WO2019039442A1 - ロータの製造方法およびロータの製造装置 - Google Patents

ロータの製造方法およびロータの製造装置 Download PDF

Info

Publication number
WO2019039442A1
WO2019039442A1 PCT/JP2018/030719 JP2018030719W WO2019039442A1 WO 2019039442 A1 WO2019039442 A1 WO 2019039442A1 JP 2018030719 W JP2018030719 W JP 2018030719W WO 2019039442 A1 WO2019039442 A1 WO 2019039442A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
adhesive
start temperature
expansion
heating
Prior art date
Application number
PCT/JP2018/030719
Other languages
English (en)
French (fr)
Inventor
哲也 松原
智基 郡
明 高須
貴雅 近藤
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to EP18848797.9A priority Critical patent/EP3621181B1/en
Priority to JP2019537625A priority patent/JP6711463B2/ja
Priority to US16/625,302 priority patent/US11165316B2/en
Priority to CN201880040980.4A priority patent/CN110771010B/zh
Publication of WO2019039442A1 publication Critical patent/WO2019039442A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • Y10T29/49012Rotor

Definitions

  • the present invention relates to a method of manufacturing a rotor and an apparatus for manufacturing a rotor.
  • Japanese Patent Laid-Open No. 2007-151362 discloses a permanent magnet fixing method in which a permanent magnet is inserted into and accommodated in an accommodation groove of a rotor core.
  • a permanent magnet fixing method first, a molten adhesive is dropped on the surface of the permanent magnet, whereby an adhesive containing a foaming agent that foams by heating is disposed. Thereafter, the adhesive is pressed while being heated by a press in order to cure the adhesive and to reduce the thickness of the adhesive. Thereafter, the permanent magnet is inserted into the storage groove of the rotor core. Then, when the adhesive is heated, the foaming agent is foamed to expand the adhesive, and the expanded adhesive fixes the rotor core and the permanent magnet.
  • the adhesive may contain a volatile solvent.
  • the solvent is volatilized during the temperature rise of the adhesive.
  • the temperature of the adhesive is raised rapidly in order to shorten the period for raising the temperature of the adhesive and shorten the time taken for the bonding process, the solvent is not left volatilized in the adhesive, and the foaming is performed. Foaming of the agent is initiated.
  • the foaming agent is foamed while the foaming agent is pushed away by the vaporized solvent (bubble-like solvent) .
  • the adhesive is then cured.
  • the adhesive after the hardening further expands (overexpanses) as much as the foaming agent is pushed away by the vaporized solvent.
  • the adhesive is overexpanded, the portion where the foaming agent is pushed away by the vaporized solvent remains as a cavity, and the density of the adhesive decreases. Therefore, there is a problem that the adhesive strength of the adhesive is reduced.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to shorten the temperature rising time of the adhesive and shorten the time taken for the bonding process. It is an object of the present invention to provide a method of manufacturing a rotor and an apparatus for manufacturing a rotor that can prevent the reduction in the adhesive strength of the rotor.
  • a method of manufacturing a rotor according to a first aspect of the present invention comprises a rotor core having a magnet hole, and a permanent magnet inserted into the magnet hole and fixed to the rotor core by an adhesive.
  • a method of manufacturing a rotor comprising applying an adhesive containing permanent magnet or magnet hole with an adhesive containing a dilution solvent as a volatile volatile agent and an expansion agent which expands by heating to a temperature higher than the expansion start temperature.
  • the adhesive is inserted after the process of inserting the permanent magnet into the magnet hole While heating to a temperature in a temperature zone above the vaporization start temperature at which the dilution solvent evaporates and below the expansion start temperature, and until heating to a temperature in the temperature zone above the vaporization start temperature and below the expansion start temperature
  • the adhesive is heated to a temperature above the expansion start temperature
  • a step of fixing the permanent magnet and the rotor core with the adhesive by curing the adhesive by heating the adhesive to a temperature higher than the curing temperature after the expanding agent is expanded.
  • the temperature of the temperature zone is higher than the vaporization start temperature at which the dilution solvent evaporates and less than the expansion start temperature.
  • the temperature from the heating start temperature to the vaporization start temperature or more and the temperature less than the expansion start temperature Since the temperature of the adhesive is raised (incubated) at a temperature rising rate that is slower than the temperature rising rate until it is heated to the band temperature, the dilution solvent remaining inside the adhesive can be volatilized.
  • the adhesive since the adhesive is heated (retained) to a temperature above the vaporization start temperature at which the dilution solvent evaporates and below the expansion start temperature, the expansion agent does not expand in the step of volatilizing the dilution solvent.
  • the expansion agent in the step of expanding the expansion agent after the step of volatilizing the dilution solvent, the expansion agent can be expanded without the dilution solvent remaining inside the adhesive, so the adhesive was kept warm After that, even if the temperature is rapidly raised to a temperature equal to or higher than the expansion start temperature, it is possible to suppress the overexpansion of the adhesive due to the evaporation of the dilution solvent. Thereby, it is possible to prevent the decrease in the adhesive strength of the adhesive while shortening the temperature rising time of the adhesive and shortening the time required for the bonding process.
  • An apparatus for manufacturing a rotor according to a second aspect of the present invention is an apparatus for manufacturing a rotor including a rotor core having a magnet hole and a permanent magnet inserted into the magnet hole and fixed to the rotor core by an adhesive. And a coating device for applying an adhesive containing a diluting solvent as a volatile agent having volatility and an expanding agent which expands by heating to a temperature higher than the expansion start temperature to the permanent magnet or the hole for magnet, and an adhesive
  • the heating device is provided with a heating device, and the heating device inserts a permanent magnet into the magnet hole of the rotor core, and then sets the adhesive to a temperature in a temperature zone above the vaporization start temperature at which the dilution solvent evaporates and below the expansion start temperature.
  • the expansion agent is expanded by heating the adhesive to a temperature above the expansion start temperature, and after expanding the expansion agent, the adhesive is heated to a temperature above the curing temperature The adhesive is cured by heating to fix the permanent magnet and the rotor core with the adhesive.
  • the adhesive is heated to a temperature in a temperature zone above the vaporization start temperature at which the dilution solvent evaporates and below the expansion start temperature. While heating, the dilution solvent is volatilized by raising the temperature of the adhesive with an output smaller than the output from the heating start temperature to the temperature in the temperature zone above the vaporization start temperature and below the expansion start temperature.
  • the temperature from the heating start temperature to the vaporization start temperature or more and the temperature less than the expansion start temperature Since the temperature of the adhesive is raised (incubated) at a temperature rising rate that is slower than the temperature rising rate until it is heated to the band temperature, the dilution solvent remaining inside the adhesive can be volatilized.
  • the adhesive since the adhesive is heated (retained) to a temperature above the vaporization start temperature at which the dilution solvent evaporates and below the expansion start temperature, the expansion agent does not expand in the step of volatilizing the dilution solvent.
  • the expansion agent in the step of expanding the expansion agent after the step of volatilizing the dilution solvent, the expansion agent can be expanded without the dilution solvent remaining inside the adhesive, so the adhesive was kept warm After that, even if the temperature is rapidly raised to a temperature equal to or higher than the expansion start temperature, it is possible to suppress the overexpansion of the adhesive due to the evaporation of the dilution solvent. Accordingly, it is possible to provide a manufacturing apparatus of a rotor capable of preventing the adhesive strength of the adhesive from being lowered while shortening the temperature rising time of the adhesive and shortening the time required for the bonding process.
  • FIG. 1 is a cross-sectional view of a rotating electrical machine (rotor) according to an embodiment.
  • FIG. 1 is a perspective view of a rotor according to one embodiment.
  • FIG. 5 is a side view showing the configuration of permanent magnets and adhesives of a rotor according to one embodiment. It is a fragmentary top view showing the state where the permanent magnet and rotor core of a rotor by one embodiment were pasted up with adhesives.
  • FIG. 5C is a cross-sectional view schematically showing the state before expansion (FIG. 5A) and after expansion (FIG. 5B) of the adhesive of the rotor according to one embodiment.
  • FIG. 5 is a conceptual view showing the configuration of an adhesive of a rotor according to one embodiment.
  • FIG. 5 is a conceptual view showing the configuration of an adhesive of a rotor according to one embodiment.
  • FIG. 5 is a partial plan view showing a state in which permanent magnets are inserted into a rotor core of a rotor according to one embodiment.
  • FIG. 8A is a partial cross-sectional view schematically showing the drying of the adhesive of the rotor according to one embodiment (FIG. 8A is a view before drying, FIG. 8B is a view after drying).
  • FIG. 5 is a view for explaining a process of applying an adhesive to permanent magnets of a rotor according to an embodiment;
  • FIG. 6 is a view for explaining a process of drying an adhesive of a rotor according to an embodiment;
  • FIG. 5 is a perspective view showing a process of inserting permanent magnets into a rotor core of a rotor according to one embodiment.
  • FIG. 6 is a cross-sectional view illustrating a process of curing an adhesive of a rotor according to an embodiment. It is a flowchart for demonstrating the manufacturing process of the rotor of one Embodiment. It is a figure for demonstrating the thickness of adhesive agent, and the temperature of adhesive agent in the manufacturing process of the rotor of one embodiment.
  • Fig. 15A is a view showing a state in which the dilution solvent remains
  • Fig. 15B is a view showing a state in which the dilution solvent is vaporized
  • Fig. 15A is a view for explaining a state in which the foaming agent is foamed while the dilution solvent remains
  • FIG. 15C is a diagram showing the case where no dilution solvent remains.
  • rotary electric machine is a concept including any of a motor (motor), a generator (generator), and a motor generator having both the function of the motor and the generator as required. Described.
  • the rotating electrical machine 101 is configured as a traveling motor used in a hybrid vehicle or an electric vehicle.
  • rotor rotation axis direction or “axial direction” is the rotation axis direction of the rotor 100 (direction along the axis C1 (see FIG. 2); direction parallel to the Z axis in FIG. 1) Means
  • the “circumferential direction” means the circumferential direction of the rotor 100 (the direction of the arrow A1 or the direction of the arrow A2 in FIG. 2).
  • the “radial direction” means the radial direction of the rotor 100 (the arrow R1 direction or the arrow R2 direction in FIG. 1).
  • the “radially inner side” means the inner diameter side (arrow R1 direction side) of the rotor 100, and the “radially outer side” means the outer diameter side of the rotor 100 (arrow R2 direction side).
  • IPM motor Interior Permanent Magnet Motor
  • the rotor 100 is disposed radially inward of the stator 102 so as to radially face the stator 102. That is, the rotary electric machine 101 is configured as an inner rotor type rotary electric machine. In the rotating electric machine 101, the stator 102 is provided with a coil (not shown), and the interaction between the magnetic field (magnetic flux) generated by the coil and the magnetic field (magnetic flux) generated by the rotor 100 facing the stator 102 Thus, the rotor 100 is configured to rotationally move. Then, as shown in FIG. 1, the rotor 100 includes the permanent magnet 1, the hub member 2, the rotor core 3, the adhesive 4, and the end plate 5.
  • the rotor 100 is fixed to the hub member 2 connected to the shaft 2a, and configured to transmit (or be transmitted) rotational motion to the outside of the rotary electric machine 101 via the hub member 2 and the shaft 2a.
  • the stator 102 is fixed to a case (not shown) of the rotary electric machine 101.
  • the permanent magnet 1 is formed of, for example, a neodymium magnet.
  • a neodymium magnet has a positive thermal expansion coefficient in the magnetization direction (arrow R1 direction and arrow R2 direction), while negative heat in the direction perpendicular to the magnetization direction (direction along the width direction of the permanent magnet 1 and Z axis) It has an expansion coefficient.
  • the “width direction of the permanent magnet 1” is a direction perpendicular to the Z axis and a direction perpendicular to the magnetization direction.
  • the permanent magnet 1 is formed to have a substantially rectangular shape having a length L1 in the axial direction and a width W1 smaller than the length L1 when viewed from the inside in the radial direction .
  • the permanent magnet 1 has a substantially rectangular shape in which two corner portions on the radially outer side are chamfered as viewed from one side in the axial direction (viewed from the arrow Z1 direction side).
  • the permanent magnet 1 is configured such that the radially inner surface 11 is flat and the radially outer surface 12 is arc-shaped, as viewed from one side in the axial direction.
  • two chamfered corner portions of the permanent magnet 1 are provided with surfaces 13 as contact surfaces to be in contact with the later-described magnet holes 32, respectively.
