WO2018088452A1 - 免疫隔離膜、移植用チャンバー、および移植用デバイス - Google Patents

免疫隔離膜、移植用チャンバー、および移植用デバイス Download PDF

Info

Publication number
WO2018088452A1
WO2018088452A1 PCT/JP2017/040339 JP2017040339W WO2018088452A1 WO 2018088452 A1 WO2018088452 A1 WO 2018088452A1 JP 2017040339 W JP2017040339 W JP 2017040339W WO 2018088452 A1 WO2018088452 A1 WO 2018088452A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
porous membrane
immunoisolation
porous
film
Prior art date
Application number
PCT/JP2017/040339
Other languages
English (en)
French (fr)
Inventor
勇輔 望月
中村 健太郎
大谷 薫明
直裕 松永
竜太 竹上
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP17869451.9A priority Critical patent/EP3539575A4/en
Priority to JP2018550239A priority patent/JP6818042B2/ja
Priority to CN201780069833.5A priority patent/CN109982727B/zh
Publication of WO2018088452A1 publication Critical patent/WO2018088452A1/ja
Priority to US16/409,241 priority patent/US11051930B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/022Artificial gland structures using bioreactors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/28Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/122Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells for inducing tolerance or supression of immune responses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/126Immunoprotecting barriers, e.g. jackets, diffusion chambers
    • A61K2035/128Immunoprotecting barriers, e.g. jackets, diffusion chambers capsules, e.g. microcapsules

