WO2023157134A1 - 部品実装装置 - Google Patents
部品実装装置 Download PDFInfo
- Publication number
- WO2023157134A1 WO2023157134A1 PCT/JP2022/006206 JP2022006206W WO2023157134A1 WO 2023157134 A1 WO2023157134 A1 WO 2023157134A1 JP 2022006206 W JP2022006206 W JP 2022006206W WO 2023157134 A1 WO2023157134 A1 WO 2023157134A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mark
- head unit
- camera
- component mounting
- coordinates
- Prior art date
Links
- 238000012937 correction Methods 0.000 claims abstract description 188
- 238000012545 processing Methods 0.000 claims abstract description 149
- 238000003384 imaging method Methods 0.000 claims abstract description 79
- 239000000758 substrate Substances 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims description 74
- 230000008569 process Effects 0.000 claims description 73
- 239000003550 marker Substances 0.000 claims description 11
- 230000007246 mechanism Effects 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 6
- 238000006073 displacement reaction Methods 0.000 description 29
- 230000008859 change Effects 0.000 description 17
- 238000012546 transfer Methods 0.000 description 6
- 230000008602 contraction Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/08—Monitoring manufacture of assemblages
- H05K13/081—Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
- H05K13/0812—Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines the monitoring devices being integrated in the mounting machine, e.g. for monitoring components, leads, component placement
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0266—Marks, test patterns or identification means
- H05K1/0269—Marks, test patterns or identification means for visual or optical inspection
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/04—Mounting of components, e.g. of leadless components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/04—Mounting of components, e.g. of leadless components
- H05K13/0404—Pick-and-place heads or apparatus, e.g. with jaws
- H05K13/0408—Incorporating a pick-up tool
- H05K13/0409—Sucking devices
Definitions
- the present invention relates to a component mounting device that mounts components on a board.
- the head moving mechanism moves the head unit so as to pick up a component from the component supply section and mount the component at a predetermined component mounting position on the board carried into the mounting stage of the apparatus.
- the component mounting position is calibrated by capturing the fiducial mark (hereinafter referred to as FID mark) attached to the board with the camera mounted on the head unit and recognizing the relative positional relationship between the board and the head. specified in the axial coordinate system.
- the XY movement axes expand and contract due to the heat generated by the operation of the device.
- Recognition of the FID mark alone cannot correct the axis coordinate system corresponding to thermal expansion and contraction of the XY movement axes.
- three or more reference marks for calibration are placed on a base on which thermal expansion and contraction can be ignored, and these marks are imaged by the camera. Then, the thermal displacement of the XY movement axes is measured by recognizing the reference mark, and the axis coordinate system is corrected so that the FID mark can be correctly recognized (for example, Patent Document 1).
- the head unit equipped with the camera In order to image the reference mark and the FID mark, it is necessary to move the head unit equipped with the camera along the XY movement axis. In other words, the head unit must not only be moved horizontally between the component supply position and the component mounting position, but must also be moved horizontally for imaging the reference marks and the FID marks. This is a factor that hinders shortening of the tact time for component mounting.
- An object of the present invention is to provide a component mounting apparatus that can correct the axis coordinate system corresponding to thermal expansion and contraction of the moving axis of the head unit while suppressing the tact loss as much as possible.
- a component mounting apparatus comprises a base having a reference mark for calibration, a head unit having a head for mounting a component on a board having a board recognition mark, and a head unit set on the base.
- a head moving mechanism for horizontally moving the head unit along the movement axis, a camera mounted on the head unit and capable of imaging the reference mark and the substrate recognition mark, and an imaging operation of the camera.
- a control unit that controls and controls the movement of the head unit based on a predetermined axis coordinate system. The control unit causes the camera to image the reference mark and the board recognition mark, and obtains corrected mark coordinates, which are designated coordinates of the board recognition mark in the axial coordinate system calibrated by recognition of the reference mark.
- the position of the actual mark coordinates with respect to the new post-correction mark coordinates is acquired by calculation, and the movement correction amount of the head unit is based on the difference between the two. and a second process for obtaining .
- FIG. 1 is a plan view schematically showing the configuration of a component mounting apparatus according to a first embodiment of the present invention
- FIG. FIG. 2 is a front view of a head unit provided in the component mounting apparatus
- FIG. 3 is a block diagram showing the electrical configuration of the component mounting apparatus.
- FIG. 4 is a flow chart showing correction processing of the axis coordinate system of the movement axis in the component mounting apparatus of the first embodiment.
- FIG. 5 is a tabular diagram showing examples of correction modes.
- FIG. 6 is a plan view of a component mounting apparatus showing a modification of the first embodiment
- FIG. 7 is a plan view schematically showing a component mounting apparatus according to the second embodiment.
- FIG. 8 is a flow chart showing correction processing of the axis coordinate system of the movement axis in the component mounting apparatus of the second embodiment.
- FIG. 9 is a plan view schematically showing a component mounting apparatus according to the third embodiment.
- FIG. 10 is a flow chart showing correction processing of the axis coordinate system of the movement axis in the component mounting apparatus of the third embodiment.
- a component mounting apparatus described below is an apparatus for mounting electronic components on a printed circuit board.
- Electronic parts are, for example, chip parts such as chip resistors and chip capacitors, ball bump parts, package type parts such as ICs.
- FIG. 1 is a plan view showing a schematic configuration of a component mounting apparatus 1
- FIG. 2 is a front view showing a schematic configuration of a head unit portion of the component mounting apparatus 1.
- FIG. The component mounting apparatus 1 is an apparatus for producing a mounting substrate by mounting various electronic components on a substrate P.
- the component mounting apparatus 1 includes a base 10 , a board transfer section 2 , a component supply section 3 (component supply apparatus), a head unit 4 , a board recognition camera 5 (camera), and a multi-camera 11 .
- XYZ direction indications are given.
- the X direction may be referred to as the lateral direction, which is the movement direction of the substrate P
- the Y direction may be referred to as the front-rear direction
- the Z direction may be referred to as the vertical direction.
- the base 10 has a rectangular shape in a plan view and a flat top surface, and the board transfer section 2 and the component supply section 3 are assembled.
- the board transporter 2 transports a board P on which electronic components are mounted.
- the board transfer section 2 has a pair of conveyors 21 and 22 for transferring the board P in the left-right direction (X direction) on the base 10 .
- the conveyors 21 and 22 carry the board P into the component mounting apparatus 1 from the right side, transport it leftward to a predetermined working position, here the position of the board P shown in FIG. 1, and temporarily stop it. Electronic components are mounted on the board P in this working position. After the mounting work, the conveyors 21 and 22 convey the board P to the left side and carry it out of the component mounting apparatus 1 .
- the component supply unit 3 supplies electronic components 6 to be mounted on the board P.
- the component supply units 3 are arranged in the front-rear direction (Y direction) of the board transfer unit 2 .
- Each component supply section 3 includes a plurality of tape feeders 31 arranged in the horizontal direction.
- Each tape feeder 31 holds a reel wound with a tape containing electronic components such as chip components at predetermined intervals.
- the tape feeder 31 intermittently feeds the tape from the reel and supplies chip components to a component supply position at the tip of the feeder.
- the head unit 4 picks up electronic components from the component supply section 3 and mounts them on the board P.
- the head unit 4 is arranged movably along XY horizontal movement axes set on the base 10, picks up electronic components from the tape feeder 31 at the component supply position, and feeds the electronic components at the work position. is mounted at a predetermined position on the substrate P.
- a support beam 23 extending in the X direction is provided above the base 10 .
- the head unit 4 is movably supported on an X-axis fixed rail 24 (moving axis) fixed to a support beam 23 .
- the support beam 23 is supported by a Y-axis fixed rail 25 extending in the Y direction, and is movable in the Y direction along this Y-axis fixed rail 25 (movement axis).
- An X-axis servomotor 26 and a ball screw shaft 27 are arranged with respect to the X-axis fixed rail 24 as an X-direction head moving mechanism.
- a Y-axis servomotor 28 and a ball screw shaft 29 are arranged with respect to the Y-axis fixed rail 25 as a Y-direction head moving mechanism.
- the head unit 4 moves in the X direction by rotating the ball screw shaft 27 by the X-axis servomotor 26 and moves in the Y direction by rotating the ball screw shaft 29 by the Y-axis servomotor 28 .
- a plurality of mounting heads 4H for mounting components on the substrate P are mounted on the head unit 4.
- Each head 4H includes a shaft 41 extending in the Z direction and a suction nozzle 42 attached to the lower end of the shaft 41.
- the shaft 41 can move up and down with respect to the head unit 4 and rotate around the nozzle center axis (R axis).
- the suction nozzle 42 can suck and hold an electronic component and mount it on the surface of the substrate P.
- the multi-camera 11 is built into the base.
- the multi-camera 11 is a camera whose imaging field of view is above the base 10 .
- the main role of the multi-camera 11 is to take an image of the electronic component sucked by the suction nozzle 42 from below in order to recognize the state of the electronic component picked up by the suction nozzle 42 as an image.
- the board recognition camera 5 is mounted on the left side of the head unit 4.
- the substrate recognition camera 5 is a camera that captures an image of the top surface of the base 10 from above, and captures images of various marks present on the top surface of the base 10 .
- an FID mark FM substrate recognition mark
- reference marks M1 to M3 for calibration provided on the upper surface of the base 10 are exemplified.
- the FID mark FM is a mark for detecting the amount of positional deviation of the loaded board P from the origin coordinates of the working position.
- the position of the FID mark FM is specified on the image data obtained by imaging with the board recognition camera 5, and the positional deviation amount with respect to the origin coordinates is obtained. This positional deviation amount is referred to when the component is mounted, and the electronic component is mounted on the board P so as not to cause positional deviation.
- the reference marks M1 to M3 are attached to the base 10 in which the effects of thermal expansion and contraction can be substantially ignored, and are calibration marks for measuring the degree of thermal displacement of the XY movement axes.
- two reference marks M1 and M2 are arranged on the front side of the board transfer section 2 with a space in the X direction, and one reference mark M3 is arranged on the rear side of the board transfer section 2. is shown.
- the XY movement axes that is, the X-axis fixed rail 24, the Y-axis fixed rail 25, and the ball screw shafts 27, 29, etc., are subject to frictional heat generated during movement of the head unit 4, which is generated with the operation of the component mounting apparatus 1. Thermal expansion due to heat.
- the thermal displacement error can be calculated by capturing images of the reference marks M1 to M3 in which thermal displacement does not occur with the substrate recognition camera 5 mounted on the head unit 4 that moves along the XY movement axes in which thermal displacement occurs. can.
- FIG. 3 is a block diagram showing the electrical configuration of the component mounting apparatus 1.
- the component mounting apparatus 1 includes a control device 7 (control section) arranged inside or outside the base 10 .
- the control device 7 controls the operation of each unit included in the above-described component mounting apparatus 1 by executing a predetermined program.
- the block diagram of FIG. 3 shows the Z-axis servomotor 43 and the R-axis servomotor 44, which are omitted in FIGS.
- the Z-axis servomotor 43 and the R-axis servomotor 44 are motors built into the head unit 4 .
- the Z-axis servomotor 43 is a drive source that raises and lowers the head 4H (shaft 41) along the Z-axis when picking up or mounting an electronic component.
- the R-axis servomotor 44 is a drive source that rotates the shaft 41 around the R-axis.
- the control device 7 functionally includes an imaging control section 71 , an image processing section 72 , an axis control section 73 , a main control section 74 and a storage section 75 .
- the imaging control unit 71 controls imaging operations of various cameras provided in the component mounting apparatus 1 in addition to the board recognition camera 5 and the multi-camera 11 .
- the imaging control unit 71 supplies a control signal that designates the timing of imaging marks such as the reference marks M1 to M3 and the FID mark FM to the substrate recognition camera 5, for example. If it takes a considerable amount of time to mount a component on one board P, the imaging control unit 71 causes the board recognition camera 5 to perform a plurality of imaging operations of the mark during the mounting.
- the fiducial marks M1 to M3 are imaged in a plurality of mark imaging turns, but the imaging of the FID mark FM is omitted, thereby suppressing an increase in tact time.
- the image processing unit 72 applies image processing techniques such as edge detection processing and pattern recognition processing involving feature amount extraction to the image data acquired by the substrate recognition camera 5 and the multi-camera 11, and performs various processing from the images. Extract information. Specifically, the image processing unit 72 performs processing for specifying the positions of the FID mark FM and the reference marks M1 to M3 based on the image data acquired by the board recognition camera 5. FIG. The image processing unit 72 also performs processing for specifying the shape, position, etc. of the electronic component held by the suction nozzle 42 based on the image data acquired by the multi-camera 11 .
