step S305), the controller 100 executes forced stop of the double-acting friction stir welding apparatus 50. (Step S307).
  • the controller 100 controls the pin drive unit 531 and the shoulder drive unit 532 to move the pin member 11, the shoulder member 12, and the clamp member 54 to a predetermined initial position, and rotate the same.
  • the driving unit 533 may be stopped.
  • the controller 100 controls the pin drive portion 531 so that the pressing force at which the pin member 11 and the shoulder member 12 press the object 60, and then the pin member 11 and the shoulder member
  • the shoulder drive 532 may be controlled to move the clamp 12 and the clamp member 54 to a predetermined initial position.
  • controller 100 controls the rotational drive unit 533 to reduce the number of rotations of the pin member 11 and the shoulder member 12 and then, the pin member 11, the shoulder member 12, and the clamp member 54 are at predetermined initial positions.
  • the shoulder drive unit 532 may be controlled to move up to that point.
  • the controller 100 controls the pin drive portion 531 so that the pin member 11 and the shoulder member 12 reduce the pressing force pressing the workpiece 60, and the pin member 11 and the shoulder member 12 Control the rotational drive unit 533 so as to reduce the number of revolutions of the motor, and then control the shoulder drive unit 532 to move the pin member 11, the shoulder member 12, and the clamp member 54 to a predetermined initial position. It is also good.
  • the controller 100 prohibits the execution of the next bonding (step S308), and ends this program.
  • the controller 100 may execute the cleaning of the welding tool 51 after performing the process of step S308.
  • the controller 100 may notify the annunciator 35 that the execution of the next bonding is prohibited.
  • the controller 100 may notify the alarm device 35 that the execution of the next bonding is prohibited, and then, the cleaning of the bonding tool 51 may be performed.
  • the thus configured double-acting friction stir welding apparatus 50 according to Embodiment 10 is the same as the double-acting friction stir welding apparatus 50 according to any one of Embodiments 7 to 9. It exerts an action effect.
  • the controller 100 prohibits the bonding operation of the next object 60 when the adhesion parameter is equal to or greater than the second threshold. Is configured as. As a result, since the bonding operation of the article 60 is not performed in a state in which the bonding tool 51 is highly likely to be broken, the breakage of the bonding tool 51 can be prevented.
  • cleaning of the clamp member 54 may be omitted.
  • cleaning of one of the pin member 11 and the shoulder member 12 may be omitted.
  • a warning by a message may be given instead of the warning.
  • one of the warning and the operation inhibition of the welding tool may be omitted.
  • the operating method of the double-acting friction stir welding apparatus and the double-acting friction stir welding apparatus according to the present invention are the operating method of the double-acting friction stir welding apparatus capable of prolonging the life of the welding tool and the double-acting friction stirring It is useful as a bonding device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

複動式摩擦攪拌接合装置の運転方法であって、複動式摩擦攪拌接合装置は、ピン部材(11)とショルダ部材(12)を有する接合ツール(51)と、ピン部材(11)をショルダ部材(12)に対して出没させる出没機構と、接合ツール(51)を回転させる回転機構(533)と、接合ツール(51)を進退させる進退機構(532)と、を備え、摩擦攪拌接合によって発生するピン部材(11)の外周面及びショルダ部材(12)の貫通孔(13)の内周面への被接合物(60)の材料の凝着の程度と相関する凝着パラメータのレベルに基づいて、ピン部材(11)の外周面及びショルダ部材(12)の貫通孔(13)の内周面の少なくとも一方を清掃する(B)と、を含む。