  • the two surfaces 13 of the permanent magnet 1 are disposed to abut (face contact with) the wall surface 32a of the magnet hole 32, respectively. That is, the permanent magnet 1 is fixed in a state of being positioned by the wall surfaces 32a having a pair of tapered shapes as viewed from the arrow Z1 direction side.
  • the hub member 2 is fixed to the rotor core 3 by being engaged with an engaging portion 3a (see FIG. 2) of the rotor core 3 disposed on the arrow R2 direction side of the hub member 2 as shown in FIG.
  • the hub member 2 is fixed to the shaft 2a.
  • the hub member 2, the rotor core 3 and the shaft 2 a are configured to be integrally rotated about the axis C 1 as a central axis.
  • the rotor core 3 includes a plurality of (for example, four) core blocks 30 having an annular shape, as shown in FIG.
  • the plurality of core blocks 30 are stacked in the axial direction with the central axis C1 aligned.
  • the core block 30 is formed by axially laminating a plurality of electromagnetic steel plates 31 (see FIG. 1; for example, silicon steel plates) each having an annular shape.
  • the core block 30 is provided with a plurality of (for example, sixteen) hole portions 132 configured as through holes along the axial direction.
  • the plurality of core blocks 30 are stacked in the axial direction so that the positions of the holes 132 overlap (or completely coincide with) each other as viewed from the arrow Z1 direction.
  • the holes 132 of the plurality of core blocks 30 are continuously connected to form the magnet hole 32 in which the permanent magnet 1 is inserted along the axial direction.
  • the plurality of magnet hole portions 32 are circumferentially arranged at equal angular intervals when viewed from the arrow Z1 direction side.
  • the permanent magnets 1 are disposed in the plurality of magnet hole portions 32, respectively. As shown in FIG. 1, the magnet hole 32 and the permanent magnet 1 are fixed to each other by an adhesive 4. Further, as shown in FIG. 2, the axial length L2 of the magnet hole 32 is configured to be slightly smaller than the axial length L1 of the permanent magnet 1.
  • the permanent magnet 1 is preferably in a state before being magnetized.
  • the magnet hole portion 32 is provided with two grooves 32 b extending along the axial direction, in which the adhesive 4 is disposed and which is recessed inward in the radial direction of the rotor core 3.
  • the two groove portions 32 b are disposed at positions radially opposed to adhesive disposition positions B 1 and B 2 described later of the surface 11 of the permanent magnet 1.
  • the two groove portions 32b are provided in the vicinity of both end portions in the circumferential direction of the magnet hole portion 32, and the protruding portion 32c is provided between the two groove portions 32b.
  • the two groove portions 32b each have a bottom portion 32d, and the groove depth d1 from the top surface 32e of the protrusion portion 32c to the bottom portion 32d is larger than a thickness t1 (see FIG. 7) described later. Is configured.
  • the projecting portion 32 c of the rotor core 3 is configured to project radially outward from the inside in the radial direction of the magnet hole 32 at the central portion in the circumferential direction of the magnet hole 32.
  • the protrusion 32 c is provided at a position corresponding to the circumferential center of the magnet hole 32.
  • the magnetic resistance can be reduced as compared with the case where the protrusions 32 c are not provided and the protrusions 32 c are provided at positions corresponding to both end portions in the circumferential direction of the magnet hole 32.
  • the adhesive 4 is disposed on a part of the radially inner surface 11 of the permanent magnet 1 as shown in FIG. Specifically, the adhesive 4 is disposed only at the adhesive disposition positions B1 and B2 of the surface 11 of the permanent magnet 1.
  • the adhesive 4 is a portion on one side (arrow X1 direction side) of the short side in the adhesive arrangement position B1 and the other side (arrow X2 direction side) It is arrange
  • the adhesive 4 is formed to have a rectangular shape extending in the longitudinal direction of the surface 11 of the permanent magnet 1 (axial direction from a portion on the arrow Z1 direction side to a portion on the arrow Z2 direction side).
  • the adhesive 4 is a portion B3 (portion on the arrow Z1 direction side) and a portion B4 (direction of the arrow Z2) in the vicinity of the axial end surface 14 of the permanent magnet 1 and the axial end surface 14 of the surface 11 of the permanent magnet 1 Side part is not placed.
  • the adhesive 4 when the adhesive 4 is disposed on the radially outer surface 12 of the permanent magnet 1, the adhesive 4 is disposed between the permanent magnet 1 and the stator 102 disposed radially outward of the rotor core 3. As a result, the distance between the permanent magnet 1 and the stator 102 is increased by the thickness t2 of the adhesive 4. With respect to this point, in the present embodiment, since the adhesive 4 is not disposed between the permanent magnet 1 and the stator 102, the distance between the permanent magnet 1 and the stator 102 can be reduced accordingly.
  • the foaming agent 41 is an example of the "expansive agent" of a claim.
  • the foaming agent 41 is configured as an expanding agent that foams (expands) by being heated to a temperature equal to or higher than the expansion start temperature T1.
  • the main agent 42 and the curing agent 43 have the property of being cured by being heated to a temperature higher than the curing temperature T2 which is higher than the expansion start temperature T1.
  • the foaming agent 41 is configured as a capsule body (see FIG. 6), and is configured such that the capsule body is expanded to have a large volume by being heated to a temperature equal to or higher than the expansion start temperature T1.
  • the adhesive 4 contains isopentane (hydrocarbon) contained in the capsule body as the foaming agent 41.
  • the expansion start temperature T1 can be set, for example, as a foaming temperature at which the capsule body foam-molds.
  • the foaming agent 41 foams and expands, the thickness of the adhesive 4 changes from the thickness t1 to the thickness t2. As a result, the adhesive 4 is placed across the surface 11 of the permanent magnet 1 and the bottom 32 d of the groove 32 b. In addition, the foaming agent 41 remains as an expanded capsule body in the adhesive 4 (in the hole 32 for magnet) even after heating.
  • the adhesive 4 is such that the foaming agent 41 is expanded and expanded so that the adhesive 4 is changed to a thickness t2 three times to eight times the thickness t1 of the adhesive 4 before expansion.
  • the content ratio of the foaming agent 41 in the above is set. Then, as shown in FIG. 7, in the state before the foaming agent 41 of the adhesive 4 foams, the adhesive 4 and the bottom 32 d of the groove 32 b are disposed at mutually separated positions, and the permanent magnet 1 is The surface 13 and the wall surface 32a of the magnet hole 32 are disposed at mutually separated positions. Then, in a state after the foaming agent 41 of the adhesive 4 is foamed (see FIG.
  • the adhesive 4 expands and the adhesive 4 contacts the bottom 32 d of the groove 32 b, and the permanent magnet 1 has a diameter It is pressed to the outside of the direction, and the surface 13 of the permanent magnet 1 and the wall surface 32 a of the magnet hole 32 are disposed at a contact position.
  • the main agent 42 includes, for example, an epoxy resin (for example, bisphenol A liquid epoxy and an epoxy resin polymer).
  • the curing agent 43 also contains, for example, dicyandiamide.
  • the main agent 42 and the curing agent 43 have the property of being cured by being heated to a temperature equal to or higher than the curing temperature (lower limit curing temperature) T2. That is, in the present embodiment, the adhesive 4 is configured as a thermosetting adhesive.
  • the permanent magnet 1 and the rotor core 3 are adhered and fixed by curing the main agent 42 of the adhesive 4 and the curing agent 43.
  • the curing temperature T2 is higher than the vaporization start temperature T3 described later and higher than the expansion start temperature T1.
  • the curing temperature T2 is set by the combination of the main agent 42 and the curing agent 43, and is lower than the product upper limit temperature (hardening upper limit temperature) T5. Further, the product upper limit temperature T5 can be set, for example, as a temperature at which the performance as the rotor 100 is not affected.
  • the adhesive 4 is a volatile agent having volatility in a state before the permanent magnet 1 and the rotor core 3 are adhered by the adhesive 4 and before being dried. It contains a diluting solvent 44, a foaming agent 41 as an expanding agent in a state before foaming, and a main agent 42 and a curing agent 43 in an uncured state.
  • the adhesive 4 is not cured with the foaming agent 41 before the permanent magnet 1 and the rotor core 3 are fixed by the adhesive 4 and after drying (see FIG. 8B). And a curing agent 43. That is, after the adhesive 4 is dried, the amount of the dilution solvent 44 in the adhesive 4 is reduced, or the dilution solvent 44 in the adhesive 4 is substantially not contained.
  • ketones such as methyl ethyl ketone and volatile organic solvents such as alcohols and ethers can be used as the dilution solvent 44, and in the present embodiment, both methyl ethyl ketone and ethyl acetate are included.
  • the dilution solvent 44 has a viscosity lower than that of the foaming agent 41 and the curing agent 43.
  • the dilution solvent 44 has a function of reducing the viscosity of the adhesive 4 and enhancing the flowability by being contained in the adhesive 4.
  • the dilution solvent 44 is volatilized by being brought to a temperature (e.g., temperature T10 in FIG. 14) which is equal to or higher than the vaporization start temperature T3.
  • a temperature e.g., temperature T10 in FIG. 14
  • T3 vaporization start temperature
  • the vaporization start temperature T3 is lower than the expansion start temperature T1. Also, the expansion start temperature T1 is lower than the curing temperature T2.
  • the dilution solvent 44 can be volatilized without expanding the foaming agent 41. Become. Even when the temperature of the adhesive 4 is lower than the expansion start temperature T1 and equal to or higher than the evaporation start temperature T3, the adhesive 4 is produced by the evaporation of the dilution solvent 44 in the inside of the adhesive 4. Due to the increase in viscosity, the non-volatilizable dilution solvent 44 may remain.
  • the adhesive 4 has a thickness t3 in a direction (arrow R1 direction and arrow R2 direction) perpendicular to the width direction of the permanent magnet 1 in a state before being dried.
  • the adhesive 4 is reduced in volume and thinned by volatilization of the dilution solvent 44. That is, the adhesive 4 has a thickness t1 smaller than the thickness t3 in the dried state.
  • the thickness t1 is equal to or less than nine tenths (more preferably, four fifths or less) of the thickness t3.
  • FIG. 13 shows a flowchart of a method of manufacturing the rotor 100 according to the present embodiment.
  • FIG. 14 an adhesive during the manufacturing process of the rotor 100 in which the horizontal axis is time and the vertical axis is the temperature of the adhesive 4 (vertical on the left) and the thickness of the adhesive 4 (vertical on the right) The figure for demonstrating the state of 4 is shown.
  • step S1 a process of preparing the permanent magnet 1 and the adhesive 4 is performed.
  • a plurality of permanent magnets 1 including a neodymium magnet are prepared.
  • the adhesive 4 is prepared.
  • the adhesive 4 is a curing agent having a foaming agent 41 as an expanding agent which expands by being heated to a temperature equal to or higher than the expansion start temperature T1, a diluting solvent 44 having volatility, and a temperature higher than the expansion start temperature T1. It includes a main agent 42 and a curing agent 43 which are cured by being heated to a temperature T2 or more. At this time, the adhesive 4 is prepared in a molten state (flowable state).
  • the adhesive 4 may be in a liquid state or in a gel state.
  • the prepared adhesive 4 is accommodated in the coating device 201, as shown in FIG. Thereafter, the process proceeds to step S2.
  • the permanent magnet 1 be prepared in the state before magnetization.
  • the coating device 201 and the induction heating device 205 described later constitute a manufacturing device 200 of the rotor 100.
  • step S2 as shown in FIG. 9, the process of attaching the permanent magnet 1 to the magnet holding device 202 is performed. Thereafter, the process proceeds to step S3.
  • step S3 a step of applying and arranging the adhesive 4 on the permanent magnet 1 is performed. Specifically, the adhesive 4 is applied to the permanent magnet 1 by relative movement of the coating device 201 and the magnet holding device 202 while discharging the adhesive 4 from the opening of the tip of the nozzle of the coating device 201. (Placed). Then, the adhesive 4 having a thickness t3 is formed. For example, as shown in FIG.
  • step S4 After the adhesive 4 is applied along the Y-axis direction at a portion on the surface 11 of the permanent magnet 1 on the arrow X1 direction side (adhesive placement position B1), the permanent magnet 1 is In the portion (adhesive placement position B2) on the arrow X2 direction side of the surface 11, the coating is applied in the Y axis direction. At this time, the adhesive 4 is not applied to the axial end face 14 of the permanent magnet 1 and the portions B3 and B4 in the vicinity of the axial end face 14. Further, the adhesive 4 is applied so as to have a rectangular shape and disposed on the permanent magnet 1 when viewed from the arrow Z1 direction side. Thereafter, the process proceeds to step S4.
  • step S4 a step of drying the adhesive 4 is performed.
