WO2019043892A1 - 部品装着機及び部品装着方法 - Google Patents

部品装着機及び部品装着方法 Download PDF

Info

Publication number
WO2019043892A1
WO2019043892A1 PCT/JP2017/031478 JP2017031478W WO2019043892A1 WO 2019043892 A1 WO2019043892 A1 WO 2019043892A1 JP 2017031478 W JP2017031478 W JP 2017031478W WO 2019043892 A1 WO2019043892 A1 WO 2019043892A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
imaging
mounting head
camera
relative position
Prior art date
Application number
PCT/JP2017/031478
Other languages
English (en)
French (fr)
Inventor
英俊 川合
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2019538864A priority Critical patent/JP6752977B2/ja
Priority to CN201780094376.5A priority patent/CN111034387B/zh
Priority to PCT/JP2017/031478 priority patent/WO2019043892A1/ja
Priority to EP17923546.0A priority patent/EP3678464B1/en
Priority to US16/638,597 priority patent/US11272650B2/en
Publication of WO2019043892A1 publication Critical patent/WO2019043892A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0818Setup of monitoring devices prior to starting mounting operations; Teaching of monitoring devices for specific products; Compensation of drifts during operation, e.g. due to temperature shifts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0812Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines the monitoring devices being integrated in the mounting machine, e.g. for monitoring components, leads, component placement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0815Controlling of component placement on the substrate during or after manufacturing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/089Calibration, teaching or correction of mechanical systems, e.g. of the mounting head