Description

複動式摩擦攪拌接合装置の運転方法及び複動式摩擦攪拌接合装置
 本発明は、複動式摩擦攪拌接合装置の運転方法及び複動式摩擦攪拌接合装置に関する。
 従来、センターピンとショルダーピンとからなる接合ツールの回転による摩擦熱で被接合物を軟化及び撹拌して接合するFSWであって、センターピンがショルダーピン内に挿通されてショルダーピンに対してセンターピンの先端が出没するようになされ、撹拌用モータにより接合ツールが回転するFSWが知られている(例えば、特許文献1参照)。このFSWでは、摩擦撹拌溶接(接合)時にショルダーピンとセンターピンとの間に付着した粉塵を除去するために、センターピンの表面及びショルダーピンの孔内面を清掃する。これにより、センターピンの動作不良が防止される。
 鋼製板材とこれより比重の軽い軽金属製板材とを含む車体を製造する方法が知られている(例えば、特許文献2参照)。特許文献1に開示されている方法では、ルーフパネルの前辺部および後辺部と、ヘッダー部材とをそれぞれ接合する際に、接合部の表面を平滑に維持することが可能な複動式の摩擦点接合装置を使用している。
特開2007-216286号公報 特開2009-202828号公報
 しかしながら、上記特許文献1に開示されているFSWの接合ツールの清掃方法では、接合ツールの寿命を長くするという観点からは不十分であるという第1の課題があった。
 また、上記特許文献2に開示されている方法では、アルミニウム合金板のみを組成流動させているため、接合強度が不十分となるおそれがあるという第2の課題があった。
 本発明は、接合ツールの寿命を長くすることが可能な複動式摩擦攪拌接合装置の運転方法及び複動式摩擦攪拌接合装置を提供することを第1の目的とする。
 また、本発明は、異なる材料で構成されている複数の部材に対して、摩擦熱を利用して接合しても、接合強度を高めることができ得る、複動式摩擦攪拌接合装置の運転方法及び複動式摩擦攪拌接合装置を提供することを第2の目的とする。
 上記第1の課題を解決するために、本発明のある態様(aspect)に係る複動式摩擦攪拌接合装置の運転方法は、第1部材と第2部材を有する被接合物を摩擦熱で軟化させることにより接合する、複動式摩擦攪拌接合装置の運転方法であって、前記複動式摩擦攪拌接合装置は、中心部に同心状に延在する円柱状の中心貫通孔を有する円柱状のショルダ部材と、前記ショルダ部材とともに接合ツールを構成し、前記ショルダ部材の中心貫通孔に当該ショルダ部材と同心状に嵌挿された円柱状のピン部材と、前記ピン部材を前記ショルダ部材に対して出没させる出没機構と、前記接合ツールを前記ピン部材の中心軸の周りに回転させる回転機構と、前記接合ツールを前記ピン部材の中心軸の延在方向に進退させる進退機構と、を備え、前記回転機構による前記接合ツールの回転と、前記出没機構による前記ショルダ部材に対する前記ピン部材の出没と、前記進退機構による前記接合ツールの進退とによって、前記被接合物を摩擦攪拌接合する(A)と、前記摩擦攪拌接合によって発生する前記ピン部材の外周面及び前記ショルダ部材の前記中心貫通孔の内周面への前記被接合物の材料の凝着の程度と相関する凝着パラメータのレベルに基づいて、前記ピン部材の外周面及び前記ショルダ部材の前記中心貫通孔の内周面の少なくとも一方を清掃する(B)と、を含む。ここで、「凝着パラメータのレベルに基づいて清掃する」とは、凝着パラメータを監視して清掃する形態と、事前に凝着パラメータを検討して清掃のタイミングを決定し、凝着パラメータを監視しないで清掃する形態とを含む。清掃のタイミングは、1以上の特定のタイミング、不定期のタイミング、定期的なタイミングを含む。
 後述するように、接合ツールが破断するまでの打点数が、実質的に接合ツールの寿命であり、ピン部材を上昇させる際のピン部材の駆動モータの電流が、打点数が増加するに連れて増大し、ある大きな絶対値に達した時にピン部材又はショルダ部材が破断する。ピン部材の駆動モータの電流は、摩擦攪拌接合によって発生するピン部材の外周面及びショルダ部材の前記中心貫通孔の内周面への被接合物の材料の凝着の程度と相関する凝着パラメータの一例である。上記構成によれば、摩擦攪拌接合によって発生するピン部材の外周面及びショルダ部材の中心貫通孔の内周面への被接合物の材料の凝着の程度と相関する凝着パラメータのレベルに基づいて、ピン部材の外周面及びショルダ部材の前記中心貫通孔の内周面の少なくとも一方を清掃するので、清掃を実施すべき凝着パラメータのレベルを、接合ツールが破断するレベルより低いレベルに設定することにより、接合ツールの破断を抑制することができる。その結果、接合ツールの寿命を長くすることができる。
 前記凝着パラメータが、前記凝着の量が多くなることに対応して絶対値が増加するパラメータであり、前記凝着パラメータの絶対値について第1閾値を設けてもよい。さらに、前記運転方法が、前記凝着パラメータが第1閾値以上になると警告する(C)をさらに含み、前記(C)の後に前記(B)が行われてもよい。ここで、「警告」は、音声、文字等によるメッセージによる警告及び警報による警告を含む。
 この構成によれば、凝着パラメータが、接合ツールへの凝着の量が多くなることに対応して絶対値が増加するパラメータであり、凝着パラメータが第1閾値以上になると警告し、その後で接合ツールを清掃するので、第1閾値を接合ツールが破断するレベルより低いレベルに設定することにより、好適に接合ツールの破断を抑制することができる。
 前記凝着パラメータが、第1閾値より大きい第2閾値以上になると前記接合ツールの動作を禁止することをさらに含んでもよい。ここで、ここで、「接合ツールの動作禁止」は、動作中の接合ツールを停止させることと、停止中の接合ツールを動作させないこととを含む。
 この構成によれば、警告をしても清掃が実施されない場合には、接合ツールの動作が禁止されるので、第2閾値を接合ツールが破断するレベルより低いレベルに設定することにより、確実に接合ツールの破断を抑制することができる。
 前記凝着パラメータが、前記凝着の量が多くなることに対応して絶対値が増加するパラメータであり、前記運転方法が、所定期間当たりの前記凝着パラメータの増加量が所定値以上になると警告及び前記接合ツールの動作禁止の少なくとも一方を行う(D)をさらに含んでもよい。
 この構成によれば、凝着パラメータが許容限度を上回る増加傾向を示すと、警報及び接合ツールの停止の少なくとも一方が行われるので、所定値を適宜設定することにより、被接合物の材料が、摩擦攪拌接合の回数が増加するに連れて急速に接合ツールへの凝着量が増加するようなものである場合に、好適に接合ツールの破断を抑制することができる。
 前記凝着パラメータが、前記出没機構に設けられ、前記ピン部材を前記ショルダ部材に対して出没するよう駆動するモータの電流値であってもよい。
 この構成によれば、好適に接合ツールの破断を抑制することができる。
 前記凝着パラメータが、前記一対の被接合物を摩擦攪拌接合する回数であってもよい。
 この構成によれば、好適に接合ツールの破断を抑制することができる。
 前記凝着パラメータが、前記ピン部材又は前記ショルダ部材に発生する応力であってもよい。
 この構成によれば、好適に接合ツールの破断を抑制することができる。
 また、本発明の他の態様(aspect)に係る複動式摩擦攪拌接合装置は、中心部に同心状に延在する円柱状の中心貫通孔を有する円柱状のショルダ部材と、前記ショルダ部材とともに接合ツールを構成し、前記ショルダ部材の中心貫通孔に当該ショルダ部材と同心状に嵌挿された円柱状のピン部材と、前記ピン部材を前記ショルダ部材に対して出没させる出没機構と、前記接合ツールを前記ピン部材の中心軸の周りに回転させる回転機構と、前記接合ツールを前記ピン部材の中心軸の延在方向に進退させる進退機構と、制御器と、を備え、前記制御器は、前記回転機構を制御することによる前記接合ツールの回転と、前記出没機構を制御することによる前記ショルダ部材に対する前記ピン部材の出没と、前記進退機構を制御することによる前記接合ツールの進退とによって、前記被接合物を摩擦攪拌接合する(A)と、前記摩擦攪拌接合によって発生する前記ピン部材の外周面及び前記ショルダ部材の前記中心貫通孔の内周面への前記被接合物の材料の凝着の程度と相関する凝着パラメータのレベルに基づいて、警告、前記接合ツールの動作禁止、及び前記接合ツールの清掃の少なくとも1つを行う(B1)と、を実行するよう構成されている。ここで、清掃のタイミングは、1以上の特定のタイミング、不定期のタイミング、定期的なタイミングを含む。
 この構成によれば、摩擦攪拌接合によって発生するピン部材の外周面及びショルダ部材の前記中心貫通孔の内周面への被接合物の材料の凝着の程度と相関する凝着パラメータのレベルに基づいて、警告、接合ツールの動作禁止、及び接合ツールの清掃の少なくとも1つを行うので、これらを実施すべき凝着パラメータのレベルを、接合ツールが破断するレベルより低いレベルに設定し、接合ツールを清掃することによって、あるいは、警告又は接合ツールの動作禁止の後に接合ツールを清掃することによって、接合ツールの破断を抑制することができる。その結果、接合ツールの寿命を長くすることができる。
 また、本発明のさらなる他の態様(aspect)に係る複動式摩擦攪拌接合装置の運転方法は、部材を有する、被接合物を摩擦熱で軟化させることにより接合する複動式摩擦攪拌接合装置の運転方法であって、前記複動式摩擦攪拌接合装置は、中心部に同心状に延在する円柱状の中心貫通孔を有する円柱状のショルダ部材と、前記ショルダ部材とともに接合ツールを構成し、前記ショルダ部材の中心貫通孔に当該ショルダ部材と同心状に嵌挿された円柱状のピン部材と、前記ピン部材を前記ショルダ部材に対して出没させる出没機構と、前記接合ツールを前記ピン部材の中心軸の周りに回転させる回転機構と、前記接合ツールを前記ピン部材の中心軸の延在方向に進退させる進退機構と、を備え、前記回転機構による前記接合ツールの回転と、前記出没機構による前記ショルダ部材に対する前記ピン部材の出没と、前記進退機構による前記接合ツールの進退とによって、互いに接触して配置された被接合物を摩擦攪拌接合する(A)と、前記ピン部材の外周面及び前記ショルダ部材の前記中心貫通孔の内周面の少なくとも一方を所定のタイミングで清掃する(E)と、含む。ここで、所定のタイミングは、1以上の特定のタイミング、不定期のタイミング、定期的なタイミングを含む。また、清掃をするタイミングとして、具体的には、例えば、定期的に、又は不定期にメンテナンスを実行するときに清掃を実行してもよく、1日の摩擦攪拌接合作業を終了した後に清掃を実行してもよい。
 また、本発明のさらなる他の態様(aspect)に係る複動式摩擦攪拌接合装置は、第1部材と第2部材を有する被接合物を摩擦熱で軟化させることにより接合する、複動式摩擦攪拌接合装置であって、前記複動式摩擦攪拌接合装置は、中心部に同心状に延在する円柱状の中心貫通孔を有する円柱状のショルダ部材と、前記ショルダ部材とともに接合ツールを構成し、前記ショルダ部材の中心貫通孔に当該ショルダ部材と同心状に嵌挿された円柱状のピン部材と、前記ピン部材を前記ショルダ部材に対して出没させる出没機構と、前記接合ツールを前記ピン部材の中心軸の周りに回転させる回転機構と、前記接合ツールを前記ピン部材の中心軸の延在方向に進退させる進退機構と、制御器と、を備え、前記制御器は、前記回転機構を制御することによる前記接合ツールの回転と、前記出没機構を制御することによる前記ショルダ部材に対する前記ピン部材の出没と、前記進退機構を制御することによる前記接合ツールの進退とによって、互いに接触して配置された被接合物を摩擦攪拌接合する(A)と、所定のタイミングで、警告、前記接合ツールの動作禁止、及び前記接合ツールの清掃の少なくとも1つを行う(E)と、を実行するよう構成されている。ここで、所定のタイミングは、1以上の特定のタイミング、不定期のタイミング、定期的なタイミングを含む。また、清掃をするタイミングとして、具体的には、例えば、定期的に、又は不定期にメンテナンスを実行するときに清掃を実行してもよく、1日の摩擦攪拌接合作業を終了した後に清掃を実行してもよい。
 また、上記第2の課題を解決するために、本発明に係る複動式摩擦攪拌接合装置の運転方法では、前記第1部材が、前記接合ツールと対向するように配置され、かつ、前記第2部材とは異なる種類の材料で構成されていて、前記(A)は、前記接合ツールを回転させながら、当該接合ツールが前記被接合物の被接合部を押圧するように、前記回転機構及び前記進退機構が動作する(A1)と、軟化した前記第2部材が、軟化した前記第1部材に突き刺さるように、前記接合ツールの先端部を予め設定されている所定の第1位置に到達するように、前記出没機構が動作する(A2)と、前記接合ツールを回転させた状態で前記被接合部から引き抜くように、前記出没機構、前記回転機構、及び前記進退機構が動作する(A3)と、を有する。
 これにより、異なる材料で構成されている複数の部材に対して、摩擦熱を利用して接合しても、接合強度を高めることができ得る。
 さらに、上記第2の課題を解決するために、本発明に係る複動式摩擦攪拌接合装置では、前記第1部材が、前記接合ツールと対向するように配置され、かつ、前記第2部材とは異なる種類の材料で構成されていて、前記(A)は、前記接合ツールを回転させながら、当該接合ツールが前記被接合物の被接合部を押圧するように、前記回転機構及び前記進退機構が動作する(A1)と、軟化した前記第2部材が、軟化した前記第1部材に突き刺さるように、前記接合ツールの先端部を予め設定されている所定の第1位置に到達するように、前記出没機構が動作する(A2)と、前記接合ツールを回転させた状態で前記被接合部から引き抜くように、前記出没機構、前記回転機構、及び前記進退機構が動作する(A3)と、を有する。
 これにより、異なる材料で構成されている複数の部材に対して、摩擦熱を利用して接合しても、接合強度を高めることができ得る。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施形態の詳細な説明から明らかにされる。
 本発明に係る複動式摩擦攪拌接合装置の運転方法及び複動式摩擦攪拌接合装置によれば、接合ツールの寿命を長くすることができ得る。
 また、本発明に係る複動式摩擦攪拌接合装置の運転方法及び複動式摩擦攪拌接合装置によれば、異なる材料で構成されている複数の部材に対して、摩擦熱を利用して接合しても、接合強度を高めることができ得る。
図1は、本実施形態1に係る複動式摩擦攪拌接合装置のハードウエアの構成を模式的に示す側面図である。 図2は、図1の複動式摩擦攪拌接合装置の制御系統の構成を示すブロック図である。 図3(a)~(f)は、図1の複動式摩擦攪拌接合装置の摩擦攪拌接合動作の一例を示す模式図である。 図4は、打点数に対するピン部材を出没駆動するモータの電流値の変化を示すグラフである。 図5Aは、ピン部材の外周面への被接合物の材料の凝着を示す写真である。 図5Bは、ショルダ部材の中心貫通孔の内周面への被接合物の材料の凝着を示す写真である。 図6は、図1の複動式摩擦攪拌接合装置の凝着パラメータに基づく警報及び接合ツールの停止制御を示すフローチャートである。 図7は、本実施形態2に係る複動式摩擦攪拌接合装置のハードウエアの構成を模式的に示す側面図である。 図8は、図7の複動式摩擦攪拌接合装置の制御系統の構成を示すブロック図である。 図9は、本実施形態3に係る複動式摩擦攪拌接合装置のハードウエアの構成を模式的に示す側面図である。 図10は、図9の複動式摩擦攪拌接合装置の制御系統の構成を示すブロック図である。 図11は、本実施形態7に係る複動式摩擦攪拌接合装置の概略構成を示す模式図である。 図12は、図11に示す複動式摩擦攪拌接合装置の制御構成を模式的に示すブロック図である。 図13は、本実施形態7に係る複動式摩擦攪拌接合装置の動作の一例を示すフローチャートである。 図14Aは、図11に示す複動式摩擦攪拌接合装置による摩擦攪拌接合の各工程の一例を模式的に示す工程図である。 図14Bは、図11に示す複動式摩擦攪拌接合装置による摩擦攪拌接合の各工程の一例を模式的に示す工程図である。 図15は、本実施形態7における変形例1の複動式摩擦攪拌接合装置の動作の一例を示すフローチャートである。 図16Aは、本変形例1の複動式摩擦攪拌接合装置による摩擦攪拌接合の各工程の一例を模式的に示す工程図である。 図16Bは、本変形例1の複動式摩擦攪拌接合装置による摩擦攪拌接合の各工程の一例を模式的に示す工程図である。 図17は、本実施形態8に係る複動式摩擦攪拌接合装置の概略構成を示すブロック図である。 図18は、本実施形態8に係る複動式摩擦攪拌接合装置の動作の一例を示すフローチャートである。 図19は、本実施形態9に係る複動式摩擦攪拌接合装置の概略構成を示すブロック図である。 図20は、本実施形態9に係る複動式摩擦攪拌接合装置の動作の一例を示すフローチャートである。 図21は、本実施形態10に係る複動式摩擦攪拌接合装置の動作の一例を示すフローチャートである。
 (本発明の契機となった知見)
 複動式摩擦攪拌接合では、仕上がり表面が平滑である。産業界には、意匠の観点から複動式摩擦攪拌接合の採用を要望する分野が存在するが、そのような分野では、打点のコストの低減が要求される。
 ところで、複動式摩擦攪拌接合では、ピン部材が破断することによってその寿命を終えていた。つまり、ピン部材が破断するまでの打点数が、実質的にピン部材の寿命であった。本発明者は、打点のコストを低減するためにピン部材の長寿命化を検討した。ピン部材は、ショルダ部材に対して先端を没入させるべく上昇させる過程で破断する。本発明者は、このピン部材の長寿命化を検討する過程で、ピン部材を上昇させる際のピン部材の駆動モータの電流が、打点数が増加するに連れて増大し、ある大きな絶対値に達した時にピン部材が破断することを発見した(図4参照)。本発明者は、このピン部材の駆動モータの電流の増大は、ピン部材の外周面及びショルダ部材の中心貫通孔の内周面への被接合物の材料(アルミ合金)の凝着が原因であろうと推測し、打点により駆動モータの電流が増大した接合ツールのピン部材の外周面及びショルダ部材の中心貫通孔の内周面に凝着したアルミニウムを除去した(清掃した)。その結果、駆動モータの電流が低下した。この接合ツールは、40000打点に達したが、ピン部材はまだ破断していない。この実験は継続中である。
