WO2019044990A1 - 細胞移植用デバイスおよびその製造方法 - Google Patents

細胞移植用デバイスおよびその製造方法 Download PDF

Info

Publication number
WO2019044990A1
WO2019044990A1 PCT/JP2018/032161 JP2018032161W WO2019044990A1 WO 2019044990 A1 WO2019044990 A1 WO 2019044990A1 JP 2018032161 W JP2018032161 W JP 2018032161W WO 2019044990 A1 WO2019044990 A1 WO 2019044990A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
cell
cell transplantation
porous membrane
cells
Prior art date
Application number
PCT/JP2018/032161
Other languages
English (en)
French (fr)
Inventor
中村 健太郎
諒 古川
勇輔 望月
竜太 竹上
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201880056321.XA priority Critical patent/CN111032099B/zh
Priority to EP18852088.6A priority patent/EP3677287A4/en
Priority to JP2019539624A priority patent/JP6941175B2/ja
Publication of WO2019044990A1 publication Critical patent/WO2019044990A1/ja
Priority to US16/805,075 priority patent/US11439960B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3834Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/222Gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • B01D71/441Polyvinylpyrrolidone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness

Definitions

  • the cells to be transplanted by the device for cell transplantation of the present invention include cells contained in the cell structure used in the present invention and different from cells contained in the cell structure used in the present invention Cells of the The device for cell transplantation of the present invention can form blood vessels around the device for cell transplantation, and can exert a long-term therapeutic effect by the transplanted cells.
  • polypeptide containing recombinant peptide or chemically synthesized peptide is not particularly limited as long as it has biocompatibility, but, for example, gelatin, collagen, atelocollagen, elastin, fibronectin, pronectin, laminin, tenascin, fibrin, fibroin, entactin , Thrombospondin and RetroNectin (registered trademark) are preferred, and most preferred are gelatin, collagen and atelocollagen.
  • the gelatin for use in the present invention is preferably natural gelatin, recombinant gelatin or chemically synthesized gelatin, and more preferably recombinant gelatin.
  • natural gelatin means gelatin made from collagen of natural origin.
  • RGD sequences More preferred are RGD sequences, YIGSR sequences, PDSGR sequences, LGTIPG sequences, IKVAV sequences and HAV sequences, and particularly preferred are RGD sequences.
  • RGD sequences preferred are ERGD sequences.
  • the recombinant gelatin used in the present invention is Gly-Ala-Pro-[(Gly-XY) 63 ] 3 -Gly, wherein each of 63 Xs independently represents any amino acid, The 63 Y's each independently represent any amino acid, and the 63 Gly-X-Y's may be the same or different.
  • the ratio of the cell to the polymer block is not particularly limited, but the mass of the polymer block per cell is preferably 0.0000001 ⁇ g or more and 1 ⁇ g or less, more preferably 0.000001 ⁇ g Or more and 0.1 ⁇ g or less, more preferably 0.00001 ⁇ g or more and 0.01 ⁇ g or less, and most preferably 0.00002 ⁇ g or more and 0.006 ⁇ g or less.
  • the above range cells can be more uniformly present.
  • the component in the polymer block optionally present can be It can be supplied.
  • the components in the polymer block are not particularly limited, but include the components contained in the culture medium described later.
  • the cell structure used in the present invention can be produced by mixing a biocompatible polymer block and at least one type of cell. More specifically, a cell structure can be produced by alternately arranging a biocompatible polymer block (a mass consisting of a biocompatible polymer) and cells.
  • the term "alternate" does not mean complete alternation, but means, for example, a state in which a biocompatible polymer block and a cell are mixed.
  • the production method is not particularly limited, it is preferably a method of seeding cells after forming a polymer block.
  • cell structures can be produced by incubating a mixture of a biocompatible polymer block and a cell-containing culture solution.
  • the immunoisolation membrane is a selectively permeable membrane that transmits nutrients such as oxygen, water, glucose and the like and blocks the permeation of immune cells and the like involved in immune rejection.
  • the immune cells include macrophages, dendritic cells, neutrophils, eosinophils, basophils, natural killer cells, various T cells, B cells, and other lymphocytes.
  • the immunoisolation membrane preferably blocks permeation of high molecular weight proteins such as immunoglobulins (such as IgM or IgG) and complement, and allows permeation of relatively low molecular weight physiologically active substances such as insulin. Is preferred.
  • the average pore diameter of each section may be, for example, the average value of 50 holes in each section of the membrane cross-sectional view.
  • the film cross-sectional view in this case may be obtained, for example, with a width of 80 ⁇ m (a distance of 80 ⁇ m in the direction parallel to the surface).
  • the size of the hole is measured over the other sections.
  • the immunoisolation membrane is used as a component of a transplantation chamber for containing a cell structure.
  • the transplantation chamber is used as a container for containing cell structures when transplanting the cell structures into a recipient.
  • the immunoisolation membrane can be disposed on at least a part of the surface forming the inside and the outside of the implantation chamber.
  • Condition C PTFE thick cylindrical container, final concentration 4% by mass of CBE 3 aqueous solution, 10 mL aqueous solution volume.
  • Set the shelf temperature to -10 ° C cool at -10 ° C for 1 hour, then at -20 ° C for 2 hours, then at -40 ° C for 3 hours, and finally freeze at -50 ° C for 1 hour.
  • the frozen product is then vacuum dried at -20 ° C for 24 hours after returning the shelf temperature to -20 ° C, and after 24 hours, the shelf temperature is raised to 20 ° C while vacuum drying is continued. After vacuum drying was further performed at 20 ° C. for 48 hours until the degree of vacuum was sufficiently lowered (1.9 ⁇ 10 5 Pa), it was removed from the vacuum lyophilizer. A porous body was thereby obtained.
  • the thickness of the dense portion of the porous membrane was calculated from the following equation. (Formula) film thickness ⁇ [(minimum pore diameter ⁇ number of parting lines to be a pore diameter within 1.3 times) ⁇ 19]

Abstract

本発明の課題は、細胞移植デバイス周囲への血管新生能を有する細胞移植デバイスおよびその製造方法を提供することである。本発明によれば、(A)複数個の生体親和性高分子ブロックと、少なくとも一種の複数個の細胞とを含み、複数個の上記細胞の隙間に、少なくとも1個の上記生体親和性高分子ブロックが配置されている細胞構造体、および(B)上記細胞構造体を内包する免疫隔離膜、を含む、細胞移植用デバイスが提供される。

