WO2019044203A1 - 弾性波装置、高周波フロントエンド回路及び通信装置 - Google Patents

弾性波装置、高周波フロントエンド回路及び通信装置 Download PDF

Info

Publication number
WO2019044203A1
WO2019044203A1 PCT/JP2018/026354 JP2018026354W WO2019044203A1 WO 2019044203 A1 WO2019044203 A1 WO 2019044203A1 JP 2018026354 W JP2018026354 W JP 2018026354W WO 2019044203 A1 WO2019044203 A1 WO 2019044203A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic wave
laminated film
film
support substrate
wave device
Prior art date
Application number
PCT/JP2018/026354
Other languages
English (en)
French (fr)
Inventor
山本 浩司
賢俊 中川
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to KR1020207004130A priority Critical patent/KR102292154B1/ko
Priority to CN201880054861.4A priority patent/CN111066244B/zh
Priority to JP2019539036A priority patent/JP6791390B2/ja
Publication of WO2019044203A1 publication Critical patent/WO2019044203A1/ja
Priority to US16/801,360 priority patent/US11588468B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1092Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a cover cap mounted on an element forming part of the surface acoustic wave [SAW] device on the side of the IDT's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02984Protection measures against damaging
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02866Means for compensation or elimination of undesirable effects of bulk wave excitation and reflections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02897Means for compensation or elimination of undesirable effects of strain or mechanical damage, e.g. strain due to bending influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02992Details of bus bars, contact pads or other electrical connections for finger electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/058Holders; Supports for surface acoustic wave devices
    • H03H9/059Holders; Supports for surface acoustic wave devices consisting of mounting pads or bumps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1085Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a non-uniform sealing mass covering the non-active sides of the BAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/111Indexing scheme relating to amplifiers the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz, e.g. switched or not switched, simultaneously or not
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/171A filter circuit coupled to the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7209Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched from a first band to a second band

