WO2019044576A1 - 空気処理装置 - Google Patents

空気処理装置 Download PDF

Info

Publication number
WO2019044576A1
WO2019044576A1 PCT/JP2018/030750 JP2018030750W WO2019044576A1 WO 2019044576 A1 WO2019044576 A1 WO 2019044576A1 JP 2018030750 W JP2018030750 W JP 2018030750W WO 2019044576 A1 WO2019044576 A1 WO 2019044576A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
tray
image data
drain pump
water
Prior art date
Application number
PCT/JP2018/030750
Other languages
English (en)
French (fr)
Inventor
陽一 半田
政弥 西村
義照 野内
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to ES18851325T priority Critical patent/ES2898843T3/es
Priority to AU2018323394A priority patent/AU2018323394B2/en
Priority to CN201880055458.3A priority patent/CN111051783A/zh
Priority to US16/640,299 priority patent/US11499728B2/en
Priority to EP21193232.2A priority patent/EP3933287A1/en
Priority to EP18851325.3A priority patent/EP3663662B1/en
Publication of WO2019044576A1 publication Critical patent/WO2019044576A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/48Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring prior to normal operation, e.g. pre-heating or pre-cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F2006/008Air-humidifier with water reservoir

Definitions

  • the present disclosure relates to an air treatment device.
  • air processing apparatuses such as an air conditioning apparatus, a ventilator, a humidity control apparatus, an air cleaner
  • a camera is provided inside the casing. The camera captures the filter. The image data of the filter taken by the camera is output to the central control room via the LAN. By checking the image data, a service provider or the like can check the state of the filter (such as clogging or tear).
  • the air conditioner disclosed in Patent Document 1 determines a condition such as filter clogging based on the condition of one image data. Specifically, the ratio of the number of pixels of the part classified as the filter being broken is obtained as the number of pixels of the entire filter in the image data, and the breakage of the filter is determined based on this ratio.
  • An object of the present disclosure is to improve the determination accuracy of the state of a target component.
  • the first aspect includes a casing (20) through which air flows, an imaging device (70) for acquiring a plurality of image data of a predetermined imaging target (45a, 60) in the casing (20), and the imaging device A processing unit (85) for determining the state of predetermined parts (45, 66, 68) in the casing (20) based on changes in the plurality of image data acquired in 70).
  • Air treatment device the plurality of image data as referred to herein includes still images included in a moving image.
  • the processing unit (85) of the first aspect determines the state of the predetermined part (45, 66, 68) based on the change of the plurality of image data of the imaging target (45a, 60). That is, the processing unit (85) determines the state of the component (45, 66, 68) in consideration of the state change of a plurality of image data, not one image data.
  • the imaging device (70) comprises a tray (60) for receiving water, and a discharge part (66, 68) for discharging water in the tray (60).
  • a plurality of image data of the tray (60) as the imaging target are acquired, and the processing unit (85) changes a water surface height in the tray (60) in the plurality of image data And an abnormal state of the discharge unit (66, 68) as the predetermined component (45, 66, 68).
  • the processing unit (85) of the second aspect determines an abnormal state of the discharge unit (66, 68) as a predetermined part based on the change in the water surface height of the tray (60) in the plurality of image data.
  • a third aspect is the air treatment device according to the second aspect, wherein the discharge part (66, 68) is a drain pump (66) that pumps up water in the tray (60).
  • the processing unit (85) of the third aspect causes an abnormal state of the drain pump (66) as a predetermined part based on the change of the water surface height of the tray (60) in the plurality of image data.
  • a fourth aspect is according to the third aspect, wherein the imaging device (70) is a first time point before activation of the drain pump (66) or from a first time point at activation of the drain pump (66).
  • the processing unit (85) is configured to acquire image data of the tray (60) in a first period between a second time point after activation of the drain pump (66), and the processing unit (85); It is an air processing apparatus characterized by judging an abnormal state of said drain pump (66) based on change of said water surface height of said a plurality of image data in a period.
  • the processing section (85) of the fourth aspect determines the abnormal state of the drain pump (66) based on the change in water surface height of the tray (60) in the first period between the first time point and the second time point Do. Since the first time point is before or at start-up of the drain pump (66), the water surface height of the tray (60) is relatively high. Since the second time point is after the start of the drain pump (66), the water level of the tray (60) is lower than the first time point if the drain pump (66) is operating normally. Therefore, the abnormality of the drain pump (66) can be determined by considering these changes in water surface height.
  • the imaging device (70) includes a plurality of images of the tray (60) in a predetermined second period after the drain pump (66) is activated.
  • the processing unit (85) is configured to acquire data, and determines the abnormal state of the drain pump (66) based on changes in the water surface height of the plurality of the image data in the second period.
  • the processing unit (85) of the fifth aspect determines an abnormal state of the drain pump (66) based on a change in water surface height in a second period after activation of the drain pump (66). If the drain pump (66) is in an abnormal state after starting the drain pump (66), the water in the tray (60) can not be pumped up normally, and the water surface height of the tray (60) may rise. is there. Therefore, the abnormality of the drain pump (66) can be determined based on the degree of rise of the water surface height of the tray (60).
  • the processing section (85) determines the discharge section based on a change amount or a change speed of the water surface height of the plurality of image data. It is an air processing apparatus characterized by determining the abnormal state of (66, 68).
  • the processing unit (85) of the sixth aspect determines an abnormal state of the discharge unit (66, 68) based on the amount of change in water surface height in the tray (60) or the change speed.
  • a seventh aspect is according to the first aspect, including a humidifier (45) having a water absorbing member (45a) to which water is supplied, and the imaging device (70) comprises the water absorbing member (45a) as the imaging target And the processing unit (85) is configured to acquire the predetermined data (45, 66, 68) based on the change in the wet state of the water absorbing member (45a) of the plurality of the image data. Determining an abnormal state of the humidifier (45).
  • the processing unit (85) of the seventh aspect determines the abnormal state of the humidifier (45) based on the change in the wet state of the water absorbing member (45a) of the humidifier (45). If the humidifier (45) is in an abnormal state, moisture is not supplied to the water absorbing member (45a) well, and the water absorbing member (45a) dries.
  • FIG. 1 is a plan view showing the internal structure of the air conditioning apparatus according to the first embodiment.
  • FIG. 2 is a front view of the air conditioning apparatus according to the first embodiment.
  • FIG. 3 is a longitudinal cross-sectional view showing the internal structure of the air conditioning apparatus according to the first embodiment.
  • FIG. 4 is a perspective view showing a schematic configuration on the front panel side of the air conditioning apparatus according to the first embodiment.
  • FIG. 5 is a perspective view showing the inner structure of the inspection lid according to the first embodiment.
  • FIG. 6 is a block diagram showing a schematic configuration of the imaging system according to the first embodiment.
  • FIG. 7 is a flowchart of abnormality determination according to the first embodiment.
  • FIG. 1 is a plan view showing the internal structure of the air conditioning apparatus according to the first embodiment.
  • FIG. 2 is a front view of the air conditioning apparatus according to the first embodiment.
  • FIG. 3 is a longitudinal cross-sectional view showing the internal structure of the air conditioning apparatus according to the first embodiment.
  • FIG. 4
  • FIG. 8 is a time chart showing the water surface height in the tray and the timing of each command in the abnormality determination according to the first embodiment.
  • FIG. 9 is a flowchart of abnormality determination according to the modification of the first embodiment.
  • FIG. 10 is a time chart showing the water surface height in the tray and the timing of each command in the abnormality determination according to the modification of the first embodiment.
  • FIG. 11 is a plan view showing the internal structure of the air conditioning apparatus according to the second embodiment.
  • FIG. 12 is a longitudinal cross-sectional view showing the internal structure of the air conditioning apparatus according to the second embodiment.
  • FIG. 13 is a perspective view showing a schematic configuration on the front panel side of the air conditioning apparatus according to the second embodiment.
  • FIG. 14 is a perspective view showing an inner structure of the inspection lid according to the second embodiment.
  • FIG. 15 is a flowchart of abnormality determination according to the second embodiment.
  • FIG. 16 is a flowchart of abnormality determination according to a modification of the second embodiment.
  • the air processing apparatus is an air conditioner (10) that adjusts at least the temperature in a room.
  • the air conditioner (10) regulates the temperature of room air (RA) and supplies the temperature-controlled air to the room as supply air (SA).
  • the air conditioner (10) includes an indoor unit (11) installed in a space above the ceiling.
  • the indoor unit (11) is connected to an outdoor unit (not shown) via a refrigerant pipe.
  • a refrigerant circuit is configured.
  • a vapor compression refrigeration cycle is performed by circulating the filled refrigerant.
  • the outdoor unit is provided with a compressor and an outdoor heat exchanger connected to the refrigerant circuit, and an outdoor fan corresponding to the outdoor heat exchanger.
  • the indoor unit (11) includes a casing (20) installed on the ceiling and a fan (40) and an indoor heat exchanger (43) accommodated in the casing (20). Have. Inside the casing (20), a tray (60) (drain pan) for receiving condensed water generated from the air in the casing (20), and a drain pump (for draining water accumulated in the tray (60) 66) are provided.
  • the casing (20) is formed in the shape of a rectangular hollow box.
  • the casing (20) includes a top plate (21), a bottom plate (22), a front plate (23), a back plate (24), a first side plate (25), and a second side plate (26).
  • the front plate (23) and the rear plate (24) face each other, and the first side plate (25) and the second side plate (26) face each other.
  • the front plate (23) faces the maintenance space (15).
  • An electrical component box (16), an inspection port (50), and an inspection lid (51) are provided on the front plate (23) side (the details will be described later).
  • a suction port (31) is formed in the first side plate (25).
  • a suction duct (not shown) is connected to the suction port (31). The inflow end of the suction duct is connected to the indoor space.
  • An outlet (32) is formed in the second side plate (26).
  • An outlet duct (not shown) is connected to the outlet (32). The outlet end of the outlet duct is connected to the indoor space.
  • Inside the casing (20), an air flow path (33) is formed between the suction port (31) and the blowout port (32).
  • the fan (40) is disposed closer to the first side plate (25) in the air flow path (33).
  • the fan (40) conveys the air of the air flow path (33).
  • three sirocco fans (41) are driven by one motor (42) (see FIG. 1).
  • the indoor heat exchanger (43) is disposed closer to the second side plate (26) in the air flow path (33).
  • the indoor heat exchanger (43) is configured by, for example, a fin and tube type heat exchanger.
  • the indoor heat exchanger (43) of the present embodiment is disposed obliquely.
  • the indoor heat exchanger (43) serving as the evaporator constitutes a cooling unit that cools the air.
  • the tray (60) is disposed below the indoor heat exchanger (43) along the bottom plate (22).
  • the tray (60) receives water condensed in the vicinity of the indoor heat exchanger (43).
  • the tray (60) includes a first side wall (61), a second side wall (62), and a bottom (63).
  • the first side wall (61) is located upstream of the indoor heat exchanger (43).
  • the second side wall (62) is located downstream of the indoor heat exchanger (43).
  • the bottom portion (63) is formed across the first side wall (61) and the second side wall (62).
  • the bottom (63) is formed with a recess (64) having a substantially trapezoidal cross section near the center. In the tray (60), the height of the bottom of the recess (64) is the lowest. That is, the deepest deepest portion is formed in the depressed portion (64).
  • the tray (60) constitutes an imaging target of the camera.
  • the drain pump (66) is disposed inside the tray (60).
  • the drain pump (66) constitutes a discharge unit for discharging the water in the tray (60).
  • the suction portion (66a) of the drain pump (66) is disposed inside the recess (64) of the tray (60).
  • the inflow end of drain piping (67) is connected to the discharge part of drain pump (66).
  • the drain pipe (67) penetrates the front plate (23) of the casing (20) in the horizontal direction.
  • the drain pump (66) constitutes a component which is an object to be judged as abnormal.
  • the electrical component box (16) is disposed closer to the fan (40) of the front plate (23). Inside the electrical component box (16), a printed circuit board (17) on which a power supply circuit, a control circuit and the like are mounted, a wire connected to each circuit, a high power side power supply unit, a low power side power supply unit and the like are accommodated.
  • the electrical component box (16) includes a box main body (16a) whose front side opens, and an electrical component cover (16b) which opens and closes an opening surface of the box main body (16a).
  • the electric component cover (16b) constitutes a part of the front plate (23). By removing the electrical component cover (16b), the inside of the electrical component box (16) is exposed to the maintenance space (15).
  • the inspection port (50) is disposed closer to the indoor heat exchanger (43) of the front plate (23).
  • the inspection port (50) is composed of a rectangular portion (50a) and a triangular portion (50b) continuous with one lower corner of the rectangular portion.
  • the triangular portion (50b) protrudes from the rectangular portion (50a) to the second side plate (26) side.
  • the inspection port (50) is formed at a position corresponding to the tray (60). By removing the inspection lid (51) from the inspection opening (50), the inside of the tray (60) can be inspected from the maintenance space (15) side.
  • the inspection lid (51) has a shape substantially similar to the inspection opening (50) and slightly larger than the inspection opening (50). At the outer edge of the inspection lid (51), a plurality of (three in this example) fastening holes for attaching the inspection lid (51) to the casing body (20a) are formed.
  • the inspection lid (51) is fixed to the casing body (20a) by a plurality of fastening members (for example, bolts) inserted through the fastening holes. With such a configuration, the inspection lid (51) is detachably attached to the casing main body (20a) so as to open and close the inspection opening (50).
  • the inner wall (51a) of the inspection lid (51) is provided with a stay (53) for supporting the camera (70) on the inspection lid (51).
  • the stay (53) is fixed to the inner wall (51a) of the inspection lid (51) and constitutes a support member to which the camera (70) is attached.
  • the stay (53) is fixed to a substantially central portion of the inner wall (51a) of the inspection lid (51) and extends in the horizontal direction.
  • the base of the stay (53) may be welded to the inspection lid (51), for example, or may be fastened to the inspection lid (51) through a plurality of bolts (fastening members).
  • bolts fastening members
  • the cross-sectional shape perpendicular to the longitudinal direction of the stay (53) is formed in a substantially L shape. More specifically, the stay (53) includes a first plate portion (53a) and a second plate portion (53b) substantially perpendicular to the first plate portion (53a).