Definitions

  • the present invention relates to an immune isolation membrane.
  • the present invention also relates to an implantation chamber having an immune isolation membrane and an implantation device.
  • Immunoisolation is one method of preventing an immune response in a recipient during transplantation of biological components such as cells, tissues, organs, and the immunoisolation membrane is permeable to water, oxygen, glucose, etc.
  • the immunoisolation membrane is permeable to water, oxygen, glucose, etc.
  • it is a permselective membrane that performs immunoisolation by preventing permeation of immune cells involved in immune rejection.
  • the purpose of transplantation can be achieved while preventing immune rejection by a transplantation device using an immunoisolation membrane that permeates the physiologically active substance for transplantation of cells that secrete the physiologically active substance.
  • a vascular network may be formed around the transplant device.
  • the vascular network is not formed and the implantation device is encapsulated by fibroblasts, it can lead to necrosis of the biological composition. It has been shown that the properties of such vascular network formation depend on the microstructure of the immune isolation membrane.
  • Patent Document 1 discloses a porous film formed by stacking a plurality of polyimide polymer films having pores formed by lithography or etching as an immune isolation film having a structure that contributes to the promotion of vascular network formation.
  • Non-Patent Document 1 a commercially available transplant formed using a porous membrane that is a laminated membrane of a cell-retaining membrane having a pore diameter of 0.45 ⁇ m and an outer membrane of polytetrafluoroethylene (PTFE) having a pore diameter of 5 ⁇ m. It has been described that transplantation was performed using a chamber (TheraCyte®) and this outer membrane induced the formation of new blood vessels in the tissue in the recipient.
  • PTFE polytetrafluoroethylene
  • an immunoisolation membrane described in any one of Patent Document 1 and Non-Patent Document 1 needs to be laminated in a plurality of layers, which is likely to increase costs.
  • an immunoisolation membrane having a small pore size on the surface as described in Non-Patent Document 1 generally tends to cause a decrease in substance permeability due to adsorption of proteins or the like.
  • An object of the present invention is to provide an immunoisolation membrane that is less likely to cause a decrease in substance permeability and can be manufactured at low cost.
  • the present inventors diligently studied to solve the above-mentioned problems, found a fine structure of an immune isolation membrane that hardly causes a decrease in substance permeability, and completed the present invention based on this finding. That is, the present invention provides the following ⁇ 1> to ⁇ 18>.
  • ⁇ 1> including a porous membrane containing a polymer, The porous membrane has a layered dense portion in which the pore diameter is minimized, and the pore diameter continuously increases in the thickness direction from the dense portion toward at least one surface of the porous membrane.
  • Immune isolation membrane ⁇ 2>
  • ⁇ 3> The immunoisolation membrane according to ⁇ 1> or ⁇ 2>, wherein the porous membrane has a minimum pore size of 0.02 ⁇ m to 1.5 ⁇ m.
  • ⁇ 4> The immunoisolation membrane according to ⁇ 1> or ⁇ 2>, wherein the porous membrane has a minimum pore size of 0.02 ⁇ m to 1.3 ⁇ m.
  • ⁇ 5> The immunoisolation membrane according to any one of ⁇ 1> to ⁇ 4>, wherein the ratio of the minimum pore size to the maximum pore size of the porous membrane is 3.0 to 20.0.
  • ⁇ 6> The immune isolation membrane according to any one of ⁇ 1> to ⁇ 5>, wherein the dense part has a thickness of 0.5 to 30 ⁇ m.
  • ⁇ 7> The immune isolation membrane according to any one of ⁇ 1> to ⁇ 6>, wherein the porous membrane has a thickness of 10 ⁇ m to 250 ⁇ m.
  • ⁇ 8> The immunoisolation membrane according to any one of ⁇ 1> to ⁇ 7>, wherein the porous membrane contains at least one polysulfone and polyvinylpyrrolidone.
  • ⁇ 9> The immunoisolation according to any one of ⁇ 1> to ⁇ 8>, wherein the dense site is at a distance within one third of the thickness of the porous membrane from any one surface X of the porous membrane film.
  • ⁇ 11> The immunoisolation membrane according to ⁇ 10>, wherein the pore diameter continuously increases in the thickness direction from the dense site toward at least the surface opposite to the surface X of the porous membrane.
  • ⁇ 12> The immunoisolation membrane according to ⁇ 11>, wherein the pore diameter continuously increases in the thickness direction from the dense portion toward both surfaces of the porous membrane.
  • a transplantation chamber for enclosing a biological composition The transplant chamber having the immunoisolation membrane according to any one of ⁇ 1> to ⁇ 12> on at least a part of a surface forming the inside and the outside of the transplant chamber.
  • a transplantation chamber for enclosing a biological composition The immunoisolation membrane according to any one of ⁇ 9> to ⁇ 12> is provided on at least a part of the surface forming the inside and the outside of the transplant chamber, The transplant chamber in which the surface X of the porous membrane is on the inner side.
  • ⁇ 16> A transplant device in which the biological composition is contained in the transplant chamber according to any one of ⁇ 13> to ⁇ 15>.
  • ⁇ 17> The transplant device according to ⁇ 16>, wherein the biological composition releases a physiologically active substance.
  • the physiologically active substance is insulin.
  • the present invention it is possible to provide an immunoisolation membrane that is less likely to cause a decrease in substance permeability and can be manufactured at low cost.
  • the transplantation device in which the biological composition is encapsulated in the transplantation chamber having the immunoisolation membrane of the present invention is less susceptible to immune rejection after transplantation in the recipient, and can be used for a long time.
  • an immunoisolation membrane means a membrane used for immunoisolation.
  • Immune sequestration is a method of preventing immune rejection.
  • immune sequestration is one method of preventing recipient immune rejection during transplantation.
  • immune rejection is the rejection of the recipient to the biological composition being transplanted.
  • Immune sequestration sequesters biological components from recipient immune rejection. Immune rejection includes those due to cellular immune responses and those due to humoral immune responses.
  • the immune isolation membrane is a permselective membrane that allows nutrients such as oxygen, water, and glucose to permeate and blocks permeation of immune cells involved in immune rejection.
  • immune cells include macrophages, dendritic cells, neutrophils, eosinophils, basophils, natural killer cells, various T cells, B cells, and other lymphocytes.
  • the immunoisolation membrane of the present invention preferably blocks permeation of high molecular weight proteins such as immunoglobulins (IgM or IgG, etc.) and complement depending on the application, and contains a relatively low molecular weight physiologically active substance such as insulin. It is preferable to transmit.
  • the selective permeability of the immunoisolation membrane may be adjusted according to the application.
  • the immunoisolation membrane of the present invention may be a permselective membrane that blocks substances such as a molecular weight of 500 kDa or more, 100 kDa or more, 80 kDa or more, or 50 kDa or more.
  • the immunoisolation membrane is preferably capable of blocking the permeation of the smallest IgG (molecular weight of about 160 kDa) among antibodies.
  • the immunoisolation membrane of the present invention may be a selectively permeable membrane that blocks substances having a sphere size of 500 nm or more, 100 nm or more, 50 nm or more, or 10 nm or more.
  • the immunoisolation membrane of the present invention includes a porous membrane containing a polymer.
  • the immunoisolation membrane of the present invention may consist only of a porous membrane or may contain other layers. Examples of the other layer include a hydrogel film.
  • the immunoisolation membrane of the present invention may have a protective film that can be easily peeled off on the surface for transportation or the like.
  • the thickness of the immunoisolation membrane of the present invention is not particularly limited, but may be 10 ⁇ m to 500 ⁇ m, preferably 20 ⁇ m to 300 ⁇ m, and more preferably 30 ⁇ m to 250 ⁇ m. In particular, the thickness of the immunoisolation membrane of the present invention is more preferably 10 ⁇ m to 200 ⁇ m, further preferably 10 ⁇ m to 100 ⁇ m, and particularly preferably 10 ⁇ m to 50 ⁇ m.
  • a porous membrane refers to a membrane having a plurality of pores.
  • the hole can be confirmed by, for example, a scanning electron microscope (SEM) image or a transmission electron microscope (TEM) image of the film cross section.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the thickness of the porous membrane is not particularly limited, but may be 10 ⁇ m to 250 ⁇ m, preferably 20 ⁇ m to 220 ⁇ m, and more preferably 30 ⁇ m to 200 ⁇ m.
  • the thickness of the porous membrane is more preferably 10 ⁇ m to 200 ⁇ m, further preferably 10 ⁇ m to 100 ⁇ m, and particularly preferably 10 ⁇ m to 50 ⁇ m.
  • the membrane strength can be set such that the transplantation chamber does not break within the recipient.
  • the thickness of the porous membrane can be set to 250 ⁇ m or less, it is possible to provide a transplantation chamber having a rigidity that does not cause discomfort to the recipient.
  • the porous membrane has a layered dense portion in which the pore diameter is minimized, and the pore diameter is continuous in the thickness direction from the dense portion toward at least one surface of the porous membrane.
  • the hole diameter is determined by the average hole diameter of a section or dividing line described later.
  • a hole diameter means the diameter of a hole.
  • the surface of the film means a main surface (a front surface or a back surface indicating the area of the film), and does not mean a surface in the thickness direction at the end of the film.
  • the surface of the porous membrane may be an interface with another layer.
  • the porous membrane is substantially uniform in the whole area with respect to the pore size in the in-membrane direction (direction parallel to the membrane surface) and the pore size distribution (difference in pore size in the thickness direction). It preferably has a structure.
  • the immunoisolation membrane of the present invention can improve the lifetime. This is because the effect of performing multi-stage filtration using a plurality of membranes having substantially different pore sizes can be obtained, and deterioration of the membrane can be prevented.
  • the pore diameter may be measured from a photograph of the film cross section obtained by an electron microscope.
  • the porous membrane is cut with a microtome or the like, and a photograph of the cross section of the porous membrane can be obtained as a slice of a thin film whose cross section can be observed.
  • the comparison of the pore diameter in the thickness direction of a film having a thickness of more than 100 ⁇ m is made by dividing an SEM photograph of the film cross section in the film thickness direction.
  • the number of divisions can be appropriately selected from the thickness of the film.
  • the number of divisions is at least 5 or more.
  • the size of the division width means the size of the width in the thickness direction of the film, and does not mean the width size in the photograph.
  • the pore diameter in the thickness direction of the membrane is compared as the average pore diameter of each section.
  • the average pore diameter of each section may be, for example, an average value of 50 holes in each section of the membrane cross-sectional view.
  • the film cross-sectional view in this case may be obtained, for example, with a width of 80 ⁇ m (a distance of 80 ⁇ m in a direction parallel to the surface).
  • the layered dense part having the smallest pore diameter refers to the layered part of the porous film corresponding to the section having the smallest average pore diameter among the sections of the membrane cross section. Even if the dense part consists of parts corresponding to one section, such as two, three, etc., from parts corresponding to a plurality of sections having an average pore diameter within 1.1 times that of the section having the smallest average pore diameter It may be.
  • the comparison of the pore diameter in the thickness direction of the film having a thickness of 100 ⁇ m or less is performed by comparing the pore diameters in 19 dividing lines when the SEM photograph of the cross section of the film is divided into 20 in the thickness direction of the film.
  • each hole diameter is measured, and an average value is calculated to obtain an average hole diameter.
  • the hole diameter is not the length of the portion where the selected hole intersects the dividing line, but the area of the hole is calculated by image processing from the SEM photograph of the membrane cross section, and the obtained area is the area of a perfect circle Use the calculated diameter.
  • the field of view of the SEM photograph for obtaining the film cross section is expanded to measure 50.
  • the pore diameters in the thickness direction of the membrane are compared. Even when the pore diameters in the thickness direction of the membrane having a thickness of more than 100 ⁇ m are compared using the dividing line, the structure of the porous membrane can be determined as in the case of using the above-mentioned classification.
  • the layered dense part having the smallest pore diameter refers to the layered part of the porous film including the parting line having the smallest average pore diameter among the parting lines in the film cross-sectional photograph.
  • the dense part may include two or more dividing lines. For example, when two or more continuous dividing lines having an average pore diameter within 1.1 times the minimum average pore diameter are continuous, the dense part includes the two or more continuous dividing lines.
  • the thickness of the dense portion is the product of the number of dividing lines included in the dense portion and 1/20 of the thickness of the film.
  • the thickness of the dense part may be 0.5 ⁇ m to 50 ⁇ m, and preferably 0.5 ⁇ m to 30 ⁇ m.
  • the average pore size of the dense part is defined as the minimum pore size of the porous membrane.
  • the minimum pore size of the porous membrane is preferably 0.02 ⁇ m to 1.5 ⁇ m, more preferably 0.02 ⁇ m to 1.3 ⁇ m. This is because at least normal cell permeation can be prevented with such a minimum pore size of the porous membrane.
  • the average pore diameter of the dense part can also be measured by ASTM F316-80.
  • the porous membrane has a dense part in the membrane.
  • the term “in the film” means that the surface of the film is not touched, and “having a dense part in the film” means that the dense part is not the above-mentioned section closest to any surface of the film, or the dense part is It means that it is not a part including the dividing line closest to any surface of the film.
  • the use of a porous membrane having a structure having a dense portion in the membrane is intended to allow permeation rather than the case of using a porous membrane having the same dense portion in contact with the surface.
  • the permeability of the formed material is difficult to decrease. Without being bound by any theory, it is thought that protein adsorption is less likely to occur due to the presence of dense sites in the membrane.
  • the dense part is biased to one of the surface sides with respect to the central part of the thickness of the porous film.
  • the dense part is preferably at a distance of less than one half of the thickness of the porous film from any one surface of the porous film, and more preferably within a distance of two fifths or less. It is more preferable that the distance is within a third, and it is particularly preferable that the distance is within a quarter. This distance may be determined in the above-mentioned film cross-sectional photograph.
  • the surface of the porous membrane closer to the dense part is referred to as “surface X”.
  • the pore diameter continuously increases in the thickness direction from the dense part toward at least one of the surfaces.
  • the pore diameter may continuously increase in the thickness direction from the dense portion toward the surface X, and the pore diameter continuously increases in the thickness direction from the dense portion toward the surface opposite to the surface X.
  • the pore diameter may be continuously increased from the dense part to any surface of the porous membrane in the thickness direction.
  • it is preferable that the pore diameter is continuously increased in the thickness direction from at least the dense portion toward the surface opposite to the surface X, and when moving from the dense portion to any surface of the porous film in the thickness direction. More preferably, the pore diameter continuously increases.
  • the pore diameter increases continuously in the thickness direction means that the difference in the average pore diameter between adjacent sections or dividing lines in the thickness direction is the difference between the maximum average pore diameter (maximum pore diameter) and the minimum average pore diameter (minimum pore diameter). It means increasing so as to be 50% or less, preferably 40% or less, more preferably 30% or less. “Successively increasing” essentially means that there is no decrease and that the increase is uniform, but a decreasing site may occur accidentally. For example, when two sections are combined from the surface, the average value of the combination increases uniformly (decreases uniformly when going from the surface to the dense part). It can be determined that the pore diameter continuously increases in the thickness direction.
  • the structure of the porous membrane in which the pore diameter continuously increases in the thickness direction can be realized by, for example, a manufacturing method described later.
  • the maximum pore diameter of the porous membrane is preferably more than 1.5 ⁇ m and not more than 25 ⁇ m, more preferably 1.8 ⁇ m to 23 ⁇ m, still more preferably 2.0 ⁇ m to 21 ⁇ m.
  • the average pore diameter of the section having the maximum average pore diameter among the sections of the membrane cross section or the average pore diameter of the dividing line having the maximum average pore diameter among the dividing lines is the maximum pore diameter of the porous membrane.
  • Ratio of the average pore size of the dense part to the maximum pore size of the porous membrane (the ratio of the minimum pore size of the porous membrane to the maximum pore size, the value obtained by dividing the maximum pore size by the minimum pore size, Is preferably 3 or more, more preferably 4 or more, and still more preferably 5 or more. This is to increase the average pore size other than the dense part and increase the material permeability of the porous membrane.
  • the anisotropy ratio is preferably 25 or less, and more preferably 20 or less. This is because the effects such as the above-described multistage filtration can be efficiently obtained when the anisotropy ratio is 25 or less.
  • the section having the largest average pore diameter is preferably a section closest to any surface of the membrane or a section in contact with the section. Moreover, it is preferable that the dividing line with the maximum average pore diameter is closest to any surface of the membrane.
  • the average pore size is preferably more than 0.05 ⁇ m and 25 ⁇ m or less, more preferably more than 0.08 ⁇ m and 23 ⁇ m or less, more than 0.5 ⁇ m and less than 21 ⁇ m. More preferably.
  • the ratio of the average pore size of the section or dividing line closest to any surface of the membrane to the average pore size of the dense portion is preferably 1.2 or more and 20 or less, and preferably 1.5 or more and 15 or less. Is more preferably 2 or more and 13 or less.
  • the porous membrane preferably satisfies the formula (I) and the formula (II) on at least one surface.
  • A represents the ratio of N element (nitrogen atom) to C element (carbon atom) on the surface of the film
  • B represents the ratio of N element to C element at a depth of 30 nm from the same surface.
  • Formula (II) indicates that a certain amount or more of N element exists on at least one surface of the porous film, and Formula (I) indicates that the N element in the porous film is unevenly distributed on the surface of less than 30 nm. It shows that it is.
  • the N element is preferably derived from a nitrogen-containing polymer. Further, the nitrogen-containing polymer is preferably polyvinyl pyrrolidone.
  • the biocompatibility of the porous membrane particularly, the biocompatibility on the surface side satisfying the formula (I) and the formula (II) is increased.
  • the porous membrane only one of the surfaces may satisfy the formula (I) and the formula (II), or both surfaces may satisfy the formula (I) and the formula (II). It is preferable that both surfaces satisfy the formula (I) and the formula (II).
  • the surface may be inside or outside in the transplantation chamber described later, but it should be inside. Is preferred.
  • the surface satisfying the formula (I) and the formula (II) is preferably the surface X.
  • the ratio of the N element to the C element on the film surface (A value) and the ratio of the N element to the C element at a depth of 30 nm from the surface (B value) were calculated using XPS measurement results.
  • XPS measurement is X-ray photoelectron spectroscopy, which is a method of analyzing the composition of elements constituting the film surface by irradiating the film surface with X-rays and measuring the kinetic energy of photoelectrons emitted from the film surface. .
  • the A value is calculated from the result at the start of sputtering under the conditions using the monochromatic Al—K ⁇ ray described in the examples, and B is calculated from the result of the time calculated to be 30 nm from the surface of the film measured from the sputtering rate. The value shall be calculated.
  • B / A may be 0.02 or more, preferably 0.03 or more, and more preferably 0.05 or more.
  • A is preferably 0.050 or more, and more preferably 0.080 or more.
  • A should just be 0.20 or less, it is preferable that it is 0.15 or less, and it is more preferable that it is 0.10 or less.
  • B may be 0.001 to 0.10, preferably 0.002 to 0.08, and more preferably 0.003 to 0.07.
  • the element distribution of the porous film is determined in the method for producing a porous film, which will be described later.
  • the temperature can be controlled by the temperature of the diethylene glycol bath for cleaning, the immersion time in the diethylene glycol bath for cleaning, the speed of the porous production line, and the like.
  • the distribution of the N element can also be controlled by the amount of water contained in the film forming stock solution.
  • the porous membrane includes a polymer.
  • the porous membrane is preferably composed essentially of a polymer.
  • the polymer forming the porous membrane is preferably biocompatible.
  • biocompatibility means non-toxicity and non-allergenicity, but does not include the property that the polymer is encapsulated in vivo.
  • the polymer preferably has a number average molecular weight (Mn) of 1,000 to 10,000,000, more preferably 5,000 to 1,000,000.
  • the polymer examples include a thermoplastic or thermosetting polymer, and a thermoplastic polymer is preferable.
  • Specific examples of the polymer include polysulfone, cellulose acylate such as cellulose acetate, nitrocellulose, sulfonated polysulfone, polyethersulfone, polyvinylidene fluoride, polyacrylonitrile, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, ethylene-acetic acid.
  • Saponified vinyl copolymer polyvinyl alcohol, polycarbonate, organosiloxane-polycarbonate copolymer, polyester carbonate, organopolysiloxane, polyphenylene oxide, polyamide, polyimide, polyamideimide, polybenzimidazole, ethylene vinyl alcohol copolymer, polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • These may be homopolymers, copolymers, polymer blends, or polymer alloys from the viewpoints of solubility, optical physical properties, electrical physical properties, strength, elasticity, and the like.
  • polysulfone and cellulose acylate are preferable, and polysulfone is more preferable.
  • the porous membrane preferably further contains a hydrophilic polymer.
  • the hydrophilic polymer include polyvinyl pyrrolidone, hydroxypropyl cellulose, and hydroxyethyl cellulose. Of these, polyvinylpyrrolidone is particularly preferred. Biocompatibility can be improved by combining hydrophobic polysulfone or polyethersulfone with hydrophilic polyvinylpyrrolidone.
  • the polyvinyl pyrrolidone is preferably contained in an amount of 0.05 to 8.0% by mass, more preferably 0.1 to 5.0% by mass, more preferably 0.2 to More preferably, it is contained in an amount of 4.0% by mass.
