WO2019044253A1 - 水分量検出装置 - Google Patents

水分量検出装置 Download PDF

Info

Publication number
WO2019044253A1
WO2019044253A1 PCT/JP2018/027224 JP2018027224W WO2019044253A1 WO 2019044253 A1 WO2019044253 A1 WO 2019044253A1 JP 2018027224 W JP2018027224 W JP 2018027224W WO 2019044253 A1 WO2019044253 A1 WO 2019044253A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
light
unit
digital signal
control
Prior art date
Application number
PCT/JP2018/027224
Other languages
English (en)
French (fr)
Inventor
林 雅則
渡部 祥文
弘貴 松浪
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US16/641,449 priority Critical patent/US10948406B2/en
Priority to EP18850152.2A priority patent/EP3677900B1/en
Priority to JP2019539056A priority patent/JP6788858B2/ja
Priority to CN201880054785.7A priority patent/CN111051860A/zh
Publication of WO2019044253A1 publication Critical patent/WO2019044253A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • D06F34/18Condition of the laundry, e.g. nature or weight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/02Characteristics of laundry or load
    • D06F2103/08Humidity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's

Definitions

  • the present invention relates to a water content detection device.
  • a clothes drying apparatus for drying clothes (target objects) dried in an indoor space is known that is equipped with a water content detection device for detecting the water content of a target object.
  • a water content detection device a device that calculates the water content from the temperature and humidity of the atmosphere of the object and the absorption of infrared light by water is known. Then, the clothes drying apparatus may detect the moisture content of the object with the moisture content detection apparatus and adjust the dehumidifying strength based on the detection result of the moisture content detection apparatus.
  • the infrared moisture meter which measures moisture content is known, for example using absorption of the infrared rays by moisture (for example, refer patent document 1).
  • the processing for detecting the water content in the water content detection device be speeded up.
  • the processing speed be increased.
  • an object of this invention is to provide the water content detection apparatus in which the process which detects a water content was speeded up.
  • a moisture content detection device includes a semiconductor light emitting element that emits light, and a light source unit that emits the light that blinks at a predetermined frequency toward an object
  • a light receiving unit that receives the light reflected by the object and outputs a detection signal
  • an amplifier that receives the detection signal and outputs an amplification signal obtained by amplifying the detection signal at a predetermined amplification factor
  • An amplifier signal is input, a lock-in amplifier that outputs an extraction signal obtained by extracting a signal of the predetermined frequency from the amplification signal, and the extraction signal are input, and the extraction signal is A / D converted to output a digital signal
  • An A / D converter a pass band is variable, a low pass filter which receives the digital signal and passes a signal of the pass band from the digital signal, and the pass band is controlled.
  • a control unit for the control unit in response to the signal strength indicated by the digital signal, performs a first control for changing the passband.
  • the processing for detecting the water content can be speeded up.
  • FIG. 1 is a perspective view showing a schematic configuration of a clothes drying apparatus according to an embodiment.
  • FIG. 2 is a control block diagram of the clothes drying apparatus according to the embodiment.
  • FIG. 3A is a schematic view showing a schematic configuration and an object of the water content detection device according to the embodiment.
  • FIG. 3B is a schematic view showing the configuration of the water content detection device according to the embodiment and an object.
  • FIG. 4 is a flowchart showing an operation of water content detection in the water content detecting device according to the embodiment.
  • FIG. 5 is a diagram illustrating an example in which the control unit according to the embodiment controls the pass band.
  • FIG. 6 is a flowchart showing an amplification factor control operation in the control unit according to the embodiment.
  • each drawing is a schematic view, and is not necessarily illustrated exactly. Therefore, for example, the scale and the like do not necessarily match in each figure. Further, in each of the drawings, substantially the same configuration is given the same reference numeral, and overlapping description will be omitted or simplified.
  • FIG. 1 is a perspective view showing a schematic configuration of a clothes drying apparatus 100 according to the present embodiment.
  • the clothes drying apparatus 100 sucks in the room air, dehumidifies it, and blows the air into the room again to dry the object 2 dried in the room.
  • the object 2 is, for example, clothing or the like when not particularly limited.
  • bedding such as a sheet and a pillow cover, may be mentioned.
  • the clothes drying apparatus 100 includes a substantially rectangular main body 101 and a lid 102 that opens and closes at an upper portion of the main body 101. At an upper portion of the main body 101, a blower 103 (see FIG. 2) exposed when the lid 102 is in the open state is provided. The blower unit 103 dries the target 2 present in the space 3 by sending the wind W to the space 3 in the room. Space 3 is a space (free space) between the clothes drying apparatus 100 and the object 2.
  • a suction port 104 for taking in the outside air is provided at a position away from the lid portion 102.
  • a flow path for guiding the air from the suction port 104 to the air blowing portion 103 is formed, and a dehumidifying portion 105 (see FIG. 2) for dehumidifying the air is provided for the flow path.
  • the lid portion 102 is provided with a water content detection device 1 for detecting the water content of the object 2.
  • FIG. 2 is a control block diagram of the clothes drying apparatus 100 according to the present embodiment.
  • the clothes drying apparatus 100 includes a dehumidifying unit 105, a blowing unit 103, a water content detection device 1, and a drying control unit 106.
  • the dehumidifying unit 105 is, for example, a vapor compression type heat pump, and dehumidifies air flowing through the flow path of the main body 101.
  • the blower 103 blows the air dehumidified by the dehumidifier 105 toward the space 3.
  • At least one drying condition such as a blowing range, a wind direction, a blowing intensity (wind force), and a blowing temperature in the blowing unit 103 can be changed. Details of the water content detection device 1 will be described later.
  • the drying control unit 106 is configured by a microcomputer.
  • the drying control unit 106 is a non-volatile memory in which a general operation program of the clothes drying apparatus 100 is stored, a volatile memory which is a temporary storage area for executing the program, an input / output port, a processor for executing the program Etc.
  • the drying control unit 106 controls the drying condition of the blower unit 103 based on the water content of the object 2 detected by the water content detection device 1.
  • appropriate drying conditions are selected in accordance with the water content of the object 2.
  • the wind direction and the like can be adjusted according to the water content of the plurality of objects 2 detected by the water content detection device 1. That is, it is possible to dry the target 2 having a large amount of water from the plurality of targets 2 in a focused manner. Therefore, the clothes drying apparatus 100 can perform more efficient clothes drying.
  • the moisture content detection apparatus 1 with which the clothes drying apparatus 100 is provided is demonstrated.
  • FIG. 3A is a schematic view showing a schematic configuration of the water content detection device 1 according to the present embodiment and an object 2.
  • FIG. 3B is a schematic view showing the detailed configuration of the water content detection device 1 according to the present embodiment and the object 2. 3B, only the first output unit 110 of the first output unit 110 and the second output unit 120 shown in FIG. 3A is shown on the toilet.
  • the water content detection device 1 is a water content detection device that emits light to the object 2 and detects the water content of the object 2 based on the light (reflected light) reflected by the object 2. In the present embodiment, as shown in FIG. 1 and FIG. 2, the moisture content detection device 1 detects the moisture content contained in the object 2 arranged with the space 3 therebetween.
  • the moisture content detection device 1 includes a light source unit 10, a light source control unit 20, a first output unit 110, a second output unit 120, and a signal processing unit 70.
  • the moisture content detection device 1 is characterized by the signal processing performed by the signal processing unit 70.
  • the first output unit 110 includes the light receiving unit 30, the signal amplifying unit 40, the lock-in amplifier 50, and the A / D converter 60, and the light receiving unit 30 receives light.
  • a signal corresponding to the light is output to the signal processing unit 70.
  • the configuration of the second output unit 120 is the same as the configuration of the first output unit 110, so the description thereof is omitted, but the second output unit 120 has a wavelength different from that of the first output unit 110. The light is received, and a signal corresponding to the received light is output to the signal processing unit 70.
  • the light source unit 10 is a light source unit that includes a semiconductor light emitting element that emits light, and emits light that blinks at a predetermined frequency toward the object 2.
  • a semiconductor light emitting element that emits light, and emits light that blinks at a predetermined frequency toward the object 2.
  • An example of the light which the light source part 10 irradiates to the subject 2 is shown by the irradiation light L in FIG. 3A and 3B.
  • the semiconductor light emitting element is a semiconductor chip in which a semiconductor layer is stacked on a growth substrate and emits near infrared light. In the following, the semiconductor light emitting element is also referred to as a light emitting element.
  • the light source unit 10 emits detection light including a first wavelength band whose absorption by water is larger than a predetermined value, and reference light including a second wavelength band whose absorption by water is smaller than a predetermined value.
  • Water has high absorption at a wavelength of about 1450 nm and low absorption at a wavelength of about 1300 nm. For this reason, a wavelength band in which the light absorbance of water is high is selected as the first wavelength band forming detection light, and a light absorbance of water is smaller than the first wavelength band as the second wavelength band forming reference light Select a wavelength band.
  • the central wavelength of the first wavelength band is 1450 nm
  • the central wavelength of the second wavelength band is 1300 nm.
  • the object 2 is detected to include the first wavelength band in which the absorption by water is large.
  • the light and the reference light including a second wavelength band whose absorption by water is smaller than the first wavelength band are irradiated.
  • the light source unit 10 includes an LED (Light Emitting Diode) element that emits detection light including a first wavelength band and reference light including a second wavelength band as an example of a semiconductor light emitting element. .
  • LED Light Emitting Diode
  • the light source unit 10 may have a lens (not shown) that condenses the light emitted from the light emitting element on the object 2.
  • a lens is a resin-made convex lens, it is not restricted to this.
  • the light source unit 10 may have a scanning unit (not shown) for irradiating the light emitted from the light emitting element to a desired position.
  • the scanning unit the light source unit 10 may have a structure for scanning light by adjusting the attitude of the semiconductor light emitting element, or may have another structure.
  • the scanning unit is controlled by the light source control unit 20. That is, the light source unit 10 may irradiate the object 2 while scanning the light.
  • the light emitted from the light source unit 10 to the object 2 may be, for example, light emitted from a light emitting element and reflected by a reflector or the like.
  • the light source control unit 20 is a control device that controls the light source unit 10 and causes the light source unit 10 to emit light toward the object 2.
  • the light source control unit 20 controls the light emitting element so that lighting and extinguishing of the light emitting element are repeated in a predetermined light emitting cycle. That is, the light source control unit 20 performs control to blink the light source unit 10 at a predetermined frequency (for example, 1 kHz).
  • the light source control unit 20 outputs a pulse signal of a predetermined frequency to the light emitting element to turn on and off the light emitting element at a predetermined light emitting cycle.
  • the light source control unit 20 also outputs the pulse signal to the lock-in amplifier 50 as a reference signal.
  • the pulse signal is an example of a control signal with which the light source control unit 20 controls the light emission of the light source unit 10.
  • a predetermined frequency that causes the light source unit 10 to blink is also referred to as a light emission frequency.
  • the light source control unit 20 may emit light while scanning the light toward the target 2, for example.
  • the light source control unit 20 scans light from the light emitting element, for example, by controlling the scanning unit and changing the attitude of the light emitting element.
  • the light source control unit 20 includes a drive circuit and a microcomputer.
  • the light source control unit 20 includes a light emitting element, a non-volatile memory storing a control program for the scanning unit, a volatile memory as a temporary storage area for executing the program, an input / output port, a processor for executing the program, etc. Have.
  • the light receiving unit 30 includes a light receiving element that receives light (hereinafter also referred to as reflected light) emitted from the light source unit 10 and reflected by the object 2 and converting the light into an electrical signal.
  • An example of light reflected by the object 2 and received by the light receiving unit 30 is shown as the reflected light R in FIGS. 3A and 3B.
  • the light receiving unit 30 photoelectrically converts the received light in the wavelength band to generate an electric signal according to the amount of light received (that is, the intensity).
  • the generated electrical signal is output to the signal amplification unit 40.
  • the light receiving unit 30 is, for example, a photodiode, but is not limited thereto.
  • the light receiving unit 30 may be a phototransistor or an image sensor.
  • the electric signal output from the light receiving unit 30 to the signal amplifying unit 40 is an example of a detection signal.
  • the light receiving element of the light receiving unit 30 receives the light of the first wavelength band emitted from the light source unit 10 and reflected by the object 2.
  • the light receiving unit 30 may be disposed on the incident side of the reflected light with respect to the light receiving element, and may include a filter provided on the optical path of the reflected light incident on the light receiving element. Then, the filter transmits the light of the first wavelength band and absorbs or reflects the light of the other wavelength bands. Thereby, the light receiving element of the light receiving unit 30 can receive the light of the first wavelength band transmitted through the filter.
  • the light receiving unit of the second output unit 120 includes, for example, a filter that transmits light in the second wavelength band and absorbs or reflects light in other wavelength bands, and the light receiving unit includes The light receiving element receives the light of the second wavelength band transmitted through the filter.