  • the stay (53) In the state where the inspection lid (51) is attached to the casing main body (20a) (hereinafter, also simply referred to as the attachment lid), the stay (53) includes the first plate portion (53a) and the second plate portion. The continuous portion with (53b) is arranged to face upward.
  • the lower side surface of the first plate portion (53a) faces the tray (60) (strictly speaking, the recessed portion (64) of the tray (60)).
  • a camera (70) is removably attached to the stay (53).
  • the camera (70) constitutes an imaging device for imaging image data of the tray (60) to be imaged.
  • the camera (70) has a lens (71) and a light emitting unit (flash (72)).
  • the lens is composed of a super wide angle lens.
  • a support plate (73) is fixed to the back of the camera (70).
  • the support plate (73) is fixed to the first plate portion (53a) of the stay (53) via a bolt (not shown). Thereby, the camera (70) is supported by the stay (53) and thus the inspection lid (51).
  • the lens (71) of the camera (70) faces the inside of the tray (60). That is, the camera (70) is at a position where it can capture the height of the water surface in the tray (60) when the inspection lid (51) is attached (see FIG. 3).
  • An imaging system (S) according to the present embodiment includes a camera (70), a control unit (80), and a communication terminal (90).
  • the camera (70) is housed inside the casing (20) of the air conditioner (10).
  • the control unit (80) is housed inside the electrical component box (16).
  • the camera (70) and the control unit (80) are connected by a cable.
  • the communication terminal (90) is owned by a service provider or a user of the air conditioner (10).
  • the control unit (80) includes a power supply unit (81), an air conditioning control unit (82), an imaging control unit (83), a storage unit (84), a processing unit (85), and a communication unit (86).
  • the air conditioning control unit (82), the imaging control unit (83), and the processing unit (85) include a microcomputer and a memory device (specifically, a semiconductor memory) storing software for operating the microcomputer. It is configured using
  • the power supply unit (81) constitutes a power supply of the camera (70).
  • the power supply unit (81) supplies power to the camera (70) through a cable.
  • the air conditioning control unit (82) controls each component such as the fan (40) of the air conditioner (10) and the drain pump (66).
  • the air conditioning control unit (82) operates the drain pump (66) when the air conditioner (10) starts the cooling operation, and stops the drain pump (66) when the cooling operation is stopped. That is, during the cooling operation, basically, the drain pump (66) also operates.
  • the imaging control unit (83) controls imaging of the camera (70). Specifically, the imaging control unit (83) supplies power from the power supply unit (81) to the camera (70) in order to execute imaging of the camera (70). When power is supplied to the camera (70), the camera (70) performs imaging.
  • the imaging control unit (83) may output an ON signal for causing the camera (70) to perform imaging. In this case, when an ON signal is input to the camera (70), the camera (70) performs imaging.
  • image data of an imaging target is acquired. This image data is input to the control unit (80) via a cable.
  • the storage unit (84) is configured of a storage medium for storing image data acquired by the camera (70).
  • the processing unit (85) is configured to determine an abnormal state of a predetermined part (in this example, the drain pump (66)) based on the plurality of image data stored in the storage unit (84).
  • the processing unit (85) determines an abnormal state of the drain pump (66) based on changes in the plurality of image data. In this determination, deep learning of AI (Artificial Intelligence) based on accumulated image data may be used.
  • AI Artificial Intelligence
  • the communication unit (86) is connected to the communication terminal (90), for example, wirelessly.
  • the communication unit (86) is connected to the communication terminal (90) via a communication line using mobile high-speed communication technology (LTE). This enables transmission and reception of signals between the control unit (80) and the communication terminal (90).
  • the communication unit (86) may be a wireless router connected to the communication terminal (90) using a wireless LAN.
  • an abnormal signal is transmitted to the communication terminal (90) through the communication unit (86).
  • the communication terminal (90) is composed of a smartphone, a tablet terminal, a mobile phone, a personal computer and the like.
  • the communication terminal (90) has an operation unit (91), a display unit (92), and an alarm unit (93).
  • the operation unit (91) is configured of a keyboard, a touch panel, and the like.
  • the service provider or the like operates predetermined application software by operating the operation unit (91). Through this application, imaging of the camera (70) can be performed, and acquired image data can be downloaded to the communication terminal (90).
  • the display unit (92) is configured of, for example, a liquid crystal monitor.
  • an abnormality signal is input to the communication terminal (90)
  • the alarm unit (93) issues an alarm (sound) indicating that an abnormality signal is input, when the communication terminal (90) is input.
  • the air conditioner (10) is configured to be capable of performing a cooling operation and a heating operation.
  • the refrigerant compressed by the compressor of the outdoor unit is released (condensed) by the outdoor heat exchanger and decompressed by the expansion valve.
  • the decompressed refrigerant is evaporated in the indoor heat exchanger (43) of the indoor unit (11) and compressed again in the compressor.
  • the moisture in the air condenses.
  • This condensed water is received by the tray (60).
  • the condensed water received by the tray (60) is drained to the outside of the casing (20) by the drain pump (66).
  • the refrigerant compressed by the compressor of the outdoor unit is released (condensed) by the indoor heat exchanger (43) of the indoor unit (11) and decompressed by the expansion valve.
  • the decompressed refrigerant is evaporated by the outdoor heat exchanger of the outdoor unit and compressed again by the compressor.
  • the indoor heat exchanger (43) the refrigerant releases heat to the air, and the air is heated.
  • the heated air is supplied to the indoor space as supply air (SA) after passing through the outlet (32).
  • ⁇ Basic operation of imaging system The basic operation of the imaging system (S) will be described.
  • the lens (71) of the camera (70) points to the inside of the tray (60).
  • an imaging operation of the camera (70) is performed.
  • the inside of the tray (60) is illuminated by lighting the flash (72) (light source).
  • the camera (70) acquires image data of the water surface inside the tray (60).
  • the image data acquired by the camera (70) is input to the control unit (80) through the cable, and stored in the storage unit (84) as appropriate.
  • the imaging system (S) determines an abnormality of the drain pump (66) based on a plurality of image data acquired by the camera (70). This control will be described with reference to FIGS.
  • the imaging control unit (83) executes imaging of the camera (70) after a predetermined time ⁇ ta from the command to start the cooling operation. (Step ST1). Thereafter, the air conditioning control unit (82) turns on the drain pump (66) (step St2). That is, the air conditioning control unit (82) turns on the drain pump (66) after a predetermined time ⁇ tb (here, ⁇ tb> ⁇ ta) elapses from the instruction to start the cooling operation. Therefore, in this example, the image data of the water surface of the tray (60) is acquired at the first time point t1 before the start of the drain pump (66).
  • the camera (70) may acquire image data of the water surface of the tray (60) at a first time point t1 at which the drain pump (66) is activated. Before or at start of the drain pump (66), the height of the water surface of the tray (60) is relatively high. This is because condensed water is accumulated in the tray (60) after the previous cooling operation of the air conditioner (10) is stopped and before the next cooling operation is started.
  • the predetermined time T1 corresponds to the time until the water in the tray (60) reaches the lowest water level when the drain pump (66) operates when the drain pump (66) operates normally. This lowest water level corresponds to the height position of the opening at the lower end of the suction portion (66a) (see FIG. 3) of the drain pump (66).
  • abnormality determination is performed by the processing unit (85) (step ST5).
  • the processing unit (85) obtains the height h1 of the water surface of the image data at the first time point t1 and the height h2 of the water surface of the image data at the second time point t2, and based on changes in these water surface heights, Perform an abnormality determination on the drain pump (66). Specifically, the processing unit (85) calculates a difference ( ⁇ H) between the height h1 and the height h2 and determines whether the difference ⁇ H is equal to or less than a predetermined value A.
  • step ST6 If it is determined in step ST6 that ⁇ H is equal to or less than the predetermined value A, the process proceeds to step ST7.
  • step ST7 the communication unit (86) outputs an abnormality signal to the communication terminal (90).
  • a sign indicating abnormality is displayed on the display unit (92), and an alarm is issued from the alarm unit (93). Therefore, the maintenance contractor can quickly know that the drain pump (66) is in an abnormal state.
  • the processing unit (85) determines an abnormal state of a predetermined part (drain pump (66)) based on changes in a plurality of image data of an imaging target (tray (60)). That is, the processing unit (85) determines an abnormal state of the drain pump (66) in consideration of a state change of a plurality of image data, not one image data. Therefore, even if the feature of the image data is changed due to the type of tray (60) or the installation state of the camera (70), the abnormal state of the drain pump (66) based on the change of these image data. Can be accurately determined. That is, in the present embodiment, it is possible to suppress the occurrence of an erroneous determination due to an individual difference of imaging targets.
  • the water surface height h1 at the first point in time before or at the start of the drain pump (66) and the first period between the second point in time after the drain pump (66) is activated.
  • the abnormality state of the drain pump (66) is determined based on the change ( ⁇ H) with the water surface height h2 of the tray (60) in.
  • the height h1 of the water surface before or during start-up of the drain pump (66) and the height h2 of the water surface after start-up of the drain pump (66) are largely different if normal. Therefore, by using this change, the abnormal state of the drain pump (66) can be determined accurately.
  • the abnormality determination of the drain pump (66) in the first embodiment may be modified as follows.
  • abnormality determination of the drain pump (66) is performed based on a plurality of image data in the second period after activation of the drain pump (66).
  • the drain pump (66) when the cooling operation of the air conditioner (10) is started by a command from a remote control or the like, the drain pump (66) is turned ON interlockingly with this (step ST11) .
  • the predetermined time T2 After the drain pump (66) is turned on, when the predetermined time T2 has elapsed in step ST12, image data of the water surface of the tray (60) is acquired at the third time point t3 (step ST13).
  • This predetermined time T2 is slightly longer than the time until the water in the tray (60) reaches the lowest water level when the drain pump (66) operates normally when the drain pump (66) operates normally. It is set. Therefore, the height of the water surface of the image data at the third time point t3 basically becomes the lowest water level.
  • step ST14 when a predetermined time T3 has elapsed from the third time point t3, image data of the water surface of the tray (60) is acquired at the fourth time point t4 (step ST15).
  • step ST16 abnormality determination of the drain pump (66) is performed.
  • step ST17 If it is determined in step ST17 that ⁇ H is equal to or greater than the predetermined value B, the process proceeds to step ST18.
  • step ST18 the communication unit (86) outputs an abnormality signal to the communication terminal (90).
  • a sign indicating abnormality is displayed on the display unit (92), and an alarm is issued from the alarm unit (93). Therefore, the maintenance contractor can quickly know that the drain pump (66) is in an abnormal state.
  • the air conditioner (10) according to the second embodiment differs from the first embodiment in the basic configuration.
  • the air conditioner (10) of the second embodiment takes in outdoor air (OA) and adjusts the temperature and humidity of this air.
  • the air conditioner (10) supplies the air thus treated into the room as supply air (SA). That is, the air conditioner (10) is an outside air treatment system.
  • the air conditioner (10) also includes a humidifier (45) for humidifying air, for example, in winter.
  • the air conditioner (10) is installed, for example, in a space above the ceiling. Further, the air conditioner (10) has an outdoor unit (not shown) and an indoor unit (11) as in the first embodiment, and these are connected by a refrigerant pipe, whereby a refrigerant circuit is obtained. Configured
  • the indoor unit (11) includes a casing (20) installed on the ceiling, an air supply fan (40a), an exhaust fan (40b), and an indoor heat exchanger (43). And a total heat exchanger (44) and a humidifier (45). Further, in the inside of the casing (20), a tray (60) for collecting condensed water generated in the indoor heat exchanger (43), and a drainage port (68) for discharging water in the tray (60) And is provided.
  • the casing (20) is formed in the shape of a rectangular hollow box.
  • the casing (20) of the second embodiment is the same as the first embodiment, and the top plate (21), the bottom plate (22), the front plate (23), the back plate (24), the first side plate (25), and the second side plate (26) is provided.
  • the front plate (23) faces the maintenance space (15).
  • An electrical component box (16), an inspection port (50), and an inspection lid (51) are provided on the front plate (23) side (the details will be described later).
  • An inner air port (34) and an air supply port (35) are formed in the first side plate (25).
  • An inside air duct (not shown) is connected to the inside air port (34). The inflow end of the inside air duct is connected to the indoor space.
  • An air supply duct (not shown) is connected to the air supply port (35). The outlet end of the air supply duct is connected to the indoor space.
  • An exhaust port (36) and an open air port (37) are formed in the second side plate (26).
  • An exhaust duct (not shown) is connected to the exhaust port (36). The outflow end of the exhaust duct is connected to the outdoor space.
  • An outside air duct (not shown) is connected to the outside air port (37). The inflow end of the outside air duct is connected to the outdoor space.
  • the air supply flow path (33A) is a flow path from the outside air port (37) to the air supply port (35).
  • the exhaust flow path (33B) is a flow path from the inside air port (34) to the exhaust port (36).
  • the total heat exchanger (44) is formed in a horizontally long square pole.
  • the total heat exchanger (44) is configured, for example, by alternately stacking two types of sheets in the horizontal direction.
  • a first passage (44a) communicating with the air supply flow passage (33A) is formed in one of the two types of sheets.
  • a second passage (44b) communicating with the exhaust passage (33B) is formed in the other of the two types of sheets.
  • Each sheet is made of a material having heat conductivity and hygroscopicity. For this reason, in the total heat exchanger (44), latent heat and sensible heat are exchanged between the air flowing through the first passage (44a) and the air flowing through the second passage (44b).
  • the air supply fan (40a) is disposed in the air supply channel (33A) and conveys the air of the air supply channel (33A). More specifically, the air supply fan (40a) is disposed in the air supply channel (33A) between the first passage (44a) of the total heat exchanger (44) and the indoor heat exchanger (43) .
  • Exhaust fan The exhaust fan (40b) is disposed in the exhaust flow path (33B) and conveys the air in the exhaust flow path (33B). More specifically, the exhaust fan (40b) is disposed downstream of the second passage (44b) of the total heat exchanger (44) in the exhaust passage (33B).