Definitions

  • the present invention relates to an elastic wave device, a high frequency front end circuit, and a communication device.
  • Patent Document 1 discloses an example of an elastic wave device.
  • the elastic wave device is provided on the support substrate, the support substrate, the laminated film including the piezoelectric thin film, the IDT electrode provided on the laminated film, and the support substrate and the laminated film.
  • an external connection terminal electrically connected to the wiring electrode and the wiring electrode provided on the insulating layer and provided on the insulating film and electrically connected to the IDT electrode.
  • the external connection terminal is provided in the region where the laminated film does not exist in plan view, the stress in bonding the external connection terminal is not directly applied to the laminated film, and the laminated film including the piezoelectric thin film It is believed that cracking and chipping are unlikely to occur.
  • An object of the present invention is to provide an elastic wave device, a high frequency front end circuit, and a communication device in which cracking and chipping of the laminated film are less likely to occur and the supporting substrate and the laminated film are less likely to be separated.
  • the elastic wave device is provided on a support substrate and the support substrate, and is provided inside of at least a part of the outer edge of the support substrate in plan view, and a piezoelectric thin film
  • a connection electrode provided on the insulating layer and electrically connected to the connection electrode electrically connected to the IDT electrode and the connection electrode, and provided directly or indirectly on the connection electrode
  • an external connection terminal provided on the support substrate and outside the region where the laminated film is provided in plan view, and the laminated film side of the support substrate Of the main surface of the Having a recess in a position of an outer edge of the laminated film case, the recess is covered with the insulating layer.
  • the linear expansion coefficient of the laminated film and the linear expansion coefficient of the support substrate are different.
  • the recess is formed entirely on the support substrate and outside the region where the laminated film is provided in plan view. In this case, the support substrate and the laminated film are more difficult to peel off.
  • the recess is provided to surround the laminated film.
  • the support substrate and the laminated film are more difficult to peel off.
  • the supporting substrate is made of a material having a higher sound velocity of bulk wave propagating than the acoustic velocity of the elastic wave propagating the piezoelectric thin film
  • the laminated film is The piezoelectric thin film is provided on the low sound velocity film, including a low sound velocity film in which the sound velocity of the bulk wave propagating is lower than the sound velocity of the elastic wave propagating in the piezoelectric thin film. In this case, the energy of the elastic wave can be effectively confined.
  • the laminated film includes a high sound velocity film having a high sound velocity of a bulk wave propagating than the acoustic velocity of an elastic wave propagating the piezoelectric thin film;
  • the low sound velocity film is provided on the high sound velocity film, and the piezoelectric thin film is provided on the low sound velocity film. It is done. In this case, the energy of the elastic wave can be effectively confined.
  • the laminated film is a high acoustic impedance film having a relatively high acoustic impedance, and a low acoustic impedance film having a low acoustic impedance as compared to the high acoustic impedance film.
  • the piezoelectric thin film is provided on the acoustic reflection layer. In this case, the energy of the elastic wave can be effectively confined.
  • the elastic wave device directly or indirectly on the support substrate and outside the region where the laminated film is provided, in plan view.
  • a supporting member provided with an opening surrounding the IDT electrode, a cover member provided on the supporting member to cover the opening, and connected to the connection electrode And an under bump metal layer penetrating the support member and the cover member, and the external connection terminal is indirectly provided on the connection electrode via the under bump metal layer.
  • the IDT electrode is located in a hollow space surrounded by the support substrate, the support member, and the cover member.
  • the external connection terminal is a bump provided directly on the connection electrode.
  • the high frequency front end circuit of the present invention comprises an elastic wave device configured according to the present invention and a power amplifier.
  • the communication device of the present invention comprises a high frequency front end circuit configured according to the present invention and an RF signal processing circuit.
  • an elastic wave device it is possible to provide an elastic wave device, a high frequency front end circuit, and a communication device in which cracking and chipping of the laminated film are unlikely to occur and the supporting substrate and the laminated film are hardly peeled.
  • FIG. 1 is a schematic cross-sectional view of an elastic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic plan cross-sectional view of the elastic wave device according to the first embodiment of the present invention.
  • FIG. 3 is a schematic enlarged plan view showing the vicinity of the elastic wave resonator according to the first embodiment of the present invention.
  • FIG. 4 is an enlarged view of FIG. 1 showing the vicinity of the removal region of the support substrate in the first embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of an elastic wave device according to a modification of the first embodiment of the present invention.
  • FIG. 6 is a schematic enlarged cross-sectional view of an elastic wave device according to a second embodiment of the present invention.
  • FIG. 7 is a schematic enlarged cross-sectional view of an elastic wave device according to a third embodiment of the present invention.
  • FIG. 8 is a schematic enlarged cross-sectional view of an elastic wave device according to a fourth embodiment of the present invention.
  • FIG. 9 is a schematic enlarged cross-sectional view of an elastic wave device according to a first modified example of the fourth embodiment of the present invention.
  • FIG. 10 is a schematic enlarged cross-sectional view of an elastic wave device according to a second modified example of the fourth embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view of an elastic wave device according to a fifth embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view of an elastic wave device mounting structure according to a sixth embodiment of the present invention.
  • FIG. 13 is a block diagram of a communication device having a high frequency front end circuit.
  • FIG. 14 is a scanning type photomicrograph showing a part of an elastic wave device according to a third embodiment of the present invention
  • FIG. 1 is a schematic cross-sectional view of an elastic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic plan cross-sectional view of the elastic wave device according to the first embodiment.
  • FIG. 1 is a cross-sectional view corresponding to a portion along the line II in FIG. The elastic wave resonator in FIG. 1 and FIG. 2 is shown by the schematic which added two diagonals to the rectangle.
  • the elastic wave device 1 has a support substrate 2.
  • the support substrate 2 is made of, for example, an appropriate material such as glass or Si.
  • the laminated film 3 including the piezoelectric thin film 6 is provided on the support substrate 2. Specifically, the laminated film 3 is provided inside of at least a part of the outer edge of the support substrate 2 in plan view.
  • the term “plan view” refers to viewing the elastic wave device 1 in the thickness direction of the support substrate 2 from the main surface side of the support substrate 2 on which the laminated film 3 is provided.
  • the laminated film 3 includes a high sound velocity film 4 and a low sound velocity film 5 in addition to the piezoelectric thin film 6. More specifically, the high sound velocity film 4 is provided on the support substrate 2, the low sound velocity film 5 is provided on the high sound velocity film 4, and the piezoelectric thin film 6 is provided on the low sound velocity film 5. There is.
  • the piezoelectric thin film 6 is made of a piezoelectric single crystal such as LiNbO 3 or LiTaO 3 .
  • the piezoelectric thin film 6 may be made of appropriate piezoelectric ceramics.
  • the high sound velocity film 4 is a film in which the sound velocity of the propagating bulk wave is higher than the sound velocity of the elastic wave propagating in the piezoelectric thin film 6.
  • the high sound velocity film 4 is made of, for example, a material containing aluminum nitride, aluminum oxide, silicon carbide, silicon oxynitride, silicon, a DLC film, or a diamond as a main component.
  • the material of the high sound velocity film 4 may be a material having a relatively high sound velocity.
  • the low sound velocity film 5 is a film in which the sound velocity of the propagating bulk wave is lower than the sound velocity of the elastic wave propagating in the piezoelectric thin film 6.
  • the low sound velocity film 5 is made of, for example, a material containing glass, silicon oxynitride, tantalum oxide or a compound obtained by adding fluorine or carbon or boron to silicon oxide as a main component.
  • the material of the low sound velocity film 5 may be a material having a relatively low sound velocity.
  • the laminated film 3 may include films other than the above-described films.
  • an elastic wave resonator 13A On the piezoelectric thin film 6, an elastic wave resonator 13A, an elastic wave resonator 13B, and an elastic wave resonator 13C are configured.
  • FIG. 3 is a schematic enlarged plan view showing the vicinity of the elastic wave resonator in the first embodiment. The wiring around the elastic wave resonator is omitted.
  • An IDT electrode 14 is provided on the piezoelectric thin film 6. By applying an alternating voltage to the IDT electrode 14, an elastic wave is excited. A reflector 15A and a reflector 15B are provided on both sides of the IDT electrode 14 in the elastic wave propagation direction.
  • the elastic wave resonator 13A is configured.
  • the elastic wave resonator 13B and the elastic wave resonator 13C shown in FIG. 1 are similarly configured.
  • the elastic wave resonator 13A, the elastic wave resonator 13B, and the elastic wave resonator 13C are electrically connected to one another by a plurality of wiring electrodes 16.
  • the number of elastic wave resonators in the elastic wave device 1 and the configuration of connection are not particularly limited.
  • the IDT electrode 14 may be provided indirectly on the piezoelectric thin film 6.
  • the laminated film 3 may have a silicon oxide film on the piezoelectric thin film 6.
  • the IDT electrode 14 is provided directly on the silicon oxide film. That is, the IDT electrode 14 may be provided on the laminated film 3.
  • the support substrate 2 has a removal region R1 in which the laminated film 3 is partially removed in the region outside the region in which the IDT electrode is provided.
  • FIG. 4 is an enlarged view of FIG. 1 showing the vicinity of the removal region of the support substrate in the first embodiment.
  • the elastic wave device 1 of the present embodiment has an insulating layer 19 provided in the removal region R1 of the support substrate 2 and provided on the piezoelectric thin film 6.
  • the insulating layer 19 has a first portion 19 a provided on the piezoelectric thin film 6 and a second portion 19 b located in the removal region R 1.
  • the insulating layer 19 is not particularly limited, it is made of, for example, an organic insulator such as polyimide, epoxy resin or acrylic resin, or an inorganic insulator such as silicon oxide.
  • the support substrate 2 has an outer edge contact portion X located at the outer edge of the portion in contact with the laminated film 3.
  • a recess 12 is provided in the removal region R1 of the support substrate 2 so as to be continuous with the outer edge contact portion X.
  • the recess 12 includes a connecting portion 2a that connects the outer edge contact portion X and the portion where the removal region R1 is lowered.
  • the portion where the removal area R1 connected to the connection portion 2a is low is the bottom of the recess 12 in the present embodiment.
  • the recess 12 includes a portion where the removal region R1 is lowered at a portion directly connected to the outer edge contact portion X.
  • the recess 12 includes the entire connection portion 2 a.
  • the connection portion 2 a is one of the surfaces in the recess 12.
  • the concave portion 12 can be provided, for example, by forming a resist layer on the laminated film 3 and forming a resist layer on the portion of the removal region R1 where the concave portion 12 is not provided, and then etching the support substrate 2.