- image processing techniques such as edge detection processing and pattern recognition processing involving feature amount extraction to the image data acquired by the substrate recognition camera 5 and the multi-camera 11, and performs various processing from the images. Extract information. Specifically, the image processing unit 72 performs processing for specifying the positions of the FID mark FM and the reference marks M1 to M3 based on the image data acquired by the board recognition camera 5. FIG. The image processing unit 72 also performs processing for specifying the
- the axis controller 73 controls the movement of the head unit 4 in the XY directions by controlling the X-axis servomotor 26 and the Y-axis servomotor 28 . Further, the axis control section 73 controls the elevation and rotation of the mounting head 4H by controlling the Z-axis servomotor 43 and the R-axis servomotor 44 provided in the head unit 4 .
- the main control unit 74 comprehensively controls various operations for the component mounting apparatus 1 .
- the main control unit 74 provides control signals to the imaging control unit 71, the image processing unit 72, the axis control unit 73, and the like to perform an operation of capturing an image, an operation of performing image processing on image data, and a head unit. 4 and head 4H.
- the storage unit 75 stores various information about the board P and electronic components, various setting values and parameters regarding the component mounting apparatus 1, control data, operation programs, and the like.
- the main control section 74 functionally includes a mounting control section 741 , a correction processing section 742 and a correction mode setting section 743 regarding movement control of the head unit 4 .
- the mounting control unit 741 identifies a position corresponding to a component mounting position designated in advance based on an axial coordinate system with the FID mark FM as a reference on the board P to be mounted, and moves the head unit 4 .
- the correction processing unit 742 performs processing for obtaining a correction value for the amount of movement of the head unit 4 according to the thermal displacement of the XY movement axes described above.
- the correction processing unit 742 performs first processing and second processing as processing for obtaining the movement correction amount of the head unit 4 .
- first processing both the reference marks M1 to M3 and the FID mark FM are imaged, and the movement correction amount is obtained based on the recognition results of both marks.
- the second processing only the reference marks M1 to M3 are imaged, the position corresponding to the FID mark FM is acquired by calculation, and the movement correction amount is obtained.
- the correction mode setting unit 743 sets the mode of the correction process for obtaining the movement correction amount of the head unit 4 and sets the execution frequency of the correction process according to the user's input instruction.
- Modes of correction processing include a first mode in which the first processing and the second processing are performed, and a second mode in which only processing corresponding to the first processing is performed.
- correction processing may be required multiple times while mounting components on a single board P.
- FIG. In the first mode among a plurality of correction processing turns, in some turns both the reference marks M1 to M3 and the FID marks FM are imaged and correction processing is performed, and in other turns only the reference marks M1 to M3 are captured. is imaged and corrected.
- both the fiducial marks M1 to M3 and the FID mark FM are imaged only for the first turn, and only the fiducial marks M1 to M3 are imaged for the remaining turns.
- the second mode is a conventional correction process, in which both the reference marks M1 to M3 and the FID mark FM are imaged in each turn to perform the correction process.
- the correction mode setting unit 743 appropriately switches between the first mode and the second mode to execute the correction process.
- the thermal displacement state of the XY movement axis changes over time.
- the degree of thermal expansion is large at the beginning of operation of the component mounting apparatus 1, and it is necessary to frequently calibrate thermal displacement errors using the reference marks M1 to M3.
- the correction mode setting unit 743 adjusts the execution frequency of correction processing by the correction processing unit 742 .
- the correction mode setting unit 743 also adjusts the frequency of executing the first process in the first mode.
- the correction processing executed by the correction processing unit 742 will be described in detail.
- the head unit 4 is moved so as to sequentially pass over the reference marks M1, M2, and M3 on the base 10, and images of these reference marks M1 to M3 are captured by the substrate recognition camera 5 under the control of the imaging control unit 71. is obtained.
- the obtained image data is sent to the image processing section 72, and the positions of the reference marks M1 to M3 are recognized.
- Thermal displacement of the XY movement axes causes movement errors of the head unit 4 . Based on this movement error, the thermal displacement of the XY movement axes can be obtained.
- This thermal displacement A can be expressed by the following formula (1).
- ⁇ , ⁇ , ⁇ , and ⁇ are parameters related to thermal displacement of the XY movement axes.
- ⁇ is the elongation rate in the X-axis direction
- ⁇ is the elongation rate in the Y-axis direction
- ⁇ is the angle change amount in the X-axis direction
- ⁇ is the angle change amount in the Y-axis direction.
- the head unit 4 is moved to pass over the substrate P, and images of the plurality of FID marks FM attached to the substrate P are acquired by the substrate recognition camera 5 .
- the obtained image data is sent to the image processing section 72, and the position of the FID mark FM is recognized.
- the designated coordinates for the design of the FID mark FM of the board P carried into the predetermined work position of the component mounting apparatus 1 are X 0 and Y 0 as shown in the following equation (21).
- the thermal displacement A of the XY movement axes measured before the first recognition of the FID mark FM that is, the thermal displacement A in the first correction processing turn is given by the above formula (1).
- the post-correction mark coordinates which are the designated coordinates of the FID mark FM in the post-calibration axial coordinate system when the first turn is executed, are given by the following equation (22).
- the actual mark coordinates which are the coordinates of the FID mark FM obtained by recognizing the FID mark FM for the first time, are d X and d Y as shown in equation (23).
- the correction processing unit 742 obtains the movement correction amount of the head unit 4 based on the difference between the post-calibration corrected mark coordinates X 0 , Y 0 and the actual mark coordinates d X , d Y .
- the post-correction mark coordinates of the FID mark FM are obtained according to equation (24) using the thermal displacement A' of the XY movement axes obtained by recognizing the reference marks M1 to M3. be done.
- the actual mark coordinates of the FID mark FM recognized in the current turn are d X ' and d Y ' as shown in equation (25).
- the correction processing unit 742 obtains the movement correction amount of the head unit 4 based on the difference between the corrected mark coordinates X 0 , Y 0 after calibration in the current turn and the actual mark coordinates d X ′, d Y ′.
- the board recognition camera 5 is caused to image the reference marks M1 to M3 and the FID mark FM in both the first and next correction processing turns (first imaging operation). That is, the real mark coordinates of the FID mark FM given by the equations (23) and (25) are acquired by actually imaging the FID mark FM with the board recognition camera 5 .
- the imaging of the FID mark FM is omitted in the next correction processing turn, and only the reference marks M1 to M3 are imaged (second imaging operation). Corrected mark coordinates; initial actual mark coordinates for equation (22); referring to the positional relationship of equation (23), the actual mark coordinates corresponding to equation (25) are obtained by calculation.
- the actual position of the FID mark FM does not change between the first time and the next time. Therefore, the positional relationship between the corrected mark coordinates X 0 , Y 0 after calibration in the first turn and the actual mark coordinates d X , d Y and the corrected mark coordinates X 0 , Y 0 after calibration in the next turn and the actual mark coordinates d X ', d Y ' are equal. Therefore, the actual mark coordinates d X ', d Y ' of the next turn can be expressed by the following equation (3). From the above equation (3), the actual mark coordinates dX ' and dY ' of the next turn can be calculated by the following equation (4).
- the correction processing section 742 obtains the movement correction amount of the head unit 4 using expression (4). Also in the second process, the reference marks M1 to M3 are recognized, and the post-correction mark coordinates of the FID mark FM in the calibrated axis coordinate system are obtained.
- the correction processing section 742 calculates the movement correction amount of the head unit 4 based on the difference between the corrected mark coordinates X 0 , Y 0 calibrated in this turn and the actual mark coordinates d X ′, d Y ′. demand.
- FIG. 4 is a flow chart showing correction processing of the axis coordinate system of the XY movement axes in the component mounting apparatus 1 of the first embodiment.
- the correction mode setting unit 743 of the main control unit 74 sets an interval for performing correction processing for obtaining correction values for the amount of movement of the head unit 4 corresponding to thermal displacement of the XY movement axes (step S1).
- the time change of thermal displacement is relatively large, so the correction interval is set to a relatively short time (for example, about 1 minute).
- the correction mode setting unit 743 performs a correction mode setting process for determining in which correction mode the correction process is to be executed (step S2).
- a tact-up mode for improving the tact time by executing the first process and the second process in combination, and a standard mode for executing only the process corresponding to the first process are used for correction. provided as a mode.
- the correction processing unit 742 determines whether or not the correction interval set in step S1 has passed (step S3). In the first correction processing turn, the correction interval is set to 0, and the correction processing is immediately executed. When the correction interval has passed (YES in step S3), the correction processing unit 742 determines whether or not the currently set correction mode is the tact-up mode (step S4).
- the correction processing unit 742 determines that the images captured by the board recognition camera 5 in this correction processing turn are both the reference marks M1 to M3 and the FID mark FM. , that is, whether it is the execution turn of the first process (step S5). If it is the turn to image both marks (YES in step S5), the correction processing unit 742 gives instructions to the imaging control unit 71 and the axis control unit 73 so that the board recognition camera 5 sequentially images the reference marks M1, M2 and M3. Then, the FID mark FM of the substrate P is imaged (step S6). Normally, the first turn is set as the execution turn of the first process.
- the correction processing unit 742 causes the substrate recognition camera 5 to sequentially image the reference marks M1, M2 and M3 (step S7).
- the setting can be such that the second process is executed in the subsequent second to n-th turns.
- step S4 if the correction mode is not the tact-up mode (NO in step S4), the standard mode is set in step S2.
- the correction processing unit 742 causes the board recognition camera 5 to image both the reference marks M1 to M3 and the FID mark FM in all correction processing turns (step S8). If the standard mode is executed, although the tact time is deteriorated, the component mounting apparatus 1 can accurately adjust the correction movement amount of the head unit 4 even if the fixed state of the carried-in board P at the work position changes for some reason. There are advantages that can be derived.
- the correction processing unit 742 obtains the correction movement amount in the current turn based on the mark recognition result obtained in step S6, S7 or S8 (step S9).
- the correction processing unit 742 determines the post-correction mark coordinates of the FID mark FM calibrated by recognizing the fiducial marks M1 to M3 and the corrected mark coordinates obtained by actually recognizing the FID mark FM.
- a correction movement amount of the head unit 4 is obtained based on the difference from the actual mark coordinates. This corresponds to the first process described above.
- step S7 is executed, the correction processing unit 742 calculates a Then, the correction movement amount of the head unit 4 is obtained.
- the main control unit 74 confirms whether or not the component mounting on the board P brought in this time has been completed, that is, whether or not the production of one board P has been completed (step S10). If the production is finished (YES in step S10), the current correction process is finished. On the other hand, if the production is not finished (NO in step S10), the main control unit 74 confirms whether or not there is an instruction to change the correction mode (step S11). If there is an instruction to change the correction mode (YES in step S11), the process returns to step S2, and the correction mode setting unit 743 sets the correction mode according to the change instruction.
- step S12 the main control unit 74 confirms whether or not there is an instruction to change the interval of correction processing turns. If there is an instruction to change the correction interval (YES in step S12), the process returns to step S1, and the correction mode setting unit 743 changes the correction interval according to the change instruction. If there is no correction mode change instruction or correction interval change instruction (NO in steps S11 and S12), the process returns to step S3 and the process is repeated.
- FIG. 5 is a tabular diagram showing examples of correction modes.
- FIG. 5 describes how the fiducial marks M1 to M3 and the FID mark FM are imaged in each mode.
- the fiducial marks M1 to M3 and the FID mark FM are imaged each time in a plurality of correction processing turns.
- the tact-up mode first mode
- a turn for imaging both marks and a turn for imaging only the reference marks M1 to M3 are combined.
- Execution frequency setting 1 is a setting in which one of five correction processing turns is a turn for imaging the reference marks M1 to M3 and the FID mark FM. That is, one of five correction processing turns is set to the above-described first processing, and the rest are set to be the second processing.
- Execution frequency setting 2 is a setting in which one out of 10 correction processing turns is set as the first process and the rest are set as the second process.
- Execution frequency setting 3 is a setting in which only the first correction processing turn is set as the first processing, and all the remaining correction processing turns are set as the second processing.
- execution frequency setting 1 to 3 it is possible to adjust the execution frequency of the first process.
- the tact time can be shortened most by selecting the execution frequency setting 3 mode.
- the substrate recognition camera 5 is caused to take images of the reference marks M1 to M3 and the FID mark FM, and the movement correction amount of the head unit 4 with respect to the substrate P is obtained.
- the movement correction amount of the head unit 4 with respect to other elements included in the component mounting apparatus 1 may also be obtained.
- FIG. 6 is a plan view of a component mounting apparatus 100 according to a modified example of the first embodiment.
- a component mounting apparatus 100 includes a nozzle changer 12 arranged on a base 10 .
- the nozzle changer 12 stocks suction nozzles 42 suitable for suctioning various parts.
- the head unit 4 is moved above the nozzle changer 12 and the suction nozzle 42 with respect to the shaft 41 is changed.
- the nozzle changer 12 is provided with a nozzle change mark N1 for specifying the exchange position of the suction nozzle 42 .
- this nozzle change mark N1 the coordinate values of each suction nozzle 42 accommodated in the nozzle changer 12 are calibrated.
- the tape feeder 31 of the component mounting apparatus 100 is provided with a feeder marker N2 for specifying the component suction position by the suction nozzle 42.