  • the indoor heat exchanger (43) is disposed closer to the front plate (23) in the air supply passage (33A).
  • the indoor heat exchanger (43) is configured by, for example, a fin and tube type heat exchanger.
  • the humidifier (45) is disposed closer to the front plate (23) in the air supply passage (33A).
  • the humidifier (45) is disposed downstream of the indoor heat exchanger (43) in the air supply flow path (33A).
  • the humidifier (45) includes a plurality of water absorbing members (45a) extending vertically and arranged in the horizontal direction. Water from a water supply tank (not shown) is supplied to the water absorbing member (45a). In the humidifier (45), the evaporated air is applied to the air flowing around the water absorbing member (45a). Thus, the air flowing through the air supply passage (33A) is humidified.
  • the tray (60) is arranged below the humidifier (45).
  • the tray (60) receives the water (humidified water) flowing out of the humidifier (45).
  • a drain (68) is provided at the lower part of the tray (60).
  • the drainage port (68) constitutes a component which is an object to be judged as abnormal.
  • the electrical component box (16) is provided on the front surface of the front plate (23) and substantially in the center.
  • the same electrical components as in the first embodiment are accommodated in the electrical component box (16).
  • the inspection port (50) is disposed in the front plate (23) near the indoor heat exchanger (43) and the humidifier (45).
  • the inspection port (50) is formed at a position corresponding to the tray (60) and the humidifier (45).
  • the inspection lid (51) is attached to the casing body (20a) via a plurality of fastening members. That is, the inspection lid (51) is detachably attached to the casing main body (20a) so as to open and close the inspection opening (50) as in the second embodiment.
  • a stay (53) for supporting the camera (70) on the inspection lid (51) is provided on the inner wall (51a) of the inspection lid (51).
  • the stay (53) is fixed to a substantially central portion of the inner wall (51a) of the inspection lid (51) and extends in the horizontal direction.
  • the base of the stay (53) may be welded to the inspection lid (51), for example, or may be fastened to the inspection lid (51) through a plurality of bolts (fastening members).
  • the stay (53) of the second embodiment is configured by folding a sheet metal in a step-like manner.
  • the fixing plate portion (54a), the vertical plate portion (54b), the horizontal plate portion (54c), and the mounting plate portion (54d) are sequentially arranged from the base side toward the tip side.
  • the fixed plate portion (54a) is formed along the inner wall (51a) of the inspection lid (51), and a plurality (two in this example) of fastening members (55) (bolts etc.) are formed on the inner wall (51a). It is fixed.
  • the vertical plate portion (54b) extends from the inner wall (51a) of the inspection lid (51) toward the rear plate (24) side of the casing (20).
  • the horizontal plate portion (54c) is parallel to the inner wall (51a) of the inspection lid (51) and extends obliquely upward from the base side of the stay (53).
  • the mounting plate portion (54d) extends from the side plate portion (54c) toward the rear plate (24) side of the casing (20).
  • the mounting plate portion (54d) is directed obliquely downward to point to the lowest portion of the bottom portion (63) of the tray (60).
  • a camera (70) is removably attached to the stay (53).
  • a support plate (73) is fixed to the back of the camera (70).
  • the support plate (73) is fixed to the mounting plate portion (54d) of the stay (53) via a bolt (not shown).
  • the support plate (73) may be fixed to the mounting plate portion (54d) of the stay (53) by welding. Thereby, the camera (70) is supported by the stay (53) and thus the inspection lid (51).
  • the basic configuration of the camera (70) is the same as that of the first embodiment.
  • the lens (71) of the camera (70) faces the inside of the tray (60). That is, the camera (70) is at a position where the water surface in the tray (60) can be imaged in a state where the inspection lid (51) is attached.
  • FIG. 10 The operation of the air conditioner (10) according to the second embodiment will be described with reference to FIGS. 11 and 12.
  • FIG. The air conditioner (10) is configured to be capable of performing a cooling operation and a heating operation.
  • the indoor heat exchanger (43) in the cooling operation, is an evaporator, and in the heating operation, the indoor heat exchanger (43) is a condenser (dissipator). Further, in the heating operation, the humidifier (45) operates to humidify the air. Further, in the cooling operation and the heating operation, when the air supply fan (40a) and the exhaust fan (40b) are operated, outdoor air (OA) is taken into the air supply flow path (33A) from the outdoor air port (37) and Air (RA) is taken into the exhaust flow path (33B) from the inside air port (34). Thereby, ventilation of indoor space is performed.
  • the outdoor air (OA) taken into the air supply flow path (33A) flows through the first passage (44a) of the total heat exchanger (44).
  • the room air (RA) taken into the exhaust flow path (33B) flows through the second passage (44b) of the total heat exchanger (44).
  • outdoor air (OA) has a higher temperature and humidity than room air (RA). Therefore, in the total heat exchanger (44), the latent heat and the sensible heat of the outdoor air (OA) are applied to the indoor air (RA). As a result, the air is cooled and dehumidified in the first passage (44a).
  • the air to which the latent heat and the sensible heat are applied passes through the exhaust port (36) and is discharged to the outdoor space as exhaust air (EA).
  • the air cooled and dehumidified in the first passage (44a) passes through the humidifier (45) in a stopped state after being cooled by the indoor heat exchanger (43). Thereafter, this air passes through the air supply port (35) and is supplied to the indoor space as supply air (SA).
  • the outdoor air (OA) taken into the air supply passage (33A) flows through the first passage (44a) of the total heat exchanger (44).
  • the room air (RA) taken into the exhaust flow path (33B) flows through the second passage (44b) of the total heat exchanger (44).
  • outdoor air (OA) has lower temperature and humidity than room air (RA). Therefore, in the total heat exchanger (44), the latent heat and the sensible heat of the room air (RA) are applied to the outdoor air (OA). As a result, heating and humidification of air are performed in the first passage (44a).
  • the second passage (44b) the air from which the latent heat and the sensible heat have been removed passes through the exhaust port (36) and is discharged to the outdoor space as exhaust air (EA).
  • the air heated and humidified in the first passage (44a) passes through the humidifier (45) after being heated in the indoor heat exchanger (43).
  • the humidifier (45) the moisture vaporized by the hygroscopic material is applied to the air, and the air is further humidified.
  • the air having passed through the humidifier (45) passes through the air supply port (35) and is supplied to the indoor space as supply air (SA).
  • the imaging system (S) determines an abnormality of the outlet (68) (strictly speaking, clogging of the outlet (68)) based on a plurality of image data acquired by the camera (70).
  • the imaging control unit (83) executes imaging of the camera (70) in synchronization with a command to start the operation of the humidifier (45). (Step ST21). Thereby, the image data of the water surface of the tray (60) is acquired at time t5.
  • the humidified water of the tray (60) is discharged to the outside from the drain (68). Therefore, when the humidifier (45) is turned on, there is almost no humidified water in the tray (60), and the height of the water surface of the tray (60) is substantially zero.
  • the time point t5 may be not only immediately after the start of the humidifier (45) but also at the start of the humidifier (45) or before the start.
  • step ST22 image data of the water surface of the tray (60) is acquired at time t6.
  • step ST24 abnormality determination of the drainage port (68) is performed.
  • the height h6 of the water surface of the tray (60) at time t6 is the height h5 of the water surface at time t5 It is the same and substantially zero.
  • the drainage port (68) is abnormal (clogged) and the water in the tray (60) can not be drained, the height h6 of the water surface at time t6 is larger than the height h5 of the water surface at time t5.
  • step ST25 If it is determined in step ST25 that ⁇ H is equal to or greater than the predetermined value C, the process proceeds to step ST26.
  • step ST26 the communication unit (86) outputs an abnormality signal to the communication terminal (90).
  • a sign indicating abnormality is displayed on the display unit (92), and an alarm is issued from the alarm unit (93). Therefore, the maintenance company or the like can quickly know that the drainage port (68) is in an abnormal state.
  • the processing unit (85) determines an abnormal state of a predetermined part (drain (68)) based on changes in a plurality of image data of an imaging target (tray (60)). That is, the processing unit (85) determines an abnormal state of the drainage port (68) in consideration of a state change of plural (two in this example) image data, not one image data. Therefore, even if the feature of the image data changes due to the type of tray (60) or the installation state of the camera (70), the abnormal state of the drain (68) based on the change of these image data. Can be accurately determined.
  • the water outlet (h5) immediately before, during, or immediately after the ON operation of the humidifier (45) and the water height h6 after the predetermined time has elapsed, 68) determine the abnormal state. Therefore, by using this change, the abnormal state of the drainage port (68) can be determined accurately.
  • the abnormal state of the humidifier (45) may be determined based on the change in the wet state of the water absorbing member (45a) of the humidifier (45). That is, in this modification, the imaging target is the water absorbing member (45a), and the predetermined part which is the target of the abnormality determination is the humidifier (45).
  • step ST31 After the humidifier (45) is turned on, when a predetermined time T5 has elapsed (step ST31), the process proceeds to step ST32, and imaging of the water absorbing member (45a) is performed at the seventh time point t7. Be done.
  • the predetermined time T5 corresponds to the time required for the water absorbing member (45a) to be sufficiently wetted by the water supplied from the water supply tank.
  • step ST33 imaging of the water absorbing member (45a) is executed at the eighth time point t8.
  • step ST35 abnormality determination of the humidifier (45) is performed.
  • the wet state of the water absorbing member (45a) is substantially between time t7 and time t8. It does not change.
  • the water absorbing member (45a) at time t8 is more than the water absorbing member (45a) at time t7. It becomes dry. Therefore, the abnormal state of the humidifier (45) can be determined based on the change in the wet state of the water absorbing member (45a).
  • step ST36 If it is determined in step ST36 that the water absorption member (45a) has changed its wet state and the water absorption member (45a) has become dry, the process proceeds to step ST36.
  • the communication unit (86) outputs an abnormality signal to the communication terminal (90).
  • a sign indicating abnormality is displayed on the display unit (92), and an alarm is issued from the alarm unit (93). Therefore, the maintenance company or the like can quickly know that the humidifier (45) is in an abnormal state.
  • the water absorbing member (45a) of this modification may be made of a material whose color changes according to the wet state. In this case, the change of the image data according to the wet state of the water absorbing member (45a) becomes more remarkable, so that the wet state of the water absorbing member (45a) can be determined more accurately.
  • the inside of the tray (60) can be imaged by the camera (70), and the abnormal state of the humidifier (45) can be determined based on the change in the wet state of the bottom surface of the tray (60).
  • the processing unit (85) of the above embodiment determines the amount of change in the water surface height in the tray (60) from the two image data acquired by the imaging device (70), and the drain pump (66) based on the amount of change. , The outlet (68), the humidifier (45), etc.
  • the change rate of the water level in the tray (60) may be determined from the change of the two image data in a relatively short period, and these abnormality determinations may be performed based on the change rate. For example, in the first embodiment shown in FIG. 7 and FIG. 8, when the change rate (the decrease rate of the water surface height) is smaller than a predetermined value, it is determined that the drain pump (66) is abnormal.
  • the processing unit (85) of the above embodiment determines the state of the predetermined part (45, 66, 68) using the two image data acquired by the imaging device (70).
  • the state of the predetermined part (45, 66, 68) may be determined using three or more image data acquired by the imaging device (70).
  • the plurality of image data may be image data included in a moving image acquired by the imaging device (70). That is, the image data mentioned here includes a still image of a predetermined frame for constructing a moving image.
  • the processing unit (85) of the above embodiment determines the abnormal state of the predetermined part (45, 66, 68) based on the plurality of image data acquired by the imaging device (70). However, the processing unit (85) may determine another state of the predetermined part (45, 66, 68) based on a plurality of image data. Specifically, based on a plurality of image data, the condition of clogging or dirt of the air filter is judged, the condition of proliferation of mold or dirt in the tray (60) is judged, the humidifier (45) It is possible to determine the growth of mold of the water absorbing member (45a) and the state of adhesion of the scale.
  • the operation of the air conditioner (10) may be switched in conjunction with this.
  • the air conditioning control unit (82) stops the air conditioner (10) in the cooling operation or Switch.
  • the indoor heat exchanger (43) is substantially stopped, and only the air is blown without cooling the air.
  • the tray (60) and the drain pump (66) are calibrated or the tray (60) is used.
  • a float member such as float may be provided.
  • the camera (70) may be provided in the tray (60), and the lens of the camera (70) may be submerged if the water surface height reaches a predetermined value or more.
  • the image data captured by the submerged camera (70) is completely different from the image data captured by the non-submerged camera (70). Therefore, by comparing these image data, it can be easily determined that the height of the water surface in the tray (60) has reached the predetermined value or more, and hence the abnormal state of the discharge unit (66, 68) can be determined. .
  • auxiliary means may be added to detect the height of the water surface of the tray (60).
  • the auxiliary means may be, for example, an electrode provided in the tray (60), which detects the height of the water surface based on the water conduction state, or an optical sensor which detects the height of the water surface by the amount of reflection of the water surface. .
  • the processing unit (85) may be provided on the camera (70) side or on the communication terminal (90) side. Also, the processing unit (85) may be provided in a server on the cloud.
  • the imaging device (70) is not limited to a camera, and may be, for example, an optical sensor.
  • the imaging device (70) may be applied to a casing of an indoor unit such as a floor-mounted type, a wall-mounted type, or a ceiling-mounted type. In addition, the imaging device (70) may be applied to the casing of the outdoor unit.
  • the air processing apparatus of the said embodiment is an air conditioning apparatus (10) which air-conditions indoors.
  • the air processing apparatus may be a humidity control apparatus for adjusting the humidity of the target space, a ventilation apparatus for ventilating the target space, or an air cleaner for purifying the air of the target space.
  • the present disclosure is useful for air treatment devices.
  • Air conditioner air processing device
  • Casing Humidifier (designated parts)
  • Humidifier designated parts
  • Humidifier designated parts
  • Water-absorbent member target for imaging
  • trays target for imaging
  • Drain pump predetermined parts, discharge part
  • Drain predetermined part, discharge part
  • Camera imaging device 85 Processing unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Humidification (AREA)
  • Central Air Conditioning (AREA)