Definitions

  • the present invention relates to a component mounting machine and a component mounting method.
  • a component mounting machine provided with a mounting head, a component camera, and a substrate camera.
  • a component mounting machine picks up a component supplied to a component supply position with a mounting head, mounts the sampled component on a circuit board, picks up the component collected by the mounting head with a component camera, and is positioned circuit
  • the substrate is imaged with a substrate camera.
  • the component mounting machine performs positional deviation correction of the mounting head when performing positioning control of the mounting head with respect to the imaging positions of the component camera and the substrate camera.
  • Patent Document 1 discloses a technique for performing the positional correction of the mounting head and the position correction of the recognition origin of the line camera when the continuous mounting time is equal to or longer than a preset time to eliminate the influence by the thermal deformation. It is done. Further, in Patent Document 2, a head unit by thermal expansion or the like by comparing an interval on an image of a pair of marks captured by a substrate recognition camera with a reference value of an interval of the pair of marks stored in advance. Discloses a technique for measuring the movement error of the head unit and correcting the movement target position of the head unit based on the movement error.
  • the present specification aims to provide a component mounting machine and a component mounting method capable of efficiently performing component mounting work while maintaining component mounting accuracy.
  • the present specification provides a moving device for moving between a component supply position and a circuit board, and a component provided on the moving device, collecting the component supplied to the component supply position, and collecting the collected component into the circuit substrate.
  • a mounting head to be mounted a component camera capable of capturing an image of the component collected by the mounting head from below the mounting head, a substrate camera provided on the moving device, capable of capturing an image of the circuit board from the upper side,
  • An imaging position storage unit that stores imaging position coordinates that are position coordinates of the moving device at the time of imaging of the component camera based on image data obtained by imaging of the mounting head by the component camera; and the mounting head for the substrate camera Relative position storage unit that stores relative position coordinates that are relative positions of the camera, and when the moving device reaches the imaging position It is determined whether or not correction of the relative position coordinate stored in the relative position storage unit is performed by imaging the mounting head and based on the position of the mounting head obtained from the image data obtained by the imaging.
  • a part mounting machine comprising:
  • a moving device for moving between a component supply position and a circuit board, and a component provided to the moving device for collecting the component supplied to the component supply position, and the sampled component are obtained from the circuit
  • a component mounting method of the component mounting machine provided with The component mounting method includes an imaging position coordinate storing step of storing an imaging position coordinate which is a position coordinate of the moving device at the time of imaging of the component camera based on image data obtained by imaging of the mounting head by the component camera
  • a correction necessity determination step of determining necessity of correction of the relative position coordinates based on the position of the mounting head grasped from
  • the correction necessity determination unit captures an image of the mounting head by the component camera when the moving device reaches the imaging position coordinates, and the installation is grasped from the image data obtained by the imaging Based on the position of the head, it is determined whether or not correction of relative position coordinates is necessary. In this case, since the component mounting machine can correct the relative position coordinates at an appropriate timing, the component mounting operation can be efficiently performed while maintaining the component mounting accuracy.
  • the correction necessity determination step determines whether or not the correction of the relative position coordinates is necessary based on the position of the mounting head obtained from the image data obtained by imaging in the component imaging step. Do. In this case, since the component mounting method can correct the relative position coordinates at an appropriate timing, the component mounting operation can be efficiently performed while maintaining the component mounting accuracy.
  • the component placement machine 1 includes a substrate transfer device 10, a component supply device 20, a component transfer device 30, a component camera 40, a substrate camera 50, and a control device 100 (see FIG. 4). And mainly.
  • the left-right direction of the component mounting machine 1 is defined as the X-axis direction, the front-rear direction as the Y-axis direction, and the vertical direction as the Z-axis direction.
  • the substrate transfer apparatus 10 is configured by a pair of belt conveyors 11 and the like bridged in the X-axis direction.
  • the substrate transfer apparatus 10 sequentially transfers the carried-in circuit substrate K in the X-axis direction, and positions the circuit substrate K transferred to a predetermined position. Further, when the mounting process of the component on the positioned circuit board K is completed, the substrate transfer apparatus 10 carries the circuit board K out of the machine of the component mounting machine 1.
  • the component supply device 20 supplies a component P to be mounted on the circuit board K.
  • the component supply device 20 includes a plurality of slots 21 arranged in the X-axis direction. Furthermore, the parts supply device 20 includes a plurality of feeders 22 exchangeably set in each of the plurality of slots 21.
  • the feeder 22 feeds and moves the carrier tape wound around the reel 23, and supplies the component P stored in the carrier tape to a component supply position provided on the front end side (upper right side in FIG. 1) of the feeder 22.
  • the component transfer device 30 picks up the component P supplied by the component feeding device 20 and mounts the picked component P on the positioned circuit board K.
  • the component transfer device 30 mainly includes a moving device 31 and a mounting head 32.
  • the moving device 31 includes a pair of Y axis guide rails 61, a Y axis slider 62, a Y axis motor 63 (see FIG. 4), a pair of X axis guide rails 64, an X axis slider 65, and an X axis motor 66. (See FIG. 4).
  • the pair of Y-axis guide rails 61 are long members extending in parallel in the Y-axis direction.
  • the Y-axis slider 62 is bridged over the pair of Y-axis guide rails 61 and driven by the Y-axis motor 63 so as to be movable in the Y-axis direction.
  • the pair of X axis guide rails 64 are long members extending in parallel in the X axis direction.
  • the X-axis slider 65 is attached to the pair of X-axis guide rails 64 and moved by the X-axis motor 66 in the X-axis direction.
  • the mounting head 32 mainly includes a head main body 71 and a component holding portion 72.
  • the head body 71 is detachably provided to the X-axis slider 65.
  • the component holding unit 72 is a suction nozzle capable of holding the component P, extracts the component P (see FIG. 8) supplied to the component supply position, and mounts the collected component P on the circuit board K.
  • a head mark 73 consisting of four circular marks is attached.
  • the head mark 73 is a reference position of the mounting head 32 when image processing of image data obtained by imaging with the component camera 40 is performed.
  • the component camera 40 and the substrate camera 50 are digital imaging devices having an imaging element such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS).
  • the component camera 40 and the substrate camera 50 perform imaging of a range falling within the camera field of view based on a control signal from the control device 100 communicably connected, and transmit image data acquired by the imaging to the control device 100.
  • the component camera 40 is an imaging device capable of imaging the component P collected by the mounting head 32 from below the mounting head 32.
  • the component camera 40 is fixed to the base of the component mounting device 1 so that the optical axis is in the Z-axis direction, and images the component P held by the mounting head 32 from below.
  • substrate camera 50 is an imaging device which can image the circuit board K from upper direction.
  • the substrate camera 50 is fixed to the X-axis slider 65 so that the optical axis is in the Z-axis direction at a position away from the mounting head 32.
  • the component camera 40 includes a lens unit 41 and a cover 42 that covers the upper side of the lens unit 41.
  • One circular reference mark 43 is attached to each of four corners of the cover 42, and the cover 42 is disposed at a position where the centers of the four reference marks 43 coincide with the optical axis of the component camera 40.
  • the four fiducial marks 43 fit within the camera view of the component camera 40.
  • the control device 100 includes a CPU, various memories, and the like.
  • the control device 100 includes a storage device 110, a mounting control unit 120, an image processing unit 130, and an input / output interface 140.
  • the storage device 110, the mounting control unit 120, the image processing unit 130, and the input / output interface 140 are connected to one another via a bus 150.
  • the control device 100 receives detection signals from various motors of the moving device 31, detection signals from various motors and various sensors of the mounting head 32, image signals from the component camera 40 and the substrate camera 50, etc. It is input through the output interface 140. Further, from the mounting control unit 120 and the image processing unit 130, various motors and various sensors of the mounting head 32, various motors and motors of the mounting head 32, the component camera 40 and the substrate camera 50 can be provided. Control signals and the like are output via the input / output interface 140.
  • the storage device 110 is configured by an optical drive device such as a hard disk drive or a flash memory.
  • the storage device 110 stores a control program, control information, and image data obtained by imaging with the component camera 40 and the substrate camera 50.
  • the mounting control unit 120 controls the substrate transfer device 10, the component supply device 20, and the component transfer device 30 based on control programs and control information stored in the storage device 110, information by various sensors, and results of image processing and recognition processing. Output control signal. Furthermore, the mounting control unit 120 controls the position and the rotation angle of the mounting head 32 and the component holding unit 72. Specifically, the mounting control unit 120 inputs information output from various motors, various sensors, and the like, results of various recognition processes, and the like.
  • the image processing unit 130 mainly includes a component imaging unit 131 and a substrate imaging unit 132.
  • the component imaging unit 131 controls imaging by the component camera 40. Then, the component imaging unit 131 acquires image data obtained by imaging by the component camera 40, and confirms the holding position, the attitude, and the like of the component P held by the component holding unit 72.
  • the substrate imaging unit 132 controls imaging by the substrate camera 50. Then, the board imaging unit 132 acquires image data obtained by imaging by the board camera 50, and recognizes the board mark (not shown) attached to the circuit board K, thereby positioning the circuit board K in the positioned state. To grasp. Thereafter, the mounting control unit 120 corrects the position of the moving device 31 when the mounting head 32 mounts the component P on the circuit board K, based on the positioning state of the circuit board K.
  • the storage device 110 further includes a relative position storage unit 111 and an imaging position storage unit 112.
  • the relative position storage unit 111 stores relative position coordinates that are relative positions of the mounting head 32 to the substrate camera 50, more specifically, relative position coordinates of the head mark 73 with respect to the optical axis of the substrate camera 50.
  • the relative position coordinates are used when the mounting control unit 120 calculates the mounting position of the component P on the circuit board K. That is, since the mounting head 32 and the substrate camera 50 are arranged side by side in the moving device 31, the position of the moving device 31 when mounting the component P on the circuit board K is the relative position of the component holding portion 72 to the substrate camera 50. It is calculated taking into consideration the position coordinates.
  • the component transfer device 30 is easily thermally deformed along with the mounting operation of the component P by the component mounting device 1, and the distance between the optical axis of the substrate camera 50 and the center of the component holder 72 is the component transfer device 30. It changes under the influence of heat deformation of
  • the image processing unit 130 includes a first measurement unit 133 that measures relative position coordinates that are relative positions of the mounting head 32 with respect to the substrate camera 50.
  • the first measurement unit 133 measures relative position coordinates in the process of mounting the component P by the component mounting machine 1, and corrects the relative position coordinates stored in the relative position storage unit 111.
  • the imaging position storage unit 112 stores imaging position coordinates that are position coordinates of the moving device 31 when the component camera 40 images the mounting head 32. Specifically, position coordinates of the moving device 31 when the mounting head 32 is arranged such that the optical axis of the component camera 40 coincides with the head mark 73 are stored in the image pickup position storage unit 112 as image pickup position coordinates. Ru.
  • the control device 100 performs control by the mounting control unit 120 when the component camera 40 picks up an image of the component P held by the component holding unit 72 after collecting all the components P to be collected by the component holding unit 72. , Move the moving device 31 to the imaging position coordinates.
  • the thermal deformation of the component transfer device 30 also affects the distance from the supply position of the component P by the component supply device 20 to the imaging position of the component camera 40. That is, as the mounting operation of the component P by the component mounting machine 1 proceeds, the distance from the component supply position to the imaging position of the component camera 40 changes. As a result, even if the moving device 31 is moved to the imaging position coordinates, positional deviation occurs between the optical axis of the component camera 40 and the head mark 73, and the positional deviation amount largely increases with the lapse of the working time of the component P. Become.
  • the image processing unit 130 includes a second measurement unit 134 that measures the amount of positional deviation between the optical axis of the component camera 40 and the head mark 73.
  • the second measuring unit 134 measures the amount of positional deviation between the optical axis of the component camera 40 and the head mark 73 in the process of mounting the component P by the component mounting machine 1 and stores the measured amount in the imaging position storage unit 112 Correct the image pickup position coordinates.
  • the second measuring unit 134 determines the actual position of the head mark 73 of the mounting head 32 which is grasped from the image data obtained by imaging with the component camera 40, and the imaging position stored in the imaging position storage unit 112. The amount of positional deviation from the position of the head mark 73 of the mounting head 32 calculated based on the coordinates is measured.
  • the control device 100 when measuring the reference position coordinates, first, the control device 100 performs control by the substrate imaging unit 132, and one reference mark 43 attached to the component camera 40 by the substrate camera 50. Take an image. At this time, the control device 100 controls the mounting control unit 120 to move the moving device 31 to a position where the optical axis of the substrate camera 50 coincides with the center of the reference mark 43. As a result, the position of the substrate camera 50 viewed from the component camera 40 becomes constant regardless of the amount of thermal deformation generated in the component transfer device 30.
  • the control device 100 performs control by the component imaging unit 131, and images the mounting head 32 from below with the component camera 40.
  • the first measurement unit 133 measures the position coordinates of the head mark 73 based on the image data obtained by imaging with the component camera 40.
  • the first measuring unit 133 is an actual relative position coordinate (X, Y) of the head mark 73 with respect to the reference mark 43 (hereinafter referred to as "measurement reference mark 43a") made coincident with the optical axis of the substrate camera 50.
  • Measure The distance L between the actual relative position coordinate (X, Y) and the measurement reference mark 43 a corresponds to the actual distance between the optical axis of the substrate camera 50 and the head mark 73.
  • the first measuring unit 133 calculates the theoretical relative position (X0, Y0) of the head mark 73 calculated based on the relative position coordinates stored in the relative position storage unit 111.