  • the light receiving unit 30 may have a condensing lens for condensing the reflected light on the light receiving element.
  • the lens is, for example, fixed so that the focal point is located on the light receiving surface of the light receiving element.
  • the lens is fixed to, for example, the housing of the clothes drying apparatus 100.
  • a lens is a resin-made convex lens, for example, it is not restricted to this.
  • the light receiving unit 30 In addition to the reflected light, the light receiving unit 30 also receives light as noise caused by the indoor environment.
  • the noise is, for example, noise due to disturbance light such as illumination light. Therefore, the electrical signal output to the signal amplification unit 40 also includes a component according to the amount of received light that is noise.
  • the intensity of light to be received by the light receiving unit 30 is not dependent on the distance between the light source unit 10 and the object 2, but the intensity of reflected light received by the light receiving unit 30 is the distance between the light source unit 10 and the object 2 It changes depending on it. As the distance between the light source unit 10 and the object 2 increases, the signal intensity of the received reflected light decreases. That is, the light receiving unit 30 receives light of substantially constant intensity as noise.
  • the light receiving unit 30 receives the light reflected by the object 2 in synchronization with the scanning. That is, the light receiving unit 30 receives the light reflected by the object 2 for each position of the object 2 irradiated with the light from the light source unit 10.
  • the water content detection device 1 can detect the water content in a wider area. For example, the amount of water can be detected in each of a plurality of ranges or a plurality of objects 2 in the object 2.
  • the light source control unit 20 can specify, for example, the position of the object 2 currently detecting the amount of water (for example, the direction in which the object 2 is viewed from the clothes drying apparatus 100) from the posture of the light emitting element. . Thereby, the drying condition such as the blowing range or the wind direction in the blowing unit 103 can be changed. The detection of the water content will be described later.
  • the signal amplification unit 40 is an amplifier which receives the electric signal output from the light receiving unit 30 and outputs an amplification signal obtained by amplifying the electric signal at a predetermined amplification factor to the lock-in amplifier 50.
  • the signal amplification unit 40 is an operational amplifier that amplifies an electrical signal.
  • the signal amplification unit 40 is configured to be able to change the amplification factor.
  • the amplification factor of the signal amplification unit 40 is controlled by a control unit 71 described later.
  • the lock-in amplifier 50 receives the amplification signal output from the signal amplification unit 40, and outputs an extraction signal obtained by extracting a signal of a predetermined frequency (for example, light emission frequency) from the amplification signal to the A / D converter 60. It is a circuit. As shown in FIG. 3B, the lock-in amplifier 50 includes a band pass filter 51, a mixer 52, and a first low pass filter 53.
  • the band pass filter 51 is a filter for suppressing the noise component contained in the amplifier signal. By arranging the band pass filter 51 between the signal amplification unit 40 and the mixer 52, an amplifier signal in which noise components outside the pass band of the band pass filter 51 are suppressed is input to the mixer 52.
  • the band pass filter 51 is realized by, for example, a circuit using an RLC circuit or an operational amplifier.
  • the mixer 52 is a circuit that extracts synchronized signal components of two signals from the amplifier signal that has passed through the band pass filter 51 and the pulse signal that is output from the light source control unit 20 to the mixer 52.
  • the mixer 52 can extract a signal component synchronized with the pulse signal, that is, a signal component in the same phase, from the amplifier signal including noise. That is, the mixer 52 can further suppress the noise included in the amplifier signal.
  • the first low pass filter 53 is a filter for removing an alternating current component from the signal component extracted by the mixer 52.
  • the first low pass filter 53 is realized by, for example, a circuit using an RC circuit or an operational amplifier.
  • the process by the lock-in amplifier 50 as described above is a so-called lock-in amplifier process.
  • noise components such as disturbance light included in the amplifier signal amplified by the signal amplifier 40 can be suppressed. That is, by providing the lock-in amplifier 50, it is possible to extract a signal of high signal-to-noise ratio from the electrical signal including noise. Also, since noise components can be suppressed before the signal is input to A / D converter 60, the signal input to A / D converter 60 exceeds the dynamic range of A / D converter 60. Can be suppressed.
  • the lock-in amplifier 50 has a function similar to that of a narrow band bandpass filter that extracts a specific frequency from the received light signal (e.g., extracts only frequency components of lighting and extinguishing of light emitted from the light source unit 10).
  • the pass band of the first low pass filter 53 is a fixed band.
  • the cutoff frequency of the first low pass filter 53 passes the center frequency and the signal in a signal whose center frequency is the light ON / OFF frequency (for example, 1 kHz) of the light emitted from the light source unit 10 It is appropriately determined according to the bandwidth.
  • the A / D converter 60 is a circuit that receives the extraction signal lock-in-amplified by the lock-in amplifier 50, A / D converts the extraction signal, and outputs a digital signal to the signal processing unit 70. .
  • the digital signal output to the signal processing unit 70 includes noise due to various circuits included in the moisture content detection device 1.
  • the various circuits are, for example, the signal amplification unit 40, the lock-in amplifier 50, the A / D converter 60, and the like.
  • the noise is, for example, 1 / f noise.
  • the signal processing unit 70 is a processing unit that receives the digital signal converted by the A / D converter 60 and performs signal processing on the digital signal. As shown in FIG. 3B, the signal processing unit 70 includes a control unit 71, a second low pass filter 72 (LPF 2 in the drawing), and a processing unit 73. That is, the moisture content detection device 1 is configured such that the pass band is further restricted by the low pass filter in the digital signal A / D converted by the A / D converter 60. The second low pass filter 72 can change the pass band, and the pass band is controlled by the control unit 71.
  • the control unit 71 performs control to appropriately change the pass band of the second low pass filter 72 according to the signal strength indicated by the digital signal. For example, the control unit 71 performs control to widen the pass band of the second low pass filter 72 as the signal strength indicated by the digital signal is larger. Further, the control unit 71 performs control to narrow the pass band of the second low pass filter 72 as the signal strength indicated by the digital signal is smaller.
  • the control of the pass band of the second low pass filter 72 performed by the control unit 71 is an example of a first control. Details of the first control performed by the control unit 71 will be described later.
  • control unit 71 performs control to change the amplification factor of the signal amplification unit 40 according to the signal strength indicated by the digital signal. For example, the control unit 71 reduces the amplification factor of the signal amplification unit 40 as the signal strength indicated by the digital signal increases, and increases the amplification factor of the signal amplification unit 40 as the signal strength indicated by the digital signal decreases. Take control.
  • the control of the amplification factor of the signal amplification unit 40 performed by the control unit 71 is an example of a second control. Details of the second control performed by the control unit 71 will be described later.
  • the signal strength indicated by the digital signal may be, for example, the peak strength indicated by the digital signal, the average strength indicated by the digital signal, or the amount of energy indicated by the digital signal. .
  • the second low pass filter 72 is a digital filter that can change the cutoff frequency for passing a signal of a predetermined band frequency from the input digital signal. As a result, for example, noise and the like caused by the A / D converter 60 and the like included in the digital signal can be suppressed.
  • the second low pass filter 72 is an example of a low pass filter that passes a signal of a frequency of a pass band controlled by the control unit 71 according to the signal intensity indicated by the digital signal. Specifically, the control unit 71 controls the cutoff frequency of the second low pass filter 72. Further, the pass band of the second low pass filter 72 is a frequency band equal to or lower than the cutoff frequency controlled by the control unit 71.
  • the processing unit 73 is a processing device that detects a component included in the object 2 from the digital signal that has passed through the second low pass filter 72. Specifically, the processing unit 73 detects the amount of water contained in the object 2 based on the signal intensity indicated by the digital signal. For example, the processing unit 73 converts the digital signal into a moisture amount by calculating a predetermined constant for the signal intensity indicated by the digital signal.
  • the predetermined constant includes the signal intensity indicated by the light of the first wavelength band forming the detection light and the light of the second wavelength band forming the reference light, which the light source unit 10 emits, the filter of the light receiving unit 30, and It is a constant determined in advance by the transmittance characteristic of the filter of the light receiving unit of the second output unit 120, the light receiving element of the light receiving unit 30, and the light receiving characteristic of the light receiving element of the light receiving unit of the second output unit 120.
  • at least one of addition, subtraction, multiplication and division is performed in the operation.
  • the signal processing unit 70 has a non-volatile memory in which a processing program for digital signals is stored, a volatile memory which is a temporary storage area for executing the program, an input / output port, a processor for executing the program, and the like.
  • the processing program for the digital signal stored in the non-volatile memory includes the predetermined constant described above. A plurality of predetermined constants may be stored.
  • the moisture content detection device 1 as described above includes a semiconductor light emitting element that emits light, and a light source unit 10 that emits light that blinks at a light emission frequency toward the object 2, and the light reflected by the object 2
  • a light receiving unit 30 that receives light and generates a signal according to the received light
  • a signal amplification unit 40 that amplifies the signal output from the light reception unit 30, and a signal of an emission frequency from the signal output from the signal amplification unit 40
  • a second low pass filter 72 for passing a signal of a pass band frequency and a control unit 71 for controlling the pass band of the second low pass filter 72 are provided. Then, the control unit 71 changes the pass band of the second low pass filter 72 in accordance with the signal strength indicated by the signal output from the A /
  • FIG. 4 is a flowchart showing an operation of water content detection in the water content detecting device 1 according to the present embodiment.
  • the light source control unit 20 controls the light source unit 10 to irradiate light toward the object 2. That is, the light source control unit 20 starts the light emission of the light source unit 10 (S11). Specifically, the light source control unit 20 outputs a pulse signal of a predetermined frequency to the light emitting element to emit light.
  • the light-receiving part 30 is irradiated from the light source part 10 by step S11, and light-receives the reflected light reflected by the target object 2 (S12).
  • the light receiving unit 30 receives, as reflected light, for example, light of a first wavelength band among the light emitted from the light source unit 10 and reflected by the object 2. In addition to the reflected light, the light receiving unit 30 also receives light as noise caused by the indoor environment.
  • the light receiving unit 30 generates an electrical signal according to the amount of received reflected light and the amount of light that becomes noise. The generated electrical signal is output to the signal amplification unit 40.
  • processing of the electric signal (analog signal) by the signal amplification unit 40 and the lock-in amplifier 50 is performed (S13). Specifically, an amplification signal in which the electric signal is amplified at a predetermined amplification factor is generated by the signal amplification unit 40, and an extraction signal is generated by extracting a light emission frequency signal from the amplification signal by the lock-in amplifier 50. The generated extraction signal is output to the A / D converter 60.
  • the A / D converter 60 performs A / D conversion for converting the input extracted signal (analog signal) into a digital signal (S14). Then, the A / D converter 60 outputs the digital signal to the signal processing unit 70.
  • Steps S12 to S14 are performed in each of the first output unit 110 and the second output unit 120.
  • steps S12 to S14 may be performed in parallel.
  • the signal processing unit 70 performs predetermined signal processing on the input digital signal.
  • the control unit 71 controls the pass band of the second low pass filter 72 in accordance with the signal strength indicated by the digital signal and the first reference value (first reference strength) determined in advance. For example, when the signal strength indicated by the digital signal is larger than the first reference value (Yes in S15), the control unit 71 makes the pass band of the second low pass filter 72 wider than the first pass band. Control to the second pass band (S16). Also, for example, when the signal strength indicated by the digital signal is equal to or less than the first reference value (No in S15), the control unit 71 controls the passband of the second lowpass filter 72 to the first passband. To do (S17). Steps S14 to S17 are an example of the first control.
  • the first reference value is stored in advance in, for example, a non-volatile memory that the signal processing unit 70 has.
  • steps S15 to S17 is performed on each of the digital signal input from the first output unit 110 and the digital signal input from the second output unit 120.
  • FIG. 5 is a diagram showing an example in which the control unit 71 according to the present embodiment controls the pass band. Specifically, (a) in FIG. 5 shows the process performed by the control unit 71 in step S16, and (b) in FIG. 5 shows the process performed in step S17 by the control unit 71. The solid lines shown in (a) and (b) of FIG. 5 indicate digital signals.
  • the control unit 71 determines Yes in step S15, the signal strength indicated by the digital signal is larger than the first reference value, and thus the passband of the second lowpass filter 72. Is controlled to be a second passband wider than the first passband. Since the signal strength indicated by the digital signal is large, the influence on the S / N ratio is small even if the pass band is broadened. Also, the second low pass filter 72 passes digital signals up to a higher frequency as the pass band is wider, in other words, as the cutoff frequency is higher. When the second low-pass filter 72 is configured to adopt the moving average method, the number of target samples of the moving average can be reduced as the cutoff frequency is higher.