  • the porous membrane may contain components other than the polymer as additives.
  • the additives include metal salts of inorganic acids such as sodium chloride, lithium chloride, sodium nitrate, potassium nitrate, sodium sulfate and zinc chloride, metal salts of organic acids such as sodium acetate and sodium formate, and other high salts such as polyethylene glycol. Examples include molecules, polymer electrolytes such as sodium polystyrene sulfonate and polyvinylbenzyltrimethylammonium chloride, and ionic surfactants such as sodium dioctylsulfosuccinate and sodium alkylmethyl taurate.
  • the additive may act as a swelling agent for the porous structure. As an additive, it is preferable to use a metal salt.
  • the porous membrane containing polysulfone or polyethersulfone preferably contains lithium chloride.
  • the porous film is preferably a film formed from one composition as a single layer, and preferably not a multi-layered laminated structure.
  • the method for producing the porous film is not particularly limited as long as the porous film having the above structure can be formed, and any ordinary polymer film forming method can be used.
  • the polymer film forming method include a stretching method and a casting method, and the casting method is preferable.
  • a porous membrane having the above-described structure can be produced by adjusting the type and amount of the solvent used in the film-forming stock solution and the drying method after casting.
  • the production of the porous membrane by the casting method can be performed, for example, by a method including the following (1) to (4) in this order.
  • a film-forming stock solution containing a polymer, an additive as required, and a solvent as required is cast on a support in a dissolved state.
  • (3) The film obtained after applying the temperature-controlled humid air is immersed in the coagulation liquid.
  • the support is peeled off as necessary.
  • the temperature of the conditioned humidified air may be 4 ° C to 60 ° C, preferably 10 ° C to 40 ° C.
  • the relative humidity of the temperature-controlled humid air may be 15% to 100%, preferably 25% to 95%.
  • the temperature-controlled humid air may be applied at a wind speed of 0.1 m / second to 10 m / second for 0.1 seconds to 30 seconds, preferably 1 second to 10 seconds.
  • the average pore diameter and position of the dense part can be controlled by the moisture concentration contained in the temperature-controlled humid air and the time during which the temperature-controlled humidity is applied. In addition, the average pore diameter of the dense part can be controlled also by the water content in the film-forming stock solution.
  • the evaporation of the solvent can be controlled to cause coacervation from the surface of the liquid film toward the inside of the film.
  • the polymer has low solubility but is immersed in a coagulation solution containing a solvent compatible with the polymer solvent to fix the coacervation phase as micropores and form pores other than micropores. can do.
  • the temperature of the coagulation liquid may be ⁇ 10 ° C. to 80 ° C.
  • the temperature of the coagulation liquid may be ⁇ 10 ° C. to 80 ° C.
  • a plastic film or a glass plate may be used as the support.
  • the material of the plastic film include polyesters such as polyethylene terephthalate (PET), polycarbonate, acrylic resin, epoxy resin, polyurethane, polyamide, polyolefin, cellulose derivative, and silicone.
  • PET polyethylene terephthalate
  • acrylic resin epoxy resin
  • polyurethane polyamide
  • polyolefin polyamide
  • polyolefin polyamide
  • cellulose derivative cellulose derivative
  • silicone silicone
  • a glass plate or PET is preferable, and PET is more preferable.
  • the film-forming stock solution may contain a solvent.
  • a solvent having high solubility of the polymer to be used hereinafter sometimes referred to as “good solvent” may be used depending on the polymer to be used.
  • the good solvent is preferably a solvent that is quickly replaced with the coagulation liquid when immersed in the coagulation liquid.
  • the solvent include N-methyl-2-pyrrolidone, dioxane, tetrahydrofuran, dimethylformamide, dimethylacetamide or a mixed solvent thereof when the polymer is polysulfone or the like, and dioxane, N when the polymer is polyacrylonitrile or the like.
  • -Methyl-2-pyrrolidone dimethylformamide, dimethylacetamide, dimethyl sulfoxide or a mixed solvent thereof may be mentioned.
  • the polymer is polyamide or the like, dimethylformamide, dimethylacetamide or a mixed solvent thereof may be mentioned, and the polymer may be cellulose acetate.
  • the like include acetone, dioxane, tetrahydrofuran, N-methyl-2-pyrrolidone, or a mixed solvent thereof. Of these, N-methyl-2-pyrrolidone is preferably used.
  • Non-solvents include water, cellosolves, methanol, ethanol, propanol, acetone, tetrahydrofuran, polyethylene glycol, glycerin and the like. Of these, water is preferably used.
  • the polymer concentration as the film-forming stock solution may be 5% by mass or more and 35% by mass or less, preferably 10% by mass or more and 30% by mass or less. By being 35% by mass or less, sufficient permeability (for example, water permeability) can be imparted to the obtained porous membrane, and by setting it to 5% by mass or more, a porous membrane that selectively transmits a substance Can be secured.
  • the addition amount of the additive is not particularly limited as long as the uniformity of the film forming stock solution is not lost by the addition, but is usually 0.5% by volume or more and 10% by volume or less with respect to the solvent.
  • the ratio of the non-solvent to the good solvent is not particularly limited as long as the mixed solution can be kept in a uniform state, but is 1.0 mass% to 50 mass%. It is preferably 2.0% by mass to 30% by mass, more preferably 3.0% by mass to 10% by mass.
  • polyvinylpyrrolidone is based on the total mass of polysulfone and polyethersulfone, The content is preferably 50 to 120% by mass, and more preferably 80 to 110% by mass.
  • a porous film containing about 0.05 to 8.0% by mass of polyvinylpyrrolidone can be obtained. The amount of polyvinylpyrrolidone is reduced because polyvinylpyrrolidone is largely removed in the washing process.
  • lithium chloride is preferably contained in an amount of 5% by mass to 20% by mass with respect to the total mass of polysulfone and polyethersulfone. More preferably, it is contained at 15% by mass.
  • the coagulation liquid it is preferable to use a solvent having low solubility of the polymer used.
  • solvents include water, alcohols such as methanol, ethanol and butanol; glycols such as ethylene glycol and diethylene glycol; aliphatic hydrocarbons such as ether, n-hexane and n-heptane; Examples include glycerols.
  • preferable coagulating liquid include water, alcohols, or a mixture of two or more thereof. Of these, water is preferably used.
  • washing can be performed by immersing in a solvent.
  • the washing solvent is preferably diethylene glycol.
  • the distribution of N element in the porous film can be adjusted by using diethylene glycol as the cleaning solvent and adjusting either or both of the temperature and the immersion time of diethylene glycol in which the film is immersed.
  • the remaining amount of polyvinylpyrrolidone in the membrane can be controlled. After diethylene glycol, it may be further washed with water.
  • a membrane forming stock solution for the porous membrane As a membrane forming stock solution for the porous membrane, a membrane forming stock solution obtained by dissolving polysulfone and polyvinylpyrrolidone in N-methyl-2-pyrrolidone and adding water is preferable.
  • the method for producing the porous membrane reference can be made to JP-A-4-349927, JP-B-4-68966, JP-A-4-351645, JP-A-2010-235808, and the like.
  • the immunoisolation membrane of the present invention may contain a layer other than the porous membrane.
  • the other layer include a hydrogel film.
  • the hydrogel membrane is preferably biocompatible, and examples include an alginate gel membrane, an agarose gel membrane, a polyisopropylacrylamide membrane, a membrane containing cellulose, a membrane containing a cellulose derivative (for example, methylcellulose), a polyvinyl alcohol membrane, etc. Is mentioned.
  • an alginate gel film is preferable.
  • a specific example of the alginate gel membrane is a polyion complex membrane of alginic acid-poly-L-lysine-alginic acid.
  • Immunoisolation membranes can be used to prevent immune rejection. Specifically, it can be used to prevent a recipient's immune rejection against the biological composition being transplanted. That is, the immunoisolation membrane can be used to protect biological components from the recipient's immune system.
  • a recipient means a living body that undergoes transplantation. The recipient is preferably a mammal, more preferably a human.
  • a biological composition means a structure derived from a living body.
  • the living body include viruses, bacteria, yeasts, fungal cells, insects, plants, mammals, and the like.
  • the living body is usually preferably a mammal. Examples of mammals include cows, pigs, sheep, cats, dogs and humans.
  • the biological composition is preferably a structure derived from any mammal.
  • Biological constituents include organs, tissues, cells and the like. Of these, cells are preferred as biological components. There may be one cell or plural cells, but plural cells are preferable. The plurality of cells may be separated from each other or may be an aggregate.
  • the biological composition may be obtained directly from a living body.
  • the biological composition when the biological composition is a cell, the biological composition may be obtained directly from a living body, such as an embryonic stem cell (ES cell), an induced pluripotent stem cell (iPS cell), Differentiated cells such as mesenchymal stem cells may be used.
  • the cell may be a progenitor cell.
  • physiologically active substances include various hormones, various cytokines, various enzymes, and other various in vivo factors. More specific examples include insulin, dopamine, factor VIII and the like.
  • insulin is a polypeptide (molecular weight of about 6000) in which an A chain of 21 amino acid residues and a B chain of 30 amino acid residues are connected via a disulfide bond.
  • insulin is secreted from ⁇ cells in the islets of Langerhans in the pancreas.
  • the secreted insulin may be human-type insulin or other mammalian-type (eg, porcine-type) insulin.
  • Insulin may be insulin produced by a genetic recombination method.
  • the biological composition is preferably an insulin secreting cell.
  • Insulin-secreting cells refer to cells that can secrete insulin in response to changes in blood glucose level.
  • the insulin-secreting cells are not particularly limited, and examples thereof include pancreatic ⁇ cells existing in the pancreatic islets of Langerhans.
  • the pancreatic ⁇ cell may be a human pancreatic ⁇ cell or a pancreatic ⁇ cell such as a pig or mouse.
  • the description in JP-A-2007-195573 can be referred to.
  • insulin-secreting cells cells derived from human stem cells (see, for example, Junichi Miyazaki, Regenerative Medicine, Vol. 1, No.
  • small intestinal epithelial stem cells were derived. It may be a cell (for example, Reiko Fujimiya et al., Regenerative Medicine, Vol. 1, No. 2, pp. 63-68, 2002), which is an insulin-secreting cell incorporating a gene encoding insulin. (See, for example, HC Lee, JW Yoon, et al., Nature, Vol. 408, pages 483 to 488, 2000). Further, it may be a pancreatic islet of Langerhans (see, for example, Hiroshi Hori and Kazuto Inoue, Regenerative Medicine, Vol. 1, No. 2, pp. 69-77, 2002).
  • the immunoisolation membrane of the present invention can be used as a component of a transplantation chamber for enclosing a biological component.
  • the transplant chamber can be used as a container for enclosing the biological composition when the biological composition is implanted into the recipient.
  • the immunoisolation membrane is disposed on at least a part of a surface forming the interior and exterior of the transplant chamber (a boundary separating the interior and exterior of the transplant chamber).
  • the immunoisolation membrane may be disposed on the entire surface that forms the inside and the outside of the transplant chamber. For example, 1 to 99%, 5 to 90%, 10 to 80%, 20 to 70 with respect to the entire surface. %, 30 to 60%, 40 to 50%, or the like.
  • the surface on which the immune isolation membrane is disposed may be one continuous portion or may be divided into two or more portions.
  • the immunoisolation membrane is not located on the entire boundary between the inside and outside of the transplant chamber, the remaining part is impervious to, for example, not allow permeation of nutrients such as oxygen, water and glucose in addition to cells etc. It may be formed of a material such as a conductive film.
  • the form of the chamber for transplantation is not limited, and may be a bag shape, a bag shape, a tube shape, a microcapsule shape, or a drum shape.
  • a drum-shaped transplant chamber can be formed by adhering immunoisolation membranes on and under a silicone ring.
  • the shape of the transplant chamber is preferably a shape that can prevent movement of the transplant chamber within the recipient when used as a transplant device described below.
  • Specific examples of the shape of the transplant chamber include a cylindrical shape, a disk shape, a rectangular shape, an egg shape, a star shape, and a circular shape.
  • the transplant chamber may be in the form of a sheet, strand, spiral, or the like.
  • the transplant chamber may have the above-mentioned shape for the first time when it encloses a biological composition to form a transplant device described later.
  • the transplant chamber may contain a biocompatible plastic or the like for maintaining the shape and strength of the container.
  • the boundary between the inside and the outside of the transplant chamber may be made of an immunoisolation membrane and a biocompatible plastic that does not correspond to the immunoisolation membrane.
  • the transplantation chamber in which the immunoisolation membrane is disposed on the entire surface forming the inside and the outside substantially has a network structure on the outside of the surface forming the inside and the outside from the viewpoint of strength. Plastic may be arranged.
  • the surface X of the porous membrane is preferably on the inner side. That is, it is preferable that the immune isolation membrane is disposed so that the dense portion of the porous membrane in the immune isolation membrane is closer to the inside of the transplant chamber.
  • the transplantation chamber may have a joint where the immune isolation membranes are facing each other.
  • the portion of the immunoisolation membrane that is joined is not particularly limited, but it is preferably the end of the immunoisolation membrane. In particular, the end portions are preferably joined. It is preferable that all the outer periphery except the injection port mentioned later is joined between immune isolation membranes.
  • the transplant chamber has a structure in which two immunoisolation membranes are opposed to each other and the outer periphery thereof is joined, or one immunoisolation membrane having a line-symmetric structure is folded in half and the outer circumferences facing each other are joined. Is also preferable. Joining can be performed by adhesion or fusion using an adhesive.
  • the transplant chamber may be provided with an injection port for injecting a biological composition or the like into the transplant chamber.
  • a tube that communicates with the inside of the transplant chamber may be provided.
  • the tube only needs to contain a thermoplastic resin such as polyethylene, polyurethane, or polyvinyl chloride.
  • the transplant chamber may have a structural reinforcing material for protecting internal biological components and the like.
  • the structural reinforcing material may be provided inside or outside the transplantation chamber.
  • the structural reinforcing material may be a metal, resin, or the like made into a mesh, net, nonwoven fabric, or woven fabric.
  • the implantation device is a complex that includes at least the implantation chamber and a biological component.
  • a biological composition is contained in an implantation chamber.
  • the implantation chamber may contain only biological components, or other components or components other than biological components and biological components. May be.
  • the biological composition may be encapsulated in the implantation chamber together with the hydrogel, preferably in a state encapsulated in the hydrogel.
  • the implantation device may contain a pH buffer, an inorganic salt, an organic solvent, a protein such as albumin, and a peptide.
  • only one type of biological composition may be included, or two or more types of biological components may be included.
  • only biological components that release physiologically active substances for transplantation purposes or perform other functions for transplantation purposes may be included and assist in the functioning of these biological components.
  • a biological component may further be included.
  • the transplant device may be any device that can be implanted, for example, intraperitoneally or subcutaneously.
  • the implantation device may be a vascular connection device.
  • insulin-secreting cells are used as a biological composition, insulin secretion corresponding to a change in blood glucose level is possible by transplanting blood and an immune isolation membrane so as to be in direct contact with each other.
  • Protein Nucleic Acid Enzyme Volume 45, pp. 2307-2312, (Okohara Hisako, 2000), JP-T 2009-522269, JP-T 6-507712, etc. Can be referred to.
  • Porous membranes 1 to 13 15 parts by mass of polysulfone (P3500 manufactured by Solvay), 15 parts by mass of polyvinylpyrrolidone, 2 parts by mass of lithium chloride and 1.2 parts by mass of water were dissolved in 66.8 parts by mass of N-methyl-2-pyrrolidone to form a mixture for film formation Got. This mixture was cast on the surface of the PET film with a thickness of 200 ⁇ m. Air adjusted to 25 ° C. and an absolute humidity of 7.8 g / kg air was applied to the surface of the cast liquid film at 2 m / sec for 5 seconds. Immediately after that, it was immersed in a coagulation bath filled with water.
  • PET was peeled off to obtain a porous film. Thereafter, it was placed in a 25 ° C. diethylene glycol bath at 2 m / sec for 120 seconds, and then thoroughly washed with pure water. The amount of water in the stock solution (0.1-1.4 parts by mass) and the absolute humidity of the conditioning air after casting (6.1-10.0 g / kg air) are adjusted so that the pore diameter of the dense part is Porous membranes 1 to 9 having the values shown in Table 1 were obtained. Further, the porous membranes 10 to 13 were obtained by adjusting the temperature of the coagulation bath from ⁇ 10 ° C. to 80 ° C. The thickness of each film after drying was 195 to 205 ⁇ m.
  • Porous membrane 110 The polysulfone membrane (T9EXPPA0080S00B, manufactured by Nippon Pole Co., Ltd., thickness 120 ⁇ m) having a pore size distribution in which the pore size continuously increases in the thickness direction and having the smallest pore size (0.8 ⁇ m) on the outermost surface has a pore size of 10 ⁇ m on the smaller side.
  • the porous membrane 110 was obtained by laminating the large pore side of the polysulfone membrane (T9EXPPA1000S00M, manufactured by Nippon Pole Co., Ltd., thickness 130 ⁇ m).
  • the surface X is the polysulfone membrane side having a minimum pore size of 0.8 ⁇ m (see Table 1).
  • Porous membrane 120 A polysulfone membrane (T9EXPPA0080S00B, thickness 130 ⁇ m) having a pore size distribution in which the pore size continuously increases in the thickness direction and having a minimum pore size (0.8 ⁇ m) on the outermost surface was prepared.
  • the surface side having the minimum pore diameter is defined as the surface X (see Table 1).
  • Porous membrane 130 Polysulfone having a pore diameter distribution in which the pore diameter continuously increases in the thickness direction and having a minimum pore diameter (0.8 ⁇ m) on the outermost surface (T9EXPPA0080S00B, manufactured by Nippon Pole Co., Ltd.) A porous membrane 130 was obtained by laminating the large pore side of the membrane (T9EXPPA1000S00M, Nippon Pole Co., Ltd., thickness 130 ⁇ m). In the porous membrane 130, the surface of the polysulfone membrane having a minimum pore diameter of 0.8 ⁇ m is defined as the surface X (see Table 1).
  • the SEM photograph of the cross section of each porous membrane was divided into 20 in the thickness direction from the upper side, and the holes of each obtained segment were traced with a digitizer, and the average pore diameter of 50 holes of each category was obtained. However, the number of segments that had large holes and could not be measured was measured as many as the number of segments.
  • the obtained average pore size of each section was plotted in order from one surface to the other surface, and the distribution of the average pore size in the thickness direction of the membrane was obtained.
  • the measurement results of the porous membrane 3 are shown in FIG.
  • the section having the smallest average pore diameter was defined as a dense part, and the average pore diameter at this part was separately measured by the ASTM F316-80 method. Further, the average pore diameter of the section having the maximum average pore diameter was determined as the maximum pore diameter. The measured values are shown in Table 1.
  • porous membrane (Insulin permeability) A hole with a diameter of 1.0 cm is formed in the center of one wall of a vinyl chloride container having a length of 2.0 cm, a width of 1.0 cm, and a height of 2.0 cm. A silicone sheet made of Tigers polymer around the hole. (50 °, thickness 1 mm). A porous membrane cut to 1.5 cm ⁇ 2.0 cm was placed so as to close the silicone sheet, and another similar container and silicone sheet were prepared and fixed with clips so that the holes were aligned. The fixed porous membrane was well infiltrated with a medium (islet culture medium, Cosmo Bio, PNIM3).
  • a medium islet culture medium, Cosmo Bio, PNIM3
  • the insulin concentration on the permeate side is 95% or more on the supply side ... AA
  • the insulin concentration on the permeate side is 70% or more on the supply side ...
  • the insulin concentration on the permeate side is 45% or more on the supply side ...
  • the insulin concentration on the permeate side is less than 45% on the supply side ... C
  • FIG. 3 shows an image of a tissue stained section including the porous membranes 1, 3, 5 and 6.
  • Example 25 15 parts by mass of polysulfone (P3500 manufactured by Solvay), 15 parts by mass of polyvinylpyrrolidone (K-30 manufactured by Nippon Shokubai Co., Ltd.), 1 part by mass of lithium chloride, and 2 parts by mass of water are dissolved in 67 parts by mass of N-methyl-2-pyrrolidone.
  • a film-forming stock solution was obtained.
  • This film-forming stock solution was cast on the surface of a PET (polyethylene terephthalate) film with a wet film thickness such that the dry thickness was 50 ⁇ m. Air adjusted to 30 ° C. and relative humidity 80% RH was applied to the surface of the cast liquid film at 2 m / second for 5 seconds.
  • porous membrane 14 was immersed in a 65 ° C. coagulating liquid tank filled with water. The PET film was peeled off to obtain a porous film. Thereafter, it was placed in a diethylene glycol bath at 80 ° C. for 120 seconds and then washed with pure water to obtain a porous film having a dry thickness of 50 ⁇ m. This was designated as porous membrane 14.
  • Example 26 15 parts by mass of polysulfone (P3500 manufactured by Solvay), 15 parts by mass of polyvinylpyrrolidone (K-30 manufactured by Nippon Shokubai Co., Ltd.), 1 part by mass of lithium chloride, and 2 parts by mass of water are dissolved in 67 parts by mass of N-methyl-2-pyrrolidone.
  • P3500 polysulfone
  • K-30 polyvinylpyrrolidone
  • lithium chloride 1 part by mass of lithium chloride
  • 2 parts by mass of water 2 parts by mass of water
  • a film-forming stock solution was obtained.
  • This film-forming stock solution was cast on the surface of the PET film with a wet film thickness such that the dry thickness was 83 ⁇ m. Air adjusted to 30 ° C. and a relative humidity of 57% RH was applied to the surface of the cast liquid film at 2 m / second for 5 seconds.
  • FIGS. 4 and 7 show photographs of the cross sections of the porous films 14 and 15, respectively. 4 and 7, the upper side is the side to which air is applied during production, and the lower side is the PET film side during production.
  • the portion including the dividing line having the smallest average pore diameter was defined as a dense portion, and the average pore diameter of this portion was defined as the average pore diameter of the dense portion. Furthermore, the average pore diameter of the dividing line with the maximum average pore diameter was determined as the maximum pore diameter. The measured values are shown in Table 2.