  • the amount of positional deviation ( ⁇ X, ⁇ Y) from the actual relative position (X, Y) of the head mark 73 measured by the first measurement unit 133 is measured.
  • the distance between the theoretical relative position coordinate (X0, Y0) and the measurement reference mark 43a corresponds to the theoretical distance L0 between the optical axis of the substrate camera 50 and the head mark 73, and the actual distance L and the theory
  • the difference from the upper distance L0 corresponds to the amount of change ( ⁇ L) in the distance between the substrate camera 50 and the mounting head 32 that is generated as the component transfer device 30 thermally deforms.
  • the image processing unit 130 corrects the relative position coordinates stored in the relative position storage unit 111 based on the positional shift amount ( ⁇ X, ⁇ Y) measured by the first measurement unit 133.
  • the second measurement unit 134 measures the position coordinates of the head mark 73 based on the image data when the mounting head 32 is imaged from below by the component camera 40 Do. Specifically, based on the image data obtained when the component camera 40 captures an image of the component P held by the component holding unit 72, the second measuring unit 134 determines the relative position coordinates of the head mark 73 relative to the reference mark 43. Measure (x, y).
  • the second measuring unit 134 calculates the theoretical relative position (x0, y0) of the head mark 73 calculated based on the relative position coordinates stored in the imaging position storage unit 112. The amount of positional deviation ( ⁇ x, ⁇ y) from the actual relative position (x, y) of the head mark 73 measured by the second measuring unit 134 is measured. Then, the image processing unit 130 corrects the imaging position coordinates stored in the imaging position storage unit 112 based on the positional shift amount ( ⁇ x, ⁇ y) measured by the second measurement unit 134.
  • imaging of the mounting head 32 by the component camera 40 is performed each time the mounting head 32 moves from the component supply position to the circuit board K. Therefore, the control device 100 can perform correction of the imaging position coordinates every time the component P supplied is mounted on the circuit board K, and the component mounting machine 1 can perform the imaging position in parallel with the mounting operation of the component P. Coordinates can be corrected.
  • the control device 100 can accurately grasp the posture of the component P held by the component holding unit 72 and the positional deviation with respect to the component holding unit 72.
  • the imaging of the reference mark 43 by the substrate camera 50 is a process performed separately from the mounting operation of the component P. Correction of relative position coordinates is the mounting operation of the component P It can not be done in parallel with. Therefore, the component mounting machine 1 needs to temporarily suspend the mounting operation of the component P when correcting the relative position coordinates.
  • the image processing unit 130 includes a correction necessity determination unit 135 that determines whether correction of relative position coordinates is necessary.
  • the correction necessity determination unit 135 is required to correct the relative position coordinates stored in the relative position storage unit 111 when the positional deviation amount measured by the second measurement unit 134 exceeds the predetermined threshold th. It is determined that
  • the imaging position storage unit 112 also includes a correction position storage unit 113 and a reference coordinate storage unit 114.
  • the correction position storage unit 113 stores the imaging position coordinates corrected based on the measurement result of the second measurement unit 134.
  • the control device 100 performs control by the mounting control unit 120, and moves the moving device 31 to the imaging position coordinates stored in the correction position storage unit 113. Move it.
  • the component imaging unit 131 images the mounting head 32 from below by the component camera 40 and is attached to the mounting head 32 based on the image data obtained by the imaging
  • the position of the head mark 73 is grasped.
  • the reference coordinate storage unit 114 stores, as reference coordinates, the imaging position coordinates stored in the correction position storage unit 113 when the relative position coordinates are measured by the first measurement unit 133.
  • the first measurement unit 133 calculates the theoretical relative position (X0, Y0) of the head mark 73 based on the reference coordinates stored in the reference coordinate storage unit 114.
  • the amount of change in the distance between the substrate camera 50 and the mounting head 32 is smaller than the amount of positional deviation of the imaging position of the component camera 40. Therefore, while the component mounting machine 1 corrects the component imaging position in parallel with the mounting operation of the component P, the positional deviation amount of the position coordinates of the actual moving device 31 with respect to the reference coordinates of the moving device 31 exceeds the threshold th. In this case, correction of relative position coordinates is performed.
  • the positional deviation of the actual position coordinates of the moving device 31 with respect to the reference coordinates of the moving device 31 is performed by correcting the relative position coordinates so that the reference coordinates of the moving device 31 and the actual position coordinates of the moving device 31 coincide. Because there is no, the value of the threshold th is reset once. After that, the component mounting machine 1 corrects the relative position coordinates each time the positional deviation amount of the position coordinates of the actual moving device 31 with respect to the reference coordinates of the moving device 31 exceeds the threshold th.
  • the amount of thermal deformation of the component transfer device 30 is larger at the beginning of the mounting operation of the component P by the component mounting device 1 and smaller as the elapsed time from the start of the mounting operation is longer.
  • the correction necessity determination unit 135 determines that the relative position coordinates need to be corrected. Since the determination is made, it is possible to change the timing of correcting the relative position coordinates in accordance with the amount of thermal deformation of the component transfer device 30. Therefore, the component mounting machine 1 can correct the relative position coordinates at an appropriate timing while efficiently performing the mounting operation of the component P.
  • the threshold th is a constant value
  • the threshold th is an elapsed time or relative time from the start of the mounting operation of the component P by the component mounting device 1. It may be changed according to the number of corrections of the position coordinates. For example, when the relationship between the positional shift amount of the imaging position coordinate and the positional shift amount of the relative position coordinate is seen for each elapsed time since the start of the mounting operation, the change rate of increase rate of both positional shift amounts It is possible that a difference will occur. In such a case, the component mounting machine 1 mounts the component P by setting a difference between the threshold th set at the beginning of the mounting operation and the threshold th set after a predetermined time has elapsed from the start. The correction of relative position coordinates can be performed at an appropriate timing while performing efficiently.
  • correction Process 6-1 Outline of Correction Process Next, an outline of the correction process performed by the image processing unit 130 will be described with reference to a flowchart shown in FIG. As shown in FIG. 11, the correction process first executes an initial measurement process (S1).
  • the initial measurement process (S1) is a process executed before the mounting process of the component P by the component mounting machine 1 is started.
  • the correction process performs an imaging position coordinate correction process (S2) after the execution of the initial measurement process (S1).
  • the imaging position coordinate correction process (S2) is a process that is executed after the picking of the part P supplied to the part supply position is finished while the mounting operation of the part P is performed.
  • S3 it is determined whether or not the collection of the last part P scheduled in the control program or the like is completed (S3). Then, when all the planned collection of the parts P is completed (S3: Yes), the correction process ends the present process as it is. On the other hand, when the collection of all scheduled parts P is not completed (S3: No), the correction processing subsequently executes the relative position coordinate correction processing (S4: correction necessity determination processing).
  • the relative position coordinate correction process (S4) is a process of executing correction of relative position coordinates as needed.
  • the position correction of the moving device 31 at the time of imaging by the component camera 40 and the substrate camera 50 executed in the correction process is not only correction of the positional deviation due to thermal deformation but also correction of positional deviation due to backlash etc. Do.
  • the image processing unit 130 performs imaging by the component camera 40 in a state in which the moving device 31 is moved to the imaging position coordinates stored in the correction position storage unit 113 of the imaging position storage unit 112. (See FIG. 8). Then, the second measurement unit 134 is calculated based on the actual position of the head mark 73 grasped from the image data obtained by the imaging by the component camera 40 and the correction position coordinates stored in the correction position storage unit 113.
  • the amount of positional deviation from the theoretical position of the head mark 73 is measured (see FIG. 9).
  • the initial measurement process (S1) stores the corrected imaging position coordinates in the correction position storage unit 113 based on the positional displacement amount measured by the second measurement unit 134 (S12: imaging position coordinate storage step).
  • the first measurement unit 133 performs imaging with the component camera 40 in a state where the optical axis of the substrate camera 50 is arranged coaxially with the measurement reference mark 43a (see FIG. 6). Then, the first measurement unit 133 is based on the relative position coordinates (the relative position coordinates stored as the initial value, the relative position coordinates stored at the time of the installation work of the part P, etc. last time) stored in the relative position storage unit 111. The amount of positional deviation between the theoretical position of the head mark 73 calculated and the actual position of the head mark 73 measured by the first measurement unit 133 is measured (see FIG. 7).
  • the relative position coordinates corrected based on the positional displacement amount measured by the first measurement unit 133 are stored in the relative position storage unit 111 (S14: relative position coordinate storage step).
  • the imaging position coordinates stored in the correction position storage unit 113 are stored in the reference coordinate storage unit 114 (S15), and the process is ended.
  • the imaging position coordinate correction process (S2) it is determined whether the moving device 31 has reached the imaging position coordinate stored in the correction position storage unit 113 (S21). The process of S21 is repeatedly performed until the moving device 31 reaches the imaging position coordinates. Then, when the imaging position coordinate correction process (S2) determines that the moving device 31 has reached the imaging position coordinates (S21: Yes), the control by the component imaging unit 131 is performed to perform imaging by the component camera 40 (S22: Parts imaging process).
  • the positional deviation amount of the mounting head 32 is calculated (S23: measurement step). Specifically, in the process of S23, the second measurement unit 134 actually positions the head mark 73 obtained from the image data obtained in the process of S22, and the imaging position coordinates stored in the correction position storage unit 113. The amount of positional deviation with respect to the position of the theoretical head mark 73 calculated based on the above is measured. Next, in the imaging position coordinate correction process (S2), the imaging position coordinate stored in the correction position storage unit 113 is corrected based on the positional shift amount measured by the second measurement unit 134 in the process of S23 ( S24), this processing ends.
  • the positional deviation amount of the imaging position coordinate with respect to the reference coordinate is measured (S41).
  • the second measuring unit 134 determines the actual position of the head mark 73 obtained from the image data obtained in the process of S22 described above in the process of S41 and the reference stored in the reference coordinate storage unit 114. An amount of positional deviation from the theoretical position of the head mark 73 calculated based on the coordinates is calculated.
  • the relative position coordinate correction process it is determined whether or not relative position coordinate correction is necessary (S42: correction necessity determination step). Specifically, the correction necessity determination unit 135 determines whether or not the positional deviation amount measured by the second measurement unit 134 in the process of S41 exceeds a predetermined threshold th. In the process of S42, if the positional deviation amount measured by the second measurement unit 134 does not exceed the predetermined threshold th (S42: No), the relative position coordinate correction process (S4) corrects the relative position coordinate. It is determined that there is no need to do this, and the process ends.
  • the relative position coordinate correction process measures the relative position coordinate (S43) ).
  • the first measuring unit 133 is based on the actual relative position of the head mark 73 grasped from the image data obtained in the process of S22 described above, and the relative position coordinates stored in the relative position storage unit 111. The amount of positional deviation between the head mark 73 and the theoretical relative position, which is calculated, is measured (see FIGS. 5 to 7).
  • the relative position coordinate stored in the relative position storage unit 111 is corrected based on the positional shift amount measured by the first measurement unit 133 in the process of S43 ( S44).
  • the relative position coordinate correction process (S4) stores the imaging position coordinates stored in the correction position storage unit 113 in the reference coordinate storage unit 114 (S45).
  • the positional deviation amount of the imaging position coordinate with respect to the reference coordinate is temporarily reset (see FIG. 10).
  • the relative position coordinate correction process (S4) ends the present process.
  • the correction necessity determination unit 135 performs imaging of the mounting head 32 by the component camera 40 when the moving device 31 reaches the imaging position coordinates, and the installation is grasped from the image data obtained by the imaging Based on the position of the head 32, it is determined whether or not correction of relative position coordinates is required. In this case, since the component mounting machine 1 can correct the relative position coordinates at an appropriate timing, the component P can be mounted efficiently.
  • the second measurement unit 134 calculates the mounting head calculated based on the actual position of the head mark 73 of the mounting head 32 and the imaging position coordinate. The amount of displacement of the 32 head marks 73 from the theoretical position is measured. Then, the correction necessity determination unit 135 determines the amount of positional deviation between the mounting head 32 position calculated based on the actual position of the mounting head 32 and the reference coordinates based on the positional deviation amount measured by the second measurement unit 134. When it exceeds the threshold value th set in advance, it is determined that the correction of the relative position coordinate is necessary. Thereby, the component mounting device 1 can perform correction of relative position coordinates at appropriate timing.
  • the image processing unit 130 corrects the component imaging position every time the component camera 40 captures an image in the mounting operation of the component P by the component mounting machine 1. It is not something that can be done. That is, the correction of the component imaging coordinates may be performed when the positional deviation amount between the actual position of the head mark 73 and the theoretical position at the time of imaging of the component camera 40 exceeds a predetermined threshold. Further, in this case, the threshold used to determine the necessity of correction of the part imaging coordinates may be the same as the threshold used to determine the necessity of correction of the relative position coordinates, and the correction necessity determination unit 135 needs to correct the relative position coordinates. When it is determined that the correction of the imaging position coordinate may be performed together with the correction of the relative position coordinate.
  • the first measurement unit 133 and the second measurement unit 134 have described the case of measuring the positional displacement amount with reference to the head mark 73, but instead of the head mark 73, the component holding unit 72 is used.
  • the amount of displacement may be measured as a reference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Operations Research (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