  • the recess 12 is provided so as to surround the laminated film 3.
  • the connection portion 2a is continuous with the entire outer edge contact portion X.
  • the recess 12 may not surround the laminated film 3, and the connection portion 2 a may be connected to at least a part of the outer edge contact portion X.
  • the recess 12 is inclined with respect to the thickness direction of the support substrate 2 and has an inner surface 12 b connected to the connection portion 2 a.
  • the insulating layer 19 extends to the outer edge contact portion X and extends into the recess 12.
  • the structure of the recessed part 12 is not limited above,
  • the recessed part 12 may have surfaces other than the connection part 2a and the inner surface 12b.
  • the bottom portion of the recess 12 is a portion where the connection portion 2 a and the inner surface 12 b are connected in the elastic wave device 1.
  • the part in which surfaces other than the connection part 2a and the inner surface 12b were connected may be a bottom part.
  • the height of the portion other than the portion where the concave portion 12 of the removal region R1 of the support substrate 2 is provided is the same as the height of the portion in contact with the laminated film 3.
  • the height is a position in a direction parallel to the thickness direction of the support substrate 2.
  • the supporting substrate 2 side is lower than the piezoelectric thin film 6 side.
  • the elastic wave device 1 has a connection electrode 17 connected to the elastic wave resonator 13A shown in FIG. As shown in FIG. 4, the connection electrode 17 extends from above the piezoelectric thin film 6 onto the first portion 19 a of the insulating layer 19 and further onto the second portion 19 b.
  • connection electrode 17 reaches the removal region R1 of the support substrate 2.
  • the connection electrode 17 is indirectly provided on the support substrate 2 via the insulating layer 19.
  • the connection electrode 17 may be provided directly on the support substrate 2.
  • the support substrate 2 is made of a material having a low electric resistance, it is preferable that the support substrate 2 be provided on the insulating layer 19. As a result, the electrical characteristics of the elastic wave device 1 do not easily deteriorate.
  • a support member 7 is provided in the removal area R ⁇ b> 1 of the support substrate 2.
  • the support member 7 has an opening 7a surrounding the elastic wave resonator 13A, the elastic wave resonator 13B, and the elastic wave resonator 13C.
  • the support member 7 is provided so as to cover a part of the connection electrode 17.
  • the support member 7 is made of an appropriate resin.
  • a cover member 8 is provided on the support member 7 so as to cover the opening 7 a.
  • An under bump metal layer 9 is provided to penetrate the support member 7 and the cover member 8.
  • the surface on the piezoelectric thin film 6 side of the under bump metal layer 9 is connected to the connection electrode 17.
  • Bumps 10 as external connection terminals are provided on the under bump metal layer 9.
  • the bump 10 is indirectly provided on the connection electrode 17 via the under bump metal layer 9.
  • the bumps 10 are provided on the support substrate 2 in a plan view and outside the region where the laminated film 3 is provided.
  • the external connection terminal in the present invention is not limited to a bump, and may be a member for electrically connecting the elastic wave device 1 to the outside.
  • the external connection terminal may include an under bump metal layer in addition to the bumps.
  • An elastic wave resonator 13A, an elastic wave resonator 13B and an elastic wave resonator 13C are located in a hollow space surrounded by the support substrate 2, the support member 7 and the cover member 8.
  • the elastic wave resonator 13A, the elastic wave resonator 13B, and the elastic wave resonator 13C are electrically connected to the outside through the connection electrode 17, the under bump metal layer 9, and the bumps 10.
  • the elastic wave device 1 has a WLP (Wafer Level Package) structure.
  • the elastic wave device 1 is not limited to the above, and may be, for example, an elastic wave device included in a CSP (Chip Size Package) structure.
  • the features of the present embodiment are provided on the support substrate 2 and the support substrate 2 and provided on the inner side of at least a part of the outer edge of the support substrate 2 in plan view, and the piezoelectric thin film 6 Insulating layer provided on the laminated film 3 from the supporting substrate 2 and provided on the laminated substrate 3, the IDT electrode 14 provided on the laminated film 3, the supporting substrate 2 and the laminated film 3 19 and a connection electrode 17 provided on the insulating layer 19 and electrically connected to the IDT electrode, and electrically connected to the connection electrode 17 directly or indirectly on the connection electrode 17 And an external connection terminal provided on the support substrate 2 and outside the region where the laminated film 3 is provided in plan view. And the main surface of the support substrate 2 on the laminated film 3 side is Has a recess 12 in the position of the outer edge of the laminated film 3 when facing is that the recess 12 is covered with the insulating layer 19.
  • the main surface on the laminated film 3 side of the support substrate 2 has the recess 12 at the position of the outer edge of the laminated film 3 in plan view, and the recess 12 is covered by the insulating layer 19, for example Even if thermal stress is applied when the linear expansion coefficients of the support substrate 2 and the laminated film 3 are different, the insulating layer 19 covers the vicinity of the outer edge contact portion X in the recess 12 where the thermal stress is most applied. Therefore, the thermal stress is relaxed in the vicinity of the outer edge contact portion X to which the thermal stress is most applied, and the support substrate 2 and the laminated film 3 are hardly peeled off.
  • the bumps 10 as external connection terminals are provided in a region where the laminated film 3 does not exist in plan view, the stress when bonding the bumps 10 is not directly applied to the laminated film 3, and the piezoelectric thin film 6 is not It is possible to prevent the occurrence of cracking or chipping of the laminated film 3 including the above.
  • the main surface on the laminated film 3 side of the support substrate 2 has a recess 12 at the position of the outer edge of the laminated film 3 in plan view, and the recess 12 is covered by the insulating layer 19.
  • the following is the configuration 1) and 2).
  • the concave portion 12 is provided on the support substrate 2 so as to include the connection portion 2a connected to the outer edge contact portion X.
  • the insulating layer 19 reaches the outer edge contact portion X and the connection portion 2a.
  • the elastic wave device 1 has the laminated film 3 and the support substrate 2 includes the removal region R1.
  • the support substrate 2 and the laminated film 3 are not easily peeled off even when stress is applied. Furthermore, since the insulating layer 19 extends on the piezoelectric thin film 6, displacement of the laminated film 3 in the direction away from the support substrate 2 can be suppressed. Therefore, peeling between the support substrate 2 and the laminated film 3 can be effectively suppressed.
  • the recess 12 is preferably provided so as to surround the laminated film 3 as in the present embodiment.
  • the entire outer edge contact portion X can be covered with the insulating layer 19, and the support substrate 2 and the laminated film 3 are more difficult to peel off.
  • the insulating layer 19 preferably extends to the bottom of the recess 12. Thereby, the area in which the insulating layer 19 contacts the connection portion 2a can be increased, and the adhesion between the support substrate 2 and the insulating layer 19 can be enhanced. Therefore, the support substrate 2 and the laminated film 3 are more difficult to peel off.
  • the end face of the first portion 19a of the insulating layer 19 including the portion in contact with the piezoelectric thin film 6 is inclined with respect to the thickness direction.
  • the vicinity of the portion from the second portion 19 b to the first portion 19 a of the insulating layer 19 is also inclined.
  • the connection electrode 17 is also inclined in the vicinity of the portion from above the piezoelectric thin film 6 to above the insulating layer 19, and extends from above the second portion 19b of the insulating layer 19 to above the first portion 19a. It is inclined in the vicinity.
  • a portion from on the second portion 19 b of the insulating layer 19 to on the first portion 19 a is referred to as a third portion.
  • the thickness of the portion provided on the third portion of the connection electrode 17 is the same as that of the portions provided on the first portion 19 a and the second portion 19 b of the connection electrode 17. It tends to be thinner than the thickness.
  • the third portion since the third portion is inclined, the thickness of the portion provided in the third portion of the connection electrode 17 is thicker than in the case where the third portion is not inclined. can do. Therefore, disconnection of the connection electrode 17 is unlikely to occur.
  • the insulating layer 19 and the connection electrode 17 may not necessarily be inclined as described above.
  • the inner surface 12 b of the recess 12 is preferably inclined so as to approach the connection portion 2 a with respect to the thickness direction of the support substrate 2.
  • the direction of shear stress applied between the removal region R1 and the insulating layer 19 in the support substrate 2 is not parallel to the direction in which the inner surface 12b extends. Therefore, by providing the concave portion 12 having the inner surface 12 b, the influence of the shear stress on the portion where the support substrate 2 and the laminated film 3 are in contact can be alleviated. Therefore, the support substrate 2 and the laminated film 3 are more difficult to peel off.
  • the inner surface 12b is more preferably directly connected to the connection portion 2a as in the present embodiment.
  • the volume of the recess 12 can be reduced, and the inclination of the surface of the insulating layer 19 on the connection electrode 17 side is unlikely to be a steep angle. Therefore, the disconnection of the connection electrode 17 can be suppressed, and the support substrate 2 and the laminated film 3 do not easily peel off.
  • connection portion 2 a of the recess 12 extends in parallel with the thickness direction of the support substrate 2.
  • the connection portion 2a may extend from the outer edge contact portion X side in the direction in which the removal region R1 is lowered, and may be inclined with respect to the thickness direction of the support substrate 2.
  • the connection portion 2a and the inner surface 12b may include curved surface portions.
  • the shape of the cross section of the recess 12 shown in FIG. 4 is a triangle in this embodiment.
  • the shape of the cross section of the recessed part 12 is not limited above, For example, a rectangle, a trapezoid, or fan shape etc. may be sufficient.
  • the support substrate 2 is made of, for example, a relatively high sound velocity material such as Si
  • the high sound velocity film 4 may not be provided. Also in this case, the same effect as described above can be obtained.
  • FIG. 5 is a schematic cross-sectional view of an elastic wave device according to a modification of the first embodiment of the present invention.
  • the support substrate 2 is made of a material similar to the above-described high sound velocity film, in which the sound velocity of the bulk wave propagating is higher than the sound velocity of the elastic wave propagating the piezoelectric thin film 6.
  • the piezoelectric thin film 6 is provided on the low sound velocity film 5.
  • the laminated film 73 does not include a high sound velocity film. Also in this case, the energy of the elastic wave can be effectively confined, and the support substrate 2 and the laminated film 73 do not easily peel off.
  • FIG. 6 is a schematic enlarged cross-sectional view of an elastic wave device according to a second embodiment. 6 shows a cross section corresponding to the cross section shown in FIG. The same applies to each schematically enlarged cross-sectional view described later.
  • the present embodiment differs from the first embodiment in that the entire removal region R2 is lowered, and the connection portion 22a is continuous with the entire outer edge contact portion X.
  • the elastic wave device of the present embodiment has the same configuration as the elastic wave device 1 of the first embodiment except for the above point.
  • connection portion 22 a in the present embodiment is a step portion between the portion in contact with the laminated film 3 of the support substrate 22 and the removal region R2.
  • the insulating layer 19 extends to the outer edge contact portion X and the connection portion 22a. Therefore, also in the present embodiment, since the outer edge contact portion X is covered by the insulating layer 19, the support substrate 22 and the laminated film 3 do not easily peel off.