 また、ピン部材の径が大きい接合ツールの場合には、ショルダ部材が破断することを発見した。さらに、接合ツールの破断の時期(寿命)が、被接合物の材料に依存することをも発見した。
 本発明は、これらの知見に基づいてなされたものである。これらの知見は後で、図4を用いて詳しく説明する。
 (本発明における特許文献1に記載の技術の位置づけ)
 一般に、FSWによりスポット接合を行う場合、スポット接合のコストを低減するために1回のスポット接合を可能な限り短い時間で行うことが要求される。従って、スポット接合を行う都度、接合ツールを清掃することは現実的でない。しかし、特許文献1は、接合ツールの清掃のタイミング(頻度)について全く言及していない。そもそも、特許文献1は、接合ツールの清掃が接合ツールの寿命に影響を及ぼすことについて全く言及していない(認識していない)。このような特許文献1の記載に従って、接合ツールを清掃しようとする場合、そのタイミングが遅すぎて、清掃する前に接合ツールが破断してしまう場合があり得る。従って、特許文献1の清掃方法によって、接合ツールの寿命を長くすることはできない。
 以下、本発明の実施形態を、添付図面を参照しつつ具体的に説明する。以下では、全ての図を通じて、同一又は相当する要素には同一の参照符号を付してその重複する説明を省略する。また、以下の図は本発明を説明するための図であるので、本発明に無関係の要素が省略される場合、簡略化される場合、誇張される場合、又は複数の図が互いに一致しない場合がある。
 (実施形態1)
 [ハードウエアの構成]
 図1は、本実施形態1に係る複動式摩擦攪拌接合装置のハードウエアの構成を模式的に示す側面図である。複動式摩擦攪拌接合装置に方向性は存在しないが、以下では、説明の便宜上、図1の上下方向を複動式摩擦攪拌接合装置の上下方向として説明する。
 図1を参照すると、本発明の実施形態1に係る複動式摩擦攪拌接合装置50Aは、中心部に同心状に延在する円柱状の中心貫通孔13を有する円柱状のショルダ部材12と、ショルダ部材12とともに接合ツール51を構成し、ショルダ部材12の中心貫通孔13に当該ショルダ部材12と同心状に嵌挿された円柱状のピン部材11と、ピン部材11をショルダ部材12に対して出没させる出没機構(ピン駆動部531)と、接合ツール51、及び出没機構(ピン駆動部531)をピン部材11の中心軸Xrの周りに一緒に回転させる回転機構(521,533)と、接合ツール51、出没機構(ピン駆動部531)、及び回転機構(521,533)をピン部材11の中心軸Xrの延在方向に一緒に進退させる進退機構(522,532)と、を備え、回転機構(521,533)による接合ツール51の回転と、出没機構(ピン駆動部531)によるショルダ部材12に対するピン部材11の出没と、進退機構(522,532)による接合ツール51の進退とによって、被接合物60を摩擦攪拌接合するよう構成されている。複動式摩擦攪拌接合装置50Aは、さらに、摩擦攪拌接合によって発生するピン部材11の外周面及びショルダ部材12の中心貫通孔13の内周面への被接合物60の材料の凝着の程度と相関する凝着パラメータのレベルに基づいて、警告及び接合ツール51の動作禁止、及び接合ツール51の清掃の少なくとも一方を行うよう構成されている。以下では、警告及び接合ツール51の停止(動作禁止の一態様)を行う形態が例示される。
 以下、複動式摩擦攪拌接合装置50Aの構成を具体的に説明する。図1を参照すると、複動式摩擦攪拌接合装置50Aは、ここでは、ロボットアームの先端に取り付けられるエンドエフェクタ、具体的には接合ガンとして構成されている。もちろん、複動式摩擦攪拌接合装置50Aは、接合ガン以外の形態に構成されてもよい。複動式摩擦攪拌接合装置50Aは、C字状のC型フレーム55を備える。C型フレーム55は、ロボットアームの先端に取り付けられる。C型フレーム55の上端部には、ショルダ駆動部532が設けられている。
 ショルダ駆動部532は、例えば、サーボモータ及び昇降機構で構成される。ショルダ駆動部532には、可動体522が昇降可能に連結されている。昇降機構として、ボールネジ、ラックピニオン等が例示される。
 可動体522は、ここでは円板状に形成されている。可動体522の外周部に、クランプ駆動部41が下方に延びるように設けられている。クランプ駆動部41は、例えば、コイル状の圧縮スプリングで構成されている。クランプ駆動部41の下端に、円筒状のクランプ部材54が下方に延びるように設けられている。クランプ部材54は、中心軸が所定の回転軸線Xrに一致するように設けられている。所定の回転軸線は、上下方向に延在している。従って、所定の回転軸線の延在方向は、可動体522の昇降移動の方向と同じである。また、可動体522の中央部に回転駆動部533が設けられている。回転駆動部533は、モータで構成される。回転駆動部533による回転駆動の回転軸線は所定の回転軸線Xrに一致している。回転駆動部533には回転体521が連結されている。回転体521は、ここでは、円板状に形成されている。回転体521の外周部に、ショルダ部材12が下方に延びるように設けられている。ショルダ部材12は、円柱状に形成され、中心部に同心状に延在する円柱状の中心貫通孔13が形成されている。中心貫通孔13は、上部が大径に形成され、残部が上部より小径に形成されている。ショルダ部材12は、クランプ部材54の内部空間に同心状に嵌挿されている。従って、ショルダ部材12の中心軸は、所定の回転軸線に一致している。可動体522と回転体521とが接合ツール固定部52を構成している。
 ショルダ部材12の中心貫通孔13の上部には、ピン駆動部531が設けられている。ピン駆動部531は、例えば、サーボモータ及び昇降機構で構成される。ピン駆動部531には、ピン部材11が昇降可能に連結されている。昇降機構として、ボールネジ、ラックピニオン等が例示される。
 ピン部材11は、円柱状に形成され、その上端部がピン駆動部531に連結されている。ピン部材11は、ショルダ部材12の中心貫通孔13に、ショルダ部材12と同心状に嵌挿されている。従って、ピン部材11の中心軸Xrは、所定の回転軸線に一致している。ピン部材11は、基準位置に位置する場合に、下端面11aがショルダ部材12の下端面12aと同じ高さに位置するように構成されている。従って、ピン駆動部531がピン部材11を基準位置から下降させると、ピン部材11がショルダ部材12から下方に突出し、ピン駆動部531がピン部材11を基準位置から上昇させると、ピン部材11がショルダ部材12の内部に没入する。従って、ピン駆動部531が、出没機構を構成する。
 ピン部材11及びショルダ部材12は、超硬合金、工具鋼、ハイス鋼、セラミックス等で構成される。ここでは、ピン部材11及びショルダ部材12は超硬合金で構成されている。また、ピン部材11の外周面及びショルダ部材12の中心貫通孔13の内周面には、表面被覆層が形成されている。表面被覆層の材料として、ダイヤモンド、水素フリーDLCが例示される。この表面被覆層は、被接合物の材料としてのアルミニウムに対するピン部材11及びショルダ部材12の親和性を低くするために設けられる。これらのピン部材11及びショルダ部材12が、接合ツール51を構成している。また、回転駆動部533が回転体521を回転させると、ショルダ部材12及びピン部材11が一緒に回転する。従って、回転駆動部533及び回転体521が接合ツール51の「回転機構」を構成している。
 クランプ部材54及び接合ツール51は、ピン部材11が基準位置に位置する場合、クランプ部材54の下端面54aがピン部材11の下端面11a及びショルダ部材12の下端面12aより所定の寸法だけ下方に位置するように構成されている。すなわち、クランプ部材54の下端面54aと、ピン部材11の下端面11a及びショルダ部材12の下端面12aとの間に段差が設けられている。
 C型フレーム55の下端部には、裏当て部材56が設けられている。裏当て部材56は、クランプ部材54及び接合ツール51の下端に対向するように設けられている。そして、裏当て部材56における支持面56aの上に被接合物60が配置される。
 従って、ショルダ駆動部532が可動体522を昇降させると、接合ツール51、「出没機構」(ピン駆動部531)、「回転機構」(533,521)、及びクランプ部材54が被接合物60に対して進退する。従って、ショルダ駆動部532及び可動体522が、接合ツール51の「進退機構」を構成している。
 ショルダ駆動部532により、接合ツール51を被接合物60に向けて進出(下降)させると、上述の段差により、クランプ部材54の下端面54aが先に被接合物60に当接し、その後で、ピン部材11の下端面11a及びショルダ部材12の下端面12aが被接合物60に当接する。これにより、クランプ駆動部41を構成する圧縮スプリングが上述の段差分だけ圧縮され、その弾発力によりクランプ部材54が被接合物60を加圧する。
 [制御系統の構成]
 図2は、図1の複動式摩擦攪拌接合装置の制御系統の構成を示すブロック図である。図2を参照すると、複動式摩擦攪拌接合装置50Aは、工具駆動部53と、警報部33と、制御部21と、記憶部31と、入力部32とを含む。
 まず、凝着パラメータについて説明する。凝着パラメータは、摩擦攪拌接合によって発生するピン部材11の外周面及びショルダ部材12の中心貫通孔13の内周面への被接合物60の材料の凝着の程度と相関するパラメータである。凝着パラメータとして、ピン部材11をショルダ部材12に対して出没するよう駆動するピン駆動部531のモータの電流値(以下、モータ電流値という)、摩擦攪拌接合の数(回数)である打点数、ピン部材11又はショルダ部材12に発生する応力が例示される。これらのパラメータの絶対値は、いずれも凝着の量が多くなる(レベルが高くなる)ことに対応して絶対値が大きくなる(レベルが高くなる)パラメータである。接合ツールの破断には、ピン部材11が破断する形態と、ショルダ部材12が破断する形態とがある。モータ電流値及び応力は、これら2つの形態の間で符号が反転する。それ故、凝着パラメータのレベルはその絶対値で特定される。以下では、凝着パラメータとして、ピン駆動部531のモータ電流値が用いられる形態が例示される。
 工具駆動部53は、ピン駆動部531、ショルダ駆動部532、及び回転駆動部533を含む。
 警報部33は、凝着パラメータが、接合ツール51の破断を警戒すべきレベルに到達したことを操作者に報知(警告)する機能を有する。警報部33は、例えば、ブザー、シグナルタワー、パトライト(登録商標)、スピーカ等で構成される。警報部33は、例えば、複動式摩擦攪拌接合装置50Aが使用される作業場の適所に設置される。
 入力部32は、ここでは、起動指令、停止指令、凝着パラメータの第1閾値及び第2閾値等を入力するために用いられる。入力部32は、例えば、タッチパネル、マウス、キーボード等の入力機器で構成される。入力部32は、例えば、複動式摩擦攪拌接合装置50Aが使用される作業場の適所に設置される。
 制御部21と記憶部31とは制御器として一体に構成される。制御部21は記憶部31記憶部に格納された所定の制御プログラムを読み出して実行することにより、工具駆動部53の動作を制御する。また、制御部21は、入力部32から入力された凝着パラメータの第1閾値及び第2閾値を記憶部31に記憶させる。制御部21及び記憶部31を備える制御器は、集中制御を行う単独の制御器で構成されてもよく、互いに協働して分散制御を行う複数の制御器で構成されてもよい。制御器(制御部21及び記憶部31)は、例えばマイクロコントローラ、MPU、FPGA(Field Programmable Gate Array)、PLC(Programmable Logic Controller)等によって構成される。制御部21及び記憶部31は、それぞれ、これらの演算器(プロセッサ)の演算部及びメモリで構成される。
 制御器(制御部21及び記憶部31)は、例えば、複動式摩擦攪拌接合装置50Aが使用される作業場の適所に設置される。
 制御部21は、具体的には、ピン駆動部531及びショルダ駆動部532を構成するサーボモータを位置制御する。また制御部21は、回転駆動部533を構成するモータの回転を制御する。また、制御部21は、凝着パラメータ(ピン駆動部531ピンのモータ電流値(絶対値))を監視し、凝着パラメータが第1閾値以上になると警報部33に警報を発せさせ(出させ)、凝着パラメータが第2閾値以上になると複動式撹拌摩擦攪拌接合装置50Aを停止させる。
 [動作]
 次に、以上のように構成された複動式摩擦攪拌接合装置50Aの動作を、摩擦攪拌接合動作と凝着パラメータに基づく警報及び接合ツールの停止制御とに分けて説明する。なお、以下の動作は、制御部21が、記憶部31に格納されているプログラムを読み出すことにより実行される。
 <摩擦攪拌接合動作>
 まず、摩擦攪拌接合動作を簡単に説明する。図3(a)~(f)は、図1の複動式摩擦攪拌接合装置の摩擦攪拌接合動作の一例を示す模式図である。以下では、被接合物60としての一対の金属板61,62を、互いに接触するように重ねて点接合にて連結する形態を例示する。また、図3(a)~(f)においては、矢印pは、接合ツール51の移動方向(図1における破線矢印P1~P2の方向に対応)を示し、黒色の矢印は、接合ツール(ピン部材11およびショルダ部材12)の回転方向を示し、ブロック矢印は、金属板61,62に力が加えられる方向を示す。また、裏当て部材56からも金属板61,62に対して力が加えられているが、説明の便宜上、図3(a)~(f)には図示していない。さらに、ショルダ部材12には、ピン部材11およびクランプ部材54との区別を明確とするために、散点状の模様を付している。以下の動作は、制御部21が工具駆動部53を制御することによって行われるが、以下では、制御部21及び工具駆動部53に言及しない。
 図3(a)~(f)に示す一連の工程では、ピン部材11をショルダ部材12よりも先に金属板61,62に圧入させている。
 具体的には、図3(a)に示すように、接合ツール51を金属板61,62に接近させ(図中矢印p)、クランプ部材54の下端面54a(図3(a)~(f)には参照符号を示さず)を上側の金属板61の表面60cに当接させるとともに、裏当て部材56を下側の金属板62の裏面60dに当接させる。これにより、クランプ部材54と裏当て部材56とで金属板61,62が挟み込まれ、クランプ部材54による押圧(図中ブロック矢印F)によりクランプ力が発生する。
 次に図3(b)に示すように、接合ツール51が金属板61,62に近接し、ピン部材11の下端面11a(図3(a)~(f)には参照符号を示さず)およびショルダ部材12の下端面12a(図3(a)~(f)には参照符号を示さず)が金属板61の表面60cに当接する。この状態では、圧縮スプリングで構成されるクランプ駆動部41の弾発力によってクランプ部材54のクランプ力が生じる。そして、ピン部材11およびショルダ部材12を金属板61の表面60cに当接させて回転させる(図中黒色矢印)。
 この状態では、ピン部材11もショルダ部材12も進退移動しないので、金属板61の表面60cを「予備加熱」することになる。これにより、金属板61の当接領域における金属材料が摩擦により発熱することで軟化し、金属板61の表面60c近傍に塑性流動部60aが生じる。
 次に、図3(c)に示すように、ショルダ駆動部532によりショルダ部材12をピン部材11から相対的に突出させることで、当該ショルダ部材12を金属板61の表面60cからさらに内部に進入(圧入)させる。これにより、塑性流動部60aは上側の金属板61から下側の金属板62にまで及び、塑性流動部60aの軟化した金属材料はショルダ部材12により押し退けられ、ショルダ部材12の直下からピン部材11の直下に流動するので、ピン部材11は後退し、ショルダ部材12から見て浮き上がる。
 次に、図3(d)に示すように、突出したショルダ部材12を徐々に後退させる(引き込ませる)とともに、ピン部材11を金属板61に進入(圧入)させる。
 次に、図3(e)に示すように、ピン部材11を徐々に引き込ませる。これにより、ショルダ部材12またはピン部材11の圧入により生じた凹部が埋め戻されていく。最終的に、ピン部材11の下端面11aおよびショルダ部材12の下端面12aを、互いに段差がほとんど生じない程度に合わせる(面一とする)。
 最後に図3(f)に示すように、接合ツール51および裏当て部材56を金属板61,62から離し、一連の摩擦攪拌点接合が終了する。このとき、接合ツール51の当接による回転(及び押圧)は金属板61,62に加えられなくなるので、金属板61,62の双方に及ぶ塑性流動部60aにおいては、塑性流動が停止し、接合部60bとなる。これにより、一対の金属板61,62は接合部60bによって連結される。
 <警報及び接合ツールの停止制御>
 次に、本発明を特徴付ける警報及び接合ツールの停止制御を説明する。
 まず、この制御の基礎となる接合ツール51の打点数に対するモータ電流値の変化特性を説明する。「モータ電流値」は、既述のように、ピン部材11を出没駆動するピン駆動部531を構成するモータの電流値である。