- FIG. 6 shows that only the six tape feeders 31 on the left side of the front row are marked with feeder markers N2, but actually the remaining tape feeders 31 are also marked with feeder markers N2. By recognizing the feeder marker N2, the coordinate values of the component suction positions of each tape feeder 31 are calibrated.
- the substrate recognition camera 5 in addition to the fiducial marks M1 to M3 and the FID mark FM, the substrate recognition camera 5 also captures the nozzle replacement mark N1 and the feeder marker N2. In other words, correction processing is performed for the axis coordinate system of the XY movement axes including the exchange position and the component pickup position.
- the correction processing unit 742 executes the above-described first processing and second processing based on the recognition results of the reference marks M1 to M3, the nozzle replacement mark N1, and the feeder marker N2. A movement correction amount for the unit 4 is obtained.
- FIG. 7 is a plan view schematically showing a component mounting apparatus 1A according to the second embodiment.
- the component mounting apparatus 1A includes, as head units, a first head unit 4A mounted with a first board recognition camera 5A (first camera) and a second head mounted with a second board recognition camera 5B (second camera). and a unit 4B.
- the first head unit 4A moves along a first X movement axis 61 and a first Y movement axis 62 (first movement axis), which are XY movement axes installed on the base 10 .
- the second head unit 4B moves along a second X movement axis 63 and a second Y movement axis 64 (second movement axis).
- the first X-moving shaft 61 and the second X-moving shaft 63 are arranged in parallel with a predetermined interval in the Y direction with a conveyor (not shown) interposed therebetween.
- the first Y movement shaft 62 and the second Y movement shaft 64 are arranged as a pair on the left and right, and are adjacent to each other on the left and right.
- the movement of the first head unit 4A in the XY directions is controlled based on a predetermined first axis coordinate system.
- the movement of the second head unit 4B in the XY directions is controlled based on a predetermined second axis coordinate system. Since the XY movement ranges of the first head unit 4A and the second head unit 4B are substantially the same, the first axis coordinate system and the second axis coordinate system can be used as common coordinates. Even if both head units 4A and 4B have common coordinates, since the XY movement axes are separate, it is necessary to perform correction processing corresponding to thermal displacement for each of the XY movement axes.
- the first board recognition camera 5A of the first head unit 4A images the reference marks M1 to M3 on the base 10 and the FID mark FM on the board P for each correction processing turn, and the second head unit 4B
- the reference marks M1 to M3 and the FID mark FM are also imaged by the second board recognition camera 5B, and corrected.
- the FID mark FM is imaged by the two head units 4A and 4B, a considerable amount of time is consumed, and a waiting time for imaging may occur in order to avoid interference between the two. This worsens the takt time.
- the correction processing section 742 uses the recognition result of the FID mark FM by the first board recognition camera 5A of the first head unit 4A to execute the correction processing of the second head unit 4B.
- the correction processing section 742 performs processing corresponding to the above-described first processing based on the image obtained by the imaging operation of the first board recognition camera 5A for the correction processing for the first axis coordinate system of the first head unit 4A. Execute.
- the correction processing unit 742 corresponds to the above-described second processing based on the image obtained by the imaging operation of the second substrate recognition camera 5B for the correction processing for the second axis coordinate system of the second head unit 4B. Execute the process.
- the actual mark coordinates relative to the corrected mark coordinates obtained by the imaging operation of the first board recognition camera 5A are corrected without causing the second board recognition camera 5B to perform the imaging operation of the FID mark FM. to the second axis coordinate system to obtain the movement correction amount.
- FIG. 8 is a flow chart showing correction processing of the XY movement axes in the component mounting apparatus 1A of the second embodiment.
- the correction processing section 742 causes the first board recognition camera 5A of the first head unit 4A to image the reference marks M1 to M3, and recognizes their positions (step S21). Thereby, the thermal displacement represented by the above formula (1) is obtained for the first X movement axis 61 and the first Y movement axis 62, and the first axis coordinate system is calibrated.
- the correction processing section 742 causes the second board recognition camera 5B of the second head unit 4B to image the reference marks M1 to M3, and recognizes their positions (step S22).
- corrected mark coordinates X 0 and Y 0 which are designated coordinates of the FID mark FM after thermal displacement calibration, are obtained for the first and second axis coordinate systems, respectively.
- the correction processing unit 742 causes the first board recognition camera 5A to image all the FID marks FM attached to the board P, and recognizes their positions (step S23).
- two FID marks FM arranged on a diagonal line of a rectangular board P are imaged by the first board recognition camera 5A.
- the actual mark coordinates dX and dY of the FID mark FM are obtained.
- the correction processing unit 742 moves the first head unit 4A based on the difference between the actual mark coordinates d X and d Y and the post-calibration corrected mark coordinates X 0 and Y 0 previously obtained in step S21.
- a correction amount is obtained (step S24).
- the correction processing unit 742 does not allow the second board recognition camera 5B to image the FID mark FM. Until the production of one substrate P is completed, the FID mark FM is basically stationary. Therefore, if the relationship between the actual mark coordinates d X and d Y of the FID mark FM and the corrected mark coordinates X 0 and Y 0 for the first head unit 4A is known, then the corrected mark coordinates for the second head unit 4B The relationship between the mark coordinates X 0 and Y 0 can also be obtained by axial coordinate transformation. That is, the position of the FID mark FM obtained by actual measurement of the first head unit 4A; actual mark coordinates dX , dY are converted to the second axis coordinate system of the second head unit 4B and applied.
- the difference between the corrected mark coordinates X 0 , Y 0 of the second head unit 4B and the actual mark coordinates d X ′, d Y ′ is obtained without actually measuring the FID mark FM with the second board recognition camera 5B. be able to. Therefore, it is possible to obtain the movement correction amount of the second head unit 4B (step S25).
- the third embodiment also shows an application example of the present invention to a two-beam, two-head unit type component mounting apparatus having two XY movement axes and two head units.
- each head unit recognizes a part of a plurality of FID marks and applies its own FID mark recognition result to the correction processing of other head units. That is, in the second embodiment, the example in which the other head unit omits the entire imaging of the FID mark in the second process is shown, but in the third embodiment, an example in which part of the imaging of the FID mark is omitted. show.
- FIG. 9 is a plan view schematically showing a component mounting apparatus 1B according to the third embodiment.
- the component mounting apparatus 1B includes a first mounting unit 40A whose mounting area is the mounting table A1 on the left half of the base 10, and a second mounting unit 40B whose mounting area is the mounting table A2 on the right half.
- the first mounting unit 40A is equipped with a first head unit 4C equipped with a first board recognition camera 5C (first camera), and the second mounting unit 40B is equipped with a second board recognition camera 5D (second camera).
- a second head unit 4D is equipped with a second head unit 4D.
- the first head unit 4C moves along the first X movement axis 65 and the first Y movement axis 66 (first movement axis).
- the second head unit 4B moves along a second X movement axis 67 and a second Y movement axis 68 (second movement axis).
- the first X movement shaft 65 is mounted on the first mounting unit 40A
- the second X movement shaft 67 is mounted on the second mounting unit 40B.
- the first Y movement shaft 66 is arranged on the left end side of the base 10
- the second Y movement shaft 68 is arranged on the right end side of the base 10, respectively.
- the board P is a large board straddling the left and right mounting tables A1 and A2, and has a first FID mark FM1 (first board recognition mark) and a second FID mark FM2 (second board recognition mark).
- the first FID mark FM1 is a mark imaged by the first board recognition camera 5C
- the second FID mark FM2 is a mark imaged by the second board recognition camera 5D.
- the correction processing unit 742 causes the first board recognition camera 5C to image the reference marks M11, M12, M13 and the first FID mark FM1 for correction processing on the first axis coordinate system of the first head unit 4C. Further, the second board recognition camera 5D is caused to image the reference marks M21, M22, M23 and the second FID mark FM2 for correction processing of the second axis coordinate system of the second head unit 4D.
- the correction processing unit 742 executes processing corresponding to the first processing described above based on the images obtained by these imaging operations.
- the correction processing unit 742 converts the position recognition result of the first FID mark FM1 by the first board recognition camera 5C into the second axis coordinate system as a process corresponding to the second process described above, and The position recognition result of the second FID mark FM2 is transformed into the first axis coordinate system.
- the two head units 4C and 4D are moved without imaging the second FID mark FM2 with the first board recognition camera 5C and without imaging the second FID mark FM2 with the second board recognition camera 5D. A correction amount can be obtained.
- FIG. 10 is a flow chart showing correction processing of the XY movement axes in the component mounting apparatus 1B of the third embodiment.
- the correction processing unit 742 causes the first board recognition camera 5C of the first head unit 4C to image the reference marks M11, M12, and M13, and recognizes their positions (step S31). As a result, the thermal displacement is obtained for the first axis coordinate system consisting of the first X movement axis 65 and the first Y movement axis 66, and the first axis coordinate system is calibrated.
- the correction processing section 742 causes the second board recognition camera 5D of the second head unit 4D to image the reference marks M21, M22, and M23, and recognizes their positions (step S32).
- the thermal displacement of the second axis coordinate system composed of the second X movement axis 63 and the second Y movement axis 64 is obtained, and the second axis coordinate system is calibrated. That is, with respect to the first axis coordinate system, the corrected mark coordinates X 0 , Y 0 , which are designated coordinates of the first FID mark FM1 after thermal displacement calibration, correspond to the second FID after thermal displacement calibration with respect to the second axis coordinate system. Corrected mark coordinates X 0 and Y 0 , which are designated coordinates of the mark FM2, are obtained.
- the correction processing unit 742 causes the first board recognition camera 5C to image the first FID mark FM1, and recognizes its position (step S33). Based on the recognition result of the first FID mark FM1, the actual mark coordinates d X1 and d Y1 of the first FID mark FM1 are obtained. Further, the correction processing unit 742 causes the second board recognition camera 5D to image the second FID mark FM2, and recognizes its position (step S34). Based on the recognition result of the second FID mark FM2, the actual mark coordinates d X2 and d Y2 of the second FID mark FM2 are obtained.
- the correction processing section 742 converts the position of the second FID mark FM2 obtained by actual measurement of the second head unit 4D ; to apply. Using the actual mark coordinates d X2 , d Y2 and the actual mark coordinates d X1 , d Y1 obtained in step S33, the difference from the post-calibration corrected mark coordinates X 0 , Y 0 previously obtained in step S31 is Based on this, the correction processing section 742 obtains the movement correction amount of the first head unit 4C (step S35).
- the correction processing unit 742 converts the position of the first FID mark FM1 obtained by actual measurement of the first head unit 4C ; apply. Using the actual mark coordinates d X1 and d Y1 and the actual mark coordinates d X2 and d Y2 obtained in step S34, the difference from the post-calibration corrected mark coordinates X 0 and Y 0 previously obtained in step S32 is Based on this, the correction processing section 742 obtains the movement correction amount of the second head unit 4D (step S36).
- the component mounting apparatus 1 may perform correction processing by combining the above-described second and third embodiments according to the layout of the head unit, the size of the substrate, and the arrangement position of the FID mark.
- the manner in which the recognition result is used in the correction processing of another head unit may be used according to the substrate size and the FID mark position.
- a component mounting apparatus comprises a base having a reference mark for calibration, a head unit having a head for mounting a component on a board having a board recognition mark, and a head unit set on the base. a head moving mechanism for horizontally moving the head unit along the movement axis, a camera mounted on the head unit and capable of imaging the reference mark and the substrate recognition mark, and an imaging operation of the camera.
- a control unit that controls movement of the head unit based on a predetermined axis coordinate system, the control unit causing the camera to image the reference mark and the substrate recognition mark, and Corrected mark coordinates, which are specified coordinates of the board recognition mark in the axial coordinate system calibrated by the recognition of , are obtained, and a difference between the actual mark coordinates obtained by recognizing the board recognition mark and the corrected mark coordinates and causing the camera to capture the reference mark while omitting all or part of the capturing of the board recognition mark to recognize the reference mark.
- the camera in the correction process related to the first process, the camera is caused to actually image the reference mark and the board recognition mark, and by recognizing these marks, the corrected mark coordinates and the actual mark coordinates are acquired, and the head A movement correction amount for the unit is obtained.
- the second process all or part of the imaging of the board recognition mark is omitted by referring to the positional relationship of the actual mark coordinates with respect to the post-correction mark coordinates that have already been acquired.
- the second process includes, for example, a correction process performed on the same head unit after the first process (first embodiment), or a correction process on another head unit having common coordinates with the head unit (second, second 3 embodiment). Therefore, the takt time can be shortened by the amount of omitting the imaging of the board recognition mark.
- control section executes the first processing in a first imaging operation that is performed first, and executes the second processing in a second imaging operation that follows the first imaging operation.
- second processing the positional relationship of the actual mark coordinates with respect to the post-correction mark coordinates acquired in the first imaging operation may be used.
- the tact time can be shortened in a component mounting apparatus having one head unit.