  • the step of drying the adhesive 4 is performed before the step of inserting the permanent magnet 1 described later into the magnet hole 32.
  • the thickness of the adhesive 4 is reduced to a thickness t1 smaller than the thickness t3 of the adhesive 4 before drying, and the adhesive 4 is thinned. .
  • the adhesive 4 is dried by evaporating the dilution solvent 44 contained in the adhesive 4. As shown in FIG. 14, the adhesive 4 is dried by heating the adhesive 4 to a temperature T10 which is higher than the vaporization start temperature T3 and lower than the expansion start temperature T1, and the thickness of the adhesive 4 is from thickness t3 to thickness It is set to t1. In addition, the viscosity of the adhesive 4 is improved by the volatilization of the dilution solvent 44 having a relatively low viscosity, and the adhesive 4 is positioned and fixed at the adhesive disposition positions B1 and B2. As described above, the non-volatile solvent 44 may remain in the adhesive 4.
  • hot air E air having a temperature (temperature T10 higher than vaporization start temperature T3 and lower than expansion start temperature T1) higher than room temperature T4 by air blowing of drying device 203, By spraying on the adhesive 4, the diluting solvent 44 contained in the adhesive 4 is volatilized. The hot air E also ventilate the diluted dilution solvent 44. Thereafter, the process proceeds to step S5.
  • step S5 the process of cooling the permanent magnet 1 and the adhesive 4 is performed.
  • the permanent magnet 1 is contracted along the magnetization direction (the radial direction of the rotor 100).
  • permanent magnet 1 and adhesive 4 are cooled to a temperature near room temperature T4.
  • the process proceeds to step S6.
  • step S6 a step of preparing the rotor core 3 is performed.
  • a plurality of electromagnetic steel plates 31 are punched out by a progressive press processing apparatus (not shown). At this time, a plurality of annular electromagnetic steel plates 31 in which the holes 132 (see FIG. 2) having the grooves 32 b are formed are formed. Then, as shown in FIG. 11, a plurality of (for example, four) core blocks 30 are formed by laminating a plurality of electromagnetic steel plates 31 along the axial direction. Then, the core block 30 is stacked in the axial direction. Then, a part of the plurality of core blocks 30 is circumferentially rotated or inverted (transposed) with respect to the other core blocks 30. Thus, the rotor core 3 is formed, and the holes 132 of the plurality of core blocks 30 are continuously connected in the axial direction to form the magnet hole 32. Thereafter, the process proceeds to step S7.
  • step S7 a step of inserting the permanent magnet 1 on which the dried adhesive 4 is disposed into the magnet hole 32 of the rotor core 3 is performed. Specifically, the rotor core 3 and the permanent magnet 1 in which the surface 11 on which the adhesive 4 is disposed is directed radially inward are relatively moved in the axial direction, so that each of the magnet holes 32 is formed. , Permanent magnet 1 is inserted. Although only one permanent magnet 1 is illustrated in FIG. 11, the permanent magnet 1 is inserted into each of the magnet holes 32.
  • the adhesive 4 is not less than the vaporization start temperature T3 and less than the expansion start temperature T1 at which the dilution solvent 44 evaporates.
  • the temperature rise speed is slower than the temperature rise speed until heating to the temperature of the temperature band above the vaporization start temperature T3 and below the expansion start temperature T1 from the heating start temperature (room temperature T4)
  • room temperature T4 By raising the temperature of the adhesive 4, the step of volatilizing the dilution solvent 44 is performed.
  • the adhesive 4 is heated (rapid heating) to a temperature at or above the vaporization start temperature T3 at which the dilution solvent 44 volatilizes and below the expansion start temperature T1 and at a vaporization start temperature T3 or more and below the expansion start temperature T1
  • the dilution solvent 44 is volatilized by keeping the temperature (constant temperature) in the temperature range of
  • the induction heating device 205 heats the adhesive 4 to a temperature in a temperature range above the vaporization start temperature T3 at which the dilution solvent 44 evaporates and below the expansion start temperature T1, and starts vaporization from the heating start temperature (room temperature T4).
  • the temperature of the adhesive 4 is raised with an output smaller than the output until heating to a temperature in a temperature range above the temperature T3 and below the expansion start temperature T1.
  • the foaming agent 41 foams while the remaining dilution solvent 44 is vaporized (boiling).
  • the foaming agent 41 is composed of an outer shell member 41a which is an outer shell of a thermoplastic resin, and a hydrocarbon foaming agent portion 41b which is covered with the outer shell member 41a.
  • FIG. 15C shows an example in which the foaming agent 41 is foamed in a state in which the dilution solvent 44 does not remain inside the adhesive 4 (an example in which the foaming agent 41 does not expand excessively).
  • the adhesive 4 is evaporated to the evaporation start temperature T3 or more at which the solvent 44 evaporates and the expansion start temperature
  • the remaining dilution solvent 44 is volatilized by heating to a temperature less than T1 and keeping the temperature in a temperature zone higher than the vaporization start temperature T3 and less than the expansion start temperature T1.
  • the temperature of the adhesive 4 in the step of volatilizing the dilution solvent 44 is higher than the temperature of the adhesive 4 in the step of drying the adhesive 4.
  • the temperature of the adhesive 4 in the step of volatilizing the dilution solvent 44 is higher than the vaporization start temperature T3 and lower than the expansion start temperature T1 and includes the temperature at which the dissolution of the adhesive 4 after drying is started. .
  • the second period shorter than the first period P1 in which the heat is maintained in the temperature zone above the vaporization start temperature T3 and below the expansion start temperature T1.
  • the adhesive 4 applied to the permanent magnet 1 is heated (rapid heating) to a temperature not lower than the vaporization start temperature T3 at which the dilution solvent 44 volatilizes and lower than the expansion start temperature T1.
  • the first period P1 is a time which is several minutes or more and the adhesive 4 is not heated to the expansion start temperature T1.
  • the second period P2 is about several seconds to several tens of seconds. That is, the adhesive 4 is heated in a relatively short time (rapidly).
  • the adhesive 4 is heated to a temperature above the vaporization start temperature T3 at which the dilution solvent 44 volatilizes and below the expansion start temperature T1.
  • the dilution solvent 44 is volatilized by heating (rapid heating).
  • a shaft hole 3b to which the shaft 2a (or the hub member 2 to which the shaft 2a is connected) is attached is provided on the inner diameter side of the rotor core 3.
  • the induction heating apparatus 205 is arrange
  • the adhesive 4 is heated (rapid heating) to a temperature higher than the vaporization start temperature T3 at which the dilution solvent 44 volatilizes by heating the rotor core 3 Do.
  • the induction heating device 205 is an example of the “heating device” in the claims.
  • the rotor core 3 having the magnet hole 32 is heated to a temperature equal to or higher than the expansion start temperature T1.
  • the adhesive 4 is heated by the heat of the heated rotor core 3 to a temperature not lower than the vaporization start temperature T3 at which the dilution solvent 44 volatilizes and lower than the expansion start temperature T1.
  • the dilution solvent 44 is volatilized by maintaining the temperature in a temperature zone lower than the start temperature T1.
  • the heat (indicated by the dotted arrow) from the induction heating device 205 is conducted to the permanent magnet 1 through the rotor core 3.
  • the heat from the induction heating device 205 is conducted to the permanent magnet 1 through the wall surface 32a of the magnet hole 32, and the permanent magnet 1 through the projection 32c of the magnet hole 32. Conducted to Then, heat is conducted from the permanent magnet 1 to the adhesive 4.
  • Heat is also conducted to the adhesive 4 from the rotor core 3 via air (air in a gap between the rotor core 3 and the adhesive 4). Further, the temperature of the permanent magnet 1 and the temperature of the adhesive 4 are approximately equal.
  • step S9 after the step of evaporating the dilution solvent 44, the step of expanding (foaming) the foaming agent 41 by heating the adhesive 4 to a temperature equal to or higher than the expansion start temperature T1 is performed.
  • adhesion is performed during a third period P3 which is shorter than the first period P1 in which the heat is maintained in a temperature zone not lower than the vaporization start temperature T3 and less than the expansion start temperature T1 in the step of evaporating the dilution solvent 44.
  • the foaming agent 41 is expanded (foamed) by heating (rapid heating) the agent 4 to a temperature equal to or higher than the expansion start temperature T1.
  • the third period P3 is about several seconds to several tens of seconds. That is, the adhesive 4 is heated in a relatively short time (rapidly), and the foaming agent 41 is expanded (foamed). Since the dilution solvent 44 remaining in the adhesive 4 is volatilized in step S8, overexpansion of the adhesive 4 is suppressed even if the foaming agent 41 is rapidly expanded (foamed) in step S9. (See FIG. 15C). Further, after the step of evaporating the dilution solvent 44, the foaming agent 41 is heated by heating the adhesive 4 to a temperature higher than the expansion start temperature T1 while preventing the temperature of the adhesive 4 from falling below the vaporization start temperature T3. Inflate.
  • the rotor core 3 (and the permanent magnet 1) in which the permanent magnet 1 is disposed is pressed by the pressing device 204 from both the arrow Z1 direction side and the arrow Z2 direction side In the PL) state, the adhesive 4 is heated to a temperature T11 (see FIG. 14) which is higher than the expansion start temperature T1 and higher than the curing temperature T2.
  • T11 see FIG. 14
  • the adhesive 4 is heated to a temperature T11 (see FIG. 14) higher than the expansion start temperature T1 and higher than the curing temperature T2.
  • the foaming agent 41 of the adhesive 4 expands to expand, and the thickness of the adhesive 4 changes from the thickness t1 to the thickness t2.
  • the thickness t2 of the adhesive 4 is substantially equal to the distance from the surface 11 of the permanent magnet 1 to the bottom 32d of the groove 32b. That is, the adhesive 4 is expanded from the surface 11 of the permanent magnet 1 to the bottom 32 d of the groove 32 b. Further, the adhesive 4 is expanded, and the surface 13 of the permanent magnet 1 is pressed radially outward, and the wall surface 32 a of the magnet hole 32 abuts on the surface 13 of the permanent magnet 1.
  • step S10 after expanding the foaming agent 41, the adhesive 4 is cured by heating the adhesive 4 to a temperature equal to or higher than the curing temperature T2, and the adhesive 4 cures the permanent magnet 1 and the rotor core 3
  • the adhesive 4 is cured by maintaining the adhesive 4 at a temperature higher than the curing temperature T2, and the permanent magnet 1 and the rotor core are cured by the adhesive 4.
  • the adhesive 4 is maintained at a temperature T11 (see FIG. 14) which is higher than the expansion start temperature T1 and higher than the curing temperature T2.
  • the second period P2 (for example, several minutes) in which the adhesive 4 is heated to a temperature equal to or higher than the vaporization start temperature T3 at which the dilution solvent 44 volatilizes is shorter than the fourth period P4.
  • the fourth period P4 is for several tens of minutes.
  • the adhesive 4 is cured by heating the adhesive 4 to a temperature equal to or higher than the curing temperature T2 while preventing the temperature of the adhesive 4 from falling below the expansion start temperature T1.
  • the permanent magnet 1 and the rotor core 3 are fixed by the adhesive 4.
  • the adhesive 4 is heated to a temperature equal to or higher than the curing temperature T2 by adjusting the output of the induction heating device 205.
  • step S11 as shown in FIG. 14, the process of cooling the rotor core 3 is performed.
  • the temperature of rotor core 3 and adhesive 4 is cooled to room temperature T4. Thereafter, the process proceeds to step S12.
  • step S12 a step of joining the plurality of core blocks 30 together by laser welding or the like is performed.
  • the rotor 100 is manufactured. Thereafter, as shown in FIG. 1, the rotor 100 is assembled with the stator 102 and the like, and the rotary electric machine 101 is manufactured.
  • the adhesive (4) is heated to a temperature in a temperature range above the vaporization start temperature (T3) at which the dilution solvent (44) evaporates and below the expansion start temperature (T1).
  • the temperature of the adhesive (4) at a temperature rising speed slower than the temperature rising speed before heating to the temperature of the temperature range above the vaporization start temperature (T4) and the vaporization start temperature (T3) and less than the expansion start temperature (T1) Volatilizing the dilution solvent (44) by raising
  • the heating start temperature ((4)) remains even if the non-volatilized dilution solvent (44) remains.
  • the temperature of the adhesive (4) rises at a temperature rising speed slower than the temperature rising speed from T4) to the temperature in the temperature range above the vaporization start temperature (T3) and below the expansion start temperature (T1) ), So that the dilution solvent (44) remaining inside the adhesive (4) can be volatilized.