  • the moisture content detection device 1 can increase the S / N ratio by the lock-in amplifier 50 by widening the pass band of the second low pass filter 72 when the signal strength indicated by the digital signal is greater than the first reference value. While maintaining the signal, the signal processing time in the signal processing unit 70 can be shortened.
  • the second low pass filter 72 may be configured to adopt a method other than the moving average method.
  • the control unit 71 determines No in step S15, the signal strength indicated by the digital signal is less than or equal to the first reference value.
  • the first pass band is narrower than the second pass band. Since the signal intensity indicated by the digital signal is small, the noise component contained in the signal passing through the second low pass filter 72 can be suppressed by narrowing the pass band. That is, the second low pass filter 72 can extract a signal with a high S / N ratio even when the signal intensity indicated by the digital signal is small.
  • the processing unit 73 calculates a predetermined constant for the signal strength indicated by the digital signal that has passed through the second low pass filter 72 whose passband is controlled in step S16 or S17.
  • the amount of water contained in the object 2 is detected (S18).
  • the processing unit 73 calculates a predetermined constant as a ratio between the signal strength indicated by the digital signal input from the first output unit 110 and the signal strength indicated by the digital signal input from the second output unit 120. To detect the amount of water. Then, the signal processing unit 70 outputs the detected water content to the drying control unit 106.
  • step S18 is completed, the process returns to step S12 and the process of detecting the water content is continued.
  • the light source control unit 20 controls the light source unit 10 (light emitting element) to turn on and off in a predetermined light emission cycle.
  • the moisture content detection device 1 may perform the processing of steps S13 to S18 while the light source control unit 20 turns off the light source unit 10.
  • the first reference value is an example of a first signal strength threshold.
  • control of the amplification factor of the signal amplification unit 40 by the control unit 71 will be described with reference to FIG.
  • FIG. 6 is a flowchart showing an operation of controlling an amplification factor in the control unit 71 according to the present embodiment. Although FIG. 6 includes operations performed by other than the control unit 71, steps S21 to S24 are the same as steps S11 to S14 shown in FIG.
  • the signal processing unit 70 performs predetermined signal processing on the input digital signal.
  • the control unit 71 controls the amplification factor of the signal amplification unit 40 in accordance with the signal strength indicated by the digital signal and the second reference value (second reference strength) determined in advance. For example, when the signal strength indicated by the digital signal is larger than the second reference value (Yes in S25), the control unit 71 determines that the amplification factor of the signal amplification unit 40 is smaller than the first amplification factor. It controls to the amplification factor of (S26). That is, when the signal strength indicated by the digital signal is larger than the second reference value, the control unit 71 performs control to lower the amplification factor of the signal amplification unit 40.
  • the signal input to the A / D converter 60 is A / D converted Exceeding the dynamic range of the device 60 can be suppressed.
  • the moisture content detection device 1 detects the distance between the light source unit 10 and the object 2 even if the light receiving unit 30 receives a large amount of light when the distance from the light source unit 10 is short. The water content can be detected without exceeding the dynamic range.
  • the control unit 71 may control the amplification factor of the signal amplification unit 40 so that the signal input to the A / D converter 60 does not exceed the dynamic range of the A / D converter 60.
  • control unit 71 controls the amplification factor of the signal amplification unit 40 to the first amplification factor (S27) . That is, when the signal strength indicated by the digital signal is equal to or less than the second reference value, the control unit 71 performs control to increase the amplification factor of the signal amplification unit 40 as compared with the case of Yes in step S25.
  • steps S25 to S27 described above are an example of the second control performed by the control unit 71.
  • the second reference value is stored in advance in, for example, a non-volatile memory included in the signal processing unit 70.
  • the moisture content detection apparatus 1 returns to step S22, and continues a process, after step S26 or S27 is complete
  • the light source control unit 20 controls the light source unit 10 (light emitting element) to turn on and off in a predetermined light emission cycle.
  • the moisture content detection device 1 may perform the processes of steps S23 to S27 while the light source control unit 20 turns off the light source unit 10.
  • the second reference value is an example of a second signal strength threshold.
  • the water content detection device 1 receives and detects a light source unit 10 including a semiconductor light emitting element that emits light toward the object 2 and a reflected light R in which the light is reflected by the object 2.
  • a light receiving unit 30 for outputting a signal, a signal amplification unit 40 (amplifier) for receiving a detection signal and outputting an amplification signal obtained by amplifying the detection signal by a predetermined amplification factor, and an amplification signal are input.
  • a lock-in amplifier 50 which outputs an extraction signal from which a signal of a predetermined frequency is extracted, an A / D converter 60 which receives the extraction signal, A / D converts the extraction signal and outputs a digital signal, and a passband Is variable, and a digital signal is input, and a second low pass filter 72 which passes a signal of a passband frequency from the digital signal, and a control unit 71 which controls the passband. And control part 71 performs the first control which changes a pass zone according to the signal intensity which a digital signal shows.
  • the pass band of the second low pass filter 72 can be changed according to the signal strength indicated by the digital signal.
  • the control unit 71 performs control to widen the pass band, it is possible to increase the processing speed when performing the process of detecting the water content. Therefore, the water content detection device 1 can speed up the process of detecting the water content as compared with the water content detection device not provided with the second low pass filter 72.
  • control unit 71 performs control to widen the pass band of the second low pass filter 72 as the signal strength indicated by the digital signal is larger.
  • the control unit 71 controls the passband to the first passband, and the signal strength indicated by the digital signal Controls the passband to be a second passband wider than the first passband if the signal strength is greater than the first signal strength threshold.
  • the S / N ratio can be improved if the signal strength indicated by the digital signal is less than or equal to the first signal strength threshold, and if the signal strength is greater than the first signal strength threshold, the signal processing unit 70 processing can be speeded up. Therefore, the processing performance of the water content detection device 1 is further improved.
  • the signal amplification unit 40 has a variable amplification factor
  • the control unit 71 further performs second control to change the amplification factor of the signal amplification unit 40 in accordance with the signal strength indicated by the digital signal.
  • the amplification factor of the signal amplification unit 40 can be changed according to the signal strength indicated by the digital signal. For example, when the control unit 71 performs control to lower the amplification factor as the signal strength indicated by the digital signal increases, a signal exceeding the dynamic range of the A / D converter 60 is input to the A / D converter 60. Can be suppressed.
  • the control unit 71 controls the amplification factor to the first amplification factor, and the signal strength indicated by the digital signal Is greater than the second signal strength, the amplification factor is controlled to a second amplification factor smaller than the first amplification factor.
  • the light source unit 10 irradiates light while scanning.
  • the water content can be detected in a plurality of ranges in the object 2 or in a plurality of objects 2. Therefore, when the drying control unit 106 controls the drying condition, drying can be performed efficiently, such as drying preferentially at a position where the amount of water is large from the detection result. Moreover, when detecting the water content in the object 2 while scanning light, that is, when the water content is continuously detected, the processing speed of the signal processing unit 70 as described above is further increased. Play an effect.
  • the semiconductor light emitting element is an LED element.
  • the moisture content detection device 1 can be realized using the LED elements that can be turned on and off corresponding to the light emission cycle of lighting and off controlled by the light source control unit 20.
  • the water content detection device 1 is mounted on the clothes drying device 100
  • the water content detection device 1 is mounted on electrical devices other than the clothes drying device 100 It is also good.
  • it may be used for an electrical device used in an indoor environment.
  • the apparatus may be used in an apparatus used for blowing air to dry an object (e.g., a floor of a bathroom) such as a bathroom dryer.
  • the light source unit 10 is a light source other than the LED element if it can be turned on and off in the light emission cycle controlled by the light source control unit 20 May be included.
  • the light source unit 10 may have a semiconductor laser element or an organic EL element.
  • the light source control unit 20 controls the light emission cycle for turning on and off the light emitting element and an example of controlling the attitude of the light emitting element, but the control by the light source control unit 20 is not limited thereto.
  • the light source control unit 20 may control the intensity of light emitted from the light emitting element by controlling the amount of current supplied to the light emitting element.
  • the light source unit 10 is a reference including the detection light including the first wavelength band in which the absorption by water is larger than the predetermined value and the second wavelength band in which the absorption by water is the predetermined value or less
  • the light source unit 10 may be a light source module that emits at least detection light.
  • the moisture content detection device 1 may be configured to include only the first output unit 110 among the first output unit 110 and the second output unit 120.
  • the moisture content detection device 1 is integrally mounted on the clothes drying device 100
  • the moisture content detection device is a dedicated device. It may be an attachable configuration.
  • the water content detection device 1 receives the light reflected by the object 2 and detects the water content. However, the light transmitted through the object 2 is received, and the water content is detected. The amount may be detected.
  • the control unit 71 controls the pass band of the second low pass filter 72 using one reference value (for example, the first reference value) in the first control.
  • the reference value is not limited to one.
  • the control unit 71 may control the passband using a plurality of reference values.
  • the control unit 71 may control the passband using the first reference value and the third reference value whose signal strength is higher than the first reference value.
  • the control unit 71 controls the signal intensity indicated by the digital signal to be smaller than the first reference value, larger than the first reference value, smaller than the third reference value, and larger than the third reference value. Control to widen the pass band of the second low pass filter 72 may be performed.
  • control part 71 demonstrated the example which performs 1st control using a 1st reference value in the said embodiment, ie, controls a pass zone in steps, it is not limited to this.
  • the control unit 71 may control the pass band of the second low pass filter 72 on a one-on-one basis according to the signal strength indicated by the digital signal.
  • information for example, a function or the like
  • the passband may be controlled linearly from the intensity.
  • the first control also includes that the control unit 71 linearly controls the pass band.
  • control part 71 should just perform at least 1st control. That is, the control unit 71 may not perform the second control.
  • the amplification factor of the signal amplification unit 40 may be a fixed value.
  • first reference value and the second reference value in the above embodiment may be the same value or different values.
  • the process part 73 detected detection of a moisture content not limited to this.
  • the non-volatile memory of the signal processing unit 70 stores a table in which a value corresponding to the signal intensity indicated by the digital signal is associated with the water content, and the processing unit 73 stores the table in the non-volatile memory May be read out to detect the amount of water.
  • the value corresponding to the signal strength indicated by the digital signal is, for example, the signal strength indicated by the digital signal input from the first output unit 110 and the signal strength indicated by the digital signal input from the second output unit 120. Is the value calculated.
  • the processing unit 73 may calculate the difference or the ratio between the signal strength indicated by the digital signal input from the first output unit 110 and the signal strength indicated by the digital signal input from the second output unit 120, and the difference.
  • the water content may be detected from a table in which the ratio and the water content are associated with each other.
  • movement of the water content detection apparatus 1 demonstrated in the said embodiment is an example.
  • the order of the plurality of processes may be changed, or the plurality of processes may be performed in parallel. Also, some of the plurality of processes may be omitted. For example, the processing of steps S15 to S17 shown in FIG. 4 and the processing of steps S25 to S27 shown in FIG. 6 may be performed in parallel.
  • each component may be configured by dedicated hardware or implemented by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the processor is configured of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integration (LSI).
  • IC semiconductor integrated circuit
  • LSI large scale integration
  • the plurality of electronic circuits may be integrated on one chip or may be provided on a plurality of chips.
  • the plurality of chips may be integrated into one device or may be provided to a plurality of devices.
  • the general or specific aspects of the present invention may be realized by a system, an apparatus, a method, an integrated circuit, a computer program or a non-transitory recording medium such as a computer readable CD-ROM, an optical disc, etc. .
  • the program may be stored in advance in a recording medium, or may be supplied to the recording medium via a wide area communication network including the Internet and the like.
  • the present invention may be realized as any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
  • the present invention can be realized by arbitrarily combining components and functions in each embodiment without departing from the scope of the present invention or embodiments obtained by applying various modifications that those skilled in the art may think to each embodiment.
  • the form is also included in the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