Abstract

本発明により、ポリマーを含む多孔質膜を含み、上記多孔質膜は、孔径が最小となる層状の緻密部位を膜内に有し、上記緻密部位から上記多孔質膜の少なくとも一方の表面に向かって厚み方向で孔径が連続的に増加している免疫隔離膜、生物学的構成物を内包するための移植用チャンバーであって、内部と外部とを形成する面の少なくとも一部に上記免疫隔離膜を有する移植用チャンバー、ならびに上記移植用チャンバーに上記生物学的構成物が内包されている移植用デバイスが提供される。本発明の免疫隔離膜は、物質透過性の低下が生じにくく、安価に製造が可能である。

Description

免疫隔離膜、移植用チャンバー、および移植用デバイス
 本発明は、免疫隔離膜に関する。本発明はまた、免疫隔離膜を有する移植用チャンバーならびに移植用デバイスに関する。
 免疫隔離は、細胞、組織、器官などの生物学的構成物の移植の際にレシピエントにおける免疫反応を防止する方法の1つであり、免疫隔離膜は、水、酸素およびグルコース等は透過させる一方で、免疫拒絶反応に関与する免疫細胞等の透過を阻止することにより免疫隔離を行なう選択透過性の膜である。例えば、生理活性物質を分泌する細胞の移植にその生理活性物質を透過させる免疫隔離膜を利用した移植用デバイスにより、免疫拒絶反応を防止しながら移植の目的を達成することができる。