Description

細胞移植用デバイスおよびその製造方法
 本発明は、細胞構造体および細胞構造体を内包する免疫隔離膜を含む、細胞移植用デバイスに関する。本発明はさらに、細胞移植用デバイスの製造方法に関する。
 免疫隔離は、細胞、組織および器官などの生物学的構成物の移植の際にレシピエントにおける免疫反応を防止する方法の1つである。免疫隔離膜は、水、酸素およびグルコース等は透過させる一方で、免疫拒絶反応に関与する免疫細胞等の透過を阻止することにより免疫隔離を行なう選択透過性の膜である。例えば、生理活性物質を分泌する細胞の移植にその生理活性物質を透過させる免疫隔離膜を利用した細胞移植用デバイスにより、免疫拒絶反応を防止しながら移植の目的を達成することができる。
 移植された生物学的構成物への栄養供給や移植された生物学的構成物からの生理活性物質の分泌を継続するためには、細胞移植用デバイスの周囲には血管が形成されなければ十分に機能できないことが課題として認識されており、種々の検討がなされてきた。例えば、特許文献1は、血管網形成の促進に寄与する構造を有する免疫隔離膜として、リソグラフィーまたはエッチングによって孔形成したポリイミドポリマーフィルムを複数層重ねて形成した多孔質膜を開示している。また、非特許文献1では、孔径0.45μmの細胞保持性の膜と孔径5μmを有するポリテトラフルオロエチレン(PTFE)の外側膜とを積層した膜を用いて形成された市販の移植用チャンバー(TheraCyte(登録商標))を用いて移植を行い、この外側膜がレシピエント中の組織で新しい血管の形成を誘導したことが記載されている。しかし、実際にはその血管誘導は炎症性反応に起因する程度のものであって、十分な血管は誘導されてこないことが知られている。
 一方、特許文献2には、生体親和性を有する高分子ブロックと細胞とを含み、上記複数個の細胞間の隙間に複数個の上記高分子ブロックが配置されている細胞構造体が記載されている。特許文献2に記載の細胞構造体においては、外部から細胞構造体の内部への栄養送達が可能であり、十分な厚みを有するとともに、構造体中で細胞が均一に存在している。特許文献2の実施例においては、リコンビナントゼラチンや天然ゼラチン素材からなる高分子ブロックを用いて高い細胞生存活性が実証されている。特許文献3には、生体親和性を有する高分子ブロックと少なくとも一種類の細胞とを含み、上記複数個の細胞間の隙間に複数個の上記高分子ブロックが配置されている細胞移植用細胞構造体が記載されている。特許文献3の実施例においては、細胞移植用細胞構造体を用いて細胞移植用細胞構造体の内部における血管形成が評価されている。
特表平10-507111号公報 国際公開WO2011/108517号 特開2014-12114号公報
Transplantation,67,665(1995)
 本発明は、細胞移植デバイス周囲への血管新生能を有する細胞移植デバイスおよびその製造方法を提供することを解決すべき課題とした。
 本発明者は上記課題を解決するために鋭意検討した結果、生体親和性高分子ブロックと細胞とを含み、複数個の細胞間の隙間に複数個の生体親和性高分子ブロックが配置されている細胞構造体を免疫隔離膜に内包させることによって、細胞移植デバイス周囲への血管新生能を有する細胞移植デバイスを提供できることを見出し、本発明を完成するに至った。
 即ち、本発明によれば、以下の発明が提供される。
(1)(A)複数個の生体親和性高分子ブロックと、少なくとも一種の複数個の細胞とを含み、複数個の上記細胞の隙間に、少なくとも1個の上記生体親和性高分子ブロックが配置されている細胞構造体、および
(B)上記細胞構造体を内包する免疫隔離膜、
を含む、細胞移植用デバイス。
(2) 上記生体親和性高分子ブロック一つの大きさが20μm以上200μm以下である、(1)に記載の細胞移植用デバイス。
(3) 上記生体親和性高分子ブロックにおいて、生体親和性高分子が熱、紫外線または酵素により架橋されている、(1)または(2)に記載の細胞移植用デバイス。
(4) 上記生体親和性高分子ブロックが不定形である、(1)から(3)の何れか一に記載の細胞移植用デバイス。
(5) 上記細胞構造体が、細胞1個当り0.0000001μg以上1μg以下の生体親和性高分子ブロックを含む、(1)から(4)の何れか一に記載の細胞移植用デバイス。
(6) 上記免疫隔離膜が、ポリマーを含む多孔質膜である、(1)から(5)の何れか一に記載の細胞移植用デバイス。
(7) 上記多孔質膜の最小孔径が0.02μm~1.5μmである、(6)に記載の細胞移植用デバイス。
(8) 上記多孔質膜の厚みが10μm~250μmである、(6)または(7)に記載の細胞移植用デバイス。
(9) 上記多孔質膜が、孔径が最小となる層状の緻密部位を内部に有し、上記緻密部位から上記多孔質膜の少なくとも一方の表面に向かって厚み方向で孔径が連続的に増加している、(6)から(8)の何れか一に記載の細胞移植用デバイス。
(10) 上記緻密部位の厚みが0.5μm~30μmである、(9)に記載の細胞移植用デバイス。
(11) 上記多孔質膜の最小孔径と最大孔径との比が3.0~20.0である、(6)から(10)の何れか一に記載の細胞移植用デバイス。
(12) 上記多孔質膜が少なくとも一種のポリスルホンおよびポリビニルピロリドンを含む、(6)から(11)の何れか一に記載の細胞移植用デバイス。
(13) 複数個の生体親和性高分子ブロックと、少なくとも一種の複数個の細胞とを含み、複数個の上記細胞の隙間に、少なくとも1個の上記生体親和性高分子ブロックが配置されている細胞構造体を、免疫隔離膜で内包する工程を含む、(1)から(12)の何れか一に記載の細胞移植用デバイスの製造方法。
 さらに本発明によれば、以下の発明が提供される。
(14)(A)複数個の生体親和性高分子ブロックと、少なくとも一種の複数個の細胞とを含み、複数個の上記細胞の隙間に、少なくとも1個の上記生体親和性高分子ブロックが配置されている細胞構造体、および(B)上記細胞構造体を内包する免疫隔離膜を含む、細胞移植用デバイスからなる血管新生剤。
(15)(A)複数個の生体親和性高分子ブロックと、少なくとも一種の複数個の細胞とを含み、複数個の上記細胞の隙間に、少なくとも1個の上記生体親和性高分子ブロックが配置されている細胞構造体、および(B)上記細胞構造体を内包する免疫隔離膜を含む、細胞移植用デバイスを、血管新生を必要とする対象者に移植する工程を含む、血管新生方法。
(16) 血管新生のための処置において使用するための細胞移植用デバイスであって、(A)複数個の生体親和性高分子ブロックと、少なくとも一種の複数個の細胞とを含み、複数個の上記細胞の隙間に、少なくとも1個の上記生体親和性高分子ブロックが配置されている細胞構造体、および(B)上記細胞構造体を内包する免疫隔離膜を含む、細胞移植用デバイス。
(17) 血管新生剤の製造のための、(A)複数個の生体親和性高分子ブロックと、少なくとも一種の複数個の細胞とを含み、複数個の上記細胞の隙間に、少なくとも1個の上記生体親和性高分子ブロックが配置されている細胞構造体、および(B)上記細胞構造体を内包する免疫隔離膜を含む、細胞移植用デバイスの使用。
 本発明の細胞移植用デバイスは、免疫拒絶反応を生じる他家細胞や異種細胞を移植するためのデバイスとして有用である。本発明によれば、移植細胞を宿主細胞から保護しながら、細胞移植用デバイス周囲に血管を新生させることができる。本発明によればさらに、細胞移植用デバイスの周囲の最近傍に局所的かつ高効率で血管を新生させることができる。
図1は、条件Aに記載した実験の液温プロファイリングを示す。 図2は、条件Bに記載した実験の液温プロファイリングを示す。 図3は、条件Cに記載した実験の液温プロファイリングを示す。 図4は、参考例8の多孔質膜の膜断面のSEM撮影写真を示す。 図5は、参考例8の多孔質膜の厚さ方向の孔径分布を示す。 図6は、細胞移植用デバイス(免疫隔離膜のみ)の作製方法を示す。 図7は、参考例10の多孔質膜の膜断面のSEM撮影写真を示す。 図8は、参考例10の多孔質膜の厚さ方向の孔径分布を示す。 図9は、参考例12の多孔質膜の膜断面のSEM撮影写真を示す。 図10は、参考例12の多孔質膜の厚さ方向の孔径分布を示す。 図11は、細胞構造体を含む細胞移植用デバイスを移植した組織標本を示す。 図12は、細胞移植用デバイス(免疫隔離膜のみ)を移植した組織標本を示す。 図13は、視野当たりの血管総面積の測定結果を示す。 図14は、視野当たりの血管本数の測定結果を示す。 図15は、細胞構造体を含む細胞移植用デバイス、または細胞移植用デバイス(免疫隔離膜のみ)を移植したC57BL/6マウスの組織標本を示す。 図16は、細胞移植用デバイス(細胞のみ)を移植したC57BL/6マウスの組織標本を示す。 図17は、視野当たりの血管総面積の測定結果を示す。 図18は、視野当たりの血管本数の測定結果を示す。
 以下、本発明を実施するための形態を、詳細に説明する。本明細書において「~」は、その前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示すものとする。
 本発明の細胞移植用デバイスは、
(A)複数個の生体親和性高分子ブロックと、少なくとも一種の複数個の細胞とを含み、複数個の上記細胞の隙間に、少なくとも1個の上記生体親和性高分子ブロックが配置されている細胞構造体、および
(B)上記細胞構造体を内包する免疫隔離膜、
を含む。
 本発明の細胞移植用デバイスにより移植される細胞(即ち、移植細胞)としては、本発明で用いる細胞構造体に含まれる細胞のほか、本発明で用いる細胞構造体に含まれる細胞とは異なる別の細胞を含んでいてもよい。本発明の細胞移植用デバイスは、細胞移植用デバイス周囲に血管を新生させることができ、移植細胞による長期の治療効果を発揮することができる。
<細胞構造体>
 本発明において使用する細胞構造体は、複数個の生体親和性高分子ブロックと、少なくとも一種の複数個の細胞とを含み、複数個の上記細胞の隙間に、少なくとも1個の上記生体親和性高分子ブロックが配置されている細胞構造体である。細胞構造体は、本明細書中において、モザイク細胞塊(モザイク状になっている細胞塊)と称する場合もある。
(1)生体親和性高分子ブロック
(1-1)生体親和性高分子
 生体親和性とは、生体に接触した際に、長期的かつ慢性的な炎症反応などのような顕著な有害反応を惹起しないことを意味する。本発明で用いる生体親和性高分子は、生体に親和性を有するものであれば、生体内で分解されるか否かは特に限定されないが、生分解性高分子であることが好ましい。非生分解性材料として具体的には、ポリテトラフルオロエチレン(PTFE)、ポリウレタン、ポリプロピレン、ポリエステル、塩化ビニル、ポリカーボネート、アクリル、ステンレス、チタン、シリコーン、およびMPC(2-メタクリロイルオキシエチルホスホリルコリン)などが挙げられる。生分解性材料としては、具体的には、天然由来のペプチド、リコンビナントペプチドまたは化学合成ペプチドなどのポリペプチド(例えば、以下に説明するゼラチン等)、ポリ乳酸、ポリグリコール酸、乳酸・グリコール酸コポリマー(PLGA)、ヒアルロン酸、グリコサミノグリカン、プロテオグリカン、コンドロイチン、セルロース、アガロース、カルボキシメチルセルロース、キチン、およびキトサンなどが挙げられる。上記の中でも、リコンビナントペプチドが特に好ましい。これら生体親和性高分子には細胞接着性を高める工夫がなされていてもよい。具体的には、「基材表面に対する細胞接着基質(フィブロネクチン、ビトロネクチン、ラミニン)や細胞接着配列(アミノ酸一文字表記で表される、RGD配列、LDV配列、REDV配列、YIGSR配列、PDSGR配列、RYVVLPR配列、LGTIPG配列、RNIAEIIKDI配列、IKVAV配列、LRE配列、DGEA配列、およびHAV配列)ペプチドによるコーティング」、「基材表面のアミノ化、カチオン化」、または「基材表面のプラズマ処理、コロナ放電による親水性処理」といった方法を使用できる。
 リコンビナントペプチドまたは化学合成ペプチドを含むポリペプチドの種類は生体親和性を有するものであれば特に限定されないが、例えば、ゼラチン、コラーゲン、アテロコラーゲン、エラスチン、フィブロネクチン、プロネクチン、ラミニン、テネイシン、フィブリン、フィブロイン、エンタクチン、トロンボスポンジン、レトロネクチン(登録商標)が好ましく、最も好ましくはゼラチン、コラーゲン、アテロコラーゲンである。本発明で用いるためのゼラチンとしては、好ましくは、天然ゼラチン、リコンビナントゼラチンまたは化学合成ゼラチンであり、さらに好ましくはリコンビナントゼラチンである。ここでいう天然ゼラチンとは天然由来のコラーゲンより作られたゼラチンを意味する。
 化学合成ペプチドまたは化学合成ゼラチンとは、人工的に合成したペプチドまたはゼラチンを意味する。ゼラチン等のペプチドの合成は、固相合成でも液相合成でもよいが、好ましくは固相合成である。ペプチドの固相合成は当業者に公知であり、例えば、アミノ基の保護としてFmoc基(Fluorenyl-Methoxy-Carbonyl基)を使用するFmoc基合成法、並びにアミノ基の保護としてBoc基(tert-Butyl Oxy Carbonyl基)を使用するBoc基合成法などが挙げられる。なお、化学合成ゼラチンの好ましい態様は、本明細書中後記するリコンビナントゼラチンに記載した内容を当てはめることができる。
 本発明で用いる生体親和性高分子の親水性値「1/IOB」値は、0から1.0が好ましい。より好ましくは、0から0.6であり、さらに好ましくは0から0.4である。IOBとは、藤田穆により提案された有機化合物の極性/非極性を表す有機概念図に基づく、親疎水性の指標であり、その詳細は、例えば、"Pharmaceutical Bulletin", vol.2, 2,pp.163-173(1954)、「化学の領域」vol.11, 10, pp.719-725(1957)、「フレグランスジャーナル」, vol.50, pp.79-82(1981)等で説明されている。簡潔に言えば、全ての有機化合物の根源をメタン(CH4)とし、他の化合物はすべてメタンの誘導体とみなして、その炭素数、置換基、変態部、環等にそれぞれ一定の数値を設定し、そのスコアを加算して有機性値(OV)、無機性値(IV)を求め、この値を、有機性値をX軸、無機性値をY軸にとった図上にプロットしていくものである。有機概念図におけるIOBとは、有機概念図における有機性値(OV)に対する無機性値(IV)の比、すなわち「無機性値(IV)/有機性値(OV)」をいう。有機概念図の詳細については、「新版有機概念図-基礎と応用-」(甲田善生等著、三共出版、2008)を参照されたい。本明細書中では、IOBの逆数をとった「1/IOB」値で親疎水性を表している。「1/IOB」値が小さい(0に近づく)程、親水性であることを表す表記である。
 本発明で用いる高分子の「1/IOB」値を上記範囲とすることにより、親水性が高く、かつ、吸水性が高くなることから、栄養成分の保持に有効に作用し、結果として、本発明にかかる細胞構造体(モザイク細胞塊)における細胞の安定化・生存しやすさに寄与するものと推定される。
 本発明で用いる生体親和性高分子がポリペプチドである場合は、Grand average of hydropathicity(GRAVY)値で表される親疎水性指標において、0.3以下、マイナス9.0以上であることが好ましく、0.0以下、マイナス7.0以上であることがさらに好ましい。Grand average of hydropathicity(GRAVY)値は、『Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A.;Protein Identification and Analysis Tools on the ExPASy Server;(In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press (2005). pp. 571-607』および『Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R.D., Bairoch A.; ExPASy: the proteomics server for in-depth protein knowledge and analysis.; Nucleic Acids Res. 31:3784-3788(2003).』の方法により得ることができる。
 本発明で用いる高分子のGRAVY値を上記範囲とすることにより、親水性が高く、かつ、吸水性が高くなることから、栄養成分の保持に有効に作用し、結果として、本発明にかかる細胞構造体(モザイク細胞塊)における細胞の安定化・生存しやすさに寄与するものと推定される。
(1-2)架橋
 本発明で用いる生体親和性高分子は、架橋されているものでもよいし、架橋されていないものでもよいが、架橋されているものが好ましい。架橋されている生体親和性高分子を使用することにより、培地中で培養する際および生体に移植した際に瞬時に分解してしまうことを防ぐという効果が得られる。一般的な架橋方法としては、熱架橋、アルデヒド類(例えば、ホルムアルデヒド、グルタルアルデヒドなど)による架橋、縮合剤(カルボジイミド、シアナミドなど)による架橋、酵素架橋、光架橋、紫外線架橋、疎水性相互作用、水素結合、およびイオン性相互作用などが知られており、本発明においても上記の架橋方法を使用することができる。本発明で使用する架橋方法としては、さらに好ましくは熱架橋、紫外線架橋、または酵素架橋であり、特に好ましくは熱架橋である。
 酵素による架橋を行う場合、酵素としては、高分子材料間の架橋作用を有するものであれば特に限定されないが、好ましくはトランスグルタミナーゼまたはラッカーゼ、最も好ましくはトランスグルタミナーゼを用いて架橋を行うことができる。トランスグルタミナーゼで酵素架橋するタンパク質の具体例としては、リジン残基およびグルタミン残基を有するタンパク質であれば特に制限されない。トランスグルタミナーゼは、哺乳類由来のものであっても、微生物由来のものであってもよく、具体的には、味の素(株)製アクティバシリーズ、試薬として販売されている哺乳類由来のトランスグルタミナーゼ、例えば、オリエンタル酵母工業(株)製、Upstate USA Inc.製、Biodesign International製などのモルモット肝臓由来トランスグルタミナーゼ、ヤギ由来トランスグルタミナーゼ、ウサギ由来トランスグルタミナーゼなど、並びにヒト由来の血液凝固因子(Factor XIIIa、Haematologic Technologies, Inc.社)などが挙げられる。
 架橋(例えば、熱架橋)を行う際の反応温度は、架橋ができる限り特に限定されないが、好ましくは、-100℃~500℃であり、より好ましくは0℃~300℃であり、更に好ましくは50℃~300℃であり、特に好ましくは100℃~250℃であり、最も好ましくは120℃~200℃である。
(1-3)リコンビナントゼラチン
 本発明で言うリコンビナントゼラチンとは、遺伝子組み換え技術により作られたゼラチン類似のアミノ酸配列を有するポリペプチドもしくは蛋白様物質を意味する。本発明で用いることができるリコンビナントゼラチンは、コラーゲンに特徴的なGly-X-Yで示される配列(XおよびYはそれぞれ独立にアミノ酸の何れかを示す)の繰り返しを有するものが好ましい。ここで、複数個のGly-X-Yはそれぞれ同一でも異なっていてもよい。好ましくは、細胞接着シグナルが一分子中に2配列以上含まれている。本発明で用いるリコンビナントゼラチンとしては、コラーゲンの部分アミノ酸配列に由来するアミノ酸配列を有するリコンビナントゼラチンを用いることができる。例えばEP1014176、米国特許6992172号、国際公開WO2004/85473、国際公開WO2008/103041等に記載のものを用いることができるが、これらに限定されるものではない。本発明で用いるリコンビナントゼラチンとして好ましいものは、以下の態様のリコンビナントゼラチンである。