水分量検出装置(1)は、対象物(2)に向けて所定の周波数で明滅する光を照射する光源部(10)と、対象物(2)で反射された光を受光し、検出信号を出力する受光部(30)と、検出信号が入力され、当該検出信号を所定の増幅率で増幅したアンプ信号を出力するアンプ(40)と、アンプ信号が入力され、当該アンプ信号から所定の周波数の信号を抽出した抽出信号を出力するロックインアンプ(50)と、抽出信号が入力され、当該抽出信号をA/D変換してデジタル信号を出力するA/D変換器(60)と、通過帯域が可変であり、デジタル信号が入力され、当該デジタル信号から通過帯域の周波数の信号を通過させる第二のローパスフィルタ(72)と、通過帯域を制御する制御部(71)とを備え、制御部(71)は、デジタル信号が示す信号強度に応じて、通過帯域を変更する第一の制御を行う。

Description

水分量検出装置
 本発明は、水分量検出装置に関する。
 従来、室内空間で干された衣類(対象物)を乾燥させる衣類乾燥装置には、対象物の水分量を検出する水分量検出装置が搭載されたものが知られている。例えば、水分量検出装置としては、対象物の雰囲気の温度及び湿度と、水による赤外線の吸収とから、水分量を算出する装置が知られている。そして、衣類乾燥装置は、対象物の水分量を水分量検出装置で検出し、当該水分量検出装置の検出結果に基づいて除湿強度を調整させる場合がある。また、水分量検出装置としては、例えば、水分による赤外線の吸収を利用して、水分量を測定する赤外線水分計が知られている(例えば、特許文献1参照)。
特開平5-118984号公報
 ところで、より効率的な衣類乾燥を可能とするべく、水分量検出装置における水分量を検出する処理が高速化されることが望まれる。特に、光をスキャンしながら水分量を検出する場合に、処理が高速化されることが望まれる。
 そこで、本発明は、水分量を検出する処理が高速化された水分量検出装置を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る水分量検出装置は、光を出射する半導体発光素子を含み、対象物に向けて所定の周波数で明滅する前記光を照射する光源部と、前記対象物で反射された前記光を受光し、検出信号を出力する受光部と、前記検出信号が入力され、当該検出信号を所定の増幅率で増幅したアンプ信号を出力するアンプと、前記アンプ信号が入力され、当該アンプ信号から前記所定の周波数の信号を抽出した抽出信号を出力するロックインアンプと、前記抽出信号が入力され、当該抽出信号をA/D変換してデジタル信号を出力するA/D変換器と、通過帯域が可変であり、前記デジタル信号が入力され、当該デジタル信号から前記通過帯域の周波数の信号を通過させるローパスフィルタと、前記通過帯域を制御する制御部とを備え、前記制御部は、前記デジタル信号が示す信号強度に応じて、前記通過帯域を変更する第一の制御を行う。
 本発明の一態様に係る水分量検出装置によれば、水分量を検出する処理が高速化される。
図1は、実施の形態に係る衣類乾燥装置の概略構成を示す斜視図である。 図2は、実施の形態に係る衣類乾燥装置の制御ブロック図である。 図3Aは、実施の形態に係る水分量検出装置の概略構成と対象物とを示す模式図である。 図3Bは、実施の形態に係る水分量検出装置の構成と対象物とを示す模式図である。 図4は、実施の形態に係る水分量検出装置における水分量検出の動作を示すフローチャートである。 図5は、実施の形態に係る制御部が通過帯域を制御する一例を示す図である。 図6は、実施の形態に係る制御部における増幅率の制御動作を示すフローチャートである。
 以下では、本発明の実施の形態に係る水分量検出装置について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。
 また、「略**」との記載は実質的に**と認められるものを含む意図であり、例えば「略直方体形状」を例に挙げて説明すると、完全な直方体はもとより、実質的に直方体と認められるものを含む意図である。
 (実施の形態)
 以下、本実施の形態に係る水分量検出装置について、図1~図6を参照しながら説明する。なお、本実施の形態では、一例として水分量検出装置が衣類乾燥装置に搭載されている例について説明する。
 [1.衣類乾燥装置の構成]
 まず、本実施の形態に係る水分量検出装置1を搭載した衣類乾燥装置100について、図1及び図2を参照しながら説明する。
 図1は、本実施の形態に係る衣類乾燥装置100の概略構成を示す斜視図である。
 図1に示すように、衣類乾燥装置100は、室内空気を吸い込んで除湿し、再度室内に向けて送風することで、室内に干された対象物2を乾燥させるものである。ここで、対象物2は、特に限定されない場合、例えば衣類などである。衣類以外の対象物2としては、シーツ、枕カバーなどの寝具が挙げられる。
 衣類乾燥装置100は、略直方体形状の本体101と、本体101の上部で開閉する蓋部102とを備えている。本体101の上部には、蓋部102が開状態になった場合に露出する送風部103(図2参照)が設けられている。送風部103は、室内の空間3に対して風Wを送ることで、当該空間3内に存在する対象物2を乾燥させる。空間3は、衣類乾燥装置100と対象物2との間の空間(自由空間)である。
 また、本体101の上部には、蓋部102から離れた位置に、外気を取り込む吸込口104が設けられている。本体101の内部には、吸込口104から送風部103まで空気を案内する流路が形成されており、その流路に対して、空気を除湿する除湿部105(図2参照)が設けられている。また、蓋部102には、対象物2の水分量を検出する水分量検出装置1が設けられている。
 図2は、本実施の形態に係る衣類乾燥装置100の制御ブロック図である。図2に示すように、衣類乾燥装置100は、除湿部105と、送風部103と、水分量検出装置1と、乾燥制御部106とを備えている。
 除湿部105は、例えば、蒸気圧縮式のヒートポンプであり、本体101の流路を流れる空気を除湿する。送風部103は、除湿部105によって除湿された空気を空間3に向けて送風する。送風部103における送風範囲、風向き、送風の強度(風力)、送風温度などの少なくとも1つの乾燥条件が変更可能となっている。水分量検出装置1の詳細については、後述する。
 乾燥制御部106は、マイクロコンピュータで構成される。乾燥制御部106は、衣類乾燥装置100の統括的な動作プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどを有する。
 具体的には、乾燥制御部106は、水分量検出装置1によって検出された対象物2の水分量に基づいて、送風部103の乾燥条件を制御する。これにより、対象物2の水分量に応じて、適切な乾燥条件が選択されることになる。また、図1に示すように複数の対象物2が存在する場合、水分量検出装置1によって検出された複数の対象物2の水分量に応じて、風向きなどを調節することができる。つまり、複数の対象物2から水分量が多い対象物2を重点的に乾燥させることが可能となる。よって、衣類乾燥装置100は、より効率的な衣類乾燥が可能となる。以下では、衣類乾燥装置100が備える水分量検出装置1について説明する。
 [1-1.水分量検出装置の構成]
 次に、水分量検出装置1の各構成要素について、図3A及び図3Bを参照しながら説明する。
 図3Aは、本実施の形態に係る水分量検出装置1の概略構成と対象物2とを示す模式図である。図3Bは、本実施の形態に係る水分量検出装置1の詳細構成と対象物2とを示す模式図である。なお、図3Bにおいては、便器上、図3Aに示す第一の出力部110及び第二の出力部120のうち、第一の出力部110のみを示している。
 水分量検出装置1は、対象物2に対して光を発し、当該対象物2で反射された光(反射光)に基づいて対象物2の水分量を検出する水分量検出装置である。本実施の形態では、図1及び図2に示すように、水分量検出装置1は、空間3を隔てて配置された対象物2に含まれる水分量を検出する。
 図3Aに示すように、水分量検出装置1は、光源部10と、光源制御部20と、第一の出力部110と、第二の出力部120と、信号処理部70とを備える。水分量検出装置1は、信号処理部70が行う信号処理に特徴を有する。また、図3Bに示すように、第一の出力部110は、受光部30と、信号増幅部40と、ロックインアンプ50と、A/D変換器60とを備え、受光部30が受光した光に対応した信号を信号処理部70に出力する。なお、第二の出力部120の構成は、第一の出力部110の構成と同様であるため説明を省略するが、第二の出力部120は、第一の出力部110とは異なる波長の光を受光し、受光した光に対応した信号を信号処理部70に出力する。
 [1-2.光源部]
 光源部10は、光を出射する半導体発光素子を含み、対象物2に向けて所定の周波数で明滅する光を照射する光源ユニットである。光源部10が対象物2に照射する光の一例は、図3A及び図3Bにおいて照射光Lに示される。なお、半導体発光素子とは、成長基板上に半導体層が積層され、近赤外光を出射する半導体チップである。また、以降において、半導体発光素子を発光素子とも記載する。
 例えば、光源部10は、水による吸収が所定値よりも大きな第一の波長帯を含む検知光と、水による吸収が所定値以下である第二の波長帯を含む参照光とを出射する。
 水は、約1450nmの波長の吸収が大きく、約1300nmの波長の吸収は小さい。このため、検知光をなす第一の波長帯としては、水の吸光度が大きい波長帯を選択し、参照光をなす第二の波長帯としては、第一の波長帯よりも水の吸光度が小さい波長帯を選択する。例えば、第一の波長帯の中心波長は1450nmであり、第二波長帯の中心波長は1300nmである。
 このように、発光素子が、第一の波長帯と第二の波長帯とを連続して含む光を照射するので、対象物2には、水による吸収が大きな第一の波長帯を含む検知光と、水による吸収が第一の波長帯よりも小さい第二の波長帯を含む参照光とが照射される。
 本実施の形態では、光源部10は、半導体発光素子の一例として、第一の波長帯を含む検知光と第二の波長帯を含む参照光とを出射するLED(Light Emitting Diode)素子を有する。
 光源部10は、発光素子が発した光を対象物2に対して集光するレンズ(図示しない)などを有していてもよい。例えば、レンズは樹脂製の凸レンズであるが、これに限らない。また、光源部10は、発光素子が発した光を所望の位置に照射するための走査部(図示しない)を有していてもよい。例えば、光源部10は、走査部として、半導体発光素子の姿勢を調整することで光を走査する(スキャンする)構造を有していてもよいし、その他の構造であってもよい。例えば、走査部は、光源制御部20によって制御される。つまり、光源部10は、対象物2に光を走査しながら照射してもよい。