- the head units include a first head unit mounted with a first camera and moving along a first movement axis, and a second head unit mounted with a second camera and moving along a second movement axis. and a head unit, wherein the control unit executes the first processing based on an image obtained by the imaging operation of the first camera for correction processing for the first axis coordinate system of the first head unit. and executing the second processing based on the image obtained by the imaging operation of the second camera for the correction processing of the second axis coordinate system of the second head unit.
- the positional relationship of the actual mark coordinates with respect to the corrected mark coordinates obtained by the imaging operation of the first camera is determined in the second axis coordinate system without causing the second camera to perform the imaging operation of the board recognition mark. , and the movement correction amount may be calculated.
- the imaging operation of the second camera of the second head unit omits the imaging of the board recognition mark. can be done. Therefore, for example, in a two-beam, two-head unit type component mounting apparatus in which two head units have the same mounting area, the tact time can be shortened.
- the head units include a first head unit mounted with a first camera and moving along a first movement axis, and a second head unit mounted with a second camera and moving along a second movement axis.
- a head unit wherein the substrate includes a first substrate recognition mark imaged by the first camera and a second substrate recognition mark imaged by the second camera;
- the first camera is caused to image the reference mark and the first board recognition mark, and for correction processing on the second axis coordinate system of the second head unit.
- causing the second camera to image the reference mark and the second board recognition mark, executing the first processing based on the obtained images, and performing the first processing on the second head unit in the second processing.
- the movement correction for the second axis coordinate system is performed.
- the positional relationship of the actual mark coordinates with respect to the post-correction mark coordinates used in the first processing in the second axis coordinate system is determined as
- the movement correction amount for the first axis coordinate system may be obtained by converting to the coordinate system.
- this component mounting apparatus when each of the first head unit and the second head unit requires execution of correction processing, part of the imaging of the board recognition mark is performed in each of the imaging operations by the first camera and the second camera. can be omitted. Therefore, it is possible to shorten the tact time in a two-beam, two-head unit type component mounting apparatus in which two head units each cover a part of the mounting area, for example.
- control unit causes at least the imaging of the reference mark in the first process and the imaging of the reference mark in the second process to be performed during component mounting on one board. is desirable.
- the component mounting apparatus described above further includes a nozzle replacement mark for specifying a replacement position of a suction nozzle attached to the tip of the head, and a feeder marker for specifying a component suction position from a component supply device using the suction nozzle,
- the control unit causes the camera to image at least one of the nozzle replacement mark and the feeder marker, and determines the replacement position and the component pickup position from recognition results of the reference mark and the nozzle replacement mark or the feeder marker.
- the first process and the second process may be executed for an axis coordinate system including the axis coordinate system.
- the imaging of the nozzle replacement mark and the feeder marker can be omitted in the imaging operation for the second process. can be done.
- control unit may switch between a first mode in which the first process and the second process are executed and a second mode in which only the process corresponding to the first process is executed. good.
- the first process of imaging both the reference mark and the board recognition mark is executed. Therefore, even if the fixed state of the board is expected to change, it is possible to avoid lowering the component mounting accuracy.
- control unit be capable of adjusting the frequency of execution of the first process in the first mode.
- this component mounting apparatus it is possible to adjust the execution frequency of the first process for capturing images of both the reference mark and the board recognition mark, so it is possible to more flexibly cope with fluctuations in the fixed state of the board.
- the correction of the axis coordinate system corresponding to the thermal expansion and contraction of the movement axis of the head unit can be performed while suppressing the tact loss as much as possible.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Operations Research (AREA)
- Supply And Installment Of Electrical Components (AREA)
Abstract
部品実装装置の制御部は、カメラに較正用の基準マークおよび基板に付された基板認識マークを撮像させて、ヘッドユニットの移動補正量を求める第1処理と、カメラに較正用の基準マークを撮像させる一方で、前記基板認識マークの撮像の全部または一部を省略して、ヘッドユニットの移動補正量を求める第2処理とを実行する。前記第2処理では、既に取得されている補正後マーク座標に対する実マーク座標の位置関係を参照して、新たな補正後マーク座標に対する実マーク座標の位置を演算により取得し、両者の差異に基づき前記ヘッドユニットの移動補正量を求める。
Description
本発明は、部品を基板に実装する部品搭載装置に関する。
部品を基板に実装する部品実装装置は、部品を搭載するヘッドを有するヘッドユニットと、当該ヘッドユニットをX軸およびY軸の移動軸に沿って移動させるヘッド移動機構とを備える。ヘッド移動機構は、装置の実装ステージに搬入された基板に対し、部品供給部から部品を取り出し、所定の部品実装位置に当該部品を実装するよう、ヘッドユニットを移動させる。部品の実装位置は、ヘッドユニットに搭載されたカメラで基板に付されたフィデューシャルマーク(以下、FIDマークという)を撮像させ、基板とヘッドとの相対的な位置関係を認識させることで較正される軸座標系にて特定される。
ここで、XY移動軸は、装置の稼働により生じる熱によって伸縮する。FIDマークの認識だけでは、XY移動軸の熱伸縮に対応した軸座標系の補正はできない。このため、熱伸縮を無視できる基台に較正用の基準マークを3点以上設置しておき、これらを前記カメラで撮像させる。そして、基準マークの認識によりXY移動軸の熱変位を計測し、FIDマークが正しく認識されるよう前記軸座標系の補正が行われる(例えば特許文献1)。
しかし、基準マークおよびFIDマークを撮像させるには、カメラを搭載しているヘッドユニットをXY移動軸に沿って移動させる必要がある。つまり、ヘッドユニットを、部品供給位置と部品実装位置との間で水平移動させるだけでなく、基準マーク並びにFIDマークの撮像のためにも水平移動させねばならない。このことは、部品実装のタクトタイムの短縮を阻害する要因となる。
本発明の目的は、ヘッドユニットの移動軸の熱伸縮に対応する軸座標系の補正を、タクトロスを可及的に抑制して実行できる部品実装装置を提供することにある。
本発明の一局面に係る部品実装装置は、較正用の基準マークが付設された基台と、基板認識マークを有する基板に部品を搭載するヘッドを備えたヘッドユニットと、前記基台上に設定された移動軸に沿って、前記ヘッドユニットを水平方向に移動させるヘッド移動機構と、前記ヘッドユニットに搭載され、前記基準マークおよび前記基板認識マークを撮像可能なカメラと、前記カメラの撮像動作を制御すると共に、所定の軸座標系に基づいて前記ヘッドユニットの移動を制御する制御部と、を備える。前記制御部は、前記カメラに前記基準マークおよび前記基板認識マークを撮像させ、当該基準マークの認識で較正された前記軸座標系における前記基板認識マークの指定座標である補正後マーク座標を求めると共に、前記基板認識マークの認識により得られた実マーク座標と前記補正後マーク座標との差異に基づき前記ヘッドユニットの移動補正量を求める第1処理と、前記カメラに、前記基準マークを撮像させる一方で、前記基板認識マークの撮像の全部または一部を省略させ、当該基準マークの認識で較正された前記軸座標系における前記基板認識マークの新たな補正後マーク座標を求め、既に取得されている前記補正後マーク座標に対する前記実マーク座標の位置関係を参照して、前記新たな補正後マーク座標に対する前記実マーク座標の位置を演算により取得し、両者の差異に基づき前記ヘッドユニットの移動補正量を求める第2処理と、を実行する。