部品供給位置と回路基板との間を移動する移動装置と、移動装置に設けられ、部品供給位置に供給された部品を採取し、採取した部品を前記回路基板に装着する装着ヘッドと、装着ヘッドにより採取された部品を装着ヘッドの下方から撮像可能な部品カメラと、移動装置に設けられ、前記回路基板を上方から撮像可能な基板カメラと、部品カメラによる装着ヘッドの撮像で得られる画像データに基づき、部品カメラの撮像時における移動装置の位置座標である撮像位置座標を記憶する撮像位置記憶部と、基板カメラに対する装着ヘッドの相対位置である相対位置座標を記憶する相対位置記憶部と、移動装置が撮像位置座標に到達した際に部品カメラによる装着ヘッドの撮像を行い、当該撮像で得られる画像データから把握される装着ヘッドの位置に基づき、相対位置記憶部に記憶する相対位置座標の補正の要否を判定する補正要否判定部と、を備える、部品装着機。

Description

部品装着機及び部品装着方法
 本発明は、部品装着機及び部品装着方法に関する。
 装着ヘッドと、部品カメラと、基板カメラとを備えた部品装着機が知られている。こうした部品装着機は、部品供給位置に供給された部品を装着ヘッドにより採取し、採取した部品を回路基板に装着する過程で、装着ヘッドが採取した部品を部品カメラで撮像し、位置決めされた回路基板を基板カメラで撮像する。また、部品装着機は、部品カメラ及び基板カメラの撮像位置に対する装着ヘッドの位置決め制御を行うにあたり、装着ヘッドの位置ずれ補正を行っている。
 例えば、特許文献1には、連続実装時間が予め設定された時間以上である場合に、実装ヘッドの位置補正及びラインカメラの認識原点の位置補正を行い、熱変形による影響を排除する技術が開示されている。また、特許文献2には、基板認識カメラにより撮像された一対のマークの画像上での間隔と、予め記憶されている一対のマークの間隔の基準値とを比較して熱膨張等によるヘッドユニットの移動誤差を測定し、その移動誤差に基づいてヘッドユニットの移動目標位置を補正する技術が開示されている。
特開2007―235019号公報 特開2001-251098号公報
 しかしながら、部品装着機の熱変形量は、部品の装着作業を開始してからの経過時間に伴って変化する。この点に関し、特許文献1に記載の技術は、設定する時間を長くするほど、装着ヘッドの位置ずれが大きくなり、部品の装着精度が低下する一方、設定時間を短くするほど、装着ヘッドの位置ずれ補正を行う頻度が高くなり、部品の装着作業の効率が低下する。
 本明細書は、部品の装着精度を維持しつつ、部品の装着作業を効率よく行うことができる部品装着機及び部品装着方法を提供することを目的とする。
 本明細書は、部品供給位置と回路基板との間を移動する移動装置と、前記移動装置に設けられ、前記部品供給位置に供給された部品を採取し、採取した前記部品を前記回路基板に装着する装着ヘッドと、前記装着ヘッドにより採取された前記部品を前記装着ヘッドの下方から撮像可能な部品カメラと、前記移動装置に設けられ、前記回路基板を上方から撮像可能な基板カメラと、前記部品カメラによる前記装着ヘッドの撮像で得られる画像データに基づき、前記部品カメラの撮像時における前記移動装置の位置座標である撮像位置座標を記憶する撮像位置記憶部と、前記基板カメラに対する前記装着ヘッドの相対位置である相対位置座標を記憶する相対位置記憶部と、前記移動装置が前記撮像位置座標に到達した際に前記部品カメラによる前記装着ヘッドの撮像を行い、当該撮像で得られる画像データから把握される前記装着ヘッドの位置に基づき、前記相対位置記憶部に記憶する前記相対位置座標の補正要否を判定する補正要否判定部と、を備える、部品装着機を開示する。
 また、本明細書は、部品供給位置と回路基板との間を移動する移動装置と、前記移動装置に設けられ、前記部品供給位置に供給された部品を採取し、採取した前記部品を前記回路基板に装着する装着ヘッドと、前記装着ヘッドにより採取された前記部品を前記装着ヘッドの下方から撮像可能な部品カメラと、前記移動装置に設けられ、前記回路基板を上方から撮像する基板カメラと、を備えた部品装着機の部品装着方法を開示する。前記部品装着方法は、前記部品カメラによる前記装着ヘッドの撮像で得られる画像データに基づき、前記部品カメラの撮像時における前記移動装置の位置座標である撮像位置座標を記憶する撮像位置座標記憶工程と、前記基板カメラに対する前記装着ヘッドの相対位置である相対位置座標を記憶する相対位置座標記憶工程と、前記移動装置が前記撮像位置座標に到達したした際に前記部品カメラによる前記装着ヘッドの撮像を行う部品撮像工程と、前記部品撮像工程での撮像により得られる画像データから把握される前記装着ヘッドの位置に基づき、前記相対位置座標の補正要否を判定する補正要否判定工程と、を備える。
 本開示の部品装着機によれば、補正要否判定部は、移動装置が撮像位置座標に到達した際に部品カメラによる装着ヘッドの撮像を行い、当該撮像で得られる画像データから把握される装着ヘッドの位置に基づき、相対位置座標の補正要否を判定する。この場合、部品装着機は、相対位置座標の補正を適切なタイミングで行うことができるので、部品の装着精度を維持しつつ、部品の装着作業を効率よく行うことができる。
 また、本開示の部品装着方法によれば、補正要否判定工程は、部品撮像工程での撮像により得られる画像データから把握される装着ヘッドの位置に基づき、相対位置座標の補正要否を判定する。この場合、部品装着方法は、相対位置座標の補正を適切なタイミングで行うことができるので、部品の装着精度を維持しつつ、部品の装着作業を効率よく行うことができる。
本明細書の一実施形態における部品装着機の斜視図である。 装着ヘッドを下方から見た図である。 部品カメラを上方から見た図である。 制御装置のブロック図である。 基板カメラの光軸を基準マークと同軸にした状態で基板カメラによる撮像を行った際の基板カメラのカメラ視野を示す図である。 部品カメラにより装着ヘッドを下方から撮像した際の部品カメラのカメラ視野を示す図である。 実際のヘッドマークの位置と理論上のヘッドマークとの位置ずれ量を、第一測定部により測定する手順を示す図である。 部品保持部が部品を保持した状態で、部品カメラにより装着ヘッドを下方から撮像した際の部品カメラのカメラ視野を示す図である。 実際のヘッドマークの位置と理論上のヘッドマークとの位置ずれ量を、第二測定部により測定する手順を示す図である。 部品装着機による部品の装着作業時間と、撮像位置座標及び相対位置座標の位置ずれ量又は相対位置座標の位置ずれ補正量との関係を示す図である。 制御装置により実行される補正処理のフローチャートを示す図である。 補正処理の中で実行される初期測定処理のフローチャートを示す図である。 補正処理の中で実行される撮像位置座標補正処理のフローチャートを示す図である。 補正処理の中で実行される相対位置座標補正処理のフローチャートを示す図である。
 1.部品装着機1の概略構成
 以下、本明細書に開示する部品装着機及び部品装着方法を適用した実施形態について、図面を参照しながら説明する。まず、図1を参照して、一実施形態における部品装着機1の概略構成を説明する。
 図1に示すように、部品装着機1は、基板搬送装置10と、部品供給装置20と、部品移載装置30と、部品カメラ40と、基板カメラ50と、制御装置100(図4参照)と、を主に備える。なお、以下において、部品装着機1の左右方向をX軸方向、前後方向をY軸方向、鉛直方向をZ軸方向と定義する。
 基板搬送装置10は、X軸方向に架け渡された一対のベルトコンベア11等により構成される。基板搬送装置10は、搬入された回路基板KをX軸方向へ順次搬送し、所定位置まで搬送された回路基板Kの位置決めを行う。また、基板搬送装置10は、位置決めされた回路基板Kに対する部品の装着処理が終了すると、回路基板Kを部品装着機1の機外へ搬出する。
 部品供給装置20は、回路基板Kに装着する部品Pを供給する。部品供給装置20は、X軸方向に配列された複数のスロット21を備える。さらに、部品供給装置20は、複数のスロット21の各々に交換可能にセットされる複数のフィーダ22を備える。フィーダ22は、リール23に巻回されたキャリアテープを送り移動させ、キャリアテープに収納された部品Pを、フィーダ22の先端側(図1右上側)に設けられた部品供給位置に供給する。
 部品移載装置30は、部品供給装置20によって供給された部品Pを採取し、採取した部品Pを位置決めされた回路基板Kに装着する。部品移載装置30は、移動装置31と、装着ヘッド32とを主に備える。
 移動装置31は、一対のY軸ガイドレール61と、Y軸スライダ62と、Y軸モータ63(図4参照)と、一対のX軸ガイドレール64と、X軸スライダ65と、X軸モータ66(図4参照)とを備える。一対のY軸ガイドレール61は、Y軸方向へ平行に延びる長尺の部材である。Y軸スライダ62は、一対のY軸ガイドレール61に架け渡され、Y軸モータ63に駆動されることでY軸方向へ移動可能に設けられる。一対のX軸ガイドレール64は、X軸方向へ平行に延びる長尺の部材である。X軸スライダ65は、一対のX軸ガイドレール64に取り付けられ、X軸モータ66に駆動されることでX軸方向へ移動する。
 装着ヘッド32は、ヘッド本体71と、部品保持部72とを主に備える。ヘッド本体71は、X軸スライダ65に対して着脱可能に設けられる。部品保持部72は、部品Pを保持可能な吸着ノズルであり、部品供給位置に供給された部品P(図8参照)を採取し、採取した部品Pを回路基板Kに装着する。
 また、図2に示すように、ヘッド本体71の下面側には、4つの円形状のマークからなるヘッドマーク73が付されている。このヘッドマーク73は、部品カメラ40による撮像で得られた画像データの画像処理を行う際に、装着ヘッド32の基準位置となる。
 図1に戻り、説明を続ける。部品カメラ40及び基板カメラ50は、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子を有するデジタル式の撮像装置である。部品カメラ40及び基板カメラ50は、通信可能に接続された制御装置100による制御信号に基づいてカメラ視野に収まる範囲の撮像を行い、当該撮像により取得した画像データを制御装置100へ送信する。部品カメラ40は、装着ヘッド32により採取された部品Pを装着ヘッド32の下方から撮像可能な撮像装置である。部品カメラ40は、光軸がZ軸方向となるように部品装着機1の基台に固定され、装着ヘッド32に保持された部品Pを下方から撮像する。基板カメラ50は、回路基板Kを上方から撮像可能な撮像装置である。基板カメラ50は、装着ヘッド32から離れた位置において、光軸がZ軸方向となるようにX軸スライダ65に固定される。
 また、図3に示すように、部品カメラ40は、レンズユニット41と、そのレンズユニット41の上方を覆うカバー42とを備える。カバー42の四隅には、円形状の基準マーク43が1つずつ付され、カバー42は、4つの基準マーク43の中心が部品カメラ40の光軸と一致する位置に配置される。また、4つの基準マーク43は、部品カメラ40のカメラ視野に収まる。
 図4に示すように、制御装置100は、CPUや各種メモリ等により構成される。制御装置100は、記憶装置110と、装着制御部120と、画像処理部130と、入出力インターフェース140とを備える。これら記憶装置110、装着制御部120、画像処理部130及び入出力インターフェース140は、バス150を介して互いに接続されている。
 2.制御装置100について