 なお、光源部10から対象物2に照射される光は、例えば発光素子から出射されリフレクタなどで反射された光であってもよい。
 [1-3.光源制御部]
 光源制御部20は、光源部10を制御し、光源部10から対象物2に向けて光を照射させる制御装置である。光源制御部20は、発光素子の点灯及び消灯が所定の発光周期で繰り返されるように、発光素子を制御する。すなわち、光源制御部20は、光源部10を所定の周波数(例えば、1kHz)で明滅させる制御を行う。具体的には、光源制御部20は、所定の周波数のパルス信号を発光素子に出力することで、発光素子を所定の発光周期で点灯及び消灯させる。また、光源制御部20は、パルス信号を参照信号としてロックインアンプ50にも出力する。なお、パルス信号は、光源制御部20が光源部10の発光を制御する制御信号の一例である。また、以降では、光源部10を明滅させる所定の周波数を、発光周波数とも記載する。
 また、光源制御部20は、例えば、対象物2に向けて光を走査しながら照射させてもよい。光源制御部20は、例えば、走査部を制御し発光素子の姿勢を変更することで、発光素子からの光を走査する。
 光源制御部20は、駆動回路及びマイクロコンピュータで構成される。光源制御部20は、発光素子、走査部の制御プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどを有する。
 [1-4.受光部]
 受光部30は、光源部10から照射され対象物2で反射された光(以降、反射光とも記載する)を受光し、電気信号に変換する受光素子を有する。対象物2で反射され受光部30が受光する光の一例は、図3A及び図3Bにおいて反射光Rに示される。受光部30は、受光した波長帯の光を光電変換することで、当該光の受光量(すなわち、強度)に応じた電気信号を生成する。生成された電気信号は、信号増幅部40に出力される。受光部30は、例えば、フォトダイオードであるが、これに限定されない。例えば、受光部30は、フォトトランジスタ、又は、イメージセンサでもよい。なお、受光部30が信号増幅部40に出力する電気信号は、検出信号の一例である。
 また、以降の説明において、受光部30が有する受光素子は、光源部10から照射され対象物2で反射された第一の波長帯の光を受光するものとする。例えば、受光部30は、受光素子に対して反射光の入射側に配置されており、受光素子に入射する反射光の光路上に設けられているフィルタを有していてもよい。そして、当該フィルタは、第一の波長帯の光を透過し、かつ、それ以外の波長帯の光を吸収又は反射する。これにより、受光部30が有する受光素子は、当該フィルタを透過した第一の波長帯の光を受光できる。なお、第二の出力部120の受光部は、例えば第二の波長帯の光を透過し、かつそれ以外の波長帯の光を吸収又は反射するフィルタを有しており、当該受光部が有する受光素子は、当該フィルタを透過した第二の波長帯の光を受光する。
 また、受光部30は、反射光を受光素子に集光するための集光レンズを有していてもよい。レンズは、例えば、焦点が受光素子の受光面に位置するように固定されている。レンズは、例えば、衣類乾燥装置100の筐体に固定されている。レンズは、例えば、樹脂製の凸レンズであるが、これに限らない。
 なお、受光部30は、反射光に加えて、屋内環境に起因して発生するノイズとなる光も受光する。ノイズとは、例えば、照明光などの外乱光によるノイズである。そのため、信号増幅部40に出力される電気信号にも、ノイズとなる光の受光量に応じた成分が含まれる。
 受光部30が受光するノイズとなる光の強度は光源部10と対象物2との距離に依存しないが、受光部30が受光する反射光の強度は光源部10と対象物2との距離に依存して変化する。光源部10と対象物2との距離が大きくなるに従って、受信する反射光の信号強度は小さくなる。つまり、受光部30は、略一定の強度の光をノイズとして受光する。
 また、光源制御部20が光源部10を制御し、光を対象物2に走査しながら照射させる場合、受光部30は、走査に同期して対象物2で反射された光を受光する。つまり、受光部30は、光源部10からの光が照射された対象物2の位置ごとに、当該対象物2で反射された光を受光する。これにより、水分量検出装置1は、より広い領域での水分量を検出することができる。例えば、対象物2における複数の範囲又は複数の対象物2のそれぞれにおいて、水分量を検出することができる。なお、光源制御部20は、例えば発光素子の姿勢から、現在水分量を検出している対象物2の位置(例えば、衣類乾燥装置100からみた対象物2が位置する方向)を特定可能である。これにより、送風部103における送風範囲又は風向きなどの乾燥条件を変更可能である。水分量の検出については、後述する。
 [1-5.信号増幅部]
 信号増幅部40は、受光部30により出力された電気信号が入力され、当該電気信号を所定の増幅率で増幅したアンプ信号をロックインアンプ50に出力するアンプである。具体的には、信号増幅部40は、電気信号を増幅するオペアンプである。なお、本実施の形態では、信号増幅部40は、増幅率を変更可能に構成される。信号増幅部40の増幅率は、後述する制御部71により制御される。
 [1-6.ロックインアンプ]
 ロックインアンプ50は、信号増幅部40により出力されたアンプ信号が入力され、当該アンプ信号から所定の周波数(例えば、発光周波数)の信号を抽出した抽出信号をA/D変換器60に出力する回路である。図3Bに示すように、ロックインアンプ50は、バンドパスフィルタ51、ミキサ52、及び、第一のローパスフィルタ53を有する。
 バンドパスフィルタ51は、アンプ信号に含まれるノイズ成分を抑制するためのフィルタである。バンドパスフィルタ51を信号増幅部40とミキサ52との間に配置することで、バンドパスフィルタ51の通過帯域外のノイズ成分が抑制されたアンプ信号がミキサ52に入力される。バンドパスフィルタ51は、例えば、RLC回路又はオペアンプを用いた回路などにより実現される。
 ミキサ52は、バンドパスフィルタ51を通過したアンプ信号と、光源制御部20からミキサ52に出力されるパルス信号とから2つの信号の同期する信号成分を取り出す回路である。ミキサ52により、ノイズを含むアンプ信号からパルス信号と同期する信号成分、言い換えると同位相の信号成分を取り出すことができる。つまり、ミキサ52によりさらにアンプ信号に含まれるノイズを抑制することができる。
 第一のローパスフィルタ53は、ミキサ52により取り出された信号成分から交流成分を除去するためのフィルタである。第一のローパスフィルタ53は、例えば、RC回路又はオペアンプを用いた回路などにより実現される。
 上記のようなロックインアンプ50による処理は、いわゆるロックインアンプ処理である。これにより、信号増幅部40で増幅されたアンプ信号に含まれる外乱光などのノイズ成分を抑制することができる。つまり、ロックインアンプ50を設けることで、ノイズを含む電気信号から高S/N比(Signal-to-noise ratio)の信号を抽出することができる。また、A/D変換器60に信号が入力される前に、ノイズ成分を抑制することができるので、A/D変換器60に入力される信号がA/D変換器60のダイナミックレンジを超えてしまうことを抑制することができる。ロックインアンプ50は、受光した信号から特定の周波数を取り出す(例えば、光源部10から照射される光の点灯及び消灯の周波数成分のみを取り出す)狭帯域のバンドパスフィルタと類似した機能を有する。
 なお、第一のローパスフィルタ53の通過帯域は、固定された帯域である。例えば、第一のローパスフィルタ53のカットオフ周波数は、光源部10から照射される光の点灯及び消灯の周波数(例えば、1kHz)を中心周波数とする信号において、当該中心周波数と当該信号を通過させる帯域幅とに応じて適宜決定される。
 [1-7.A/D変換器]
 A/D変換器60は、ロックインアンプ50でロックインアンプ処理が施された抽出信号が入力され、当該抽出信号をA/D変換してデジタル信号を信号処理部70に出力する回路である。なお、信号処理部70に出力されるデジタル信号には、水分量検出装置1が備える各種回路に起因するノイズが含まれる。各種回路とは、例えば信号増幅部40、ロックインアンプ50及びA/D変換器60などである。また、ノイズとは、例えば1/fノイズなどである。
 [1-8.信号処理部]
 信号処理部70は、A/D変換器60で変換されたデジタル信号が入力され、当該デジタル信号に対して信号処理を行う処理部である。図3Bに示すように、信号処理部70は、制御部71と、第二のローパスフィルタ72(図中のLPF2)と、処理部73とを有する。つまり、水分量検出装置1は、A/D変換器60によりA/D変換されたデジタル信号において、さらにローパスフィルタによる通過帯域の制限が行われる構成となっている。第二のローパスフィルタ72は通過帯域を変更することが可能であり、当該通過帯域は制御部71によって制御される。
 制御部71は、デジタル信号が示す信号強度に応じて、第二のローパスフィルタ72の通過帯域を適宜変更する制御を行う。例えば、制御部71は、デジタル信号が示す信号強度が大きい程、第二のローパスフィルタ72の通過帯域を広くする制御を行う。また、制御部71は、デジタル信号が示す信号強度が小さい程、第二のローパスフィルタ72の通過帯域を狭くする制御を行う。制御部71が行う第二のローパスフィルタ72の通過帯域の制御は、第一の制御の一例である。制御部71が行う第一の制御の詳細は、後述する。
 さらに、制御部71は、デジタル信号が示す信号強度に応じて信号増幅部40の増幅率を変更する制御を行う。例えば、制御部71は、デジタル信号が示す信号強度が大きくなる程、信号増幅部40の増幅率を小さくし、デジタル信号が示す信号強度が小さくなる程、信号増幅部40の増幅率を大きくする制御を行う。制御部71が行う信号増幅部40の増幅率の制御は、第二の制御の一例である。制御部71が行う第二の制御の詳細は、後述する。
 なお、デジタル信号が示す信号強度とは、例えば、デジタル信号が示すピーク強度であってもよいし、デジタル信号が示す平均強度であってもよいし、デジタル信号が示すエネルギー量であってもよい。
 第二のローパスフィルタ72は、入力されたデジタル信号から所定帯域の周波数の信号を通過させるカットオフ周波数が変更可能なデジタルフィルタである。これにより、例えばデジタル信号に含まれるA/D変換器60等に起因するノイズなどを抑制することができる。
 第二のローパスフィルタ72は、制御部71によりデジタル信号が示す信号強度に応じて制御された通過帯域の周波数の信号を通過させるローパスフィルタの一例である。具体的には、制御部71により第二のローパスフィルタ72のカットオフ周波数の制御が行われる。また、第二のローパスフィルタ72の通過帯域とは、制御部71により制御されたカットオフ周波数以下の周波数帯域のことである。