  • the adhesive (4) is heated (retained) to a temperature above the vaporization start temperature (T3) at which the dilution solvent (44) evaporates and below the expansion start temperature (T1), the dilution solvent (44) In the process of volatilizing the expansion agent (41) does not expand.
  • the expansion agent (44) does not remain inside the adhesive (4). 41) can be expanded, so even if the adhesive (4) is rapidly raised to a temperature higher than the expansion start temperature (T1), the adhesive is due to the dilution solvent (44) vaporizing. It is possible to suppress the overexpansion of (4). Thereby, it is possible to prevent the decrease in the adhesive strength of the adhesive (4) while shortening the temperature rising time of the adhesive (4) and shortening the time required for the bonding process.
  • the adhesive (4) is thermosetting, and the curing temperature (T2) of the adhesive (4) is higher than the expansion start temperature (T1). According to this structure, it is possible to shorten the time required for the bonding step of the adhesive (4) made of a thermosetting resin or the like containing the expansion agent (41).
  • the temperature of the adhesive (4) does not fall below the expansion start temperature (T1) while the adhesive (4)
  • the adhesive (4) is cured by heating to a temperature above the curing temperature (T2).
  • T2 the degree of temperature rise for raising the adhesive (4) to the curing temperature
  • T2 the curing temperature
  • the volume contraction of the adhesive (4) after expansion can be suppressed, the volume of the adhesive (4) after curing can be stabilized.
  • the temperature of the adhesive (4) does not fall below the vaporization start temperature (T3) while the adhesive ( The expansion agent (41) is expanded by heating 4) to a temperature equal to or higher than the expansion start temperature (T1).
  • T3 the vaporization start temperature
  • T1 the expansion start temperature
  • the step of volatilizing the dilution solvent (44) is the dilution solvent (44) remaining in the adhesive (4) without volatilizing in the step of drying the adhesive (4).
  • a part of the diluted solvent (44) contained in the adhesive (4) is volatilized, while the adhesive (4) is volatilized.
  • the viscosity of 4) gradually increases, and the non-volatile solvent (44) remains. Therefore, providing the step of evaporating the diluted solvent (44) remaining in the adhesive (4) without volatilizing in the step of drying the adhesive (4) is provided with the step of drying the adhesive (4).
  • the method of manufacturing the rotor (100) is particularly effective in volatilizing the remaining diluted solvent (44).
  • the temperature of the adhesive (4) in the step of volatilizing the dilution solvent (44) is higher than the temperature of the adhesive (4) in the step of drying the adhesive (4). high. According to this structure, the time required for evaporating the diluting solvent (44) can be shortened, and the diluting solvent (44) can be combined with the permanent magnet (1) and the rotor core (3) by the adhesive (4). Before fixing, you can make sure to volatilize.
  • the temperature of the adhesive (4) in the step of volatilizing the dilution solvent (44) is equal to or higher than the vaporization start temperature (T3) and lower than the expansion start temperature (T1). And the temperature at which the dissolution of the adhesive (4) after drying is started. According to this structure, since the adhesive (4) is in a dissolved state, the vaporized diluted solvent (44) can be surely vaporized, and the time required to evaporate the diluted solvent (44) is further increased. It can be shortened.
  • the step of volatilizing the dilution solvent (44) is performed in the first period (P1) in which the temperature is maintained in a temperature zone above the vaporization start temperature (T3) and below the expansion start temperature (T1).
  • the adhesive (4) is rapidly heated to a temperature above the vaporization start temperature (T3) and below the expansion start temperature (T1) at which the diluting solvent (44) evaporates during the second period (P2) shorter than)) It is a process.
  • the adhesive (4) can be heated in a relatively short time (rapidly), the time required for manufacturing the rotor (100) can be shortened.
  • the step of expanding the expansion agent (41) is performed at the vaporization start temperature (T3) or more and less than the expansion start temperature (T1) in the step of volatilizing the dilution solvent (44).
  • the expansion agent (41) is obtained by rapidly heating the adhesive (4) to a temperature higher than the expansion start temperature (T1) during a third period (P3) shorter than the first period (P1) in which the temperature is kept warm Inflating the According to this structure, since the expansion agent (41) can be expanded in a relatively short time (rapidly), the time required to manufacture the rotor (100) can be further shortened.
  • the second period in which the adhesive (4) is heated to a temperature above the vaporization start temperature (T3) at which the dilution solvent (44) evaporates and below the expansion start temperature (T1). (P2) is shorter than the fourth period (P4). According to this structure, since the diluted solvent (44) remaining in the adhesive (4) is volatilized in a relatively short time, the time required for manufacturing the rotor (100) can be further shortened.
  • the step of volatilizing the dilution solvent (44) comprises heating the rotor core (3) having the magnet hole (32) to a temperature higher than the expansion start temperature (T1). Heats the adhesive (4) to a temperature above the vaporization start temperature (T3) at which the dilution solvent (44) evaporates and below the expansion start temperature (T1), and at a vaporization start temperature (T3) or more and the expansion start In this step, the dilution solvent (44) is volatilized by keeping the temperature in a temperature zone lower than the temperature (T1).
  • the heat of the rotor core (3) heated to a temperature higher than the expansion start temperature (T1) higher than the vaporization start temperature (T3) causes the adhesive (4) to pass through the permanent magnet (1).
  • the dilution solvent (44) evaporates the adhesive (4) by heating the rotor core (3) by induction heating.
  • This is a step of rapid heating to a temperature above the vaporization start temperature (T3) and below the expansion start temperature (T1).