 図4は、打点数に対するピン部材を出没駆動するモータの電流値の変化を示すグラフである。図4の縦軸は、ピン駆動部531を構成するモータの打点時における最大電流値(以下、ピン軸最大電流値と呼ぶ)を示す。この「打点時における最大電流値」は、上述の図3(c)の工程におけるピン駆動部531を構成するモータの電流値である。図4において、菱形のプロットを直線で繋いで成る曲線(以下、第1曲線という)は、接合ツール51を清掃しない場合の、打点数-ピン軸最大電流値の変化を示し、三角形のプロット直線で繋いで成る曲線(以下、第2曲線という)は、接合ツール51を間欠的に清掃した場合の、打点数-ピン軸最大電流値の変化を示す。第1曲線におけるA点及びB点は、それぞれ、接合ツール51の凝着の程度を観察した点及び接合ツール51のピン部材11が破断(せん断)した点である。第2曲線において複数(6つ)の矢印が指す点は、接合ツール51を清掃した点である。
 図4に示すデータを得るための実験では、5000系のアルミ合金から成る被接合物60が用いられた。
 図4を参照すると、接合ツール51を清掃しない場合、第1曲線で示されるように、ピン軸最大電流値が打点数に略比例して増大し、略5000の打点数で破断した。ピン部材11の破断は、図3(c)に示す工程において、ピン部材11を上昇させる(ショルダ部材12に引き込ませる(没入させる))際に発生した。以下、ピン部材11が、打点数の増加に伴って破断により寿命を終えることをピン部材11の破断寿命と呼ぶ。なお、後述するようにショルダ部材12も打点数の増加に伴って破断するので、これをショルダ部材12の破断寿命と呼び、接合ツール51の打点数の増加に伴う破断を接合ツール51の破断寿命と呼ぶ。
 一方、接合ツール51を清掃した場合、第2曲線で示されるように、接合ツール51を清掃する都度、ピン軸最大電流値が低下し、17000の打点数でも接合ツール51が破断しておらず、実験を継続中である。最新のデータでは、40000の打点数で接合ツール51が破断していない。
 図5Aは、第1曲線のA点におけるピン部材11の外周面への被接合物60の材料の凝着を示す写真である。図5Bは、第2曲線のA点におけるショルダ部材12の中心貫通孔13の内周面への被接合物60の材料の凝着を示す写真である。図5A及び図5Bを参照すると、ピン部材11の外周面及びショルダ部材12の中心貫通孔13の内周面には、被接合物60の材料であるアルミ合金が凝着していることが判る。
 以上の事実から、以下のメカニズムが進行することが推察される。摩擦攪拌接合の際、ピン部材11の外周面とショルダ部材12の中心貫通孔13の内周面との間に被接合物60の材料が進入し、それがピン部材11の外周面及びショルダ部材12の中心貫通孔13の内周面にそれぞれ凝着する。すると、摩擦攪拌接合時におけるピン部材11の応力(この場合は引っ張り応力)が増大する。この応力の増加は、ピン軸最大電流値の増加となって現れる。接合ツール51への被接合物60の材料の凝着が打点数の増加に連れて増大し、それに応じて摩擦攪拌接合時におけるピン部材11の応力が増大する。そして、その応力がピン部材11の許容応力を超えるとピン部材11が破断する。
 なお、ピン部材11の破断時における応力(引っ張り応力)は、ピン部材11の材料のせん断性能を超えているので、ピン部材11の破断は、ピン部材の劣化に起因するものではない。
 また、ピン部材11の径が大きい場合、図3(d)に示す工程でショルダ部材12が破断することが確認された。
 さらに、被接合物60の材料が、5000系のアルミ合金より塑性流動性が良い6000系のアルミ合金の場合、接合ツール51への凝着量が多いことが確認された。このことから、打点数の増加による接合ツール51の破断し易さは、被接合物60の材料に依存すると推察される。
 以下の警報及び接合ツールの停止制御は、以上の知見に基づいて規定されたものである。
 図6は、図1に示す複動式摩擦攪拌接合装置の凝着パラメータに基づく警報及び接合ツールの停止制御を示すフローチャートである。
 図2及び図6を参照すると、警報及び接合ツール51の停止制御(以下本制御と呼ぶ)は、制御部21が、凝着パラメータ(ここでは、ピン駆動部531のモータ電流値)に基づいて、工具駆動部53及び警報部33を制御することによって行われる。
 制御部21は、摩擦攪拌接合が開始されると本制御を開始し、まず、停止指令を受けた否か判定する(ステップS1)。停止指令を受けた場合(ステップS1でYes)は、ステップS6に進み、複動式摩擦攪拌接合装置50Aを停止し、本制御を終了する。停止指令を受けていない場合(ステップS1でNo)、制御部21は、凝着パラメータを取得する(ステップS2)。
 次に、制御部21は、凝着パラメータが第1閾値以上か否か判定する(ステップS3)。第1閾値は、ピン部材11及びショルダ部材12の破断寿命に対応する凝着パラメータの絶対値(レベル)より小さい絶対値(低いレベル)に設定される。第1閾値は、実験、シミュレーション、計算等によって決定される。ここでは、例えば、ピン部材11が破断するピン軸最大電流値が6Aであり、第1閾値が4Aである。
 凝着パラメータが第1閾値以上でない場合(ステップS3でNo)は、ステップS1に戻る。これにより、制御部21は、凝着パラメータを監視する。
 凝着パラメータが第1閾値以上である場合(ステップS3でYes)、制御部21は、凝着パラメータが第2閾値以上か否か判定する(ステップS4)。第2閾値は、ピン部材11及びショルダ部材12の破断寿命に対応する凝着パラメータの絶対値より小さく且つ第1閾値より大きい絶対値に設定される。第2閾値は、実験、シミュレーション、計算等によって決定される。ここでは、例えば、第2閾値は5Aである。
 凝着パラメータが第2閾値以上でない場合(ステップS2でNo)は、制御部21は警報を発せさせ(ステップS5)、ステップS1に戻る。この警報を受けて、操作者は複動式摩擦攪拌接合装置50Aの入力部32から停止指令を入力する。すると、制御部21は、複動式摩擦攪拌接合装置50Aを停止する(ステップS1でYes、ステップS6)。これにより、本制御が終了する。その後、操作者は、接合ツール51を清掃する。これにより、接合ツール51の破断が防止され、接合ツール51の寿命が長くなる。
 一方、凝着パラメータが第2閾値以上である場合(ステップS2でYes)、制御部21は、複動式摩擦攪拌接合装置50Aを停止し、それにより接合ツール51が停止される(ステップS6)。これにより、本制御が終了する。その後、操作者は、接合ツール51を清掃する。これにより、接合ツール51の破断が防止され、接合ツール51の寿命が長くなる。
 なお、本実施形態1に係る複動式摩擦攪拌接合装置50Aでは、操作者によって、接合ツール51の清掃を行う形態を採用したが、これに限定されない。例えば、制御部21が、工具駆動部53を駆動させて、ショルダ部材12に対して、ピン部材11を出没させることにより、接合ツール51の清掃を行う形態を採用してもよい。この場合、制御部21は、上記特許文献1に開示されている接合ツールの清掃方法を実行してもよい。
 (実施形態2)
 図7は、本実施形態2に係る複動式摩擦攪拌接合装置のハードウエアの構成を模式的に示す側面図である。図8は、図7の複動式摩擦攪拌接合装置の制御系統の構成を示すブロック図である。本実施形態2は、凝着パラメータが打点数(摩擦攪拌接合する回数)である点が実施形態1と相違し、その他の構成は実施形態1同様である。以下、この相違点を説明する。
 図7及び図8を参照すると、実施形態2の複動式摩擦攪拌接合装置50Bでは、ショルダ駆動部532のサーボモータ(図示せず)がロータリエンコーダ80を備えていて、その出力信号が制御部21に入力される。ショルダ駆動部532のモータは、1回の摩擦攪拌接合について、接合ツール51を1回進退(下降及び上昇)させるので、制御部21は、このロータリエンコーダ80の出力に基づいて打点数(摩擦攪拌接合の回数)をカウントする。このようにして、制御部21は、打点数を凝着パラメータとして監視し、実施形態1と同様に警報の制御を行う。但し、本実施形態2では、凝着パラメータのレベル(打点数)が第2閾値を超えた時点では接合ツール51(複動式摩擦攪拌接合装置50B)が停止しているので、凝着パラメータのレベル(打点数)が第2閾値を超えると、複動式摩擦攪拌接合装置50Bが起動されない。これにより、接合ツール51の動作が禁止される。
 この実施形態2によっても実施形態1と同様の効果が得られる。
 (実施形態3)
 図9は、本実施形態3に係る複動式摩擦攪拌接合装置のハードウエアの構成を模式的に示す側面図である。図10は、図9の複動式摩擦攪拌接合装置の制御系統の構成を示すブロック図である。本実施形態3は、凝着パラメータがピン部材11に発生する応力である点が実施形態1と相違し、その他の構成は実施形態1同様である。以下、この相違点を説明する。
 図9及び図10を参照すると、実施形態3の複動式摩擦攪拌接合装置50Cでは、ピン部材11に応力センサ81が取り付けられていて、その出力信号が制御部21に入力される。応力センサ81として、歪ゲージが例示される。なお、応力センサ81の出力信号は、例えば、回転体521上を信号線で伝送され、回転体521と可動体522との間は、回転駆動部533のモータの回転軸に設けられたスリップリングと可動体522に設けられたブラシとによって伝送され、ブラシと制御部21との間は信号線で伝送される。制御部21は、この応力センサ81の出力に基づいて、ピン部材11に発生する応力を検知する。このようにして、制御部21は、ピン部材11に発生する応力を凝着パラメータとして監視し、実施形態1と同様に警報及び接合ツールの停止制御を行う。なお、ピン部材11に駆動力を伝達する部材に応力センサを設けることにより、間接的に、ピン部材11に発生する応力を検出してもよい。また、ピン部材11に代えてショルダ部材12に応力センサ81を取り付けてもよい。
 この実施形態3によっても実施形態1と同様の効果が得られる。
 (実施形態4)
 本実施形態4では、制御部21が、所定期間当たりの凝着パラメータの増加量が所定値以上になると警報及び接合ツールの動作禁止を行う点が実施形態1と相違する。これ以外の構成は実施形態1と同様である。
 この実施形態3によれば、凝着パラメータが許容限度を上回る増加傾向を示すと、警報及び接合ツール5の停止が行われるので、所定値を適宜設定することにより、被接合物60の材料が、摩擦攪拌接合の回数が増加するに連れて急速に接合ツール51への凝着量が増加するようなものである場合に、好適に接合ツール51の破断を抑制することができる。
 (実施形態5)
 本実施形態5では、複動式摩擦攪拌接合装置が清掃機構を備えており、所定のタイミングで、清掃機構によって自動的に接合ツール51の清掃が行われる。所定のタイミングは、1以上の特定のタイミング、不定期のタイミング、定期的なタイミングを含む。
 この実施形態5によれば、接合ツール51の寿命を長くすることができる。
 (実施形態6)
 本実施形態6では、操作者により、又は、複動式摩擦攪拌接合装置により、所定のタイミングで、警告、前記接合ツールの動作禁止、及び前記接合ツールの清掃の少なくとも1つが行われる。所定のタイミングは、1以上の特定のタイミング、不定期のタイミング、定期的なタイミングを含む。
 この実施形態6によれば、接合ツール51の寿命を長くすることができる。
 (実施形態7)
 本実施形態7に係る複動式摩擦攪拌接合装置は、実施の形態1~6に係る複動式摩擦攪拌接合装置において、第1部材は、接合ツールと対向するように配置され、かつ、第2部材とは異なる種類の材料で構成されていて、制御器は、(A)において、接合ツールを回転させながら、当該接合ツールが被接合物の被接合部を押圧するように、回転機構及び進退機構が動作する(A1)と、軟化した第2部材が、軟化した第1部材に突き刺さるように、接合ツールの先端部を予め設定されている所定の第1位置に到達するように、出没機構が動作する(A2)と、接合ツールを回転させた状態で被接合部から引き抜くように、出没機構、回転機構、及び進退機構が動作する(A3)と、を実行するように構成されている。
 また、本実施形態7に係る複動式摩擦攪拌接合装置では、制御器は、(A2)において、ピン部材をショルダ部材の内方に没入させて、ショルダ部材の先端部が第1位置に到達するように、出没機構が動作する(A21)と、(A21)の後、ショルダ部材の先端部が第1位置から後退し、かつ、ピン部材をショルダ部材の先端部から突出するように、出没機構が動作する(A22)と、を実行するように構成されていてもよい。
 また、本実施形態7に係る複動式摩擦攪拌接合装置では、第1部材は、第2部材に対して、軟化温度が低い材料で構成されていてもよい。
 さらに、本実施形態7に係る複動式摩擦攪拌接合装置では、第1部材は、アルミニウム又は熱可塑性プラスチック、及び繊維強化プラスチックのうち、少なくとも1つの材料で構成されていて、第2部材は鋼で構成されていてもよい。
 以下、本実施形態7に係る複動式摩擦攪拌接合装置の一例について、図11~図14Bを参照しながら説明する。
 [複動式摩擦攪拌接合装置の構成]
 図11は、本実施形態7に係る複動式摩擦攪拌接合装置の概略構成を示す模式図である。なお、図11においては、図における上下方向を複動式摩擦攪拌接合装置における上下方向として表している。
 図11に示すように、本実施形態7に係る複動式摩擦攪拌接合装置50は、ピン部材11及びショルダ部材12を有する接合ツール51、接合ツール固定部52、工具駆動部53、クランプ部材54、C型フレーム55、裏当て部材56、及び制御器100を備えている。
 ピン部材11及びショルダ部材12は、接合ツール固定部52により支持されており、工具駆動部53によって、上下方向に進退駆動される。ピン部材11、ショルダ部材12、接合ツール固定部52、工具駆動部53及びクランプ部材54は、C型フレーム55の上部に設けられている。また、C型フレーム55の下部には、裏当て部材56が設けられている。ピン部材11及びショルダ部材12と、裏当て部材56と、は互いに対向する位置でC型フレーム55に取り付けられている。なお、ピン部材11及びショルダ部材12と、裏当て部材56と、の間には、被接合物60が配置される。
 接合ツール固定部52は、回転体521及び可動体522から構成されており、工具駆動部53は、ピン駆動部531、ショルダ駆動部532、及びクランプ駆動部41から構成されている。また、クランプ部材54は、クランプ駆動部41を介して可動体522に固定されている。なお、クランプ駆動部41は、スプリングにより構成されている。
 ピン部材11は、略円筒形又は略円柱形に形成されていて、図11には、詳細に図示されないが、回転体521により支持されている。また、ピン部材11は、回転駆動部533により、ピン部材11の軸心(中心軸)に一致する軸線Xr周りに回転するように構成されている。
 さらに、ピン部材11は、ピン駆動部531により、矢印P1方向、すなわち軸線Xr方向(図11では上下方向)に沿って、ショルダ部材12に対して相対的に進退移動可能に構成されている。すなわち、ピン駆動部531が、ピン部材11をショルダ部材12に対して出没させる出没機構を構成する。なお、ピン駆動部531としては、例えば、直動アクチュエータで構成されていてもよい。直動アクチュエータとしては、サーボモータとラックアンドピニオン、又はサーボモータとボールネジで構成されていてもよい。
 ショルダ部材12は、中空を有する略円筒状に形成されていて、回転体521により支持されている。ショルダ部材12の中空内には、ピン部材11が内挿されている。換言すると、ショルダ部材12は、ピン部材11の外周面を囲むように配置されている。また、ショルダ部材12は、回転駆動部533により、ピン部材11と同一の軸線Xr周りに回転するように構成されている。さらに、ショルダ部材12は、ショルダ駆動部532により、矢印P2方向、すなわち軸線Xr方向に沿って進退移動可能に構成されている。
 なお、ショルダ駆動部532としては、例えば、直動アクチュエータで構成されていてもよい。直動アクチュエータとしては、サーボモータとラックアンドピニオン、又はサーボモータとボールネジで構成されていてもよい。
 このように、ピン部材11及びショルダ部材12は、本実施の形態ではいずれも同一の回転体521によって支持され、いずれも回転駆動部533により軸線Xr周りに一体的に回転する。このため、回転駆動部533及び回転体521が、接合ツール51をピン部材11の中心軸の回りに回転させる回転機構を構成する。
 また、回転体521は、回転駆動部533を介して、可動体522に支持されている。これにより、ショルダ駆動部532が駆動すると、ショルダ部材12と共に、ピン部材11及び可動体522が進退する。このため、ショルダ駆動部532及び可動体522が、接合ツール51をピン部材11の中心軸の延在方向に進退させる進退機構を構成する。
 クランプ部材54は、ショルダ部材12と同様に、中空を有する円筒状に形成されていて、その軸心が軸線Xrと一致するように設けられている。クランプ部材54の中空内には、ショルダ部材12が内挿されている。
 すなわち、ピン部材11の外周面を囲むように、略円筒状のショルダ部材12が配置されていて、ショルダ部材12の外周面を囲むように略円筒状のクランプ部材54が配置されている。換言すれば、クランプ部材54、ショルダ部材12及びピン部材11が、それぞれ同軸芯状の入れ子構造となっている。
 また、クランプ部材54は、被接合物60を一方の面(表面)から押圧するように構成されている。クランプ部材54は、上述したように、本実施の形態1においては、クランプ駆動部41を介して可動体522に支持されている。クランプ駆動部41は、クランプ部材54を裏当て部材56側に付勢するように構成されている。そして、クランプ部材54(クランプ駆動部41及び可動体522を含む)は、ショルダ駆動部532によって、矢印P3方向(矢印P1及びP2と同方向)に進退可能に構成されている。