Abstract

空気処理装置には、撮像装置(70)で取得した複数の画像データの変化に基づいて、ケーシング(20)内の所定部品(45,66,68)の状態を判定する処理部(85)が設けられる。

Description

空気処理装置
 本開示は、空気処理装置に関する。
 従来より、空気調和装置、換気装置、調湿装置、空気清浄機などの空気処理装置が知られている。特許文献1の空気処理装置では、ケーシングの内部にカメラが設けられる。カメラは、フィルタを撮像する。カメラで撮像されたフィルタの画像データは、LANを経由して集中管理室に出力される。サービス業者等が、この画像データを確認することで、フィルタの状態(目詰まりや破れ等)を確認できる。
特開2007-46864号公報
 特許文献1に開示の空気調和装置は、ある1つの画像データの状態に基づいてフィルタの目詰まりなどの状態を判定する。具体的には、画像データ中におけるフィルタ全体の画素数にして、フィルタが破損していると分類された部分の画素数の割合を求め、この割合に基づいてフィルタの破損を判定する。
 このように1つの画像データに基づく判定方法では、対象となる部品の状態を精度よく判定できない可能性があった。
 本開示の目的は、対象となる部品の状態の判定精度を向上することである。
 第1の態様は、空気が流れるケーシング(20)と、前記ケーシング(20)内の所定の撮像対象(45a,60)の複数の画像データを取得する撮像装置(70)と、前記撮像装置(70)で取得した前記複数の画像データの変化に基づいて、前記ケーシング(20)内の所定部品(45,66,68)の状態を判定する処理部(85)とを備えていることを特徴とする空気処理装置である。なお、ここでいう複数の画像データは、動画に含まれる静止画像も含む意味である。
 第1の態様の処理部(85)は、撮像対象(45a,60)の複数の画像データの変化に基づいて、所定部品(45,66,68)の状態を判定する。つまり、処理部(85)は、1つの画像データではなく、複数の画像データの状態変化を考慮して部品(45,66,68)の状態を判定する。
 第2の態様は、第1の態様において、水を受けるトレー(60)と、前記トレー(60)内の水を排出する排出部(66,68)とを備え、前記撮像装置(70)は、前記撮像対象としての前記トレー(60)の複数の画像データを取得するように構成され、前記処理部(85)は、前記複数の画像データにおける前記トレー(60)内の水面高さの変化に基づいて、前記所定部品(45,66,68)としての前記排出部(66,68)の異常状態を判定することを特徴とする空気処理装置である。
 第2の態様の処理部(85)は、複数の画像データにおけるトレー(60)の水面高さの変化に基づいて、所定部品としての排出部(66,68)の異常状態を判定する。
 第3の態様は、第2の態様において、前記排出部(66,68)は、前記トレー(60)内の水を汲み上げるドレンポンプ(66)であることを特徴とする空気処理装置である。
 第3の態様の処理部(85)は、複数の画像データにおけるトレー(60)の水面高さの変化に基づいて、所定部品としてのドレンポンプ(66)の異常状態をする。
 第4の態様は、第3の態様において、前記撮像装置(70)は、前記ドレンポンプ(66)の起動前の第1時点、又は該ドレンポンプ(66)の起動時である第1時点から、前記ドレンポンプ(66)の起動後の第2時点までの間の第1期間において、前記トレー(60)の画像データを取得するように構成され、前記処理部(85)は、前記第1期間における前記複数の画像データの前記水面高さの変化に基づいて、前記ドレンポンプ(66)の異常状態を判定することを特徴とする空気処理装置である。
 第4の態様の処理部(85)は、第1時点と第2時点の間の第1期間におけるトレー(60)の水面高さの変化に基づいて、ドレンポンプ(66)の異常状態を判定する。第1時点は、ドレンポンプ(66)の起動前又は起動時であるため、トレー(60)の水面高さは比較的高い。第2時点は、ドレンポンプ(66)の起動後であるため、ドレンポンプ(66)が正常に動作していれば、トレー(60)の水面高さは第1時点よりも低い。よって、これらの水面高さの変化を考慮することで、ドレンポンプ(66)の異常を判定できる。
 第5の態様は、第3又は第4の態様において、前記撮像装置(70)は、前記ドレンポンプ(66)が起動した後の所定の第2期間において、前記トレー(60)の複数の画像データを取得するように構成され、前記処理部(85)は、前記第2期間における複数の前記画像データの前記水面高さの変化に基づいて前記ドレンポンプ(66)の異常状態を判定することを特徴とする空気処理装置である。
 第5の態様の処理部(85)は、ドレンポンプ(66)の起動後のある第2期間の水面高さの変化に基づいて、ドレンポンプ(66)の異常状態を判定する。ドレンポンプ(66)の起動後において、ドレンポンプ(66)が異常状態であると、トレー(60)内の水を正常に汲み上げられず、トレー(60)の水面高さが上昇する可能性がある。従って、トレー(60)の水面高さの上昇の度合いに基づいて、ドレンポンプ(66)の異常を判定できる。
 第6の態様は、第2乃至第5のいずれか1つの態様において、前記処理部(85)は、前記複数の画像データの前記水面高さの変化量又は変化速度に基づいて、前記排出部(66,68)の異常状態を判定することを特徴とする空気処理装置である。
 第6の態様の処理部(85)は、トレー(60)内の水面高さの変化量、又は変化速度に基づいて、排出部(66,68)の異常状態を判定する。
 第7の態様は、第1の態様において、水分が供給される吸水部材(45a)を有する加湿器(45)を備え、前記撮像装置(70)は、前記撮像対象としての前記吸水部材(45a)の画像データを取得するように構成され、前記処理部(85)は、複数の前記画像データの前記吸水部材(45a)の濡れ状態の変化に基づいて前記所定部品(45,66,68)としての前記加湿器(45)の異常状態を判定することを特徴とする空気処理装置である。
 第7の態様の処理部(85)は、加湿器(45)の吸水部材(45a)の濡れ状態の変化に基づいて、加湿器(45)の異常状態を判定する。加湿器(45)が異常状態であれば、吸水部材(45a)に水分がうまく供給されず、吸水部材(45a)が乾いていくからである。
図1は、実施形態1に係る空気調和装置の内部構造を示す平面図である。 図2は、実施形態1に係る空気調和装置の正面図である。 図3は、実施形態1に係る空気調和装置の内部構造を示す縦断面図である。 図4は、実施形態1に係る空気調和装置の正面パネル側の概略構成を示す斜視図である。 図5は、実施形態1に係る点検蓋の内側の構造を示す斜視図である。 図6は、実施形態1に係る撮像システムの概略構成を示すブロック図である。 図7は、実施形態1に係る異常判定のフローチャートである。 図8は、実施形態1に係る異常判定における、トレー内の水面高さと、各指令のタイミングとを表したタイムチャートである。 図9は、実施形態1の変形例に係る異常判定のフローチャートである。 図10は、実施形態1の変形例に係る異常判定における、トレー内の水面高さと、各指令のタイミングとを表したタイムチャートである。 図11は、実施形態2に係る空気調和装置の内部構造を示す平面図である。 図12は、実施形態2に係る空気調和装置の内部構造を示す縦断面図である。 図13は、実施形態2に係る空気調和装置の正面パネル側の概略構成を示す斜視図である。 図14は、実施形態2に係る点検蓋の内側の構造を示す斜視図である。 図15は、実施形態2に係る異常判定のフローチャートである。 図16は、実施形態2の変形例に係る異常判定のフローチャートである。
 以下、本開示の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 《実施形態1》
 実施形態1に係る空気処理装置は、室内の少なくとも温度を調節する空気調和装置(10)である。空気調和装置(10)は、室内空気(RA)の温度を調節し、温度を調節した空気を供給空気(SA)として室内へ供給する。空気調和装置(10)は、天井裏の空間に設置される室内ユニット(11)を備えている。室内ユニット(11)は、冷媒配管を介して室外ユニット(図示省略)に接続される。これにより、空気調和装置(10)では、冷媒回路が構成される。冷媒回路では、充填された冷媒が循環することで蒸気圧縮式の冷凍サイクルが行われる。なお、室外ユニットには、冷媒回路に接続される圧縮機及び室外熱交換器と、室外熱交換器に対応する室外ファンが設けられる。
 〈室内ユニット〉
 図1~図3に示すように、室内ユニット(11)は、天井裏に設置されるケーシング(20)と、ケーシング(20)に収容されるファン(40)及び室内熱交換器(43)を備えている。ケーシング(20)の内部には、該ケーシング(20)内の空気中から発生した凝縮水を受け止めるトレー(60)(ドレンパン)と、トレー(60)に溜まった水を排出するためのドレンポンプ(66)とが設けられる。
 〈ケーシング〉
 ケーシング(20)は、直方体の中空箱形に形成されている。ケーシング(20)は、天板(21)、底板(22)、前板(23)、後板(24)、第1側板(25)、及び第2側板(26)で構成される。前板(23)及び後板(24)は、互いに対向し、第1側板(25)及び第2側板(26)は互いに対向している。
 前板(23)は、メンテナンス用空間(15)に面している。前板(23)側には、電装品箱(16)、点検口(50)、及び点検蓋(51)が設けられる(詳細は後述する)。第1側板(25)には、吸込口(31)が形成される。吸込口(31)には、吸込ダクト(図示省略)が接続される。吸込ダクトの流入端は、室内空間に繋がっている。第2側板(26)には、吹出口(32)が形成される。吹出口(32)には、吹出ダクト(図示省略)が接続される。吹出ダクトの流出端は、室内空間に繋がっている。ケーシング(20)の内部には、吸込口(31)から吹出口(32)までの間に空気流路(33)が形成される。
 〈ファン〉
 ファン(40)は、空気流路(33)における第1側板(25)寄りに配置される。ファン(40)は、空気流路(33)の空気を搬送する。本実施形態では、3台のシロッコ型ファン(41)が、1つのモータ(42)に駆動される(図1を参照)。
 〈室内熱交換器〉
 室内熱交換器(43)は、空気流路(33)における第2側板(26)寄りに配置される。室内熱交換器(43)は、例えばフィンアンドチューブ式の熱交換器で構成される。本実施形態の室内熱交換器(43)は、斜め置きの配置となる。蒸発器となる室内熱交換器(43)は、空気を冷却する冷却部を構成する。
 〈トレー〉
 図3に模式的に示すように、トレー(60)は、底板(22)に沿うように、室内熱交換器(43)の下側に配置される。トレー(60)は、室内熱交換器(43)の近傍で凝縮した水を受ける。トレー(60)は、第1側壁(61)、第2側壁(62)、及び底部(63)を含んでいる。第1側壁(61)は、室内熱交換器(43)の上流側に位置する。第2側壁(62)は、室内熱交換器(43)の下流側に位置する。底部(63)は、第1側壁(61)と第2側壁(62)とに亘って形成される。底部(63)には、中央寄りに略台形状の断面を有する窪み部(64)が形成される。トレー(60)では、この窪み部(64)の底面の高さが、最も低くなる。つまり、窪み部(64)には、最も深い最深部が構成されている。
 本実施形態では、トレー(60)がカメラの撮像対象を構成する。
 〈ドレンポンプ〉
 ドレンポンプ(66)は、トレー(60)の内部に配置される。ドレンポンプ(66)は、トレー(60)内の水を排出する排出部を構成している。具体的に、ドレンポンプ(66)の吸込部(66a)は、トレー(60)の窪み部(64)の内部に配置される。ドレンポンプ(66)の吐出部には、ドレン配管(67)の流入端が接続される。ドレン配管(67)は、ケーシング(20)の前板(23)を水平方向に貫通している。ドレンポンプ(66)が運転されると、トレー(60)に溜まった凝縮水が汲み上げられる。汲み上げられた水は、ドレン配管(67)を介してケーシング(20)の外部へ排出される。
  実施形態1では、ドレンポンプ(66)が、異常を判定する対象である部品を構成している。
 〈電装品箱〉
 図1に示すように、電装品箱(16)は、前板(23)のファン(40)寄りに配置される。電装品箱(16)の内部には、電源回路や制御回路等が搭載されたプリント基板(17)、各回路に接続される配線、強電側電源部、弱電側電源部などが収容される。電装品箱(16)は、前側が開口する箱本体(16a)と、箱本体(16a)の開口面を開閉する電装品蓋(16b)とを含んでいる。電装品蓋(16b)は、前板(23)の一部を構成している。電装品蓋(16b)を取り外すことで、電装品箱(16)の内部がメンテナンス用空間(15)に露出される。
 〈点検口及び点検蓋〉