  • T3 vaporization start temperature
  • T1 expansion start temperature
  • the step of volatilizing the diluting solvent (44) includes the induction heating device (205) disposed on the inner diameter side where the shaft hole (3b) of the rotor core (3) is provided.
  • the induction heating device (205) for performing induction heating can be disposed in the shaft hole (3b) of the rotor core (3). Therefore, the induction heating device (205) is not limited to the rotor core (3). The space required for manufacturing the rotor (100) can be prevented from being increased as compared with the case of being disposed outside.
  • the heating device (205) is higher than the vaporization start temperature (T3) and lower than the expansion start temperature (T1) at which the solvent (44) evaporates the adhesive (4).
  • Adhesive with an output smaller than the output until heating to the temperature of the temperature zone and the temperature of the temperature zone above the vaporization start temperature (T3) and below the expansion onset temperature (T1) while heating to the temperature zone temperature By raising the temperature of (4), the dilution solvent (44) remaining inside the adhesive (4) can be volatilized.
  • the rotor 100 is disposed as a so-called inner rotor disposed radially inward of the stator 102
  • the present invention is not limited thereto. That is, the rotor 100 may be configured as an outer rotor.
  • foaming agent 41 as an expansion agent
  • this invention is not limited to this.
  • materials other than the foaming agent 41 that expand upon heating may be used as the expanding agent.
  • the curing temperature T2 may be a temperature equal to the expansion start temperature T1, and the curing temperature T2 may be equal to or higher than the expansion start temperature T1.
  • the adhesive 4 may be applied to the magnet hole 32.
  • the method of manufacturing the rotor 100 is the same as that of the above embodiment. That is, while said step S3 is substituted to the process of apply
  • the adhesive 4 may be heated by a method other than induction heating.
  • the adhesive agent 4 is heated by induction heating from the internal-diameter side of the rotor core 3
  • this invention is not limited to this.
  • the adhesive 4 may be heated from the outer diameter side of the rotor core 3 by induction heating (or by a method other than induction heating).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

このロータの製造方法は、接着剤を希釈溶剤が揮発する気化開始温度以上でかつ膨張開始温度未満の温度帯の温度に加熱するとともに、加熱開始温度から気化開始温度以上でかつ膨張開始温度未満の温度帯の温度に加熱するまでの温度上昇速度よりも遅い温度上昇速度で接着剤の温度を上昇させることにより、希釈溶剤を揮発させる工程を備える。

Description

ロータの製造方法およびロータの製造装置
 本発明は、ロータの製造方法およびロータの製造装置に関する。
 従来、永久磁石をロータコアの磁石用孔部に挿入するロータの製造方法が知られている。このようなロータの製造方法は、たとえば、特開2007-151362号公報に開示されている。
 特開2007-151362号公報には、ロータコアの収容溝に永久磁石を挿入して収容する永久磁石固定方法が開示されている。この永久磁石固定方法では、まず、永久磁石の表面に、溶融した接着剤を滴下することにより、加熱により発泡する発泡剤を含む接着剤が配置される。その後、接着材を硬化させるとともに、接着剤の厚みを薄くするために、接着材がプレス機により加熱されながらプレスされる。その後、永久磁石がロータコアの収納溝に挿入される。そして、接着材が加熱されることにより、発泡剤が発泡されて、接着材が膨張し、膨張した接着材によりロータコアと永久磁石とが固定される。
特開2007-151362号公報
 特開2007-151362号公報に記載のような従来の永久磁石固定方法では、所定の発泡倍率および接着強度を得るためには、所定の第1時間以内に接着剤の硬化温度以上の温度に接着剤を加熱(昇温)するとともに、所定の第2時間以上、恒温(保温)する必要がある。ここで、接着剤が揮発性の溶剤を含む場合がある。この場合、接着剤の昇温中に溶剤が揮発される。しかしながら、接着剤の昇温の期間を短縮して接着工程にかかる時間を短くするために、接着剤を急激に昇温させた場合、接着剤の内部に揮発されない溶剤が残留した状態で、発泡剤の発泡が開始される。すなわち、溶剤が気化している最中(沸騰中)に、発泡剤の発泡が開始されるため、気化している溶剤(バブル状の溶剤)に発泡剤が押しのけられながら、発泡剤が発泡する。その後、接着剤が硬化する。このため、硬化した後の接着剤は、発泡剤による膨張に加えて、気化している溶剤により発泡剤が押しのけられた分、さらに膨張(過膨張)する。また、接着剤が過膨張すると、気化した溶剤により発泡剤が押しのけられた部分が空洞として残り、接着剤の密度が低下する。このため、接着剤の接着強度が低下するという問題点がある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、接着剤の昇温時間を短縮して接着工程にかかる時間を短くしながら、接着剤の接着強度が低下するのを防止することが可能なロータの製造方法およびロータの製造装置を提供することである。
 上記目的を達成するために、この発明の第1の局面におけるロータの製造方法は、磁石用孔部を有するロータコアと、磁石用孔部に挿入され、接着剤によりロータコアに固定される永久磁石とを備えるロータの製造方法であって、揮発性を有する揮発剤としての希釈溶剤と膨張開始温度以上に加熱することにより膨張する膨張剤とを含む接着剤を、永久磁石または磁石用孔部に塗布する工程と、永久磁石をロータコアの磁石用孔部に挿入する工程と、永久磁石を磁石用孔部に挿入する工程の後、永久磁石を磁石用孔部に挿入する工程の後、接着剤を希釈溶剤が揮発する気化開始温度以上でかつ膨張開始温度未満の温度帯の温度に加熱するとともに、加熱開始温度から気化開始温度以上でかつ膨張開始温度未満の温度帯の温度に加熱するまでの温度上昇速度よりも遅い温度上昇速度で接着剤の温度を上昇させることにより、希釈溶剤を揮発させる工程と、希釈溶剤を揮発させた工程の後、接着剤を膨張開始温度以上の温度に加熱することにより膨張剤を膨張させる工程と、膨張剤を膨張させた後に、接着剤を硬化温度以上の温度に加熱することにより接着剤を硬化させて、接着剤により永久磁石とロータコアとを固定する工程とを備える。
 この発明の第1の局面におけるロータの製造方法では、永久磁石を磁石用孔部に挿入する工程の後、接着剤を希釈溶剤が揮発する気化開始温度以上でかつ膨張開始温度未満の温度帯の温度に加熱するとともに、加熱開始温度から気化開始温度以上でかつ膨張開始温度未満の温度帯の温度に加熱するまでの温度上昇速度よりも遅い温度上昇速度で接着剤の温度を上昇させることにより、希釈溶剤を揮発させる工程を備える。これにより、永久磁石が磁石用孔部に挿入された時点で、接着剤の内部に揮発されない希釈溶剤が残留している場合でも、加熱開始温度から気化開始温度以上でかつ膨張開始温度未満の温度帯の温度に加熱するまでの温度上昇速度よりも遅い温度上昇速度で接着剤の温度が上昇(保温)されるので、接着剤の内部に残留している希釈溶剤を揮発させることができる。なお、接着剤は、希釈溶剤が揮発する気化開始温度以上でかつ膨張開始温度未満の温度に加熱(保温)されているので、希釈溶剤を揮発させる工程において膨張剤が膨張することはない。その結果、希釈溶剤を揮発させた工程の後の膨張剤を膨張させる工程において、接着剤の内部に希釈溶剤が残留していない状態で膨張剤を膨張させることができるので、接着剤を保温した後、膨張開始温度以上の温度に急速に昇温させても、希釈溶剤が気化することに起因して、接着剤が過膨張するのを抑制することができる。これにより、接着剤の昇温時間を短縮して接着工程にかかる時間を短くしながら、接着剤の接着強度が低下するのを防止することができる。
 この発明の第2の局面におけるロータの製造装置は、磁石用孔部を有するロータコアと、磁石用孔部に挿入され、接着剤によりロータコアに固定される永久磁石とを備えるロータの製造装置であって、揮発性を有する揮発剤としての希釈溶剤と膨張開始温度以上に加熱することにより膨張する膨張剤とを含む接着剤を、永久磁石または磁石用孔部に塗布する塗布装置と、接着剤を加熱する加熱装置とを備え、加熱装置は、永久磁石をロータコアの磁石用孔部に挿入した後、接着剤を希釈溶剤が揮発する気化開始温度以上でかつ膨張開始温度未満の温度帯の温度に加熱するとともに、加熱開始温度から気化開始温度以上でかつ膨張開始温度未満の温度帯の温度に加熱するまでの出力よりも小さい出力で接着剤の温度を上昇させることにより、希釈溶剤を揮発させ、希釈溶剤を揮発させた後、接着剤を膨張開始温度以上の温度に加熱することにより膨張剤を膨張させ、膨張剤を膨張させた後に、接着剤を硬化温度以上の温度に加熱することにより接着剤を硬化させて、接着剤により永久磁石とロータコアとを固定する。
 この発明の第2の局面におけるロータの製造装置では、永久磁石を磁石用孔部に挿入した後、接着剤を希釈溶剤が揮発する気化開始温度以上でかつ膨張開始温度未満の温度帯の温度に加熱するとともに、加熱開始温度から気化開始温度以上でかつ膨張開始温度未満の温度帯の温度に加熱するまでの出力よりも小さい出力で接着剤の温度を上昇させることにより、希釈溶剤を揮発させる。これにより、永久磁石が磁石用孔部に挿入された時点で、接着剤の内部に揮発されない希釈溶剤が残留している場合でも、加熱開始温度から気化開始温度以上でかつ膨張開始温度未満の温度帯の温度に加熱するまでの温度上昇速度よりも遅い温度上昇速度で接着剤の温度が上昇(保温)されるので、接着剤の内部に残留している希釈溶剤を揮発させることができる。なお、接着剤は、希釈溶剤が揮発する気化開始温度以上でかつ膨張開始温度未満の温度に加熱(保温)されているので、希釈溶剤を揮発させる工程において膨張剤が膨張することはない。その結果、希釈溶剤を揮発させた工程の後の膨張剤を膨張させる工程において、接着剤の内部に希釈溶剤が残留していない状態で膨張剤を膨張させることができるので、接着剤を保温した後、膨張開始温度以上の温度に急速に昇温させても、希釈溶剤が気化することに起因して、接着剤が過膨張するのを抑制することができる。これにより、接着剤の昇温時間を短縮して接着工程にかかる時間を短くしながら、接着剤の接着強度が低下するのを防止することが可能なロータの製造装置を提供することができる。
 本発明によれば、上記のように、接着剤の昇温時間を短縮して接着工程にかかる時間を短くしながら、接着剤の接着強度が低下するのを防止することができる。
一実施形態による回転電機(ロータ)の断面図である。 一実施形態によるロータの斜視図である。 一実施形態によるロータの永久磁石および接着剤の構成を示す側面図である。 一実施形態によるロータの永久磁石とロータコアとが接着剤により接着された状態を示す部分平面図である。 一実施形態によるロータの接着剤の膨張前(図5A)と、膨張後(図5B)との状態を模式的に示す断面図である。 一実施形態によるロータの接着剤の構成を示す概念図である。 一実施形態によるロータのロータコアに永久磁石が挿入された状態を示す部分平面図である。 一実施形態によるロータの接着剤の乾燥を模式的に示す部分断面図(図8Aは、乾燥前の図、図8Bは、乾燥後の図)である。 一実施形態によるロータの永久磁石に接着剤を塗布する工程を説明するための図である。 一実施形態によるロータの接着剤を乾燥する工程を説明するための図である。 一実施形態によるロータのロータコアに永久磁石を挿入する工程を示した斜視図である。 一実施形態によるロータの接着剤を硬化する工程を説明するための断面図である。 一実施形態のロータの製造工程を説明するためのフローチャートである。 一実施形態のロータの製造工程中における接着剤の厚みおよび接着剤の温度を説明するための図である。 希釈溶剤が残留した状態で発泡剤が発砲した状態を説明するための図(図15Aは、希釈溶剤が残留している状態を示す図、図15Bは、希釈溶剤が気化した状態を示す図、図15Cは、希釈溶剤が残留していない場合を示す図)である。