[第1実施形態]
以下、本発明の実施形態を、図面に基づいて詳細に説明する。以下に説明する部品実装装置は、プリント基板に電子部品を実装する装置である。電子部品は、例えばチップ抵抗やチップコンデンサ等のチップ部品、ボールバンプ部品、IC等のパッケージ型の部品である。
以下、本発明の実施形態を、図面に基づいて詳細に説明する。以下に説明する部品実装装置は、プリント基板に電子部品を実装する装置である。電子部品は、例えばチップ抵抗やチップコンデンサ等のチップ部品、ボールバンプ部品、IC等のパッケージ型の部品である。
<部品実装装置の全体構造>
図1は、部品実装装置1の概略構成を示す平面図、図2は、部品実装装置1のヘッドユニット部分の概略構成を示す正面図である。部品実装装置1は、各種の電子部品を基板Pに実装してなる実装基板を生産する装置である。部品実装装置1は、基台10、基板搬送部2、部品供給部3(部品供給装置)、ヘッドユニット4、基板認識カメラ5(カメラ)およびマルチカメラ11を含む。図1および図2において、XYZの方向表示が付されている。以下の説明において、X方向を基板Pの移動方向である左右方向、Y方向を前後方向、Z方向を上下方向という場合がある。
図1は、部品実装装置1の概略構成を示す平面図、図2は、部品実装装置1のヘッドユニット部分の概略構成を示す正面図である。部品実装装置1は、各種の電子部品を基板Pに実装してなる実装基板を生産する装置である。部品実装装置1は、基台10、基板搬送部2、部品供給部3(部品供給装置)、ヘッドユニット4、基板認識カメラ5(カメラ)およびマルチカメラ11を含む。図1および図2において、XYZの方向表示が付されている。以下の説明において、X方向を基板Pの移動方向である左右方向、Y方向を前後方向、Z方向を上下方向という場合がある。
基台10は、平面視で長方形状を有し、上面が平坦な基台であって、基板搬送部2および部品供給部3が組付けられている。基板搬送部2は、電子部品が実装される基板Pを搬送する。基板搬送部2は、基台10上において、基板Pを左右方向(X方向)へ搬送する一対のコンベア21、22を有している。コンベア21、22は、基板Pを右側から部品実装装置1の機内に搬入し、所定の作業位置、ここでは図1に示す基板Pの位置まで左方へ搬送して一旦停止させる。この作業位置において、電子部品が基板Pに実装される。実装作業後、コンベア21、22は基板Pを左側へ搬送し、部品実装装置1の機外へ搬出する。
部品供給部3は、基板Pへ実装される電子部品6を供給する。部品供給部3は、基板搬送部2の前後方向(Y方向)に各々配置されている。各部品供給部3は、それぞれ左右方向に配列された複数のテープフィーダ31を備えている。各テープフィーダ31は、チップ部品などの電子部品を所定間隔で収容したテープが巻回されたリールを保持している。テープフィーダ31は、前記リールからテープを間欠的に繰り出し、フィーダ先端の部品供給位置にチップ部品を供給する。
ヘッドユニット4は、部品供給部3から電子部品を取り出し、これを基板Pに実装する。ヘッドユニット4は、基台10上に設定されたXYの水平方向の移動軸に沿って移動可能に配置され、前記部品供給位置においてテープフィーダ31から電子部品を取り出し、前記作業位置において前記電子部品を基板Pの所定位置に実装する。基台10の上方には、X方向に延びる支持ビーム23が架設されている。ヘッドユニット4は、支持ビーム23に固定されたX軸固定レール24(移動軸)に対して移動可能に支持されている。
支持ビーム23は、Y方向に延びるY軸固定レール25に支持され、このY軸固定レール25(移動軸)に沿ってY方向に移動可能である。X軸固定レール24に対して、X方向のヘッド移動機構として、X軸サーボモータ26およびボールねじ軸27が配置されている。Y軸固定レール25に対して、Y方向のヘッド移動機構として、Y軸サーボモータ28およびボールねじ軸29が配置されている。ヘッドユニット4は、X軸サーボモータ26によるボールねじ軸27の回転駆動によってX方向に移動し、Y軸サーボモータ28によるボールねじ軸29の回転駆動によってY方向に移動する。
ヘッドユニット4には、基板Pに部品を搭載する複数の実装用ヘッド4Hが搭載されている。各ヘッド4Hは、Z方向に延びるシャフト41と、該シャフト41の下端に装着された吸着ノズル42とを含む。シャフト41は、ヘッドユニット4に対して昇降およびノズル中心軸(R軸)回りの回転が可能とされている。吸着ノズル42は、電子部品を吸着して保持し、これを基板Pの表面に搭載することが可能である。
マルチカメラ11は、基台に組み込まれている。マルチカメラ11は、基台10の上方を撮像視野とするカメラである。マルチカメラ11の主たる役目は、吸着ノズル42による電子部品の吸着状態を画像認識するために、吸着ノズル42に吸着された電子部品を下面側から撮像することにある。
基板認識カメラ5は、ヘッドユニット4の左側に搭載されている。基板認識カメラ5は、基台10の上面を上方から撮像するカメラであり、基台10の上面に存在する各種マークを撮像する。図1では、前記マークとして、基板Pの表面に付設されているFIDマークFM(基板認識マーク)と、基台10の上面に設置されている較正用の基準マークM1~M3とを例示している。
FIDマークFMは、搬入された基板Pの前記作業位置の原点座標に対する位置ズレ量を検知するためのマークである。基板認識カメラ5の撮像により得られた画像データ上でFIDマークFMの位置が特定され、原点座標に対する位置ズレ量が求められる。この位置ズレ量は、部品実装時に参照され、位置ズレが生じないように電子部品が基板Pに実装される。
基準マークM1~M3は、熱伸縮の影響を実質的に無視できる基台10に付設され、XY移動軸の熱変位の発生度合いを計測するための較正用マークである。本実施形態では、基板搬送部2の前側に2個の基準マークM1、M2がX方向に離間して配置され、基板搬送部2の後側に1個の基準マークM3が配置されている例を示している。XY移動軸、すなわちX軸固定レール24、Y軸固定レール25およびこれらのボールねじ軸27、29等は、ヘッドユニット4の移動時に発生する摩擦熱など、部品実装装置1の稼働に伴って生じる熱により熱膨張する。XY移動軸が熱膨張すると、ヘッドユニット4の位置精度に誤差が生じ、部品の実装精度が低下する。熱変位が生じない基準マークM1~M3を、熱変位が生じるXY移動軸に沿って移動するヘッドユニット4に搭載されている基板認識カメラ5で撮像することにより、熱変位誤差を算出することができる。得られた熱変位誤差を解消するようにヘッドユニット4の移動を制御することで、部品の実装精度の低下が抑制される。
<部品実装装置の電気的構成>
続いて、部品実装装置1の制御構成について説明する。図3は、部品実装装置1の電気的構成を示すブロック図である。部品実装装置1は、基台10の内部もしくは機外に配置される制御装置7(制御部)を備える。制御装置7は、所定のプログラムが実行されることで、上述の部品実装装置1が備える各部の動作を制御する。なお、図3のブロック図には、図1、図2では記載が省かれた、Z軸サーボモータ43およびR軸サーボモータ44が記載されている。
続いて、部品実装装置1の制御構成について説明する。図3は、部品実装装置1の電気的構成を示すブロック図である。部品実装装置1は、基台10の内部もしくは機外に配置される制御装置7(制御部)を備える。制御装置7は、所定のプログラムが実行されることで、上述の部品実装装置1が備える各部の動作を制御する。なお、図3のブロック図には、図1、図2では記載が省かれた、Z軸サーボモータ43およびR軸サーボモータ44が記載されている。
Z軸サーボモータ43およびR軸サーボモータ44は、ヘッドユニット4内に組み込まれるモータである。Z軸サーボモータ43は、電子部品の吸着若しくは実装を行う際に、ヘッド4H(シャフト41)をZ軸に沿って昇降させる駆動源である。R軸サーボモータ44は、シャフト41をR軸回りに回転させる駆動源である。
制御装置7は、撮像制御部71、画像処理部72、軸制御部73、主制御部74および記憶部75を機能的に備えている。撮像制御部71は、基板認識カメラ5およびマルチカメラ11の他、部品実装装置1に備えられている各種カメラの撮像動作を制御する。撮像制御部71は、例えば基板認識カメラ5に基準マークM1~M3およびFIDマークFM等のマークの撮像を行わせるタイミングを指定する制御信号を与える。撮像制御部71は、一枚の基板Pへの部品実装に相当の時間を要する場合、その実装途中に複数回の前記マークの撮像動作を基板認識カメラ5に実行させる。これは、1枚の基板への部品実装中にXY移動軸の熱変位状況に変化が生じ得ることに対応するためである。後記で詳述するが、本実施形態では複数回のマーク撮像ターンにおいて、基準マークM1~M3は撮像するがFIDマークFMの撮像は省くことで、タクトタイムの長時間化を抑止する。
画像処理部72は、基板認識カメラ5およびマルチカメラ11により取得された画像データに対してエッジ検出処理、特徴量抽出を伴うパターン認識処理などの画像処理技術を適用して、当該画像から各種の情報を抽出する。具体的には、画像処理部72は、基板認識カメラ5が取得した画像データに基づき、FIDマークFMおよび基準マークM1~M3の位置を特定する処理を行う。また、画像処理部72は、マルチカメラ11が取得した画像データに基づき、吸着ノズル42に保持された電子部品の形状、位置などを特定する処理を行う。
軸制御部73は、X軸サーボモータ26およびY軸サーボモータ28を制御することによって、ヘッドユニット4のXY方向の移動動作を制御する。また、軸制御部73は、ヘッドユニット4が備えるZ軸サーボモータ43およびR軸サーボモータ44を制御することによって、実装用ヘッド4Hの昇降および回転動作を制御する。
主制御部74は、部品実装装置1に対する各種の動作を統括的に制御する。例えば、主制御部74は、撮像制御部71、画像処理部72および軸制御部73等に制御信号を与え、画像を撮像する動作、画像データに対して画像処理を行わせる動作、並びにヘッドユニット4やヘッド4Hを駆動させる動作を実行させる。記憶部75は、基板Pや電子部品に関する各種の情報、部品実装装置1に関する各種の設定値やパラメータ、制御データ、動作プログラム等を記憶する。
主制御部74は、ヘッドユニット4の移動制御に関し、機能的に実装制御部741、補正処理部742および補正モード設定部743を備えている。実装制御部741は、予め指定されている部品実装位置に対応する位置を、実装対象の基板PにおいてFIDマークFMを基準とする軸座標系に基づいて特定し、ヘッドユニット4を移動させる。
補正処理部742は、上述のXY移動軸の熱変位に応じて、ヘッドユニット4の移動量の補正値を求める処理を行う。補正処理部742は、ヘッドユニット4の移動補正量を求める処理として、第1処理と第2処理とを実行する。前記第1処理では、基準マークM1~M3およびFIDマークFMの双方を撮像させ、両マークの認識結果に基づき前記移動補正量を求める。前記第2処理では、基準マークM1~M3のみを撮像させ、FIDマークFMに相当する位置を演算により取得し、前記移動補正量を求める。
補正モード設定部743は、ユーザの入力指示に応じて、ヘッドユニット4の移動補正量を求める補正処理のモードの設定、並びに当該補正処理の実行頻度を設定する。補正処理のモードは、前記第1処理および前記第2処理を実行する第1モードと、前記第1処理に相当する処理だけを実行する第2モードとを含む。大型の基板Pへの部品実装では、1枚の基板Pへの部品実装中に複数回の補正処理が必要となる場合がある。前記第1モードでは、複数回の補正処理ターンのうち、一部のターンでは基準マークM1~M3およびFIDマークFMの双方を撮像して補正処理を行い、他のターンでは基準マークM1~M3のみを撮像して補正処理を行う。例えば、初回ターンだけは基準マークM1~M3およびFIDマークFMの双方を撮像し、残りのターンでは基準マークM1~M3のみを撮像する。前記第2モードは、従来方式の補正処理であり、各ターンで基準マークM1~M3およびFIDマークFMの双方を撮像して補正処理を行う。補正モード設定部743は、前記第1モードと前記第2モードとを適宜切り換えて前記補正処理を実行させる。
XY移動軸の熱変位状態は、時間変化する。例えば、部品実装装置1の運転開始初期は熱膨張度合いが大きく、基準マークM1~M3を用いた熱変位誤差の較正を頻繁に行う必要がある。一方、運転開始から時間がある程度経過すると、熱膨張は飽和して熱変位も小さくなるので、前記較正の頻度を低下させ得る。この点に鑑み、補正モード設定部743は、補正処理部742による補正処理の実行頻度を調整する。また、補正モード設定部743は、前記第1モードにおいて前記第1処理を実行させる頻度の調整も行う。
<補正処理の詳細>
補正処理部742が実行する補正処理について詳述する。先ず、ヘッドユニット4が基台10上の基準マークM1、M2、M3の上空を順次通過するように移動され、撮像制御部71の制御下で基板認識カメラ5によりこれら基準マークM1~M3の画像が取得される。得られた画像データが画像処理部72に送られ、基準マークM1~M3の位置認識が行われる。XY移動軸の熱変位は、ヘッドユニット4の移動誤差を生む。この移動誤差に基づき、XY移動軸の熱変位を求めることができる。この熱変位Aは、次の式(1)で表現することができる。
補正処理部742が実行する補正処理について詳述する。先ず、ヘッドユニット4が基台10上の基準マークM1、M2、M3の上空を順次通過するように移動され、撮像制御部71の制御下で基板認識カメラ5によりこれら基準マークM1~M3の画像が取得される。得られた画像データが画像処理部72に送られ、基準マークM1~M3の位置認識が行われる。XY移動軸の熱変位は、ヘッドユニット4の移動誤差を生む。この移動誤差に基づき、XY移動軸の熱変位を求めることができる。この熱変位Aは、次の式(1)で表現することができる。
上記式(1)において、α、β、θ、φは、XY移動軸の熱変位に関連するパラメータである。αはX軸方向の伸び率、βはY軸方向の伸び率、θはX軸方向の角度変化量、φはY軸方向の角度変化量である。これらパラメータに基づき、XY移動軸の軸座標系が較正される。