 制御装置100には、移動装置31の各種モータからの検知信号や、装着ヘッド32の各種モータや各種センサから検知信号、部品カメラ40及び基板カメラ50からの画像信号等が、入出力インターフェース140を介して入力される。また、装着制御部120及び画像処理部130からは、基板搬送装置10、部品供給装置20、移動装置31の各種モータ、装着ヘッド32の各種モータや各種センサ、部品カメラ40や基板カメラ50への制御信号等が入出力インターフェース140を介して出力される。
 記憶装置110は、ハードディスク装置等の光学ドライブ装置やフラッシュメモリ等により構成される。記憶装置110は、制御プログラム、制御情報、部品カメラ40及び基板カメラ50による撮像で得られた画像データ等が記憶されている。
 装着制御部120は、記憶装置110に記憶された制御プログラムや制御情報、各種センサによる情報、画像処理や認識処理の結果に基づき、基板搬送装置10や部品供給装置20、部品移載装置30に制御信号を出力する。さらに、装着制御部120は、装着ヘッド32及び部品保持部72の位置及び回転角度を制御する。具体的に、装着制御部120は、各種モータや各種センサ等から出力される情報や各種認識処理の結果等を入力する。
 画像処理部130は、部品撮像部131と、基板撮像部132とを主に備える。部品撮像部131は、部品カメラ40による撮像を制御する。そして、部品撮像部131は、部品カメラ40による撮像で得られた画像データを取得し、部品保持部72に保持された部品Pの保持位置や姿勢等を確認する。
 基板撮像部132は、基板カメラ50による撮像を制御する。そして、基板撮像部132は、基板カメラ50による撮像で得られた画像データを取得し、回路基板Kに付された基板マーク(図示せず)を認識することにより、回路基板Kに位置決め状態を把握する。その後、装着制御部120は、回路基板Kの位置決め状態に基づき、装着ヘッド32が部品Pを回路基板Kに装着する際の移動装置31の位置を補正する。
 また、記憶装置110は、相対位置記憶部111と、撮像位置記憶部112とを更に備える。相対位置記憶部111は、基板カメラ50に対する装着ヘッド32の相対位置である相対位置座標、より具体的には、基板カメラ50の光軸に対するヘッドマーク73の相対位置座標を記憶する。この相対位置座標は、装着制御部120が回路基板Kに対する部品Pの装着位置を算出する際に用いられる。即ち、装着ヘッド32と基板カメラ50とは移動装置31に並べて配置されているため、部品Pを回路基板Kに装着する際の移動装置31の位置は、基板カメラ50に対する部品保持部72の相対位置座標を加味して算出される。
 しかしながら、部品移載装置30は、部品装着機1による部品Pの装着作業に伴って熱変形しやすく、基板カメラ50の光軸と部品保持部72の中心との距離は、部品移載装置30の熱変形の影響を受けて変化する。
 これに対し、画像処理部130は、基板カメラ50に対する装着ヘッド32の相対位置である相対位置座標を測定する第一測定部133を備える。第一測定部133は、部品装着機1による部品Pの装着作業を行う過程で、相対位置座標の測定を行い、相対位置記憶部111に記憶されている相対位置座標を補正する。
 撮像位置記憶部112は、部品カメラ40で装着ヘッド32を撮像する際の移動装置31の位置座標である撮像位置座標を記憶する。具体的に、撮像位置記憶部112には、部品カメラ40の光軸がヘッドマーク73に一致するように装着ヘッド32が配置されたときの移動装置31の位置座標が、撮像位置座標として記憶される。制御装置100は、採取すべき全ての部品Pを部品保持部72により採取した後、部品保持部72に保持された部品Pを部品カメラ40により撮像する際に、装着制御部120による制御を行い、移動装置31を撮像位置座標に移動させる。
 しかしながら、部品移載装置30の熱変形は、部品供給装置20による部品Pの供給位置から部品カメラ40の撮像位置までの距離にも影響を与える。即ち、部品装着機1による部品Pの装着作業を進めるにつれて、部品供給位置から部品カメラ40の撮像位置までの距離が変化する。その結果、移動装置31を撮像位置座標に移動させたとしても、部品カメラ40の光軸とヘッドマーク73とに位置ずれが発生し、その位置ずれ量は、部品Pの作業時間の経過とともに大きくなる。
 これに対し、画像処理部130は、部品カメラ40の光軸とヘッドマーク73との位置ずれ量を測定する第二測定部134を備える。第二測定部134は、部品装着機1による部品Pの装着作業を行う過程で、部品カメラ40の光軸とヘッドマーク73との位置ずれ量を測定し、撮像位置記憶部112に記憶されている撮像位置座標の補正を行う。具体的に、第二測定部134は、部品カメラ40による撮像で得られた画像データから把握される装着ヘッド32のヘッドマーク73の実際の位置と、撮像位置記憶部112に記憶された撮像位置座標に基づいて算出される装着ヘッド32のヘッドマーク73の位置との位置ずれ量を測定する。
 3.基準位置座標の補正
 ここで、図5から図7を参照しながら、第一測定部133により行われる基準位置座標の補正手順の一例について説明する。なお、以下において、部品カメラ40の視野を一点鎖線により、基板カメラ50の視野を二点鎖線により、それぞれ図示する。
 図5に示すように、基準位置座標の測定を行う際、最初に、制御装置100は、基板撮像部132による制御を行い、部品カメラ40に付された1つの基準マーク43を基板カメラ50により撮像する。このとき、制御装置100は、装着制御部120による制御を行い、基板カメラ50の光軸が基準マーク43の中心と一致する位置に移動装置31を移動させる。これにより、部品カメラ40から見た基板カメラ50の位置は、部品移載装置30に発生した熱変形量に関係なく一定となる。
 次に、制御装置100は、図6に示すように、部品撮像部131による制御を行い、部品カメラ40により装着ヘッド32を下方から撮像する。そして、第一測定部133は、部品カメラ40による撮像で得られた画像データに基づき、ヘッドマーク73の位置座標を測定する。具体的に、第一測定部133は、基板カメラ50の光軸と一致させた基準マーク43(以下「測定基準マーク43a」と称する)に対するヘッドマーク73の実際の相対位置座標(X,Y)を測定する。また、実際の相対位置座標(X,Y)と測定基準マーク43aとの距離Lは、基板カメラ50の光軸とヘッドマーク73との実際の距離に相当する。
 そして、図7に示すように、第一測定部133は、相対位置記憶部111に記憶されている相対位置座標に基づいて算出されるヘッドマーク73の理論上の相対位置(X0,Y0)と、第一測定部133により測定されたヘッドマーク73の実際の相対位置(X,Y)との位置ずれ量(ΔX,ΔY)を測定する。なお、理論上の相対位置座標(X0,Y0)と測定基準マーク43aとの距離は、基板カメラ50の光軸とヘッドマーク73との理論上の距離L0に相当し、実際の距離Lと理論上の距離L0との差が、部品移載装置30の熱変形に伴って発生した基板カメラ50と装着ヘッド32との距離の変化量(ΔL)に相当する。そして、画像処理部130は、第一測定部133により測定された位置ずれ量(ΔX,ΔY)に基づき、相対位置記憶部111に記憶された相対位置座標を補正する。
 4.撮像位置座標の補正
 次に、図8及び図9を参照して、第二測定部134により行われる撮像位置座標の補正手順の一例を説明する。なお、図9は、装着ヘッド32のうちヘッドマーク73以外の図示を省略し、図面を簡略化している。
 図8に示すように、撮像位置座標の補正を行うにあたり、第二測定部134は、部品カメラ40により装着ヘッド32を下方から撮像した際の画像データに基づき、ヘッドマーク73の位置座標を測定する。具体的に、第二測定部134は、部品保持部72に保持された部品Pを部品カメラ40で撮像した際に得られる画像データに基づき、基準マーク43に対するヘッドマーク73の実際の相対位置座標(x,y)を測定する。
 そして、図9に示すように、第二測定部134は、撮像位置記憶部112に記憶されている相対位置座標に基づいて算出されるヘッドマーク73の理論上の相対位置(x0,y0)と、第二測定部134により測定されたヘッドマーク73の実際の相対位置(x,y)との位置ずれ量(Δx,Δy)を測定する。そして、画像処理部130は、第二測定部134により測定された位置ずれ量(Δx,Δy)に基づき、撮像位置記憶部112に記憶された撮像位置座標を補正する。
 ここで、部品カメラ40による装着ヘッド32の撮像は、装着ヘッド32が部品供給位置から回路基板Kへ移動する度に行われる。そのため、制御装置100は、撮像位置座標の補正を、供給された部品Pを回路基板Kへ装着するたびに行うことができ、部品装着機1は、部品Pの装着作業と並行して撮像位置座標の補正を行うことができる。
 これにより、部品装着機1は、部品カメラ40による部品Pの撮像を行うに際し、部品カメラ40の撮像条件に適した位置に部品Pが配置された状態で、部品カメラ40による撮像を行うことができる。即ち、部品カメラ40による撮像時に部品Pに照射する光の当たり具合や部品カメラ40のレンズの歪みの違いにより、部品カメラ40の撮像で得られる画像データに違いが生じることを抑制できる。よって、制御装置100は、部品保持部72に保持された部品Pの姿勢や部品保持部72に対する位置ずれを正確に把握することができる。
 一方、部品装着機1は、基板カメラ50による基準マーク43の撮像(図5参照)は、部品Pの装着作業とは別に行われる処理であり、相対位置座標の補正は、部品Pの装着作業と並行して行うことができない。従って、部品装着機1は、相対位置座標の補正を行う際に、部品Pの装着作業を一時中断する必要がある。
 この点に関し、画像処理部130は、相対位置座標の補正要否を判定する補正要否判定部135を備える。補正要否判定部135は、第二測定部134により測定された位置ずれ量が予め定めた閾値thを超えた場合に、相対位置記憶部111に記憶された相対位置座標の補正が必要であると判定する。
 また、撮像位置記憶部112は、補正位置記憶部113と、基準座標記憶部114とを備える。補正位置記憶部113は、第二測定部134による測定結果に基づいて補正した撮像位置座標を記憶する。制御装置100は、部品保持部72に保持された部品Pを部品カメラ40により撮像する際、装着制御部120による制御を行い、補正位置記憶部113に記憶された撮像位置座標に移動装置31を移動させる。そして、移動装置31が撮像位置座標に到達した際に、部品撮像部131は、部品カメラ40により装着ヘッド32を下方から撮像し、その撮像により得られる画像データに基づいて装着ヘッド32に付されたヘッドマーク73の位置を把握する。
 基準座標記憶部114は、第一測定部133による相対位置座標の測定を行った際に補正位置記憶部113に記憶されている撮像位置座標を基準座標として記憶する。第一測定部133は、基準座標記憶部114に記憶された基準座標に基づいてヘッドマーク73の理論上の相対位置(X0,Y0)を算出する。
 5.相対位置座標の測定時期
 ここで、相対位置座標の測定時期について説明する。図10に示すように、部品移載装置30の熱変形に伴う部品カメラ40の撮像位置の位置ずれ量及び基板カメラ50と装着ヘッド32との距離の変化量は、部品装着機1による部品Pの装着作業の開始当初ほど大きく、時間が経過するにつれて小さくなる。この点において、部品カメラ40の撮像位置の位置ずれ量及び基板カメラ50と装着ヘッド32との距離の変化量との間には、因果関係がある。
 そして、基板カメラ50と装着ヘッド32との距離の変化量は、部品カメラ40の撮像位置の位置ずれ量と比べて小さい。そこで、部品装着機1は、部品Pの装着作業と並行して部品撮像位置の補正を行いつつ、移動装置31の基準座標に対する実際の移動装置31の位置座標の位置ずれ量が閾値thを超えた場合に、相対位置座標の補正を行う。