 以下、本発明の実施形態を図面に基づいて説明する。
 [本実施形態におけるロータの構造]
 図1~図15を参照して、本実施形態によるロータ100の構造について説明する。
 また、本願明細書では、「回転電機」とは、モータ(電動機)、ジェネレータ(発電機)、および、必要に応じてモータおよびジェネレータの双方の機能を有するモータ・ジェネレータのいずれをも含む概念として記載している。たとえば、回転電機101は、ハイブリッド車または電気自動車で使用される走行用モータとして構成されている。
 また、本願明細書では、「ロータ回転軸線方向」または「軸方向」は、ロータ100の回転軸線方向(軸C1(図2参照)に沿った方向;図1中のZ軸に平行な方向)を意味する。また、「周方向」は、ロータ100の周方向(図2中の矢印A1方向または矢印A2方向)を意味する。「径方向」は、ロータ100の径方向(図1中の矢印R1方向または矢印R2方向)を意味する。また、「径方向内側」は、ロータ100の内径側(矢印R1方向側)を意味し、「径方向外側」は、ロータ100の外径側(矢印R2方向側)を意味する。
 (ロータの全体構造)
 ロータ100は、図1に示すように、たとえば、複数の永久磁石1がロータ100の内部に埋め込まれた埋込永久磁石型モータ(IPMモータ:Interior Permanent Magnet Motor)の一部(回転電機101の一部)を構成している。
 また、ロータ100は、ステータ102の径方向内側において、ステータ102と径方向に対向するように配置されている。すなわち、回転電機101は、インナーロータ型の回転電機として構成されている。そして、回転電機101では、ステータ102にはコイル(図示せず)が設けられており、コイルが発生させる磁界(磁束)とステータ102に対向するロータ100が発生させる磁界(磁束)との相互作用により、ロータ100が回転運動するように構成されている。そして、ロータ100は、図1に示すように、永久磁石1と、ハブ部材2と、ロータコア3と、接着剤4と、エンドプレート5とを含む。ロータ100は、シャフト2aに接続されるハブ部材2に固定され、ハブ部材2およびシャフト2aを介して、回転電機101の外部に回転運動を伝達させる(または伝達される)ように構成されている。なお、ステータ102は、回転電機101の図示しないケースに固定されている。
 永久磁石1は、たとえば、ネオジム磁石により形成されている。ネオジム磁石は、磁化方向(矢印R1方向および矢印R2方向)に正の熱膨張係数を有する一方、磁化方向に垂直な方向(永久磁石1の幅方向およびZ軸に沿った方向)に負の熱膨張係数を有する。なお、「永久磁石1の幅方向」とは、Z軸に垂直な方向で、かつ、磁化方向に垂直な方向である。
 また、永久磁石1は、図3に示すように、径方向内側から見て、軸方向の長さL1、および、長さL1より小さい幅W1を有する略矩形形状を有するように形成されている。そして、永久磁石1は、図4に示すように、軸方向の一方側から見て(矢印Z1方向側から見て)、径方向外側の2つの角部が面取りされた略矩形形状を有する。そして、永久磁石1は、軸方向の一方側から見て、径方向内側の面11が平坦面として、径方向外側の面12が弧状を有する面として構成されている。
 また、永久磁石1の面取りされた2つの角部には、それぞれ、後述する磁石用孔部32に当接する当接面としての面13が設けられている。永久磁石1の2つの面13は、それぞれ、磁石用孔部32の壁面32aに当接する(面接触する)ように配置されている。すなわち、永久磁石1は、矢印Z1方向側から見て、一対のテーパー形状を有する壁面32aにより位置決めされた状態で、固定されている。
 ハブ部材2は、図1に示すように、ハブ部材2の矢印R2方向側に配置されたロータコア3の係合部3a(図2参照)に係合されて、ロータコア3に固定されている。また、ハブ部材2は、シャフト2aに固定されている。そして、ハブ部材2とロータコア3とシャフト2aとは、軸C1を中心軸として、一体的に回転されるように構成されている。
 ロータコア3は、図2に示すように、円環形状を有する複数(たとえば、4つ)のコアブロック30を含む。複数のコアブロック30は、中心の軸C1を一致させた状態で、軸方向に積層されている。そして、コアブロック30は、それぞれ、円環形状を有する複数の電磁鋼板31(図1参照;たとえば、珪素鋼板)が、軸方向に積層されて形成されている。
 そして、図2に示すように、コアブロック30には、軸方向に沿った貫通孔として構成された複数(たとえば、16個)の孔部132が設けられている。また、複数のコアブロック30は、矢印Z1方向側から見て、互いに孔部132の位置がオーバーラップする(または完全に一致する)ように、軸方向に積層されている。これにより、ロータコア3では、複数のコアブロック30の孔部132が連続して接続されることにより、永久磁石1が軸方向に沿って挿入される磁石用孔部32が形成されている。また、複数の磁石用孔部32は、図2に示すように、矢印Z1方向側から見て、周状に、等角度間隔で配置されている。
 そして、複数の磁石用孔部32には、それぞれ、永久磁石1が配置されている。図1に示すように、磁石用孔部32と永久磁石1とは、接着剤4により、互いに固定されている。また、図2に示すように、磁石用孔部32の軸方向の長さL2は、永久磁石1の軸方向の長さL1より少し短い大きさに構成されている。なお、永久磁石1は、着磁前の状態であることが好ましい。
 また、図4に示すように、磁石用孔部32には、接着剤4が配置されるとともに、ロータコア3の径方向内側に窪む、軸方向に沿って延びる2つの溝部32bが設けられている。詳細には、2つの溝部32bは、永久磁石1の面11の後述する接着剤配置位置B1およびB2に径方向に対向する位置に配置されている。そして、2つの溝部32bは、磁石用孔部32の周方向の両端部の近傍に設けられており、2つの溝部32bの間に、突出部32cが設けられている。そして、2つの溝部32bは、それぞれ、底部32dを有し、突出部32cの頂面32eから底部32dまでの溝深さd1は、後述する厚みt1(図7参照)よりも大きく、厚みt2以下に構成されている。
 ロータコア3の突出部32cは、磁石用孔部32の周方向の中央部において、磁石用孔部32の径方向内側から径方向外側に向かって突出するように構成されている。ここで、一般的に、磁石用孔部32の周方向の両端部では、周方向の中央部に比べて、磁気飽和が生じやすい。そこで、突出部32cは、磁石用孔部32の周方向の中央部に対応する位置に設けられている。これにより、突出部32cを設けない場合および磁石用孔部32の周方向の両端部に対応する位置に突出部32cを設ける場合に比べて、磁気抵抗を低減することが可能になる。この結果、比較的磁気飽和しにくい位置で磁気抵抗を低減することが可能となる。
 接着剤4は、図3に示すように、永久磁石1の径方向内側の面11の一部に配置されている。具体的には、接着剤4は、永久磁石1の面11の接着剤配置位置B1およびB2のみに配置されている。
 詳細には、接着剤4は、永久磁石1の面11において、短手方向の一方側(矢印X1方向側)の部分である接着剤配置位置B1および他方側(矢印X2方向側)の部分である接着剤配置位置B2の2つの部分に配置されている。そして、接着剤4は、永久磁石1の面11の長手方向(矢印Z1方向側の部分から矢印Z2方向側の部分に渡って、軸方向)に延びる矩形形状を有するように形成されている。ここで、接着剤4は、永久磁石1の軸方向端面14、および、永久磁石1の面11の軸方向端面14の近傍の部分B3(矢印Z1方向側の部分)および部分B4(矢印Z2方向側の部分)には、配置されていない。
 ここで、接着剤4を、永久磁石1の径方向外側の面12に配置する場合には、永久磁石1と、ロータコア3の径方向外側に配置されるステータ102との間に、接着剤4が配置される状態となり、接着剤4の厚みt2分、永久磁石1とステータ102との距離が大きくなる。この点に対して、本実施形態では、永久磁石1とステータ102との間に、接着剤4が配置されないので、その分、永久磁石1とステータ102との距離を小さくすることができる。
 また、接着剤4は、永久磁石1とロータコア3とが接着剤4により固定(接着)された状態(図5B)において、発泡された状態の発泡剤41と、硬化された状態の主剤42および硬化剤43とを含む。なお、発泡剤41は、特許請求の範囲の「膨張剤」の一例である。
 発泡剤41は、膨張開始温度T1以上の温度に加熱されることにより発泡(膨張)する膨張剤として構成されている。また、主剤42および硬化剤43は、膨張開始温度T1より高温である硬化温度T2以上の温度に加熱されることにより、硬化する性質を有する。
 詳細には、発泡剤41は、カプセル体(図6参照)として構成されており、膨張開始温度T1以上の温度に加熱されることにより、カプセル体が膨張して体積が大きくなるように構成されている。たとえば、接着剤4は、発泡剤41としてカプセル体に含まれるイソペンタン(炭化水素)を含む。また、膨張開始温度T1は、たとえば、カプセル体が発泡成形する発泡成形温度として設定することが可能である。
 そして、図5に示すように、発泡剤41が発泡して膨張することにより、接着剤4の厚みは、厚みt1から、厚みt2に変化する。その結果、接着剤4は、永久磁石1の面11から溝部32bの底部32dに渡って配置された状態になる。また、発泡剤41は、加熱後も接着剤4内(磁石用孔部32内)において、膨張されたカプセル体として残存する。
 そして、好ましくは、接着剤4は、発泡剤41が発泡して膨張することにより、膨張前の接着剤4の厚みt1の3倍以上8倍以下の厚みt2に変化するように、接着剤4における発泡剤41の含有割合が設定されている。そして、図7に示すように、接着剤4の発泡剤41が発泡する前の状態では、接着剤4と溝部32bの底部32dとは、互いに離れた位置に配置されているとともに、永久磁石1の面13と磁石用孔部32の壁面32aとは、互いに離れた位置に配置される。そして、接着剤4の発泡剤41が発泡された後の状態(図4参照)では、接着剤4が膨張して、接着剤4が溝部32bの底部32dに接触して、永久磁石1が径方向外側に押圧され、永久磁石1の面13と磁石用孔部32の壁面32aとが、接触する位置に配置される。
 主剤42は、たとえば、エポキシ系樹脂(たとえば、ビスフェノールA型液状エポキシ、および、エポキシ樹脂ポリマー)を含む。また、硬化剤43は、たとえば、ジシアンジアミドを含む。そして、主剤42および硬化剤43は、硬化温度(硬化下限温度)T2以上の温度に加熱されることにより硬化する性質を有する。すなわち、本実施形態では、接着剤4は、熱硬化性の接着剤として構成されている。そして、永久磁石1とロータコア3とは、接着剤4の主剤42と硬化剤43とが硬化されることにより、接着され固定される。また、硬化温度T2は、後述する気化開始温度T3よりも高く、かつ、膨張開始温度T1よりも高い。また、硬化温度T2は、主剤42および硬化剤43の組み合わせにより設定され、製品上限温度(硬化上限温度)T5よりも低い。また、製品上限温度T5は、たとえば、ロータ100としての性能に影響が生じない程度の温度として設定することが可能である。
 また、図8に示すように、接着剤4は、永久磁石1とロータコア3とが接着剤4により接着される前で、かつ、乾燥される前の状態において、揮発性を有する揮発剤としての希釈溶剤44と、発泡される前の状態の膨張剤としての発泡剤41と、硬化されていない状態の主剤42および硬化剤43とを含む。
 そして、接着剤4は、永久磁石1とロータコア3とが接着剤4により固定される前で、かつ、乾燥された後の状態(図8B参照)において、発泡剤41と、硬化されていない状態の主剤42および硬化剤43とを含む。すなわち、接着剤4が乾燥された後では、接着剤4における希釈溶剤44の量が減少しているか、または、接着剤4における希釈溶剤44が略含有されていない状態になる。
 希釈溶剤44は、たとえば、メチルエチルケトン等のケトン類や、アルコール類、エーテル類などの揮発性有機溶剤を用いることができ、本実施形態ではメチルエチルケトンおよび酢酸エチルの両方を含む。また、希釈溶剤44は、発泡剤41および硬化剤43よりも粘度が低い。これにより、希釈溶剤44は、接着剤4に含有されることにより、接着剤4の粘度を低下させ、流動性を高める機能を有する。
 また、希釈溶剤44は、気化開始温度T3以上の温度(たとえば、図14の温度T10)にされることにより、揮発する。ここで、気化開始温度T3として、たとえば、希釈溶剤44の沸点温度、または、沸点温度近傍の温度を設定することが可能である。
 気化開始温度T3は、膨張開始温度T1よりも低い。また、膨張開始温度T1は、硬化温度T2よりも低い。これにより、接着剤4の温度を、膨張開始温度T1未満で、かつ、気化開始温度T3以上の温度にすることにより、発泡剤41を膨張させない状態で、希釈溶剤44を揮発させることが可能になる。なお、接着剤4の温度を、膨張開始温度T1未満で、かつ、気化開始温度T3以上の温度にした場合でも、接着剤4の内部には、希釈溶剤44が揮発することによる接着剤4の粘度の増加に起因して、揮発できない希釈溶剤44が残留する場合がある。
 そして、図8に示すように、接着剤4は、乾燥される前の状態において、永久磁石1の幅方向に垂直な方向(矢印R1方向および矢印R2方向)に厚みt3を有する。そして、接着剤4は、希釈溶剤44が揮発されることにより、体積が減少して薄膜化される。すなわち、接着剤4は、乾燥された後の状態において、厚みt3よりも小さい厚みt1を有する。好ましくは、厚みt1は、厚みt3の10分の9以下(より好ましくは、5分の4以下)の大きさである。
 [本実施形態によるロータの製造方法]
 次に、本実施形態によるロータ100の製造方法について説明する。図13には、本実施形態によるロータ100の製造方法のフローチャートを示している。また、図14には、横軸を時間とし、縦軸を接着剤4の温度(左側の縦軸)および接着剤4の厚み(右側の縦軸)とするロータ100の製造工程中の接着剤4の状態を説明するための図を示している。
 まず、ステップS1において、永久磁石1と、接着剤4とを準備する工程が行われる。詳細には、ネオジム磁石を含む複数の永久磁石1が準備される。また、接着剤4が準備される。なお、接着剤4は、膨張開始温度T1以上の温度に加熱されることにより膨張する膨張剤としての発泡剤41と、揮発性を有する希釈溶剤44と、膨張開始温度T1より高い温度である硬化温度T2以上の温度に加熱されることにより硬化する主剤42および硬化剤43とを含む。また、この時、接着剤4は溶融状態(流動性を有する状態)で準備される。たとえば、接着剤4は、液体の状態でもよいし、ゲル状の状態でもよい。そして、準備された接着剤4は、図9に示すように、塗布装置201に収納される。その後、ステップS2に進む。なお、永久磁石1は、着磁前の状態で準備されることが好ましい。なお、塗布装置201および後述する誘導加熱装置205は、ロータ100の製造装置200を構成する。