  • the concave portion of the support substrate includes the lowered portion in the case where the support substrate is provided with the step portion and the portion of the support substrate is lowered. Even when the lower portion of the support substrate extends from the step portion of the support substrate to the outer edge of the support substrate, the lower portion is a recess. In the second embodiment shown in FIG. 6, the recess is formed entirely on the support substrate 22 in the plan view and outside the region where the laminated film 3 is provided.
  • the support substrate 2 may be etched.
  • FIG. 7 is a schematic enlarged cross-sectional view of an elastic wave device according to a third embodiment.
  • the present embodiment differs from the first embodiment in that the support substrate 32 has a recess 12 and the entire removal area R3 is lowered as in the second embodiment.
  • the elastic wave device of the present embodiment has the same configuration as the elastic wave device 1 of the first embodiment except for the above point.
  • the recess 12 is provided so as to include a part of the connection portion 32 a.
  • the connection portion 32 a has a portion corresponding to the surface in the recess 12 and a portion corresponding to the above-described step portion similar to the second embodiment.
  • the insulating layer 19 extends to the outer edge contact portion X and the connection portion 32 a. More specifically, the insulating layer 19 extends to a portion corresponding to the stepped portion of the connection portion 32 a and a portion corresponding to the surface in the recess 12. Accordingly, the outer edge contact portion X is covered with the insulating layer 19 and the adhesion between the support substrate 32 and the insulating layer 19 can be further enhanced, so the support substrate 2 and the laminated film 3 are further peeled off. hard.
  • the direction in which the portion corresponding to the stepped portion in the connecting portion 32 a extends may be different from the direction in which the portion corresponding to the surface in the recess 12 extends.
  • the configuration of the third embodiment is shown by the scanning type photomicrograph of FIG. It can be seen that the insulating layer extends to the surface in the step portion and the recessed portion and extends onto the piezoelectric thin film.
  • FIG. 8 is a schematic enlarged cross-sectional view of an elastic wave device according to a fourth embodiment.
  • the present embodiment differs from the first embodiment in that the laminated film 43 includes the acoustic reflection layer 43A.
  • the elastic wave device of the present embodiment has the same configuration as the elastic wave device 1 of the first embodiment except for the above point.
  • the acoustic reflection layer 43A has a plurality of high acoustic impedance films with relatively high acoustic impedance, and a plurality of low acoustic impedance films with low acoustic impedance as compared to the high acoustic impedance film. More specifically, as shown in FIG. 8, a high acoustic impedance film 44a and a high acoustic impedance film 44b, and a low acoustic impedance film 45a and a low acoustic impedance film 45b are alternately stacked.
  • the number of layers of the high acoustic impedance film and the low acoustic impedance film is not particularly limited.
  • the piezoelectric thin film 6 is provided on the acoustic reflection layer 43A. Thereby, the energy of the elastic wave can be effectively confined.
  • the outer edge contact portion X is covered by the insulating layer 19, the support substrate 2 and the laminated film 43 do not easily peel off.
  • the form of the support substrate 2 and the connection portion 2a is not limited to the same as that of the first embodiment. Also in the case of the first modified example and the second modified example described below, it is difficult for the support substrate and the laminated film 43 to peel off.
  • FIG. 9 is a schematic enlarged cross-sectional view of an elastic wave device according to a first modification of the fourth embodiment.
  • the entire removal region R2 is lowered, and the connecting portion 22a is continuous with the entire outer edge contact portion X.
  • FIG. 10 is a schematic enlarged cross-sectional view of an elastic wave device according to a second modification of the fourth embodiment.
  • the support substrate 32 of the present modification has the recess 12 and the entire removal area R3 is low.
  • FIG. 11 is a schematic cross-sectional view of an elastic wave device according to a fifth embodiment.
  • FIG. 11 shows a cross section corresponding to the cross section shown in FIG. The same applies to FIG. 12 described later.
  • the elastic wave device 51 of the present embodiment differs from that of the first embodiment in that the bumps 10 are provided directly on the connection electrode 17. Also in the present embodiment, as in the first embodiment, the support substrate 2 and the laminated film 3 do not easily peel off.
  • FIG. 12 is a schematic cross-sectional view of an elastic wave device mounting structure according to a sixth embodiment.
  • the elastic wave device mounting structure 60 has a mounting substrate 62.
  • the elastic wave device 51 of the fifth embodiment is mounted on the mounting substrate 62. More specifically, a plurality of connection terminals 68 are provided on the mounting substrate 62. The bumps 10 of the elastic wave device 51 are joined to the connection terminals 68, respectively.
  • a sealing resin 69 is provided on the mounting substrate 62 so as to cover the elastic wave device 51.
  • the elastic wave device 51 is mounted on the mounting substrate 62.
  • the elastic wave device mounting structure 60 has a CSP structure.
  • the elastic wave device 51 in the elastic wave device mounting structure 60 has the configuration of the fifth embodiment, the supporting substrate 2 and the laminated film 3 are not easily peeled off also in the present embodiment.
  • the elastic wave device of each of the above embodiments can be used as a duplexer of a high frequency front end circuit or the like. An example of this is described below.
  • FIG. 13 is a block diagram of a communication device and a high frequency front end circuit. Note that, in the same drawing, each component connected to the high frequency front end circuit 230, for example, the antenna element 202 and the RF signal processing circuit (RFIC) 203 are also illustrated.
  • the high frequency front end circuit 230 and the RF signal processing circuit 203 constitute a communication device 240.
  • the communication device 240 may include a power supply, a CPU, and a display.
  • the high frequency front end circuit 230 includes a switch 225, duplexers 201A and 201B, filters 231 and 232, low noise amplifier circuits 214 and 224, and power amplifier circuits 234a, 234b, 244a and 244b.
  • the high frequency front end circuit 230 and the communication device 240 in FIG. 13 are an example of the high frequency front end circuit and the communication device, and the present invention is not limited to this configuration.
  • the duplexer 201A has filters 211 and 212.
  • the duplexer 201B includes filters 221 and 222.
  • the duplexers 201A and 201B are connected to the antenna element 202 via the switch 225.
  • the elastic wave device may be a duplexer 201A or 201B, or may be a filter 211, 212, 221 or 222.
  • the elastic wave device is also applied to a multiplexer including three or more filters, for example, a triplexer in which antenna terminals of three filters are shared, a hexaplexer in which antenna terminals of six filters are shared. Can.
  • the elastic wave device includes an elastic wave resonator, a filter, a duplexer, and a multiplexer including three or more filters.
  • the multiplexer is not limited to the configuration including both the transmission filter and the reception filter, and may be configured to include only the transmission filter or only the reception filter.
  • the switch 225 connects the antenna element 202 and a signal path corresponding to a predetermined band in accordance with a control signal from a control unit (not shown), and is formed of, for example, a single pole double throw (SPDT) type switch .
  • SPDT single pole double throw
  • the number of signal paths connected to the antenna element 202 is not limited to one, and may be plural. That is, the high frequency front end circuit 230 may support carrier aggregation.
  • the low noise amplifier circuit 214 is a reception amplifier circuit that amplifies a high frequency signal (here, a high frequency received signal) that has passed through the antenna element 202, the switch 225, and the duplexer 201A, and outputs the amplified signal to the RF signal processing circuit 203.
  • the low noise amplifier circuit 224 is a reception amplifier circuit that amplifies a high frequency signal (here, a high frequency received signal) that has passed through the antenna element 202, the switch 225, and the duplexer 201B, and outputs the amplified signal to the RF signal processing circuit 203.
  • the power amplifier circuits 234 a and 234 b are transmission amplifier circuits that amplify a high frequency signal (here, a high frequency transmission signal) output from the RF signal processing circuit 203 and output the amplified high frequency signal to the antenna element 202 via the duplexer 201 A and the switch 225.
  • the power amplifier circuits 244 a and 244 b are transmission amplifier circuits that amplify a high frequency signal (here, a high frequency transmission signal) output from the RF signal processing circuit 203 and output the amplified high frequency signal to the antenna element 202 via the duplexer 201 B and the switch 225. .
  • the RF signal processing circuit 203 performs signal processing on the high frequency reception signal input from the antenna element 202 via the reception signal path by down conversion or the like, and outputs the reception signal generated by the signal processing. Further, the RF signal processing circuit 203 performs signal processing of the input transmission signal by up conversion or the like, and outputs a high frequency transmission signal generated by the signal processing to the power amplifier circuits 234a, 234b, 244a, 244b.
  • the RF signal processing circuit 203 is, for example, an RFIC.
  • the communication device may include a BB (baseband) IC. In this case, the BBIC processes the received signal processed by the RFIC. Also, the BBIC processes the transmission signal and outputs it to the RFIC.
  • the reception signal processed by the BBIC or the transmission signal before the signal processing by the BBIC is, for example, an image signal or an audio signal.
  • the high-frequency front end circuit 230 may include a duplexer according to a modification of the duplexers 201A and 201B instead of the duplexers 201A and 201B.
  • the filters 231 and 232 in the communication device 240 are connected between the RF signal processing circuit 203 and the switch 225 without passing through the low noise amplifier circuits 214 and 224 and the power amplifier circuits 234a, 234b, 244a and 244b.
  • the filters 231 and 232 are also connected to the antenna element 202 via the switch 225 in the same manner as the duplexers 201A and 201B.
  • the elastic wave device includes the elastic wave resonator, the filter, the duplexer, the multiplexer including three or more filters, and the like. It is difficult for the supporting substrate and the laminated film including the piezoelectric thin film to be separated, and cracking and chipping of the laminated film are less likely to occur.
  • the elastic wave device, the high frequency front end circuit, and the communication device according to the embodiments of the present invention have been described above by using the embodiments and the modifications thereof, but the present invention relates to any component in the embodiments and the modifications Another embodiment realized by combining the above, a variation obtained by applying various modifications to those skilled in the art without departing from the spirit of the present invention with respect to the above embodiment, a high frequency front end circuit according to the present invention
  • the present invention also includes various devices incorporating a communication device.
  • the present invention can be widely used in communication devices such as cellular phones as elastic wave resonators, filters, duplexers, multiplexers applicable to multiband systems, front end circuits, and communication devices.
  • Low acoustic impedance film 51 ... Elastic wave device 60 . Elastic wave device Mounting structure 62 ... mounting substrate 68 ... connection terminal 69 ... sealing resin 73 ... laminated film 201A, 201B ... duplexer 202 ... antenna element 203 ... RF signal processing circuit 211, 21 ... Filter 214 ... Low noise amplifier circuit 221, 222 ... Filter 224 ... Low noise amplifier circuit 225 ... Switch 230 ... High frequency front end circuit 231, 232 ... Filter 234a, 234b ... Power amplifier circuit 240 ... Communication device 244a, 244b ... Power amplifier circuit R1 ⁇ R3 ... Removal area X ... Outer edge contact area