 処理部73は、第二のローパスフィルタ72を通過したデジタル信号から、対象物2が含む成分を検出する処理装置である。具体的には、処理部73は、デジタル信号が示す信号強度に基づいて、対象物2が含む水分量を検出する。例えば、処理部73は、デジタル信号が示す信号強度に所定の定数を演算することで、デジタル信号を水分量に変換する。例えば、所定の定数とは、光源部10が発する、検知光をなす第一の波長帯の光及び参照光をなす第二の波長帯の光が示す信号強度、受光部30が有するフィルタ及び第二の出力部120の受光部が有するフィルタの透過率特性、受光部30が有する受光素子及び第二の出力部120の受光部が有する受光素子の受光特性などにより予め定められる定数である。また、演算では、加算、減算、乗算及び除算の中から少なくとも1つが行われる。
 信号処理部70が有する各構成要素は、マイクロコンピュータで構成される。信号処理部70は、デジタル信号に対する処理プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどを有する。不揮発性メモリが格納するデジタル信号に対する処理プログラムには、上記の所定の定数が含まれる。なお、所定の定数は、複数格納されていてもよい。
 上記のような水分量検出装置1は、光を出射する半導体発光素子を含み、対象物2に向けて発光周波数で明滅する光を照射する光源部10と、対象物2で反射された光を受光し、受光した光に応じた信号を生成する受光部30と、受光部30から出力される信号を増幅する信号増幅部40と、信号増幅部40から出力される信号から発光周波数の信号を抽出するロックインアンプ50と、ロックインアンプ50から出力される信号をA/D変換するA/D変換器60と、通過帯域が可変であり、A/D変換器60から出力される信号から通過帯域の周波数の信号を通過させる第二のローパスフィルタ72と、第二のローパスフィルタ72の通過帯域を制御する制御部71とを備える。そして、制御部71は、A/D変換器60から出力される信号が示す信号強度に応じて、第二のローパスフィルタ72の通過帯域を変更する。
 [2.水分量検出装置の動作]
 続いて、水分量検出装置1の動作について、図4~図6を参照しながら説明する。
 図4は、本実施の形態に係る水分量検出装置1における水分量検出の動作を示すフローチャートである。
 まず、光源制御部20は、光源部10を制御して対象物2に向けて光を照射させる。つまり、光源制御部20は、光源部10の発光を開始させる(S11)。具体的には、光源制御部20は、所定の周波数のパルス信号を発光素子に出力し、光を出射させる。
 そして、受光部30は、ステップS11で光源部10から照射され、対象物2で反射された反射光を受光する(S12)。受光部30は、反射光として、例えば光源部10から照射され対象物2で反射された光のうち、第一の波長帯の光を受光する。なお、受光部30は、反射光に加えて、屋内環境に起因して発生するノイズとなる光も受光する。受光部30は、受光した反射光及びノイズとなる光の受光量に応じた電気信号を生成する。生成された電気信号は、信号増幅部40に出力される。
 そして、信号増幅部40及びロックインアンプ50による電気信号(アナログ信号)の処理が行われる(S13)。具体的には、信号増幅部40により電気信号が所定の増幅率で増幅されたアンプ信号が生成され、ロックインアンプ50により当該アンプ信号から発光周波数の信号を抽出した抽出信号が生成される。生成された抽出信号は、A/D変換器60に出力される。
 A/D変換器60は、入力された抽出信号(アナログ信号)をデジタル信号に変換するA/D変換を行う(S14)。そして、A/D変換器60は、デジタル信号を信号処理部70に出力する。
 なお、ステップS12~S14までは、第一の出力部110及び第二の出力部120のそれぞれにおいて行われる。例えば、第一の出力部110及び第二の出力部120において、ステップS12~S14は並行して行われてもよい。
 信号処理部70は、入力されたデジタル信号に所定の信号処理を施す。制御部71は、デジタル信号が示す信号強度と予め定められた第一の基準値(第一の基準強度)とに応じて、第二のローパスフィルタ72の通過帯域を制御する。例えば、制御部71は、デジタル信号が示す信号強度が第一の基準値より大きい場合には(S15でYes)、第二のローパスフィルタ72の通過帯域を第一の通過帯域より通過帯域が広い第二の通過帯域に制御する(S16)。また、例えば、制御部71は、デジタル信号が示す信号強度が第一の基準値以下である場合には(S15でNo)、第二のローパスフィルタ72の通過帯域を第一の通過帯域に制御する(S17)。ステップS14~S17は、第一の制御の一例である。なお、第一の基準値は、例えば、予め信号処理部70が有する不揮発性メモリに格納されている。
 また、ステップS15~S17に示す処理は、第一の出力部110から入力されたデジタル信号及び第二の出力部120から入力されたデジタル信号のそれぞれに対して行われる。
 ここで、制御部71が行う第一の制御について、図5を参照しながら説明する。
 図5は、本実施の形態に係る制御部71が通過帯域を制御する一例を示す図である。具体的には、図5の(a)は、制御部71がステップS16で行う処理を示しており、図5の(b)は、制御部71がステップS17で行う処理を示している。なお、図5の(a)及び(b)に示す実線は、デジタル信号を示す。
 図5の(a)に示すように、制御部71は、ステップS15でYesであった場合、デジタル信号が示す信号強度が第一の基準値より大きいので、第二のローパスフィルタ72の通過帯域を第一の通過帯域よりも広い第二の通過帯域とする制御を行う。デジタル信号が示す信号強度が大きいので通過帯域を広げてもS/N比への影響が小さい。また、第二のローパスフィルタ72は、通過帯域が広い程、言い換えるとカットオフ周波数が高いほど、高い周波数までデジタル信号を通過させる。第二のローパスフィルタ72が移動平均法を採用した構成である場合、カットオフ周波数が高い程、移動平均の対象サンプル数を減らすことができる。つまり、カットオフ周波数が高いと第二のローパスフィルタ72における処理量を減らすことができるので、第二のローパスフィルタ72における処理を高速化することができる。よって、デジタル信号が示す信号強度が第一の基準値より大きい場合に第二のローパスフィルタ72の通過帯域を広げることで、水分量検出装置1は、ロックインアンプ50による高S/N比の信号を維持しながら、かつ信号処理部70における信号処理時間を短縮することができる。なお、第二のローパスフィルタ72は、移動平均法以外の方法を採用した構成でもよい。
 また、図5の(b)に示すように、制御部71は、ステップS15でNoであった場合、デジタル信号が示す信号強度が第一の基準値以下であるので、第二のローパスフィルタ72の通過帯域を第二の通過帯域より狭い第一の通過帯域とする。デジタル信号が示す信号強度が小さいので通過帯域を狭くすることで、第二のローパスフィルタ72を通過する信号に含まれるノイズ成分を抑制することができる。つまり、第二のローパスフィルタ72は、デジタル信号が示す信号強度が小さい場合であっても高S/N比の信号を抽出することができる。
 図4を再び参照して、処理部73は、ステップS16又はS17で通過帯域が制御された第二のローパスフィルタ72を通過したデジタル信号が示す信号強度に所定の定数を演算することで、対象物2に含まれる水分量の検出を行う(S18)。例えば、処理部73は、第一の出力部110から入力されたデジタル信号が示す信号強度と、第二の出力部120から入力されたデジタル信号が示す信号強度との比に所定の定数を演算して、水分量を検出する。そして、信号処理部70は、検出した水分量を乾燥制御部106に出力する。ステップS18が終了すると、ステップS12に戻り水分量を検出する処理が継続される。
 上記でも説明したように、光源制御部20は、光源部10(発光素子)を制御し所定の発光周期で点灯及び消灯させる。例えば、水分量検出装置1は、光源制御部20が光源部10を消灯させている間にステップS13~S18の処理を行ってもよい。また、第一の基準値は、第一の信号強度閾値の一例である。
 次に、制御部71による信号増幅部40の増幅率の制御について、図6を参照しながら説明する。
 図6は、本実施の形態に係る制御部71における増幅率の制御動作を示すフローチャートである。なお、図6では、制御部71以外が行う動作も含まれるが、ステップS21~S24は、図4に示すステップS11~S14と同様であり、説明を省略する。
 信号処理部70は、入力されたデジタル信号に所定の信号処理を施す。制御部71は、デジタル信号が示す信号強度と予め定められた第二の基準値(第二の基準強度)とに応じて、信号増幅部40の増幅率を制御する。例えば、制御部71は、デジタル信号が示す信号強度が第二の基準値より大きい場合には(S25でYes)、信号増幅部40の増幅率を第一の増幅率より増幅率が小さい第二の増幅率に制御する(S26)。つまり、制御部71は、デジタル信号が示す信号強度が第二の基準値より大きい場合、信号増幅部40の増幅率を下げる制御を行う。これにより、例えば光源部10と対象物2との距離が近く受光部30が受光する反射光の強度が大きい場合であっても、A/D変換器60に入力される信号がA/D変換器60のダイナミックレンジを超えることを抑制することができる。これにより、水分量検出装置1は、光源部10から対象物2までの距離が近い場合、つまり受光部30が受光する光の受光量が多い場合であっても、A/D変換器60のダイナミックレンジを超えることなく、水分量の検出が可能となる。なお、制御部71は、A/D変換器60に入力される信号がA/D変換器60のダイナミックレンジを超えないように信号増幅部40の増幅率を制御すればよい。
 また、制御部71は、デジタル信号が示す信号強度が第二の基準値以下である場合には(S25でNo)、信号増幅部40の増幅率を第一の増幅率に制御する(S27)。つまり、制御部71は、デジタル信号が示す信号強度が第二の基準値以下である場合、ステップS25でYesのときに比べ信号増幅部40の増幅率を高くする制御を行う。
 上記のステップS25~S27の処理は、制御部71が行う第二の制御の一例である。また、第二の基準値は、例えば、予め信号処理部70が有する不揮発性メモリに格納されている。