 なお、クランプ駆動部41は、本実施の形態1においては、スプリングで構成したが、これに限定されるものではない。クランプ駆動部41は、クランプ部材54に付勢を与えたり加圧力を与えたりする構成であればよく、例えば、ガス圧、油圧、サーボモータ等を用いた機構も好適に用いることができる。
 ピン部材11、ショルダ部材12、及びクランプ部材54は、それぞれ下端面(先端面)11a、下端面(先端面)12a、及び下端面(先端面)54aを備えている。また、ピン部材11、ショルダ部材12、及びクランプ部材54は、工具駆動部53により進退移動することで、下端面11a、下端面12a、及び下端面54aは、それぞれ、被接合物60の表面に当接する。
 裏当て部材56は、本実施形態7においては、平板状の被接合物60の裏面を当接するように平坦な面(支持面56a)により、支持するように構成されている。裏当て部材56は、摩擦攪拌接合を実施できるように被接合物60を適切に支持することができるものであれば、その構成は特に限定されない。裏当て部材56は、例えば、複数の種類の形状を有する裏当て部材56が別途準備され、被接合物60の種類に応じて、C型フレーム55から外して交換できるように構成されてもよい。
 なお、本実施形態7におけるピン部材11、ショルダ部材12、接合ツール固定部52、工具駆動部53、クランプ部材54、C型フレーム55、及び裏当て部材56の具体的な構成は、前述した構成に限定されず、広く摩擦攪拌接合の分野で公知の構成を好適に用いることができる。例えば、工具駆動部53を構成するピン駆動部531及びショルダ駆動部532は、本実施の形態では、いずれも摩擦攪拌接合の分野で公知のモータ及びギア機構等から構成されているが、これに限定されない。
 また、本実施形態7においては、クランプ部材54を備える構成を採用したが、これに限定されず、クランプ部材54を備えていない構成を採用してもよい。この場合、例えば、クランプ部材54は、必要に応じてC型フレーム55から着脱可能に構成されていてもよい。
 さらに、本実施形態7に係る複動式摩擦攪拌接合装置50は、摩擦攪拌接合用ロボット装置(図示せず)に配設される形態を採用している。具体的には、C型フレーム55が、ロボットのアームの先端に取り付けられている。
 なお、複動式摩擦攪拌接合装置50(C型フレーム55を含む)は、摩擦攪拌接合用ロボット装置に適用される場合に限定されるものではなく、例えば、NC工作機械、大型のCフレーム、及びオートリベッター等の公知の加工用機器にも好適に適用することができる。
 また、本実施の形態1に係る複動式摩擦攪拌接合装置50は、二対以上のロボットが、複動式摩擦攪拌接合装置50における裏当て部材56以外の部分と、裏当て部材56と、を正対させるように構成されていてもよい。さらに、複動式摩擦攪拌接合装置50は、被接合物60に対して安定して摩擦攪拌接合を行うことが可能であれば、被接合物60を手持ち型にする形態を採用してもよく、ロボットを被接合物60のポジショナーとして用いる形態を採用してもよい。
 [複動式摩擦攪拌接合装置の制御構成]
 次に、本実施形態7に係る複動式摩擦攪拌接合装置50の制御構成について、図12を参照して具体的に説明する。
 図12は、図11に示す複動式摩擦攪拌接合装置の制御構成を模式的に示すブロック図である。
 図12に示すように、複動式摩擦攪拌接合装置50は、入力部32及び制御器100を備えている。制御器100は、CPU等の制御部(演算処理部)21とROM、RAM等の記憶部31を有している。
 入力部32は、制御器100に対して、摩擦攪拌接合の制御に関する各種パラメータ、あるいはその他のデータ等を入力可能とするものであり、キーボード、タッチパネル、ボタンスイッチ群等の公知の入力装置で構成されている。本実施形態7では、少なくとも、被接合物60の接合条件、例えば、被接合物60の厚み、材質等のデータが入力部32により入力可能となっている。
 記憶部31は、各種データを読み出し可能に記憶するものであり、記憶部31としては、公知のメモリ、ハードディスク等の記憶装置等で構成される。記憶部31は、単一である必要はなく、複数の記憶装置(例えば、ランダムアクセスメモリ及びハードディスクドライブ)として構成されてもよい。制御部21等がマイクロコンピュータで構成されている場合には、記憶部31の少なくとも一部がマイクロコンピュータの内部メモリとして構成されてもよいし、独立したメモリとして構成されてもよい。
 なお、記憶部31には、データが記憶され、制御部21以外からデータの読み出しが可能となっていてもよいし、制御部21等からデータの書き込みが可能になっていてもよいことはいうまでもない。
 制御部21は、複動式摩擦攪拌接合装置50を構成する各部材(各機器)を制御するように構成されている。具体的には、制御部21は、記憶部31に格納された所定の制御プログラムを読み出し、これを実行することにより、工具駆動部53を構成するピン駆動部531、ショルダ駆動部532、及び回転駆動部533を制御する。
 これにより、ピン部材11及びショルダ部材12の進出移動又は後退移動の切り替え、進退移動時のピン部材11及びショルダ部材12における、先端位置の制御、移動速度、及び移動方向等を制御することができる。また、ピン部材11、ショルダ部材12及びクランプ部材54の被接合物60を押圧する押圧力を制御することができる。さらに、ピン部材11及びショルダ部材12の回転数を制御することができる。
 なお、制御器100は、集中制御する単独の制御器100によって構成されていてもよいし、互いに協働して分散制御する複数の制御器100によって構成されていてもよい。また、制御器100は、マイクロコンピュータで構成されていてもよく、MPU、PLC(Programmable Logic Controller)、論理回路等によって構成されていてもよい。
 [複動式摩擦攪拌接合装置の動作及びその作用効果]
 次に、本実施形態7に係る複動式摩擦攪拌接合装置の動作及びその作用効果について、図11~図14Bを参照しながら説明する。なお、以下の動作は、制御器100の制御部21が、記憶部31に格納されているプログラムを読み出すことにより実行される。
 図13は、本実施形態7に係る複動式摩擦攪拌接合装置の動作の一例を示すフローチャートである。図14A及び図14Bは、図11に示す複動式摩擦攪拌接合装置による摩擦攪拌接合の各工程の一例を模式的に示す工程図である。
 なお、図14A、及び図14Bにおいては、被接合物60として、2枚の板状の第1部材61A及び第2部材62Aを用い、これらを重ねて点接合にて連結する場合を例に挙げている。第1部材61Aは、第2部材62Aに対して、軟化温度が低い材料で構成されていてもよい。
 第1部材61Aとしては、例えば、金属材料(例えば、アルミニウム)、熱可塑性プラスチック(例えば、ポリアミド)、及び繊維強化プラスチック(例えば、炭素繊維強化プラスチック)のうち、少なくとも1つの材料を用いてもよく、第2部材62Aは、第1部材61Aとは異なる金属材料(例えば、鋼又はアルミニウム)を用いてもよい。
 また、本実施形態7においては、被接合物Wを板状の第1部材61Aと板状の第2部材62Aで構成されている形態を採用したが、これに限定されず、被接合物W(第1部材61A及び第2部材62A)の形状は任意であり、例えば、直方体状であってもよく、円弧状に形成されていてもよい。
 また、図14A及び図14Bにおいては、複動式摩擦攪拌接合装置の一部を省略し、矢印rは、ピン部材11及びショルダ部材12の回転方向を示し、ブロック矢印Fは、第1部材61A及び第2部材62Aに加えられる力の方向を示す。
 さらに、裏当て部材56からも第1部材61A及び第2部材62Aに対して力が加えられているが、説明の便宜上、図14A及び図14Bには図示していない。ショルダ部材12には、ピン部材11及びクランプ部材54との区別を明確とするために、網掛けのハッチングを施している。
 まず、作業者(操作者)が、裏当て部材56の支持面56aに被接合物Wを載置する。ついで、作業者が入力部32を操作して、制御器100に被接合物Wの接合実行を入力する。なお、ロボットが、裏当て部材56の支持面56aに被接合物Wを載置してもよい。
 すると、図13に示すように、制御器100は、回転駆動部533を駆動させて、ピン部材11及びショルダ部材12を予め設定されている所定の回転数(例えば、200~3000rpm)で回転させる(ステップS101;図14Aの工程(1)参照)。ついで、制御器100は、ショルダ駆動部532を駆動させて、ピン部材11及びショルダ部材12を回転させた状態で、ピン部材11、ショルダ部材12、及びクランプ部材54を被接合物60に接近させ、ピン部材11の下端面11a、ショルダ部材12の下端面12a、及びクランプ部材54の下端面54a(図14A及び図14Bには図示せず)を被接合物60の表面60cに当接させる(ステップS102;図14Aの工程(2)参照)。
 このとき、制御器100は、ピン部材11、ショルダ部材12、及びクランプ部材54が予め設定された所定の押圧力(例えば、3kN~10kNの範囲に含まれる所定値)で被接合物60を押圧するように、ショルダ駆動部532を制御する。
 これにより、クランプ部材54と裏当て部材56とで第1部材61A及び第2部材62Aが挟み込まれ、クランプ駆動部41の収縮により、クランプ部材54が被接合物60の表面60c側に付勢され、クランプ力が発生する。
 また、この状態では、ピン部材11及びショルダ部材12共に進退移動しないので、被接合物60の表面60cを「予備加熱」することになる。これにより、第1部材61Aの当接領域における構成材料が摩擦により発熱することで軟化し、被接合物60の表面60c近傍に第1部材61Aの塑性流動部61Bが生じる。
 次に、制御器100は、ピン部材11の下端面11aがショルダ部材12の下端面12aに対して没入するように、ピン駆動部531を駆動する(ステップS103)。このとき、制御器100は、ショルダ部材12の先端部が予め設定されている所定の第1位置まで到達するように、ピン駆動部531を制御する。なお、ショルダ部材12の先端部の位置情報は、図示されない位置検出器により検出されて、制御器100に出力される。
 ここで、第1位置とは、第2部材62Aの第1部材61Aと当接する面を0%とし、第2部材62Aの裏当て部材56の支持面56aと当接する面を100%とした場合に、0%より大きく、かつ、100%未満の間で任意に設定される位置をいう。なお、接合強度を向上させる観点から、第1位置は、第2部材62Aの支持面56aと当接する面に近い方がよく、25%以上であってもよく、50%以上であってもよく、75%以上であってもよく、80%以上であってもよく、90%以上であってもよく、95%以上であってもよい。
 これにより、ショルダ部材12の先端部が被接合物60の表面60cから第2部材62Aの内部に進入(圧入)し(図14Aの工程(3)参照)、第2部材62Aにも、塑性流動部62Bが生じる。このとき、ショルダ部材12の先端部により、押し出された第2部材62Aの軟化した部分が、第1部材61Aの軟化した部分に入り込む(突き刺さる)。
 次に、制御器100は、ピン部材11の下端面11aがショルダ部材12の下端面12aに対して突出するように、ピン駆動部531を駆動する(ステップS104)。このとき、制御器100は、ピン部材11の先端部が予め設定されている所定の第2位置に到達するように、ピン駆動部531を制御する。ここで、第2位置は、予め実験等により設定することができ、塑性流動部61Bに入り込んだ塑性流動部62Bよりも上方の位置となるように、適宜設定される。
 これにより、ピン部材11が徐々に第1部材61Aに進入(圧入)し、ショルダ部材12が第1部材61Aから後退する(図14Bの工程(4)参照)。このとき、塑性流動部61Bの軟化した部分は、ピン部材11の直下からショルダ部材12の直下に流動し、ショルダ部材12の圧入により生じた凹部が埋め戻されていく。
 次に、制御器100は、被接合物60の表面60cにおいて、ピン部材11の下端面11a及びショルダ部材12の下端面12aが面一になるように、ピン駆動部531を制御する(ステップS105;図14Bの工程(5)参照)。これにより、被接合物60の表面60cが整形され、実質的な凹部が生じない程度の略平坦な面が得られる。
 次に、制御器100は、ピン部材11の下端面11a、ショルダ部材12の下端面12a、及びクランプ部材54の下端面54aが、それぞれ、被接合物60から離間するように、ショルダ駆動部532を制御する(ステップS106)。ついで、制御器100は、その後、回転駆動部533を制御して、ピン部材11及びショルダ部材12の回転を停止させ(ステップS107)、一連の摩擦攪拌接合(被接合物60の接合工程)を終了させる(図14Bの工程(6)参照)。
 これにより、ピン部材11及びショルダ部材12の当接による回転(及び押圧)は第1部材61A、第2部材62Aに加えられなくなるので、塑性流動部61B及び塑性流動部62Bでは、塑性流動が停止し、接合部60bとなる。このようにして、2枚の第1部材61A、第2部材62Aは、接合部60bによって連結(接合)される。
 このように構成された、本実施形態7に係る複動式摩擦攪拌接合装置50では、被接合物Wに対して、摩擦攪拌接合を実行することにより、第2部材62Aの軟化した部分が、第1部材61Aの軟化した部分に入り込み、引張せん断に対する強度が高くなり、相対的に剥離強度も高くなるといったアンカー効果が得られる。
 このため、本実施形態7に係る複動式摩擦攪拌接合装置50では、異なる材料で構成されている複数の部材(第1部材61A、第2部材62A)に対して、摩擦熱を利用して接合しても、接合強度を高めることができ得る。
 なお、本実施形態7に係る複動式摩擦攪拌接合装置50では、異なる材料で構成されている2つの部材(第1部材61A、第2部材62A)に対して、摩擦攪拌接合する形態を採用したが、これに限定されない。異なる材料で構成されている3つ以上の部材に対して、摩擦攪拌接合する形態を採用してもよい。
 [変形例1]
 次に、本実施形態7に係る複動式摩擦攪拌接合装置50の変形例について、図15、図16A、及び図16Bを参照しながら説明する。
 本実施形態7における変形例1の複動式摩擦攪拌接合装置は、制御器が、(A2)において、ピン部材をショルダ部材の先端部から突出させて、当該ピン部材の先端部が第1位置に到達するように、出没機構が動作する(A23)と、(A23)の後、ピン部材の先端部が第1位置からショルダ部材の内方に没入するように、出没機構が動作する(A24)と、を実行するように構成されている。
 なお、本実施形態7における変形例1の複動式摩擦攪拌接合装置は、実施形態7に係る複動式摩擦攪拌接合装置と構成は同じであるので、その詳細な説明は省略する。
 [複動式摩擦攪拌接合装置の動作及びその作用効果]
 図15は、本実施形態7における変形例1の複動式摩擦攪拌接合装置の動作の一例を示すフローチャートである。図16A及び図16Bは、本変形例1の複動式摩擦攪拌接合装置による摩擦攪拌接合の各工程の一例を模式的に示す工程図である。
 図15に示すように、本変形例1の複動式摩擦攪拌接合装置50の動作は、実施形態7に係る複動式摩擦攪拌接合装置50の動作と、基本的には同じであるが、ステップS103及びステップS104に代えて、ステップS103A及びステップS104Aが行われる点が異なる。
 具体的には、制御器100は、ピン部材11の下端面11aがショルダ部材12の下端面12aに対して突出するように、ピン駆動部531を駆動する(ステップS103A)。このとき、制御器100は、ピン部材11の先端部が第1位置まで到達するように、ピン駆動部531を制御する。なお、ピン部材11の先端部の位置情報は、図示されない位置検出器により検出されて、制御器100に出力される。
 これにより、ピン部材11の先端部が被接合物60の表面60cから第2部材62Aの内部に進入(圧入)し(図16Aの工程(3)参照)、第2部材62Aにも、塑性流動部62Bが生じる。このとき、ピン部材11の先端部により、押し出された第2部材62Aの軟化した部分が、第1部材61Aの軟化した部分に入り込む(突き刺さる)。
 次に、制御器100は、ピン部材11の下端面11aがショルダ部材12の下端面12aに対して没入するように、ピン駆動部531を駆動する(ステップS104A)。このとき、制御器100は、ショルダ部材12の先端部が予め設定されている所定の第2位置に到達するように、ピン駆動部531を制御する。
 これにより、ショルダ部材12が徐々に第1部材61Aに進入(圧入)し、ピン部材11が第1部材61Aから後退する(図16Bの工程(4)参照)。このとき、塑性流動部61Bの軟化した部分は、ショルダ部材12の直下からピン部材11の直下に流動し、ピン部材11の圧入により生じた凹部が埋め戻されていく。
 そして、制御器100は、実施形態7に係る複動式摩擦攪拌接合装置50と同様に、ステップS105~ステップS107の処理を実行して、一連の摩擦攪拌接合(被接合物60の接合工程)を終了させる。
 このように構成された、本変形例1の複動式摩擦攪拌接合装置50であっても、実施形態7に係る複動式摩擦攪拌接合装置50と同様の作用効果を奏する。
 (実施形態8)
 本実施形態8に係る複動式摩擦攪拌接合装置は、実施形態7に係る複動式摩擦攪拌接合装置において、制御器は、摩擦攪拌接合によって発生するピン部材の外周面及びショルダ部材の中心貫通孔の内周面への被接合物の材料の凝着の程度と相関する凝着パラメータのレベルに基づいて、ピン部材の外周面及びショルダ部材の中心貫通孔の内周面の少なくとも一方を清掃する(D)をさらに実行するように構成されている。