 移植された生物学的構成物への栄養供給や移植された生物学的構成物からの生理活性物質の分泌を継続するためには、移植用デバイスの周辺には血管網が形成されることが好ましい。血管網が形成されず、移植用デバイスが繊維芽細胞により被包されてしまうと、生物学的構成物の壊死に至り得る。このような血管網の形成の特性は、免疫隔離膜の微細構造に依存することが示されてきている。特許文献1は、血管網形成の促進に寄与する構造を有する免疫隔離膜として、リソグラフィーまたはエッチングによって孔形成したポリイミドポリマーフィルムを複数層重ねて形成した多孔質膜を開示している。また、非特許文献1では、孔径0.45μmの細胞保持性の膜と孔径5μmのポリテトラフルオロエチレン(PTFE)の外側膜との積層膜である多孔質膜を用いて形成された市販の移植用チャンバー(TheraCyte(登録商標))を用いて移植を行い、この外側膜がレシピエント中の組織で新しい血管の形成を誘導したことが記載されている。
特表平10-507111号公報
Transplantation , 67, 665(1995)
 特許文献1に記載の方法は、微細な製造を要するものであるため製造不良品を生じ易い。また、特許文献1および非特許文献1のいずれに記載の免疫隔離膜も、複数層の積層が必要であり、コスト増加を招きやすい。さらに、非特許文献1に記載のような表面において孔径が小さい免疫隔離膜は、一般にタンパク質等の吸着による物質透過性の低下が生じやすい。
 本発明は、物質透過性の低下が生じにくく、安価に製造が可能な免疫隔離膜を提供することを課題とする。
 本発明者らは、上記課題の解決のために鋭意検討し、物質透過性の低下が生じにくい免疫隔離膜の微細構造を見出し、この知見に基づいて、本発明を完成させた。
 すなわち、本発明は以下の<1>~<18>を提供するものである。
<1>ポリマーを含む多孔質膜を含み、
上記多孔質膜は、孔径が最小となる層状の緻密部位を膜内に有し、上記緻密部位から上記多孔質膜の少なくとも一方の表面に向かって厚み方向で孔径が連続的に増加している免疫隔離膜。
<2>上記多孔質膜からなる<1>に記載の免疫隔離膜。
<3>上記多孔質膜の最小孔径が0.02μm~1.5μmである<1>または<2>に記載の免疫隔離膜。
<4>上記多孔質膜の最小孔径が0.02μm~1.3μmである<1>または<2>に記載の免疫隔離膜。
<5>上記多孔質膜の最小孔径と最大孔径との比が3.0~20.0である<1>~<4>のいずれかに記載の免疫隔離膜。
<6>上記緻密部位の厚みが0.5μm~30μmである<1>~<5>のいずれかに記載の免疫隔離膜。
<7>上記多孔質膜の厚みが10μm~250μmである<1>~<6>のいずれかに記載の免疫隔離膜。
<8>上記多孔質膜が少なくとも一種のポリスルホンおよびポリビニルピロリドンを含む<1>~<7>のいずれかに記載の免疫隔離膜。
<9>上記緻密部位が上記多孔質膜のいずれか一方の表面Xから上記多孔質膜の厚みの3分の1以内の距離にある<1>~<8>のいずれかに記載の免疫隔離膜。
<10>上記緻密部位が上記多孔質膜のいずれか一方の表面Xから上記多孔質膜の厚みの5分の2以内の距離にある<1>~<8>のいずれかに記載の免疫隔離膜。
<11>上記緻密部位から少なくとも上記多孔質膜の表面Xと反対側の表面に向かって厚み方向で孔径が連続的に増加している<10>に記載の免疫隔離膜。
<12>上記緻密部位から上記多孔質膜の両表面に向かって厚み方向で孔径が連続的に増加している<11>に記載の免疫隔離膜。
<13>生物学的構成物を内包するための移植用チャンバーであって、
上記移植用チャンバーの内部と外部とを形成する面の少なくとも一部に<1>~<12>のいずれかに記載の免疫隔離膜を有する上記移植用チャンバー。
<14>生物学的構成物を内包するための移植用チャンバーであって、
上記移植用チャンバーの内部と外部を形成する面の少なくとも一部に<9>~<12>のいずれかに記載の免疫隔離膜を有し、
上記多孔質膜の表面Xが上記内部側にある上記移植用チャンバー。
<15>上記生物学的構成物が細胞である<13>または<14>に記載の移植用チャンバー。
<16><13>~<15>のいずれかに記載の移植用チャンバーに上記生物学的構成物が内包されている移植用デバイス。
<17>上記生物学的構成物が生理活性物質を放出する<16>に記載の移植用デバイス。
<18>上記生理活性物質がインスリンである<17>に記載の移植用デバイス。
 本発明により、物質透過性の低下が生じにくく、安価に製造が可能な免疫隔離膜を提供することができる。本発明の免疫隔離膜を有する移植用チャンバーに生物学的構成物を内包した移植用デバイスは、レシピエント内に移植後免疫拒絶反応を受けにくく、長期の使用が可能である。
実施例で得られた多孔質膜3(免疫隔離膜)の断面のSEM撮影写真を示す図である。 実施例で得られた多孔質膜3(免疫隔離膜)の厚み方向の平均孔径の分布を示すグラフである。 実施例で得られた多孔質膜1、3、5、6を含む組織染色切片の画像である。 実施例で得られた多孔質膜14(免疫隔離膜)の断面のSEM撮影写真を示す図である。 実施例で得られた多孔質膜14(免疫隔離膜)の厚み方向の平均孔径の分布を示すグラフである。 実施例で得られた多孔質膜14を含む組織染色切片の画像である。 実施例で得られた多孔質膜15(免疫隔離膜)の断面のSEM撮影写真を示す図である。 実施例で得られた多孔質膜15(免疫隔離膜)の厚み方向の平均孔径の分布を示すグラフである。 実施例で得られた多孔質膜15を含む組織染色切片の画像である。
 以下、本発明を詳細に説明する。
 本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
<免疫隔離膜>
 本明細書において、免疫隔離膜は免疫隔離のために用いられる膜を意味する。
 免疫隔離は免疫拒絶反応の防止方法である。一般的には、免疫隔離は移植の際のレシピエントの免疫拒絶反応を防止する方法の一つである。ここで、免疫拒絶反応は、移植される生物学的構成物に対するレシピエントの拒絶反応である。免疫隔離により、レシピエントの免疫拒絶反応から生物学的構成物が隔離される。免疫拒絶反応としては、細胞性免疫応答によるものおよび液性免疫応答によるものが挙げられる。
 免疫隔離膜は酸素、水、グルコース等の栄養分は透過させ、免疫拒絶反応に関与する免疫細胞等の透過を阻止する選択透過性の膜である。免疫細胞としては、マクロファージ、樹状細胞、好中球、好酸球、好塩基球、ナチュラルキラー細胞、各種T細胞、B細胞、その他リンパ球が挙げられる。
 本発明の免疫隔離膜は、用途に応じ、免疫グロブリン(IgMまたはIgG等)および補体のような高分子量タンパク質の透過を阻止することが好ましく、インスリンなどの比較的低分子量の生理活性物質を透過させることが好ましい。
 免疫隔離膜の選択透過性は用途に応じて調整すればよい。本発明の免疫隔離膜は、例えば、分子量500kDa以上、100kDa以上、80kDa以上、または50kDa以上などの物質を遮断する選択透過性の膜であればよい。例えば、免疫隔離膜は、抗体の中で最も小さいIgG(分子量約160kDa)の透過を阻止できることが好ましい。また、本発明の免疫隔離膜は、球体としてのサイズとして直径500nm以上、100nm以上、50nm以上、または10nm以上などの物質を遮断する選択透過性の膜であればよい。
 本発明の免疫隔離膜はポリマーを含む多孔質膜を含む。本発明の免疫隔離膜は多孔質膜のみからなっていてもよく、または他の層を含んでいてもよい。他の層としては、ハイドロゲル膜が挙げられる。本発明の免疫隔離膜は、輸送等のため、表面に容易に剥離可能な保護フィルムを有していてもよい。
 本発明の免疫隔離膜の厚みは、特に限定されないが、10μm~500μmであればよく、20μm~300μmであることが好ましく、30μm~250μmであることがより好ましい。特に、本発明の免疫隔離膜の厚みは、10μm~200μmであることがより好ましく、10μm~100μmであることが更に好ましく、10μm~50μmであることが特に好ましい。
[多孔質膜]
(多孔質膜の構造)
 多孔質膜は複数の孔を有する膜をいう。孔は例えば膜断面の走査型電子顕微鏡(SEM)撮影画像または透過型電子顕微鏡(TEM)撮影画像で確認することができる。
 多孔質膜の厚みは、特に限定されないが、10μm~250μmであればよく、20μm~220μmであることが好ましく、30μm~200μmであることがより好ましい。特に、多孔質膜の厚みは、10μm~200μmであることがより好ましく、10μm~100μmであることが更に好ましく、10μm~50μmであることが特に好ましい。多孔質膜の厚みを10μm以上とすることにより移植用チャンバーがレシピエント内で破損しない膜強度とすることができる。また、多孔質膜の厚みを250μm以下とすることでレシピエントに不快感を与えない程度の剛性の移植用チャンバーとすることができる。
 本発明の免疫隔離膜において、多孔質膜は、孔径が最小となる層状の緻密部位を膜内に有し、この緻密部位から多孔質膜の少なくとも一方の表面に向かって厚み方向で孔径が連続的に増加している。孔径は、後述する区分または分割線の平均孔径で判断するものとする。なお、孔径は孔の直径を意味する。
 膜の表面とは主表面(膜の面積を示すおもて面または裏面)を意味し、膜の端の厚み方向の面を意味するものではない。多孔質膜の表面は他の層との界面であってもよい。なお、本発明の免疫隔離膜において、多孔質膜は孔径について膜内方向(膜表面に平行な方向)で、および孔径分布(厚み方向での孔径の差異)について全面積において、ほぼ一様の構造を有していることが好ましい。
 多孔質膜が厚み方向で孔径分布を有することにより、本発明の免疫隔離膜は、寿命を向上させることができる。実質的に異なる孔径の複数の膜を用いて多段階の濾過を行なったような効果が得られ、膜の劣化を防止することができるからである。
 孔径は電子顕微鏡によって得られた膜断面の写真から測定すればよい。多孔質膜はミクロトーム等により切断し、断面が観察できる薄膜の切片として、多孔質膜断面の写真を得ることができる。
 本明細書において、100μmより大きい厚みの膜の厚み方向の孔径の比較は、膜断面のSEM撮影写真を膜の厚み方向に分割して行なうものとする。分割数は膜の厚みから適宜選択できる。分割数は少なくとも5以上とし、例えば200μm厚の膜では後述する表面Xから20分割して行う。なお、分割幅の大きさは、膜における厚み方向の幅の大きさを意味し、写真での幅大きさを意味するものではない。膜の厚み方向の孔径の比較において、孔径は、各区分の平均孔径として比較される。各区分の平均孔径は、例えば、膜断面図の各区分の50個の孔の平均値であればよい。この場合の膜断面図は例えば80μm幅(表面と平行な方向において80μmの距離)で得てもよい。このとき、孔が大きく、50個測定できない区分については、その区分でとれる数だけ測定したものであればよい。また、このとき、孔が大きくその区分に収まるものでない場合は、ほかの区分にわたってその孔の大きさを計測する。
 孔径が最小となる層状の緻密部位は、上記膜断面の区分のうちで平均孔径が最小となる区分に相当する多孔質膜の層状の部位をいう。緻密部位は1つの区分に相当する部位からなっていても、2つ、3つなどの、平均孔径が最少となる区分の1.1倍以内の平均孔径を有する複数の区分に相当する部位からなっていてもよい。
 本明細書において、100μm以下の厚みの膜の厚み方向の孔径の比較は、膜断面のSEM撮影写真を膜の厚み方向に20分割したときの19本の分割線における孔径の比較により行なうものとする。分割線と交差するまたは接する孔を連続して50個以上選択し、それぞれの孔径を測定し、平均値を算出して平均孔径とする。ここで、孔径は、選択された孔が分割線と交差する部分の長さではなく、膜断面のSEM撮影写真から孔の面積を画像処理により算出し、得られた面積を真円の面積として算出される直径を用いる。このとき、孔が大きく、50個以上選択できない分割線については、膜断面を得るSEM撮影写真の視野を広げて50個測定するものとする。得られた平均孔径を分割線ごとで比較することにより膜の厚み方向の孔径の比較を行なう。
 なお、100μmより大きい厚みの膜の厚み方向の孔径の比較を分割線を用いて行っても、上記の区分を用いた場合と同様に、多孔質膜の構造を判断することができる。
 孔径が最小となる層状の緻密部位は、上記膜断面写真における分割線のうちで平均孔径が最小となる分割線を含む多孔質膜の層状の部位をいう。緻密部位は2つ以上の分割線を含んでいてもよい。例えば、最小平均孔径の1.1倍以内の平均孔径を有する連続する分割線が2つ以上連続しているとき、緻密部位はこの連続する2つ以上の分割線を含むものとする。本明細書において、緻密部位の厚みは、緻密部位が含む分割線の数と膜の厚みの20分の1との積とする。
 緻密部位の厚みは、0.5μm~50μmであればよく、0.5μm~30μmであることが好ましい。本明細書において、緻密部位の平均孔径を多孔質膜の最小孔径とする。多孔質膜の最小孔径は0.02μm~1.5μmであることが好ましく、0.02μm~1.3μmであることがより好ましい。このような多孔質膜の最小孔径で少なくとも通常の細胞の透過を阻止することができるからである。緻密部位の平均孔径はさらにASTM F316-80により測定することもできる。
 多孔質膜は、緻密部位を膜内に有する。膜内とは膜の表面に接していないことを意味し、「緻密部位を膜内に有する」とは、緻密部位が膜のいずれかの表面にもっとも近い上記区分ではないこと、または緻密部位が膜のいずれかの表面にもっとも近い上記分割線を含む部位ではないことを意味する。本発明の免疫隔離膜においては、緻密部位を膜内に有する構造の多孔質膜を用いることにより、同じ緻密部位を表面に接して有する多孔質膜を用いた場合よりも、透過させることが意図された物質の透過性が低下しにくい。いかなる理論にも拘泥するものではないが、緻密部位が膜内にあることによりタンパク質の吸着が起こりにくくなっているためと考えられる。
 緻密部位は、多孔質膜の厚みの中央部位よりもいずれか一方の表面側に偏っていることが好ましい。具体的には、緻密部位が多孔質膜のいずれか一方の表面から多孔質膜の厚みの2分の1未満の距離にあることが好ましく、5分の2以内の距離にあることがより好ましく、3分の1以内の距離にあることがさらに好ましく、4分の1以内の距離にあることが特に好ましい。この距離は上述の膜断面写真において判断すればよい。本明細書において、緻密部位がより近い側の多孔質膜の表面を「表面X」という。
 多孔質膜においては緻密部位から少なくともいずれか一方の表面に向かって厚み方向で孔径が連続的に増加している。多孔質膜において、緻密部位から表面Xに向かって厚み方向で孔径が連続的に増加していてもよく、緻密部位から表面Xと反対側の表面に向かって厚み方向で孔径が連続的に増加していてもよく、緻密部位から多孔質膜のいずれの表面に厚み方向で向かうときも孔径が連続的に増加していてもよい。これらのうち、少なくとも緻密部位から表面Xと反対側の表面に向かって厚み方向で孔径が連続的に増加していることが好ましく、緻密部位から多孔質膜のいずれの表面に厚み方向で向かうときも孔径が連続的に増加していることがより好ましい。「厚み方向で孔径が連続的に増加」とは、厚み方向に隣り合う区分または分割線の間の平均孔径の差異が、最大平均孔径(最大孔径)と最小平均孔径(最小孔径)の差異の50%以下、好ましくは40%以下、より好ましくは30%以下となるように増加していることをいう。「連続的に増加」は、本質的には、減少がなく一律に増加することを意味するものであるが、減少している部位が偶発的に生じていてもよい。例えば、区分を表面から2つずつ組み合わせたときに、組み合わせの平均値が、一律に増加(表面から緻密部位に向かう場合は一律に減少)している場合は、「緻密部位から膜の表面に向かって厚み方向で孔径が連続的に増加している」と判断できる。
 厚み方向で孔径が連続的に増加する多孔質膜の構造は、例えば後述する製造方法により実現することができる。
 多孔質膜の最大孔径は1.5μm超25μm以下であることが好ましく、1.8μm~23μmであることがより好ましく、2.0μm~21μmであることがさらに好ましい。本明細書において、上記膜断面の区分のうちで平均孔径が最大となる区分のその平均孔径または上記分割線のうちで平均孔径が最大となる分割線のその平均孔径を多孔質膜の最大孔径とする。
 緻密部位の平均孔径と多孔質膜の最大孔径との比(多孔質膜の最小孔径と最大孔径との比であって最大孔径を最小孔径で割った値、本明細書において「異方性比」ということもある。)は、3以上が好ましく、4以上がより好ましく、5以上がさらに好ましい。緻密部位以外の平均孔径を大きくし、多孔質膜の物質透過性を高くするためである。また、異方性比は、25以下であることが好ましく、20以下であることがより好ましい。上記の多段濾過のような効果が異方性比が25以下の範囲で効率よく得られるためである。
 平均孔径が最大となる区分は膜のいずれかの表面にもっとも近い区分またはその区分に接する区分であることが好ましい。また、平均孔径が最大となる分割線は膜のいずれかの表面にもっとも近いことが好ましい。
 膜のいずれかの表面にもっとも近い区分または分割線においては、平均孔径が0.05μm超25μm以下であることが好ましく、0.08μm超23μm以下であることがより好ましく、0.5μm超21μm以下であることがさらに好ましい。また、膜のいずれかの表面にもっとも近い区分または分割線の平均孔径の緻密部の平均孔径との比は、1.2以上20以下であることが好ましく、1.5以上15以下であることがより好ましく、2以上13以下であることがさらに好ましい。
(多孔質膜の元素分布)
 多孔質膜は、少なくとも一方の表面において、式(I)および式(II)を満たすことが好ましい。
 B/A ≦ 0.7 (I)
 A ≧ 0.015 (II)
式中、Aは膜の表面におけるC元素(炭素原子)に対するN元素(窒素原子)の比率を示し、Bは同じ表面から30nmの深さにおけるC元素に対するN元素の比率を示す。
 式(II)は多孔質膜の少なくとも一方の表面に一定量以上のN元素が存在することを示すものであり、式(I)は多孔質膜中のN元素が表面30nm未満に偏在していることを示しているものである。N元素は窒素含有ポリマーに由来することが好ましい。さらに、窒素含有ポリマーはポリビニルピロリドンであることが好ましい。
 表面が式(I)および式(II)を満たすことにより、多孔質膜の生体親和性、特に、式(I)および式(II)を満たす表面側の生体親和性が高くなる。
 多孔質膜は、いずれか一方のみの表面が、式(I)および式(II)を満たしていてもよく、または両表面が式(I)および式(II)を満たしていてもよいが、両表面が式(I)および式(II)を満たしていることが好ましい。いずれか一方のみの表面が式(I)および式(II)を満たす場合、その表面は、後述の移植用チャンバーにおいて、内側であっても、または外側であってもよいが、内側であることが好ましい。また、いずれか一方のみの表面が式(I)および式(II)を満たす場合、式(I)および式(II)を満たす表面は表面Xであることが好ましい。
 本明細書において、膜表面のC元素に対するN元素の比率(A値)および表面から30nmの深さにおけるC元素に対するN元素の比率(B値)は、XPS測定結果を用いて算出したものとする。XPS測定はX線光電子分光法であり、膜表面にX線を照射し、膜表面から放出される光電子の運動エネルギーを計測することで、膜表面を構成する元素の組成を分析する方法である。実施例に記載する単色化Al-Kα線を用いた条件で、スパッタ開始時の結果からA値を計算し、スパッタレートから測定した膜の表面から30nmであると計算される時間の結果からB値を計算するものとする。
 B/Aは0.02以上であればよく、0.03以上であることが好ましく、0,05以上であることがより好ましい。
 Aは0.050以上であることが好ましく、0.080以上であることがより好ましい。また、Aは0.20以下であればよく、0.15以下であることが好ましく、0.10以下であることがより好ましい。
 Bは0.001~0.10であればよく、0.002~0.08であることが好ましく、0.003~0.07であることがより好ましい。
 多孔質膜の元素分布、特にN元素の分布は、後述する多孔質膜の製造方法において、調温湿風中に含まれる水分濃度、調温湿風を当てる時間、凝固液の温度、浸漬時間、洗浄のためのジエチレングリコール浴の温度、洗浄のためのジエチレングリコール浴への浸漬時間、多孔質製造ラインの速度等によって制御することができる。なお、N元素の分布は、製膜原液中の含有水分量によっても制御することができる。
(多孔質膜の組成)
 多孔質膜はポリマーを含む。多孔質膜は本質的にポリマーから構成されていることが好ましい。 
 多孔質膜を形成するポリマーは生体適合性であることが好ましい。ここで、「生体適合性」とは、無毒性、非アレルギー誘発性を含む意味であるが、ポリマーが生体内において被包化される性質を含むものではない。
 ポリマーは数平均分子量(Mn)が1,000~10,000,000であるものが好ましく、5,000~1,000,000であるものがより好ましい。
 ポリマーの例としては、熱可塑性または熱硬化性のポリマーが挙げられ、熱可塑性のポリマーが好ましい。ポリマーの具体的な例としては、ポリスルホン、酢酸セルロース等のセルロースアシレート、ニトロセルロース、スルホン化ポリスルホン、ポリエーテルスルホン、ポリフッ化ビニリデン、ポリアクリロニトリル、スチレン-アクリロニトリルコポリマー、スチレン-ブタジエンコポリマー、エチレン-酢酸ビニルコポリマーのケン化物、ポリビニルアルコール、ポリカーボネート、オルガノシロキサン-ポリカーボネートコポリマー、ポリエステルカーボネート、オルガノポリシロキサン、ポリフェニレンオキシド、ポリアミド、ポリイミド、ポリアミドイミド、ポリベンズイミダゾール、エチレンビニルアルコール共重合体、ポリテトラフルオロエチレン(PTFE)等を挙げることができる。これらは、溶解性、光学的物性、電気的物性、強度、弾性等の観点から、ホモポリマーであってもよいし、コポリマーやポリマーブレンド、ポリマーアロイとしてもよい。
 これらのうち、ポリスルホン、セルロースアシレートが好ましく、ポリスルホンがより好ましい。
 ポリマーとしてポリスルホンまたはポリエーテルスルホンを用いる場合、多孔質膜は、さらに親水性ポリマーを含むことが好ましい。親水性ポリマーの好ましい例としては、ポリビニルピロリドン、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロースを挙げることができる。これらのうち、ポリビニルピロリドンが特に好ましい。疎水性であるポリスルホンまたはポリエーテルスルホンを親水性のポリビニルピロリドンと組み合わせることにより、生体適合性を向上させることができる。ポリビニルピロリドンは多孔質膜の質量に対して0.05~8.0質量%含まれていることが好ましく、0.1~5.0質量%含まれていることがより好ましく、0.2~4.0質量%含まれていることがさらに好ましい。
 多孔質膜はポリマー以外の他の成分を添加剤として含んでいてもよい。
 上記添加剤としては、塩化ナトリウム、塩化リチウム、硝酸ナトリウム、硝酸カリウム、硫酸ナトリウム、塩化亜鉛等の無機酸の金属塩、酢酸ナトリウム、ギ酸ナトリウム等の有機酸の金属塩、ポリエチレングリコール等のその他の高分子、ポリスチレンスルホン酸ナトリウム、ポリビニルベンジルトリメチルアンモニウムクロライド等の高分子電解質、ジオクチルスルホコハク酸ナトリウム、アルキルメチルタウリン酸ナトリウム等のイオン系界面活性剤等を挙げることができる。添加剤は多孔質構造のための膨潤剤として作用していてもよい。
 添加剤としては、金属塩を用いることが好ましい。ポリスルホンまたはポリエーテルスルホンを含む多孔質膜は、塩化リチウムを含むことが好ましい。
 多孔質膜は単一の層として1つの組成物から形成された膜であることが好ましく、複数層の積層構造ではないことが好ましい。多孔質膜を単一の層として1つの組成物から形成することにより、単純な手順で安価に免疫隔離膜を製造することが可能である。
(多孔質膜の製造方法)
 多孔質膜の製造方法は、上述の構造の多孔質膜が形成できる限り、特に限定されず、通常のポリマー膜形成方法をいずれも用いることができる。ポリマー膜形成方法としては延伸法および流延法などが挙げられ、流延法が好ましい。
 例えば、流延法においては、製膜原液に用いる溶媒の種類および量や流延後の乾燥方法を調節することにより上述の構造を有する多孔質膜を作製することができる。
 流延法による多孔質膜の製造は、例えば以下(1)~(4)をこの順で含む方法で行なうことができる。
(1)ポリマー、必要に応じて添加剤、および必要に応じて溶媒を含む製膜原液を溶解状態で支持体上に流延する。
(2)流延された液膜の表面に調温湿風を当てる。
(3)調温湿風を当てた後に得られる膜を凝固液に浸漬する。
(4)必要に応じて支持体を剥離する。
 調温湿風の温度は、4℃~60℃、好ましくは10℃~40℃であればよい。調温湿風の相対湿度は、15%~100%、好ましくは25%~95%であればよい。調温湿風は、0.1m/秒~10m/秒の風速で0.1秒間~30秒間、好ましくは1秒間~10秒間、当てていればよい。
 緻密部位の平均孔径および位置は、調温湿風中に含まれる水分濃度、調温湿風を当てる時間によって制御することができる。なお、緻密部位の平均孔径は、製膜原液中の含有水分量によっても制御することができる。
 上記のように液膜の表面に調温湿風を当てることによって、溶媒の蒸発の制御を行い、液膜の表面から膜内に向かってコアセルベーションを起こすことができる。この状態でポリマーの溶解性が低いがポリマーの溶媒に相溶性を有する溶媒を収容する凝固液に浸漬することによって、上記のコアセルベーション相を微細孔として固定させ微細孔以外の細孔も形成することができる。
 上記の凝固液に浸漬する過程において凝固液の温度は-10℃~80℃であればよい。この間で温度を変化させることによって、緻密部位より支持体面側におけるコアセルベーション相の形成から凝固に至るまでの時間を調節し、支持体面側に至るまでの孔径の大きさを制御することが可能である。凝固液の温度を高くすると、コアセルベーション相の形成が早くなり凝固に至るまでの時間が長くなるため、支持体面側へ向かう孔径は大きくなりやすい。一方、凝固液の温度を低くすると、コアセルベーション相の形成が遅くなり凝固に至るまでの時間が短くなるため、支持体面側へ向かう孔径は大きくなりにくい。
 支持体としては、プラスチックフィルムまたはガラス板を用いればよい。プラスチックフィルムの材料の例としては、ポリエチレンテレフタレート(PET)などのポリエステル、ポリカーボネート、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、セルロース誘導体、シリコーンなどが挙げられる。支持体としてはガラス板またはPETが好ましく、PETがより好ましい。
 製膜原液は溶媒を含んでいてもよい。溶媒は使用するポリマーに応じて、使用するポリマーの溶解性が高い溶媒(以下、「良溶媒」ということがある)を用いればよい。良溶媒は、溶媒は凝固液に浸漬した場合速やかに凝固液と置換されるものが好ましい。溶媒の例としては、ポリマーがポリスルホン等の場合、N-メチル-2-ピロリドン、ジオキサン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミドあるいはこれらの混合溶媒が挙げられ、ポリマーがポリアクリロニトリル等の場合、ジオキサン、N-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシドあるいはこれらの混合溶媒が挙げられ、ポリマーがポリアミド等の場合にはジメチルホルムアミド、ジメチルアセトアミドあるいはこれらの混合溶媒が挙げられ、ポリマーがセルロースアセテート等の場合はアセトン、ジオキサン、テトラヒドロフラン、N-メチル-2-ピロリドンあるいはこれらの混合溶媒が挙げられる。これらのうち、N-メチル-2-ピロリドンを用いることが好ましい。
 製膜原液は良溶媒に加えて、ポリマーの溶解性が低いがポリマーの溶媒に相溶性を有する溶媒(以下、「非溶媒」ということがある)を用いることが好ましい。非溶媒としては、水、セルソルブ類、メタノール、エタノール、プロパノール、アセトン、テトラヒドロフラン、ポリエチレングリコール、グリセリン等が挙げられる。これらのうち、水を用いることが好ましい。
 製膜原液としてのポリマー濃度は、5質量%以上35質量%以下、好ましくは10質量%以上30質量%以下であればよい。35質量%以下であることにより、得られる多孔質膜に十分な透過性(例えば水の透過性)を与えることができ、5質量%以上とすることにより選択的に物質を透過する多孔質膜の形成を担保することができる。添加剤の添加量は添加によって製膜原液の均一性が失われることが無い限り特に制限は無いが、通常溶媒に対して0.5容量%以上10容量%以下である。製膜原液が非溶媒と良溶媒とを含む場合、非溶媒の良溶媒に対する割合は、混合液が均一状態を保てる範囲であれば特に制限はないが、1.0質量%~50質量%が好ましく、2.0質量%~30質量%がより好ましく、3.0質量%~10質量%がさらに好ましい。
 また、ポリスルホンおよびポリエーテルスルホンからなる群より選択されるポリマーとポリビニルピロリドンとを含む多孔質膜を製造するための製膜原液においては、ポリビニルピロリドンは、ポリスルホンおよびポリエーテルスルホンの総質量に対し、50質量%~120質量%で含まれていることが好ましく、80質量%~110質量%で含まれていることがより好ましい。このような製膜原液を用いることにより、ポリビニルピロリドンを0.05~8.0質量%程度含む多孔質膜が得られる。ポリビニルピロリドンの量が減っているのは、ポリビニルピロリドンは、洗浄工程で大部分が除かれるためである。
 さらに、製膜原液が添加剤として塩化リチウムを含むとき、塩化リチウムは、ポリスルホンおよびポリエーテルスルホンの総質量に対し、5質量%~20質量%で含まれていることが好ましく、10質量%~15質量%で含まれていることがより好ましい。
 凝固液としては、用いられるポリマーの溶解度が低い溶媒を用いることが好ましい。このような溶媒の例としては、水、メタノール、エタノール、ブタノールなどのアルコール類;エチレングリコール、ジエチレングリコールなどのグリコール類;エーテル、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類;グリセリン等のグリセロール類などが挙げられる。好ましい凝固液の例としては、水、アルコール類またはこれらの2種以上の混合物が挙げられる。これらのうち、水を用いることが好ましい。
 凝固液への浸漬の後、使用した凝固液とは異なる溶媒で洗浄を行なうことも好ましい。洗浄は、溶媒に浸漬することにより行なうことができる。洗浄溶媒としてはジエチレングリコールが好ましい。洗浄溶媒としてジエチレングリコールを用い、フィルムを浸漬するジエチレングリコールの温度および浸漬時間のいずれか一方または双方を調節することにより、多孔質膜中のN元素の分布を調節できる。特に、多孔質膜の製膜原液にポリビニルピロリドンを用いる場合において、ポリビニルピロリドンの膜への残量を制御することができる。ジエチレングリコールでの後さらに、水で洗浄してもよい。
 多孔質膜の製膜原液としては、ポリスルホンおよびポリビニルピロリドンをN-メチル-2-ピロリドンに溶解して水を加えてなる製膜原液が好ましい。
 多孔質膜の製造方法については、特開平4-349927号公報、特公平4-68966号公報、特開平04-351645号公報、特開2010-235808号公報等を参照することができる。
[他の層]
 本発明の免疫隔離膜は多孔質膜以外の他の層を含んでいてもよい。他の層としては、ハイドロゲル膜が挙げられる。ハイドロゲル膜は、生体適合性であるものが好ましく、例としては、アルギン酸ゲル膜、アガロースゲル膜、ポリイソプロピルアクリルアミド膜、セルロースを含む膜、セルロース誘導体(例えばメチルセルロース)を含む膜、ポリビニルアルコール膜などが挙げられる。ハイドロゲル膜としては、アルギン酸ゲル膜が好ましい。アルギン酸ゲル膜の具体例としては、アルギン酸-ポリ-L-リジン-アルギン酸のポリイオンコンプレックス膜を挙げることができる。
<免疫隔離膜の用途>
 免疫隔離膜は免疫拒絶反応の防止に用いることができる。具体的には、移植される生物学的構成物に対するレシピエントの免疫拒絶反応を防止するために使用することができる。すなわち、免疫隔離膜はレシピエントの免疫系からの生物学的構成物の保護のために用いることができる。なお、本明細書において、レシピエントは移植を受ける生体を意味する。レシピエントは哺乳動物であることが好ましく、ヒトであることがより好ましい。
[生物学的構成物]
 生物学的構成物は、生体由来の構造物を意味する。生体としては、ウイルス、細菌、酵母、真菌細胞、昆虫、植物、および哺乳動物などが挙げられる。生体は通常哺乳動物であることが好ましい。哺乳動物としては、ウシ、ブタ、ヒツジ、ネコ、イヌ、ヒト等が挙げられる。生物学的構成物は哺乳動物のいずれか由来の構造物であることが好ましい。
 生物学的構成物としては、器官、組織、細胞などが挙げられる。生物学的構成物としては、これらのうち、細胞が好ましい。細胞は1つであっても複数であってもよいが複数であることが好ましい。複数の細胞は、互いに分離したものであってもよく、集合体であってもよい。