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

積層膜の割れや欠けが生じ難く、支持基板と積層膜とが剥離し難い、弾性波装置、高周波フロントエンド回路及び通信装置を提供する。 弾性波装置1は、支持基板2と、支持基板2上に設けられており、平面視した場合に支持基板2の外縁の少なくとも一部よりも内側に設けられており、かつ、圧電薄膜6を含む積層膜3と、積層膜3上に設けられているIDT電極16と、支持基板2上及び積層膜3上に設けられており、支持基板2上から積層膜3上に至っている絶縁層19と、絶縁層19上に設けられており、IDT電極16と電気的に接続されている接続電極17と、接続電極17と電気的に接続されており、接続電極17上に直接的にまたは間接的に設けられており、かつ、平面視した場合に支持基板2上であって積層膜3が設けられている領域の外側に設けられている、外部接続端子とを備え、支持基板2における積層膜3側の主面は、平面視した場合に積層膜3の外縁の位置に凹部12を有し、凹部12は、絶縁層19によって覆われている。

Description

弾性波装置、高周波フロントエンド回路及び通信装置
 本発明は、弾性波装置、高周波フロントエンド回路及び通信装置に関する。
 従来、弾性波装置は、携帯電話機のフィルタなどに広く用いられている。下記の特許文献1には、弾性波装置の一例が開示されている。この弾性波装置は、支持基板と、支持基板上に設けられており、圧電薄膜を含む積層膜と、積層膜上に設けられたIDT電極と、支持基板上及び積層膜上に設けられており、支持基板上から積層膜上に至っている絶縁層と、絶縁層上に設けられておりIDT電極と電気的に接続されている配線電極と、配線電極と電気的に接続されている外部接続端子とを有する。そして、外部接続端子は、平面視した場合に積層膜が存在しない領域に設けられているため、外部接続端子を接合する際の応力が、積層膜に直接加わらず、圧電薄膜を含む積層膜の割れや欠けが生じ難いとされている。
国際公開第2016/208428号
 特許文献1に記載の弾性波装置においては、積層膜及び支持基板の熱膨張係数は異なるため、弾性波装置に熱が加えられた際などには、積層膜と支持基板との間に応力が付加されることとなる。特に、積層膜の外縁と支持基板とが接触している部分において応力が集中する傾向がある。そのため、積層膜に割れや欠けが生じ易く、あるいは積層膜が支持基板から剥離し易かった。
 本発明の目的は、積層膜の割れや欠けが生じ難く、支持基板と積層膜とが剥離し難い、弾性波装置、高周波フロントエンド回路及び通信装置を提供することにある。
 本発明に係る弾性波装置は、支持基板と、前記支持基板上に設けられており、平面視した場合に前記支持基板の外縁の少なくとも一部よりも内側に設けられており、かつ、圧電薄膜を含む積層膜と、前記積層膜上に設けられているIDT電極と、前記支持基板上及び前記積層膜上に設けられており、前記支持基板上から前記積層膜上に至っている絶縁層と、前記絶縁層上に設けられており、前記IDT電極と電気的に接続されている接続電極と、前記接続電極と電気的に接続されており、前記接続電極上に直接的にまたは間接的に設けられており、かつ、平面視した場合に前記支持基板上であって前記積層膜が設けられている領域の外側に設けられている、外部接続端子とを備え、前記支持基板における前記積層膜側の主面は、平面視した場合に前記積層膜の外縁の位置に凹部を有し、前記凹部は、前記絶縁層によって覆われている。
 本発明に係る弾性波装置のある特定の局面では、前記積層膜の線膨脹係数と、前記支持基板の線膨張係数とは異なる。
 本発明に係る弾性波装置の他の特定の局面では、前記凹部が、平面視した場合に前記支持基板上であって前記積層膜が設けられている領域の外側の全体に形成されている。この場合には、支持基板と積層膜とがより一層剥離し難い。
 本発明に係る弾性波装置の別の特定の局面では、前記凹部が前記積層膜を囲むように設けられている。この場合には、支持基板と積層膜とがより一層剥離し難い。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記支持基板が、前記圧電薄膜を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高い材料からなり、前記積層膜が、前記圧電薄膜を伝搬する弾性波の音速よりも伝搬するバルク波の音速が低い低音速膜を含み、前記低音速膜上に前記圧電薄膜が設けられている。この場合には、弾性波のエネルギーを効果的に閉じ込めることができる。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記積層膜が、前記圧電薄膜を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高い高音速膜と、前記圧電薄膜を伝搬する弾性波の音速よりも伝搬するバルク波の音速が低い低音速膜とを含み、前記高音速膜上に前記低音速膜が設けられており、前記低音速膜上に前記圧電薄膜が設けられている。この場合には、弾性波のエネルギーを効果的に閉じ込めることができる。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記積層膜が、音響インピーダンスが相対的に高い高音響インピーダンス膜と、前記高音響インピーダンス膜に比べて音響インピーダンスが低い低音響インピーダンス膜とを有する音響反射層を含み、前記音響反射層上に前記圧電薄膜が設けられている。この場合には、弾性波のエネルギーを効果的に閉じ込めることができる。
 本発明に係る弾性波装置のさらに別の特定の局面では、平面視した場合に、前記支持基板上であって前記積層膜が設けられている領域の外側の領域に直接的にまたは間接的に設けられており、前記IDT電極を囲んでいる開口部を有する支持部材と、前記支持部材上に、前記開口部を覆うように設けられているカバー部材と、前記接続電極に接続されるように、前記支持部材及び前記カバー部材を貫通しているアンダーバンプメタル層とがさらに備えられており、前記外部接続端子が、前記接続電極上に前記アンダーバンプメタル層を介して間接的に設けられているバンプであり、前記支持基板、前記支持部材及び前記カバー部材により囲まれた中空空間内に、前記IDT電極が位置している。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記外部接続端子が、前記接続電極上に直接的に設けられているバンプである。
 本発明の高周波フロントエンド回路は、本発明に従い構成された弾性波装置と、パワーアンプとを備える。
 本発明の通信装置は、本発明に従い構成された高周波フロントエンド回路と、RF信号処理回路とを備える。
 本発明によれば、積層膜の割れや欠けが生じ難く、支持基板と積層膜とが剥離し難い、弾性波装置、高周波フロントエンド回路及び通信装置を提供することができる。
図1は、本発明の第1の実施形態に係る弾性波装置の略図的断面図である。 図2は、本発明の第1の実施形態に係る弾性波装置の略図的平面断面図である。 図3は、本発明の第1の実施形態における弾性波共振子付近を示す模式的拡大平面図である。 図4は、本発明の第1の実施形態における支持基板の除去領域付近を示す、図1の拡大図である。 図5は、本発明の第1の実施形態の変形例に係る弾性波装置の略図的断面図である。 図6は、本発明の第2の実施形態に係る弾性波装置の模式的拡大断面図である。 図7は、本発明の第3の実施形態に係る弾性波装置の模式的拡大断面図である。 図8は、本発明の第4の実施形態に係る弾性波装置の模式的拡大断面図である。 図9は、本発明の第4の実施形態の第1の変形例に係る弾性波装置の模式的拡大断面図である。 図10は、本発明の第4の実施形態の第2の変形例に係る弾性波装置の模式的拡大断面図である。 図11は、本発明の第5の実施形態に係る弾性波装置の略図的断面図である。 図12は、本発明の第6の実施形態に係る弾性波装置実装構造体の略図的断面図である。 図13は、高周波フロントエンド回路を有する通信装置の構成図である。 図14は、本発明の第3の実施形態に係る弾性波装置の一部を示す走査型顕微鏡写真である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性波装置の略図的断面図である。図2は、第1の実施形態に係る弾性波装置の略図的平面断面図である。なお、図1は、図2中のI-I線に沿う部分に相当する断面図である。図1及び図2における弾性波共振子を矩形に2本の対角線を加えた略図により示す。
 図1及び図2に示すように、弾性波装置1は支持基板2を有する。支持基板2は、例えば、ガラスやSiなどの適宜の材料からなる。
 支持基板2上には、圧電薄膜6を含む積層膜3が設けられている。具体的には、積層膜3は、平面視した場合に支持基板2の外縁の少なくとも一部よりも内側に設けられている。なお、本明細書において平面視とは、支持基板2の積層膜3が設けられている主面側から、弾性波装置1を支持基板2の厚み方向に見ることをいう。図1に示すように、積層膜3は、圧電薄膜6の他に、高音速膜4及び低音速膜5を有する。より具体的には、支持基板2上に高音速膜4が設けられており、高音速膜4上に低音速膜5が設けられており、低音速膜5上に圧電薄膜6が設けられている。
 本実施形態では、圧電薄膜6は、LiNbOやLiTaOなどの圧電単結晶からなる。なお、圧電薄膜6は、適宜の圧電セラミックスからなっていてもよい。
 高音速膜4は、圧電薄膜6を伝搬する弾性波の音速よりも、伝搬するバルク波の音速が高い膜である。高音速膜4は、例えば、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、酸窒化ケイ素、ケイ素、DLC膜またはダイヤモンドを主成分とする材料などからなる。なお、高音速膜4の材料は、相対的に高音速な材料であればよい。
 低音速膜5は、圧電薄膜6を伝搬する弾性波の音速よりも、伝搬するバルク波の音速が低い膜である。低音速膜5は、例えば、ガラス、酸窒化ケイ素、酸化タンタルまたは酸化ケイ素にフッ素、炭素やホウ素を加えた化合物を主成分とする材料などからなる。なお、低音速膜5の材料は、相対的に低音速な材料であればよい。
 高音速膜4、低音速膜5及び圧電薄膜6が積層された積層膜3を有するため、弾性波装置1においては、弾性波のエネルギーを効果的に閉じ込めることができる。なお、低音速膜5は必ずしも設けられていなくともよい。積層膜3は、上記各膜以外の膜を含んでいてもよい。
 圧電薄膜6上においては、弾性波共振子13A、弾性波共振子13B及び弾性波共振子13Cが構成されている。
 図3は、第1の実施形態における弾性波共振子付近を示す模式的拡大平面図である。なお、弾性波共振子の周囲の配線は省略している。
 圧電薄膜6上には、IDT電極14が設けられている。IDT電極14に交流電圧を印加することにより、弾性波が励振される。IDT電極14の弾性波伝搬方向両側には、反射器15A及び反射器15Bが設けられている。これにより、弾性波共振子13Aが構成されている。図1に示す弾性波共振子13B及び弾性波共振子13Cも同様に構成されている。弾性波共振子13A、弾性波共振子13B及び弾性波共振子13Cは、複数の配線電極16により互いに電気的に接続されている。もっとも、弾性波装置1おける弾性波共振子の個数や接続の構成は特に限定されない。
 なお、IDT電極14は、圧電薄膜6上に間接的に設けられていてもよい。例えば、積層膜3は、圧電薄膜6上に酸化ケイ素膜を有していてもよい。この場合には、IDT電極14は酸化ケイ素膜上に直接的に設けられることになる。つまり、IDT電極14は、積層膜3上に設けられていてもよい。
 ここで、平面視において、支持基板2は、IDT電極が設けられている領域の外側の領域において、積層膜3が部分的に除去されている除去領域R1を有する。
 図4は、第1の実施形態における支持基板の除去領域付近を示す、図1の拡大図である。