 移動装置31の基準座標と実際の移動装置31の位置座標とが一致するように相対位置座標の補正が行われることにより、移動装置31の基準座標に対する実際の移動装置31の位置座標の位置ずれがなくなるため、閾値thの値は、一旦リセットされる。その後、部品装着機1は、移動装置31の基準座標に対する実際の移動装置31の位置座標の位置ずれ量が閾値thを超える毎に、相対位置座標の補正を行う。
 ここで、部品移載装置30の熱変形量は、部品装着機1による部品Pの装着作業の開始当初ほど大きく、装着作業を開始してからの経過時間が長くなるにつれて小さくなる。これに対し、補正要否判定部135は、移動装置31の基準座標に対する実際の移動装置31の位置座標の位置ずれ量が閾値thを超えた場合に、相対位置座標の補正が必要であると判定するので、部品移載装置30の熱変形量に応じて、相対位置座標の補正を行うタイミングを変えることができる。よって、部品装着機1は、部品Pの装着作業を効率よく行いつつ、相対位置座標の補正を適切なタイミングで行うことができる。
 なお、図10に示す例では、閾値thが一定値である場合を例に挙げて説明したが、閾値thは、部品装着機1による部品Pの装着作業の開始してからの経過時間や相対位置座標の補正回数等に応じて変化させてもよい。例えば、撮像位置座標の位置ずれ量と相対位置座標の位置ずれ量との関係を、装着作業の開始してからの経過時間ごとに見た場合に、双方の位置ずれ量の増加率の変化に違いが生じることが考えられる。このような場合において、装着作業の開始当初に設定する閾値thと開始してから一定時間経過後で設定する閾値thとで差を設けることにより、部品装着機1は、部品Pの装着作業を効率よく行いつつ、相対位置座標の補正を適切なタイミングで行うことができる。
 6.補正処理
 6-1:補正処理の概略
 次に、図11に示すフローチャートを参照しながら、画像処理部130により実行される補正処理の概略を説明する。図11に示すように、補正処理は、最初に、初期測定処理(S1)を実行する。初期測定処理(S1)は、部品装着機1による部品Pの装着処理を開始する前に実行する処理である。
 補正処理は、初期測定処理(S1)の実行後に、撮像位置座標補正処理(S2)を実行する。撮像位置座標補正処理(S2)は、部品Pの装着作業を行う中で、部品供給位置に供給された部品Pの採取が終了した後に実行される処理である。補正処理は、撮像位置座標補正処理(S2)の実行後に、制御プログラム等において予定されていた最後の部品Pの採取が終了したか否かの判定を行う(S3)。そして、予定されていた部品Pの採取が全て終了した場合(S3:Yes)、補正処理は、そのまま本処理を終了する。一方、予定されていた部品Pの採取が全て終了していない場合(S3:No)、補正処理は、続いて相対位置座標補正処理(S4:補正要否判定処理)を実行する。相対位置座標補正処理(S4)は、必要に応じて相対位置座標の補正を実行する処理である。
 なお、補正処理において実行する部品カメラ40及び基板カメラ50による撮像時における移動装置31の位置補正は、熱変形に起因する位置ずれの補正だけでなく、バックラッシ等に起因する位置ずれの補正も併せて行う。
 6-2:初期測定処理
 次に、図12に示すフローチャートを参照しながら、補正処理の中で実行される初期測定処理(S1)を説明する。
 初期測定処理(S1)は、最初に、撮像位置座標の測定を行い(S11:撮像位置座標記憶工程の一例)、ヘッドマーク73の位置を部品カメラ40の光軸と一致させる。具体的に、S11の処理において、画像処理部130は、撮像位置記憶部112の補正位置記憶部113に記憶されている撮像位置座標に移動装置31を移動させた状態で、部品カメラ40による撮像を行う(図8参照)。そして、第二測定部134は、部品カメラ40による撮像で得られた画像データから把握される実際のヘッドマーク73の位置と、補正位置記憶部113に記憶された補正位置座標に基づいて算出される理論上のヘッドマーク73の位置との位置ずれ量を測定する(図9参照)。その後、初期測定処理(S1)は、第二測定部134に測定された位置ずれ量に基づき、補正された撮像位置座標を補正位置記憶部113に記憶する(S12:撮像位置座標記憶工程)。
 次に、初期測定処理(S1)は、相対位置座標の測定を行い(S13:測定工程)、基板カメラ50と装着ヘッド32との距離を把握する。具体的に、S13の処理において、第一測定部133は、基板カメラ50の光軸を測定基準マーク43aと同軸に配置した状態で、部品カメラ40による撮像を行う(図6参照)。そして、第一測定部133は、相対位置記憶部111に記憶された相対位置座標(初期値として記憶された相対位置座標や前回の部品Pの装着作業時に記憶された相対位置座標等)に基づいて算出される理論上のヘッドマーク73の位置と、第一測定部133が測定した実際のヘッドマーク73の位置との位置ずれ量を測定する(図7参照)。
 その後、初期測定処理(S1)は、第一測定部133により測定された位置ずれ量に基づいて補正された相対位置座標を相対位置記憶部111に記憶する(S14:相対位置座標記憶工程)。続いて、初期測定処理(S1)は、補正位置記憶部113に記憶されている撮像位置座標を基準座標記憶部114に記憶し(S15)、本処理を終了する。
 6-3:撮像位置座標補正処理
 次に、図13に示すフローチャートを参照しながら、補正処理の中で実行される撮像位置座標補正処理(S2)を説明する。
 図13に示すように、撮像位置座標補正処理(S2)は、補正位置記憶部113に記憶された撮像位置座標に移動装置31が到達したか否かの判定を行う(S21)。S21の処理は、移動装置31が撮像位置座標に到達するまで繰り返し実行される。そして、撮像位置座標補正処理(S2)は、移動装置31が撮像位置座標に到達したと判定すると(S21:Yes)、部品撮像部131による制御を行い、部品カメラ40による撮像を行う(S22:部品撮像工程)。
 S22の処理後、撮像位置座標補正処理(S2)は、装着ヘッド32の位置ずれ量を算出する(S23:測定工程)。具体的に、第二測定部134は、S23の処理において、S22の処理で得られた画像データから把握される実際のヘッドマーク73の位置と、補正位置記憶部113に記憶された撮像位置座標に基づいて算出される理論上のヘッドマーク73の位置との位置ずれ量を測定する。次に、撮像位置座標補正処理(S2)は、S23の処理において第二測定部134により測定された位置ずれ量に基づき、補正位置記憶部113に記憶されている撮像位置座標の補正を行い(S24)、本処理を終了する。
 6-4:相対位置座標補正処理
 次に、図14に示すフローチャートを参照しながら、補正処理の中で実行される相対位置座標補正処理(S4)を説明する。
 図14に示すように、相対位置座標補正処理(S4)は、最初に、基準座標に対する撮像位置座標の位置ずれ量を測定する(S41)。具体的に、第二測定部134は、S41の処理において、上記したS22の処理で得られた画像データから把握される実際のヘッドマーク73の位置と、基準座標記憶部114に記憶された基準座標に基づいて算出される理論上のヘッドマーク73の位置との位置ずれ量を算出する。
 次に、相対位置座標補正処理(S4)は、相対位置座標の補正要否を判定する(S42:補正要否判定工程)。具体的に、補正要否判定部135は、S41の処理で第二測定部134により測定された位置ずれ量が予め定めた閾値thを超えたか否かを判定する。S42の処理において、第二測定部134により測定された位置ずれ量が予め定めた閾値thを超えていなければ(S42:No)、相対位置座標補正処理(S4)は、相対位置座標の補正を行う必要がないと判断し、そのまま本処理を終了する。
 一方、S42の処理において、第二測定部134により測定された位置ずれ量が閾値thを超える場合(S42:Yes)、相対位置座標補正処理(S4)は、相対位置座標の測定を行う(S43)。具体的に、第一測定部133は、上記したS22の処理で得られた画像データから把握されるヘッドマーク73の実際の相対位置と、相対位置記憶部111に記憶された相対位置座標に基づいて算出されるヘッドマーク73の理論上の相対位置との位置ずれ量を測定する(図5~図7参照)。
 次に、相対位置座標補正処理(S4)は、S43の処理において第一測定部133により測定された位置ずれ量に基づき、相対位置記憶部111に記憶されている相対位置座標の補正を行う(S44)。続いて、相対位置座標補正処理(S4)は、補正位置記憶部113に記憶されている撮像位置座標を基準座標記憶部114に記憶する(S45)。このS45の処理により、基準座標に対する撮像位置座標の位置ずれ量は、一旦リセットされる(図10参照)。S45の処理後、相対位置座標補正処理(S4)は、本処理を終了する。
 以上説明したように、補正要否判定部135は、移動装置31が撮像位置座標に到達した際に部品カメラ40による装着ヘッド32の撮像を行い、当該撮像で得られる画像データから把握される装着ヘッド32の位置に基づき、相対位置座標の補正要否を判定する。この場合、部品装着機1は、相対位置座標の補正を適切なタイミングで行うことができるので、部品Pの装着作業を効率よく行うことができる。
 補正要否判定部135が相対位置座標の補正要否を判定するにあたり、第二測定部134は、装着ヘッド32のヘッドマーク73の実際の位置と、撮像位置座標に基づいて算出される装着ヘッド32のヘッドマーク73の理論上の位置との位置ずれ量を測定する。そして、補正要否判定部135は、第二測定部134が測定した位置ずれ量に基づき、装着ヘッド32の実際の位置と基準座標に基づいて算出される装着ヘッド32の位置との位置ずれ量が予め設定された閾値thを超えた場合に、相対位置座標の補正が必要であると判定する。これにより、部品装着機1は、相対位置座標の補正を適切なタイミングで行うことができる。
 7.その他
 以上、上記実施形態に基づいて本明細書に開示する部品装着機及び部品装着方法について説明したが、上記形態に何ら限定されるものではなく、本開示の趣旨を逸脱しない範囲内で種々の変形改良が可能であることは容易に推察できるものである。
 例えば、上記実施形態において、画像処理部130は、部品装着機1による部品Pの装着作業において部品カメラ40による撮像を行うたびに、部品撮像位置の補正を行う場合について説明したが、これに限られるものではない。即ち、部品撮像座標の補正は、部品カメラ40の撮像時におけるヘッドマーク73の実際の位置と理論上の位置との位置ずれ量が予め定めた閾値を超えた場合に行ってもよい。またこの場合、部品撮像座標の補正要否判定に用いる閾値は、相対位置座標の補正要否判定に用いる閾値と同一でもよく、補正要否判定部135が相対位置座標の補正を行う必要があると判定した場合に、相対位置座標の補正と併せて撮像位置座標の補正を行ってもよい。
 また、本実施形態において、第一測定部133及び第二測定部134は、ヘッドマーク73を基準として位置ずれ量の測定を行う場合について説明したが、ヘッドマーク73の代わりに部品保持部72を基準として位置ずれ量の測定を行ってもよい。
 1:部品装着機、 31:移動装置、 32:装着ヘッド、 40:部品カメラ、 50:基板カメラ、 111:相対位置記憶部、 112:撮像位置記憶部、 114:基準座標記憶部、 134:第二測定部(測定部)、 135:補正要否判定部、 K:回路基板、 P:部品、 th:閾値、 S12:撮像位置座標記憶工程、 S14:相対位置座標記憶工程、 S22:部品撮像工程、 S23:測定工程、 S42:補正要否判定工程