 生物学的構成物は、生体から直接取得したものであってもよい。また、特に生物学的構成物が細胞である場合、生物学的構成物は生体から直接取得したものであってもよく、胚性幹細胞(ES細胞)、誘導多能性幹細胞(iPS細胞)、間葉系幹細胞等の細胞を分化誘導したものであってもよい。細胞は、前駆細胞であってもよい。
 生物学的構成物としては、一態様として、生理活性物質を放出するものが好ましい。生理活性物質の例としては、各種ホルモン、各種サイトカイン、各種酵素、その他各種生体内因子が挙げられる。より具体的な例としては、インスリン、ドーパミン、第VIII因子等が挙げられる。
 ここで、インスリンとは、21アミノ酸残基のA鎖と30アミノ酸残基のB鎖がジスルフィド結合を介してつながったポリペプチド(分子量約6000)である。ほ乳類の生体内においてインスリンは、膵臓のランゲルハンス島にあるβ細胞から分泌されている。本発明において生物学的構成物としてインスリン分泌細胞を用いる場合、分泌するインスリンは、ヒト型のインスリンでもよく、その他のほ乳類型(例えばブタ型)のインスリンでもよい。インスリンは遺伝子組み換えの方法により作製されたインスリンでもよい。遺伝子組み換えインスリンの取得方法としては、例えば、門脇孝編:糖尿病ナビゲーター(270~271頁、田尾健、岡芳和「現在と将来のインスリン製剤」、メディカルレビュー社、2002年参照)の記載を参照できる。各種、インスリン類似体(例えば、H.C.Lee,J.W.Yoon,et  al.,Nature、第408巻、483~488頁、2000年参照)を用いてもよい。
 生物学的構成物はインスリン分泌細胞であることが好ましい。インスリン分泌細胞とは、血糖値変化に応答してインスリンを分泌できる細胞をいう。インスリン分泌細胞としては、特に限定されるものではなく、例えば、膵臓のランゲルハンス島に存在する膵β細胞を挙げることができる。膵β細胞としては、ヒトの膵β細胞でもよく、ブタ、マウスなどの膵β細胞であってもよい。ブタからの膵β細胞の抽出方法は特開2007-195573号公報の記載を参考にすることができる。また、インスリン分泌細胞としては、ヒト幹細胞から誘導された細胞(例えば、宮崎純一、再生医療、第1巻、第2号、57~61頁、2002年参照)、または小腸上皮幹細胞から誘導された細胞(例えば、藤宮峯子ら、再生医療、第1巻、第2号、63~68頁、2002年参照)であってもよく、インスリンをコードする遺伝子を組み込んだ、インスリン分泌性の細胞であってもよい(例えば、H.C.Lee,J.W.Yoon,et al.,Nature、第408巻、483~488頁、2000年参照)。さらに、膵臓のランゲルハンス島であってもよい(例えば、堀洋、井上一知、再生医療、第1巻、第2号、69~77頁、2002年参照)。
[移植用チャンバー]
 本発明の免疫隔離膜は生物学的構成物を内包するための移植用チャンバーの構成部材として用いることができる。移植用チャンバーは、生物学的構成物をレシピエントに移植する際に生物学的構成物を内包するための容器として用いることができる。免疫隔離膜は移植用チャンバーの内部と外部とを形成する面(移植用チャンバー内部と外部とを隔てる境界)の少なくとも一部に配置される。このように配置することにより、移植用チャンバーに内包される生物学的構成物を外部に存在する免疫細胞等から保護しつつ、水、酸素、グルコース等の栄養分を移植用チャンバーの外部から内部に取り込むことができる。
 免疫隔離膜は移植用チャンバーの内部と外部とを形成する面の全面に配置されていてもよく、全面に対し、例えば、1~99%、5~90%、10~80%、20~70%、30~60%、40~50%等の面積に相当する一部に配置されていてもよい。免疫隔離膜が配置される面は1つの連続した部分であってもよく、2つ以上の部分に分かれていてもよい。免疫隔離膜が移植用チャンバーの内部と外部とを形成する境界の全面に配置されていないとき、残りの部分は、例えば、細胞等に加えて酸素、水、グルコース等の栄養分も透過させない不透過性の膜などの材料で形成されていればよい。