 リコンビナントゼラチンは、天然のゼラチン本来の性能から、生体親和性に優れ、且つ天然由来ではないことで牛海綿状脳症(BSE)などの懸念がなく、非感染性に優れている。また、リコンビナントゼラチンは天然ゼラチンと比べて均一であり、配列が決定されているので、強度および分解性においても架橋等によってブレを少なく精密に設計することが可能である。
 リコンビナントゼラチンの分子量は、特に限定されないが、好ましくは2000以上100000以下(2kDa(キロダルトン)以上100kDa以下)であり、より好ましくは2500以上95000以下(2.5kDa以上95kDa以下)であり、さらに好ましくは5000以上90000以下(5kDa以上90kDa以下)であり、最も好ましくは10000以上90000以下(10kDa以上90kDa以下)である。
 リコンビナントゼラチンは、コラーゲンに特徴的なGly-X-Yで示される配列の繰り返しを有することが好ましい。ここで、複数個のGly-X-Yはそれぞれ同一でも異なっていてもよい。Gly-X-Y において、Glyはグリシンを表し、XおよびYは、任意のアミノ酸(好ましくは、グリシン以外の任意のアミノ酸)を表す。コラーゲンに特徴的なGly-X-Yで示される配列とは、ゼラチン・コラーゲンのアミノ酸組成および配列における、他のタンパク質と比較して非常に特異的な部分構造である。この部分においてはグリシンが全体の約3分の1を占め、アミノ酸配列では3個に1個の繰り返しとなっている。グリシンは最も簡単なアミノ酸であり、分子鎖の配置への束縛も少なく、ゲル化に際してのヘリックス構造の再生に大きく寄与している。XおよびYで表されるアミノ酸はイミノ酸(プロリン、オキシプロリン)が多く含まれ、全体の10%~45%を占めることが好ましい。好ましくは、リコンビナントゼラチンの配列の80%以上、更に好ましくは95%以上、最も好ましくは99%以上のアミノ酸が、Gly-X-Yの繰り返し構造である。
 一般的なゼラチンは、極性アミノ酸のうち電荷を持つものと無電荷のものが1:1で存在する。ここで、極性アミノ酸とは具体的にシステイン、アスパラギン酸、グルタミン酸、ヒスチジン、リジン、アスパラギン、グルタミン、セリン、スレオニン、チロシンおよびアルギニンを指し、このうち極性無電荷アミノ酸とはシステイン、アスパラギン、グルタミン、セリン、スレオニンおよびチロシンを指す。本発明で用いるリコンビナントゼラチンにおいては、構成する全アミノ酸のうち、極性アミノ酸の割合が10~40%であり、好ましくは20~30%である。且つ上記極性アミノ酸中の無電荷アミノ酸の割合が5%以上20%未満、好ましくは5%以上10%未満であることが好ましい。さらに、セリン、スレオニン、アスパラギン、チロシンおよびシステインのうちいずれか1アミノ酸、好ましくは2以上のアミノ酸を配列上に含まないことが好ましい。
 一般にポリペプチドにおいて、細胞接着シグナルとして働く最小アミノ酸配列が知られている(例えば、株式会社永井出版発行「病態生理」Vol.9、No.7(1990年)527頁)。本発明で用いるリコンビナントゼラチンは、これらの細胞接着シグナルを一分子中に2以上有することが好ましい。具体的な配列としては、接着する細胞の種類が多いという点で、アミノ酸一文字表記で現わされる、RGD配列、LDV配列、REDV配列、YIGSR配列、PDSGR配列、RYVVLPR配列、LGTIPG配列、RNIAEIIKDI配列、IKVAV配列、LRE配列、DGEA配列、およびHAV配列の配列が好ましい。さらに好ましくはRGD配列、YIGSR配列、PDSGR配列、LGTIPG配列、IKVAV配列およびHAV配列、特に好ましくはRGD配列である。RGD配列のうち、好ましくはERGD配列である。細胞接着シグナルを有するリコンビナントゼラチンを用いることにより、細胞の基質産生量を向上させることができる。
 本発明で用いるリコンビナントゼラチンにおけるRGD配列の配置としては、RGD間のアミノ酸数が0~100の間で均一でないことが好ましく、RGD間のアミノ酸数が25~60の間で均一でないことがより好ましい。
 この最少アミノ酸配列の含有量は、細胞接着・増殖性の観点から、タンパク質1分子中に好ましくは3~50個であり、さらに好ましくは4~30個であり、特に好ましくは5~20個であり、最も好ましくは12個である。
 本発明で用いるリコンビナントゼラチンにおいて、アミノ酸総数に対するRGDモチーフの割合は少なくとも0.4%であることが好ましい。リコンビナントゼラチンが350以上のアミノ酸を含む場合、350のアミノ酸の各ストレッチが少なくとも1つのRGDモチーフを含むことが好ましい。アミノ酸総数に対するRGDモチーフの割合は、より好ましくは少なくとも0.6%であり、更に好ましくは少なくとも0.8%であり、更に一層好ましくは少なくとも1.0%であり、特に好ましくは少なくとも1.2%であり、最も好ましくは少なくとも1.5%である。リコンビナントペプチド内のRGDモチーフの数は、250のアミノ酸あたり、好ましくは少なくとも4、より好ましくは少なくとも6、更に好ましくは少なくとも8、特に好ましくは12以上16以下である。RGDモチーフの0.4%という割合は、250のアミノ酸あたり、少なくとも1つのRGD配列に対応する。RGDモチーフの数は整数であるので、0.4%の特徴を満たすには、251のアミノ酸からなるゼラチンは、少なくとも2つのRGD配列を含まなければならない。好ましくは、リコンビナントゼラチンは、250のアミノ酸あたり、少なくとも2つのRGD配列を含み、より好ましくは250のアミノ酸あたり、少なくとも3つのRGD配列を含み、さらに好ましくは250のアミノ酸あたり、少なくとも4つのRGD配列を含む。リコンビナントゼラチンのさらなる態様としては、好ましくは少なくとも4つのRGDモチーフを含み、より好ましくは少なくとも6つのRGDモチーフを含み、さらに好ましくは少なくとも8つのRGDモチーフを含み、特に好ましくは12以上16以下のRGDモチーフを含む。
 リコンビナントゼラチンは部分的に加水分解されていてもよい。
 好ましくは、本発明で用いるリコンビナントゼラチンは、式1:A-[(Gly-X-Y)nm-Bで示されるものである。n個のXはそれぞれ独立にアミノ酸の何れかを示し、n個のYはそれぞれ独立にアミノ酸の何れかを示す。mは好ましくは2~10の整数を示し、より好ましくは3~5の整数を示す。nは3~100の整数が好ましく、15~70の整数がさらに好ましく、50~65の整数が最も好ましい。Aは任意のアミノ酸またはアミノ酸配列を示し、Bは任意のアミノ酸またはアミノ酸配列を示す。なお、n個のGly-X-Yはそれぞれ同一でも異なっていてもよい。
 より好ましくは、本発明で用いるリコンビナントゼラチンは、Gly-Ala-Pro-[(Gly-X-Y)633-Gly(式中、63個のXはそれぞれ独立にアミノ酸の何れかを示し、63個のYはそれぞれ独立にアミノ酸の何れかを示す。なお、63個のGly-X-Yはそれぞれ同一でも異なっていてもよい。)で示されるものである。
 繰り返し単位には天然に存在するコラーゲンの配列単位を複数結合することが好ましい。ここで言う天然に存在するコラーゲンとは天然に存在するものであればいずれでも構わないが、好ましくはI型、II型、III型、IV型、またはV型コラーゲンである。より好ましくは、I型、II型、またはIII型コラーゲンである。別の形態によると、上記コラーゲンの由来は好ましくは、ヒト、ウシ、ブタ、マウスまたはラットであり、より好ましくはヒトである。
 本発明で用いるリコンビナントゼラチンの等電点は、好ましくは5~10であり、より好ましくは6~10であり、さらに好ましくは7~9.5である。リコンビナントゼラチンの等電点の測定は、等電点電気泳動法(Maxey,C.R.(1976;Phitogr.Gelatin 2,Editor Cox,P.J.Academic,London,Engl.参照)に記載されたように、1質量%ゼラチン溶液をカチオンおよびアニオン交換樹脂の混晶カラムに通したあとのpHを測定することで実施することができる。
 好ましくは、リコンビナントゼラチンは脱アミン化されていない。
 好ましくは、リコンビナントゼラチンはテロペプタイドを有さない。
 好ましくは、リコンビナントゼラチンは、アミノ酸配列をコードする核酸により調製された実質的に純粋なポリペプチドである。
 本発明で用いるリコンビナントゼラチンとして特に好ましくは、
(1)配列番号1に記載のアミノ酸配列からなるペプチド;
(2)配列番号1に記載のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ生体親和性を有するペプチド;または
(3)配列番号1に記載のアミノ酸配列と80%以上(さらに好ましくは90%以上、特に好ましくは95%以上、最も好ましくは98%以上)の配列同一性を有するアミノ酸配列からなり、かつ生体親和性を有するペプチド;
の何れかである。
 本発明における配列同一性は、以下の式で計算される値を指す。
%配列同一性=[(同一残基数)/(アラインメント長)]×100
 2つのアミノ酸配列における配列同一性は当業者に公知の任意の方法で決定することができ、BLAST((Basic Local Alignment Search Tool))プログラム(J.Mol.Biol.215:403-410,1990)等を使用して決定することができる。
 「1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列」における「1若しくは数個」とは、好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~5個、特に好ましくは1~3個を意味する。
 本発明で用いるリコンビナントゼラチンは、当業者に公知の遺伝子組み換え技術によって製造することができ、例えばEP1014176A2号公報、米国特許第6992172号公報、国際公開WO2004/85473号、国際公開WO2008/103041号等に記載の方法に準じて製造することができる。具体的には、所定のリコンビナントゼラチンのアミノ酸配列をコードする遺伝子を取得し、これを発現ベクターに組み込んで、組み換え発現ベクターを作製し、これを適当な宿主に導入して形質転換体を作製する。得られた形質転換体を適当な培地で培養することにより、リコンビナントゼラチンが産生されるので、培養物から産生されたリコンビナントゼラチンを回収することにより、本発明で用いるリコンビナントゼラチンを調製することができる。
(1-4)生体親和性高分子ブロック
 本発明では、上記した生体親和性高分子からなるブロック(塊)を使用する。
 本発明における生体親和性高分子ブロックの形状は特に限定されるものではない。例えば、不定形、球状、粒子状(顆粒)、粉状、多孔質状、繊維状、紡錘状、扁平状およびシート状であり、好ましくは、不定形、球状、粒子状(顆粒)、粉状および多孔質状である。不定形とは、表面形状が均一でないもののことを示し、例えば、岩のような凹凸を有する物を示す。なお、上記の形状の例示はそれぞれ別個のものではなく、例えば、粒子状(顆粒)の下位概念の一例として不定形となる場合もある。
 本発明における生体親和性高分子ブロックの形状は上記の通り特に限定されるものではないが、タップ密度が、好ましくは10mg/cm以上500mg/cm以下であり、より好ましくは20mg/cm以上400mg/cm以下であり、さらに好ましくは40mg/cm以上220mg/cm以下であり、特に好ましくは50mg/cm以上150mg/cm以下である。
 タップ密度は、ある体積にどれくらいのブロックを密に充填できるかを表す値であり、値が小さいほど、密に充填できない、すなわちブロックの構造が複雑であることが分かる。生体親和性高分子ブロックのタップ密度とは、生体親和性高分子ブロックの表面構造の複雑性、および生体親和性高分子ブロックを集合体として集めた場合に形成される空隙の量を表していると考えられる。タップ密度が小さい程、生体親和性高分子ブロック間の空隙が多くなり、細胞の生着領域が多くなる。また、小さ過ぎないことで、細胞同士の間に適度に生体親和性高分子ブロックが存在でき、細胞構造体とした場合に同構造体内部への栄養分送達を可能とすることから、上記の範囲に収まることが好適であると考えられる。
 本明細書でいうタップ密度は、特に限定されないが、以下のように測定できる。測定のために(直径6mm、長さ21.8mmの円筒状:容量0.616cm3)の容器(以下、キャップと記載する)を用意する。まず、キャップのみの質量を測定する。その後、キャップにロートを付け、ブロックがキャップに溜まるようにロートから流し込む。十分量のブロックを入れた後、キャップ部分を200回机などの硬いところにたたきつけ、ロートをはずし、スパチュラですりきりにする。このキャップにすりきり一杯入った状態で質量を測定する。キャップのみの質量との差からブロックのみの質量を算出し、キャップの体積で割ることで、タップ密度を求めることができる。
 本発明における生体親和性高分子ブロックの架橋度は、特に限定されないが、好ましくは2以上であり、さらに好ましくは2以上30以下であり、さらに好ましくは4以上25以下であり、特に好ましくは4以上22以下である。
 生体親和性高分子ブロックの架橋度(1分子当たりの架橋数)の測定方法は、特に限定されないが、生体親和性高分子がCBE3の場合には、例えば、後記実施例に記載のTNBS(2,4,6-トリニトロベンゼンスルホン酸)法で測定することができる。具体的には、生体親和性高分子ブロック、NaHCO3水溶液およびTNBS水溶液を混合して37℃で3時間反応させた後に反応停止したサンプルと、生体親和性高分子ブロック、NaHCO3水溶液およびTNBS水溶液を混合した直後に反応停止させたブランクとをそれぞれ調製し、純水で希釈したサンプルおよびブランクの吸光度(345nm)を測定し、以下の(式2)、および(式3)から架橋度(1分子当たりの架橋数)を算出することができる。
(式2) (As-Ab)/14600×V/w
(式2)は、生体親和性高分子ブロック1g当たりのリジン量(モル等量)を示す。
(式中、Asはサンプル吸光度、Abはブランク吸光度、Vは反応液量(g)、wは生体親和性高分子ブロック質量(mg)を示す。)
(式3) 1-(サンプル(式2)/未架橋の高分子(式2))×34
(式3)は、1分子あたりの架橋数を示す。
 本発明における生体親和性高分子ブロックの吸水率は、特に限定されないが、好ましくは300%以上、より好ましくは400%以上、さらに好ましくは500%以上、特に好ましくは600%以上、最も好ましくは700%以上である。なお吸水率の上限は特に限定されないが、一般的には4000%以下、または2000%以下である。
 生体親和性高分子ブロックの吸水率の測定方法は、特に限定されないが、例えば、後記実施例に記載の方法により測定することができる。具体的には、25℃において3cm×3cmのナイロンメッシュ製の袋の中に、生体親和性高分子ブロック約15mgを充填し、2時間イオン交換水中で膨潤させた後、10分風乾させ、それぞれの段階において質量を測定し、(式4)に従って吸水率を求めることができる。
(式4)
 吸水率=(w2-w1-w0)/w0
(式中、w0は、吸水前の材料の質量、w1は吸水後の空袋の質量、w2は吸水後の材料を含む袋全体の質量を示す。)
 本発明における生体親和性高分子ブロック一つの大きさは、特に限定されないが、好ましくは20μm以上200μm以下であり、より好ましくは20μm以上150μm以下であり、さらに好ましくは50μm以上120μm以下であり、特に好ましくは53μm以上106μm以下である。
 生体親和性高分子ブロック一つの大きさを上記の範囲内にすることにより、外部から細胞構造体の内部への栄養送達を良好にすることができる。なお、生体親和性高分子ブロック一つの大きさとは、複数個の生体親和性高分子ブロックの大きさの平均値が上記範囲にあることを意味するものではなく、複数個の生体親和性高分子ブロックを篩にかけて得られる、一つ一つの生体親和性高分子ブロックのサイズを意味するものである。
 ブロック一つの大きさは、ブロックを分ける際に用いたふるいの大きさで定義することができる。例えば、180μmのふるいにかけ、通過したブロックを106μmのふるいにかけた際にふるいの上に残るブロックを、106~180μmの大きさのブロックとすることができる。次に、106μmのふるいにかけ、通過したブロックを53μmのふるいにかけた際にふるいの上に残るブロックを、53~106μmの大きさのブロックとすることができる。次に、53μmのふるいにかけ、通過したブロックを25μmのふるいにかけた際にふるいの上に残るブロックを、25~53μmの大きさのブロックとすることができる。
(1-5)生体親和性高分子ブロックの製造方法
 生体親和性高分子ブロックの製造方法は、特に限定されないが、例えば、生体親和性高分子を含有する固形物(生体親和性高分子の多孔質体など)を、粉砕機(ニューパワーミルなど)を用いて粉砕することにより、生体親和性高分子ブロックを得ることができる。生体親和性高分子を含有する固形物(多孔質体など)は、例えば、生体親和性高分子を含有する水溶液を凍結乾燥して得ることができる。
 上記の通り、生体親和性高分子を含有する固形物を粉砕することにより、表面形状が均一でない不定形の生体親和性高分子ブロックを製造することができる。
 生体親和性高分子の多孔質体を製造する方法としては、特に限定されないが、生体親和性高分子を含む水溶液を凍結乾燥させることによっても得ることができる。例えば、溶液内で最も液温の高い部分の液温(内部最高液温)が、未凍結状態で「溶媒融点-3℃」以下となる凍結工程を含めることによって、形成される氷は球状とすることができる。この工程を経て、氷が乾燥されることで、球状の等方的な空孔(球孔)を持つ多孔質体が得られる。溶液内で最も液温の高い部分の液温(内部最高液温)が、未凍結状態で「溶媒融点-3℃」以上となる凍結工程を含まずに、凍結されることで、形成される氷は柱/平板状とすることができる。この工程を経て、氷が乾燥されると、一軸あるいは二軸上に長い、柱状あるいは平板状の空孔(柱/平板孔)を持つ多孔質体が得られる。生体親和性高分子の多孔質体を、粉砕し、生体親和性高分子ブロックを製造する場合には、粉砕前の多孔質体の空孔が、得られる生体親和性高分子ブロックの形状に影響を与えるため、上記の通り、凍結乾燥の条件を調整することにより、得られる生体親和性高分子ブロックの形状を調整することができる。
 生体親和性高分子の多孔質体の製造方法の一例としては、
(a)溶液内で最も液温の高い部分の温度と溶液内で最も液温の低い部分の温度との差が2.5℃以下であり、かつ、溶液内で最も液温の高い部分の温度が溶媒の融点以下で、生体親和性高分子の溶液を、未凍結状態に冷却する工程、
(b)工程(a)で得られた生体親和性高分子の溶液を凍結する工程、および
(c)工程(b)で得られた凍結した生体親和性高分子を凍結乾燥する工程
を含む方法を挙げることができるが、上記方法に限定されるわけではない。
 生体親和性高分子の溶液を未凍結状態に冷却する際に、最も液温の高い部分の温度と溶液内で最も液温の低い部分の温度との差が2.5℃以下(好ましくは2.3℃以下、より好ましくは2.1℃以下)、つまり温度の差を小さくすることによって、得られる多孔質のポアの大きさのばらつきが少なくなる。なお最も液温の高い部分の温度と溶液内で最も液温の低い部分の温度との差の下限は特に限定されず、0℃以上であればよく、例えば0.1℃以上、0.5℃以上、0.8℃以上、または0.9℃以上でもよい。これにより、製造された多孔質体を用いて製造した生体親和性高分子ブロックを用いた細胞構造体は、高い細胞数を示すという効果が達成される。