 図1に示すように、点検口(50)は、前板(23)の室内熱交換器(43)寄りに配置される。図2及び図4に示すように、点検口(50)は、長方形部分(50a)と、該長方形部分の下側の一方の角部と連続する三角形部分(50b)とで構成される。三角形部分(50b)は、長方形部分(50a)から第2側板(26)側に突出している。点検口(50)は、トレー(60)に対応する位置に形成される。点検口(50)から点検蓋(51)を取り外すことで、メンテナンス用空間(15)側からトレー(60)の内部を点検することができる。
 点検蓋(51)は、点検口(50)と略相似形で、且つ点検口(50)よりもやや大きな形状をしている。点検蓋(51)の外縁部には、点検蓋(51)をケーシング本体(20a)に取り付けるための複数(本例では3つ)の締結穴が形成される。点検蓋(51)は、これらの締結穴に挿通される複数の締結部材(例えばボルト)によって、ケーシング本体(20a)に固定される。このような構成により、点検蓋(51)は、点検口(50)を開閉するようにケーシング本体(20a)に着脱可能に取り付けられる。
 〈ステー及びカメラ〉
 図5に示すように、点検蓋(51)の内壁(51a)には、カメラ(70)を点検蓋(51)に支持させるためのステー(53)が設けられる。ステー(53)は、点検蓋(51)の内壁(51a)に固定されるとともに、カメラ(70)が取り付けられる支持部材を構成している。
 ステー(53)は、点検蓋(51)の内壁(51a)の略中央部分に固定され、水平方向に延びている。ステー(53)の基部は、例えば点検蓋(51)に溶接されていてもよいし、複数のボルト(締結部材)を介して点検蓋(51)に締結されてもよい。ステー(53)を点検蓋(51)に溶接する場合、点検蓋(51)に締結用の穴を開ける必要がない。このため、点検蓋(51)のシール性や断熱性を確保し易くなる。一方、ステー(53)を複数の締結部材によって点検蓋(51)に締結すると、ステー(53)と点検蓋(51)の相対位置を確実に決定できる。
 ステー(53)の長手方向に直角な断面形状は、略L字状に形成される。より詳細に、ステー(53)は、第1板部(53a)と、該第1板部(53a)と略直角な第2板部(53b)とを備えている。
 点検蓋(51)をケーシング本体(20a)に取り付けた状態(以下、単に点検蓋(51)の取り付け状態ともいう)において、ステー(53)は、第1板部(53a)と第2板部(53b)との連続部分が上側を向くように配置される。点検蓋(51)の取り付け状態では、第1板部(53a)の下側面がトレー(60)(厳密には、トレー(60)の窪み部(64))に対向する状態となる。
 ステー(53)には、カメラ(70)が着脱可能に取り付けられる。カメラ(70)は、撮像対象となるトレー(60)の画像データを撮像する撮像装置を構成している。カメラ(70)は、レンズ(71)と発光部(フラッシュ(72))とを有している。レンズは、超広角レンズで構成される。カメラ(70)の背面には、支持板(73)が固定される。支持板(73)は、ボルト(図示省略)を介してステー(53)の第1板部(53a)に固定される。これにより、カメラ(70)が、ステー(53)ひいては点検蓋(51)に支持される。
 点検蓋(51)の取り付け状態では、カメラ(70)のレンズ(71)がトレー(60)の内部を向いている。つまり、カメラ(70)は、点検蓋(51)の取り付け状態において、トレー(60)内の水面の高さを撮像可能な位置にある(図3を参照)。
 〈撮像システム〉
 本実施形態に係る撮像システム(S)について、図6を参照しながら説明する。本実施形態に係る撮像システム(S)は、カメラ(70)と、制御ユニット(80)と、通信端末(90)とを含んでいる。上述したように、カメラ(70)は、空気調和装置(10)のケーシング(20)の内部に収容される。制御ユニット(80)は、電装品箱(16)の内部に収容される。カメラ(70)と制御ユニット(80)とは、ケーブルによって接続される。通信端末(90)は、空気調和装置(10)のサービス業者やユーザなどが所有する。
 制御ユニット(80)は、電源部(81)、空調制御部(82)、撮像制御部(83)、記憶部(84)、処理部(85)、及び通信部(86)を備えている。空調制御部(82)、撮像制御部(83)、及び処理部(85)は、マイクロコンピュータと、該マイクロコンピュータを動作させるためのソフトウエアを格納するメモリディバイス(具体的には半導体メモリ)とを用いて構成されている。
 電源部(81)は、カメラ(70)の電源を構成している。電源部(81)は、ケーブルを介してカメラ(70)に電力を供給する。
 空調制御部(82)は、空気調和装置(10)のファン(40)、ドレンポンプ(66)などの各構成機器を制御する。空調制御部(82)は、空気調和装置(10)が冷房運転を開始すると、ドレンポンプ(66)を運転させ、冷房運転を停止するとドレンポンプ(66)を停止させる。つまり、冷房運転中には、基本的にはドレンポンプ(66)も運転状態となる。
 撮像制御部(83)は、カメラ(70)の撮像を制御する。具体的には、撮像制御部(83)は、カメラ(70)の撮像を実行させるために、電源部(81)からカメラ(70)へ電力を供給する。カメラ(70)に電力が供給されると、カメラ(70)が撮像を実行する。なお、撮像制御部(83)は、カメラ(70)に撮像を実行させるためのON信号を出力するようにしてもよい。この場合、カメラ(70)にON信号が入力されると、カメラ(70)が撮像を実行する。カメラ(70)が撮像を実行すると、撮像対象の画像データが取得される。この画像データは、ケーブルを介して制御ユニット(80)に入力される。
 記憶部(84)は、カメラ(70)で取得した画像データを記憶する記憶媒体で構成される。
 処理部(85)は、記憶部(84)に記憶された複数の画像データに基づいて、所定部品(本例では、ドレンポンプ(66))の異常状態を判定するように構成される。処理部(85)は、複数の画像データの変化に基づいて、ドレンポンプ(66)の異常状態を判定する。この判定においては、蓄積した画像データに基づくAI(人工知能)のディープラーニングを利用するとよい。
 通信部(86)は、例えば無線によって通信端末(90)と接続される。通信部(86)は、携帯高速通信技術(LTE)を用いた通信回線を介して、通信端末(90)と接続される。これにより、制御ユニット(80)と通信端末(90)との間で信号の授受が可能となる。なお、通信部(86)は、無線LANを用いて通信端末(90)と接続する無線ルータであってもよい。処理部(85)において異常状態が判定されると、異常状態を示す信号(異常信号という)が通信部(86)を介して通信端末(90)に送信される。
 通信端末(90)は、スマートフォン、タブレット端末、携帯電話、パーソナルコンピュータ等で構成される。通信端末(90)は、操作部(91)、表示部(92)、及び警報部(93)を有する。操作部(91)は、キーボードやタッチパネル等で構成される。サービス業者などは、操作部(91)を操作することで、所定のアプリケーションソフトを操作する。このアプリケーションを介して、カメラ(70)の撮像を実行させたり、取得した画像データを通信端末(90)にダウンロードしたりできる。
 表示部(92)は、例えば液晶モニタで構成される。通信端末(90)に異常信号が入力されると、表示部(92)には、所定部品(本例では、ドレンポンプ(66))が異常状態であることを示すサインが表示される。
 警報部(93)は、通信端末(90)は、異常信号が入力されると、そのことを示す警報(音)を発する。
 -運転動作-
 実施形態1に係る空気調和装置(10)の基本的な運転動作を説明する。空気調和装置(10)は、冷房運転と暖房運転とを実行可能に構成される。
 冷房運転では、室外ユニットの圧縮機で圧縮された冷媒が、室外熱交換器で放熱(凝縮)し、膨張弁で減圧される。減圧された冷媒は、室内ユニット(11)の室内熱交換器(43)で蒸発し、圧縮機で再び圧縮される。
 ファン(40)が運転されると、室内空間の室内空気(RA)が吸込口(31)から空気流路(33)に吸い込まれる。空気流路(33)の空気は、室内熱交換器(43)を通過する。室内熱交換器(43)では、冷媒が空気から吸熱することでこの空気が冷却される。冷却された空気は、吹出口(32)を通過した後、供給空気(SA)として室内空間へ供給される。
 室内熱交換器(43)で空気が露点温度以下にまで冷却されると、空気中の水分が凝縮する。この凝縮水は、トレー(60)に受け止められる。トレー(60)で受け止められた凝縮水は、ドレンポンプ(66)によってケーシング(20)の外部へ排出される。
 暖房運転では、室外ユニットの圧縮機で圧縮された冷媒が、室内ユニット(11)の室内熱交換器(43)で放熱(凝縮)し、膨張弁で減圧される。減圧された冷媒は、室外ユニットの室外熱交換器で蒸発し、圧縮機で再び圧縮される。室内熱交換器(43)では、冷媒が空気に放熱し、該空気が加熱される。加熱された空気は、吹出口(32)を通過した後、供給空気(SA)として室内空間へ供給される。
 〈撮像システムの基本的な動作〉
 撮像システム(S)の基本的な動作について説明する。点検蓋(51)の取り付け状態では、カメラ(70)のレンズ(71)がトレー(60)の内部を指向している。この状態において、カメラ(70)がONされると、カメラ(70)の撮像動作が行われる。この際、フラッシュ(72)(光源)が点灯することで、トレー(60)の内部が照らされる。このようにして、カメラ(70)は、トレー(60)の内部の水面の画像データを取得する。カメラ(70)で取得された画像データは、ケーブルを介して制御ユニット(80)に入力され、記憶部(84)に適宜記憶されていく。
 〈ドレンポンプの異常判定に係る制御〉
 撮像システム(S)は、カメラ(70)で取得した複数の画像データに基づいて、ドレンポンプ(66)の異常を判定する。この制御について図6~8を参照しながら説明する。
 リモコンなどからの指令により、空気調和装置(10)の冷房運転が開始されると、撮像制御部(83)は、この冷房運転の開始の指令から所定時間Δta後にカメラ(70)の撮像を実行させる(ステップST1)。その後、空調制御部(82)は、ドレンポンプ(66)をONさせる(ステップSt2)。つまり、空調制御部(82)は、冷房運転の開始の指令から所定時間Δtb(ここで、Δtb>Δta)経過後に、ドレンポンプ(66)をONさせる。従って、本例では、ドレンポンプ(66)の起動前の第1時点t1において、トレー(60)の水面の画像データが取得される。なお、カメラ(70)は、ドレンポンプ(66)の起動時である第1時点t1において、トレー(60)の水面の画像データを取得してもよい。ドレンポンプ(66)の起動前又は起動時には、トレー(60)の水面の高さが比較的高い状態となる。空気調和装置(10)の前回の冷房運転の停止後、次の冷房運転の開始までの間に、トレー(60)内に凝縮水が溜まっていくからである。
 第1時点t1において撮像が実行された後、ステップST3において所定時間T1が経過すると、次の撮像が実行される(ステップST4)。この所定時間T1は、ドレンポンプ(66)が正常に動作した場合に、ドレンポンプ(66)の起動時におけるトレー(60)内の水が、最低水位に至るまでの時間に相当する。この最低水位は、ドレンポンプ(66)の吸込部(66a)(図3を参照)の下端の開口の高さ位置に相当する。
 ステップST4でトレー(60)の水面の画像データが取得された後には、処理部(85)による異常判定が行われる(ステップST5)。処理部(85)は、第1時点t1の画像データの水面の高さh1と、第2時点t2の画像データの水面の高さh2とを求め、これらの水面高さの変化に基づいて、ドレンポンプ(66)の異常判定を行う。具体的には、処理部(85)は、高さh1と高さh2の差(ΔH)を算出し、この差ΔHが所定値A以下であるか判定する。
 図8の実線で示すように、ドレンポンプ(66)が正常に動作しているのであれば、ドレンポンプ(66)の起動後から、比較的速い速度で水面の高さが減少する。このため、ΔHは比較的大きくなる。これに対し、例えば図8の破線で示すように、ドレンポンプ(66)が異常状態になり、ドレンポンプ(66)の吸込量が減少すると、トレー(60)の水面の高さは比較的遅い速度で減少する。また、ドレンポンプ(66)が異常状態であると、トレー(60)の水面の高さが全く減少しない場合もある。このように、ドレンポンプ(66)の異常状態では、ΔHが比較的小さくなる。よって、ΔHが所定値A以下であることを判定することで、ドレンポンプ(66)の異常状態を判定できる。
 ステップST6において、ΔHが所定値A以下であると判定されると、ステップST7へ移行する。ステップST7では、通信部(86)が異常信号を通信端末(90)に出力する。これにより、通信端末(90)では、表示部(92)に異常を示すサインが表示されるとともに、警報部(93)から警報が発せられる。従って、メンテナンス業者等は、ドレンポンプ(66)が異常状態であることを速やかに知ることができる。