 また、本実施形態8に係る複動式摩擦攪拌接合装置では、凝着パラメータが、出没機構に設けられ、ピン部材をショルダ部材に対して出没するよう駆動する、モータの電流値であってもよい。
 また、本実施形態8に係る複動式摩擦攪拌接合装置では、凝着パラメータが、被接合物を摩擦攪拌接合した回数であってもよい。
 さらに、本実施形態8に係る複動式摩擦攪拌接合装置では、凝着パラメータが、ピン部材及び/又はショルダ部材に発生する応力であってもよい。
 以下、本実施形態8に係る複動式摩擦攪拌接合装置の一例について、図17及び図18を参照しながら説明する。
 [複動式摩擦攪拌接合装置の構成]
 図17は、本実施形態8に係る複動式摩擦攪拌接合装置の概略構成を示すブロック図である。
 図17に示すように、本実施形態8に係る複動式摩擦攪拌接合装置50は、実施形態7に係る複動式摩擦攪拌接合装置50と基本的構成は同じであるが、電流検知器34をさらに備える点が異なる。電流検知器34は、ピン駆動部531を構成するサーボモータの電流値を検知して、検知した電流値を制御器100の制御部21に出力するように構成されている。
 [複動式摩擦攪拌接合装置の動作及びその作用効果]
 次に、本実施形態8に係る複動式摩擦攪拌接合装置の動作及びその作用効果について、図17及び図18を参照しながら説明する。なお、以下の動作は、制御器100が摩擦攪拌接合動作を実行するときに、制御器100の制御部21が、記憶部31に格納されているプログラムを読み出すことにより実行される。
 図18は、本実施形態8に係る複動式摩擦攪拌接合装置の動作の一例を示すフローチャートである。
 図18に示すように、制御器100は、操作者から入力部32を介して、複動式摩擦攪拌接合装置50の停止指令が入力されたか否かを判定する(ステップS201)。
 制御器100は、操作者から入力部32を介して、複動式摩擦攪拌接合装置50の停止指令が入力されたと判定した場合(ステップS201でYes)には、複動式摩擦攪拌接合装置50の停止処理を実行し(ステップS202)、本プログラムを終了する。
 なお、複動式摩擦攪拌接合装置50の停止処理としては、例えば、ピン駆動部531及びショルダ駆動部532を制御して、ピン部材11、ショルダ部材12、及びクランプ部材54を所定の初期位置まで移動させ、かつ、回転駆動部533を停止させることが挙げられる。
 一方、制御器100は、操作者から入力部32を介して、複動式摩擦攪拌接合装置50の停止指令が入力されていないと判定した場合(ステップS201でNo)には、凝着パラメータを取得する(ステップS203)。具体的には、本実施形態8においては、制御器100は、電流検知器34が検知したピン駆動部531のモータの電流値を取得する。
 ここで、凝着パラメータは、摩擦攪拌接合によって発生するピン部材11の外周面及び/又はショルダ部材12の中心貫通孔13の内周面への被接合物60の材料の凝着の程度と相関するパラメータである。凝着パラメータとしては、ピン部材11をショルダ部材12に対して出没するよう駆動するピン駆動部531のモータの電流値、摩擦攪拌接合の回数である打点数、ピン部材11又はショルダ部材12に発生する応力が例示される。これらのパラメータの絶対値は、いずれも凝着の量が多くなる(レベルが高くなる)ことに対応して、絶対値が大きくなる(レベルが高くなる)。モータ電流値及び応力は、これら2つの形態の間で符号が反転する。それ故、凝着パラメータのレベルはその絶対値で特定される。
 なお、制御器100は、摩擦攪拌接合を実行した回数を記憶部31に記憶させておき、当該摩擦攪拌接合の回数を凝着パラメータとして、取得してもよい。また、制御器100は、ピン部材11及び/又はショルダ部材12に設置されている、応力検知器が検知した応力を凝着パラメータとして、取得してもよい。なお、応力検知器としては、歪ゲージを用いてもよい。
 次に、制御器100は、ステップS203で取得した凝着パラメータが、第1閾値以上であるか否かを判定する(ステップS204)。ここで、第1閾値は、予め実験等により設定することができる。凝着パラメータとして、電流値を採用している場合には、接合ツール51の破損を抑制する観点から、例えば、3Aであってもよく、4Aであってもよい。
 なお、凝着パラメータとして、摩擦攪拌接合の回数を採用している場合には、電流検知器34が検知した電流値が3Aとなった回数であってもよく、電流検知器34が検知した電流値が4Aとなった回数であってもよい。同様に、凝着パラメータとして、応力を採用している場合には、電流検知器34が検知した電流値が3Aとなったときに、応力検知器が検知した応力であってもよく、電流検知器34が検知した電流値が4Aとなったときに、応力検知器が検知した応力であってもよい。
 制御器100は、ステップS203で取得した凝着パラメータが、第1閾値以上ではないと判定した場合(ステップS204でNo)には、ステップS201に戻る。
 一方、制御器100は、ステップS203で取得した凝着パラメータが、第1閾値以上であると判定した場合(ステップS204でYes)には、接合ツール51の清掃を実行し(ステップS205)、ステップS201に戻る。具体的には、制御器100は、ショルダ駆動部532を駆動して、ショルダ部材12に対して、ピン部材11を出没させることにより、接合ツール51の清掃を行う。この場合、制御器100は、上記特許文献2に開示されている接合ツールの清掃方法を実行してもよい。
 このように構成された、本実施形態8に係る複動式摩擦攪拌接合装置50では、制御器100が、摩擦攪拌接合によって発生するピン部材11の外周面及びショルダ部材12の中心貫通孔の内周面への被接合物60の材料の凝着の程度と相関する凝着パラメータのレベルに基づいて、ピン部材11の外周面及びショルダ部材12の中心貫通孔の内周面の少なくとも一方を清掃する(D)をさらに実行するように構成されている。
 これにより、接合ツール51が破損する前に、接合ツール51を清掃することができ、接合ツール51の寿命を長くすることができ得る。
 (実施形態9)
 本実施形態9に係る複動式摩擦攪拌接合装置は、上記実施形態7及び/又は実施形態8に係る複動式摩擦攪拌接合装置において、制御器が、(D)において、凝着パラメータが、予め設定されている所定の第1閾値以上である場合には、報知器により警告を報知する(D1)と、(D1)の後、ピン部材の外周面及びショルダ部材の中心貫通孔の内周面の少なくとも一方を清掃する(D2)を実行するように構成されている。
 以下、本実施形態9に係る複動式摩擦攪拌接合装置の一例について、図19及び図20を参照しながら説明する。
 [複動式摩擦攪拌接合装置の構成]
 図19は、本実施形態9に係る複動式摩擦攪拌接合装置の概略構成を示すブロック図である。
 図19に示すように、本実施形態9に係る複動式摩擦攪拌接合装置50は、実施形態8に係る複動式摩擦攪拌接合装置50と基本的構成は同じであるが、報知器35をさらに備える点が異なる。報知器35は、凝着パラメータが、接合ツール51の破断を警戒すべきレベルに到達したことを操作者に報知(警告)するように構成されている。
 報知器35としては、警告を外部に知らせることができれば、どのような構成であってもよい。外部に知らせる態様としては、例えば、リモコンの表示部(画面)に、文字データ又は画像データ等を表示させる態様であってもよく、スピーカ等により音声で知らせる態様であってもよく、光又は色で知らせるような態様であってもよい。また、通信ネットワークを介してスマートフォン、携帯電話、又はタブレット型コンピュータ等にメール又はアプリで知らせる態様であってもよい。
 [複動式摩擦攪拌接合装置の動作及びその作用効果]
 次に、本実施形態9に係る複動式摩擦攪拌接合装置の動作及びその作用効果について、図19及び図20を参照しながら説明する。なお、以下の動作は、制御器100が摩擦攪拌接合動作を実行するときに、制御器100の制御部21が、記憶部31に格納されているプログラムを読み出すことにより実行される。
 図20は、本実施形態9に係る複動式摩擦攪拌接合装置の動作の一例を示すフローチャートである。
 図20に示すように、本実施形態9に係る複動式摩擦攪拌接合装置50の動作は、実施形態8に係る複動式摩擦攪拌接合装置50の動作と基本的には同じであるが、ステップS204で、制御器100が、ステップS203で取得した凝着パラメータが、第1閾値以上であると判定した場合に、ステップS205Aを実行した後に、ステップS205が実行される点が異なる。
 具体的には、制御器100は、ステップS203で取得した凝着パラメータが、第1閾値以上であると判定した場合(ステップS204でYes)には、報知器35に警告を出力させる(ステップS205)。これにより、操作者等は、接合ツール51の破断を警戒すべきレベルに到達したことを知ることができる。
 次に、制御器100は、接合ツール51の清掃を実行し(ステップS205)、ステップS201に戻る。
 このように構成された、本実施形態9に係る複動式摩擦攪拌接合装置50であっても、実施形態8に係る複動式摩擦攪拌接合装置50と同様の作用効果を奏する。
 また、本実施形態9に係る複動式摩擦攪拌接合装置50では、制御器100が、報知器35により警告を報知するように構成されている。これにより、操作者等は、接合ツール51の破断を警戒すべきレベルに到達したことを知ることができる。このため、接合ツール51が破損する前に、接合ツール51を清掃することができ、接合ツール51の寿命を長くすることができ得る。
 なお、本実施形態9においては、制御器100が、接合ツール51の清掃を実行する形態を採用したが、これに限定されず、報知器35により警報が出力されていることを報知された操作者等が、接合ツール51の清掃を実行する形態を採用してもよい。
 (実施形態10)
 本実施形態10に係る複動式摩擦攪拌接合装置は、上記実施形態7~9のいずれかの実施形態に係る複動式摩擦攪拌接合装置において、制御器が、(D)において、凝着パラメータが、第1閾値よりも大きい第2閾値以上である場合には、次回の被接合物の接合動作を禁止する(D3)をさらに実行するように構成されている。
 以下、本実施形態10に係る複動式摩擦攪拌接合装置の一例について、図21を参照しながら説明する。なお、本実施形態10に係る複動式摩擦攪拌接合装置は、実施形態8に係る複動式摩擦攪拌接合装置と構成は同じであるため、その詳細な説明は省略する。
 [複動式摩擦攪拌接合装置の動作及びその作用効果]
 図21は、本実施形態10に係る複動式摩擦攪拌接合装置の動作の一例を示すフローチャートである。なお、以下の動作は、制御器100が摩擦攪拌接合動作を実行するときに、制御器100の制御部21が、記憶部31に格納されているプログラムを読み出すことにより実行される。
 図21に示すように、制御器100は、操作者から入力部32を介して、複動式摩擦攪拌接合装置50の停止指令が入力されたか否かを判定する(ステップS301)。
 制御器100は、操作者から入力部32を介して、複動式摩擦攪拌接合装置50の停止指令が入力されたと判定した場合(ステップS301でYes)には、複動式摩擦攪拌接合装置50の停止処理を実行し(ステップS302)、本プログラムを終了する。
 一方、制御器100は、操作者から入力部32を介して、複動式摩擦攪拌接合装置50の停止指令が入力されていないと判定した場合(ステップS301でNo)には、凝着パラメータを取得する(ステップS303)。
 次に、制御器100は、ステップS303で取得した凝着パラメータが、第1閾値以上であるか否かを判定する(ステップS304)。制御器100は、ステップS303で取得した凝着パラメータが、第1閾値以上ではないと判定した場合(ステップS304でNo)には、ステップS201に戻る。
 一方、制御器100は、ステップS303で取得した凝着パラメータが、第1閾値以上であると判定した場合(ステップS304でYes)には、ステップS303で取得した凝着パラメータが、第2閾値以上であるか否かを判定する(ステップS305)。
 ここで、第2閾値は、予め実験等により設定することができ、後述するように、ピン部材11及びショルダ部材12の破断寿命に対応する凝着パラメータの絶対値より小さく、かつ、第1閾値より大きい絶対値に設定される。第2閾値は、凝着パラメータとして、電流値を採用している場合には、接合ツール51の破損を抑制する観点から、例えば、5Aであってもよく、5.5Aであってもよい。
 なお、凝着パラメータとして、摩擦攪拌接合の回数を採用している場合には、電流検知器34が検知した電流値が5Aとなった回数であってもよく、電流検知器34が検知した電流値が5.5Aとなった回数であってもよい。同様に、凝着パラメータとして、応力を採用している場合には、電流検知器34が検知した電流値が5Aとなったときに、応力検知器が検知した応力であってもよく、電流検知器34が検知した電流値が5.5Aとなったときに、応力検知器が検知した応力であってもよい。
 制御器100は、ステップS303で取得した凝着パラメータが、第2閾値以上ではないと判定した場合(ステップS305でNo)には、接合ツール51の清掃を実行し(ステップS306)、ステップS301に戻る。なお、制御器100は、接合ツール51の清掃を実行する前に、報知器35に警告を出力させてもよい。
 一方、制御器100は、ステップS303で取得した凝着パラメータが、第2閾値以上であると判定した場合(ステップS305でYes)には、複動式摩擦攪拌接合装置50の強制停止を実行する(ステップS307)。
 具体的には、例えば、制御器100は、ピン駆動部531及びショルダ駆動部532を制御して、ピン部材11、ショルダ部材12、及びクランプ部材54を所定の初期位置まで移動させ、かつ、回転駆動部533を停止させることが挙げられる。
 このとき、制御器100は、ピン部材11及びショルダ部材12が、被接合物60を押圧している押圧力を小さくするように、ピン駆動部531を制御してから、ピン部材11、ショルダ部材12、及びクランプ部材54を所定の初期位置まで移動させるように、ショルダ駆動部532を制御してもよい。
 また、制御器100は、ピン部材11及びショルダ部材12の回転数を小さくするように、回転駆動部533を制御してから、ピン部材11、ショルダ部材12、及びクランプ部材54を所定の初期位置まで移動させるように、ショルダ駆動部532を制御してもよい。
 さらに、制御器100は、ピン部材11及びショルダ部材12が、被接合物60を押圧している押圧力を小さくするように、ピン駆動部531を制御し、かつ、ピン部材11及びショルダ部材12の回転数を小さくするように、回転駆動部533を制御してから、ピン部材11、ショルダ部材12、及びクランプ部材54を所定の初期位置まで移動させるように、ショルダ駆動部532を制御してもよい。
 次に、制御器100は、次回の接合の実行を禁止し(ステップS308)、本プログラムを終了する。なお、制御器100は、ステップS308の処理を実行した後に、接合ツール51の清掃を実行してもよい。また、制御器100は、ステップS308の処理を実行した後に、報知器35に次回の接合の実行を禁止することを報知させてもよい。さらに、制御器100は、ステップS308の処理を実行した後に、報知器35に次回の接合の実行を禁止することを報知させ、その後、接合ツール51の清掃を実行してもよい。
 このように構成された、本実施形態10に係る複動式摩擦攪拌接合装置50であっても、実施形態7~9のいずれかの実施形態に係る複動式摩擦攪拌接合装置50と同様の作用効果を奏する。
 また、本実施形態10に係る複動式摩擦攪拌接合装置50では、制御器100が、凝着パラメータが、第2閾値以上である場合には、次回の被接合物60の接合動作を禁止するように構成されている。これにより、接合ツール51が破損するおそれが高い状態で、被接合物60の接合動作を実行されないため、接合ツール51の破損を防止することができる。
 (その他の実施形態)
 実施形態1乃至4において、クランプ部材54の清掃を省略してもよい。また、ピン部材11及びショルダ部材12の一方の清掃を省略してもよい。
 実施形態1乃至4において、警報に代えて、メッセージによる警告を行ってもよい。
 実施形態1乃至4において、警告及び接合ツールの動作禁止の一方を省略してもよい。
 上記説明から、当業者にとっては、本発明の多くの改良及び他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明を逸脱することなく、その構造および/又は機能の詳細を実質的に変更できる。
 本発明の複動式摩擦攪拌接合装置の運転方法及び複動式摩擦攪拌接合装置は、接合ツールの寿命を長くすることが可能な複動式摩擦攪拌接合装置の運転方法及び複動式摩擦攪拌接合装置として有用である。
 11 ピン部材
 11a 下端面
 12 ショルダ部材
 12a 下端面
 13 中心貫通孔
 21 制御部
 31 記憶部
 32 入力部
 33 警報部
 34 電流検知器
 35 報知器
 41 クランプ駆動部
 50 複動式摩擦攪拌接合装置
 50A 複動式摩擦攪拌接合装置
 50B 複動式摩擦攪拌接合装置
 50C 複動式摩擦攪拌接合装置
 51 接合ツール
 52 接合ツール固定部
 53 工具駆動部
 54 クランプ部材
 54a 下端面
 55 C型フレーム
 56 裏当て部材
 56a 支持面
 60 被接合物
 60a 塑性流動部
 60b 接合部
 60c 表面
 60d 裏面
 61 金属板
 61A 第1部材
 61B 塑性流動部
 62 金属板
 62A 第2部材
 62B 塑性流動部
 80 ロータリエンコーダ
 81 応力センサ
 100 制御器
 521 回転体
 522 可動体
 531 ピン駆動部
 532 ショルダ駆動部
 533 回転駆動部
 Xr 中心軸
 