 ステップS2において、図9に示すように、永久磁石1を磁石保持装置202に取り付ける工程が行われる。その後、ステップS3に進む。
 ステップS3において、接着剤4を永久磁石1に塗布して配置する工程が行われる。詳細には、塗布装置201のノズルの先端の開口部から接着剤4を吐出しながら、塗布装置201と磁石保持装置202とが相対移動することにより、接着剤4が永久磁石1に塗布される(配置される)。そして、厚みt3を有する接着剤4が形成される。たとえば、図3に示すように、接着剤4は、永久磁石1の面11の矢印X1方向側の部分(接着剤配置位置B1)において、Y軸方向に沿って塗布された後、永久磁石1の面11の矢印X2方向側の部分(接着剤配置位置B2)において、Y軸方向に向かって塗布される。この時、接着剤4は、永久磁石1の軸方向端面14および軸方向端面14の近傍の部分B3およびB4には塗布されない。また、接着剤4は、矢印Z1方向側から見て、矩形形状を有するように塗布されて永久磁石1に配置される。その後、ステップS4に進む。
 次に、ステップS4において、接着剤4を乾燥させる工程が行われる。なお、接着剤4を乾燥させる工程は、後述する永久磁石1を磁石用孔部32に挿入する工程の前に行われる。図10に示すように、接着剤4を乾燥させることにより、接着剤4の厚みが、乾燥させる前の接着剤4の厚みt3よりも小さい厚みt1にされて、接着剤4が薄膜化される。
 詳細には、接着剤4に含まれる希釈溶剤44を揮発させることにより、接着剤4が乾燥される。図14に示すように、接着剤4を気化開始温度T3以上でかつ膨張開始温度T1未満の温度T10に加熱することにより、接着剤4が乾燥して、接着剤4の厚みが厚みt3から厚みt1にされる。また、比較的粘度が低い希釈溶剤44が揮発されることにより、接着剤4の粘度が向上して、接着剤4が接着剤配置位置B1およびB2に位置決めされて、固定される。なお、上記のように、接着剤4の内部には、揮発できない希釈溶剤44が残留する場合がある。
 また、図10に示すように、たとえば、乾燥装置203のエアブローにより、室温T4よりも高い温度(気化開始温度T3以上でかつ膨張開始温度T1未満の温度T10)を有する熱風E(空気)が、接着剤4に吹き付けられることによって、接着剤4に含まれる希釈溶剤44が揮発される。また、熱風Eにより、揮発された希釈溶剤44が換気される。その後、ステップS5に進む。
 次に、ステップS5において、図14に示すように、永久磁石1および接着剤4を冷却する工程が行われる。これにより、永久磁石1が磁化方向(ロータ100の径方向)に沿って収縮される。たとえば、永久磁石1および接着剤4は、室温T4の近傍の温度まで冷却される。その後、ステップS6に進む。
 ステップS6において、ロータコア3を準備する工程が行われる。
 詳細には、図示しない順送プレス加工装置により、複数の電磁鋼板31が打ち抜かれる。この時、溝部32bを有する孔部132(図2参照)が形成された円環状の複数の電磁鋼板31が形成される。そして、図11に示すように、複数の電磁鋼板31が、軸方向に沿って積層され、複数(たとえば、4つ)のコアブロック30が形成される。そして、コアブロック30が軸方向に積層される。そして、複数のコアブロック30のうちの一部が、他のコアブロック30に対して、周方向に回転されるかまたは反転(転積)される。これにより、ロータコア3が形成され、複数のコアブロック30の孔部132が互いに軸方向に連続して接続されて、磁石用孔部32が形成される。その後、ステップS7に進む。
 ステップS7において、乾燥された接着剤4が配置された永久磁石1をロータコア3の磁石用孔部32に挿入する工程が行われる。具体的には、ロータコア3と、接着剤4が配置された面11を径方向内側に向けた状態の永久磁石1とが軸方向に相対移動されることにより、磁石用孔部32の各々に、永久磁石1が挿入される。なお、図11では、1つの永久磁石1のみを図示しているが、磁石用孔部32の各々に、永久磁石1が挿入される。
 ここで、本実施形態では、ステップS8において、永久磁石1を磁石用孔部32に挿入する工程の後、接着剤4を希釈溶剤44が揮発する気化開始温度T3以上でかつ膨張開始温度T1未満の温度帯の温度に加熱するとともに、加熱開始温度(室温T4)から気化開始温度T3以上でかつ膨張開始温度T1未満の温度帯の温度に加熱するまでの温度上昇速度よりも遅い温度上昇速度で接着剤4の温度を上昇させることにより、希釈溶剤44を揮発させる工程が行われる。具体的には、接着剤4を希釈溶剤44が揮発する気化開始温度T3以上でかつ膨張開始温度T1未満の温度に加熱(急速加熱)するとともに、気化開始温度T3以上でかつ膨張開始温度T1未満の温度帯において保温(恒温)することにより、希釈溶剤44を揮発させる。また、誘導加熱装置205は、接着剤4を希釈溶剤44が揮発する気化開始温度T3以上でかつ膨張開始温度T1未満の温度帯の温度に加熱するとともに、加熱開始温度(室温T4)から気化開始温度T3以上でかつ膨張開始温度T1未満の温度帯の温度に加熱するまでの出力よりも小さい出力で接着剤4の温度を上昇させる。
 ここで、図15Aに示すように、接着剤4を乾燥させる工程の後、接着剤4の粘度の増加に起因して、揮発できない希釈溶剤44が残留している。この場合、図15Bに示すように、接着剤4を急激に昇温させると、残留している希釈溶剤44が気化している最中(沸騰中)に発泡剤41が発泡する。なお、発泡剤41は、熱可塑性樹脂の外殻である外殻部材41aと、外殻部材41aに覆われた炭化水素の発泡剤部分41bとにより構成されている。その結果、加熱により発泡剤部分41bが発泡して外殻部材41aが膨張することで接着剤4の内部に空洞Hが生成され、接着剤4が過膨張する。このため、接着剤の密度が低下する。なお、図15Cは、接着剤4の内部に希釈溶剤44が残留していない状態で発泡剤41が発泡された例(過膨張しない例)を示している。そこで、永久磁石1を磁石用孔部32に挿入する工程の後、でかつ、発泡剤41が発泡する前に、接着剤4を希釈溶剤44が揮発する気化開始温度T3以上でかつ膨張開始温度T1未満の温度に加熱するとともに、気化開始温度T3以上でかつ膨張開始温度T1未満の温度帯において保温することにより、残留していた希釈溶剤44が揮発される。また、希釈溶剤44を揮発させる工程における接着剤4の温度は、接着剤4を乾燥させる工程における接着剤4の温度よりも高い。さらに、希釈溶剤44を揮発させる工程における接着剤4の温度は、気化開始温度T3以上であり、膨張開始温度T1未満であり、かつ、乾燥後の接着剤4の溶解が開始される温度を含む。
 また、本実施形態では、図14に示すように、希釈溶剤44を揮発させる工程において、気化開始温度T3以上でかつ膨張開始温度T1未満の温度帯において保温する第1期間P1よりも短い第2期間P2の間に、永久磁石1に塗布された接着剤4を、希釈溶剤44が揮発する気化開始温度T3以上でかつ膨張開始温度T1未満の温度に加熱(急速加熱)する。たとえば、第1期間P1は、数分以上であり、かつ、接着剤4が膨張開始温度T1まで加熱されない程度の時間である。また、第2期間P2は、数秒から数十秒程度である。すなわち、比較的短い時間に(急激に)、接着剤4が昇温される。
 また、本実施形態では、図7に示すように、誘導加熱によりロータコア3を加熱することにより、接着剤4を希釈溶剤44が揮発する気化開始温度T3以上でかつ膨張開始温度T1未満の温度に加熱(急速加熱)することにより、希釈溶剤44を揮発させる。具体的には、ロータコア3の内径側には、シャフト2a(または、シャフト2aが接続されるハブ部材2)が取り付けられるシャフト用孔部3bが設けられている。そして、このシャフト用孔部3bの内径側に、誘導加熱装置205が配置される。そして、誘導加熱装置205(誘導加熱)の出力が調整されることによって、ロータコア3を加熱することにより、接着剤4を希釈溶剤44が揮発する気化開始温度T3以上の温度に加熱(急速加熱)する。なお、誘導加熱装置205は、特許請求の範囲の「加熱装置」の一例である。
 これにより、本実施形態では、図14(一点鎖線参照)に示すように、磁石用孔部32を有するロータコア3が膨張開始温度T1以上の温度に加熱される。そして、加熱されたロータコア3の熱によって、接着剤4が、希釈溶剤44が揮発する気化開始温度T3以上でかつ膨張開始温度T1未満の温度に加熱されるとともに、気化開始温度T3以上でかつ膨張開始温度T1未満の温度帯において保温されることにより、希釈溶剤44を揮発させる。
 具体的には、図7に示すように、誘導加熱装置205からの熱(点線の矢印)は、ロータコア3を介して、永久磁石1に伝導される。詳細には、誘導加熱装置205からの熱は、磁石用孔部32の壁面32aを介して、永久磁石1に伝導されるとともに、磁石用孔部32の突出部32cを介して、永久磁石1に伝導される。そして、永久磁石1から、接着剤4に熱が伝導される。なお、ロータコア3から、空気(ロータコア3と接着剤4との間の隙間の空気)を介しても、接着剤4に熱が伝導される。また、永久磁石1の温度と接着剤4の温度とは、略等しい。
 次に、ステップS9において、希釈溶剤44を揮発させた工程の後、接着剤4を膨張開始温度T1以上の温度に加熱することにより発泡剤41を膨張(発泡)させる工程が行われる。ここで、本実施形態では、希釈溶剤44を揮発させる工程における気化開始温度T3以上でかつ膨張開始温度T1未満の温度帯において保温する第1期間P1よりも短い第3期間P3の間において、接着剤4を膨張開始温度T1以上の温度に加熱(急速加熱)することにより発泡剤41を膨張(発泡)させる。たとえば、第3期間P3は、数秒から数十秒程度である。すなわち、比較的短い時間に(急激に)、接着剤4が昇温されて、発泡剤41が膨張(発泡)される。なお、ステップS8において接着剤4に残留していた希釈溶剤44が揮発されているので、ステップS9において発泡剤41を急激に膨張(発泡)させても、接着剤4が過膨張するのが抑制される(図15C参照)。また、希釈溶剤44を揮発させた工程の後、接着剤4の温度が気化開始温度T3以下に下がらないようにしながら、接着剤4を膨張開始温度T1以上の温度に加熱することにより発泡剤41を膨張させる。
 具体的には、図12に示すように、永久磁石1が配置されたロータコア3(および永久磁石1)が、加圧装置204により、矢印Z1方向側および矢印Z2方向側の両方から押圧(符号PL)された状態で、接着剤4が膨張開始温度T1よりも高く、かつ、硬化温度T2以上の温度T11(図14参照)に加熱される。たとえば、誘導加熱装置205の出力が調整されることにより、接着剤4が膨張開始温度T1よりも高く、かつ、硬化温度T2以上の温度T11(図14参照)に加熱される。
 そして、図5に示すように、接着剤4の発泡剤41が発泡することにより膨張し、接着剤4の厚みが厚みt1から厚みt2に変化する。また、接着剤4の厚みt2は、永久磁石1の面11から、溝部32bの底部32dまでの距離に略等しくなる。すなわち、接着剤4が、永久磁石1の面11から溝部32bの底部32dに渡って膨張された状態になる。また、接着剤4が膨張して、永久磁石1の面13が径方向外側に押圧されて、磁石用孔部32の壁面32aと永久磁石1の面13とが当接する。
 次に、ステップS10において、発泡剤41を膨張させた後に、接着剤4を硬化温度T2以上の温度に加熱することにより接着剤4を硬化させて、接着剤4により永久磁石1とロータコア3とを固定する。ここで、本実施形態では、第4期間P4の間、接着剤4を硬化温度T2以上の温度の状態を維持することにより、接着剤4を硬化させて、接着剤4により永久磁石1とロータコア3とを固定する。具体的には、接着剤4は、膨張開始温度T1よりも高く、かつ、硬化温度T2以上の温度T11(図14参照)に維持される。なお、接着剤4を希釈溶剤44が揮発する気化開始温度T3以上の温度に加熱する第2期間P2(たとえば、数分間)は、第4期間P4よりも短い。たとえば、第4期間P4は、数十分間である。また、発泡剤41を膨張させた後に、接着剤4の温度が膨張開始温度T1以下に下がらないようにしながら、接着剤4を硬化温度T2以上の温度に加熱することにより接着剤4を硬化させて、接着剤4により永久磁石1とロータコア3とを固定する。たとえば、誘導加熱装置205の出力が調整されることにより、接着剤4を硬化温度T2以上の温度に加熱する。
 次に、ステップS11において、図14に示すように、ロータコア3を冷却する工程が行われる。たとえば、ロータコア3および接着剤4の温度が室温T4になるまで冷却される。その後、ステップS12に進む。
 次に、ステップS12において、複数のコアブロック30同士を、レーザー溶接等により接合する工程が行われる。
 これにより、ロータ100が製造される。その後、ロータ100は、図1に示すように、ステータ102との組み立て等が行われ、回転電機101が製造される。
 [本実施形態の効果]
 本実施形態では、以下のような効果を得ることができる。
 本実施形態では、上記のように、接着剤(4)を希釈溶剤(44)が揮発する気化開始温度(T3)以上でかつ膨張開始温度(T1)未満の温度帯の温度に加熱するとともに、加熱開始温度(T4)から気化開始温度(T3)以上でかつ膨張開始温度(T1)未満の温度帯の温度に加熱するまでの温度上昇速度よりも遅い温度上昇速度で接着剤(4)の温度を上昇させることにより、希釈溶剤(44)を揮発させる工程を備える。これにより、永久磁石(1)が磁石用孔部(32)に挿入された時点で、接着剤(4)の内部に揮発されない希釈溶剤(44)が残留している場合でも、加熱開始温度(T4)から気化開始温度(T3)以上でかつ膨張開始温度(T1)未満の温度帯の温度に加熱するまでの温度上昇速度よりも遅い温度上昇速度で接着剤(4)の温度が上昇(保温)されるので、接着剤(4)の内部に残留している希釈溶剤(44)を揮発させることができる。なお、接着剤(4)は、希釈溶剤(44)が揮発する気化開始温度(T3)以上でかつ膨張開始温度(T1)未満の温度に加熱(保温)されているので、希釈溶剤(44)を揮発させる工程において膨張剤(41)が膨張することはない。その結果、希釈溶剤(44)を揮発させた工程の後の膨張剤(41)を膨張させる工程において、接着剤(4)の内部に希釈溶剤(44)が残留していない状態で膨張剤(41)を膨張させることができるので、接着剤(4)を膨張開始温度(T1)以上の温度に急速に昇温させても、希釈溶剤(44)が気化することに起因して、接着剤(4)が過膨張するのを抑制することができる。これにより、接着剤(4)の昇温時間を短縮して接着工程にかかる時間を短くしながら、接着剤(4)の接着強度が低下するのを防止することができる。