 移植用チャンバーの形態は限定されず、袋状、バッグ状、チューブ状、マイクロカプセル状、太鼓状であればよい。例えば、太鼓状の移植用チャンバーはシリコーンリングの上下に免疫隔離膜を接着させて形成することができる。移植用チャンバーの形状は、後述する移植用デバイスとしての使用の際に、レシピエント内における移植用チャンバーの移動を防止できる形状であることが好ましい。移植用チャンバーの形状の具体例としては、円筒状、円盤状、矩形、卵型、星形、円形などが挙げられる。移植用チャンバーは、シート状、ストランド状、らせん状などであってもよい。移植用チャンバーは、生物学的構成物を内包し、後述の移植用デバイスとした際に初めて上記の形状となるものであってもよい。

 移植用チャンバーは、容器としての形状や強度を維持するための生体適合性プラスチック等を含んでいてもよい。例えば、移植用チャンバーの内部と外部との境界が免疫隔離膜および免疫隔離膜に該当しない生体適合性プラスチックからなっていてもよい。または実質的に内部と外部とを形成する面の全面に免疫隔離膜が配置されている移植用チャンバーは、強度の観点からさらに内部と外部とを形成する面の外側に網状構造の生体適合性プラスチックが配置されていてもよい。
 移植用チャンバーにおいては、多孔質膜の表面Xが内部側にあることが好ましい。すなわち、免疫隔離膜中の多孔質膜の緻密部位がより移植用チャンバーの内部に近くなるように、免疫隔離膜が配置されていることが好ましい。表面Xを移植用チャンバーの内部側にすることにより、生理活性物質の透過性をより高くすることができる。
 移植用チャンバーは、免疫隔離膜同士が対向して接合している接合部を有していてもよい。接合している免疫隔離膜の部分は特に限定されないが、免疫隔離膜の端部であることが好ましい。特に、端部同士が接合されていることが好ましい。免疫隔離膜同士は、後述の注入口などを除く外周全てが接合されていることが好ましい。例えば、移植用チャンバーは、2つの免疫隔離膜を対向させてその外周を接合した構成、または、線対称構造の1つの免疫隔離膜が2つ折りにされ、対面した外周を接合した構造であることも好ましい。接合は接着剤を利用した接着または融着等により行なうことができる。
 また、移植用チャンバーには、移植用チャンバー内部に生物学的構成物等を注入するための注入口などが設けられていてもよい。注入口として、移植用チャンバーの内部に通じるチューブが設けられていてもよい。
 チューブは、例えばポリエチレン、ポリウレタン、またはポリ塩化ビニルなどの熱可塑性の樹脂を含むものであればよい。
 また、移植用チャンバーは、内部の生物学的構成物等を保護するための構造補強材を有していてもよい。構造補強材は移植用チャンバーの内部、もしくは外部に設けられていてもよい。
 構造補強材はメッシュ、ネット、不織布、織物等になった金属、樹脂であればよい。
[移植用デバイス]
 移植用デバイスは、少なくとも、上記移植用チャンバーおよび生物学的構成物を含む複合体である。移植用デバイスにおいては、移植用チャンバーに生物学的構成物が内包されている。
 移植用デバイスにおいて、移植用チャンバーには、生物学的構成物のみが内包されていてもよく、または、生物学的構成物および生物学的構成物以外の他の構成物または成分が内包されていてもよい。例えば、生物学的構成物はハイドロゲルとともに、好ましくはハイドロゲルに内包された状態で、移植用チャンバーに内包されていてもよい。または、移植用デバイスは、pH緩衝剤、無機塩、有機溶媒、アルブミンなどのタンパク質、ペプチドを含んでいてもよい。
 移植用デバイスにおいて、生物学的構成物は1種のみ含まれていてもよく、2種以上含まれていてもよい。例えば、移植の目的の生理活性物質を放出するか、またはその他の移植の目的の機能を果たす生物学的構成物のみが含まれていてもよく、これらの生物学的構成物の機能を補助する生物学的構成物がさらに含まれていてもよい。
 移植用デバイスは例えば腹腔内または皮下などに移植されるものであればよい。または、移植用デバイスは血管接続デバイスであってもよい。例えば、生物学的構成物としてインスリン分泌細胞を用いる場合、血液と免疫隔離膜とを直接接するように移植することによって、血糖値変化に対応したインスリン分泌が可能となる。
 移植用デバイスおよび移植用チャンバーについては、蛋白質核酸酵素、第45巻、2307~2312頁、(大河原久子、2000年)、特表2009-522269号公報、特表平6-507412号公報等の記載を参照できる。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
<多孔質膜の作製>
[多孔質膜1~13]
 ポリスルホン(ソルベイ社製 P3500)15質量部、ポリビニルピロリドン15質量部、塩化リチウム2質量部、水1.2質量部をN-メチル-2-ピロリドン66.8質量部に溶解して製膜用混合物を得た。この混合物をPETフィルム表面に厚み200μmで流延した。上記流延した液膜表面に25℃、絶対湿度7.8g/kg空気に調節した空気を2m/secで5秒間当てた。その後直ちに水を満たした凝固液槽に浸漬した。PETを剥離して多孔質膜を得た。その後、2m/secで、25℃のジエチレングリコール浴に120秒間つけ、その後純水でよく洗浄した。
原液中の水分の量(0.1-1.4質量部)、および流延後の調湿風の絶対湿度(6.1-10.0g/kg空気)を調節し、緻密部の孔径がそれぞれ表1に示す値である多孔質膜1~9を得た。また凝固浴の温度を―10℃から80℃に調節することにより多孔質膜10~13を得た。それぞれの膜の乾燥後の厚みは195~205μmであった。
[多孔質膜110]
 厚み方向で孔径が連続的に増加する孔径分布を有し、最表面に最小孔径(0.8μm)を有するポリスルホン膜(T9EXPPA0080S00B、日本ポール社製、厚み120μm)の孔径の小さい側に孔径が10μmであるポリスルホン膜(T9EXPPA1000S00M、日本ポール社製、厚み130μm)の孔径の大きい側を積層して多孔質膜110を得た。なお、多孔質膜110では、0.8μmの最小孔径を有するポリスルホン膜側を表面Xとする(表1参照)。
[多孔質膜120]
 厚み方向で孔径が連続的に増加する孔径分布を有し、最表面に最小孔径(0.8μm)を有するポリスルホン膜(T9EXPPA0080S00B、厚み130μm)を用意し、多孔質膜120とした。なお、多孔質膜120では、最小孔径を有する表面側を表面Xとする(表1参照)。
[多孔質膜130]
 厚み方向で孔径が連続的に増加する孔径分布を有し、最表面に最小孔径(0.8μm)を有するポリスルホン膜(T9EXPPA0080S00B、日本ポール社製)の孔径の大きい側に孔径が10μmであるポリスルホン膜(T9EXPPA1000S00M、日本ポール社製、厚み130μm)の孔径の大きい側を積層して多孔質膜130を得た。なお、多孔質膜130では、0.8μmの最小孔径を有するポリスルホン膜側を表面Xとする(表1参照)。
<多孔質膜の構造解析>
 得られた各多孔質膜にメタノールを含浸させ、液体窒素中で凍結させた。凍結させた多孔質膜からミクロトーム(Leica社製 EM UC6)で断面観察用の切片を切り出し、SEM撮影(日立ハイテクノロジーズ社製SU8030型FE-SEM)を行なった。SEM撮影は3000倍で行った。多孔質膜3の断面の写真を図1に示す。図1において、上側が製造時に空気を当てた側であり、下側が製造時のPETフィルム側である。それぞれの多孔質膜の断面のSEM撮影写真を上側から厚み方向に20分割し、得られた各区分の孔をデジタイザーでなぞり、各区分の50個の孔の平均孔径を求めた。ただし孔が大きく、50個測定できない区分については、その区分でとれる数だけ測定した。求めた各区分の平均孔径を、一方の表面から他方の表面まで順番にプロットし、膜の厚み方向の平均孔径の分布を求めた。多孔質膜3の測定の結果を図2に示す。平均孔径が最小の区分を緻密部位とし、この部位の平均孔径は別途ASTM F316-80法により測定した。さらに平均孔径が最大となる区分のその平均孔径を最大孔径として求めた。測定値を表1に示す。
<多孔質膜の評価>
(インスリン透過性)
 縦2.0cm、横1.0cm、高さ2.0cmの大きさを持つ塩化ビニル製の容器の1つの壁面の中心に直径1.0cmの穴を空け、穴の周りをタイガースポリマー製 シリコーンシート(50°、厚み1mm)で覆った。シリコーンシートを塞ぐように1.5cm×2.0cmにカットした多孔質膜をのせ、同様の容器とシリコーンシートをもう一つ用意し穴を合わせる形でクリップで固定した。固定された多孔質膜は培地(膵島培養用メディウム、コスモバイオ、PNIM3)でよく浸潤させた。
 片側の容器(供給側)に0.1単位のインスリン(和光純薬工業、インスリンHumaneレコンビナント、097-06474)を含む培地(膵島培養用メディウム、コスモバイオ、PNIM3)を4.0mL入れ、もう一方(透過側)にはインスリンを含まない同様の培地を4.0mL入れた。なお、多孔質膜の表面Xを表1に記載のように供給側または透過側のいずれかとした。240分後に供給側、透過側の培地を採取し、Insulin ELISA(ALPCO製80-INSRT-E01)でインスリン量を定量し、以下の基準で評価した。結果を表1に示す。
240分後に透過側のインスリン濃度が供給側の95%以上・・・AA
240分後に透過側のインスリン濃度が供給側の70%以上・・・A
240分後に透過側のインスリン濃度が供給側の45%以上・・・B
240分後に透過側のインスリン濃度が供給側の45%未満・・・C
(細胞浸潤阻害性)
 上記で作製した多孔質膜について生体での膜内部への細胞浸潤阻害を以下のように評価した。細胞浸潤阻害性の評価は各種細胞を遮断する機能の指標となる。
 SDラット(Sprague-Dawley rat)の背部皮下に2cm四方の多孔質膜を埋植し縫合した。1週間飼育後に同部位を切除し、HE(ヘマトキシリン・エオシン)組織染色切片を作製し、多孔質膜を埋植した部位の断面を撮影した。図3に多孔質膜1、3、5、6を含む組織染色切片の画像を示す。図3からわかるように、多孔質膜1、3、5では細胞浸潤阻害層が認められ、細胞の浸潤を阻害できている。一方、多孔質膜6では細胞浸潤阻害層を認めるものの、一部で細胞が浸潤している箇所が認められることから細胞浸潤阻害性は中程度と判断できる。各多孔質膜について以下の基準で評価した。
 A:細胞浸潤阻害層が認められる。
 B:細胞浸潤阻害層を認めるものの、一部で細胞が浸潤している箇所が認められる。
 C:明瞭な細胞浸潤阻害層は認められず全般にわたって細胞が浸潤している。
結果を表1に示す。
(膜耐久性)
無菌状態において、多孔質膜を培地(膵島培養用メディウム、コスモバイオ、PNIM3)に浸漬し1ヶ月間37℃で保管した。その後、上記と同様にインスリン透過性を試験した。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(実施例25)
 ポリスルホン(ソルベイ社製P3500)15質量部、ポリビニルピロリドン(日本触媒社製K-30)15質量部、塩化リチウム1質量部、および水2質量部をN-メチル-2-ピロリドン67質量部に溶解して製膜原液を得た。この製膜原液をPET(ポリエチレンテレフタレート)フィルム表面に乾燥厚み50μmとなるようなウェット膜厚で流延した。上記流延した液膜表面に30℃、相対湿度80%RHに調節した空気を2m/秒で5秒間当てた。その後直ちに水を満たした65℃の凝固液槽に浸漬した。PETフィルムを剥離して多孔質膜を得た。その後、80℃のジエチレングリコール浴に120秒間つけ、その後純水で洗浄し、乾燥厚み50μmの多孔質膜を得た。これを多孔質膜14とした。
(実施例26)
 ポリスルホン(ソルベイ社製P3500)15質量部、ポリビニルピロリドン(日本触媒社製K-30)15質量部、塩化リチウム1質量部、および水2質量部をN-メチル-2-ピロリドン67質量部に溶解して製膜原液を得た。この製膜原液をPETフィルム表面に乾燥厚み83μmとなるようなウェット膜厚で流延した。上記流延した液膜表面に30℃、相対湿度57%RHに調節した空気を2m/秒で5秒間当てた。その後直ちに水を満たした70℃の凝固液槽に浸漬した。PETフィルムを剥離して多孔質膜を得た。その後、80℃のジエチレングリコール浴に120秒間つけ、その後純水で洗浄し、乾燥厚み83μmの多孔質膜を得た。これを多孔質膜15とした。
<多孔質膜14および15の構造解析>
 得られた各多孔質膜にメタノールを含浸させ、液体窒素中で凍結させた。凍結させた多孔質膜からミクロトーム(Leica社製 EM UC6)で断面観察用の切片を切り出し、SEM撮影(日立ハイテクノロジーズ社製SU8030型FE-SEM)を行なった。SEM撮影は3000倍で行った。多孔質膜14、15の断面の写真をそれぞれ図4,7に示す。図4、7において、上側が製造時に空気を当てた側であり、下側が製造時のPETフィルム側である。それぞれの多孔質膜の断面のSEM撮影写真を上側から厚み方向に20分割する分割線を19本引き、各分割線と交差または接する孔(閉孔)をデジタイザーでなぞり、連続する50個の孔の平均孔径を求めた。ただし、孔が大きく、50個測定できない分割線については、その分割線でとれる数だけ測定した。求めた各分割線の平均孔径を、一方の表面から他方の表面まで順番にプロットし、膜の厚み方向の平均孔径の分布を求めた。多孔質膜14、15の測定の結果をそれぞれ図5、8に示す。平均孔径が最小の分割線を含む部位を緻密部位とし、この部位の平均孔径を緻密部位の平均孔径とした。さらに平均孔径が最大となる分割線の平均孔径を最大孔径として求めた。測定値を表2に示す。
 また、それぞれ多孔質膜14、15を用いた表2に示す実施例25および26の構成で、上記実施例1~24と同様に評価を行った。結果を表2に示す。また、2枚を重ね合わせ封筒状にして埋植したものを用いた以外は多孔質膜1と同様に、上述のようにHE(ヘマトキシリン・エオシン)組織染色切片を作製し多孔質膜を埋植した部位の断面を撮影した。図6、9にそれぞれ多孔質膜14、15を含む組織染色切片の画像を示す。
Figure JPOXMLDOC01-appb-T000002
1 多孔質膜
11 湿潤阻害層
 