Claims (26)

  1.  第1部材と第2部材を有する被接合物を摩擦熱で軟化させることにより接合する、複動式摩擦攪拌接合装置の運転方法であって、
     前記複動式摩擦攪拌接合装置は、
     中心部に同心状に延在する円柱状の中心貫通孔を有する円柱状のショルダ部材と、
     前記ショルダ部材とともに接合ツールを構成し、前記ショルダ部材の中心貫通孔に当該ショルダ部材と同心状に嵌挿された円柱状のピン部材と、
     前記ピン部材を前記ショルダ部材に対して出没させる出没機構と、
     前記接合ツールを前記ピン部材の中心軸の周りに回転させる回転機構と、
     前記接合ツールを前記ピン部材の中心軸の延在方向に進退させる進退機構と、を備え、
     前記回転機構による前記接合ツールの回転と、前記出没機構による前記ショルダ部材に対する前記ピン部材の出没と、前記進退機構による前記接合ツールの進退とによって、前記被接合物を摩擦攪拌接合する(A)と、
     前記摩擦攪拌接合によって発生する前記ピン部材の外周面及び前記ショルダ部材の前記中心貫通孔の内周面への前記被接合物の材料の凝着の程度と相関する凝着パラメータのレベルに基づいて、前記ピン部材の外周面及び前記ショルダ部材の前記中心貫通孔の内周面の少なくとも一方を清掃する(B)と、を含む、複動式摩擦攪拌接合装置の運転方法。
  2.  前記凝着パラメータが、前記凝着の量が多くなることに対応して絶対値が増加するパラメータであり、前記凝着パラメータの絶対値について第1閾値を設ける、請求項1に記載の複動式摩擦攪拌接合装置の運転方法。
  3.  前記運転方法が、前記凝着パラメータが第1閾値以上になると警告する(C)をさらに含み、前記(C)の後に前記(A)が行われる、請求項2に記載の複動式摩擦攪拌接合装置の運転方法。
  4.  前記凝着パラメータが、第1閾値より大きい第2閾値以上になると前記接合ツールの動作を禁止することをさらに含む、請求項3に記載の複動式摩擦攪拌接合装置の運転方法。
  5.  前記凝着パラメータが、前記凝着の量が多くなることに対応して絶対値が増加するパラメータであり、前記運転方法が、所定期間当たりの前記凝着パラメータの絶対値の増加量が所定値以上になると警告及び前記接合ツールの動作禁止の少なくとも一方を行う工程(D)をさらに含む、請求項1に記載の複動式摩擦攪拌接合装置の運転方法。
  6.  前記凝着パラメータが、前記出没機構に設けられ、前記ピン部材を前記ショルダ部材に対して出没するよう駆動するモータの電流値である、請求項1乃至5のいずれかに記載の複動式摩擦攪拌接合装置の運転方法。
  7.  前記凝着パラメータが、前記被接合物を摩擦攪拌接合する回数である、請求項1乃至5のいずれかに記載の複動式摩擦攪拌接合装置の運転方法。
  8.  前記凝着パラメータが、前記ピン部材又は前記ショルダ部材に発生する応力である、請求項1乃至5のいずれかに記載の複動式摩擦攪拌接合装置の運転方法。
  9.  第1部材と第2部材を有する被接合物を摩擦熱で軟化させることにより接合する、複動式摩擦攪拌接合装置の運転方法であって、
     前記複動式摩擦攪拌接合装置は、
     中心部に同心状に延在する円柱状の中心貫通孔を有する円柱状のショルダ部材と、
     前記ショルダ部材とともに接合ツールを構成し、前記ショルダ部材の中心貫通孔に当該ショルダ部材と同心状に嵌挿された円柱状のピン部材と、
     前記ピン部材を前記ショルダ部材に対して出没させる出没機構と、
     前記接合ツールを前記ピン部材の中心軸の周りに回転させる回転機構と、
     前記接合ツールを前記ピン部材の中心軸の延在方向に進退させる進退機構と、を備え、
     前記回転機構による前記接合ツールの回転と、前記出没機構による前記ショルダ部材に対する前記ピン部材の出没と、前記進退機構による前記接合ツールの進退とによって、互いに接触して配置された被接合物を摩擦攪拌接合する(A)と、
     前記ピン部材の外周面及び前記ショルダ部材の前記中心貫通孔の内周面の少なくとも一方を所定のタイミングで清掃する(E)と、を含む、複動式摩擦攪拌接合装置の運転方法。
  10.  前記第1部材は、前記接合ツールと対向するように配置され、かつ、前記第2部材とは異なる種類の材料で構成されていて、
     前記(A)は、前記接合ツールを回転させながら、当該接合ツールが前記被接合物の被接合部を押圧するように、前記回転機構及び前記進退機構が動作する(A1)と、
     軟化した前記第2部材が、軟化した前記第1部材に突き刺さるように、前記接合ツールの先端部を予め設定されている所定の第1位置に到達するように、前記出没機構が動作する(A2)と、
     前記接合ツールを回転させた状態で前記被接合部から引き抜くように、前記出没機構、前記回転機構、及び前記進退機構が動作する(A3)と、を有する、請求項1乃至9のいずれか1項に記載の複動式摩擦攪拌接合装置の運転方法。
  11.  前記(A2)において、前記ピン部材を前記ショルダ部材の内方に没入させて、前記ショルダ部材の先端部が前記第1位置に到達するように、前記出没機構が動作する(A21)と、前記(A21)の後、前記ショルダ部材の先端部が前記第1位置から後退し、かつ、前記ピン部材を前記ショルダ部材の先端部から突出するように、前記出没機構が動作する(A22)と、が実行される、請求項10に記載の複動式摩擦攪拌接合装置の運転方法。
  12.  前記(A2)において、前記ピン部材を前記ショルダ部材の先端部から突出させて、当該ピン部材の先端部が前記第1位置に到達するように、前記出没機構が動作する(A23)と、前記(A23)の後、前記ピン部材の先端部が前記第1位置から前記ショルダ部材の内方に没入するように、前記出没機構が動作する(A24)と、が実行される、請求項10に記載の複動式摩擦攪拌接合装置の運転方法。
  13.  前記第1部材は、前記第2部材に対して、軟化温度が低い材料で構成されている、請求項10乃至12のいずれか1項に記載の複動式摩擦攪拌接合装置の運転方法。
  14.  第1部材と第2部材を有する被接合物を摩擦熱で軟化させることにより接合する、複動式摩擦攪拌接合装置であって、
     前記複動式摩擦攪拌接合装置は、
     中心部に同心状に延在する円柱状の中心貫通孔を有する円柱状のショルダ部材と、
     前記ショルダ部材とともに接合ツールを構成し、前記ショルダ部材の中心貫通孔に当該ショルダ部材と同心状に嵌挿された円柱状のピン部材と、
     前記ピン部材を前記ショルダ部材に対して出没させる出没機構と、
     前記接合ツールを前記ピン部材の中心軸の周りに回転させる回転機構と、
     前記接合ツールを前記ピン部材の中心軸の延在方向に進退させる進退機構と、
     制御器と、を備え、
     前記制御器は、
     前記回転機構を制御することによる前記接合ツールの回転と、前記出没機構を制御することによる前記ショルダ部材に対する前記ピン部材の出没と、前記進退機構を制御することによる前記接合ツールの進退とによって、前記被接合物を摩擦攪拌接合する(A)と、
     前記摩擦攪拌接合によって発生する前記ピン部材の外周面及び前記ショルダ部材の前記中心貫通孔の内周面への前記被接合物の材料の凝着の程度と相関する凝着パラメータのレベルに基づいて、警告、前記接合ツールの動作禁止、及び前記接合ツールの清掃の少なくとも1つを行う(B1)と、を実行するように構成されている、複動式摩擦攪拌接合装置。
  15.  前記凝着パラメータが、前記凝着の量が多くなることに対応して絶対値が増加するパラメータであり、前記凝着パラメータの絶対値について第1閾値が設定されている、請求項14に記載の複動式摩擦攪拌接合装置。
  16.  前記制御器は、前記(B1)において、前記凝着パラメータが前記第1閾値以上になると前記警報を行うように構成されている、請求項15に記載の複動式摩擦攪拌接合装置。
  17.  前記制御器は、前記(B1)において、前記凝着パラメータが、前記第1閾値より大きい第2閾値以上になると前記接合ツールの動作禁止を行うように構成されている、請求項16に記載の複動式摩擦攪拌接合装置。
  18.  前記凝着パラメータが、前記凝着の量が多くなることに対応して絶対値が増加するパラメータであり、
     前記制御器は、前記(B1)において、所定期間当たりの前記凝着パラメータの増加量が所定値以上になると警告及び前記接合ツールの動作禁止の少なくとも一方を行うように構成されている、請求項14に記載の複動式摩擦攪拌接合装置。
  19.  前記凝着パラメータが、前記出没機構に設けられ、前記ピン部材を前記ショルダ部材に対して出没するよう駆動するモータの電流値である、請求項14乃至18のいずれかに記載の複動式摩擦攪拌接合装置。
  20.  前記凝着パラメータが、前記被接合物を摩擦攪拌接合する回数である、請求項14乃至18のいずれかに記載の複動式摩擦攪拌接合装置。
  21.  前記凝着パラメータが、前記ピン部材又は前記ショルダ部材に発生する応力である、請求項14乃至18のいずれかに記載の複動式摩擦攪拌接合装置。
  22.  第1部材と第2部材を有する被接合物を摩擦熱で軟化させることにより接合する、複動式摩擦攪拌接合装置であって、
     前記複動式摩擦攪拌接合装置は、
     中心部に同心状に延在する円柱状の中心貫通孔を有する円柱状のショルダ部材と、
     前記ショルダ部材とともに接合ツールを構成し、前記ショルダ部材の中心貫通孔に当該ショルダ部材と同心状に嵌挿された円柱状のピン部材と、
     前記ピン部材を前記ショルダ部材に対して出没させる出没機構と、
     前記接合ツールを前記ピン部材の中心軸の周りに回転させる回転機構と、
     前記接合ツールを前記ピン部材の中心軸の延在方向に進退させる進退機構と、
     制御器と、を備え、
     前記制御器は、前記回転機構による前記接合ツールの回転と、前記出没機構による前記ショルダ部材に対する前記ピン部材の出没と、前記進退機構による前記接合ツールの進退とによって、互いに接触して配置された被接合物を摩擦攪拌接合する(A)と、
     所定のタイミングで、警告、前記接合ツールの動作禁止、及び前記接合ツールの清掃の少なくとも1つを行う(E)と、を実行するよう構成されている、複動式摩擦攪拌接合装置。
  23.  前記第1部材は、前記接合ツールと対向するように配置され、かつ、前記第2部材とは異なる種類の材料で構成されていて、
     前記制御器は、前記(A)において、前記接合ツールを回転させながら、当該接合ツールが前記被接合物の被接合部を押圧するように、前記回転機構及び前記進退機構が動作する(A1)と、
     軟化した前記第2部材が、軟化した前記第1部材に突き刺さるように、前記接合ツールの先端部を予め設定されている所定の第1位置に到達するように、前記出没機構が動作する(A2)と、
     前記接合ツールを回転させた状態で前記被接合部から引き抜くように、前記出没機構、前記回転機構、及び前記進退機構が動作する(A3)と、を実行するように構成されている、請求項14乃至22のいずれか1項に記載の複動式摩擦攪拌接合装置。
  24.  前記制御器は、前記(A2)において、前記ピン部材を前記ショルダ部材の内方に没入させて、前記ショルダ部材の先端部が前記第1位置に到達するように、前記出没機構が動作する(A21)と、前記(A21)の後、前記ショルダ部材の先端部が前記第1位置から後退し、かつ、前記ピン部材を前記ショルダ部材の先端部から突出するように、前記出没機構が動作する(A22)と、を実行するように構成されている、請求項23に記載の複動式摩擦攪拌接合装置。
  25.  前記制御器は、前記(A2)において、前記ピン部材を前記ショルダ部材の先端部から突出させて、当該ピン部材の先端部が前記第1位置に到達するように、前記出没機構が動作する(A23)と、前記(A23)の後、前記ピン部材の先端部が前記第1位置から前記ショルダ部材の内方に没入するように、前記出没機構が動作する(A24)と、を実行するように構成されている、請求項23に記載の複動式摩擦攪拌接合装置。
  26.  前記第1部材は、前記第2部材に対して、軟化温度が低い材料で構成されている、請求項23乃至25のいずれか1項に記載の複動式摩擦攪拌接合装置。
     