Claims (5)

  1.  部品供給位置と回路基板との間を移動する移動装置と、
     前記移動装置に設けられ、前記部品供給位置に供給された部品を採取し、採取した前記部品を前記回路基板に装着する装着ヘッドと、
     前記装着ヘッドにより採取された前記部品を前記装着ヘッドの下方から撮像可能な部品カメラと、
     前記移動装置に設けられ、前記回路基板を上方から撮像可能な基板カメラと、
     前記部品カメラによる前記装着ヘッドの撮像で得られる画像データに基づき、前記部品カメラの撮像時における前記移動装置の位置座標である撮像位置座標を記憶する撮像位置記憶部と、
     前記基板カメラに対する前記装着ヘッドの相対位置である相対位置座標を記憶する相対位置記憶部と、
     前記移動装置が前記撮像位置座標に到達した際に前記部品カメラによる前記装着ヘッドの撮像を行い、当該撮像で得られる画像データから把握される前記装着ヘッドの位置に基づき、前記相対位置記憶部に記憶する前記相対位置座標の補正の要否を判定する補正要否判定部と、
     を備える、部品装着機。
  2.  前記部品装着機は、前記装着ヘッドの実際の位置と、前記撮像位置座標に基づいて算出される前記装着ヘッドの位置との位置ずれ量を測定する測定部を備え、
     前記補正要否判定部は、前記測定部により測定された前記位置ずれ量に基づき、前記相対位置記憶部に記憶する前記相対位置座標の補正要否を判定する、請求項1に記載の部品装着機。
  3.  前記撮像位置記憶部は、前記相対位置座標を測定した際の前記撮像位置座標を基準座標として記憶する基準座標記憶部を備え、
     前記補正要否判定部は、前記装着ヘッドの実際の位置と前記基準座標に基づいて算出される前記装着ヘッドの位置との位置ずれ量が予め設定された閾値を超えた場合に、前記相対位置座標の補正が必要であると判定する、請求項2に記載の部品装着機。
  4.  部品供給位置と回路基板との間を移動する移動装置と、
     前記移動装置に設けられ、前記部品供給位置に供給された部品を採取し、採取した前記部品を前記回路基板に装着する装着ヘッドと、
     前記装着ヘッドにより採取された前記部品を前記装着ヘッドの下方から撮像可能な部品カメラと、
     前記移動装置に設けられ、前記回路基板を上方から撮像する基板カメラと、
     を備えた部品装着機の部品装着方法であって、
     前記部品カメラによる前記装着ヘッドの撮像で得られる画像データに基づき、前記部品カメラの撮像時における前記移動装置の位置座標である撮像位置座標を記憶する撮像位置座標記憶工程と、
     前記基板カメラに対する前記装着ヘッドの相対位置である相対位置座標を記憶する相対位置座標記憶工程と、
     前記移動装置が前記撮像位置座標に到達した際に、前記部品カメラによる前記装着ヘッドの撮像を行う部品撮像工程と、
     前記部品撮像工程での撮像により得られる画像データから把握される前記装着ヘッドの位置に基づき、前記相対位置座標の補正要否を判定する補正要否判定工程と、
     を備える、部品装着方法。
  5.  前記部品装着方法は、前記部品撮像工程での撮像により得られた画像データから把握される前記装着ヘッドの実際の位置と、前記相対位置座標に基づいて算出される前記装着ヘッドの位置との位置ずれ量を測定する測定工程を備え、
     前記補正要否判定工程は、前記測定工程で測定された前記位置ずれ量に基づき、前記相対位置座標の補正要否を判定する、請求項4に記載の部品装着方法。
PCT/JP2017/031478 2017-08-31 2017-08-31 部品装着機及び部品装着方法 WO2019043892A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019538864A JP6752977B2 (ja) 2017-08-31 2017-08-31 部品装着機及び部品装着方法
CN201780094376.5A CN111034387B (zh) 2017-08-31 2017-08-31 元件装配机及元件装配方法
PCT/JP2017/031478 WO2019043892A1 (ja) 2017-08-31 2017-08-31 部品装着機及び部品装着方法
EP17923546.0A EP3678464B1 (en) 2017-08-31 2017-08-31 Component mounting machine and component mounting method
US16/638,597 US11272650B2 (en) 2017-08-31 2017-08-31 Component mounting machine and component mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/031478 WO2019043892A1 (ja) 2017-08-31 2017-08-31 部品装着機及び部品装着方法