 なお、水分量検出装置1は、ステップS26又はS27が終了すると、ステップS22に戻り処理を継続する。上記でも説明したように、光源制御部20は、光源部10(発光素子)を制御し所定の発光周期で点灯及び消灯させる。例えば、水分量検出装置1は、光源制御部20が光源部10を消灯させている間にステップS23~S27の処理を行ってもよい。また、第二の基準値は、第二の信号強度閾値の一例である。
 [3.効果]
 本実施の形態に係る水分量検出装置1は、対象物2に向けて光を照射する半導体発光素子を含む光源部10と、光が対象物2で反射された反射光Rを受光し、検出信号を出力する受光部30と、検出信号が入力され、当該検出信号を所定の増幅率で増幅したアンプ信号を出力する信号増幅部40(アンプ)と、アンプ信号が入力され、当該アンプ信号から所定の周波数の信号を抽出した抽出信号を出力するロックインアンプ50と、抽出信号が入力され、当該抽出信号をA/D変換してデジタル信号を出力するA/D変換器60と、通過帯域が可変であり、デジタル信号が入力され、当該デジタル信号から通過帯域の周波数の信号を通過させる第二のローパスフィルタ72と、通過帯域を制御する制御部71とを備える。そして、制御部71は、デジタル信号が示す信号強度に応じて、通過帯域を変更する第一の制御を行う。
 これにより、第二のローパスフィルタ72の通過帯域をデジタル信号が示す信号強度に応じて変更することができる。例えば、制御部71が通過帯域を広げる制御を行うことで、水分量を検出する処理を行うときの処理速度を高速化することができる。よって、水分量検出装置1は、第二のローパスフィルタ72を備えていない水分量検出装置に比べ、水分量を検出する処理が高速化される。
 また、制御部71は、第一の制御として、デジタル信号が示す信号強度が大きい程、第二のローパスフィルタ72の通過帯域を広くする制御を行う。
 これにより、高S/N比を維持しつつ、かつ水分量を検出する処理を行うときの信号処理を高速化することができる。
 また、制御部71は、第一の制御として、デジタル信号が示す信号強度が第一の信号強度閾値以下である場合には通過帯域を第一の通過帯域に制御し、デジタル信号が示す信号強度が第一の信号強度閾値より大きい場合には通過帯域を第一の通過帯域より広い第二の通過帯域に制御する。
 これにより、デジタル信号が示す信号強度が第一の信号強度閾値以下である場合は、S/N比を向上させることができ、信号強度が第一の信号強度閾値より大きい場合は、信号処理部70の処理を高速化することができる。よって、さらに水分量検出装置1の処理性能が向上される。
 また、信号増幅部40は、増幅率が可変であり、制御部71は、さらにデジタル信号が示す信号強度に応じて信号増幅部40の増幅率を変更する第二の制御を行う。
 これにより、信号増幅部40の増幅率をデジタル信号が示す信号強度に応じて変更することができる。例えば、制御部71がデジタル信号が示す信号強度が大きくなるに従って増幅率を下げる制御を行った場合、A/D変換器60のダイナミックレンジを超える信号がA/D変換器60に入力されることを抑制することができる。
 また、制御部71は、第二の制御として、デジタル信号が示す信号強度が第二の信号強度閾値以下である場合には増幅率を第一の増幅率に制御し、デジタル信号が示す信号強度が第二の信号強度より大きい場合には増幅率を第一の増幅率より小さい第二の増幅率に制御する。
 これにより、水分量検出装置1のダイナミックレンジを広げることができる。
 また、光源部10は、光を走査しながら照射する。
 これにより、対象物2における複数の範囲、又は、複数の対象物2において水分量を検出することができる。よって、乾燥制御部106が乾燥条件を制御する場合、当該検出結果から水分量が多い位置を重点的に乾燥するなど、効率的に乾燥が行え得る。また、光を走査しながら対象物2における水分量の検出を行う場合、つまり連続して水分量の検出を行う場合に、上記に記載したような信号処理部70における処理の高速化は、より効果を奏する。
 また、半導体発光素子は、LED素子である。
 これにより、光源制御部20が制御する点灯及び消灯の発光周期に対応した点灯及び消灯が可能なLED素子を用いて水分量検出装置1を実現できる。
 (その他の実施の形態)
 以上、本発明に係る水分量検出装置1について、上記の実施の形態に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。
 例えば、上記実施の形態では、一例として水分量検出装置1が衣類乾燥装置100に搭載されている例について説明したが、水分量検出装置1は衣類乾燥装置100以外の電気機器に搭載されていてもよい。例えば、屋内環境で使用される電気機器に使用されてもよい。例えば、浴室乾燥装置など送風して対象物(例えば、浴室の床など)を乾かす用途に用いられる装置に使用されてもよい。
 また、上記実施の形態では、光源部10がLED素子を有する例について説明したが、光源制御部20が制御する発光周期で点灯及び消灯が可能であれば、光源部10はLED素子以外の光源を有していてもよい。例えば、光源部10は、半導体レーザ素子又は有機EL素子などを有していてもよい。
 また、上記実施の形態では、光源制御部20は発光素子を点灯及び消灯させる発光周期、及び、発光素子の姿勢を制御する例について制御したが、光源制御部20による制御はこれに限定されない。例えば、光源制御部20は、発光素子に供給される電流量を制御することで、発光素子が発する光の強度を制御してもよい。
 また、上記実施の形態では、光源部10は、水による吸収が所定値よりも大きな第一の波長帯を含む検知光と、水による吸収が所定値以下である第二の波長帯を含む参照光とを出射する例について説明したが、これに限定されない。光源部10は、少なくとも検知光を出射する光源モジュールであればよい。なお、この場合、水分量検出装置1は、第一の出力部110及び第二の出力部120のうち、第一の出力部110のみを備える構成であってもよい。
 また、上記実施の形態では、水分量検出装置1が衣類乾燥装置100に一体的に搭載されている例を説明したが、水分量検出装置は専用の機器であり、衣類乾燥装置100に後付けで取付可能な構成であってもよい。
 また、上記実施の形態では、水分量検出装置1は対象物2で反射した光を受光し、水分量を検出している例について説明したが、対象物2を透過した光を受光し、水分量を検出してもよい。
 また、上記実施の形態では、制御部71は、第一の制御において1つの基準値(例えば、第一の基準値)を用いて第二のローパスフィルタ72の通過帯域を制御していたが、基準値は1つに限定されない。制御部71は、複数の基準値を用いて通過帯域を制御してもよい。例えば、制御部71は、第一の基準値と、第一の基準値より信号強度が高い第三の基準値とを用いて通過帯域を制御してもよい。この場合、制御部71は、デジタル信号が示す信号強度が第一の基準値以下、第一の基準値より大きく第三の基準値以下、及び、第三の基準値より大きい、の順に、第二のローパスフィルタ72の通過帯域を広げる制御を行ってもよい。
 また、上記実施の形態では、制御部71は、第一の基準値を用いて第一の制御を行う、つまり段階的に通過帯域を制御する例を説明したが、これに限定されない。例えば、制御部71は、デジタル信号が示す信号強度に応じて、一対一に第二のローパスフィルタ72の通過帯域を制御してもよい。具体的には、信号処理部70の不揮発性メモリに信号強度と通過帯域との関係を示す情報(例えば、関数など)などが格納されており、制御部71は当該情報とデジタル信号が示す信号強度とから通過帯域をリニアに制御してもよい。第一の制御には、制御部71が通過帯域をリニアに制御することも含まれる。
 また、上記実施の形態では、制御部71は、第一の制御と第二の制御とを行う例について説明したが、制御部71は少なくとも第一の制御を行えばよい。つまり、制御部71は、第二の制御を行わなくてもよい。なお、制御部71が第二の制御を行わない場合、信号増幅部40の増幅率は、固定値であってもよい。
 また、上記実施の形態における第一の基準値と第二の基準値とは、同一の値であってもよいし、異なる値であってもよい。
 また、上記実施の形態では、処理部73は、デジタル信号が示す信号強度に所定の定数を演算することで水分量を検出する例について説明したが、水分量の検出はこれに限定されない。例えば、信号処理部70の不揮発性メモリには、デジタル信号が示す信号強度に対応する値と水分量とが対応付けられたテーブルが格納されており、処理部73は、当該テーブルを不揮発性メモリから読み出して水分量を検出してもよい。デジタル信号が示す信号強度に対応する値とは、例えば、第一の出力部110から入力されたデジタル信号が示す信号強度と、第二の出力部120から入力されたデジタル信号が示す信号強度とから、算出される値である。例えば、処理部73は、第一の出力部110から入力されたデジタル信号が示す信号強度と、第二の出力部120から入力されたデジタル信号が示す信号強度との差分又は比と、当該差分又は当該比と水分量とが対応付けられたテーブルとから、水分量を検出してもよい。
 また、上記実施の形態において説明された水分量検出装置1の動作における複数の処理の順序は一例である。複数の処理の順序は、変更されてもよいし、複数の処理は、並行して実行されてもよい。また、複数の処理のうち一部の処理は、省略されてもよい。例えば、図4に示すステップS15~S17の処理と、図6に示すステップS25~S27の処理とが並行して行われてもよい。
 また、上記実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、プロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。プロセッサは、半導体集積回路(IC)、又はLSI(Large scale integration)を含む一つ又は複数の電子回路で構成される。複数の電子回路は、一つのチップに集積されていてもよいし、複数のチップに設けられてもよい。複数のチップは一つの装置に集約されていてもよし、複数の装置に備えられていてもよい。
 また、本発明の全般的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム又はコンピュータが読み取り可能なCD-ROM、光ディスクなどの非一時的記録媒体などで実現されてもよい。プログラムは、記録媒体に予め記憶されていてもよいし、インターネット等を含む広域通信網を介して記録媒体に供給されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 1  水分量検出装置
 2  対象物
 10  光源部
 30  受光部
 40  信号増幅部(アンプ)
 50  ロックインアンプ
 60  A/D変換器
 71  制御部
 72  第二のローパスフィルタ(ローパスフィルタ)