続いて、ヘッドユニット4が基板Pの上空を通過するように移動され、基板認識カメラ5により基板Pに付されている複数のFIDマークFMの画像が取得される。得られた画像データが画像処理部72に送られ、FIDマークFMの位置認識が行われる。部品実装装置1の所定の作業位置に搬入された基板Pの、FIDマークFMの設計上の指定座標が、下記の式(21)に示す通りX0、Y0であるとする。また、初回のFIDマークFMの認識前に計測されたXY移動軸の熱変位A、つまり初回の補正処理ターンにおける熱変位Aが上記式(1)の通りであるとする。この場合、当該初回のターン実行時の、較正後の軸座標系におけるFIDマークFMの指定座標である補正後マーク座標は、下記の式(22)の通りとなる。初回のFIDマークFMの認識により得られたFIDマークFMの座標である実マーク座標が、式(23)に示す通りdX、dYであったとする。補正処理部742は、較正後の補正後マーク座標X0、Y0と実マーク座標dX、dYとの差異に基づき、ヘッドユニット4の移動補正量を求める。同様にして、次回の補正処理ターンでは、基準マークM1~M3の認識により得られたXY移動軸の熱変位A´を用いて、式(24)の通りFIDマークFMの補正後マーク座標が求められる。今回のターンで認識されたFIDマークFMの実マーク座標が式(25)に示す通りdX´、dY´であったとする。補正処理部742は、今回のターンでの較正後の補正後マーク座標X0、Y0と実マーク座標dX´、dY´との差異に基づき、ヘッドユニット4の移動補正量を求める。
上述の第1処理では、初回および次回の補正処理ターンのいずれでも、基板認識カメラ5に基準マークM1~M3およびFIDマークFMを撮像させる(第1撮像動作)。すなわち、式(23)および式(25)に示すFIDマークFMの実マーク座標を、実際に基板認識カメラ5によりFIDマークFMを撮像して取得する。これに対し、上述の第2処理では、次回の補正処理ターンにおいてFIDマークFMの撮像を省略して基準マークM1~M3の撮像のみを行い(第2撮像動作)、既に取得されている初回の補正後マーク座標;式(22)に対する初回の実マーク座標;式(23)の位置関係を参照して、式(25)に相当する実マーク座標を演算により取得する。
基板Pの位置が不動であれば、FIDマークFMの実際の位置は初回と次回とで変動しない。このため、初回ターンでの較正後の補正後マーク座標X0、Y0と実マーク座標dX、dYとの位置関係と、次回ターンでの較正後の補正後マーク座標X0、Y0と実マーク座標dX´、dY´との位置関係とは等しくなる。従って、次回ターンの実マーク座標dX´、dY´は、次の式(3)にて表すことができる。
上記式(3)より、次回ターンの実マーク座標dX´、dY´は、次の式(4)で算出することができる。
つまり、式(4)を用いた演算により実マーク座標dX´、dY´に相当する座標値を算出することができるので、次回ターンでのFIDマークFMの撮像が不要となる。上記第2処理では、補正処理部742は、式(4)を用いてヘッドユニット4の移動補正量を求める。第2処理においても、基準マークM1~M3の認識が行われ、較正された軸座標系におけるFIDマークFMの補正後マーク座標が求められる。そして、FIDマークFMの撮像を行うことなく、初回ターンで得られた補正後マーク座標X0、Y0と実マーク座標dX、dYとの位置関係を利用する式(4)を用いて、演算により実マーク座標dX´、dY´が求められる。これにより、FIDマークFMの撮像が省かれる分だけ、タクトタイムを短縮できる。しかる後、補正処理部742は、今回のターンで較正された補正後マーク座標X0、Y0と実マーク座標dX´、dY´との差異に基づき、ヘッドユニット4の移動補正量を求める。
<XY移動軸の補正処理フロー>
図4は、第1実施形態の部品実装装置1におけるXY移動軸の軸座標系の補正処理を示すフローチャートである。ここでは、部品実装装置1に搬入された1枚の基板Pへの部品実装の間に、複数回の補正処理が実行されるケースを想定する。先ず、主制御部74の補正モード設定部743が、XY移動軸の熱変位に対応する、ヘッドユニット4の移動量の補正値を求める補正処理を行う間隔を設定する(ステップS1)。部品実装装置1の実装運転開始からの初期は、熱変位の時間変化が比較的大きいので、補正間隔は比較的短い時間(例えば1分程度)に設定される。
図4は、第1実施形態の部品実装装置1におけるXY移動軸の軸座標系の補正処理を示すフローチャートである。ここでは、部品実装装置1に搬入された1枚の基板Pへの部品実装の間に、複数回の補正処理が実行されるケースを想定する。先ず、主制御部74の補正モード設定部743が、XY移動軸の熱変位に対応する、ヘッドユニット4の移動量の補正値を求める補正処理を行う間隔を設定する(ステップS1)。部品実装装置1の実装運転開始からの初期は、熱変位の時間変化が比較的大きいので、補正間隔は比較的短い時間(例えば1分程度)に設定される。
続いて補正モード設定部743は、補正処理をどの補正モードで実行するかを決定する補正モードの設定処理を行う(ステップS2)。本実施形態では、上述の第1処理と第2処理とを組み合わせて実行することでタクトタイムの向上を図るタクトアップモードと、第1処理に相当する処理だけを実行する標準モードとが、補正モードとして用意されているものとする。
補正処理部742は、ステップS1で設定された補正間隔が経過したか否かを判定する(ステップS3)。なお、初回の補正処理ターンでは補正間隔=0とされ、直ちに補正処理が実行される。補正間隔が経過すると(ステップS3でYES)、補正処理部742は、現状で設定されている補正モードが、前記タクトアップモードであるか否かを判定する(ステップS4)。
補正モードが前記タクトアップモードである場合(ステップS4でYES)、補正処理部742は、今回の補正処理ターンでの基板認識カメラ5による撮像が、基準マークM1~M3およびFIDマークFMの両マークを撮像するものであるか否か、つまり上述の第1処理の実行ターンであるか否かを判定する(ステップS5)。両マークを撮像するターンである場合(ステップS5でYES)、補正処理部742は撮像制御部71および軸制御部73に指示を与え、基板認識カメラ5に基準マークM1、M2およびM3を順次撮像させ、さらに基板PのFIDマークFMを撮像させる(ステップS6)。通常、初回のターンは、第1処理の実行ターンに設定される。
両マークを撮像するターンではない場合(ステップS5でNO)、基準マークM1~M3のみを撮像する、上述の第2処理の実行ターンとなる。補正処理部742は、基板認識カメラ5に基準マークM1、M2およびM3を順次撮像させる(ステップS7)。例えば、初回のターンで第1処理が実行された場合、続く2回目~n回目のターンでは第2処理を実行する、という設定とすることができる。あるいは、初回からn回おきのターンでは第1処理が実行され、残りのターンでは第2処理を実行する設定とすることもできる。
これに対し、補正モードが前記タクトアップモードではない場合(ステップS4でNO)、標準モードがステップS2で設定されたことになる。この場合、補正処理部742は、全ての補正処理ターンにおいて、基板認識カメラ5に基準マークM1~M3およびFIDマークFMの両マークを撮像させる(ステップS8)。標準モードを実行すれば、タクトタイムは悪化するものの、部品実装装置1は搬入された基板Pの前記作業位置における固定状態が何らかの要因で変化した場合でも、ヘッドユニット4の補正移動量を正確に導出できる利点がある。
続いて補正処理部742は、ステップS6、S7またはS8で得られたマーク認識結果に基づき、今回のターンにおける補正移動量を求める(ステップS9)。ステップS6およびS8の処理が実行された場合、補正処理部742は、基準マークM1~M3の認識により較正されたFIDマークFMの補正後マーク座標と、FIDマークFMの実際の認識で得られた実マーク座標との差異に基づいて、ヘッドユニット4の補正移動量を求める。これは、上述の第1処理に相当する。一方、ステップS7が実行された場合、補正処理部742は、前記補正後マーク座標と、上掲の式(4)を用いた演算により得られる実マーク座標に相当する座標値との差異に基づいて、ヘッドユニット4の補正移動量を求める。
その後、主制御部74は、今回搬入された基板Pへの部品実装を終えたか、つまり1枚の基板Pの生産が終了したか否かを確認する(ステップS10)。生産が終了したなら(ステップS10でYES)、今回の補正処理を終える。一方、生産終了ではない場合(ステップS10でNO)、主制御部74は、補正モードの変更指示が存在するか否かを確認する(ステップS11)。補正モードの変更指示が存在する場合(ステップS11でYES)、ステップS2に戻り、補正モード設定部743が前記変更指示に係る補正モードを設定する。
続いて、主制御部74は、補正処理ターンの間隔の変更指示が存在するか否かを確認する(ステップS12)。補正間隔の変更指示が存在する場合(ステップS12でYES)、ステップS1に戻り、補正モード設定部743が変更指示の通りに補正間隔を変更する。補正モードの変更指示並びに補正間隔の変更指示が存在しない場合(ステップS11、S12でNO)、ステップS3に戻って処理が繰り返される。
図5は、補正モードの例を示す表形式の図である。図5には、各モードにおける基準マークM1~M3およびFIDマークFMの撮像の態様が記述されている。標準モード(第2モード)では、基準マークM1~M3およびFIDマークFMが、複数の補正処理ターンにおいて毎回撮像される。タクトアップモード(第1モード)では、両マークを撮像するターンと基準マークM1~M3のみを撮像するターンとが組み合わされる。
タクトアップモードでは、FIDマークFMを実際に撮像する頻度により、モードが細分化されている。実行頻度設定1は、5回の補正処理ターンのうち1回を、基準マークM1~M3およびFIDマークFMの撮像を行うターンとする設定である。つまり、5回の補正処理ターンのうち1回を上述の第1処理とし、残りを第2処理とする設定である。実行頻度設定2は、10回の補正処理ターンのうち1回を第1処理とし、残りを第2処理とする設定である。実行頻度設定3は、初回の補正処理ターンだけを第1処理とし、残りの全て第2処理とする設定である。すなわち、実行頻度設定1~3のいずれかを選択することにより、前記第1処理の実行頻度を調整することが可能である。実行頻度設定3のモードを選択すれば、最もタクトタイムを短縮できる。しかし、搬入後に固定状態が変動することが想定される基板Pの場合は、実行頻度設定1または2のモードを選択することが望ましい。
<第1実施形態の変形例>
以上の例では、基板認識カメラ5に基準マークM1~M3およびFIDマークFMの撮像を行わせ、基板Pに対するヘッドユニット4の移動補正量を求める例を示した。これに加え、部品実装装置1が備える他の要素に対するヘッドユニット4の移動補正量も求めるようにしても良い。
以上の例では、基板認識カメラ5に基準マークM1~M3およびFIDマークFMの撮像を行わせ、基板Pに対するヘッドユニット4の移動補正量を求める例を示した。これに加え、部品実装装置1が備える他の要素に対するヘッドユニット4の移動補正量も求めるようにしても良い。
図6は、第1実施形態の変形例に係る部品実装装置100の平面図である。部品実装装置100は、基台10上に配置されたノズル交換器12を備える。ノズル交換器12は、各種の部品の吸着に適した吸着ノズル42をストックしている。生産する基板Pの種類を変更する際などにヘッドユニット4がノズル交換器12の上空に移動され、シャフト41に対する吸着ノズル42の交換が行われる。ノズル交換器12には吸着ノズル42の交換位置を特定するノズル交換マークN1が付設されている。このノズル交換マークN1を認識することで、ノズル交換器12に収容された各吸着ノズル42の座標値が較正される。
また、部品実装装置100のテープフィーダ31には、吸着ノズル42による部品吸着位置を特定するフィーダーマーカーN2が付設されている。図6では、前列左側の6つのテープフィーダ31だけにフィーダーマーカーN2が付されている様子が示されているが、実際は残りのテープフィーダ31にもフィーダーマーカーN2が付されている。フィーダーマーカーN2の認識により、各テープフィーダ31の部品吸着位置の座標値が較正される。
このような部品実装装置100において、基準マークM1~M3およびFIDマークFMに加えて、ノズル交換マークN1およびフィーダーマーカーN2も基板認識カメラ5に撮像させる。つまり、前記交換位置および前記部品吸着位置を含めたXY移動軸の軸座標系について補正処理を行うようにする。補正処理部742は、基準マークM1~M3と、ノズル交換マークN1およびフィーダーマーカーN2との認識結果から、上述の第1処理および第2処理を実行させ、前記交換位置および前記部品吸着位置に対するヘッドユニット4の移動補正量を求める。
[第2実施形態]
第2実施形態では、2つのXY移動軸と2つのヘッドユニットとを備えた、いわゆる2ビーム・2ヘッドユニット型の部品実装装置への、本発明の適用例を示す。ここでは、1つのヘッドユニットによるマーク認識結果を、他のヘッドユニットの補正処理に適用する例を挙げる。
第2実施形態では、2つのXY移動軸と2つのヘッドユニットとを備えた、いわゆる2ビーム・2ヘッドユニット型の部品実装装置への、本発明の適用例を示す。ここでは、1つのヘッドユニットによるマーク認識結果を、他のヘッドユニットの補正処理に適用する例を挙げる。
図7は、第2実施形態に係る部品実装装置1Aを模式的に示す平面図である。部品実装装置1Aは、ヘッドユニットとして、第1基板認識カメラ5A(第1カメラ)が搭載された第1ヘッドユニット4Aと、第2基板認識カメラ5B(第2カメラ)が搭載された第2ヘッドユニット4Bとを有する。第1ヘッドユニット4Aは、基台10上に設置されたXY移動軸である第1X移動軸61および第1Y移動軸62(第1移動軸)に沿って移動する。第2ヘッドユニット4Bは、第2X移動軸63および第2Y移動軸64(第2移動軸)に沿って移動する。第1X移動軸61と第2X移動軸63とは、Y方向に図略のコンベアを挟んで所定間隔を置いて平行に配置されている。第1Y移動軸62と第2Y移動軸64とは、共に左右一対で配置され、左右各々で互いに隣接している。
第1ヘッドユニット4Aは、所定の第1軸座標系に基づいてXY方向の移動が制御される。第2ヘッドユニット4Bは、所定の第2軸座標系に基づいてXY方向の移動が制御される。第1ヘッドユニット4Aと第2ヘッドユニット4BのXY移動範囲は略一致しているので、第1軸座標系と第2軸座標系とは共通座標とすることができる。両ヘッドユニット4A、4Bが共通座標を持っていても、XY移動軸は別個であるので、各々のXY移動軸について熱変位に対応する補正処理を行う必要がある。
従来方式では、補正処理ターン毎に、第1ヘッドユニット4Aの第1基板認識カメラ5Aで基台10上の基準マークM1~M3および基板P上のFIDマークFMを撮像し、第2ヘッドユニット4Bの第2基板認識カメラ5Bでも基準マークM1~M3およびFIDマークFMを撮像し、それぞれ補正処理を行う。しかし、2つのヘッドユニット4A、4Bで各々FIDマークFMを撮像するので相応の時間を消費し、両者の干渉を避けるため撮像待ちの時間も生じ得る。このことはタクトタイムを悪化させる。
この問題の解決のため、補正処理部742は、第1ヘッドユニット4Aの第1基板認識カメラ5AによるFIDマークFMの認識結果を利用して、第2ヘッドユニット4Bの補正処理を実行する。補正処理部742は、第1ヘッドユニット4Aの第1軸座標系についての補正処理のため、第1基板認識カメラ5Aの撮像動作で得られた画像に基づき上述の第1処理に相当する処理を実行する。一方、補正処理部742は、第2ヘッドユニット4Bの第2軸座標系についての補正処理のため、第2基板認識カメラ5Bの撮像動作で得られた画像に基づき上述の第2処理に相当する処理を実行する。つまり、第2ヘッドユニット4Bについては、第2基板認識カメラ5BにFIDマークFMの撮像動作を行わせることなく、第1基板認識カメラ5Aの撮像動作で取得された補正後マーク座標に対する実マーク座標の位置関係を、第2軸座標系に変換して移動補正量を求める。