 本実施形態の弾性波装置1は、支持基板2の除去領域R1に設けられており、かつ圧電薄膜6上に至るように設けられている絶縁層19を有する。絶縁層19は、圧電薄膜6上に設けられている第1の部分19a及び除去領域R1に位置している第2の部分19bを有する。絶縁層19は、特に限定されないが、例えば、ポリイミド、エポキシ樹脂、アクリル樹脂などの有機絶縁体や酸化ケイ素などの無機絶縁体からなる。
 ここで、支持基板2は、積層膜3に接触している部分の外縁に位置する外縁接触部Xを有する。外縁接触部Xに連なるように、支持基板2の除去領域R1に凹部12が設けられている。凹部12は、外縁接触部Xと除去領域R1が低くなっている部分とを接続している接続部2aを含む。接続部2aが接続された上記除去領域R1が低くなっている部分とは、本実施形態においては、凹部12の底部である。このように、凹部12は、除去領域R1が、外縁接触部Xに直接連なっている部分において低くなっている部分を含む。弾性波装置1では、凹部12は接続部2aの全体を含む。接続部2aは凹部12内の面のうちの1つである。
 凹部12は、例えば、積層膜3上にレジスト層を形成し、除去領域R1の凹部12を設けない部分にレジスト層を形成した後に、支持基板2をエッチングすることにより設けることができる。
 図2に示すように、凹部12は、積層膜3を囲むように設けられている。これにより、接続部2aは外縁接触部Xの全体に連なっている。なお、凹部12は積層膜3を囲んでいなくともよく、接続部2aは外縁接触部Xの少なくとも一部に連なっていればよい。
 図4に戻り、凹部12は、支持基板2の厚み方向に対して傾斜しており、接続部2aに接続されている内面12bを有する。絶縁層19は外縁接触部Xに至っており、かつ凹部12内に至っている。なお、凹部12の構成は上記に限定されず、例えば、凹部12は接続部2a及び内面12b以外の面を有していてもよい。凹部12の底部は、弾性波装置1においては、接続部2aと内面12bとが接続された部分である。なお、例えば、接続部2a以外の面と内面12bとが接続された部分が底部であってもよい。
 本実施形態においては、支持基板2の除去領域R1の凹部12が設けられている部分以外の高さは、積層膜3と接している部分の高さと同じである。なお、本明細書において高さとは、支持基板2の厚み方向に平行な方向における位置である。圧電薄膜6側よりも支持基板2側の方が低い。
 弾性波装置1は、図1に示す弾性波共振子13Aに接続されている接続電極17を有する。図4に示すように、接続電極17は、圧電薄膜6上から、絶縁層19の第1の部分19a上に至り、さらに第2の部分19b上に至っている。
 支持基板2の除去領域R1に接続電極17が至っている。接続電極17は、絶縁層19を介して、支持基板2上に間接的に設けられている。なお、接続電極17は、支持基板2上に直接的に設けられていてもよい。もっとも、支持基板2が、電気抵抗が低い材料からなる場合には、絶縁層19上に設けられていることが好ましい。それによって、弾性波装置1の電気的特性が劣化し難い。
 図1に示すように、支持基板2の除去領域R1には、支持部材7が設けられている。支持部材7は、弾性波共振子13A、弾性波共振子13B及び弾性波共振子13Cを囲んでいる開口部7aを有する。支持部材7は、接続電極17の一部を覆うように設けられている。支持部材7は適宜の樹脂からなる。
 支持部材7上には、開口部7aを覆うようにカバー部材8が設けられている。支持部材7及びカバー部材8を貫通するように、アンダーバンプメタル層9が設けられている。アンダーバンプメタル層9の圧電薄膜6側の面は、接続電極17に接続されている。アンダーバンプメタル層9上には、外部接続端子としてのバンプ10が設けられている。本実施形態では、バンプ10は、接続電極17上にアンダーバンプメタル層9を介して間接的に設けられている。バンプ10は、平面視した場合に支持基板2上であって積層膜3が設けられている領域の外側に設けられている。なお、本発明における外部接続端子は、バンプには限定されず、弾性波装置1を外部に電気的に接続する部材であればよい。例えば、外部接続端子はバンプに加えてアンダーバンプメタル層を含んでいてもよい。
 支持基板2、支持部材7及びカバー部材8により囲まれた中空空間内に、弾性波共振子13A、弾性波共振子13B及び弾性波共振子13Cが位置している。弾性波共振子13A、弾性波共振子13B及び弾性波共振子13Cは、接続電極17、アンダーバンプメタル層9及びバンプ10を介して外部に電気的に接続される。
 このように、弾性波装置1はWLP(Wafer Level Package)構造である。なお、弾性波装置1は上記に限定されず、例えば、CSP(Chip Size Package)構造に含まれる弾性波装置などであってもよい。
 本実施形態の特徴は、支持基板2と、支持基板2上に設けられており、平面視した場合に支持基板2の外縁の少なくとも一部よりも内側に設けられており、かつ、圧電薄膜6を含む積層膜3と、積層膜3上に設けられているIDT電極14と、支持基板2上及び積層膜3上に設けられており、支持基板2上から積層膜3上に至っている絶縁層19と、絶縁層19上に設けられており、IDT電極と電気的に接続されている接続電極17と、接続電極17と電気的に接続されており、接続電極17上に直接的にまたは間接的に設けられており、かつ、平面視した場合に、支持基板2上であって積層膜3が設けられている領域の外側に設けられている外部接続端子と、を備えた弾性波装置1であって、支持基板2における積層膜3側の主面は、平面視した場合に積層膜3の外縁の位置に凹部12を有し、凹部12が絶縁層19によって覆われていることにある。
 これによって、支持基板2における積層膜3側の主面は、平面視した場合に積層膜3の外縁の位置に凹部12を有し、凹部12が絶縁層19によって覆われているため、例えば、支持基板2と積層膜3の線膨張係数が異なっている場合に熱応力が加えられたとしても、凹部12の中にあり最も熱応力が加えられる外縁接触部X付近が絶縁層19によって覆われているため、最も熱応力がかかる外縁接触部X付近において熱応力が緩和され、支持基板2と積層膜3とが剥離し難い。
 また、外部接続端子としてのバンプ10は、平面視した場合に積層膜3が存在しない領域に設けられているため、バンプ10を接合する際の応力が積層膜3に直接加わらず、圧電薄膜6を含む積層膜3の割れや欠けを生じ難くすることを可能にしている。
 なお、支持基板2における積層膜3側の主面は、平面視した場合に積層膜3の外縁の位置に凹部12を有し、凹部12は絶縁層19によって覆われているというのは、別の表現をすれば、以下の構成1)と2)になる。1)支持基板2に、上記外縁接触部Xに連なっている接続部2aを含むように凹部12が設けられている。2)絶縁層19が外縁接触部X及び接続部2aに至っている。なお、この構成は、弾性波装置1が積層膜3を有し、支持基板2が除去領域R1を含むことを前提とする。外縁接触部Xは絶縁層19により覆われているため、応力が加えられた際などにおいても、支持基板2と積層膜3とが剥離し難い。さらに、絶縁層19は圧電薄膜6上に至っているため、積層膜3が支持基板2から離れる方向に変位することを抑制することができる。よって、支持基板2と積層膜3との剥離を効果的に抑制することができる。
 凹部12は、本実施形態のように、積層膜3を囲むように設けられていることが好ましい。それによって、外縁接触部Xの全てを絶縁層19により覆うことができ、支持基板2と積層膜3とがより一層剥離し難い。
 図4に示すように、絶縁層19は、凹部12の底部に至っていることが好ましい。それによって、絶縁層19が接続部2aに接する面積を大きくすることができ、支持基板2と絶縁層19との密着性を高めることができる。従って、支持基板2と積層膜3とがより一層剥離し難い。
 ところで、本実施形態においては、絶縁層19の第1の部分19aにおける、圧電薄膜6に接している部分を含む端面は、厚み方向に対して傾斜している。絶縁層19の第2の部分19bから第1の部分19aに至る部分付近も傾斜している。絶縁層19に沿い、接続電極17も、圧電薄膜6上から絶縁層19上に至る部分付近において傾斜しており、絶縁層19の第2の部分19b上から第1の部分19a上に至る部分付近において傾斜している。
 ここで、絶縁層19の第2の部分19b上から第1の部分19a上に至る部分を第3の部分とする。第3の部分が垂直に延びている場合には、接続電極17の第3の部分に設けられる部分の厚みは、接続電極17の第1の部分19a及び第2の部分19bに設けられる部分の厚みよりも薄くなる傾向がある。これに対して、本実施形態においては第3の部分は傾斜しているため、第3の部分が傾斜していない場合よりも、接続電極17の第3の部分に設けられる部分の厚みを厚くすることができる。よって接続電極17の断線が生じ難い。なお、絶縁層19及び接続電極17は、必ずしも上記のように傾斜していなくともよい。
 凹部12の内面12bは、支持基板2の厚み方向に対して、接続部2aに近づくように傾斜していることが好ましい。この場合には、支持基板2における除去領域R1と絶縁層19との間に加わるせん断応力の方向と、内面12bが延びる方向とは平行ではない。よって、上記内面12bを有する凹部12が設けられていることにより、支持基板2と積層膜3とが接触している部分に対する上記せん断応力の影響を緩和することができる。従って、支持基板2と積層膜3とがより一層剥離し難い。
 内面12bは、本実施形態のように、接続部2aに直接的に接続されていることがより好ましい。それによって、凹部12の容積を小さくすることができ、絶縁層19の接続電極17側の面の傾斜が急角度になり難い。よって、接続電極17の断線を抑制することができ、かつ支持基板2と積層膜3とが剥離し難い。
 弾性波装置1においては、凹部12の接続部2aは、支持基板2の厚み方向に平行に延びている。なお、接続部2aは、外縁接触部X側から除去領域R1が低くなる方向に延びていればよく、支持基板2の厚み方向に対して傾斜していてもよい。接続部2a及び内面12bは、曲面の部分を含んでいてもよい。図4に示す凹部12の横断面の形状は、本実施形態においては三角形である。なお、凹部12の横断面の形状は上記に限定されず、例えば、矩形、台形、あるいは扇形などであってもよい。
 支持基板2が、例えば、Siなどの相対的に高音速な材料からなっている場合においては、高音速膜4は設けられていなくともよい。この場合においても、上記と同様の効果を得ることができる。
 図5は、本発明の第1の実施形態の変形例に係る弾性波装置の略図的断面図である。
 本変形例においては、支持基板2は、上述した高音速膜と同様の、圧電薄膜6を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高い材料からなる。積層膜73においては、低音速膜5上に圧電薄膜6が設けられている。積層膜73は高音速膜を含まない。この場合においても、弾性波のエネルギーを効果的に閉じ込めることができ、かつ支持基板2と積層膜73とが剥離し難い。
 図6は、第2の実施形態に係る弾性波装置の模式的拡大断面図である。なお、図6は、図4が示す断面に相当する断面を示す。後述する各模式的拡大断面図においても同様である。
 本実施形態は、除去領域R2の全体が低くなっており、接続部22aが外縁接触部Xの全体に連なっている点において、第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置1と同様の構成を有する。
 本実施形態における接続部22aは、支持基板22の積層膜3に接している部分と除去領域R2との間における段差部である。絶縁層19は、外縁接触部X及び接続部22aに至っている。よって、本実施形態においても、外縁接触部Xは絶縁層19により覆われているため、支持基板22と積層膜3とが剥離し難い。