Claims (18)

  1. ポリマーを含む多孔質膜を含み、
    前記多孔質膜は、孔径が最小となる層状の緻密部位を膜内に有し、前記緻密部位から前記多孔質膜の少なくとも一方の表面に向かって厚み方向で孔径が連続的に増加している免疫隔離膜。
  2. 前記多孔質膜からなる請求項1に記載の免疫隔離膜。
  3. 前記多孔質膜の最小孔径が0.02μm~1.5μmである請求項1または2に記載の免疫隔離膜。
  4. 前記多孔質膜の最小孔径が0.02μm~1.3μmである請求項1または2に記載の免疫隔離膜。
  5. 前記多孔質膜の最小孔径と最大孔径との比が3.0~20.0である請求項1~4のいずれか一項に記載の免疫隔離膜。
  6. 前記緻密部位の厚みが0.5μm~30μmである請求項1~5のいずれか一項に記載の免疫隔離膜。
  7. 前記多孔質膜の厚みが10μm~250μmである請求項1~6のいずれか一項に記載の免疫隔離膜。
  8. 前記多孔質膜が少なくとも一種のポリスルホンおよびポリビニルピロリドンを含む請求項1~7のいずれか一項に記載の免疫隔離膜。
  9. 前記緻密部位が前記多孔質膜のいずれか一方の表面Xから前記多孔質膜の厚みの3分の1以内の距離にある請求項1~8のいずれか一項に記載の免疫隔離膜。
  10. 前記緻密部位が前記多孔質膜のいずれか一方の表面Xから前記多孔質膜の厚みの5分の2以内の距離にある請求項1~8のいずれか一項に記載の免疫隔離膜。
  11. 前記緻密部位から少なくとも前記多孔質膜の表面Xと反対側の表面に向かって厚み方向で孔径が連続的に増加している請求項10に記載の免疫隔離膜。
  12. 前記緻密部位から前記多孔質膜の両表面に向かって厚み方向で孔径が連続的に増加している請求項11に記載の免疫隔離膜。
  13. 生物学的構成物を内包するための移植用チャンバーであって、
    前記移植用チャンバーの内部と外部とを形成する面の少なくとも一部に請求項1~12のいずれか一項に記載の免疫隔離膜を有する前記移植用チャンバー。
  14. 生物学的構成物を内包するための移植用チャンバーであって、
    前記移植用チャンバーの内部と外部を形成する面の少なくとも一部に請求項9~12のいずれか一項に記載の免疫隔離膜を有し、
    前記多孔質膜の表面Xが前記内部側にある前記移植用チャンバー。
  15. 前記生物学的構成物が細胞である請求項13または14に記載の移植用チャンバー。
  16. 請求項13~15のいずれか一項に記載の移植用チャンバーに前記生物学的構成物が内包されている移植用デバイス。
  17. 前記生物学的構成物が生理活性物質を放出する請求項16に記載の移植用デバイス。
  18. 前記生理活性物質がインスリンである請求項17に記載の移植用デバイス。
     
PCT/JP2017/040339 2016-11-11 2017-11-09 免疫隔離膜、移植用チャンバー、および移植用デバイス WO2018088452A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17869451.9A EP3539575A4 (en) 2016-11-11 2017-11-09 IMMUNIZATION MEMBRANE, TRANSPLANT CHAMBER AND TRANSPLANT DEVICE
JP2018550239A JP6818042B2 (ja) 2016-11-11 2017-11-09 免疫隔離膜、移植用チャンバー、および移植用デバイス
CN201780069833.5A CN109982727B (zh) 2016-11-11 2017-11-09 免疫隔离膜、移植用室及移植用器件
US16/409,241 US11051930B2 (en) 2016-11-11 2019-05-10 Membrane for immunoisolation, chamber for transplantation, and device for transplantation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016220201 2016-11-11
JP2016-220201 2016-11-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/409,241 Continuation US11051930B2 (en) 2016-11-11 2019-05-10 Membrane for immunoisolation, chamber for transplantation, and device for transplantation

Publications (1)

Publication Number Publication Date
WO2018088452A1 true WO2018088452A1 (ja) 2018-05-17

Family

ID=62110629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040339 WO2018088452A1 (ja) 2016-11-11 2017-11-09 免疫隔離膜、移植用チャンバー、および移植用デバイス

Country Status (5)

Country Link
US (1) US11051930B2 (ja)
EP (1) EP3539575A4 (ja)
JP (1) JP6818042B2 (ja)
CN (1) CN109982727B (ja)
WO (1) WO2018088452A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004381A1 (ja) * 2017-06-29 2019-01-03 富士フイルム株式会社 移植用チャンバー、移植用チャンバーの製造方法、移植用デバイス、および多孔質膜の融着方法
WO2019004378A1 (ja) * 2017-06-29 2019-01-03 富士フイルム株式会社 移植用チャンバーおよび移植用デバイス
WO2019004377A1 (ja) * 2017-06-29 2019-01-03 富士フイルム株式会社 移植用チャンバーおよび移植用デバイス
WO2019044991A1 (ja) * 2017-08-30 2019-03-07 富士フイルム株式会社 血管新生剤およびその製造方法
WO2019044990A1 (ja) * 2017-08-30 2019-03-07 富士フイルム株式会社 細胞移植用デバイスおよびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115569243B (zh) * 2022-11-01 2023-08-15 上海玮启医疗器械有限公司 多层可降解左心耳封堵器阻流膜及其制备方法、封堵器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227006A (ja) * 1985-07-27 1987-02-05 Fuji Photo Film Co Ltd 微孔性膜
JPH04349927A (ja) 1991-05-27 1992-12-04 Fuji Photo Film Co Ltd 精密濾過膜の製法
JPH04351645A (ja) 1991-05-29 1992-12-07 Daikin Ind Ltd 非対称孔径ポリテトラフルオロエチレン多孔膜の製造方法
JPH06507412A (ja) 1991-04-25 1994-08-25 ブラウン ユニヴァーシティ リサーチ ファンデーション 選択された治療物質放出用の移植可能で生体適合性の免疫遮断性ビークル
JPH10507111A (ja) 1994-10-07 1998-07-14 バクスター、インターナショナル、インコーポレイテッド 多孔性の微細製作されたポリマー膜構造物
JP2007195573A (ja) 2006-01-23 2007-08-09 Tohoku Univ 移植用膵島の分離方法
JP2009522269A (ja) 2005-12-30 2009-06-11 ニューロテック ユーエスエー, インコーポレイテッド 生物活性分子の送達のための微粒子化デバイスおよびその使用方法
JP2010235808A (ja) 2009-03-31 2010-10-21 Fujifilm Corp 多孔フィルムの製造方法
JP2015110194A (ja) * 2012-03-23 2015-06-18 テルモ株式会社 選択透過膜及びその製造方法
WO2016031834A1 (ja) * 2014-08-25 2016-03-03 旭化成メディカル株式会社 多孔質膜
WO2016117565A1 (ja) * 2015-01-19 2016-07-28 旭化成メディカル株式会社 多孔質中空糸濾過膜

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0507933T3 (da) * 1990-10-31 1996-06-17 Baxter Int Nær-vaskulariserende implantationsmateriale
US6060640A (en) * 1995-05-19 2000-05-09 Baxter International Inc. Multiple-layer, formed-in-place immunoisolation membrane structures for implantation of cells in host tissue
EP0747046A3 (en) * 1995-05-19 1997-12-03 Baxter International Inc. Permeable immunoisolation membrane structures for implantation of cells in host tissue
US20080027538A1 (en) 2006-07-27 2008-01-31 Cumming J Stuart Polyspheric Accommodating Intraocular Lens
US8361489B2 (en) 2006-08-29 2013-01-29 The University Of Akron Implantable devices for producing insulin
EP2134295B1 (en) * 2007-03-09 2012-12-19 The University of Akron Bio-artificial pancreas and a procedure for preparation of same
EP2335814B1 (en) * 2008-09-26 2016-12-28 Asahi Kasei Kabushiki Kaisha Use of porous hollow-fiber membrane for producing clarified biomedical culture medium
JP5403444B1 (ja) * 2012-11-15 2014-01-29 東洋紡株式会社 多孔質中空糸膜
US20160228473A1 (en) 2013-09-20 2016-08-11 Kyoto University Device and method for immunosuppressant-free transplantation, and usage thereof
US20160120932A1 (en) 2014-10-31 2016-05-05 Kyoto University Transplant site-forming agent, transplant site-forming device, angiogenic agent and angiogenic device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227006A (ja) * 1985-07-27 1987-02-05 Fuji Photo Film Co Ltd 微孔性膜
JPH0468966B2 (ja) 1985-07-27 1992-11-04 Fuji Photo Film Co Ltd
JPH06507412A (ja) 1991-04-25 1994-08-25 ブラウン ユニヴァーシティ リサーチ ファンデーション 選択された治療物質放出用の移植可能で生体適合性の免疫遮断性ビークル
JPH04349927A (ja) 1991-05-27 1992-12-04 Fuji Photo Film Co Ltd 精密濾過膜の製法
JPH04351645A (ja) 1991-05-29 1992-12-07 Daikin Ind Ltd 非対称孔径ポリテトラフルオロエチレン多孔膜の製造方法
JPH10507111A (ja) 1994-10-07 1998-07-14 バクスター、インターナショナル、インコーポレイテッド 多孔性の微細製作されたポリマー膜構造物
JP2009522269A (ja) 2005-12-30 2009-06-11 ニューロテック ユーエスエー, インコーポレイテッド 生物活性分子の送達のための微粒子化デバイスおよびその使用方法
JP2007195573A (ja) 2006-01-23 2007-08-09 Tohoku Univ 移植用膵島の分離方法
JP2010235808A (ja) 2009-03-31 2010-10-21 Fujifilm Corp 多孔フィルムの製造方法
JP2015110194A (ja) * 2012-03-23 2015-06-18 テルモ株式会社 選択透過膜及びその製造方法
WO2016031834A1 (ja) * 2014-08-25 2016-03-03 旭化成メディカル株式会社 多孔質膜
WO2016117565A1 (ja) * 2015-01-19 2016-07-28 旭化成メディカル株式会社 多孔質中空糸濾過膜

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
FUMIKOMI MINEKO ET AL., REGENERATIVE MEDICINE, vol. 1, no. 2, 2002, pages 63 - 68
H. C. LEEJ. W. YOON ET AL., NATURE, vol. 408, 2000, pages 483 - 488
HORIYAMA, KAZUMORI INOUE, REGENERATIVE MEDICINE, vol. 1, no. 2, 2002, pages 69 - 77
JUNICHI MIYAZAKI, REGENERATIVE MEDICINE, vol. 1, no. 2, 2002, pages 57 - 61
OKAWARA HISAKO, PROTEIN NUCLEIC ACID ENZYME, vol. 45, 2000, pages 2307 - 2312
See also references of EP3539575A4
TAKEO TAOYOSHIKAZU OKA: "Insulin Preparations of Present and Future", MEDICAL REVIEW, 2002
TRANSPLANTATION, vol. 67, 1995, pages 665

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004381A1 (ja) * 2017-06-29 2019-01-03 富士フイルム株式会社 移植用チャンバー、移植用チャンバーの製造方法、移植用デバイス、および多孔質膜の融着方法
WO2019004378A1 (ja) * 2017-06-29 2019-01-03 富士フイルム株式会社 移植用チャンバーおよび移植用デバイス
WO2019004377A1 (ja) * 2017-06-29 2019-01-03 富士フイルム株式会社 移植用チャンバーおよび移植用デバイス
CN110831637A (zh) * 2017-06-29 2020-02-21 富士胶片株式会社 移植用室及移植用器件
US11576370B2 (en) 2017-06-29 2023-02-14 Fujifilm Corporation Chamber for transplantation, method for manufacturing chamber for transplantation, device for transplantation, and method for fusion welding porous membranes
US11771806B2 (en) 2017-06-29 2023-10-03 Fujifilm Corporation Chamber for transplantation and device for transplantation
WO2019044991A1 (ja) * 2017-08-30 2019-03-07 富士フイルム株式会社 血管新生剤およびその製造方法
WO2019044990A1 (ja) * 2017-08-30 2019-03-07 富士フイルム株式会社 細胞移植用デバイスおよびその製造方法
US11439960B2 (en) 2017-08-30 2022-09-13 Fujifilm Corporation Cell transplant device and method of manufacturing the same
US11471564B2 (en) 2017-08-30 2022-10-18 Fujifilm Corporation Angiogenic agent and method of manufacturing the same

Also Published As

Publication number Publication date
CN109982727B (zh) 2022-01-21
US20190262122A1 (en) 2019-08-29
US11051930B2 (en) 2021-07-06
CN109982727A (zh) 2019-07-05
JPWO2018088452A1 (ja) 2019-10-03
EP3539575A4 (en) 2019-11-13
EP3539575A1 (en) 2019-09-18
JP6818042B2 (ja) 2021-01-20

Similar Documents

Publication Publication Date Title
WO2018088452A1 (ja) 免疫隔離膜、移植用チャンバー、および移植用デバイス
JP6892874B2 (ja) 免疫隔離膜、移植用チャンバー、および移植用デバイス
US11771806B2 (en) Chamber for transplantation and device for transplantation
US20210316043A1 (en) Cell transplantation kit, method for producing sac-shaped structure, and therapeutic agent for diabetes
JP6790268B2 (ja) 移植用チャンバーおよび移植用デバイス
JP6854345B2 (ja) 移植用チャンバーおよび移植用デバイス
JP6870087B2 (ja) 移植用チャンバー、移植用チャンバーの製造方法、移植用デバイス、および多孔質膜の融着方法
JP6790267B2 (ja) 移植用チャンバーおよび移植用デバイス
WO2019004382A1 (ja) 免疫隔離膜、免疫隔離膜の製造方法、移植用チャンバー、および移植用デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550239

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017869451

Country of ref document: EP

Effective date: 20190611