 工程(a)の冷却は、例えば、水よりも熱伝導率の低い素材(好ましくは、テフロン(登録商標))を介して冷却することが好ましく、溶液内で最も液温の高い部分は、冷却側から最も遠い部分と擬制することができ、溶液内で最も液温の低い部分は、冷却面の液温と擬制することができる。
 好ましくは、工程(a)において、凝固熱発生直前の、溶液内で最も液温の高い部分の温度と溶液内で最も液温の低い部分の温度との差が2.5℃以下であり、より好ましくは2.3℃以下であり、さらに好ましくは2.1℃以下である。ここで「凝固熱発生直前の温度差」とは、凝固熱発生時の1秒前~10秒前の間で最も温度差が大きくなるときの温度差を意味する。
 好ましくは、工程(a)において、溶液内で最も液温の低い部分の温度は、溶媒融点-5℃以下であり、より好ましくは溶媒融点-5℃以下かつ溶媒融点-20℃以上であり、更に好ましくは溶媒融点-6℃以下かつ溶媒融点-16℃以上である。なお、溶媒融点の溶媒とは、生体親和性高分子の溶液の溶媒である。
 工程(b)においては、工程(a)で得られた生体親和性高分子の溶液を凍結する。工程(b)にて凍結するための冷却温度は、特に制限されるものではなく、冷却する機器にもよるが、好ましくは、溶液内で最も液温の低い部分の温度より、3℃から30℃低い温度であり、より好ましくは、5℃から25℃低い温度であり、更に好ましくは、10℃から20℃低い温度である。
 工程(c)においては、工程(b)で得られた凍結した生体親和性高分子を凍結乾燥する。凍結乾燥は、常法により行うことができ、例えば、溶媒の融点より低い温度で真空乾燥を行い、さらに室温(20℃)で真空乾燥を行うことにより凍結乾燥を行うことができる。
 本発明では好ましくは、上記工程(c)で得られた多孔質体を粉砕することによって、生体親和性高分子ブロックを製造することができる。
(2)細胞
 本発明で使用する細胞は特に限定されるものではないが、体性幹細胞が好ましい。体性幹細胞としては、例えば、間葉系幹細胞(MSC)、造血幹細胞、羊膜細胞、臍帯血細胞、骨髄由来細胞(例えば、骨髄由来間MSC等)、心筋幹細胞、脂肪由来幹細胞、または神経幹細胞を使用することができる。上記の中でも、間葉系幹細胞が好ましく、脂肪由来間葉系幹細胞または骨髄由来間葉系幹細胞がより好ましく、脂肪由来間葉系幹細胞がさらに好ましい。なお、間葉系幹細胞とは間葉系組織に存在する体性幹細胞をいい、間葉系組織に属する細胞への分化能を有する。間葉系組織とは、骨、軟骨、脂肪、血液、骨髄、骨格筋、真皮、靭帯、腱、心臓等の組織をいう。
(3)細胞構造体
 細胞構造体は、上記した複数個の生体親和性高分子ブロックと、少なくとも一種の複数個の細胞とを含み、複数個の上記細胞の隙間に、少なくとも1個の上記高分子ブロックが配置されている細胞構造体である。本発明においては、上記した生体親和性高分子ブロックと上記した細胞とを用いて、複数個の細胞の隙間に複数個の高分子ブロックをモザイク状に3次元的に配置させることによって、生体親和性高分子ブロックと細胞とがモザイク状に3次元配置されることにより、構造体中で細胞が均一に存在する細胞3次元構造体が形成され、物質透過能を有することとなる。
 細胞構造体は、複数個の細胞の隙間に複数個の高分子ブロックが配置されているが、ここで、「細胞の隙間」とは、構成される細胞により、閉じられた空間である必要はなく、細胞により挟まれていればよい。なお、すべての細胞に隙間がある必要はなく、細胞同士が接触している箇所があってもよい。高分子ブロックを介した細胞の隙間の距離、即ち、ある細胞とその細胞から最短距離に存在する細胞を選択した際の隙間距離は特に制限されるものではないが、高分子ブロックの大きさであることが好ましく、好適な距離も高分子ブロックの好適な大きさの範囲である。
 また、高分子ブロックは、細胞により挟まれた構成となるが、すべての高分子ブロック間に細胞がある必要はなく、高分子ブロック同士が接触している箇所があってもよい。細胞を介した高分子ブロック間の距離、即ち、高分子ブロックとその高分子ブロックから最短距離に存在する高分子ブロックを選択した際の距離は特に制限されるものではないが、使用される細胞が1~数個集まった際の細胞の塊の大きさであることが好ましく、例えば、10μm以上1000μm以下であり、好ましくは10μm以上100μm以下であり、より好ましくは10μm以上50μm以下である。
 なお、本明細書中、「構造体中で細胞が均一に存在する細胞3次元構造体」等、「均一に存在する」との表現を使用しているが、完全な均一を意味するものではない。
 細胞構造体の厚さまたは直径は、所望の大きさとすることができるが、下限としては、100μm以上であることが好ましく、215μm以上であることがより好ましく、400μm以上がさらに好ましく、730μm以上であることが最も好ましい。厚さまたは直径の上限は特に限定されないが、使用上の一般的な範囲としては3cm以下が好ましく、2cm以下がより好ましく、1cm以下であることが更に好ましい。また、細胞構造体の厚さまたは直径の範囲として、好ましくは100μm以上3cm以下、より好ましくは400μm以上3cm以下、より一層好ましくは500μm以上2cm以下、更に好ましくは720μm以上1cm以下である。
 細胞構造体は、好ましくは、高分子ブロックからなる領域と細胞からなる領域がモザイク状に配置されている。尚、本明細書中における「細胞構造体の厚さまたは直径」とは、以下のことを示すものとする。細胞構造体中のある一点Aを選択した際に、その点Aを通る直線の内で、細胞構造体外界からの距離が最短になるように細胞構造体を分断する線分の長さを線分Aとする。細胞構造体中でその線分Aが最長となる点Aを選択し、その際の線分Aの長さのことを「細胞構造体の厚さまたは直径」とする。
 細胞構造体においては、細胞と高分子ブロックの比率は特に限定されないが、好ましくは細胞1個当りの高分子ブロックの質量が0.0000001μg以上1μg以下であることが好ましく、より好ましくは0.000001μg以上0.1μg以下、さらに好ましくは0.00001μg以上0.01μg以下、最も好ましくは0.00002μg以上0.006μg以下である。上記範囲とすることにより、より細胞を均一に存在させることができる。また、下限を上記範囲とすることにより、上記用途に使用した際に細胞の効果を発揮することができ、上限を上記範囲とすることにより、任意で存在する高分子ブロック中の成分を細胞に供給できる。ここで、高分子ブロック中の成分は特に制限されないが、後記する培地に含まれる成分が挙げられる。
(4)細胞構造体の製造方法
 本発明で用いる細胞構造体は、生体親和性高分子ブロックと、少なくとも一種類の細胞とを混合することによって製造することができる。より具体的には、細胞構造体は、生体親和性高分子ブロック(生体親和性高分子からなる塊)と、細胞とを交互に配置することにより製造できる。なお、交互とは、完全な交互を意味するものではなく、例えば、生体親和性高分子ブロックと細胞とが混合された状態を意味する。製造方法は特に限定されないが、好ましくは高分子ブロックを形成したのち、細胞を播種する方法である。具体的には、生体親和性高分子ブロックと細胞含有培養液との混合物をインキュベートすることによって、細胞構造体を製造することができる。例えば、容器中、容器に保持される液体中で、細胞と、予め作製した生体親和性高分子ブロックをモザイク状に配置する。配置の手段としては、自然凝集、自然落下、遠心、攪拌を用いることで、細胞と生体親和性高分子ブロックからなるモザイク状の配列形成を、促進、制御することが好ましい。
 用いられる容器としては、細胞低接着性材料、細胞非接着性材料からなる容器が好ましく、より好ましくはポリスチレン、ポリプロピレン、ポリエチレン、ガラス、ポリカーボネート、ポリエチレンテレフタレートからなる容器である。容器底面の形状は平底型、U字型、V字型であることが好ましい。
 上記の方法で得られたモザイク状細胞構造体は、例えば、(a)別々に調製したモザイク細胞塊同士を融合させる、または(b)分化培地または増殖培地下でボリュームアップさせる、などの方法により所望の大きさの細胞構造体を製造することができる。融合の方法、ボリュームアップの方法は特に限定されない。
 例えば、生体親和性高分子ブロックと細胞含有培養液との混合物をインキュベートする工程において、培地を分化培地または増殖培地に交換することによって、細胞構造体をボリュームアップさせることができる。好ましくは、生体親和性高分子ブロックと細胞含有培養液との混合物をインキュベートする工程において、生体親和性高分子ブロックをさらに添加することによって、所望の大きさの細胞構造体であって、細胞構造体中に細胞が均一に存在する細胞構造体を製造することができる。
 上記別々に調製したモザイク細胞塊同士を融合させる方法とは、具体的には、複数個の生体親和性高分子ブロックと、複数個の細胞とを含み、上記複数の細胞により形成される複数個の隙間の一部または全部に、一または複数個の上記生体親和性高分子ブロックが配置されている細胞構造体を複数個融合させる工程を含む、細胞構造体の製造方法である。
<免疫隔離膜>
 本明細書において、免疫隔離膜は免疫隔離のために用いられる膜を意味する。
 免疫隔離は免疫拒絶反応の防止方法である。一般的には、免疫隔離は移植の際のレシピエントの免疫拒絶反応を防止する方法の一つである。ここで、免疫拒絶反応は、移植される細胞構造体に対するレシピエントの拒絶反応である。免疫隔離により、レシピエントの免疫拒絶反応から細胞構造体が隔離される。免疫拒絶反応としては、細胞性免疫応答によるものおよび液性免疫応答によるものが挙げられる。
 免疫隔離膜は酸素、水、グルコース等の栄養分は透過させ、免疫拒絶反応に関与する免疫細胞等の透過を阻止する選択透過性の膜である。免疫細胞としては、マクロファージ、樹状細胞、好中球、好酸球、好塩基球、ナチュラルキラー細胞、各種T細胞、B細胞、その他リンパ球が挙げられる。
 免疫隔離膜は、用途に応じ、免疫グロブリン(IgMまたはIgG等)および補体のような高分子量タンパク質の透過を阻止することが好ましく、インスリンなどの比較的低分子量の生理活性物質を透過させることが好ましい。
 免疫隔離膜の選択透過性は用途に応じて調整すればよい。免疫隔離膜は、例えば、分子量500kDa以上、100kDa以上、80kDa以上、または50kDa以上などの物質を遮断する選択透過性の膜であればよい。例えば、免疫隔離膜は、抗体の中で最も小さいIgG(分子量約160kDa)の透過を阻止できることが好ましい。また、免疫隔離膜は、球体としてのサイズとして直径500nm以上、100nm以上、50nm以上、または10nm以上などの物質を遮断する選択透過性の膜であればよい。
 免疫隔離膜は、好ましくは、ポリマーを含む多孔質膜を含む。免疫隔離膜は、ポリマーを含む多孔質膜のみからなっていてもよく、または他の層を含んでいてもよい。他の層としては、ハイドロゲル膜が挙げられる。免疫隔離膜は、輸送等のために表面に容易に剥離可能な保護フィルムを有していてもよい。
 免疫隔離膜の厚みは、特に限定されないが、10μm~500μmであればよく、20μm~300μmであることが好ましく、30μm~250μmであることがより好ましい。
[多孔質膜]
(多孔質膜の構造)
 多孔質膜は複数の孔を有する膜をいう。孔は例えば膜断面の走査型電子顕微鏡(SEM)撮影画像または透過型電子顕微鏡(TEM)撮影画像で確認することができる。
 多孔質膜の厚みは、特に限定されないが、10μm~500μmであることが好ましく、10μm~300μmであることがより好ましく、10μm~250μmであることがさらに好ましい。
 好ましくは、多孔質膜は、孔径が最小となる層状の緻密部位を内部に有し、この緻密部位から多孔質膜の少なくとも一方の表面に向かって厚み方向で孔径が連続的に増加している。孔径は、後述する区分の平均孔径で判断するものとする。
 膜の表面とは主表面(膜の面積を示すおもて面または裏面)を意味し、膜の端の厚み方向の面を意味するものではない。多孔質膜の表面は他の層との界面であってもよい。なお、免疫隔離膜において、多孔質膜は孔径または孔径分布(厚み方向での孔径の差異)などについて全面積において一様の構造を有していることが好ましい。
 多孔質膜が孔径分布を有することにより、免疫隔離膜は、寿命を向上させることができる。実質的に異なる孔径の膜を用いて多段階の濾過を行なったような効果が得られ、膜の劣化を防止することができるからである。
 孔径は電子顕微鏡によって得られた膜断面の写真から測定すればよい。多孔質膜はミクロトーム等により切断し、断面が観察できる薄膜の切片として、多孔質膜断面の写真を得ることができる。
 本明細書において、膜の厚み方向の孔径の比較は、膜断面のSEM撮影写真を膜の厚み方向に分割して行なうものとする。分割数は膜の厚みから適宜選択できる。分割数は少なくとも5以上とし、例えば200μm厚の膜では後述する表面Xから20分割して行う。なお、分割幅の大きさは、膜における厚み方向の幅の大きさを意味し、写真での幅の大きさを意味するものではない。膜の厚み方向の孔径の比較において、孔径は、各区分の平均孔径として比較される。各区分の平均孔径は、例えば、膜断面図の各区分の50個の孔の平均値であればよい。この場合の膜断面図は例えば80μm幅(表面と平行な方向において80μmの距離)で得てもよい。このとき、孔が大きく、50個測定できない区分については、その区分でとれる数だけ測定したものであればよい。また、このとき、孔が大きくその区分に収まるものでない場合は、ほかの区分にわたってその孔の大きさを計測する。
 孔径が最小となる層状の緻密部位は、上記膜断面の区分のうちで平均孔径が最小となる区分に相当する多孔質膜の層状の部位をいう。緻密部位は1つの区分に相当する部位からなっていても、2つ、3つなどの、平均孔径が最小となる区分の1.1倍以内の平均孔径を有する複数の区分に相当する部位からなっていてもよい。緻密部位の厚みは、0.5μm~50μmであればよく、0.5μm~30μmであることが好ましい。本明細書において、緻密部位の平均孔径を多孔質膜の最小孔径とする。多孔質膜の最小孔径は、0.02μm~1.5μmであることが好ましく、0.02μm~1.3μmであることがより好ましい。このような多孔質膜の最小孔径で少なくとも通常の細胞の透過を阻止することができるからである。ここで、緻密部位の平均孔径はASTM F316-80により測定したものとする。
 多孔質膜は、緻密部位を内部に有する。内部とは膜の表面に接していないことを意味し、「緻密部位を内部に有する」とは、緻密部位が、膜のいずれかの表面にもっとも近い区分ではないことを意味する。免疫隔離膜においては、緻密部位を内部に有する構造の多孔質膜を用いることにより、同じ緻密部位を表面に接して有する多孔質膜を用いた場合よりも、透過させることが意図された物質の透過性が低下しにくい。いかなる理論にも拘泥するものではないが、緻密部位が内部にあることによりタンパク質の吸着が起こりにくくなっているためと考えられる。
 緻密部位は、多孔質膜の厚みの中央部位よりもいずれか一方の表面側に偏っていることが好ましい。具体的には、緻密部位が多孔質膜のいずれか一方の表面から多孔質膜の厚みの5分の2以内の距離にあることが好ましく、3分の1以内の距離にあることがより好ましく、4分の1以内の距離にあることがさらに好ましい。この距離は上述の膜断面写真において判断すればよい。本明細書において、緻密部位がより近い側の多孔質膜の表面を「表面X」という。
 多孔質膜においては緻密部位から少なくともいずれか一方の表面に向かって厚み方向で孔径が連続的に増加している。多孔質膜において、緻密部位から表面Xに向かって厚み方向で孔径が連続的に増加していてもよく、緻密部位から表面Xと反対側の表面に向かって厚み方向で孔径が連続的に増加していてもよく、緻密部位から多孔質膜のいずれの表面に厚み方向で向かうときも孔径が連続的に増加していてもよい。これらのうち、少なくとも緻密部位から表面Xと反対側の表面に向かって厚み方向で孔径が連続的に増加していることが好ましく、緻密部位から多孔質膜のいずれの表面に厚み方向で向かうときも孔径が連続的に増加していることがより好ましい。「厚み方向で孔径が連続的に増加」とは、厚み方向に隣り合う区分の間の平均孔径の差異が、最大平均孔径(最大孔径)と最小平均孔径(最小孔径)の差異の50%以下、好ましくは40%以下、より好ましくは30%以下となるように増加していることをいう。「連続的に増加」は、本質的には、減少がなく一律に増加することを意味するものであるが、減少している部位が偶発的に生じていてもよい。例えば、区分を表面から2つずつ組み合わせたときに、組み合わせの平均値が、一律に増加(表面から緻密部位に向かう場合は一律に減少)している場合は、「緻密部位から膜の表面に向かって厚み方向で孔径が連続的に増加している」と判断できる。
 厚み方向で孔径が連続的に増加する多孔質膜の構造は、例えば後述する製造方法により実現することができる。
 多孔質膜の最大孔径は1.5μm超25μm以下であることが好ましく、1.8μm~23μmであることがより好ましく、2.0μm~21μmであることがさらに好ましい。本明細書において、上記膜断面の区分のうちで平均孔径が最大となる区分のその平均孔径を多孔質膜の最大孔径とする。
 緻密部の平均孔径と多孔質膜の最大孔径との比(多孔質膜の最小孔径と最大孔径との比であって、最大孔径を最小孔径で割った値、本明細書において「異方性比」ということもある。)は、3以上が好ましく、4以上がより好ましく、5以上がさらに好ましい。緻密部位以外の平均孔径を大きくし、多孔質膜の物質透過性を高くするためである。また、異方性比は、25以下であることが好ましく、20以下であることがより好ましい。多孔質膜の最小孔径と最大孔径との比は、例えば、3.0~20.0とすることができる。
 平均孔径が最大となる区分は膜のいずれかの表面にもっとも近い区分またはその区分に接する区分であることが好ましい。
 膜のいずれかの表面にもっとも近い区分においては、平均孔径が0.05μm超25μm以下であることが好ましく、0.08μm超23μm以下であることがより好ましく、0.5μm超21μm以下であることがさらに好ましい。また、膜のいずれかの表面にもっとも近い区分の平均孔径の緻密部の平均孔径との比は、1.2以上20以下であることが好ましく、1.5以上15以下であることがより好ましく、2以上13以下であることがさらに好ましい。
(多孔質膜の元素分布)
 多孔質膜は、少なくとも一方の表面において、式(I)および式(II)を満たすことが好ましい。
 B/A ≦ 0.7 (I)
 A ≧ 0.015 (II)
式中、Aは膜の表面におけるC元素(炭素原子)に対するN元素(窒素原子)の比率を示し、Bは同じ表面から30nmの深さにおけるC元素に対するN元素の比率を示す。
 式(II)は多孔質膜の少なくとも一方の表面に一定量以上のN元素が存在することを示すものであり、式(I)は多孔質膜中のN元素が表面30nm未満に偏在していることを示しているものである。N元素は窒素含有ポリマーに由来することが好ましい。さらに、窒素含有ポリマーはポリビニルピロリドンであることが好ましい。
 表面が式(I)および式(II)を満たすことにより、多孔質膜の生体親和性、特に、式(I)および式(II)を満たす表面側の生体親和性が高くなる。
 多孔質膜は、いずれか一方のみの表面が、式(I)および式(II)を満たしていてもよく、または両表面が式(I)および式(II)を満たしていてもよいが、両表面が式(I)および式(II)を満たしていることが好ましい。いずれか一方のみの表面が式(I)および式(II)を満たす場合、その表面は、後述の移植用チャンバーにおいて、内側であっても、または外側であってもよいが、内側であることが好ましい。また、いずれか一方のみの表面が式(I)および式(II)を満たす場合、式(I)および式(II)を満たす表面は表面Xであることが好ましい。