 -実施形態1の効果-
 上記実施形態1では、処理部(85)が、撮像対象(トレー(60))の複数の画像データの変化に基づいて、所定部品(ドレンポンプ(66))の異常状態を判定する。つまり、処理部(85)は、1つの画像データではなく、複数の画像データの状態変化を考慮してドレンポンプ(66)の異常状態を判定する。このため、トレー(60)の種類や、カメラ(70)の据え付け状態の影響により、画像データの特徴が変わったとしても、これらの画像データの変化に基づいて、ドレンポンプ(66)の異常状態を精度よく判定できる。つまり、本実施形態では、撮像対象の個体差に起因して誤判定を招くことを抑制できる。
 上記実施形態1では、ドレンポンプ(66)の起動前、又は起動時である第1時点における水面高さh1と、ドレンポンプ(66)に起動後である第2時点までの間の第1期間におけるトレー(60)の水面高さh2との変化(ΔH)に基づいて、ドレンポンプ(66)の異常状態を判定する。ドレンポンプ(66)の起動前、ないし起動時の水面の高さh1と、ドレンポンプ(66)の起動後の水面の高さh2とは、正常であれば大きく異なる。従って、この変化を用いることで、ドレンポンプ(66)の異常状態を精度よく判定できる。
 〈実施形態1の変形例〉
 実施形態1におけるドレンポンプ(66)の異常判定は、次のような変形例としてもよい。本変形例の撮像システム(S)では、ドレンポンプ(66)の起動後の第2期間における複数の画像データに基づき、ドレンポンプ(66)の異常判定が行われる。
 図9及び図10に示すように、リモコンなどからの指令により、空気調和装置(10)の冷房運転が開始されると、これに連動してドレンポンプ(66)がONされる(ステップST11)。ドレンポンプ(66)がONされた後、ステップST12において所定時間T2が経過すると、第3時点t3においてトレー(60)の水面の画像データが取得される(ステップST13)。この所定時間T2は、ドレンポンプ(66)が正常に動作した場合に、ドレンポンプ(66)の起動時におけるトレー(60)内の水が、最低水位に至るまでの時間よりもやや長い時間に設定される。従って、第3時点t3の画像データの水面の高さは、基本的には最低水位となる。
 ステップST14において、第3時点t3から所定時間T3が経過すると、第4時点t4においてトレー(60)の水面の画像データが取得される(ステップST15)。次いで、ステップST16において、ドレンポンプ(66)の異常判定が行われる。
 第3時点t3以降、ドレンポンプ(66)が正常に動作している場合、トレー(60)内に受け止められた水は、常にドレンポンプ(66)に吸い込まれる。従って、トレー(60)内の水面の高さは、最低水位に維持される(図10の実線を参照)。よって、時点t3の水面高さh3と、時点t4の水面高さh4との変化量ΔH(ΔH=h4-h3)は、実質的にゼロとなる。
 これに対し、第3時点t3以降、ドレンポンプ(66)が異常状態になると、ドレンポンプ(66)の吸込量が減少し、トレー(60)内の水位が上昇していく(図10の破線を参照)。よって、この場合には、時点t3の水面高さh3と、時点t4の水面高さh4との変化量ΔH(ΔH=h4-h3)が大きくなる。従って、ΔHが所定値B以上であることを判定することで、ドレンポンプ(66)の異常状態を判定できる。
 ステップST17において、ΔHが所定値B以上であると判定されると、ステップST18へ移行する。ステップST18では、通信部(86)が異常信号を通信端末(90)に出力する。これにより、通信端末(90)では、表示部(92)に異常を示すサインが表示されるとともに、警報部(93)から警報が発せられる。従って、メンテナンス業者等は、ドレンポンプ(66)が異常状態であることを速やかに知ることができる。
 《実施形態2》
 実施形態2に係る空気調和装置(10)は、上記実施形態1と基本的な構成が異なる。実施形態2の空気調和装置(10)は、室外空気(OA)を取り込み、この空気の温度及び湿度を調節する。空気調和装置(10)は、このように処理した空気を供給空気(SA)として室内へ供給する。つまり、空気調和装置(10)は、外気処理方式である。また、空気調和装置(10)は、例えば冬場等において、空気を加湿するための加湿器(45)を備えている。
 空気調和装置(10)は、例えば天井裏の空間に設置される。また、空気調和装置(10)は、実施形態1と同様にして、室外ユニット(図示省略)と、室内ユニット(11)とを有し、これらが冷媒配管で接続されることで、冷媒回路が構成される。
 〈室内ユニット〉
 図11及び図12に示すように、室内ユニット(11)は、天井裏に設置されるケーシング(20)と、給気ファン(40a)と、排気ファン(40b)と、室内熱交換器(43)と、全熱交換器(44)と、加湿器(45)とを備えている。また、ケーシング(20)の内部には、室内熱交換器(43)で発生した凝縮水を回収するトレー(60)と、トレー(60)内の水を排出する排水口(68)(排水部)とが設けられる。
 〈ケーシング〉
 ケーシング(20)は、直方体の中空箱形に形成されている。実施形態2のケーシング(20)は、実施形態1と同様、天板(21)、底板(22)、前板(23)、後板(24)、第1側板(25)、及び第2側板(26)を備えている。
 前板(23)は、メンテナンス用空間(15)に面している。前板(23)側には、電装品箱(16)、点検口(50)、及び点検蓋(51)が設けられる(詳細は後述する)。第1側板(25)には、内気口(34)及び給気口(35)が形成される。内気口(34)には、内気ダクト(図示省略)が接続される。内気ダクトの流入端は、室内空間に繋がっている。給気口(35)には、給気ダクト(図示省略)が接続される。給気ダクトの流出端は、室内空間に繋がっている。第2側板(26)には、排気口(36)及び外気口(37)が形成される。排気口(36)には、排気ダクト(図示省略)が接続される。排気ダクトの流出端は、室外空間に繋がっている。外気口(37)には、外気ダクト(図示省略)が接続される。外気ダクトの流入端は、室外空間に繋がっている。
 ケーシング(20)の内部には、給気流路(33A)と、排気流路(33B)とが形成される。給気流路(33A)は、外気口(37)から給気口(35)に亘るまでの流路である。排気流路(33B)は、内気口(34)から排気口(36)に亘るまでの流路である。
 〈全熱交換器〉
 全熱交換器(44)は、横長の四角柱状に形成される。全熱交換器(44)は、例えば2種類のシートが水平方向に交互に積み重なって構成される。2種類のシートのうちの一方には、給気流路(33A)に連通する第1通路(44a)が形成される。2種類のシートのうちの他方のシートには、排気流路(33B)に連通する第2通路(44b)が形成される。各シートは、伝熱性及び吸湿性を有する材料で構成される。このため、全熱交換器(44)では、第1通路(44a)を流れる空気と、第2通路(44b)を流れる空気との間で潜熱及び顕熱の交換が行われる。
 〈給気ファン〉
 給気ファン(40a)は、給気流路(33A)に配置され、給気流路(33A)の空気を搬送する。より詳細には、給気ファン(40a)は、給気流路(33A)において、全熱交換器(44)の第1通路(44a)と室内熱交換器(43)との間に配置される。
 〈排気ファン〉
 排気ファン(40b)は、排気流路(33B)に配置され、排気流路(33B)の空気を搬送する。より詳細には、排気ファン(40b)は、排気流路(33B)において、全熱交換器(44)の第2通路(44b)の下流側に配置される。
 〈室内熱交換器〉
 室内熱交換器(43)は、給気流路(33A)における前板(23)寄りに配置される。室内熱交換器(43)は、例えばフィンアンドチューブ式の熱交換器で構成される。
 〈加湿器〉
 加湿器(45)は、給気流路(33A)における前板(23)寄りに配置される。加湿器(45)は、給気流路(33A)における室内熱交換器(43)の下流側に配置される。加湿器(45)は、上下に延び、且つ水平方向に配列される複数の吸水部材(45a)を備えている。吸水部材(45a)には、給水タンク(図示省略)からの水が供給される。加湿器(45)では、吸水部材(45a)の周囲を流れる空気中に、蒸発した空気が付与される。これにより、給気流路(33A)を流れる空気が加湿される。
 〈トレー〉
 図12に模式的に示すように、トレー(60)は、加湿器(45)の下側に配置される。トレー(60)は、加湿器(45)から流出した水(加湿水)を受ける。トレー(60)の下部には、排水口(68)が設けられる。
 実施形態2では、排水口(68)が、異常を判定する対象である部品を構成している。
 〈電装品箱〉
 図11及び図13に示すように、電装品箱(16)は、前板(23)の前面、且つ略中央部に設けられる。電装品箱(16)の内部には、実施形態1と同様の電装品が収容される。
 〈点検口及び点検蓋〉
 図13に示すように、点検口(50)は、前板(23)のうち室内熱交換器(43)及び加湿器(45)の近傍に配置される。点検口(50)は、トレー(60)及び加湿器(45)に対応する位置に形成される。点検口(50)から点検蓋(51)を取り外すことで、メンテナンス用空間(15)側から、トレー(60)の内部や加湿器(45)を点検することができる。
 点検蓋(51)は、複数の締結部材を介してケーシング本体(20a)に取り付けられる。つまり、点検蓋(51)は、実施形態2と同様にして、点検口(50)を開閉するようにケーシング本体(20a)に着脱可能に取り付けられる。
 〈ステー及びカメラ〉
 図14に示すように、点検蓋(51)の内壁(51a)には、カメラ(70)を点検蓋(51)に支持させるためのステー(53)が設けられる。ステー(53)は、点検蓋(51)の内壁(51a)の略中央部分に固定され、水平方向に延びている。ステー(53)の基部は、例えば点検蓋(51)に溶接されていてもよいし、複数のボルト(締結部材)を介して点検蓋(51)に締結されてもよい。
 実施形態2のステー(53)は、板金が階段状に折り返されて構成される。ステー(53)は、基部側から先端側に向かって順に、固定板部(54a)、縦板部(54b)、横板部(54c)、及び取付板部(54d)が連続して構成される。固定板部(54a)は、点検蓋(51)の内壁(51a)に沿って形成され、該内壁(51a)に複数(本例では2本)の締結部材(55)(ボルト等)を介して固定される。縦板部(54b)は、点検蓋(51)の内壁(51a)からケーシング(20)の後板(24)側に向かって延出している。横板部(54c)は、点検蓋(51)の内壁(51a)と平行で、且つステー(53)の基部側から斜め上方に延びている。取付板部(54d)は、横板部(54c)からケーシング(20)の後板(24)側に向かって延出している。取付板部(54d)は、トレー(60)の底部(63)の最も低い部分を指向するように斜め下方を向いている。
 ステー(53)には、カメラ(70)が着脱可能に取り付けられる。カメラ(70)の背面には、支持板(73)が固定される。支持板(73)は、ボルト(図示省略)を介してステー(53)の取付板部(54d)に固定される。支持板(73)は溶接によってステー(53)の取付板部(54d)に固定されてもよい。これにより、カメラ(70)が、ステー(53)ひいては点検蓋(51)に支持される。カメラ(70)の基本的な構成は、実施形態1と同じである。
 点検蓋(51)をケーシング本体(20a)の取り付けた状態では、カメラ(70)のレンズ(71)がトレー(60)の内部を向いている。つまり、カメラ(70)は、点検蓋(51)を取り付けた状態において、トレー(60)内の水面を撮像可能な位置となる。
 -運転動作-
 実施形態2に係る空気調和装置(10)の運転動作について図11及び図12を参照しながら説明する。空気調和装置(10)は、冷房運転と暖房運転とを実行可能に構成される。
 上記実施形態1と同様、冷房運転では、室内熱交換器(43)が蒸発器となり、暖房運転では、室内熱交換器(43)が凝縮器(放熱器)となる。また、暖房運転では、空気を加湿するために加湿器(45)が作動する。また、冷房運転及び暖房運転では、給気ファン(40a)及び排気ファン(40b)が作動すると、室外空気(OA)が外気口(37)から給気流路(33A)に取り込まれると同時に、室内空気(RA)が内気口(34)から排気流路(33B)に取り込まれる。これにより、室内空間の換気が行われる。