 ここで、本明細書において支持基板の凹部は、支持基板に段差部が設けられており、支持基板の一部が低くなっている場合における、該低くなっている部分を含むものとする。支持基板において低くなっている部分が、支持基板の段差部から支持基板の外縁に至っている場合においても、該低くなってる部分は凹部であるものとする。図6に示す第2の実施形態においては、凹部は、平面視した場合に支持基板22上であって積層膜3が設けられている領域の外側の全体に形成されている。
 なお、除去領域R2の全体を低くするに際し、例えば、積層膜3上にレジスト層を形成した後に、支持基板2をエッチングすればよい。
 図7は、第3の実施形態に係る弾性波装置の模式的拡大断面図である。
 本実施形態は、支持基板32が、凹部12を有し、かつ第2の実施形態と同様に除去領域R3の全体が低くなっている点において、第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置1と同様の構成を有する。
 本実施形態においては、凹部12は接続部32aの一部を含むように設けられている。接続部32aは、凹部12内の面に相当する部分と、第2の実施形態と同様の上記段差部に相当する部分とを有する。絶縁層19は、外縁接触部X及び接続部32aに至っている。より具体的には、絶縁層19は、接続部32aの上記段差部に相当する部分及び凹部12内の面に相当する部分に至っている。従って、外縁接触部Xは絶縁層19により覆われており、かつ支持基板32と絶縁層19との密着性をより一層高めることができるため、支持基板2と積層膜3とがより一層剥離し難い。
 なお、例えば図7に示す断面において、接続部32aにおける上記段差部に相当する部分が延びる方向と、凹部12内の面に相当する部分が延びる方向とが異なっていてもよい。
 ここで、第3の実施形態の構成を、図14の走査型顕微鏡写真により示す。絶縁層が段差部及び凹部内の面に至っており、かつ圧電薄膜上に至っていることがわかる。
 図8は、第4の実施形態に係る弾性波装置の模式的拡大断面図である。
 本実施形態においては、積層膜43が音響反射層43Aを含む点において、第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置1と同様の構成を有する。
 音響反射層43Aは、音響インピーダンスが相対的に高い複数の高音響インピーダンス膜と、高音響インピーダンス膜に比べて音響インピーダンスが低い複数の低音響インピーダンス膜とを有する。より具体的には、図8に示すように、高音響インピーダンス膜44a及び高音響インピーダンス膜44b並びに低音響インピーダンス膜45a及び低音響インピーダンス膜45bが交互に積層されている。なお、高音響インピーダンス膜及び低音響インピーダンス膜の層数は特に限定されない。
 音響反射層43A上に圧電薄膜6が設けられている。それによって、弾性波のエネルギーを効果的に閉じ込めることができる。加えて、本実施形態においても、外縁接触部Xは絶縁層19により覆われているため、支持基板2と積層膜43とが剥離し難い。
 なお、積層膜43が音響反射層43Aを含む場合においても、支持基板2や接続部2aの形態は第1の実施形態と同様のものには限定されない。以下に示す第1の変形例及び第2の変形例の場合においても、支持基板と積層膜43とが剥離し難い。
 図9は、第4の実施形態の第1の変形例に係る弾性波装置の模式的拡大断面図である。
 本変形例の支持基板22は、第2の実施形態と同様に、除去領域R2の全体が低くなっており、接続部22aが外縁接触部Xの全体に連なっている。
 図10は、第4の実施形態の第2の変形例に係る弾性波装置の模式的拡大断面図である。
 本変形例の支持基板32は、第3の実施形態と同様に、凹部12を有し、かつ除去領域R3の全体が低くなっている。
 図11は、第5の実施形態に係る弾性波装置の略図的断面図である。なお、図11は、図1が示す断面に相当する断面を示す。後述する図12においても同様である。
 本実施形態の弾性波装置51は、接続電極17上に直接的にバンプ10が設けられている点において、第1の実施形態と異なる。本実施形態においても、第1の実施形態と同様に、支持基板2と積層膜3とが剥離し難い。
 図12は、第6の実施形態に係る弾性波装置実装構造体の略図的断面図である。
 弾性波装置実装構造体60は、実装基板62を有する。実装基板62上に第5の実施形態の弾性波装置51が実装されている。より具体的には、実装基板62上には、複数の接続端子68が設けられている。接続端子68には、それぞれ弾性波装置51のバンプ10が接合されている。実装基板62上には、弾性波装置51を覆うように封止樹脂69が設けられている。これにより、弾性波装置51は実装基板62上に実装されている。このように、弾性波装置実装構造体60は、CSP構造である。
 弾性波装置実装構造体60における弾性波装置51は、第5の実施形態の構成を有するため、本実施形態においても支持基板2と積層膜3とが剥離し難い。
 上記各実施形態の弾性波装置は、高周波フロントエンド回路のデュプレクサなどとして用いることができる。この例を下記において説明する。
 図13は、通信装置及び高周波フロントエンド回路の構成図である。なお、同図には、高周波フロントエンド回路230と接続される各構成要素、例えば、アンテナ素子202やRF信号処理回路(RFIC)203も併せて図示されている。高周波フロントエンド回路230及びRF信号処理回路203は、通信装置240を構成している。なお、通信装置240は、電源、CPUやディスプレイを含んでいてもよい。
 高周波フロントエンド回路230は、スイッチ225と、デュプレクサ201A,201Bと、フィルタ231,232と、ローノイズアンプ回路214,224と、パワーアンプ回路234a,234b,244a,244bとを備える。なお、図13の高周波フロントエンド回路230及び通信装置240は、高周波フロントエンド回路及び通信装置の一例であって、この構成に限定されるものではない。
 デュプレクサ201Aは、フィルタ211,212を有する。デュプレクサ201Bは、フィルタ221,222を有する。デュプレクサ201A,201Bは、スイッチ225を介してアンテナ素子202に接続される。なお、上記弾性波装置は、デュプレクサ201A,201Bであってもよいし、フィルタ211,212,221,222であってもよい。
 さらに、上記弾性波装置は、例えば、3つのフィルタのアンテナ端子が共通化されたトリプレクサや、6つのフィルタのアンテナ端子が共通化されたヘキサプレクサなど、3以上のフィルタを備えるマルチプレクサについても適用することができる。
 すなわち、上記弾性波装置は、弾性波共振子、フィルタ、デュプレクサ、3以上のフィルタを備えるマルチプレクサを含む。そして、該マルチプレクサは、送信フィルタ及び受信フィルタの双方を備える構成に限らず、送信フィルタのみ、または、受信フィルタのみを備える構成であってもかまわない。
 スイッチ225は、制御部(図示せず)からの制御信号に従って、アンテナ素子202と所定のバンドに対応する信号経路とを接続し、例えば、SPDT(Single Pole Double Throw)型のスイッチによって構成される。なお、アンテナ素子202と接続される信号経路は1つに限らず、複数であってもよい。つまり、高周波フロントエンド回路230は、キャリアアグリゲーションに対応していてもよい。
 ローノイズアンプ回路214は、アンテナ素子202、スイッチ225及びデュプレクサ201Aを経由した高周波信号(ここでは高周波受信信号)を増幅し、RF信号処理回路203へ出力する受信増幅回路である。ローノイズアンプ回路224は、アンテナ素子202、スイッチ225及びデュプレクサ201Bを経由した高周波信号(ここでは高周波受信信号)を増幅し、RF信号処理回路203へ出力する受信増幅回路である。
 パワーアンプ回路234a,234bは、RF信号処理回路203から出力された高周波信号(ここでは高周波送信信号)を増幅し、デュプレクサ201A及びスイッチ225を経由してアンテナ素子202に出力する送信増幅回路である。パワーアンプ回路244a,244bは、RF信号処理回路203から出力された高周波信号(ここでは高周波送信信号)を増幅し、デュプレクサ201B及びスイッチ225を経由してアンテナ素子202に出力する送信増幅回路である。
 RF信号処理回路203は、アンテナ素子202から受信信号経路を介して入力された高周波受信信号を、ダウンコンバートなどにより信号処理し、当該信号処理して生成された受信信号を出力する。また、RF信号処理回路203は、入力された送信信号をアップコンバートなどにより信号処理し、当該信号処理して生成された高周波送信信号をパワーアンプ回路234a,234b,244a,244bへ出力する。RF信号処理回路203は、例えば、RFICである。なお、通信装置は、BB(ベースバンド)ICを含んでいてもよい。この場合、BBICは、RFICで処理された受信信号を信号処理する。また、BBICは、送信信号を信号処理し、RFICに出力する。BBICで処理された受信信号や、BBICが信号処理する前の送信信号は、例えば、画像信号や音声信号等である。
 なお、高周波フロントエンド回路230は、上記デュプレクサ201A,201Bに代わり、デュプレクサ201A,201Bの変形例に係るデュプレクサを備えていてもよい。
 他方、通信装置240におけるフィルタ231,232は、ローノイズアンプ回路214,224及びパワーアンプ回路234a,234b,244a,244bを介さず、RF信号処理回路203とスイッチ225との間に接続されている。フィルタ231,232も、デュプレクサ201A,201Bと同様に、スイッチ225を介してアンテナ素子202に接続される。
 以上のように構成された高周波フロントエンド回路230及び通信装置240によれば、本発明の弾性波装置である、弾性波共振子、フィルタ、デュプレクサ、3以上のフィルタを備えるマルチプレクサなどを備えることにより、支持基板と、圧電薄膜を含む積層膜とが剥離し難く、かつ積層膜の割れや欠けが生じ難い。
 以上、本発明の実施形態に係る弾性波装置、高周波フロントエンド回路及び通信装置について、実施形態及びその変形例を挙げて説明したが、本発明は、上記実施形態及び変形例における任意の構成要素を組み合わせて実現される別の実施形態や、上記実施形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る高周波フロントエンド回路及び通信装置を内蔵した各種機器も本発明に含まれる。
 本発明は、弾性波共振子、フィルタ、デュプレクサ、マルチバンドシステムに適用できるマルチプレクサ、フロントエンド回路及び通信装置として、携帯電話機などの通信機器に広く利用できる。
1…弾性波装置
2…支持基板
2a…接続部
3…積層膜
4…高音速膜
5…低音速膜
6…圧電薄膜
7…支持部材
7a…開口部
8…カバー部材
9…アンダーバンプメタル層
10…バンプ
12…凹部
12b…内面
13A~13C…弾性波共振子
14…IDT電極
15A,15B…反射器
16…配線電極
17…接続電極
19…絶縁層
19a,19b…第1,第2の部分
22…支持基板
22a…接続部
32…支持基板
32a…接続部
43…積層膜
43A…音響反射層
44a,44b…高音響インピーダンス膜
45a,45b…低音響インピーダンス膜
51…弾性波装置
60…弾性波装置実装構造体
62…実装基板
68…接続端子
69…封止樹脂
73…積層膜
201A,201B…デュプレクサ
202…アンテナ素子
203…RF信号処理回路
211,212…フィルタ
214…ローノイズアンプ回路
221,222…フィルタ
224…ローノイズアンプ回路
225…スイッチ
230…高周波フロントエンド回路
231,232…フィルタ
234a,234b…パワーアンプ回路
240…通信装置
244a,244b…パワーアンプ回路
R1~R3…除去領域
X…外縁接触部