 本明細書において、膜表面のC元素に対するN元素の比率(A値)および表面から30nmの深さにおけるC元素に対するN元素の比率(B値)は、XPS測定結果を用いて算出したものとする。XPS測定はX線光電子分光法であり、膜表面にX線を照射し、膜表面から放出される光電子の運動エネルギーを計測することで、膜表面を構成する元素の組成を分析する方法である。実施例に記載する単色化Al-Kα線を用いた条件で、スパッタ開始時の結果からA値を計算し、スパッタレートから測定した膜の表面から30nmであると計算される時間の結果からB値を計算するものとする。
 B/Aは0.02以上であればよく、0.03以上であることが好ましく、0,05以上であることがより好ましい。
 Aは0.050以上であることが好ましく、0.080以上であることがより好ましい。また、Aは0.20以下であればよく、0.15以下であることが好ましく、0.10以下であることがより好ましい。
 Bは0.001~0.10であればよく、0.002~0.08であることが好ましく、0.003~0.07であることがより好ましい。
 多孔質膜の元素分布、特にN元素の分布は、後述する多孔質膜の製造方法において、調温湿風中に含まれる水分濃度、調温湿風を当てる時間、凝固液の温度、浸漬時間、洗浄のためのジエチレングリコール浴の温度、洗浄のためのジエチレングリコール浴への浸漬時間、多孔質膜製造ラインの速度等によって制御することができる。なお、N元素の分布は、製膜原液中の含有水分量によっても制御することができる。
(多孔質膜の組成)
 多孔質膜はポリマーを含む。多孔質膜は本質的にポリマーから構成されていることが好ましい。
 多孔質膜を形成するポリマーは生体適合性であることが好ましい。ここで、「生体適合性」とは、無毒性、非アレルギー誘発性を含む意味であるが、ポリマーが生体内において被包化される性質を含むものではない。
 ポリマーは数平均分子量(Mn)が1,000~10,000,000であるものが好ましく、5,000~1,000,000であるものがより好ましい。
 ポリマーの例としては、熱可塑性または熱硬化性のポリマーが挙げられる。ポリマーの具体的な例としては、ポリスルホン、セルロースアシレート、ニトロセルロース、スルホン化ポリスルホン、ポリエーテルスルホン、ポリアクリロニトリル、スチレン-アクリロニトリルコポリマー、スチレン-ブタジエンコポリマー、エチレン-酢酸ビニルコポリマーのケン化物、ポリビニルアルコール、ポリカーボネート、オルガノシロキサン-ポリカーボネートコポリマー、ポリエステルカーボネート、オルガノポリシロキサン、ポリフェニレンオキシド、ポリアミド、ポリイミド、ポリアミドイミド、ポリベンズイミダゾール、エチレンビニルアルコール共重合体、ポリテトラフルオロエチレン(PTFE)等を挙げることができる。これらは、溶解性、光学的物性、電気的物性、強度、弾性等の観点から、ホモポリマーであってもよいし、コポリマーやポリマーブレンド、ポリマーアロイとしてもよい。
 これらのうち、ポリスルホン、セルロースアシレートが好ましく、ポリスルホンがより好ましい。
 多孔質膜はポリマー以外の他の成分を添加剤として含んでいてもよい。
 上記添加剤としては、食塩、塩化リチウム、硝酸ナトリウム、硝酸カリウム、硫酸ナトリウム、塩化亜鉛等の無機酸の金属塩、酢酸ナトリウム、ギ酸ナトリウム等の有機酸の金属塩、ポリエチレングリコール、ポリビニルピロリドン等の高分子、ポリスチレンスルホン酸ナトリウム、ポリビニルベンジルトリメチルアンモニウムクロライド等の高分子電解質、ジオクチルスルホコハク酸ナトリウム、アルキルメチルタウリン酸ナトリウム等のイオン系界面活性剤等を挙げることができる。添加剤は多孔質構造のための膨潤剤として作用していてもよい。
 多孔質膜は単一の層として1つの組成物から形成された膜であることが好ましく、複数層の積層構造ではないことが好ましい。
(多孔質膜の製造方法)
 多孔質膜の製造方法は、上述の構造の多孔質膜が形成できる限り、特に限定されず、通常のポリマー膜形成方法をいずれも用いることができる。ポリマー膜形成方法としては延伸法および流延法などが挙げられる。
 例えば、流延法においては、製膜原液に用いる溶媒の種類および量や流延後の乾燥方法を調節することにより上述の構造を有する多孔質膜を作製することができる。
 流延法による多孔質膜の製造は、例えば以下(1)~(4)をこの順で含む方法で行なうことができる。
(1)ポリマー、必要に応じて添加剤、および必要に応じて溶媒を含む製膜原液を溶解状態で支持体上に流延する。
(2)流延された液膜の表面に調温湿風を当てる。
(3)調温湿風を当てた後に得られる膜を凝固液に浸漬する。
(4)必要に応じて支持体を剥離する。
 調温湿風の温度は、4℃~60℃、好ましくは10℃~40℃であればよい。調温湿風の相対湿度は、30%~70%、好ましくは40%~50%であればよい。調温湿風の絶対湿度は、1.2~605g/kg空気であることが好ましく、2.4~300g/kg空気であることがより好ましい。調温湿風は、0.1m/秒~10m/秒の風速で0.1秒間~30秒間、好ましくは1秒間~10秒間、当てていればよい。
 緻密部位の平均孔径および位置は、調温湿風中に含まれる水分濃度、調温湿風を当てる時間によって制御することができる。なお、緻密部位の平均孔径は、製膜原液中の含有水分量によっても制御することができる。
 上記のように液膜の表面に調温湿風を当てることによって、溶媒の蒸発の制御を行い、液膜の表面から内部に向かってコアセルベーションを起こすことができる。この状態でポリマーの溶解性が低いがポリマーの溶媒に相溶性を有する溶媒を収容する凝固液に浸漬することによって、上記のコアセルベーション相を微細孔として固定させ微細孔以外の細孔も形成することができる。
 上記の凝固液に浸漬する過程において凝固液の温度は-10℃~80℃であればよい。この間で温度を変化させることによって、緻密部位より支持体面側におけるコアセルベーション相の形成から凝固に至るまでの時間を調節し、支持体面側に至るまでの孔径の大きさを制御することが可能である。凝固液の温度を高くすると、コアセルベーション相の形成が早くなり凝固に至るまでの時間が長くなるため、支持体面側へ向かう孔径は大きくなりやすい。一方、凝固液の温度を低くすると、コアセルベーション相の形成が遅くなり凝固に至るまでの時間が短くなるため、支持体面側へ向かう孔径は大きくなりにくい。
 支持体としては、プラスチックフィルムまたはガラス板を用いればよい。プラスチックフィルムの材料の例としては、ポリエチレンテレフタレート(PET)などのポリエステル、ポリカーボネート、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、セルロース誘導体、シリコーンなどが挙げられる。支持体としてはガラス板またはPETが好ましく、PETがより好ましい。
 製膜原液は溶媒を含んでいてもよい。溶媒は使用するポリマーに応じて、使用するポリマーの溶解性が高い溶媒(以下、「良溶媒」ということがある)を用いればよい。良溶媒は、凝固液に浸漬した場合速やかに凝固液と置換されるものが好ましい。溶媒の例としては、ポリマーがポリスルホン等の場合、N-メチル-2-ピロリドン、ジオキサン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミドあるいはこれらの混合溶媒が挙げられ、ポリマーがポリアクリロニトリル等の場合、ジオキサン、N-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシドあるいはこれらの混合溶媒が挙げられ、ポリマーがポリアミド等の場合にはジメチルホルムアミド、ジメチルアセトアミドあるいはこれらの混合溶媒が挙げられ、ポリマーがセルロースアセテート等の場合はアセトン、ジオキサン、テトラヒドロフラン、N-メチル-2-ピロリドンあるいはこれらの混合溶媒が挙げられる。
 製膜原液は良溶媒のほか、ポリマーの溶解性が低いがポリマーの溶媒に相溶性を有する溶媒(以下、「非溶媒」ということがある)を用いることが好ましい。非溶媒としては、水、セルソルブ類、メタノール、エタノール、プロパノール、アセトン、テトラヒドロフラン、ポリエチレングリコール、グリセリン等が挙げられる。これらのうち、水を用いることが好ましい。
 製膜原液としてのポリマー濃度は、5質量%以上35質量%以下、好ましくは10質量%以上30質量%以下であればよい。35質量%以下であることにより、得られる多孔質膜に十分な透過性(例えば水の透過性)を与えることができ、5質量%以上とすることにより選択的に物質を透過する多孔質膜の形成を担保することができる。添加剤の添加量は添加によって製膜原液の均一性が失われることが無い限り特に制限は無いが、通常溶媒に対して0.5質量%以上10質量%以下である。製膜原液が非溶媒と良溶媒とを含む場合、非溶媒の良溶媒に対する割合は、混合液が均一状態を保てる範囲であれば特に制限はないが、1.0質量%~50質量%が好ましく、2.0質量%~30質量%がより好ましく、3.0質量%~10質量%がさらに好ましい。
 凝固液としては、用いられるポリマーの溶解度が低い溶媒を用いることが好ましい。このような溶媒の例としては、水、メタノール、エタノール、ブタノールなどのアルコール類;エチレングリコール、ジエチレングリコールなどのグリコール類;エーテル、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類;グリセリン等のグリセロール類などが挙げられる。好ましい凝固液の例としては、水、アルコール類またはこれらの2種以上の混合物が挙げられる。これらのうち、水を用いることが好ましい。
 凝固液への浸漬の後、使用した凝固液とは異なる溶媒で洗浄を行なうことも好ましい。洗浄は、溶媒に浸漬することにより行なうことができる。洗浄溶媒としてはジエチレングリコールが好ましい。洗浄溶媒としてジエチレングリコールを用い、フィルムを浸漬するジエチレングリコールの温度および浸漬時間のいずれか一方または双方を調節することにより、多孔質膜中のN元素の分布を調節できる。特に、多孔質膜の製膜原液にポリビニルピロリドンを用いる場合において、ポリビニルピロリドンの膜への残量を制御することができる。ジエチレングリコールでの洗浄の後さらに、水で洗浄してもよい。
 多孔質膜の製膜原液としては、ポリスルホンおよびポリビニルピロリドンをN-メチル-2-ピロリドンに溶解して水を加えてなる製膜原液が好ましい。
 多孔質膜の製造方法については、特開平4-349927号公報、特公平4-68966号公報、特開平04-351645号公報、特開2010-235808号公報等を参照することができる。
[他の層]
 免疫隔離膜は多孔質膜以外の他の層を含んでいてもよい。他の層としては、ハイドロゲル膜が挙げられる。ハイドロゲル膜は、生体適合性であるものが好ましく、例としては、アルギン酸ゲル膜、アガロースゲル膜、ポリイソプロピルアクリルアミド膜、セルロースを含む膜、セルロース誘導体(例えばメチルセルロース)を含む膜、ポリビニルアルコール膜などが挙げられる。ハイドロゲル膜としては、アルギン酸ゲル膜が好ましい。アルギン酸ゲル膜の具体例としては、アルギン酸-ポリ-L-リジン-アルギン酸のポリイオンコンプレックス膜を挙げることができる。
<細胞移植用デバイスの製造方法>
 本発明の細胞移植用デバイスは、複数個の生体親和性高分子ブロックと、少なくとも一種の複数個の細胞とを含み、複数個の上記細胞の隙間に、少なくとも1個の上記生体親和性高分子ブロックが配置されている細胞構造体を、免疫隔離膜で内包する工程を含む方法によって製造することができる。
 本発明においては、免疫隔離膜は、細胞構造体を内包するための移植用チャンバーの構成部材として用いられる。移植用チャンバーは、細胞構造体をレシピエントに移植する際に、細胞構造体を内包するための容器として用いられる。免疫隔離膜は移植用チャンバーの内部と外部とを形成する面の少なくとも一部に配置することができる。このように配置することにより、移植用チャンバーに内包される細胞構造体を外部に存在する免疫細胞等から保護しつつ、水、酸素、グルコース等の栄養分を移植用チャンバーの外部から内部に取り込むことができる。
 免疫隔離膜は移植用チャンバーの内部と外部とを形成する面の全面に配置されていてもよく、全面に対し、例えば、1~99%、5~90%、10~80%、20~70%、30~60%、40~50%等の面積に相当する一部に配置されていてもよい。免疫隔離膜が配置される面は1つの連続した部分であってもよく、2つ以上の部分に分かれていてもよい。
 移植用チャンバーの形態は限定されず、袋状、バッグ状、チューブ状、マイクロカプセル状、太鼓状であればよい。例えば、太鼓状の移植用チャンバーはシリコーンリングの上下に免疫隔離膜を接着させて形成することができる。移植用チャンバーの形状は、後述する移植用デバイスとしての使用の際に、レシピエント内における移動を防止できる形状であることが好ましい。移植用チャンバーの形状の具体例としては、円筒状、円盤状、矩形、卵型、星形、円形などが挙げられる。移植用チャンバーは、シート状、ストランド状、らせん状などであってもよい。移植用チャンバーは、細胞構造体を内包し、後述の移植用デバイスとした際に初めて上記の形状となるものであってもよい。
 移植用チャンバーは、容器としての形状や強度を維持するための生体適合性プラスチック等を含んでいてもよい。例えば、移植用チャンバーの内部と外部とを形成する面が免疫隔離膜および免疫隔離膜に該当しない生体適合性プラスチックからなっていてもよい。または実質的に内部と外部とを形成する面の全面に免疫隔離膜が配置されている移植用チャンバーは、強度の観点からさらに内部と外部とを形成する面の外側に網状構造の生体適合性プラスチックが配置されていてもよい。
 移植用チャンバーにおいては、多孔質膜の表面Xが内部側にあることが好ましい。すなわち、免疫隔離膜中の多孔質膜の緻密部位がより移植用チャンバーの内部に近くなるように、免疫隔離膜が配置されていることが好ましい。表面Xを移植用チャンバーの内部側にすることにより、生理活性物質の透過性をより高くすることができる。
<細胞移植用デバイス>
 本発明の細胞移植用デバイスは、細胞構造体および免疫隔離膜を含む。細胞移植用デバイスにおいては、免疫隔離膜に細胞構造体が内包されている。
 細胞移植用デバイスにおいて、免疫隔離膜には、細胞構造体のみが内包されていてもよく、または、細胞構造体に加えて、細胞構造体以外の他の構成物または成分が内包されていてもよい。例えば、細胞構造体はハイドロゲルとともに、好ましくはハイドロゲルに内包された状態で、免疫隔離膜に内包されていてもよい。細胞移植用デバイスは、pH緩衝剤、無機塩、有機溶媒、アルブミンなどのタンパク質、ペプチドを含んでいてもよい。
 細胞移植用デバイスにおいて、細胞構造体は1種のみ含まれていてもよく、2種以上含まれていてもよい。
 細胞移植用デバイスは、例えば、レシピエントの腹腔内または皮下などに移植されるものであればよい。本明細書において、レシピエントは移植を受ける生体を意味する。レシピエントは哺乳動物であることが好ましく、ヒトであることがより好ましい。
 細胞移植用デバイスの移植回数は、1回だけ移植してもよいし、必要に応じ2回以上の移植を行うこともできる。
<各種の用途>
 本発明によれば、本発明で規定する細胞移植用デバイスからなる血管新生剤が提供される。
 本発明によれば、本発明で規定する細胞移植用デバイスを、血管新生を必要とする対象者に移植する工程を含む、血管新生方法が提供される。
 本発明によれば、血管新生のための処置において使用するための、本発明で規定する細胞移植用デバイスが提供される。
 本発明によれば、血管新生剤の製造のための、本発明で規定する細胞移植用デバイスの使用が提供される。
 上記した各種用途において、細胞移植用デバイスの好ましい範囲は、前述と同様である。
 以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。
[参考例1]リコンビナントペプチド(リコンビナントゼラチン)
 リコンビナントペプチド(リコンビナントゼラチン)として以下のCBE3を用意した(国際公開WO2008/103041号公報に記載)。
CBE3:
分子量:51.6kD
構造: GAP[(GXY)633
アミノ酸数:571個
RGD配列:12個
イミノ酸含量:33%
ほぼ100%のアミノ酸がGXYの繰り返し構造である。CBE3のアミノ酸配列には、セリン、スレオニン、アスパラギン、チロシンおよびシステインは含まれていない。CBE3はERGD配列を有している。
等電点:9.34
GRAVY値:-0.682
1/IOB値:0.323
アミノ酸配列(配列表の配列番号1)(国際公開WO2008/103041号公報の配列番号3と同じ。但し末尾のXは「P」に修正)
GAP(GAPGLQGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGPAGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPP)3G
[参考例2] リコンビナントペプチド多孔質体の作製
[PTFE厚・円筒形容器]
 底面厚さ3mm、直径51mm、側面厚さ8mm、高さ25mmのポリテトラフルオロエチレン(PTFE)製円筒カップ状容器を用意した。円筒カップは曲面を側面としたとき、側面は8mmのPTFEで閉鎖されており、底面(平板の円形状)も3mmのPTFEで閉鎖されている。一方、上面は開放された形をしている。よって、円筒カップの内径は43mmになっている。以後、この容器のことをPTFE厚・円筒形容器と呼称する。
[アルミ硝子板・円筒形容器]
 厚さ1mm、直径47mmのアルミ製円筒カップ状容器を用意した。円筒カップは曲面を側面としたとき、側面は1mmのアルミで閉鎖されており、底面(平板の円形状)も1mmのアルミで閉鎖されている。一方、上面は開放された形をしている。また、側面の内部にのみ、肉厚1mmのテフロン(登録商標)を均一に敷き詰め、結果として円筒カップの内径は45mmになっている。また、この容器の底面にはアルミの外に2.2mmの硝子板を接合した状態にしておく。以後、この容器のことをアルミ硝子・円筒形容器と呼称する。
[温度差の小さい凍結工程、および乾燥工程]
 PTFE厚・円筒形容器またはアルミ硝子板・円筒形容器にCBE3水溶液を流し込み、真空凍結乾燥機(TF5-85ATNNN:宝製作所)内で冷却棚板を用いて底面からCBE3水溶液を冷却した。この際の容器、CBE3水溶液の最終濃度、液量、および棚板温度の設定の組み合わせは、以下に記載の通りで用意した。
条件A:
 PTFE厚・円筒形容器、CBE3水溶液の最終濃度4質量%、水溶液量4mL。棚板温度の設定は、-10℃になるまで冷却し、-10℃で1時間、その後-20℃で2時間、さらに-40℃で3時間、最後に-50℃で1時間凍結を行った。本凍結品はその後、棚板温度を-20℃設定に戻してから-20℃で24時間の真空乾燥を行い、24時間後にそのまま真空乾燥を続けた状態で棚板温度を20℃へ上昇させ、十分に真空度が下がる(1.9×105Pa)まで、さらに20℃で48時間の真空乾燥を実施した後に、真空凍結乾燥機から取り出した。それによって多孔質体を得た。
条件B:
 アルミ・硝子板・円筒形容器、CBE3水溶液の最終濃度4質量%、水溶液量4mL。
 棚板温度の設定は、-10℃になるまで冷却し、-10℃で1時間、その後-20℃で2時間、さらに-40℃で3時間、最後に-50℃で1時間凍結を行った。本凍結品はその後、棚板温度を-20℃設定に戻してから-20℃で24時間の真空乾燥を行い、24時間後にそのまま真空乾燥を続けた状態で棚板温度を20℃へ上昇させ、十分に真空度が下がる(1.9×105Pa)まで、さらに20℃で48時間の真空乾燥を実施した後に、真空凍結乾燥機から取り出した。それによって多孔質体を得た。
条件C:
 PTFE厚・円筒形容器、CBE3水溶液の最終濃度4質量%、水溶液量10mL。棚板温度の設定は、-10℃になるまで冷却し、-10℃で1時間、その後-20℃で2時間、さらに-40℃で3時間、最後に-50℃で1時間凍結を行った。本凍結品はその後、棚板温度を-20℃設定に戻してから-20℃で24時間の真空乾燥を行い、24時間後にそのまま真空乾燥を続けた状態で棚板温度を20℃へ上昇させ、十分に真空度が下がる(1.9×105Pa)まで、さらに20℃で48時間の真空乾燥を実施した後に、真空凍結乾燥機から取り出した。それによって多孔質体を得た。
[各凍結工程での温度測定]
 条件A~条件Cのそれぞれについて、溶液内で冷却側から最も遠い場所の液温(非冷却面液温)として容器内の円中心部の水表面液温を、また、溶液内で冷却側に最も近い液温(冷却面液温)として容器内の底部の液温を測定した。
 その結果、それぞれの温度とその温度差のプロファイルは図1~図3の通りとなった。
 図1、図2、図3から条件A、条件B、条件Cでは棚板温度-10℃設定区間(-20℃に下げる前)において液温が融点である0℃を下回り、かつその状態で凍結が起こっていない(未凍結・過冷却)状態であることがわかる。また、この状態で、冷却面液温と非冷却面液温の温度差が2.5℃以下となっていた。なお、本明細書において、「温度差」とは、「非冷却面液温」-「冷却面液温」を意味する。その後、棚板温度を-20℃へ更に下げていくことによって、液温が0℃付近へ急激に上昇するタイミングが確認され、ここで凝固熱が発生し凍結が開始されたことが分かる。また、そのタイミングで実際に氷形成が始まっていることも確認できた。その後、温度は0℃付近を一定時間経過していく。ここでは、水と氷の混合物が存在する状態となっていた。最後0℃から再び温度降下が始まるが、この時、液体部分はなくなり氷となっている。従って、測定している温度は氷内部の固体温度となり、つまり液温ではなくなる。
 以下に、条件A、条件B、条件Cについて、非冷却面液温が融点(0℃)になった時の温度差、棚板温度を-10℃から-20℃へ下げる直前の温度差と、凝固熱発生直前の温度差を記載する。なお、本発明で言う「直前の温度差」とは、イベント(凝固熱発生等)の1秒前~20秒前までの間で検知可能な温度差の内、最も高い温度のことを表している。
条件A
非冷却面液温が融点(0℃)になった時の温度差:1.1℃
-10℃から-20℃へ下げる直前の温度差:0.2℃
凝固熱発生直前の温度差:1.1℃
条件B
非冷却面液温が融点(0℃)になった時の温度差:1.0℃
-10℃から-20℃へ下げる直前の温度差:0.1℃
凝固熱発生直前の温度差:0.9℃
条件C
非冷却面液温が融点(0℃)になった時の温度差:1.8℃
-10℃から-20℃へ下げる直前の温度差:1.1℃
凝固熱発生直前の温度差:2.1℃
[参考例3]生体親和性高分子ブロックの作製(多孔質体の粉砕と架橋)
 参考例2で得られた条件Aおよび条件BのCBE3多孔質体をニューパワーミル(大阪ケミカル、ニューパワーミルPM-2005)で粉砕した。粉砕は、最大回転数で1分間×5回、計5分間の粉砕で行った。得られた粉砕物について、ステンレス製ふるいでサイズ分けし、25~53μm、53~106μm、106~180μmの未架橋ブロックを得た。その後、減圧下160℃で熱架橋(架橋時間は8時間、16時間、24時間、48時間、72時間、96時間の6種類を実施した)を施して、生体親和性高分子ブロック(CBE3ブロック)を得た。
 以下、48時間架橋を施した条件Aの多孔質体由来ブロックをE、48時間架橋を施した条件Bの多孔質体由来ブロックをFと称する。EおよびFは温度差の小さい凍結工程により製造した多孔質体から作られた温度差小ブロックである。なお、架橋時間の違いは本実施例の評価においては性能に影響が見られなかったため、以後、48時間架橋したものを代表として使用した。また、EおよびFでは性能に差が見られなかった。以下の参考例、実施例および比較例では、条件A、サイズ53~106μm、架橋時間48時間で作製した生体親和性高分子ブロックを使用した。
[参考例4] 生体親和性高分子ブロックのタップ密度測定
 タップ密度は、ある体積にどれくらいのブロックを密に充填できるかを表す値であり、値が小さいほど、密に充填できない、すなわちブロックの構造が複雑であると言える。タップ密度は、以下のように測定した。まず、ロートの先にキャップ(直径6mm、長さ21.8mmの円筒状:容量0.616cm3)が付いたものを用意し、キャップのみの質量を測定した。その後、ロートにキャップを付け、ブロックがキャップに溜まるようにロートから流し込んだ。十分量のブロックを入れた後、キャップ部分を200回、机などの硬いところにたたきつけ、ロートをはずし、スパチュラですりきりにした。このキャップにすりきり一杯入った状態で質量を測定した。キャップのみの質量との差からブロックのみの質量を算出し、キャップの体積で割ることで、タップ密度を求めた。
 その結果、参考例3の生体親和性高分子ブロックのタップ密度は98mg/cm3であった。
[参考例5] 生体親和性高分子ブロックの架橋度測定
 参考例3で架橋したブロックの架橋度(1分子当たりの架橋数)を算出した。測定はTNBS(2,4,6-トリニトロベンゼンスルホン酸)法を用いた。
<サンプル調製>
 ガラスバイアルに、サンプル(約10mg)、4質量%NaHCO3水溶液(1mL)および1質量%のTNBS水溶液(2mL)を添加し、混合物を37℃で3時間振とうさせた。その後、37質量%塩酸(10mL)および純水(5mL)を加えた後、混合物を37℃で16時間以上静置し、サンプルとした。
<ブランク調整>
 ガラスバイアルに、サンプル(約10mg)、4質量%NaHCO3水溶液(1mL)および1質量%TNBS水溶液(2mL)を添加し、直後に37質量%塩酸(3mL)を加え、混合物を37℃で3時間振とうした。その後、37質量%塩酸(7mL)および純水(5mL)を加えた後、混合物を37℃で16時間以上静置し、ブランクとした。
 純水で10倍希釈したサンプル、および、ブランクの吸光度(345nm)を測定し、以下の(式2)、および(式3)から架橋度(1分子当たりの架橋数)を算出した。
(式2) (As-Ab)/14600×V/w
(式2)は、リコンビナントペプチド1g当たりのリジン量(モル等量)を示す。
(式中、Asはサンプル吸光度、Abはブランク吸光度、Vは反応液量(g)、wはリコンビナントペプチド質量(mg)を示す。)
(式3) 1-(サンプル(式2)/未架橋リコンビナントペプチド(式2))×34
(式3)は、1分子あたりの架橋数を示す。
 その結果、参考例3の生体親和性高分子ブロックの架橋度は、4.2であった。
[参考例6] 生体親和性高分子ブロックの吸水率測定
 参考例3で作製した生体親和性高分子ブロックの吸水率を算出した。
 25℃において、3cm×3cmのナイロンメッシュ製の袋の中に、生体親和性高分子ブロック約15mgを充填し、2時間イオン交換水中で膨潤させた後、10分風乾させた。それぞれの段階において質量を測定し、(式4)に従って、吸水率を求めた。
(式4)
 吸水率=(w2-w1-w0)/w0
(式中、w0は、吸水前の材料の質量、w1は吸水後の空袋の質量、w2は吸水後の材料を含む袋全体の質量を示す。)
 その結果、参考例3のブロックの吸水率は、786%であった。
[参考例7] 細胞構造体の作製
 マウス脂肪由来間葉系幹細胞(mADSC)を10%FBS(ウシ胎児血清)含有のD-MEM培地(ダルベッコ改変イーグル培地)に懸濁し、そこに参考例3で作製した生体親和性高分子ブロック(53-106μm)を加えて、最終的にmADSC(1.2×108cells)と生体親和性高分子ブロック(0.25mg)が4mLの培地に懸濁された状態で、細胞非接着性の35mmディッシュであるEZSPHERE(登録商標)ディッシュType903(スフェロイドウェル口径800μm、スフェロイドウェル深さ300μm、スフェロイドウェル数~約1,200ウェル。底面が窪み部を有する培養面であり、培養面の周縁に立設される側外壁部を有する。AGCテクノグラス製)に播種した。上記ディッシュをCO2インキュベーターで37℃で48時間静置することで、約1,200個の均一な細胞構造体を取得した。
[参考例8]免疫隔離膜の作製と孔径評価
<多孔質膜の作製>
 ポリスルホン(ソルベイ社製P3500)15質量部、ポリビニルピロリドン(日本触媒社製K-30)15質量部、塩化リチウム1質量部、および水2質量部をN-メチル-2-ピロリドン67質量部に溶解して製膜原液を得た。この製膜原液をPET(ポリエチレンテレフタレート)フィルム表面に乾燥厚み50μmとなるようなウェット膜厚で流延した。上記流延した液膜表面に30℃、相対湿度80%RHに調節した空気を2m/秒で5秒間当てた。その後直ちに水を満たした65℃の凝固液槽に浸漬した。PETフィルムを剥離して多孔質膜を得た。その後、80℃のジエチレングリコール浴に120秒間つけ、その後純水で洗浄し、乾燥厚み50μmの多孔質膜を得た。この多孔質膜を免疫隔離膜とした。
<バブルポイント評価>
 バブルポイントは、パームポロメータ(西華産業製 CFE-1200AEX)を用いた細孔径分布測定試験において、GALWICK(Porous Materials,Inc社製)に完全に濡らした膜のサンプルに対して空気圧を5cm3/分で増大させて評価した。
 参考例8の多孔質膜のバブルポイントは0.58kg/cm2であった。
<厚みおよび孔径評価>
 多孔質膜の厚みを膜断面のSEM撮影写真を用いて測定した。
 多孔質膜の厚み方向の孔径の比較を、膜断面のSEM撮影写真を膜の厚み方向に20分割したときの19本の分割線における孔径の比較により行なった。分割線と交差するまたは接する孔を連続して50個以上選択し、それぞれの孔径を測定し、平均値を算出して平均孔径とする。ここで、孔径は、選択された孔が分割線と交差する部分の長さではなく、膜断面のSEM撮影写真からデジタイザーで孔をなぞり面積を算出し、得られた面積を真円の面積として算出される直径を用いる。このとき、孔が大きく、50個以上選択できない分割線については、膜断面を得るSEM撮影写真の視野を広げて50個測定するものとする。得られた平均孔径を分割線ごとで比較することにより膜の厚み方向の孔径の比較を行なった。そのとき最も小さな平均孔径を緻密部位の平均孔径とした。
 多孔質膜の緻密部位の厚みは以下の式から算出した。
(式)膜厚×[(最小孔径×1.3倍以内の孔径となる分割線の数)÷19]
 膜断面のSEM撮影写真を図4、厚さ方向の孔径分布を図5に示す。参考例8の多孔質膜の厚みおよび孔径評価の結果は以下であった。
多孔質膜の厚み:55μm
緻密部位の平均孔径(多孔質膜の最小孔径の平均値):0.8μm
多孔質膜の最小孔径と最大孔径の比:7.5
緻密部位の厚み:10.5μm
 図5より、参考例8の多孔質膜は、分割線No.5~8が緻密部位であり、本明細書の段落番号0097の定義から、分割線No.1~5および分割線No.8~19において、「緻密部位から膜の表面に向かって厚み方向で孔径が連続的に増加している」と判断できる。
[参考例9]細胞移植用デバイス(免疫隔離膜のみ)の作製
 参考例8で作製したポリスルホン多孔質膜を3cm×5cmに切り出した。製造時に空気を当てた側の面を内側にして2つ折りにした。
 その後、富士インパルス社製茶袋シーラー(T-230K)を用い、3cm×2.5cmの長方形の長辺2辺および短辺1辺の3辺を、260℃に加熱した。なお温度は熱電対で測定した。その後Intramedicポリエチレンチューブ(PE200)の内側に金属棒を挿した状態で残った1辺に挿入し、その状態で同じシーラーを用いてそれぞれ、同じ温度で加熱した。その後、端部封止部の幅が1mmになるように周囲部をナイフで切断し、1cm×2cmとなるような細胞移植用デバイス(免疫隔離膜のみ)を作製した。作製方法を図6に示す。
[参考例10]免疫隔離膜の作製と孔径評価
 ポリスルホン(ソルベイ社製P3500)15質量部、ポリビニルピロリドン(日本触媒社製K-30)15質量部、塩化リチウム1質量部、および水2質量部をN-メチル-2-ピロリドン67質量部に溶解して製膜原液を得た。この製膜原液をPETフィルム表面に乾燥厚み83μmとなるようなウェット膜厚で流延した。上記流延した液膜表面に30℃、相対湿度57%RHに調節した空気を2m/秒で5秒間当てた。その後直ちに水を満たした70℃の凝固液槽に浸漬した。PETフィルムを剥離して多孔質膜を得た。その後、80℃のジエチレングリコール浴に120秒間つけ、その後純水で洗浄し、多孔質膜を得た。この多孔質膜を免疫隔離膜とした。
 参考例10の多孔質膜のバブルポイントは0.66kg/cm2であった。
 参考例8と同様に、厚みおよび孔径を評価した。膜断面のSEM撮影写真を図7、厚さ方向の孔径分布を図8に示す。参考例10の多孔質膜の厚みおよび孔径評価の結果は以下であった。
多孔質膜の厚み:85μm
緻密部位の平均孔径(多孔質膜の最小孔径の平均値):0.73μm
多孔質膜の最小孔径と最大孔径の比:11.1
緻密部位の厚み:21.8μm
 図8より、参考例10の多孔質膜は、分割線No.4~8が緻密部位であり、本明細書の段落番号0097の定義から、分割線No.1~4および分割線No.8~19において、「緻密部位から膜の表面に向かって厚み方向で孔径が連続的に増加している」と判断できる。
[参考例11]細胞移植用デバイス(免疫隔離膜のみ)の作製
 多孔質膜として参考例8で作製したポリスルホン多孔質膜の代わりに参考例10で作製したポリスルホン多孔質膜を用いて、参考例9と同様に細胞移植用デバイス(免疫隔離膜のみ)を作製した。
[参考例12]免疫隔離膜の作製と孔径評価
 ポリスルホン(ソルベイ社製 P3500)18質量部、ポリビニルピロリドン(K-30)12質量部、塩化リチウム0.5質量部、水1質量部をN-メチル-2-ピロリドン68.5質量部に溶解して製膜原液を得た。この製膜原液をPETフィルム表面に乾燥厚み130μmとなるようなウェット膜厚で流延した。上記流延した液膜表面に30℃、相対湿度50%RHに調節した空気を2m/秒で5秒間当てた。その後直ちに水を満たした50℃の凝固液槽に浸漬した。PETフィルムを剥離して多孔質膜を得た。その後、80℃のジエチレングリコール浴に120秒間つけ、その後純水で洗浄し、多孔質膜を得た。この多孔質膜を免疫隔離膜とした。
 参考例12の多孔質膜のバブルポイントは1.3kg/cm2であった。
 参考例8と同様に、厚みおよび孔径を評価した。膜断面のSEM撮影写真を図9、厚さ方向の孔径分布を図10に示す。参考例12の多孔質膜の厚みおよび孔径評価の結果は以下であった。
多孔質膜の厚み:142μm
緻密部位の平均孔径(多孔質膜の最小孔径の平均値):0.45μm
多孔質膜の最小孔径と最大孔径の比:12.2
緻密部位の厚み:27.4μm
 図10より、参考例12の多孔質膜は、分割線No.2~5が緻密部位であり、本明細書の段落番号0097の定義から、分割線No.1~2および分割線No.5~19において、「緻密部位から膜の表面に向かって厚み方向で孔径が連続的に増加している」と判断できる。
[参考例13]細胞移植用デバイス(免疫隔離膜のみ)の作製
 多孔質膜として参考例8で作製したポリスルホン多孔質膜の代わりに参考例12で作製したポリスルホン多孔質膜を用いて、参考例9と同様に細胞移植用デバイス(免疫隔離膜のみ)を作製した。
[実施例1]生体内でのデバイス周囲への血管誘導能評価
 参考例9、11および13で作製した細胞移植用デバイス(免疫隔離膜のみ)に参考例7で作製したmADSCの細胞構造体を1,600個封入し、注入部を封止して細胞移植用デバイスを完成させた。それらを、NOD/SCIDマウスの背部皮下に埋植し、2週経過後に移植部位の組織切片を作製し、組織学的な評価を実施した。2個体に移植した代表的な組織標本を図11に示した。その結果、細胞構造体を含む細胞移植用デバイスでは、デバイス近傍に多数の新生血管が誘導されていることが分かった。
[比較例1]生体内でのデバイス周囲への血管誘導能評価
 参考例9、11、13で作製した細胞移植用デバイス(免疫隔離膜のみ)をNOD/SCIDマウスの背部皮下に埋植し、2週経過後に移植部位の組織切片を作製し、組織学的な評価を実施した。2個体に移植した代表的な組織標本を図12に示した。その結果、細胞構造体を含まない細胞移植用デバイス(免疫隔離膜のみ)では、新生血管の誘導は非常に少ないことが分かった。
[実施例2]
 実施例1および比較例1の結果について、視野当りの血管の総面積、および視野当りの血管本数で定量評価を行った。評価に当たっては4個体のデータを解析し、平均値と標準偏差を算出した。結果、「細胞移植用デバイス」(実施例1)の移植結果では、視野当りの血管総面積が13,391±4,329μm2で、視野当りの血管本数が28.5±7.0本となった。「細胞移植用デバイス(免疫隔離膜のみ)」(比較例1)の移植結果では、視野当りの血管総面積が3,519±3,826μm2で、視野当りの血管本数が8.5±7.1本となった。このことから、「細胞移植用デバイス」では、「細胞移植用デバイス(免疫隔離膜のみ)」に比べて、顕著に多くの新生血管を誘導していることが定量的にも明らかとなった(図13および図14を参照)。尚、統計学的解析についてもt検定により、血管総面積の評価結果、血管本数の評価結果いずれとも、「細胞移植用デバイス(免疫隔離膜のみ)」と「細胞移植用デバイス」では有意な差のあることが分かった。(p<0.05)
[実施例3]生体内でのデバイス周囲への血管誘導能評価(レシピエント動物違い)
 参考例9で作製した細胞移植用デバイス(免疫隔離膜のみ)に参考例7で作製したmADSCの細胞構造体を1,600個封入し、注入部を封止して細胞移植用デバイスを完成させた。それらを、C57BL/6マウスの背部皮下に埋植し、2週経過後に移植部位の組織切片を作製し、組織学的な評価を実施した。尚、参考例9で作製した細胞移植用デバイスのみを移植した場合と比較した組織標本を図15に示した。その結果、細胞構造体を含む細胞移植用デバイスでは、C57BL/6マウスに移植した場合でも、細胞移植用デバイス(免疫隔離膜のみ)を移植した場合と比べて、デバイス近傍に多数の新生血管が誘導されることが分かった。
[参考例14] スフェロイドの作製
 マウス脂肪由来間葉系幹細胞(mADSC)1.2×108cellsを10%FBS(ウシ胎児血清)含有のD-MEM培地(ダルベッコ改変イーグル培地)に4mLに懸濁された状態で、細胞非接着性の35mmディッシュであるEZSPHERE(登録商標)ディッシュType903(スフェロイドウェル口径800μm、スフェロイドウェル深さ300μm、スフェロイドウェル数~約1,200ウェル。底面が窪み部を有する培養面であり、培養面の周縁に立設される側外壁部を有する。AGCテクノグラス製)に播種した。上記ディッシュをCO2インキュベーターで37℃で48時間静置することで、約1,200個の均一なスフェロイドを取得した。
[比較例2]生体内でのデバイス周囲への血管誘導能評価(細胞のみ封入)
 参考例9で作製した細胞移植用デバイス(免疫隔離膜のみ)に参考例14で作製したmADSCのスフェロイドを1,600個封入し、注入部を封止して細胞移植用デバイス(細胞のみ)を完成させた。それらを、C57BL/6マウスの背部皮下に埋植し、2週経過後に移植部位の組織切片を作製し、組織学的な評価を実施した。2個体に移植した代表的な組織標本を図16に示した。その結果、細胞のみを含む細胞移植用デバイスでも、デバイス近傍に新生血管が誘導されることが分かった。
[実施例4]
 比較例2の結果について、視野当りの血管の総面積、および視野当りの血管本数で定量評価を行った。評価に当たっては4個体のデータを解析し、平均値と標準偏差を算出した。結果、「細胞移植用デバイス(細胞のみ)」(比較例2)の移植結果では、視野当りの血管総面積が5871±1053μm2で、視野当りの血管本数が16±5.6本となった。実施例2および比較例2の結果から、「細胞移植用デバイス」では、「細胞移植用デバイス(細胞のみ)」に比べて、顕著に多くの新生血管を誘導していることが定量的にも明らかとなった(図17および図18を参照)。