図8は、第2実施形態の部品実装装置1AにおけるXY移動軸の補正処理を示すフローチャートである。補正処理部742は、第1ヘッドユニット4Aの第1基板認識カメラ5Aに基準マークM1~M3を撮像させ、これらの位置認識を行う(ステップS21)。これにより、第1X移動軸61および第1Y移動軸62について、上記式(1)で示した熱変位が求められ、第1軸座標系が較正される。同様に、補正処理部742は、第2ヘッドユニット4Bの第2基板認識カメラ5Bに基準マークM1~M3を撮像させ、これらの位置認識を行う(ステップS22)。これにより、第2X移動軸63および第2Y移動軸64についての熱変位が求められ、第2軸座標系が較正される。すなわち、第1および第2軸座標系について、熱変位の較正後のFIDマークFMの指定座標である補正後マーク座標X0、Y0が、それぞれ取得される。
続いて補正処理部742は、第1基板認識カメラ5Aに基板Pに付されている全てのFIDマークFMを撮像させ、これらの位置認識を行う(ステップS23)。図7の例では、矩形の基板Pの対角線上に配置された2個のFIDマークFMが第1基板認識カメラ5Aにより撮像される。FIDマークFMの認識結果に基づき、当該FIDマークFMの実マーク座標dX、dYが求められる。補正処理部742は、この実マーク座標dX、dYと、先にステップS21で求められた較正後の補正後マーク座標X0、Y0との差異に基づき、第1ヘッドユニット4Aの移動補正量を求める(ステップS24)。
補正処理部742は、第2基板認識カメラ5BにはFIDマークFMを撮像させない。1枚の基板Pの生産が完了するまで、基本的にFIDマークFMは不動である。このため、当該FIDマークFMの実マーク座標dX、dYと第1ヘッドユニット4Aについての補正後マーク座標X0、Y0との関係が既知であれば、第2ヘッドユニット4Bの補正後マーク座標X0、Y0との関係も軸座標変換で求めることができる。すなわち、第1ヘッドユニット4Aの実測で求めたFIDマークFMの位置;実マーク座標dX、dYを、第2ヘッドユニット4Bの第2軸座標系に変換して適用する。これにより、第2基板認識カメラ5BでFIDマークFMを実測することなく、第2ヘッドユニット4Bの補正後マーク座標X0、Y0と実マーク座標dX´、dY´との差異を求めることができる。従って、第2ヘッドユニット4Bの移動補正量を求めることができる(ステップS25)。
[第3実施形態]
第3実施形態でも、2つのXY移動軸と2つのヘッドユニットとを備えた2ビーム・2ヘッドユニット型の部品実装装置への、本発明の適用例を示す。ここでは、各々のヘッドユニットで複数のFIDマークの一部ずつを認識させ、自身のFIDマーク認識結果を他のヘッドユニットの補正処理に適用する例を挙げる。すなわち、第2実施形態では、第2処理において他方のヘッドユニットにFIDマークの撮像の全部を省略させる例を示したが、第3実施形態では、FIDマークの撮像の一部を省略させる例を示す。
第3実施形態でも、2つのXY移動軸と2つのヘッドユニットとを備えた2ビーム・2ヘッドユニット型の部品実装装置への、本発明の適用例を示す。ここでは、各々のヘッドユニットで複数のFIDマークの一部ずつを認識させ、自身のFIDマーク認識結果を他のヘッドユニットの補正処理に適用する例を挙げる。すなわち、第2実施形態では、第2処理において他方のヘッドユニットにFIDマークの撮像の全部を省略させる例を示したが、第3実施形態では、FIDマークの撮像の一部を省略させる例を示す。
図9は、第3実施形態に係る部品実装装置1Bを模式的に示す平面図である。部品実装装置1Bは、基台10の左半分の実装テーブルA1を実装エリアとする第1実装ユニット40Aと、右半分の実装テーブルA2を実装エリアとする第2実装ユニット40Bとを備える。第1実装ユニット40Aには、第1基板認識カメラ5C(第1カメラ)が搭載された第1ヘッドユニット4Cが、第2実装ユニット40Bには第2基板認識カメラ5D(第2カメラ)が搭載された第2ヘッドユニット4Dが、それぞれ装備されている。
第1ヘッドユニット4Cは、第1X移動軸65および第1Y移動軸66(第1移動軸)に沿って移動する。第2ヘッドユニット4Bは、第2X移動軸67および第2Y移動軸68(第2移動軸)に沿って移動する。第1X移動軸65は第1実装ユニット40Aに、第2X移動軸67は第2実装ユニット40Bに、それぞれ搭載されている。第1Y移動軸66は基台10の左端側に、第2Y移動軸68は基台10の右端側に、それぞれ配置されている。
基台10の左半分の実装テーブルA1には、3つの基準マークM11、M12、M13が、右半分の実装テーブルA2にも3つの基準マークM21、M22、M23が、各々設置されている。基板Pは、左右の実装テーブルA1、A2に跨がる大型の基板であり、第1FIDマークFM1(第1基板認識マーク)および第2FIDマークFM2(第2基板認識マーク)を備えている。第1FIDマークFM1は、第1基板認識カメラ5Cに撮像されるマーク、第2FIDマークFM2は、第2基板認識カメラ5Dに撮像されるマークである。
補正処理部742は、第1ヘッドユニット4Cの第1軸座標系について補正処理のため、第1基板認識カメラ5Cに基準マークM11、M12、M13および第1FIDマークFM1を撮像させる。また、第2ヘッドユニット4Dの第2軸座標系について補正処理のため、第2基板認識カメラ5Dに基準マークM21、M22、M23および第2FIDマークFM2を撮像させる。補正処理部742は、これらの撮像動作で得られた画像に基づき、上述の第1処理に相当する処理を実行する。
さらに補正処理部742は、上述の第2処理に相当する処理として、第1基板認識カメラ5Cによる第1FIDマークFM1の位置認識結果を第2軸座標系に変換し、第2基板認識カメラ5Dによる第2FIDマークFM2の位置認識結果を第1軸座標系に変換する。これにより、第1基板認識カメラ5Cにて第2FIDマークFM2を撮像することなく、また、第2基板認識カメラ5Dにて第2FIDマークFM2を撮像することなく、2つのヘッドユニット4C、4Dの移動補正量を求めることができる。
図10は、第3実施形態の部品実装装置1BにおけるXY移動軸の補正処理を示すフローチャートである。補正処理部742は、第1ヘッドユニット4Cの第1基板認識カメラ5Cに基準マークM11、M12、M13を撮像させ、これらの位置認識を行う(ステップS31)。これにより、第1X移動軸65および第1Y移動軸66からなる第1軸座標系についての熱変位が求められ、当該第1軸座標系が較正される。
同様に、補正処理部742は、第2ヘッドユニット4Dの第2基板認識カメラ5Dに基準マークM21、M22、M23を撮像させ、これらの位置認識を行う(ステップS32)。これにより、第2X移動軸63および第2Y移動軸64からなる第2軸座標系についての熱変位が求められ、当該第2軸座標系が較正される。すなわち、第1軸座標系について、熱変位の較正後の第1FIDマークFM1の指定座標である補正後マーク座標X0、Y0が、第2軸座標系について、熱変位の較正後の第2FIDマークFM2の指定座標である補正後マーク座標X0、Y0がそれぞれ取得される。
続いて補正処理部742は、第1基板認識カメラ5Cに第1FIDマークFM1を撮像させ、その位置認識を行う(ステップS33)。第1FIDマークFM1の認識結果に基づき、当該第1FIDマークFM1の実マーク座標dX1、dY1が求められる。さらに補正処理部742は、第2基板認識カメラ5Dに第2FIDマークFM2を撮像させ、その位置認識を行う(ステップS34)。第2FIDマークFM2の認識結果に基づき、当該第2FIDマークFM2の実マーク座標dX2、dY2が求められる。
その後、補正処理部742は、第2ヘッドユニット4Dの実測で求めた第2FIDマークFM2の位置;実マーク座標dX2、dY2を、第1ヘッドユニット4Cの第1軸座標系に軸座標変換して適用する。この実マーク座標dX2、dY2およびステップS33で求めた実マーク座標dX1、dY1を用い、先にステップS31で求められた較正後の補正後マーク座標X0、Y0との差異に基づき、補正処理部742は第1ヘッドユニット4Cの移動補正量を求める(ステップS35)。
また補正処理部742は、第1ヘッドユニット4Cの実測で求めた第1FIDマークFM1の位置;実マーク座標dX1、dY1を、第2ヘッドユニット4Dの第2軸座標系に軸座標変換して適用する。この実マーク座標dX1、dY1およびステップS34で求めた実マーク座標dX2、dY2を用い、先にステップS32で求められた較正後の補正後マーク座標X0、Y0との差異に基づき、補正処理部742は第2ヘッドユニット4Dの移動補正量を求める(ステップS36)。
なお、ヘッドユニットのレイアウト、基板のサイズやFIDマークの配置位置に応じて、上述の第2実施形態と第3実施形態とを組み合わせて補正処理を行う部品実装装置1としても良い。すなわち、一つのヘッドユニットの基板認識カメラだけ全てのFIDマークを撮像し、当該FIDマークの認識結果を他のヘッドユニットの補正処理で利用する態様と、各々のヘッドユニットによる一部のFIDマークの認識結果を他のヘッドユニットの補正処理で利用する態様とを、基板サイズやFIDマーク位置に応じて使い分けるようにしても良い。
[上記実施形態に含まれる発明]
以上説明した実施形態には、以下に示す発明が含まれている。
以上説明した実施形態には、以下に示す発明が含まれている。
本発明の一局面に係る部品実装装置は、較正用の基準マークが付設された基台と、基板認識マークを有する基板に部品を搭載するヘッドを備えたヘッドユニットと、前記基台上に設定された移動軸に沿って、前記ヘッドユニットを水平方向に移動させるヘッド移動機構と、前記ヘッドユニットに搭載され、前記基準マークおよび前記基板認識マークを撮像可能なカメラと、前記カメラの撮像動作を制御すると共に、所定の軸座標系に基づいて前記ヘッドユニットの移動を制御する制御部と、を備え、前記制御部は、前記カメラに前記基準マークおよび前記基板認識マークを撮像させ、当該基準マークの認識で較正された前記軸座標系における前記基板認識マークの指定座標である補正後マーク座標を求めると共に、前記基板認識マークの認識により得られた実マーク座標と前記補正後マーク座標との差異に基づき前記ヘッドユニットの移動補正量を求める第1処理と、前記カメラに、前記基準マークを撮像させる一方で、前記基板認識マークの撮像の全部または一部を省略させ、当該基準マークの認識で較正された前記軸座標系における前記基板認識マークの新たな補正後マーク座標を求め、既に取得されている前記補正後マーク座標に対する前記実マーク座標の位置関係を参照して、前記新たな補正後マーク座標に対する前記実マーク座標の位置を演算により取得し、両者の差異に基づき前記ヘッドユニットの移動補正量を求める第2処理と、を実行する。
この部品実装装置によれば、第1処理に係る補正処理においては、カメラに基準マークおよび基板認識マークを実際に撮像させ、これらマークの認識により補正後マーク座標および実マーク座標を取得し、ヘッドユニットの移動補正量が求められる。一方、第2処理では、既に取得されている前記補正後マーク座標に対する前記実マーク座標の位置関係を参照することで、基板認識マークの撮像の全部または一部が省略される。前記第2処理は、例えば、第1処理の後に同一ヘッドユニットについて行われる補正処理(第1実施形態)や、当該ヘッドユニットと共通座標を持つ他のヘッドユニットについての補正処理(第2、第3実施形態)である。従って、基板認識マークの撮像が省かれる分だけ、タクトタイムを短縮できる。
上記の部品実装装置において、前記制御部は、先に実行される第1撮像動作において前記第1処理を実行し、前記第1撮像動作の後の第2撮像動作の際に前記第2処理を実行するものであって、前記第2処理において、前記第1撮像動作で取得された前記補正後マーク座標に対する前記実マーク座標の位置関係を利用する態様としても良い。
この部品実装装置によれば、同一ヘッドユニットについて第1処理用の第1撮像動作および第2処理用の第2撮像動作が順次行われる場合に、前記第2撮像動作では基板認識マークの撮像を省くことができる。従って、一つのヘッドユニットを備える部品実装装置において、タクトタイムを短縮できる。
上記の部品実装装置において、前記ヘッドユニットとして、第1カメラが搭載され第1移動軸に沿って移動する第1ヘッドユニットと、第2カメラが搭載され第2移動軸に沿って移動する第2ヘッドユニットと、を含み、前記制御部は、前記第1ヘッドユニットの第1軸座標系についての補正処理のため、前記第1カメラの撮像動作で得られた画像に基づき前記第1処理を実行し、前記第2ヘッドユニットの第2軸座標系についての補正処理のため、前記第2カメラの撮像動作で得られた画像に基づき前記第2処理を実行するものであって、当該第2処理において、前記第2カメラに前記基板認識マークの撮像動作を行わせることなく、前記第1カメラの撮像動作で取得された補正後マーク座標に対する前記実マーク座標の位置関係を前記第2軸座標系に変換して前記移動補正量を求める態様としても良い。
この部品実装装置によれば、第1ヘッドユニットおよび第2ヘッドユニットについて各々補正処理の実行を要する場合に、前記第2ヘッドユニットの第2カメラによる撮像動作において、基板認識マークの撮像を省くことができる。従って、例えば2つのヘッドユニットが同じ実装エリアを持つ2ビーム・2ヘッドユニット型の部品実装装置において、タクトタイムを短縮できる。
上記の部品実装装置において、前記ヘッドユニットとして、第1カメラが搭載され第1移動軸に沿って移動する第1ヘッドユニットと、第2カメラが搭載され第2移動軸に沿って移動する第2ヘッドユニットと、を含み、前記基板は、前記第1カメラに撮像される第1基板認識マークと、前記第2カメラに撮像される第2基板認識マークとを含み、前記制御部は、前記第1ヘッドユニットの第1軸座標系について補正処理のため、前記第1カメラに前記基準マークおよび前記第1基板認識マークを撮像させ、前記第2ヘッドユニットの第2軸座標系について補正処理のため、前記第2カメラに前記基準マークおよび前記第2基板認識マークを撮像させ、得られた画像に基づきそれぞれ前記第1処理を実行し、前記第2ヘッドユニットに対する前記第2処理において、前記第1軸座標系の前記第1処理で用いられた前記補正後マーク座標に対する前記実マーク座標の位置関係を、前記第2軸座標系に変換することで、当該第2軸座標系についての前記移動補正量を求め、前記第1ヘッドユニットに対する前記第2処理において、前記第2軸座標系の前記第1処理で用いられた前記補正後マーク座標に対する前記実マーク座標の位置関係を、前記第1軸座標系に変換することで、当該第1軸座標系についての前記移動補正量を求める態様としても良い。
この部品実装装置によれば、第1ヘッドユニットおよび第2ヘッドユニットについて各々補正処理の実行を要する場合に、第1カメラおよび第2カメラによる撮像動作の各々において、基板認識マークの撮像の一部を省くことができる。従って、例えば2つのヘッドユニットが実装エリアの一部ずつを受け持つような2ビーム・2ヘッドユニット型の部品実装装置において、タクトタイムを短縮できる。