     
     
     
     
     
     
     
PCT/JP2018/032639 2017-09-04 2018-09-03 複動式摩擦攪拌接合装置の運転方法及び複動式摩擦攪拌接合装置 WO2019045102A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21210594.4A EP3981537A1 (en) 2017-09-04 2018-09-03 Method for operating double-action friction stir welding device, and double-action friction stir welding device
EP18850285.0A EP3680051B1 (en) 2017-09-04 2018-09-03 Method for operating double-action friction stir welding device, and double-action friction stir welding device
US16/644,356 US11633802B2 (en) 2017-09-04 2018-09-03 Method for operating double-action friction stir welding device, and double-action friction stir welding device
KR1020207008709A KR102315903B1 (ko) 2017-09-04 2018-09-03 복동식 마찰 교반 접합 장치의 운전 방법 및 복동식 마찰 교반 접합 장치
JP2019539706A JP7030127B2 (ja) 2017-09-04 2018-09-03 複動式摩擦攪拌接合装置の運転方法及び複動式摩擦攪拌接合装置
CN201880057387.0A CN111107957B (zh) 2017-09-04 2018-09-03 复动式摩擦搅拌接合装置的运行方法以及复动式摩擦搅拌接合装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017169884 2017-09-04
JP2017-169884 2017-09-04

Publications (1)

Publication Number Publication Date
WO2019045102A1 true WO2019045102A1 (ja) 2019-03-07

Family

ID=65524996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032639 WO2019045102A1 (ja) 2017-09-04 2018-09-03 複動式摩擦攪拌接合装置の運転方法及び複動式摩擦攪拌接合装置

Country Status (6)

Country Link
US (1) US11633802B2 (ja)
EP (2) EP3680051B1 (ja)
JP (1) JP7030127B2 (ja)
KR (1) KR102315903B1 (ja)
CN (1) CN111107957B (ja)
WO (1) WO2019045102A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218444A1 (ja) * 2019-04-24 2020-10-29 川崎重工業株式会社 摩擦攪拌点接合装置及びその運転方法
CN112518080A (zh) * 2019-09-18 2021-03-19 发那科株式会社 机器人用焊接工具及机器人
EP3804900A1 (en) * 2019-10-09 2021-04-14 Harms & Wende GmbH & Co. KG Method and system for friction spot welding
KR20220056798A (ko) * 2020-10-28 2022-05-06 가부시키가이샤 히타치 파워 솔루션즈 마찰 교반 접합 장치 및 마찰 교반 접합 방법
EP3960357A4 (en) * 2019-04-24 2023-06-07 Kawasaki Jukogyo Kabushiki Kaisha FRICTION-MIX SPOT WELDING DEVICE AND METHOD OF OPERATION
US20240001479A1 (en) * 2020-12-04 2024-01-04 Nippon Light Metal Company, Ltd. Rotary tool, joining device, and joining method
US11911841B2 (en) 2019-09-27 2024-02-27 Kawasaki Jukogyo Kabushiki Kaisha Double-acting friction stir spot welding apparatus and method of operating double-acting friction stir spot welding apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11383280B2 (en) 2013-03-22 2022-07-12 Battelle Memorial Institute Devices and methods for performing shear-assisted extrusion, extrusion feedstocks, extrusion processes, and methods for preparing metal sheets
US10695811B2 (en) 2013-03-22 2020-06-30 Battelle Memorial Institute Functionally graded coatings and claddings
US11045851B2 (en) 2013-03-22 2021-06-29 Battelle Memorial Institute Method for Forming Hollow Profile Non-Circular Extrusions Using Shear Assisted Processing and Extrusion (ShAPE)
EP3680051B1 (en) * 2017-09-04 2023-08-16 Kawasaki Jukogyo Kabushiki Kaisha Method for operating double-action friction stir welding device, and double-action friction stir welding device
JP6796565B2 (ja) * 2017-09-08 2020-12-09 川崎重工業株式会社 複動式摩擦攪拌点接合方法
JP6782674B2 (ja) * 2017-09-08 2020-11-11 川崎重工業株式会社 複動式摩擦攪拌点接合装置用クランプ部材、複動式摩擦攪拌点接合装置、及び、複動式摩擦攪拌点接合方法
WO2020040299A1 (ja) * 2018-08-23 2020-02-27 川崎重工業株式会社 複動式摩擦攪拌接合システム及びその運転方法
JP7489457B2 (ja) * 2020-05-29 2024-05-23 川崎重工業株式会社 摩擦攪拌点接合装置及び継手構造
WO2023043839A1 (en) 2021-09-15 2023-03-23 Battelle Memorial Institute Shear-assisted extrusion assemblies and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007029979A (ja) * 2005-07-26 2007-02-08 Sumitomo Light Metal Ind Ltd 摩擦撹拌点接合用複動式回転工具
JP2007216286A (ja) 2006-02-20 2007-08-30 Obara Corp Fswの接合ツ―ルの清掃方法
JP2009202828A (ja) 2008-02-29 2009-09-10 Mazda Motor Corp 車体の製造方法および製造ライン
JP2012196682A (ja) * 2011-03-18 2012-10-18 Kawasaki Heavy Ind Ltd 摩擦攪拌点接合装置および摩擦攪拌点接合方法
WO2016063538A1 (ja) * 2014-10-23 2016-04-28 川崎重工業株式会社 摩擦攪拌点接合装置及び摩擦攪拌点接合方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4853865B2 (ja) * 2006-02-20 2012-01-11 Obara Group株式会社 Fswの接合ツ―ルの清掃方法
JP5535502B2 (ja) * 2009-03-16 2014-07-02 川崎重工業株式会社 摩擦撹拌接合装置及び方法
JP5815961B2 (ja) * 2011-03-18 2015-11-17 川崎重工業株式会社 摩擦攪拌点接合装置および摩擦攪拌点接合方法
EP2881210B1 (en) * 2012-08-06 2020-04-08 Kawasaki Jukogyo Kabushiki Kaisha Welding tool used for double-acting type friction stir welding or double-acting type friction stir spot welding, and welding device using same
JP6084887B2 (ja) * 2013-04-16 2017-02-22 川崎重工業株式会社 摩擦撹拌接合装置および摩擦撹拌接合方法
JP6224993B2 (ja) * 2013-11-01 2017-11-01 川崎重工業株式会社 摩擦攪拌接合装置
JP6516408B2 (ja) * 2013-12-27 2019-05-22 株式会社Uacj 金属箔重ね点接合方法
US9839973B2 (en) * 2013-12-27 2017-12-12 Kawasaki Jukogyo Kabushiki Kaisha Friction stir spot welding apparatus, friction stir spot welding method, and perpendicular-to-plane detection device for use in friction stir spot welding
DE102014115535B3 (de) * 2014-10-24 2016-03-31 Universität Stuttgart Rührreibschweißwerkzeug sowie Verfahren zum Rührreibschweißen
JP6182280B2 (ja) * 2014-12-15 2017-08-16 川崎重工業株式会社 摩擦攪拌点接合装置及び摩擦攪拌点接合方法
JP6670317B2 (ja) * 2015-09-14 2020-03-18 川崎重工業株式会社 摩擦攪拌点接合装置及び摩擦攪拌点接合方法
EP3366410A4 (en) * 2015-10-21 2019-09-04 Kawasaki Jukogyo Kabushiki Kaisha REFRACTORY POINT WELDING MACHINE AND REACTIVE POINT WELDING METHOD
JP6276739B2 (ja) * 2015-10-21 2018-02-07 川崎重工業株式会社 摩擦撹拌点接合装置及び摩擦撹拌点接合方法
JP6505618B2 (ja) * 2016-02-05 2019-04-24 株式会社東芝 摩擦攪拌接合方法および接合体
JP6393707B2 (ja) * 2016-04-28 2018-09-19 川崎重工業株式会社 点接合装置、点接合方法及び継手構造
WO2018003740A1 (ja) * 2016-06-27 2018-01-04 川崎重工業株式会社 摩擦攪拌点接合方法および摩擦攪拌点接合装置
KR102156352B1 (ko) * 2016-10-31 2020-09-15 카와사키 주코교 카부시키 카이샤 마찰 교반 점 접합 장치 및 마찰 교반 점 접합 방법
EP3680051B1 (en) * 2017-09-04 2023-08-16 Kawasaki Jukogyo Kabushiki Kaisha Method for operating double-action friction stir welding device, and double-action friction stir welding device
JP6888104B2 (ja) * 2017-09-05 2021-06-16 川崎重工業株式会社 複動式摩擦攪拌点接合方法及び複動式摩擦攪拌点接合装置
US10792770B1 (en) * 2017-11-29 2020-10-06 Geocent, LLC Vacuum chuck system for a weld tool
JP7079086B2 (ja) * 2017-12-11 2022-06-01 川崎重工業株式会社 ロール成形部品の製造装置および製造方法
JP6770014B2 (ja) * 2018-03-19 2020-10-14 Primetals Technologies Japan株式会社 摩擦攪拌接合装置用アイロニングプレートとそれを備えた摩擦攪拌接合装置、ならびに摩擦攪拌接合方法
WO2020059686A1 (ja) * 2018-09-19 2020-03-26 株式会社日立パワーソリューションズ 摩擦攪拌接合装置
JP7216551B2 (ja) * 2019-01-07 2023-02-01 川崎重工業株式会社 摩擦攪拌点接合装置及び摩擦攪拌点接合方法
WO2020179661A1 (ja) * 2019-03-01 2020-09-10 川崎重工業株式会社 摩擦攪拌点接合装置、摩擦攪拌点接合された被接合物、及びショルダ部材
US10442029B1 (en) * 2019-04-10 2019-10-15 King Saud University Method of friction stir spot welding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007029979A (ja) * 2005-07-26 2007-02-08 Sumitomo Light Metal Ind Ltd 摩擦撹拌点接合用複動式回転工具
JP2007216286A (ja) 2006-02-20 2007-08-30 Obara Corp Fswの接合ツ―ルの清掃方法
JP2009202828A (ja) 2008-02-29 2009-09-10 Mazda Motor Corp 車体の製造方法および製造ライン
JP2012196682A (ja) * 2011-03-18 2012-10-18 Kawasaki Heavy Ind Ltd 摩擦攪拌点接合装置および摩擦攪拌点接合方法
WO2016063538A1 (ja) * 2014-10-23 2016-04-28 川崎重工業株式会社 摩擦攪拌点接合装置及び摩擦攪拌点接合方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218444A1 (ja) * 2019-04-24 2020-10-29 川崎重工業株式会社 摩擦攪拌点接合装置及びその運転方法
EP3960357A4 (en) * 2019-04-24 2023-06-07 Kawasaki Jukogyo Kabushiki Kaisha FRICTION-MIX SPOT WELDING DEVICE AND METHOD OF OPERATION
EP4316722A3 (en) * 2019-04-24 2024-04-10 Kawasaki Jukogyo Kabushiki Kaisha Friction stir spot welding device and method for operating same
CN112518080A (zh) * 2019-09-18 2021-03-19 发那科株式会社 机器人用焊接工具及机器人
CN112518080B (zh) * 2019-09-18 2024-06-21 发那科株式会社 机器人用焊接工具及机器人
US11911841B2 (en) 2019-09-27 2024-02-27 Kawasaki Jukogyo Kabushiki Kaisha Double-acting friction stir spot welding apparatus and method of operating double-acting friction stir spot welding apparatus
EP3804900A1 (en) * 2019-10-09 2021-04-14 Harms & Wende GmbH & Co. KG Method and system for friction spot welding
KR20220056798A (ko) * 2020-10-28 2022-05-06 가부시키가이샤 히타치 파워 솔루션즈 마찰 교반 접합 장치 및 마찰 교반 접합 방법
KR102546573B1 (ko) 2020-10-28 2023-06-23 가부시키가이샤 히타치 파워 솔루션즈 마찰 교반 접합 장치 및 마찰 교반 접합 방법
US11897048B2 (en) 2020-10-28 2024-02-13 Hitachi Power Solutions Co., Ltd. Friction stir welding apparatus and friction stir welding method
US20240001479A1 (en) * 2020-12-04 2024-01-04 Nippon Light Metal Company, Ltd. Rotary tool, joining device, and joining method

Also Published As

Publication number Publication date
CN111107957A (zh) 2020-05-05
US11633802B2 (en) 2023-04-25
EP3680051A1 (en) 2020-07-15
EP3680051A4 (en) 2021-05-26
JPWO2019045102A1 (ja) 2020-04-23
KR20200047605A (ko) 2020-05-07
US20210086291A1 (en) 2021-03-25
JP7030127B2 (ja) 2022-03-04
EP3981537A1 (en) 2022-04-13
EP3680051B1 (en) 2023-08-16
CN111107957B (zh) 2022-03-08
KR102315903B1 (ko) 2021-10-21

Similar Documents

Publication Publication Date Title
WO2019045102A1 (ja) 複動式摩擦攪拌接合装置の運転方法及び複動式摩擦攪拌接合装置
KR101854794B1 (ko) 마찰 교반 점 접합 장치 및 마찰 교반 점 접합 방법
US11241728B2 (en) Method of riveting
US8486508B2 (en) Method for producing a friction-welded connection and design of the friction-welded connection
CN101829903B (zh) 单边自冲摩擦螺柱铆焊装置及其连接方法
US8752603B2 (en) Apparatus for connecting at least two plates
JP4148152B2 (ja) 摩擦点接合構造
JP2007218419A (ja) プロジェクション溶接用ボルトおよびその溶接方法
US8052029B1 (en) Method of calibrating a friction stir spot welding system
JP2008221321A (ja) 摩擦点接合方法
JP2018020359A (ja) 異種材接合方法
JP7278300B2 (ja) 摩擦攪拌接合装置、その運転方法、及び継手構造
JP2007155115A (ja) プロジェクション溶接用ボルトおよびその溶接方法
JP5738702B2 (ja) 抵抗溶接の評価方法、抵抗溶接機の制御方法、抵抗溶接機の制御装置、および抵抗溶接機
JP2015030038A (ja) 薄鋼板へのプロジェクションボルト溶接方法
CN102909466B (zh) 螺柱焊接定位装置
KR20140013214A (ko) 클래드재 파이프 제조 방법에 사용되는 공구
JP2014221523A (ja) 接合方法及びそれを用いて作製される接合体
JP4479401B2 (ja) 摩擦点接合方法及びその装置
JP2020525330A (ja) 金属コンポーネントとポリマーコンポーネントとの接合方法、ならびにこれらのコンポーネントを含む構造物
KR101250839B1 (ko) 파이프 노치 성형 장치 및 방법
JP5645033B2 (ja) 薄板用プロジェクションボルトおよびその溶接方法
JP4858024B2 (ja) ろう付け装置
US20150273619A1 (en) Welding apparatus and welding method
KR20140013213A (ko) 클래드재의 접합 방법에 사용되는 접합용 공구

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850285

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539706

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207008709

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018850285

Country of ref document: EP

Effective date: 20200406