Claims (13)

  1. (A)複数個の生体親和性高分子ブロックと、少なくとも一種の複数個の細胞とを含み、複数個の前記細胞の隙間に、少なくとも1個の前記生体親和性高分子ブロックが配置されている細胞構造体、および
    (B)前記細胞構造体を内包する免疫隔離膜、
    を含む、細胞移植用デバイス。
  2. 前記生体親和性高分子ブロック一つの大きさが20μm以上200μm以下である、請求項1に記載の細胞移植用デバイス。
  3. 前記生体親和性高分子ブロックにおいて、生体親和性高分子が熱、紫外線または酵素により架橋されている、請求項1または2に記載の細胞移植用デバイス。
  4. 前記生体親和性高分子ブロックが不定形である、請求項1から3の何れか一項に記載の細胞移植用デバイス。
  5. 前記細胞構造体が、細胞1個当り0.0000001μg以上1μg以下の生体親和性高分子ブロックを含む、請求項1から4の何れか一項に記載の細胞移植用デバイス。
  6. 前記免疫隔離膜が、ポリマーを含む多孔質膜である、請求項1から5の何れか一項に記載の細胞移植用デバイス。
  7. 前記多孔質膜の最小孔径が0.02μm~1.5μmである、請求項6に記載の細胞移植用デバイス。
  8. 前記多孔質膜の厚みが10μm~250μmである、請求項6または7に記載の細胞移植用デバイス。
  9. 前記多孔質膜が、孔径が最小となる層状の緻密部位を内部に有し、前記緻密部位から前記多孔質膜の少なくとも一方の表面に向かって厚み方向で孔径が連続的に増加している、請求項6から8の何れか一項に記載の細胞移植用デバイス。
  10. 前記緻密部位の厚みが0.5μm~30μmである、請求項9に記載の細胞移植用デバイス。
  11. 前記多孔質膜の最小孔径と最大孔径との比が3.0~20.0である、請求項6から10の何れか一項に記載の細胞移植用デバイス。
  12. 前記多孔質膜が少なくとも一種のポリスルホンおよびポリビニルピロリドンを含む、請求項6から11の何れか一項に記載の細胞移植用デバイス。
  13. 複数個の生体親和性高分子ブロックと、少なくとも一種の複数個の細胞とを含み、複数個の前記細胞の隙間に、少なくとも1個の前記生体親和性高分子ブロックが配置されている細胞構造体を、免疫隔離膜で内包する工程を含む、請求項1から12の何れか一項に記載の細胞移植用デバイスの製造方法。
PCT/JP2018/032161 2017-08-30 2018-08-30 細胞移植用デバイスおよびその製造方法 WO2019044990A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880056321.XA CN111032099B (zh) 2017-08-30 2018-08-30 细胞移植用设备及其制造方法
EP18852088.6A EP3677287A4 (en) 2017-08-30 2018-08-30 CELL TRANSPLANTATION DEVICE AND ASSOCIATED MANUFACTURING PROCESS
JP2019539624A JP6941175B2 (ja) 2017-08-30 2018-08-30 細胞移植用デバイスおよびその製造方法
US16/805,075 US11439960B2 (en) 2017-08-30 2020-02-28 Cell transplant device and method of manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-165415 2017-08-30
JP2017165415 2017-08-30
JP2018032350 2018-02-26
JP2018-032350 2018-02-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/805,075 Continuation US11439960B2 (en) 2017-08-30 2020-02-28 Cell transplant device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2019044990A1 true WO2019044990A1 (ja) 2019-03-07