上記の部品実装装置において、前記制御部は、1枚の基板への部品実装の間に、少なくとも前記第1処理における前記基準マークの撮像、および前記第2処理における前記基準マークの撮像を実行させることが望ましい。
1枚の基板に対する部品実装中に移動軸の熱変位状態が変動することが想定され、複数回の移動軸の補正処理が必要となる場合が多々ある。上記の部品実装装置によれば、1枚の基板への部品実装時間が長くなる場合でも、部品実装精度が低下しない。
上記の部品実装装置において、前記ヘッドの先端に装着される吸着ノズルの交換位置を特定するノズル交換マークと、前記吸着ノズルによる部品供給装置から部品吸着位置を特定するフィーダーマーカーとをさらに備え、前記制御部は、前記カメラに前記ノズル交換マークまたは前記フィーダーマーカーの少なくとも一方を撮像させ、前記基準マークと、前記ノズル交換マークまたは前記フィーダーマーカーとの認識結果から、前記交換位置および前記部品吸着位置を含む軸座標系について、前記第1処理および第2処理を実行する態様としても良い。
この部品実装装置によれば、吸着ノズルの交換位置および部品供給装置に対するヘッドユニットの移動補正量も求める場合に、第2処理用の撮像動作において、ノズル交換マークおよびフィーダーマーカーの撮像を省略することができる。
上記の部品実装装置において、前記制御部は、前記第1処理および前記第2処理を実行する第1モードと、前記第1処理に相当する処理だけを実行する第2モードとを切り換え可能としても良い。
この部品実装装置によれば、第2モードを設定すれば、基準マークおよび基板認識マークの双方を撮像する第1処理が実行される。従って、基板の固定状態が変動することが想定される場合に、部品実装精度を低下させずに済む。
上記の部品実装装置において、前記制御部は、前記第1モードにおいて、前記第1処理の実行頻度を調整することが可能とされていることが望ましい。
この部品実装装置によれば、基準マークおよび基板認識マークの双方を撮像する第1処理の実行頻度を調整できるので、基板の固定状態の変動により柔軟に対応できる。
以上説明した本発明に係る部品実装装置によれば、ヘッドユニットの移動軸の熱伸縮に対応する軸座標系の補正を、タクトロスを可及的に抑制して実行させることができる。
Claims (8)
- 較正用の基準マークが付設された基台と、
基板認識マークを有する基板に部品を搭載するヘッドを備えたヘッドユニットと、
前記基台上に設定された移動軸に沿って、前記ヘッドユニットを水平方向に移動させるヘッド移動機構と、
前記ヘッドユニットに搭載され、前記基準マークおよび前記基板認識マークを撮像可能なカメラと、
前記カメラの撮像動作を制御すると共に、所定の軸座標系に基づいて前記ヘッドユニットの移動を制御する制御部と、を備え、
前記制御部は、
前記カメラに前記基準マークおよび前記基板認識マークを撮像させ、当該基準マークの認識で較正された前記軸座標系における前記基板認識マークの指定座標である補正後マーク座標を求めると共に、前記基板認識マークの認識により得られた実マーク座標と前記補正後マーク座標との差異に基づき前記ヘッドユニットの移動補正量を求める第1処理と、
前記カメラに、前記基準マークを撮像させる一方で、前記基板認識マークの撮像の全部または一部を省略させ、当該基準マークの認識で較正された前記軸座標系における前記基板認識マークの新たな補正後マーク座標を求め、既に取得されている前記補正後マーク座標に対する前記実マーク座標の位置関係を参照して、前記新たな補正後マーク座標に対する前記実マーク座標の位置を演算により取得し、両者の差異に基づき前記ヘッドユニットの移動補正量を求める第2処理と、を実行する部品実装装置。 - 請求項1に記載の部品実装装置において、
前記制御部は、
先に実行される第1撮像動作において前記第1処理を実行し、前記第1撮像動作の後の第2撮像動作の際に前記第2処理を実行するものであって、
前記第2処理において、前記第1撮像動作で取得された前記補正後マーク座標に対する前記実マーク座標の位置関係を利用する、部品実装装置。 - 請求項1に記載の部品実装装置において、
前記ヘッドユニットとして、第1カメラが搭載され第1移動軸に沿って移動する第1ヘッドユニットと、第2カメラが搭載され第2移動軸に沿って移動する第2ヘッドユニットと、を含み、
前記制御部は、
前記第1ヘッドユニットの第1軸座標系についての補正処理のため、前記第1カメラの撮像動作で得られた画像に基づき前記第1処理を実行し、前記第2ヘッドユニットの第2軸座標系についての補正処理のため、前記第2カメラの撮像動作で得られた画像に基づき前記第2処理を実行するものであって、
当該第2処理において、前記第2カメラに前記基板認識マークの撮像動作を行わせることなく、前記第1カメラの撮像動作で取得された補正後マーク座標に対する前記実マーク座標の位置関係を前記第2軸座標系に変換して前記移動補正量を求める、部品実装装置。 - 請求項1に記載の部品実装装置において、
前記ヘッドユニットとして、第1カメラが搭載され第1移動軸に沿って移動する第1ヘッドユニットと、第2カメラが搭載され第2移動軸に沿って移動する第2ヘッドユニットと、を含み、
前記基板は、前記第1カメラに撮像される第1基板認識マークと、前記第2カメラに撮像される第2基板認識マークとを含み、
前記制御部は、
前記第1ヘッドユニットの第1軸座標系について補正処理のため、前記第1カメラに前記基準マークおよび前記第1基板認識マークを撮像させ、前記第2ヘッドユニットの第2軸座標系について補正処理のため、前記第2カメラに前記基準マークおよび前記第2基板認識マークを撮像させ、得られた画像に基づきそれぞれ前記第1処理を実行し、
前記第2ヘッドユニットに対する前記第2処理において、前記第1軸座標系の前記第1処理で用いられた前記補正後マーク座標に対する前記実マーク座標の位置関係を、前記第2軸座標系に変換することで、当該第2軸座標系についての前記移動補正量を求め、
前記第1ヘッドユニットに対する前記第2処理において、前記第2軸座標系の前記第1処理で用いられた前記補正後マーク座標に対する前記実マーク座標の位置関係を、前記第1軸座標系に変換することで、当該第1軸座標系についての前記移動補正量を求める、部品実装装置。 - 請求項1~4のいずれか1項に記載の部品実装装置において、
前記制御部は、1枚の基板への部品実装の間に、少なくとも前記第1処理における前記基準マークの撮像、および前記第2処理における前記基準マークの撮像を実行させる、部品実装装置。 - 請求項1~5のいずれか1項に記載の部品実装装置において、
前記ヘッドの先端に装着される吸着ノズルの交換位置を特定するノズル交換マークと、前記吸着ノズルによる部品供給装置から部品吸着位置を特定するフィーダーマーカーとをさらに備え、
前記制御部は、前記カメラに前記ノズル交換マークまたは前記フィーダーマーカーの少なくとも一方を撮像させ、
前記基準マークと、前記ノズル交換マークまたは前記フィーダーマーカーとの認識結果から、前記交換位置および前記部品吸着位置を含む軸座標系について、前記第1処理および第2処理を実行する、部品実装装置。 - 請求項1~6のいずれか1項に記載の部品実装装置において、
前記制御部は、前記第1処理および前記第2処理を実行する第1モードと、前記第1処理に相当する処理だけを実行する第2モードとを切り換え可能である、部品実装装置。 - 請求項7に記載の部品実装装置において、
前記制御部は、前記第1モードにおいて、前記第1処理の実行頻度を調整することが可能とされている、部品実装装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024500776A JPWO2023157134A1 (ja) | 2022-02-16 | 2022-02-16 | |
CN202280088882.4A CN118575600A (zh) | 2022-02-16 | 2022-02-16 | 元件安装装置 |
KR1020247017590A KR20240091041A (ko) | 2022-02-16 | 2022-02-16 | 부품 실장 장치 |
PCT/JP2022/006206 WO2023157134A1 (ja) | 2022-02-16 | 2022-02-16 | 部品実装装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/006206 WO2023157134A1 (ja) | 2022-02-16 | 2022-02-16 | 部品実装装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023157134A1 true WO2023157134A1 (ja) | 2023-08-24 |
Family
ID=87577852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/006206 WO2023157134A1 (ja) | 2022-02-16 | 2022-02-16 | 部品実装装置 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2023157134A1 (ja) |
KR (1) | KR20240091041A (ja) |
CN (1) | CN118575600A (ja) |
WO (1) | WO2023157134A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010267916A (ja) * | 2009-05-18 | 2010-11-25 | Yamaha Motor Co Ltd | 実装機 |
JP2010272549A (ja) * | 2009-05-19 | 2010-12-02 | Yamaha Motor Co Ltd | 実装機 |
JP2017195264A (ja) * | 2016-04-20 | 2017-10-26 | ヤマハ発動機株式会社 | 部品実装装置、部品実装方法、部品実装装置の制御用プログラムおよび記録媒体 |
JP2018032681A (ja) * | 2016-08-23 | 2018-03-01 | ヤマハ発動機株式会社 | 部品実装機、基準マーク撮像方法 |
-
2022
- 2022-02-16 WO PCT/JP2022/006206 patent/WO2023157134A1/ja unknown
- 2022-02-16 JP JP2024500776A patent/JPWO2023157134A1/ja active Pending
- 2022-02-16 KR KR1020247017590A patent/KR20240091041A/ko unknown
- 2022-02-16 CN CN202280088882.4A patent/CN118575600A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010267916A (ja) * | 2009-05-18 | 2010-11-25 | Yamaha Motor Co Ltd | 実装機 |
JP2010272549A (ja) * | 2009-05-19 | 2010-12-02 | Yamaha Motor Co Ltd | 実装機 |
JP2017195264A (ja) * | 2016-04-20 | 2017-10-26 | ヤマハ発動機株式会社 | 部品実装装置、部品実装方法、部品実装装置の制御用プログラムおよび記録媒体 |
JP2018032681A (ja) * | 2016-08-23 | 2018-03-01 | ヤマハ発動機株式会社 | 部品実装機、基準マーク撮像方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20240091041A (ko) | 2024-06-21 |
JPWO2023157134A1 (ja) | 2023-08-24 |
CN118575600A (zh) | 2024-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4828298B2 (ja) | 部品実装方法および部品実装装置 | |
CN100407888C (zh) | 部件安装方法 | |
JP5779386B2 (ja) | 電気部品装着機 | |
CN102164473A (zh) | 元件安装装置以及元件安装方法 | |
US20090252400A1 (en) | Method for mounting electronic component | |
JP3744251B2 (ja) | 電子部品実装方法 | |
WO2014174598A1 (ja) | 部品実装装置、実装ヘッド、および制御装置 | |
JP2009094283A (ja) | 実装基板の生産方法、表面実装機及び実装基板生産管理装置 | |
JP4416899B2 (ja) | 部品の実装位置補正方法および表面実装機 | |
JP4648964B2 (ja) | マーク認識システム、マーク認識方法および表面実装機 | |
WO2019043892A1 (ja) | 部品装着機及び部品装着方法 | |
WO2019180954A1 (ja) | 部品装着装置 | |
JP2009016673A (ja) | 部品の吸着位置補正方法および部品移載装置 | |
WO2017081773A1 (ja) | 基板用の画像処理装置および画像処理方法 | |
JP2009212251A (ja) | 部品移載装置 | |
JP2010118389A (ja) | 部品実装方法および部品実装システム | |
WO2023157134A1 (ja) | 部品実装装置 | |
JP2003347794A (ja) | 電子回路部品取出し方法および取出し装置 | |
JP4810586B2 (ja) | 実装機 | |
JP4307036B2 (ja) | 電子部品実装装置における吸着ノズルの位置補正方法 | |
JP5254875B2 (ja) | 実装機 | |
JPH0590799A (ja) | プリント基板への接着剤付着方法及び装置 | |
JP7524127B2 (ja) | 部品実装装置 | |
JP5573767B2 (ja) | 電子部品実装システムおよび電子部品実装システムにおける実装基板の製造方法 | |
JP5047772B2 (ja) | 実装基板製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22927037 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024500776 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20247017590 Country of ref document: KR Kind code of ref document: A |