Publications (1)

Publication Number Publication Date
WO2019043892A1 true WO2019043892A1 (ja) 2019-03-07

Family

ID=65525274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031478 WO2019043892A1 (ja) 2017-08-31 2017-08-31 部品装着機及び部品装着方法

Country Status (5)

Country Link
US (1) US11272650B2 (ja)
EP (1) EP3678464B1 (ja)
JP (1) JP6752977B2 (ja)
CN (1) CN111034387B (ja)
WO (1) WO2019043892A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7496505B2 (ja) 2020-10-08 2024-06-07 パナソニックIpマネジメント株式会社 部品実装システム及び部品実装方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11330748B2 (en) * 2017-09-22 2022-05-10 Fuji Corporation Electronic component mounting method and electronic component mounting machine
JP7202176B2 (ja) * 2018-12-21 2023-01-11 キヤノン株式会社 搬送装置、基板処理装置、および物品製造方法
CN112312666B (zh) * 2020-11-06 2023-08-15 浪潮电子信息产业股份有限公司 一种电路板打螺钉方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223500A (ja) * 1999-11-29 2001-08-17 Fuji Mach Mfg Co Ltd 電気部品装着システムの精度検査方法
JP2001251098A (ja) 2000-03-07 2001-09-14 Yamaha Motor Co Ltd 部品の実装位置補正方法および表面実装機
JP2007188994A (ja) * 2006-01-12 2007-07-26 Matsushita Electric Ind Co Ltd 電子部品の実装装置および実装方法
JP2007235019A (ja) 2006-03-03 2007-09-13 Matsushita Electric Ind Co Ltd 電子部品の位置認識方法および電子部品実装装置
JP2011124461A (ja) * 2009-12-14 2011-06-23 Juki Corp 電子部品実装装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0152879B1 (ko) * 1995-10-10 1998-12-15 이희종 표면실장기의 부품인식방법 및 장치
DE69732180T2 (de) * 1996-04-18 2006-02-23 Matsushita Electric Industrial Co., Ltd., Kadoma Verfahren und vorrichtung zur bestückung von elektronischen bauelementen
US6538425B1 (en) 1999-11-29 2003-03-25 Fuji Machine Mfg. Co., Ltd. Method of measuring accuracy of electric-component mounting system
US6792674B2 (en) * 2000-04-28 2004-09-21 Hitachi High-Tech Instruments Company, Ltd. Apparatus for mounting electronic components
CN1286353C (zh) * 2003-11-03 2006-11-22 Tdk株式会社 用于安装电子元件的装置和方法
JP4111160B2 (ja) * 2004-03-26 2008-07-02 松下電器産業株式会社 電子部品搭載装置および電子部品搭載方法
JP4903627B2 (ja) * 2007-04-24 2012-03-28 Juki株式会社 表面実装機、及び、そのカメラ位置補正方法
US8527082B2 (en) * 2007-05-24 2013-09-03 Panasonic Corporation Component mounting method, component mounting apparatus, method for determining mounting conditions, and apparatus and program for determining mounting conditions
JP4943300B2 (ja) * 2007-11-07 2012-05-30 Juki株式会社 部品実装装置
JP5444885B2 (ja) * 2009-06-29 2014-03-19 富士通株式会社 実装装置及び実装方法
JP5737989B2 (ja) * 2011-02-14 2015-06-17 富士機械製造株式会社 部品実装機
JP5721509B2 (ja) * 2011-04-13 2015-05-20 富士機械製造株式会社 部品実装機
JP5779386B2 (ja) * 2011-04-19 2015-09-16 富士機械製造株式会社 電気部品装着機
JP5918622B2 (ja) * 2012-05-11 2016-05-18 ヤマハ発動機株式会社 部品または基板の作業装置および部品実装装置
JP6055301B2 (ja) * 2012-12-19 2016-12-27 ヤマハ発動機株式会社 表面実装機
WO2014106892A1 (ja) * 2013-01-07 2014-07-10 富士機械製造株式会社 部品実装機及び部品実装方法
JP6159124B2 (ja) * 2013-04-04 2017-07-05 ヤマハ発動機株式会社 部品実装装置
JP6279708B2 (ja) * 2014-02-25 2018-02-14 富士機械製造株式会社 部品装着装置
WO2016098231A1 (ja) * 2014-12-18 2016-06-23 富士機械製造株式会社 対基板作業機
CN107114008B (zh) * 2014-12-25 2019-11-01 株式会社富士 元件安装机
JP6432044B2 (ja) * 2015-05-18 2018-12-05 パナソニックIpマネジメント株式会社 部品実装装置における高さセンサの測定位置補正方法及び部品実装装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223500A (ja) * 1999-11-29 2001-08-17 Fuji Mach Mfg Co Ltd 電気部品装着システムの精度検査方法
JP2001251098A (ja) 2000-03-07 2001-09-14 Yamaha Motor Co Ltd 部品の実装位置補正方法および表面実装機
JP2007188994A (ja) * 2006-01-12 2007-07-26 Matsushita Electric Ind Co Ltd 電子部品の実装装置および実装方法
JP2007235019A (ja) 2006-03-03 2007-09-13 Matsushita Electric Ind Co Ltd 電子部品の位置認識方法および電子部品実装装置
JP2011124461A (ja) * 2009-12-14 2011-06-23 Juki Corp 電子部品実装装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3678464A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7496505B2 (ja) 2020-10-08 2024-06-07 パナソニックIpマネジメント株式会社 部品実装システム及び部品実装方法

Also Published As

Publication number Publication date
CN111034387B (zh) 2021-09-24
EP3678464A1 (en) 2020-07-08
JPWO2019043892A1 (ja) 2020-04-09
JP6752977B2 (ja) 2020-09-09
EP3678464A4 (en) 2020-08-12
EP3678464B1 (en) 2023-04-05
US11272650B2 (en) 2022-03-08
US20200221618A1 (en) 2020-07-09
CN111034387A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
CN101072495B (zh) 元件安装方法、元件安装装置及元件安装系统
JP5779386B2 (ja) 電気部品装着機
JP6752977B2 (ja) 部品装着機及び部品装着方法
KR102616981B1 (ko) 본딩 장치 및 본딩 헤드의 이동량 보정 방법
JP6804526B2 (ja) 実装装置及び実装方法
CN107921643B (zh) 机器人系统
JP6913231B2 (ja) 部品装着装置
KR20170140402A (ko) 부품 실장장치
JP6271514B2 (ja) 生産設備
JP2009212251A (ja) 部品移載装置
JP4701037B2 (ja) 電子部品の画像取得方法及び装置
JP2009016673A (ja) 部品の吸着位置補正方法および部品移載装置
JP6615206B2 (ja) 測定装置
JP6580419B2 (ja) カメラ用の測定装置および測定方法
JP2006024957A (ja) 部品の実装位置補正方法および表面実装機
JP7003277B2 (ja) 部品装着機および部品採取方法
JP6892552B2 (ja) 部品装着装置
JP6603318B2 (ja) 部品実装装置
JP2019012784A (ja) 部品保持具の偏心補正方法
WO2023157134A1 (ja) 部品実装装置
WO2018158904A1 (ja) 部品実装装置および画像処理方法
CN117480876A (zh) 元件安装机及校正处理的控制方法
CN117337620A (zh) 元件移载装置
CN113228846A (zh) 元件安装装置
JP2018186116A (ja) 対基板作業装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923546

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538864

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017923546

Country of ref document: EP

Effective date: 20200331