Family

ID=65527535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032161 WO2019044990A1 (ja) 2017-08-30 2018-08-30 細胞移植用デバイスおよびその製造方法

Country Status (5)

Country Link
US (1) US11439960B2 (ja)
EP (1) EP3677287A4 (ja)
JP (1) JP6941175B2 (ja)
CN (1) CN111032099B (ja)
WO (1) WO2019044990A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021039610A1 (ja) * 2019-08-23 2021-03-04
WO2021256508A1 (ja) * 2020-06-16 2021-12-23 富士フイルム株式会社 高分子水溶液凍結体の製造方法及び高分子多孔質体の製造方法
WO2022092211A1 (ja) * 2020-10-28 2022-05-05 株式会社クラレ 細胞包埋用ハイドロゲル、免疫隔離デバイス及び移植材料
WO2022092198A1 (ja) * 2020-10-28 2022-05-05 株式会社クラレ 免疫隔離デバイス
JP7349501B2 (ja) 2019-10-01 2023-09-22 富士フイルム株式会社 粘膜下注入材キットおよび粘膜下注入用ゲル

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113045065B (zh) * 2021-03-24 2022-06-14 沈阳航空航天大学 一种基于螺旋电极结构的滑动弧等离子体污水净化系统
CN115487357A (zh) * 2022-08-18 2022-12-20 华南理工大学 一种孔径可控的免疫隔离细胞封装囊袋及其制备方法与应用

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0468966B2 (ja) 1985-07-27 1992-11-04 Fuji Photo Film Co Ltd
JPH04349927A (ja) 1991-05-27 1992-12-04 Fuji Photo Film Co Ltd 精密濾過膜の製法
JPH04351645A (ja) 1991-05-29 1992-12-07 Daikin Ind Ltd 非対称孔径ポリテトラフルオロエチレン多孔膜の製造方法
JPH05504704A (ja) * 1990-10-31 1993-07-22 バクスター、インターナショナル、インコーポレイテッド 密接血管化埋め込み材料
JPH10507111A (ja) 1994-10-07 1998-07-14 バクスター、インターナショナル、インコーポレイテッド 多孔性の微細製作されたポリマー膜構造物
EP1014176A2 (en) 1998-12-23 2000-06-28 Fuji Photo Film B.V. Silver halide emulsions containing recombinant gelatin-like proteins
JP2003190259A (ja) * 2001-12-28 2003-07-08 Hisako Ogawara 人工臓器用チャンバー
JP2004267562A (ja) * 2003-03-10 2004-09-30 Advance Co Ltd 生体用担体及び細胞培養方法
WO2004085473A2 (en) 2003-03-28 2004-10-07 Fuji Photo Film B.V. Rgd-enriched gelatine-like proteins with enhanced cell binding
US6992172B1 (en) 1999-11-12 2006-01-31 Fibrogen, Inc. Recombinant gelatins
WO2008103041A1 (en) 2007-02-21 2008-08-28 Fujifilm Manufacturing Europe B.V. Recombinant gelatins
JP2009112233A (ja) * 2007-11-05 2009-05-28 Nipro Corp コラーゲン基材
JP2010235808A (ja) 2009-03-31 2010-10-21 Fujifilm Corp 多孔フィルムの製造方法
WO2011108517A1 (ja) 2010-03-01 2011-09-09 富士フイルム株式会社 生体親和性を有する高分子ブロックと細胞からなる細胞構造体
JP2014012114A (ja) 2011-08-31 2014-01-23 Fujifilm Corp 細胞移植用細胞構造体および細胞移植用細胞集合体
JP2014512238A (ja) * 2011-04-26 2014-05-22 オイロコル ゲーエムベーハー ラパマイシンおよびセラックにより被覆されたカテーテル用バルーン
JP2017502008A (ja) * 2013-12-10 2017-01-19 デファイメッド 分泌細胞をカプセル化するためのチャンバー
WO2017023379A1 (en) * 2015-08-06 2017-02-09 Lockheed Martin Corporation Implantable graphene membranes with low cytotoxicity
WO2018088451A1 (ja) * 2016-11-11 2018-05-17 富士フイルム株式会社 免疫隔離膜、移植用チャンバー、および移植用デバイス
WO2018088452A1 (ja) * 2016-11-11 2018-05-17 富士フイルム株式会社 免疫隔離膜、移植用チャンバー、および移植用デバイス

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5733336A (en) 1990-10-31 1998-03-31 Baxter International, Inc. Ported tissue implant systems and methods of using same
US5314471A (en) 1991-07-24 1994-05-24 Baxter International Inc. Tissue inplant systems and methods for sustaining viable high cell densities within a host
AU1454192A (en) 1991-02-22 1992-09-15 Pisharodi Madhavan Middle expandable intervertebral disk implant and method
US5800829A (en) 1991-04-25 1998-09-01 Brown University Research Foundation Methods for coextruding immunoisolatory implantable vehicles with a biocompatible jacket and a biocompatible matrix core
EP0550798A1 (de) 1991-10-04 1993-07-14 Kawasumi Laboratories, Inc. Hohlfasermembran auf Basis von Polysulfon
EP0750938B1 (en) 1995-06-30 2005-02-16 Toray Industries, Inc. Manufacture of a polysulfone hollow fiber semipermeable membrane
CN1101684C (zh) 1997-07-24 2003-02-19 薛大权 蜂蛹钙制剂
US20100196433A1 (en) 2005-06-02 2010-08-05 Williams Stuart K Prevascularized devices and related methods
CN1730099A (zh) 2005-08-03 2006-02-08 崔和厚 免疫隔离化细胞药物,其制备方法和其在杀伤肿瘤中的应用
CN101558151B (zh) 2006-03-23 2015-10-21 普拉里斯坦有限公司 细胞扩增方法和藉此产生的细胞和条件培养基用于治疗的用途
US20070237749A1 (en) * 2006-04-07 2007-10-11 Wang Taylor G Multi-membrane immunoisolation system for cellular transplant
JP5050470B2 (ja) * 2006-04-24 2012-10-17 住友金属鉱山株式会社 日射遮蔽分散体、日射遮蔽体、および、それらの製造方法
CN100531806C (zh) 2006-09-13 2009-08-26 重庆大学 羊膜基质覆膜血管内支架及制备方法
KR20080103637A (ko) 2007-05-25 2008-11-28 주식회사 알앤엘바이오 지방유래 줄기세포를 함유하는 사지말단부 허혈성 질환의세포치료용 조성물
JP2009007321A (ja) 2007-05-28 2009-01-15 Sapporo Medical Univ 間葉系幹細胞による難治性腸炎の治療
CN101224392A (zh) 2007-10-23 2008-07-23 武汉科技学院 纤维粉体改性聚合物微孔膜的制备方法
EP2356227B1 (en) 2008-11-14 2018-03-28 Viacyte, Inc. Encapsulation of pancreatic cells derived from human pluripotent stem cells
CN201337642Y (zh) 2008-12-05 2009-11-04 中国人民解放军军事医学科学院野战输血研究所 一种新型免疫隔离单元
JP5606008B2 (ja) 2009-04-13 2014-10-15 三菱重工業株式会社 骨髄間質細胞及び間葉系幹細胞の培養方法、中枢神経系疾患治療用の移植細胞の製造方法
JP5756859B2 (ja) 2011-08-09 2015-07-29 株式会社Joled 画像表示装置
JP5808631B2 (ja) 2011-09-29 2015-11-10 富士フイルム株式会社 血管新生用足場、及び再生医療用の血管の製造方法
KR20220151226A (ko) 2012-09-04 2022-11-14 셀룰래리티 인코포레이티드 조직 생성 방법
CN105025940B (zh) * 2013-02-27 2017-07-11 富士胶片株式会社 细胞移植用细胞结构体、生物亲和性高分子块及它们的制造方法
CN105142570B (zh) 2013-04-24 2018-06-22 雀巢产品技术援助有限公司 包封装置
EP3156081A4 (en) 2014-06-16 2017-08-16 Fujifilm Corporation Cell structure for use in treatment of brain injury, method for producing same, and therapeutic agent for brain injury
US11338248B2 (en) 2014-08-25 2022-05-24 Asahi Kasei Medical Co., Ltd. Porous membrane
JP6898706B2 (ja) 2015-01-05 2021-07-07 ナショナル ヤン−ミン ユニバーシティ 肝疾患を治療するための間葉系幹細胞
TWI741980B (zh) * 2015-04-07 2021-10-11 大陸商四川藍光英諾生物科技股份有限公司 一種生物磚及其用途
JP6516576B2 (ja) 2015-06-15 2019-05-22 株式会社トクヤマ (3r,4s)‐1‐(4‐フルオロフェニル)‐[3(s)‐ヒドロキシ‐3‐(4‐フルオロフェニル)プロピル]‐[4‐(フェニルメトキシ)フェニル]‐2‐アゼチジノンの製造方法
EP3320852B1 (en) 2015-06-30 2021-03-03 FUJIFILM Corporation Photoacoustic image-generating apparatus and insertion object
US11058795B2 (en) 2016-01-19 2021-07-13 Kuraray Co., Ltd. Semipermeable membrane and method of manufacturing the same
EP3473259B1 (en) 2016-06-20 2022-12-21 FUJIFILM Corporation Trophic factor release agent and inflammatory disease treatment agent
JP6790266B2 (ja) 2017-06-29 2020-11-25 富士フイルム株式会社 移植用チャンバーおよび移植用デバイス

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0468966B2 (ja) 1985-07-27 1992-11-04 Fuji Photo Film Co Ltd
JPH05504704A (ja) * 1990-10-31 1993-07-22 バクスター、インターナショナル、インコーポレイテッド 密接血管化埋め込み材料
JPH04349927A (ja) 1991-05-27 1992-12-04 Fuji Photo Film Co Ltd 精密濾過膜の製法
JPH04351645A (ja) 1991-05-29 1992-12-07 Daikin Ind Ltd 非対称孔径ポリテトラフルオロエチレン多孔膜の製造方法
JPH10507111A (ja) 1994-10-07 1998-07-14 バクスター、インターナショナル、インコーポレイテッド 多孔性の微細製作されたポリマー膜構造物
EP1014176A2 (en) 1998-12-23 2000-06-28 Fuji Photo Film B.V. Silver halide emulsions containing recombinant gelatin-like proteins
US6992172B1 (en) 1999-11-12 2006-01-31 Fibrogen, Inc. Recombinant gelatins
JP2003190259A (ja) * 2001-12-28 2003-07-08 Hisako Ogawara 人工臓器用チャンバー
JP2004267562A (ja) * 2003-03-10 2004-09-30 Advance Co Ltd 生体用担体及び細胞培養方法
WO2004085473A2 (en) 2003-03-28 2004-10-07 Fuji Photo Film B.V. Rgd-enriched gelatine-like proteins with enhanced cell binding
WO2008103041A1 (en) 2007-02-21 2008-08-28 Fujifilm Manufacturing Europe B.V. Recombinant gelatins
JP2009112233A (ja) * 2007-11-05 2009-05-28 Nipro Corp コラーゲン基材
JP2010235808A (ja) 2009-03-31 2010-10-21 Fujifilm Corp 多孔フィルムの製造方法
WO2011108517A1 (ja) 2010-03-01 2011-09-09 富士フイルム株式会社 生体親和性を有する高分子ブロックと細胞からなる細胞構造体
JP2014512238A (ja) * 2011-04-26 2014-05-22 オイロコル ゲーエムベーハー ラパマイシンおよびセラックにより被覆されたカテーテル用バルーン
JP2014012114A (ja) 2011-08-31 2014-01-23 Fujifilm Corp 細胞移植用細胞構造体および細胞移植用細胞集合体
JP2017502008A (ja) * 2013-12-10 2017-01-19 デファイメッド 分泌細胞をカプセル化するためのチャンバー
WO2017023379A1 (en) * 2015-08-06 2017-02-09 Lockheed Martin Corporation Implantable graphene membranes with low cytotoxicity
WO2018088451A1 (ja) * 2016-11-11 2018-05-17 富士フイルム株式会社 免疫隔離膜、移植用チャンバー、および移植用デバイス
WO2018088452A1 (ja) * 2016-11-11 2018-05-17 富士フイルム株式会社 免疫隔離膜、移植用チャンバー、および移植用デバイス

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
AREA OF CHEMISTRY, vol. 11, no. 10, 1957, pages 719 - 725
FRAGRANCE JOURNAL, vol. 50, 1981, pages 79 - 82
GASTEIGER E.GATTIKER A.HOOGLAND C.IVANYI I.APPEL R. D.BAIROCH A.: "Nucleic Acids Res.", vol. 31, 2003, article "ExPASy: the proteomics server for in-depth protein knowledge and analysis", pages: 3784 - 3788
GASTEIGER E.HOOGLAND C.GATTIKER A.DUVAUD S.WILKINS M. R.APPEL R. D.BAIROCH A.: "The Proteomics Protocols Handbook", 2005, HUMANA PRESS, article "Protein Identification and Analysis Tools on the ExPASy Server", pages: 571 - 607
J. MOL. BIOL., vol. 215, 1990, pages 403 - 410
MAXEY, C. R.: "Phitogr. Gelatin", vol. 2, 1976, J. ACADEMIC
PHARMACEUTICAL BULLETIN, vol. 2, no. 2, 1954, pages 163 - 173
YOSHIO KOUDA ET AL.: "New Edition Organic Conceptual Diagram-Foundation and Application", 2008, SANKYO SHUPPAN CO., LTD.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021039610A1 (ja) * 2019-08-23 2021-03-04
WO2021039610A1 (ja) * 2019-08-23 2021-03-04 富士フイルム株式会社 ミクロカプセルと細胞構造体とを含む組成物
EP4019025A4 (en) * 2019-08-23 2022-11-30 FUJIFILM Corporation COMPOSITION COMPRISING A MICROCAPSULE AND A CELLULAR STRUCTURE
JP7431247B2 (ja) 2019-08-23 2024-02-14 富士フイルム株式会社 ミクロカプセルと細胞構造体とを含む組成物
JP7349501B2 (ja) 2019-10-01 2023-09-22 富士フイルム株式会社 粘膜下注入材キットおよび粘膜下注入用ゲル
WO2021256508A1 (ja) * 2020-06-16 2021-12-23 富士フイルム株式会社 高分子水溶液凍結体の製造方法及び高分子多孔質体の製造方法
JP7426484B2 (ja) 2020-06-16 2024-02-01 富士フイルム株式会社 高分子水溶液凍結体の製造方法及び高分子多孔質体の製造方法
WO2022092211A1 (ja) * 2020-10-28 2022-05-05 株式会社クラレ 細胞包埋用ハイドロゲル、免疫隔離デバイス及び移植材料
WO2022092198A1 (ja) * 2020-10-28 2022-05-05 株式会社クラレ 免疫隔離デバイス

Also Published As

Publication number Publication date
CN111032099B (zh) 2022-08-30
US20200246760A1 (en) 2020-08-06
US11439960B2 (en) 2022-09-13
CN111032099A (zh) 2020-04-17
JP6941175B2 (ja) 2021-09-29
EP3677287A4 (en) 2020-10-21
JPWO2019044990A1 (ja) 2020-08-27
EP3677287A1 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
US11439960B2 (en) Cell transplant device and method of manufacturing the same
JP6506326B2 (ja) 細胞移植用細胞構造体、生体親和性高分子ブロック及びそれらの製造方法
JP6510663B2 (ja) シート状細胞構造体の製造方法及びシート状細胞構造体
WO2015046216A1 (ja) 生体親和性高分子多孔質体の製造方法、生体親和性高分子多孔質体、生体親和性高分子ブロック並びに細胞構造体
US11471564B2 (en) Angiogenic agent and method of manufacturing the same
US11241518B2 (en) Cartilage regenerative material
JP6330039B2 (ja) 細胞構造体及び細胞構造体の製造方法
JP2019030733A (ja) 管状構造物、管状構造物を製造するための装置、及び管状構造物の製造方法
JP6434624B2 (ja) 細胞構造体及び細胞構造体の製造方法
JP2022079721A (ja) 間葉系幹細胞からインスリン産生細胞を製造する方法、インスリン産生細胞、細胞構造体および医薬組成物
JP6467493B2 (ja) 軟骨再生材料及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852088

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539624

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018852088

Country of ref document: EP

Effective date: 20200330