Claims (11)

  1.  支持基板と、
     前記支持基板上に設けられており、平面視した場合に前記支持基板の外縁の少なくとも一部よりも内側に設けられており、かつ、圧電薄膜を含む積層膜と、
     前記積層膜上に設けられているIDT電極と、
     前記支持基板上及び前記積層膜上に設けられており、前記支持基板上から前記積層膜上に至っている絶縁層と、
     前記絶縁層上に設けられており、前記IDT電極と電気的に接続されている接続電極と、
     前記接続電極と電気的に接続されており、前記接続電極上に直接的にまたは間接的に設けられており、かつ、平面視した場合に前記支持基板上であって前記積層膜が設けられている領域の外側に設けられている、外部接続端子と、
    を備え、
     前記支持基板における前記積層膜側の主面は、平面視した場合に前記積層膜の外縁の位置に凹部を有し、
     前記凹部は、前記絶縁層によって覆われている、弾性波装置。
  2.  前記積層膜の線膨脹係数と、前記支持基板の線膨張係数とは異なる、請求項1に記載の弾性波装置。
  3.  前記凹部が、平面視した場合に前記支持基板上であって前記積層膜が設けられている領域の外側の全体に形成されている、請求項1または2に記載の弾性波装置。
  4.  前記凹部が前記積層膜を囲むように設けられている、請求項1~3のいずれか1項に記載の弾性波装置。
  5.  前記支持基板が、前記圧電薄膜を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高い材料からなり、
     前記積層膜が、前記圧電薄膜を伝搬する弾性波の音速よりも伝搬するバルク波の音速が低い低音速膜を含み、
     前記低音速膜上に前記圧電薄膜が設けられている、請求項1~4のいずれか1項に記載の弾性波装置。
  6.  前記積層膜が、前記圧電薄膜を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高い高音速膜と、前記圧電薄膜を伝搬する弾性波の音速よりも伝搬するバルク波の音速が低い低音速膜と、を含み、
     前記高音速膜上に前記低音速膜が設けられており、
     前記低音速膜上に前記圧電薄膜が設けられている、請求項1~4のいずれか1項に記載の弾性波装置。
  7.  前記積層膜が、音響インピーダンスが相対的に高い高音響インピーダンス膜と、前記高音響インピーダンス膜に比べて音響インピーダンスが低い低音響インピーダンス膜と、を有する音響反射層を含み、
     前記音響反射層上に前記圧電薄膜が設けられている、請求項1~4のいずれか1項に記載の弾性波装置。
  8.  平面視した場合に、前記支持基板上であって前記積層膜が設けられている領域の外側の領域に直接的にまたは間接的に設けられており、前記IDT電極を囲んでいる開口部を有する支持部材と、
     前記支持部材上に、前記開口部を覆うように設けられているカバー部材と、
     前記接続電極に接続されるように、前記支持部材及び前記カバー部材を貫通しているアンダーバンプメタル層と、
    をさらに備え、
     前記外部接続端子が、前記接続電極上に前記アンダーバンプメタル層を介して間接的に設けられているバンプであり、
     前記支持基板、前記支持部材及び前記カバー部材により囲まれた中空空間内に、前記IDT電極が位置している、請求項1~7のいずれか1項に記載の弾性波装置。
  9.  前記外部接続端子が、前記接続電極上に直接的に設けられているバンプである、請求項1~7のいずれか1項に記載の弾性波装置。
  10.  請求項1~9のいずれか1項に記載の弾性波装置と、
     パワーアンプと、
    を備える、高周波フロントエンド回路。
  11.  請求項10に記載の高周波フロントエンド回路と、
     RF信号処理回路と、
    を備える、通信装置。
PCT/JP2018/026354 2017-08-29 2018-07-12 弾性波装置、高周波フロントエンド回路及び通信装置 WO2019044203A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207004130A KR102292154B1 (ko) 2017-08-29 2018-07-12 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
CN201880054861.4A CN111066244B (zh) 2017-08-29 2018-07-12 弹性波装置、高频前端电路以及通信装置
JP2019539036A JP6791390B2 (ja) 2017-08-29 2018-07-12 弾性波装置、高周波フロントエンド回路及び通信装置
US16/801,360 US11588468B2 (en) 2017-08-29 2020-02-26 Acoustic wave device, radio-frequency front-end circuit, and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017164113 2017-08-29
JP2017-164113 2017-08-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/801,360 Continuation US11588468B2 (en) 2017-08-29 2020-02-26 Acoustic wave device, radio-frequency front-end circuit, and communication apparatus

Publications (1)

Publication Number Publication Date
WO2019044203A1 true WO2019044203A1 (ja) 2019-03-07

Family

ID=65527586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026354 WO2019044203A1 (ja) 2017-08-29 2018-07-12 弾性波装置、高周波フロントエンド回路及び通信装置

Country Status (5)

Country Link
US (1) US11588468B2 (ja)
JP (1) JP6791390B2 (ja)
KR (1) KR102292154B1 (ja)
CN (1) CN111066244B (ja)
WO (1) WO2019044203A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220889A1 (ja) * 2020-04-27 2021-11-04 株式会社村田製作所 弾性波装置
WO2022075311A1 (ja) * 2020-10-09 2022-04-14 株式会社村田製作所 弾性波装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020009121A1 (ja) * 2018-07-03 2020-01-09 株式会社村田製作所 弾性波装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036656A (ja) * 2005-07-27 2007-02-08 Seiko Epson Corp 薄膜振動片の製造方法、薄膜振動片、薄膜振動子及び圧電発振器
JP2013223025A (ja) * 2012-04-13 2013-10-28 Taiyo Yuden Co Ltd フィルタ装置、フィルタ装置の製造方法及びデュプレクサ
WO2015098678A1 (ja) * 2013-12-27 2015-07-02 株式会社村田製作所 弾性波装置
JP2017011681A (ja) * 2015-06-25 2017-01-12 株式会社村田製作所 弾性波装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4368499B2 (ja) * 1999-06-14 2009-11-18 パナソニック株式会社 弾性表面波素子の製造方法およびそれを用いた弾性表面波デバイスの製造方法
WO2005050836A1 (ja) * 2003-11-19 2005-06-02 Murata Manufacturing Co., Ltd. 端面反射型弾性表面波装置及びその製造方法
WO2013031748A1 (ja) * 2011-09-01 2013-03-07 株式会社村田製作所 圧電バルク波装置及びその製造方法
US9876483B2 (en) * 2014-03-28 2018-01-23 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator device including trench for providing stress relief
JP6585621B2 (ja) * 2014-12-02 2019-10-02 京セラ株式会社 弾性波素子、分波器および通信モジュール
WO2016185772A1 (ja) * 2015-05-15 2016-11-24 株式会社村田製作所 弾性表面波装置及びその製造方法
WO2016208427A1 (ja) * 2015-06-25 2016-12-29 株式会社村田製作所 弾性波装置
KR101929333B1 (ko) 2015-06-25 2018-12-14 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치
US10148245B2 (en) 2015-06-25 2018-12-04 Murata Manufacturing Co., Ltd. Elastic wave device
DE112016004042T5 (de) * 2015-09-07 2018-06-07 Murata Manufacturing Co., Ltd. Schallwellenvorrichtung, Hochfrequenz-Frontend-Schaltung und Kommunikationsvorrichtung
US10965269B2 (en) * 2016-12-02 2021-03-30 Skyworks Solutions, Inc. Electronic devices formed in a cavity between substrates and including a via

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036656A (ja) * 2005-07-27 2007-02-08 Seiko Epson Corp 薄膜振動片の製造方法、薄膜振動片、薄膜振動子及び圧電発振器
JP2013223025A (ja) * 2012-04-13 2013-10-28 Taiyo Yuden Co Ltd フィルタ装置、フィルタ装置の製造方法及びデュプレクサ
WO2015098678A1 (ja) * 2013-12-27 2015-07-02 株式会社村田製作所 弾性波装置
JP2017011681A (ja) * 2015-06-25 2017-01-12 株式会社村田製作所 弾性波装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220889A1 (ja) * 2020-04-27 2021-11-04 株式会社村田製作所 弾性波装置
WO2022075311A1 (ja) * 2020-10-09 2022-04-14 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
CN111066244B (zh) 2023-03-24
CN111066244A (zh) 2020-04-24
JP6791390B2 (ja) 2020-11-25
KR102292154B1 (ko) 2021-08-23
JPWO2019044203A1 (ja) 2020-09-24
US20200195219A1 (en) 2020-06-18
KR20200021543A (ko) 2020-02-28
US11588468B2 (en) 2023-02-21

Similar Documents

Publication Publication Date Title
JP4587732B2 (ja) 弾性表面波装置
JP6315716B2 (ja) 弾性波デバイス
KR102142866B1 (ko) 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
CN110771037B (zh) 弹性波装置、前端电路以及通信装置
CN111418152B (zh) 弹性波装置、高频前端电路及通信装置
JP6791390B2 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
JP6756411B2 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
WO2021215107A1 (ja) 高周波モジュール及び通信装置
JP4518877B2 (ja) 弾性表面波装置
KR102253460B1 (ko) 탄성파 장치, 고주파 프론트엔드 회로 및 통신 장치
US11695389B2 (en) Acoustic wave device, front-end circuit, and communication apparatus
JP4454410B2 (ja) 弾性表面波装置およびその製造方法ならびに通信装置
WO2019124126A1 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置並びに弾性波装置の製造方法
JP4458954B2 (ja) 弾性表面波装置およびその製造方法ならびに通信装置
JP4610244B2 (ja) 弾性表面波装置の製造方法
JP2020174332A (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
JP2023068334A (ja) 弾性波装置
JP2024074593A (ja) 弾性波デバイス
JP2006014098A (ja) 弾性表面波装置およびその製造方法ならびに通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851949

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207004130

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019539036

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851949

Country of ref document: EP

Kind code of ref document: A1