 冷房運転において、給気流路(33A)に取り込まれた室外空気(OA)は、全熱交換器(44)の第1通路(44a)を流れる。一方、排気流路(33B)に取り込まれた室内空気(RA)は、全熱交換器(44)の第2通路(44b)を流れる。例えば夏季においては、室外空気(OA)は、室内空気(RA)よりも温度及び湿度が高い。このため、全熱交換器(44)では、室外空気(OA)の潜熱及び顕熱が、室内空気(RA)へ付与される。この結果、第1通路(44a)では、空気の冷却及び除湿が行われる。第2通路(44b)において、潜熱及び顕熱が付与された空気は、排気口(36)を通過し、排出空気(EA)として室外空間へ排出される。
 第1通路(44a)で冷却及び除湿された空気は、室内熱交換器(43)で冷却された後、停止状態の加湿器(45)を通過する。その後、この空気は、給気口(35)を通過し、供給空気(SA)として室内空間へ供給される。
 暖房運転において、給気流路(33A)に取り込まれた室外空気(OA)は、全熱交換器(44)の第1通路(44a)を流れる。一方、排気流路(33B)に取り込まれた室内空気(RA)は、全熱交換器(44)の第2通路(44b)を流れる。例えば冬季においては、室外空気(OA)は、室内空気(RA)よりも温度及び湿度が低い。このため、全熱交換器(44)では、室内空気(RA)の潜熱及び顕熱が、室外空気(OA)へ付与される。この結果、第1通路(44a)では、空気の加熱及び加湿が行われる。第2通路(44b)において、潜熱及び顕熱が奪われた空気は、排気口(36)を通過し、排出空気(EA)として室外空間へ排出される。
 第1通路(44a)で加熱及び加湿された空気は、室内熱交換器(43)で加熱された後、加湿器(45)を通過する。加湿器(45)では、吸湿材料で気化した水分が空気に付与され、この空気が更に加湿される。加湿器(45)を通過した空気は、給気口(35)を通過し、供給空気(SA)として室内空間へ供給される。
 〈撮像システムの動作〉
 点検蓋(51)の取り付け状態では、カメラ(70)のレンズ(71)がトレー(60)の内部を指向している。この状態において、カメラ(70)が通電される、カメラ(70)の撮像が行われる。この際、フラッシュ(72)が動作することで、トレー(60)の内部が照らされる。これにより、トレー(60)の内部の水面の画像データが取得される。
 〈排水口の異常判定に係る制御〉
 撮像システム(S)は、カメラ(70)で取得した複数の画像データに基づいて、排水口(68)の異常(厳密には、排水口(68)の詰まり)を判定する。
 図15に示すように、加湿器(45)がONされると、撮像制御部(83)は、この加湿器(45)の運転の開始の指令に同期してカメラ(70)の撮像を実行させる(ステップST21)。これにより、時点t5において、トレー(60)の水面の画像データが取得される。トレー(60)の加湿水は、排水口(68)から外部へ排出される。このため、加湿器(45)のON時には、トレー(60)内の加湿水はほとんどなく、トレー(60)の水面の高さは実質的にゼロとなる。時点t5は、加湿器(45)の起動直後だけでなく、加湿器(45)の起動時、あるいは起動前であってもよい。
 時点t5の後、所定時間T4が経過すると(ステップST22)、時点t6においてトレー(60)の水面の画像データが取得される。次いで、ステップST24に移行し、排水口(68)の異常判定が行われる。
 排水口(68)が正常状態であり、トレー(60)内の水を十分に排出できていれば、時点t6のトレー(60)の水面の高さh6は時点t5の水面の高さh5と同じであり、実質的にゼロとなる。一方、排水口(68)が異常状態(詰まり状態)であり、トレー(60)内の水を排出できない場合、時点t6の水面の高さh6は、時点t5の水面の高さh5よりも大きくなる。つまり、時点t6の水面高さh6と、時点t5の水面高さh5との変化量ΔH(ΔH=h6-h5)が増大する。従って、ΔHが所定値C以上であることを判定することで、排水口(68)の異常状態を判定できる。
 ステップST25において、ΔHが所定値C以上であると判定されると、ステップST26へ移行する。ステップST26では、通信部(86)が異常信号を通信端末(90)に出力する。これにより、通信端末(90)では、表示部(92)に異常を示すサインが表示されるとともに、警報部(93)から警報が発せられる。従って、メンテナンス業者等は、排水口(68)が異常状態であることを速やかに知ることができる。
 -実施形態2の効果-
 上記実施形態2では、処理部(85)が、撮像対象(トレー(60))の複数の画像データの変化に基づいて、所定部品(排水口(68))の異常状態を判定する。つまり、処理部(85)は、1つの画像データではなく、複数(本例では2つ)の画像データの状態変化を考慮して排水口(68)の異常状態を判定する。このため、トレー(60)の種類や、カメラ(70)の据え付け状態の影響により、画像データの特徴が変わったとしても、これらの画像データの変化に基づいて、排水口(68)の異常状態を精度よく判定できる。
 上記実施形態2では、加湿器(45)のON動作の直前、ON動作時、あるいはON動作直後における水面高さh5と、その所定時間経過後の水面高さh6とに基づいて、排水口(68)の異常状態を判定する。従って、この変化を用いることで、排水口(68)の異常状態を精度よく判定できる。
 〈実施形態2の変形例〉
 実施形態2において、加湿器(45)の吸水部材(45a)の濡れ状態の変化に基づいて、加湿器(45)の異常状態を判定するようにしてもよい。つまり、この変形例では、撮像対象が吸水部材(45a)であり、異常判定の対象である所定部品が加湿器(45)となる。
 図16に示すように、加湿器(45)がONされた後、所定時間T5が経過すると(ステップST31)、ステップST32に移行し、第7時点t7において、吸水部材(45a)の撮像が実行される。ここで、所定時間T5は、給水タンクから供給された水により、吸水部材(45a)が十分に濡れた状態となるのに必要な時間に相当する。
 その後、所定時間T6が経過すると(ステップST33)、第8時点t8において、吸水部材(45a)の撮像が実行される。次いで、ステップST35に移行し、加湿器(45)の異常判定が行われる。
 加湿器(45)が正常状態であり、給水タンクから吸水部材(45a)に十分な水が供給できていれば、時点t7と時点t8とで、吸水部材(45a)の濡れ状態は実質的に変化しない。一方、加湿器(45)が異常状態であり、給水タンクから吸水部材(45a)に十分な水が供給できない場合、時点t8の吸水部材(45a)は、時点t7の吸水部材(45a)よりも乾いた状態となる。従って、このような吸水部材(45a)の濡れ状態の変化に基づいて、加湿器(45)の異常状態を判定できる。
 ステップST36において、吸水部材(45a)が吸水部材(45a)の濡れ状態が変化し、吸水部材(45a)が乾燥状態になったと判定されると、ステップST36へ移行する。ステップST36では、通信部(86)が異常信号を通信端末(90)に出力する。これにより、通信端末(90)では、表示部(92)に異常を示すサインが表示されるとともに、警報部(93)から警報が発せられる。従って、メンテナンス業者等は、加湿器(45)が異常状態であることを速やかに知ることができる。
 なお、本変形例の吸水部材(45a)を、濡れ状態に応じて色が変化する材料で構成してもよい。こうすると、吸水部材(45a)の濡れ状態に応じた画像データの変化がより顕著となるため、吸水部材(45a)の濡れ状態をより正確に判定できる。
 また、カメラ(70)によってトレー(60)の内部を撮像し、トレー(60)の底面の濡れ状態の変化に基づいて、加湿器(45)の異常状態を判定することもできる。
 《その他の実施形態》
 上述した各実施形態(変形例も含む)においては、以下のような構成としてもよい。
 上記実施形態の処理部(85)は、撮像装置(70)で取得した2つの画像データからトレー(60)内の水面高さの変化量を求め、該変化量に基づいてドレンポンプ(66)、排水口(68)、加湿器(45)などの異常判定を行っている。しかしながら、比較的短い期間における2つの画像データの変化からトレー(60)内の水位の変化速度を求め、該変化速度に基づいてこれらの異常判定を行ってもよい。例えば図7及び図8に示す実施形態1において、この変化速度(水面高さのが減少速度)が所定値よりも小さいと、ドレンポンプ(66)が異常であると判定する。また、図9及び図10に示す実施形態1の変形例において、この変化速度(水面高さの増大速度)が所定値よりも大きいと、ドレンポンプ(66)が異常であると判定する。また、図15に示す実施形態2において、この変化速度(水面高さの増大速度)が所定値よりも大きいと、排水口(68)が異常であると判定する。このように、水面高さの変化速度を用いることで、所定部品(45,66,68)の異常状態を速やかに判定でき、この異常に迅速に対応できる。
 上記実施形態の処理部(85)は、撮像装置(70)で取得した2つの画像データを用いて、所定部品(45,66,68)の状態を判定している。しかし、撮像装置(70)で取得した3つ以上の画像データを用いて、所定部品(45,66,68)の状態を判定してもよい。また、複数の画像データは、撮像装置(70)で取得した動画に含まれる画像データであってもよい。つまり、ここでいう画像データは、動画を構成するための所定コマの静止画像を含む。
 上記実施形態の処理部(85)は、撮像装置(70)で取得した複数の画像データに基づいて、所定部品(45,66,68)の異常状態を判定している。しかしながら、処理部(85)は、複数の画像データに基づいて、所定部品(45,66,68)の他の状態を判定してもよい。具体的には、複数の画像データに基づいて、エアフィルタの目詰まりや汚れの状態を判定したり、トレー(60)内のカビの繁殖や汚れの状態を判定したり、加湿器(45)の吸水部材(45a)のカビの繁殖や、スケールの付着の状態を判定したりできる。
 上記実施形態において、所定部品(45,66,68)の異常状態の判定が行われた際、これに連動して空気調和装置(10)の運転を切り換えるようにしてもよい。例えば実施形態1やその変形例において、ドレンポンプ(66)の異常状態が判定されると、空調制御部(82)は、冷房運転中の空気調和装置(10)を停止させる、あるいは送風運転に切り換える。送風運転では、室内熱交換器(43)を実質的に停止させ、空気を冷却せずに空気の送風のみを行う。このような制御により、室内熱交換器(43)での凝縮水の発生を抑制でき、トレー(60)の水面高さが更に上昇することを抑制できる。
 上記実施形態において、取得した画像データからトレー(60)の水面高さをより正確に判別するために、トレー(60)やドレンポンプ(66)に目盛りを付したり、トレー(60)内に浮きなどのフロート部材を設けたりしてもよい。また、カメラ(70)をトレー(60)内に設け、水面高さが所定値以上に至ると、カメラ(70)のレンズを水没させるようにしてもよい。水没したカメラ(70)で撮像した画像データは、水没していないカメラ(70)で撮像した画像データとは全く異なる状態となる。従って、これらの画像データを比較することで、トレー(60)内の水面の高さが所定値以上に至ったことを容易に判定でき、ひいては排出部(66,68)の異常状態を判定できる。
 トレー(60)の水面の高さを検出するための補助手段を付加してもよい。補助手段としては、例えばトレー(60)内に設けられ、水中の通電状態に基づいて水面の高さを検出する電極や、水面の反射量によって水面の高さを検出する光センサなどが挙げられる。
 処理部(85)をカメラ(70)側に設けたり、通信端末(90)側に設けたりしてもよい。また、処理部(85)は、クラウド上のサーバに設けてもよい。
 撮像装置(70)は、カメラに限定されず、例えば光学センサであってもよい。
 撮像装置(70)は、床置き式、壁掛け式、天井吊り下げ式等の室内ユニットのケーシングに適用されてもよい。また、撮像装置(70)は、室外ユニットのケーシングに適用されてもよい。
 上記実施形態の空気処理装置は、室内の空調を行う空気調和装置(10)である。しかしながら、空気処理装置は、対象空間の湿度を調節する調湿装置、対象空間の換気を行う換気装置、対象空間の空気を浄化する空気清浄機であってもよい。
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態、変形例、その他の実施形態は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。以上に述べた「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。
 本開示は、空気処理装置について有用である。
 10   空気調和装置(空気処理装置)
 20   ケーシング
 45   加湿器(所定部品)
 45a  吸水部材(撮像対象)
 60   トレー(撮像対象)
 66   ドレンポンプ(所定部品、排出部)
 68   排水口(所定部品、排出部)
 70   カメラ(撮像装置)
 85   処理部