Claims (7)

  1.  光を出射する半導体発光素子を含み、対象物に向けて所定の周波数で明滅する前記光を照射する光源部と、
     前記対象物で反射された前記光を受光し、検出信号を出力する受光部と、
     前記検出信号が入力され、当該検出信号を所定の増幅率で増幅したアンプ信号を出力するアンプと、
     前記アンプ信号が入力され、当該アンプ信号から前記所定の周波数の信号を抽出した抽出信号を出力するロックインアンプと、
     前記抽出信号が入力され、当該抽出信号をA/D変換してデジタル信号を出力するA/D変換器と、
     通過帯域が可変であり、前記デジタル信号が入力され、当該デジタル信号から前記通過帯域の周波数の信号を通過させるローパスフィルタと、
     前記通過帯域を制御する制御部とを備え、
     前記制御部は、前記デジタル信号が示す信号強度に応じて、前記通過帯域を変更する第一の制御を行う
     水分量検出装置。
  2.  前記制御部は、前記第一の制御として、前記デジタル信号が示す信号強度が大きい程、前記通過帯域を広くする制御を行う
     請求項1に記載の水分量検出装置。
  3.  前記制御部は、前記第一の制御として、前記デジタル信号が示す信号強度が第一の信号強度閾値以下である場合には前記通過帯域を第一の通過帯域に制御し、前記デジタル信号が示す信号強度が前記第一の信号強度閾値より大きい場合には前記通過帯域を前記第一の通過帯域より広い第二の通過帯域に制御する
     請求項2に記載の水分量検出装置。
  4.  前記アンプは、増幅率が可変であり、
     前記制御部は、さらに前記デジタル信号が示す信号強度に応じて前記増幅率を変更する第二の制御を行う
     請求項1~3のいずれか1項に記載の水分量検出装置。
  5.  前記制御部は、前記第二の制御として、前記デジタル信号が示す信号強度が第二の信号強度閾値以下である場合には前記増幅率を第一の増幅率に制御し、前記デジタル信号が示す信号強度が前記第二の信号強度より大きい場合には前記増幅率を前記第一の増幅率より小さい第二の増幅率に制御する
     請求項4に記載の水分量検出装置。
  6.  前記光源部は、前記光を走査しながら照射する
     請求項1~5のいずれか1項に記載の水分量検出装置。
  7.  前記半導体発光素子は、LED素子である
     請求項1~6のいずれか1項に記載の水分量検出装置。
PCT/JP2018/027224 2017-08-30 2018-07-20 水分量検出装置 WO2019044253A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/641,449 US10948406B2 (en) 2017-08-30 2018-07-20 Moisture amount detection device
EP18850152.2A EP3677900B1 (en) 2017-08-30 2018-07-20 Moisture amount detection device
JP2019539056A JP6788858B2 (ja) 2017-08-30 2018-07-20 水分量検出装置
CN201880054785.7A CN111051860A (zh) 2017-08-30 2018-07-20 含水量检测装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-165483 2017-08-30
JP2017165483 2017-08-30

Publications (1)

Publication Number Publication Date
WO2019044253A1 true WO2019044253A1 (ja) 2019-03-07

Family

ID=65526342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027224 WO2019044253A1 (ja) 2017-08-30 2018-07-20 水分量検出装置

Country Status (5)

Country Link
US (1) US10948406B2 (ja)
EP (1) EP3677900B1 (ja)
JP (1) JP6788858B2 (ja)
CN (1) CN111051860A (ja)
WO (1) WO2019044253A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11474037B2 (en) * 2020-06-01 2022-10-18 Waymo Llc Retro-reflectometer for measuring retro-reflectivity of objects in an outdoor environment comprising a lock-in amplifier coupled to an optical modulator and an optical detector

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314984A (ja) * 1988-06-16 1989-12-20 Mitsubishi Electric Corp レーダ装置
JPH03111738A (ja) * 1989-09-27 1991-05-13 Shimadzu Corp 光吸収分析装置
JPH05118984A (ja) 1991-10-29 1993-05-14 Yokogawa Electric Corp 赤外線水分計
JPH0792253A (ja) * 1993-09-27 1995-04-07 Japan Radio Co Ltd レーダ装置
JPH08145716A (ja) * 1994-11-26 1996-06-07 Horiba Ltd 分析計の出力信号処理方法
JPH10176989A (ja) * 1996-12-19 1998-06-30 Japan Tobacco Inc 赤外線水分測定方法及び赤外線水分測定装置
JPH11319394A (ja) * 1998-03-19 1999-11-24 Toto Ltd 浴室衣類乾燥装置
JP2012002757A (ja) * 2010-06-18 2012-01-05 Honda Motor Co Ltd 赤外線吸収式センサ
US20140125967A1 (en) * 2012-11-02 2014-05-08 Shimadzu Corporation Gas analyzer

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09154830A (ja) * 1995-12-11 1997-06-17 Hitachi Medical Corp 核磁気共鳴を用いた検査方法およびその装置
US6422467B2 (en) * 1995-12-18 2002-07-23 Metrologic Instruments, Inc. Reading system a variable pass-band
US6831742B1 (en) * 2000-10-23 2004-12-14 Applied Materials, Inc Monitoring substrate processing using reflected radiation
US7291856B2 (en) * 2005-04-28 2007-11-06 Honeywell International Inc. Sensor and methods for measuring select components in moving sheet products
DE102005027315B4 (de) * 2005-06-13 2010-01-14 Sirah Laser- Und Plasmatechnik Gmbh Optimierung der Modenselektion in einem Laserresonator
CN100483155C (zh) 2006-02-21 2009-04-29 中国科学院测量与地球物理研究所 便携式重力与环境参数图形显示仪
CN101567674A (zh) * 2008-04-23 2009-10-28 中国科学院微电子研究所 一种可调带通滤波器
US20100024526A1 (en) * 2008-07-28 2010-02-04 Sensors For Medicine & Science, Inc. Systems and methods for optical measurement of analyte concentration
JP5163508B2 (ja) 2009-01-15 2013-03-13 株式会社島津製作所 ガス濃度測定装置
JP5429494B2 (ja) * 2010-07-20 2014-02-26 横河電機株式会社 多チャンネル測光測定装置
CN102386947B (zh) * 2010-08-30 2014-03-05 瑞昱半导体股份有限公司 通讯装置及其方法
JP2012177612A (ja) 2011-02-25 2012-09-13 Mitsubishi Heavy Ind Ltd 信号処理装置およびレーザ計測装置
JP5867691B2 (ja) 2011-10-13 2016-02-24 横河電機株式会社 レーザガス分析装置
US8896835B2 (en) 2011-12-27 2014-11-25 Horiba, Ltd. Gas measurement apparatus and the setting method of width of wavelength modulation in gas measurement apparatus
JP5933972B2 (ja) 2011-12-27 2016-06-15 株式会社堀場製作所 ガス計測装置およびガス計測装置における波長変調幅の設定方法。
CN103528989B (zh) * 2013-10-30 2018-10-02 合肥汇众知识产权管理有限公司 近红外水分测量仪
US9322716B2 (en) 2014-01-07 2016-04-26 Panasonic Intellectual Property Corporation Of America Component measuring apparatus and moving body
WO2017066155A1 (en) 2015-10-15 2017-04-20 Pixil Velocity, Inc. System utilizing a narrow collimated beam of optical radiation to detect the presence of a hydrocarbon gas
CN106501213A (zh) 2016-11-11 2017-03-15 中州大学 液体无损探测识别电子系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314984A (ja) * 1988-06-16 1989-12-20 Mitsubishi Electric Corp レーダ装置
JPH03111738A (ja) * 1989-09-27 1991-05-13 Shimadzu Corp 光吸収分析装置
JPH05118984A (ja) 1991-10-29 1993-05-14 Yokogawa Electric Corp 赤外線水分計
JPH0792253A (ja) * 1993-09-27 1995-04-07 Japan Radio Co Ltd レーダ装置
JPH08145716A (ja) * 1994-11-26 1996-06-07 Horiba Ltd 分析計の出力信号処理方法
JPH10176989A (ja) * 1996-12-19 1998-06-30 Japan Tobacco Inc 赤外線水分測定方法及び赤外線水分測定装置
JPH11319394A (ja) * 1998-03-19 1999-11-24 Toto Ltd 浴室衣類乾燥装置
JP2012002757A (ja) * 2010-06-18 2012-01-05 Honda Motor Co Ltd 赤外線吸収式センサ
US20140125967A1 (en) * 2012-11-02 2014-05-08 Shimadzu Corporation Gas analyzer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3677900A4

Also Published As

Publication number Publication date
CN111051860A (zh) 2020-04-21
EP3677900B1 (en) 2022-09-07
EP3677900A4 (en) 2020-09-16
JPWO2019044253A1 (ja) 2020-04-23
EP3677900A1 (en) 2020-07-08
US20200182782A1 (en) 2020-06-11
JP6788858B2 (ja) 2020-11-25
US10948406B2 (en) 2021-03-16

Similar Documents

Publication Publication Date Title
JP6735478B2 (ja) 水分量センサ及び衣類乾燥装置
TWI425182B (zh) 距離測量系統及其方法
TWI782087B (zh) 送風裝置
WO2019044253A1 (ja) 水分量検出装置
CN111758021B (zh) 含水量检测装置
JP2019045186A (ja) 水分量検出装置
JP5573209B2 (ja) 画像処理装置、画像処理方法、プログラム、及び電子機器
JP7432811B2 (ja) 送風装置
JP2018141632A (ja) 水分量センサ
JP6712792B2 (ja) 乾燥度センサ
JP7432812B2 (ja) 送風装置
JP5985909B2 (ja) ガスセンサ
JP7110852B2 (ja) 粒子センサおよび電子機器
JP6884050B2 (ja) 光電スイッチ
JP2020044521A (ja) 除湿機
JP5902859B1 (ja) 光学的情報読取装置の制御回路
JP2020118432A (ja) 除湿機
JP7511123B2 (ja) 送風装置
KR101775937B1 (ko) 개선된 ir 리시버 구조
WO2020255797A1 (ja) 感度調整プレート、及び、センサ装置の製造方法
US20230283374A1 (en) A receiving system for high speed and large coverage optical wireless communication
JP2020137593A (ja) 送風機
JP2000187001A (ja) 散乱光式煙感知器
JP2003296846A (ja) 光電式煙感知器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539056

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018850152

Country of ref document: EP

Effective date: 20200330