Claims (7)

  1.  空気が流れるケーシング(20)と、
     前記ケーシング(20)内の所定の撮像対象(45a,60)の複数の画像データを取得する撮像装置(70)と、
     前記撮像装置(70)で取得した前記複数の画像データの変化に基づいて、前記ケーシング(20)内の所定部品(45,66,68)の状態を判定する処理部(85)とを備えていることを特徴とする空気処理装置。
  2.  請求項1において、
     水を受けるトレー(60)と、
     前記トレー(60)内の水を排出する排出部(66,68)とを備え、
     前記撮像装置(70)は、前記撮像対象としての前記トレー(60)の複数の画像データを取得するように構成され、
     前記処理部(85)は、前記複数の画像データにおける前記トレー(60)内の水面高さの変化に基づいて、前記所定部品(45,66,68)としての前記排出部(66,68)の異常状態を判定することを特徴とする空気処理装置。
  3.  請求項2において、
     前記排出部(66,68)は、前記トレー(60)内の水を汲み上げるドレンポンプ(66)であることを特徴とする空気処理装置。
  4.  請求項3において、
     前記撮像装置(70)は、前記ドレンポンプ(66)の起動前の第1時点、又は該ドレンポンプ(66)の起動時である第1時点から、前記ドレンポンプ(66)の起動後の第2時点までの間の第1期間において、前記トレー(60)の画像データを取得するように構成され、
     前記処理部(85)は、前記第1期間における複数の前記画像データの前記水面高さの変化に基づいて、前記ドレンポンプ(66)の異常状態を判定することを特徴とする空気処理装置。
  5.  請求項3又は4において、
     前記撮像装置(70)は、前記ドレンポンプ(66)が起動した後の所定の第2期間において、前記トレー(60)の複数の画像データを取得するように構成され、
     前記処理部(85)は、前記第2期間における前記複数の画像データの前記水面高さの変化に基づいて前記ドレンポンプ(66)の異常状態を判定することを特徴とする空気処理装置。
  6.  請求項2乃至5のいずれか1つにおいて、
     前記処理部(85)は、前記複数の画像データの前記水面高さの変化量又は変化速度に基づいて、前記排出部(66,68)の異常状態を判定することを特徴とする空気処理装置。
  7.  請求項1において、
     水分が供給される吸水部材(45a)を有する加湿器(45)を備え、
     前記撮像装置(70)は、前記撮像対象としての前記吸水部材(45a)の画像データを取得するように構成され、
     前記処理部(85)は、複数の前記画像データの前記吸水部材(45a)の濡れ状態の変化に基づいて前記所定部品(45,66,68)としての前記加湿器(45)の異常状態を判定することを特徴とする空気処理装置。
PCT/JP2018/030750 2017-08-28 2018-08-21 空気処理装置 WO2019044576A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES18851325T ES2898843T3 (es) 2017-08-28 2018-08-21 Dispositivo de procesamiento de aire
AU2018323394A AU2018323394B2 (en) 2017-08-28 2018-08-21 Air processing device
CN201880055458.3A CN111051783A (zh) 2017-08-28 2018-08-21 空气处理装置
US16/640,299 US11499728B2 (en) 2017-08-28 2018-08-21 Air processing device
EP21193232.2A EP3933287A1 (en) 2017-08-28 2018-08-21 Air processing device
EP18851325.3A EP3663662B1 (en) 2017-08-28 2018-08-21 Air processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-163415 2017-08-28
JP2017163415 2017-08-28

Publications (1)

Publication Number Publication Date
WO2019044576A1 true WO2019044576A1 (ja) 2019-03-07

Family

ID=65527413

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/026234 WO2019044198A1 (ja) 2017-08-28 2018-07-11 空気調和装置
PCT/JP2018/030750 WO2019044576A1 (ja) 2017-08-28 2018-08-21 空気処理装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026234 WO2019044198A1 (ja) 2017-08-28 2018-07-11 空気調和装置

Country Status (8)

Country Link
US (2) US11384946B2 (ja)
EP (3) EP3667192B1 (ja)
JP (3) JP6547881B2 (ja)
CN (2) CN111033134A (ja)
AU (2) AU2018324670B2 (ja)
ES (2) ES2911549T3 (ja)
PT (1) PT3663662T (ja)
WO (2) WO2019044198A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019097613A1 (ja) * 2017-11-15 2020-07-09 三菱電機株式会社 空調管理システム、空調機器、空調管理装置、空調管理方法及びプログラム
CN110094842B (zh) * 2019-04-16 2021-11-02 青岛海尔空调电子有限公司 空调运行状态监测方法
WO2019172736A2 (ko) 2019-07-09 2019-09-12 엘지전자 주식회사 필터의 교체시기 판단 방법 및 필터의 교체시기를 판단하는 공기 조화기
JP6891927B2 (ja) * 2019-08-21 2021-06-18 ダイキン工業株式会社 空気処理装置
JP7014982B2 (ja) * 2020-07-14 2022-02-15 ダイキン工業株式会社 画像処理装置、空気処理システム、画像処理プログラム、及び画像処理方法
JP7014983B1 (ja) 2020-07-14 2022-02-15 ダイキン工業株式会社 撮像ユニット及び空気処理ユニット
JP7181475B2 (ja) * 2020-08-21 2022-12-01 ダイキン工業株式会社 加湿装置
JP7348887B2 (ja) * 2020-09-24 2023-09-21 ダイキン工業株式会社 エアハンドリングユニット
US11780291B1 (en) 2022-08-03 2023-10-10 Ford Global Technologies, Llc Vehicle air conditioner drip valve diagnostics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046864A (ja) 2005-08-11 2007-02-22 Daikin Ind Ltd 保守支援システム
JP2010242994A (ja) * 2009-04-02 2010-10-28 Daikin Ind Ltd 液レベル検知装置およびこれを備えた空気調和装置
JP2012032071A (ja) * 2010-07-30 2012-02-16 Panasonic Corp 空気調和機

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2107982B (en) * 1981-06-01 1985-01-09 George Alfred Forbes A system for inhibiting the spread of fire in a building structure
JPS58138938A (ja) * 1982-02-15 1983-08-18 Matsushita Electric Ind Co Ltd 空気調和機
DE3901543A1 (de) * 1989-01-20 1990-07-26 Schako Metallwarenfabrik Vorrichtung zur be- und entlueftung
DE3903665C2 (de) * 1989-02-08 1997-08-14 Stiebel Eltron Gmbh & Co Kg Zimmer-Klimagerät
JPH02236420A (ja) 1989-03-10 1990-09-19 Hitachi Ltd 水位測定方法及び装置
US4976115A (en) * 1989-08-21 1990-12-11 Carrier Corporation Cambered condenser grill
JP3423045B2 (ja) * 1993-10-29 2003-07-07 三洋電機株式会社 空気調和機
JPH08219528A (ja) 1995-02-14 1996-08-30 Matsushita Refrig Co Ltd 空気調和機
JP2000046402A (ja) * 1998-07-31 2000-02-18 Mitsubishi Electric Building Techno Service Co Ltd 透湿膜加湿器の能力低下警報装置
JP2000180247A (ja) 1998-12-16 2000-06-30 Hitachi Ltd 液位計測方法及び装置
JP2002101321A (ja) * 2000-09-22 2002-04-05 Kato Denko:Kk 空気調和機の内部観察装置及び内部観察方法
JP2002102633A (ja) * 2000-09-28 2002-04-09 Toshiba Lighting & Technology Corp 換気装置および画像形成装置
JP3807408B2 (ja) * 2004-03-31 2006-08-09 ダイキン工業株式会社 熱交換器
JP2005292066A (ja) * 2004-04-05 2005-10-20 Daikin Ind Ltd 状態診断装置、状態診断プログラムおよび状態診断システム。
JP2006064227A (ja) * 2004-08-25 2006-03-09 M T Syst Kk 天井埋込型エアコン熱交換器の洗浄装置
KR101126958B1 (ko) * 2005-02-23 2012-03-26 엘지전자 주식회사 공기 조화기
KR101188478B1 (ko) * 2005-05-11 2012-10-05 엘지전자 주식회사 공기조화기
WO2006135169A2 (en) 2005-06-13 2006-12-21 Lg Electronics Inc. Dehumidifier
KR100788513B1 (ko) * 2005-06-17 2007-12-24 엘지전자 주식회사 공기조화기
JP4494358B2 (ja) * 2006-03-24 2010-06-30 三菱電機ビルテクノサービス株式会社 空調機内部観察装置
JP4532454B2 (ja) * 2006-10-06 2010-08-25 三菱電機株式会社 空気調和機
US7926481B2 (en) 2007-07-25 2011-04-19 Edwards Oliver J Solar water vapor ejector
US7834772B2 (en) 2008-04-05 2010-11-16 Frederick Robert W Copper-watcher
KR101240947B1 (ko) * 2010-12-30 2013-03-18 주식회사 미르기술 비전검사장치
JP2013160449A (ja) * 2012-02-06 2013-08-19 Daikin Industries Ltd エアフィルタの目詰まり検知装置
CN102927659B (zh) * 2012-11-27 2015-06-17 四川长虹电器股份有限公司 空调器除霜控制系统及方法
CN202947395U (zh) * 2012-12-04 2013-05-22 王秀利 除霜装置和热量控制设备
US9551504B2 (en) 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
CN103234261B (zh) 2013-05-02 2015-09-30 四川长虹电器股份有限公司 空调机除尘的方法及系统
KR102101489B1 (ko) 2013-10-29 2020-04-16 엘지전자 주식회사 가습기
JP2015087971A (ja) * 2013-10-31 2015-05-07 株式会社荏原製作所 ポンプの監視装置および当該監視装置を備えたポンプ設備
US9882133B2 (en) 2014-08-20 2018-01-30 Boe Technology Group Co., Ltd. Electronic package device for testing a package effect of the device, fabrication method thereof and method for testing electronic package device
KR102339659B1 (ko) 2014-11-27 2021-12-16 삼성전자주식회사 만수량감지장치 및 이를 포함하는 제습장치
CN104481891B (zh) * 2014-11-27 2019-01-15 浙江富士精工科技有限公司 空调排水泵
CN104596051B (zh) 2015-01-29 2018-08-10 皓庭(唐山)环境科技有限公司 空气净化装置滤网图像检测系统
JP6107871B2 (ja) * 2015-04-06 2017-04-05 三菱電機ビルテクノサービス株式会社 応急排水機能を有する空気調和機
CN104822046A (zh) * 2015-04-15 2015-08-05 常州大学 一种基于视觉技术的非接触式电镀槽液位控制器
KR101779191B1 (ko) 2016-02-24 2017-09-18 주식회사 토브산업 천정형 에어컨 필터 청소장치
US20200003449A1 (en) * 2016-03-03 2020-01-02 Mitsubishi Electrict Corporation Air-conditioning apparatus
CN106288158A (zh) 2016-08-05 2017-01-04 珠海格力电器股份有限公司 空调及其化霜方法和装置
CN106287955A (zh) * 2016-08-11 2017-01-04 北海华源电子有限公司 用于存储显示屏的存储仓
CN109863348B (zh) * 2016-10-24 2021-05-18 三菱电机株式会社 空调机
JPWO2019097613A1 (ja) 2017-11-15 2020-07-09 三菱電機株式会社 空調管理システム、空調機器、空調管理装置、空調管理方法及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046864A (ja) 2005-08-11 2007-02-22 Daikin Ind Ltd 保守支援システム
JP2010242994A (ja) * 2009-04-02 2010-10-28 Daikin Ind Ltd 液レベル検知装置およびこれを備えた空気調和装置
JP2012032071A (ja) * 2010-07-30 2012-02-16 Panasonic Corp 空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3663662A4

Also Published As

Publication number Publication date
US20200248918A1 (en) 2020-08-06
CN111051783A (zh) 2020-04-21
US11384946B2 (en) 2022-07-12
JP2019190822A (ja) 2019-10-31
JP2019039658A (ja) 2019-03-14
JP2019039660A (ja) 2019-03-14
PT3663662T (pt) 2021-11-15
EP3663662A4 (en) 2020-08-26
JP6547881B2 (ja) 2019-07-24
ES2911549T3 (es) 2022-05-19
EP3667192B1 (en) 2022-03-16
EP3933287A1 (en) 2022-01-05
CN111033134A (zh) 2020-04-17
EP3663662A1 (en) 2020-06-10
AU2018324670A1 (en) 2020-03-12
EP3663662B1 (en) 2021-10-13
AU2018323394B2 (en) 2021-05-06
JP7132509B2 (ja) 2022-09-07
WO2019044198A1 (ja) 2019-03-07
EP3667192A1 (en) 2020-06-17
ES2898843T3 (es) 2022-03-09
AU2018324670B2 (en) 2020-04-23
EP3667192A4 (en) 2020-08-26
US11499728B2 (en) 2022-11-15
US20200173670A1 (en) 2020-06-04
AU2018323394A1 (en) 2020-03-12
JP6540867B2 (ja) 2019-07-10

Similar Documents

Publication Publication Date Title
JP6540867B2 (ja) 空気処理装置
JP7346161B2 (ja) 空気処理装置
JP2019190822A5 (ja)
JP2019196903A5 (ja)
JP2021103053A (ja) 空気調和装置
JP7014983B1 (ja) 撮像ユニット及び空気処理ユニット
JP7014982B2 (ja) 画像処理装置、空気処理システム、画像処理プログラム、及び画像処理方法
JP2022082951A (ja) 空気調和システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018323394

Country of ref document: AU

Date of ref document: 20180821

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018851325

Country of ref document: EP

Effective date: 20200302