 また、本実施形態では、上記のように、接着剤(4)は、熱硬化性を有するとともに、接着剤(4)の硬化温度(T2)は、膨張開始温度(T1)よりも高い。このように構成すれば、膨張剤(41)を含んだ熱硬化性樹脂などにより構成された接着剤(4)の接着工程に要する時間を短縮することができる。
 また、本実施形態では、上記のように、膨張剤(41)を膨張させた後に、接着剤(4)の温度が膨張開始温度(T1)以下に下がらないようにしながら、接着剤(4)を硬化温度(T2)以上の温度に加熱することにより接着剤(4)を硬化させる。このように構成すれば、接着剤(4)を硬化温度(T2)に上昇させるための温度上昇の程度を小さくすることができるので、接着剤(4)を硬化させる工程に要する時間を短縮することができる。また、膨張後の接着剤(4)の体積の収縮を抑制することができるので、硬化後の接着剤(4)の体積を安定させることができる。
 また、本実施形態では、上記のように、希釈溶剤(44)を揮発させた工程の後、接着剤(4)の温度が気化開始温度(T3)以下に下がらないようにしながら、接着剤(4)を膨張開始温度(T1)以上の温度に加熱することにより膨張剤(41)を膨張させる。このように構成すれば、接着剤(4)を膨張開始温度(T1)以上に上昇させるための温度上昇の程度を小さくすることができるので、膨張剤(41)を膨張させる工程に要する時間を短縮することができる。
 また、本実施形態では、上記のように、希釈溶剤(44)を揮発させる工程は、接着剤(4)を乾燥させる工程において揮発せずに接着剤(4)に残留した希釈溶剤(44)を揮発させる工程である。ここで、接着剤(4)を乾燥させる工程において、接着剤(4)に含まれる希釈溶剤(44)の一部は揮発する一方、希釈溶剤(44)が揮発することに伴って接着剤(4)の粘度が徐々に増加し、揮発できない希釈溶剤(44)が残留する。そこで、接着剤(4)を乾燥させる工程において揮発せずに接着剤(4)に残留した希釈溶剤(44)を揮発させる工程を設けることは、接着剤(4)を乾燥させる工程が設けられるロータ(100)の製造方法において、残留した希釈溶剤(44)を揮発させる点において特に有効である。
 また、本実施形態では、上記のように、希釈溶剤(44)を揮発させる工程における接着剤(4)の温度は、接着剤(4)を乾燥させる工程における接着剤(4)の温度よりも高い。このように構成すれば、希釈溶剤(44)を揮発させるために要する時間を短縮することができるとともに、希釈溶剤(44)を接着剤(4)により永久磁石(1)とロータコア(3)とを固定する前に、確実に揮発させることができる。
 また、本実施形態では、上記のように、希釈溶剤(44)を揮発させる工程における接着剤(4)の温度は、気化開始温度(T3)以上であり、膨張開始温度(T1)未満であり、かつ、乾燥後の接着剤(4)の溶解が開始される温度を含む。このように構成すれば、接着剤(4)が溶解状態になるので、気化した希釈溶剤(44)を確実に揮発させることができるとともに、希釈溶剤(44)を揮発させるのに要する時間をさらに短縮することができる。
 また、本実施形態では、上記のように、希釈溶剤(44)を揮発させる工程は、気化開始温度(T3)以上でかつ膨張開始温度(T1)未満の温度帯において保温する第1期間(P1)よりも短い第2期間(P2)の間において、接着剤(4)を希釈溶剤(44)が揮発する気化開始温度(T3)以上でかつ膨張開始温度(T1)未満の温度に急速加熱する工程である。このように構成すれば、比較的短い時間で(急激に)、接着剤(4)を加熱することができるので、ロータ(100)の製造に要する時間を短縮することができる。
 また、本実施形態では、上記のように、膨張剤(41)を膨張させる工程は、希釈溶剤(44)を揮発させる工程における気化開始温度(T3)以上でかつ膨張開始温度(T1)未満の温度帯において保温する第1期間(P1)よりも短い第3期間(P3)の間において、接着剤(4)を膨張開始温度(T1)以上の温度に急速加熱することにより膨張剤(41)を膨張させる工程である。このように構成すれば、比較的短い時間で(急激に)、膨張剤(41)を膨張させることができるので、ロータ(100)の製造に要する時間をより短縮することができる。
 また、本実施形態では、上記のように、接着剤(4)を希釈溶剤(44)が揮発する気化開始温度(T3)以上でかつ膨張開始温度(T1)未満の温度に加熱する第2期間(P2)は、第4期間(P4)よりも短い。このように構成すれば、比較的短い時間で、接着剤(4)に残留した希釈溶剤(44)が揮発されるので、ロータ(100)の製造に要する時間をさらに短縮することができる。
 また、本実施形態では、上記のように、希釈溶剤(44)を揮発させる工程は、磁石用孔部(32)を有するロータコア(3)を膨張開始温度(T1)以上の温度に加熱することにより、接着剤(4)を希釈溶剤(44)が揮発する気化開始温度(T3)以上でかつ膨張開始温度(T1)未満の温度に加熱するとともに、気化開始温度(T3)以上でかつ膨張開始温度(T1)未満の温度帯において保温することにより、希釈溶剤(44)を揮発させる工程である。このように構成すれば、気化開始温度(T3)よりも高い膨張開始温度(T1)以上の温度に加熱されたロータコア(3)の熱により、永久磁石(1)を介して、接着剤(4)を希釈溶剤(44)が揮発する気化開始温度(T3)以上でかつ膨張開始温度(T1)未満の温度に加熱することができる。
 また、本実施形態では、上記のように、希釈溶剤(44)を揮発させる工程は、誘導加熱によりロータコア(3)を加熱することにより、接着剤(4)を希釈溶剤(44)が揮発する気化開始温度(T3)以上でかつ膨張開始温度(T1)未満の温度に急速加熱する工程である。このように構成すれば、誘導加熱により、比較的短い時間で(急激に)、接着剤(4)を加熱することができるので、ロータ(100)の製造に要する時間を効果的に短縮することができる。
 また、本実施形態では、上記のように、希釈溶剤(44)を揮発させる工程は、ロータコア(3)のシャフト用孔部(3b)が設けられる内径側に配置された、誘導加熱装置(205)によりロータコア(3)を加熱することにより、接着剤(4)を、希釈溶剤(44)が揮発する気化開始温度(T3)以上でかつ膨張開始温度(T1)未満の温度に急速加熱する工程である。このように構成すれば、誘導加熱を行う誘導加熱装置(205)をロータコア(3)のシャフト用孔部(3b)に配置することができるので、誘導加熱装置(205)をロータコア(3)の外側に配置する場合に比べて、ロータ(100)の製造に要するスペースが大きくなるのを防止することができる。
 また、本実施形態では、上記のように、加熱装置(205)が、接着剤(4)を希釈溶剤(44)が揮発する気化開始温度(T3)以上でかつ膨張開始温度(T1)未満の温度帯の温度に加熱するとともに、加熱開始温度(T4)から気化開始温度(T3)以上でかつ膨張開始温度(T1)未満の温度帯の温度に加熱するまでの出力よりも小さい出力で接着剤(4)の温度を上昇させることにより、接着剤(4)の内部に残留している希釈溶剤(44)を揮発させることができる。
 [変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
 たとえば、上記実施形態では、ロータ100をステータ102の径方向内側に配置するいわゆるインナーロータとして構成する例を示したが、本発明はこれに限られない。すなわち、ロータ100をアウターロータとして構成してもよい。
 また、上記実施形態では、膨張剤として発泡剤41を用いる例を示したが、本発明はこれに限られない。たとえば、発泡剤41以外の加熱により膨張する材料を膨張剤として用いてもよい。
 また、上記実施形態では、硬化温度T2を膨張開始温度T1より高い温度とする例を示したが、本発明はこれに限られない。たとえば、硬化温度T2を、膨張開始温度T1と等しい温度としてもよく、硬化温度T2が膨張開始温度T1以上であればよい。
 また、上記実施形態では、接着剤4を永久磁石1に塗布する例を示したが、本発明はこれに限られない。たとえば、接着剤4を、磁石用孔部32に塗布してもよい。なお、接着剤4を磁石用孔部32に塗布した場合でも、ロータ100の製造方法は、上記実施形態と同様である。すなわち、上記のステップS3が、接着剤4を磁石用孔部32に塗布する工程に置き換わる一方、その他のステップは、上記実施形態と同様である。
 また、上記実施形態では、希釈溶剤44を揮発させる工程において、誘導加熱により接着剤4を加熱する例を示したが、本発明はこれに限られない。たとえば、希釈溶剤44を揮発させる工程において、誘導加熱以外の方法により、接着剤4を加熱してもよい。
 また、上記実施形態では、ロータコア3の内径側から誘導加熱により接着剤4が加熱される例を示したが、本発明はこれに限られない。たとえば、ロータコア3の外径側から誘導加熱により(または、誘導加熱以外の方法により)、接着剤4を加熱してもよい。
 1 永久磁石        2 ハブ部材
 2a シャフト       3 ロータコア
 3b シャフト用孔部    4 接着剤
 32 磁石用孔部      41 発泡剤(膨張剤)
 44 希釈溶剤       100 ロータ
 200 製造装置      201 塗布装置
 205 誘導加熱装置(加熱装置)

Claims (14)

  1.  磁石用孔部を有するロータコアと、前記磁石用孔部に挿入され、接着剤により前記ロータコアに固定される永久磁石とを備えるロータの製造方法であって、
     揮発性を有する揮発剤としての希釈溶剤と膨張開始温度以上に加熱することにより膨張する膨張剤とを含む前記接着剤を、前記永久磁石または前記磁石用孔部に塗布する工程と、
     前記永久磁石を前記ロータコアの前記磁石用孔部に挿入する工程と、
     前記永久磁石を前記磁石用孔部に挿入する工程の後、前記接着剤を前記希釈溶剤が揮発する気化開始温度以上でかつ前記膨張開始温度未満の温度帯の温度に加熱するとともに、加熱開始温度から前記気化開始温度以上でかつ前記膨張開始温度未満の温度帯の温度に加熱するまでの温度上昇速度よりも遅い温度上昇速度で前記接着剤の温度を上昇させることにより、前記希釈溶剤を揮発させる工程と、
     前記希釈溶剤を揮発させた工程の後、前記接着剤を前記膨張開始温度以上の温度に加熱することにより前記膨張剤を膨張させる工程と、
     前記膨張剤を膨張させた後に、前記接着剤を硬化温度以上の温度に加熱することにより前記接着剤を硬化させて、前記接着剤により前記永久磁石と前記ロータコアとを固定する工程とを備える、ロータの製造方法。
  2.  前記接着剤は、熱硬化性を有するとともに、前記接着剤の硬化温度は、前記膨張開始温度よりも高い、請求項1に記載のロータの製造方法。
  3.  前記永久磁石と前記ロータコアとを固定する工程は、前記膨張剤を膨張させた後に、前記接着剤の温度が前記膨張開始温度以下に下がらないようにしながら、前記接着剤を硬化温度以上の温度に加熱することにより前記接着剤を硬化させて、前記接着剤により前記永久磁石と前記ロータコアとを固定する工程である、請求項1または2に記載のロータの製造方法。
  4.  前記膨張剤を膨張させる工程は、前記希釈溶剤を揮発させた工程の後、前記接着剤の温度が前記気化開始温度以下に下がらないようにしながら、前記接着剤を前記膨張開始温度以上の温度に加熱することにより前記膨張剤を膨張させる工程である、請求項1~3のいずれか1項に記載のロータの製造方法。
  5.  前記永久磁石を前記磁石用孔部に挿入する工程の前に、前記永久磁石または前記磁石用孔部に塗布された前記接着剤を乾燥させる工程をさらに備え、
     前記希釈溶剤を揮発させる工程は、前記接着剤を乾燥させる工程において揮発せずに前記接着剤に残留した前記希釈溶剤を揮発させる工程である、請求項1~4のいずれか1項に記載のロータの製造方法。
  6.  前記希釈溶剤を揮発させる工程における前記接着剤の温度は、前記接着剤を乾燥させる工程における前記接着剤の温度よりも高い、請求項5に記載のロータの製造方法。
  7.  前記希釈溶剤を揮発させる工程における前記接着剤の温度は、前記気化開始温度以上であり、前記膨張開始温度未満であり、かつ、乾燥後の前記接着剤の溶解が開始される温度を含む、請求項5または6に記載のロータの製造方法。
  8.  前記接着剤を塗布する工程は、前記希釈溶剤と前記膨張剤とを含む前記接着剤を前記永久磁石に塗布する工程であり、
     前記希釈溶剤を揮発させる工程は、前記接着剤を、前記気化開始温度以上でかつ前記膨張開始温度未満の温度帯において保温することにより、前記希釈溶剤を揮発させる工程である、請求項7に記載のロータの製造方法。
  9.  前記希釈溶剤を揮発させる工程は、前記気化開始温度以上でかつ前記膨張開始温度未満の温度帯において保温するとともに、保温する第1期間よりも短い第2期間の間において、前記接着剤を前記希釈溶剤が揮発する前記気化開始温度以上でかつ前記膨張開始温度未満の温度に急速加熱する工程である、請求項8に記載のロータの製造方法。
  10.  前記膨張剤を膨張させる工程は、前記希釈溶剤を揮発させる工程における前記気化開始温度以上でかつ前記膨張開始温度未満の温度帯において保温する前記第1期間よりも短い第3期間の間において、前記接着剤を前記膨張開始温度以上の温度に急速加熱することにより前記膨張剤を膨張させる工程である、請求項9に記載のロータの製造方法。
  11.  前記接着剤により前記永久磁石と前記ロータコアとを固定する工程は、第4期間の間、前記接着剤を前記硬化温度以上の温度の状態を維持することにより、前記接着剤を硬化させて、前記接着剤により前記永久磁石と前記ロータコアとを固定する工程であり、
     前記接着剤を前記希釈溶剤が揮発する前記気化開始温度以上でかつ前記膨張開始温度未満の温度に加熱する前記第2期間は、前記第4期間よりも短い、請求項9または10に記載のロータの製造方法。
  12.  前記希釈溶剤を揮発させる工程は、誘導加熱により前記ロータコアを加熱することにより、前記接着剤を前記希釈溶剤が揮発する前記気化開始温度以上でかつ前記膨張開始温度未満の温度に急速加熱する工程である、請求項1~11のいずれか1項に記載のロータの製造方法。
  13.  前記ロータコアの内径側には、シャフトが取り付けられるシャフト用孔部が設けられており、
     前記希釈溶剤を揮発させる工程は、前記ロータコアの前記シャフト用孔部が設けられる内径側に配置された誘導加熱装置により前記ロータコアを加熱することにより、前記接着剤を、前記希釈溶剤が揮発する前記気化開始温度以上でかつ前記膨張開始温度未満の温度に急速加熱する工程である、請求項12に記載のロータの製造方法。
  14.  磁石用孔部を有するロータコアと、前記磁石用孔部に挿入され、接着剤により前記ロータコアに固定される永久磁石とを備えるロータの製造装置であって、
     揮発性を有する揮発剤としての希釈溶剤と膨張開始温度以上に加熱することにより膨張する膨張剤とを含む前記接着剤を、前記永久磁石または前記磁石用孔部に塗布する塗布装置と、
     前記接着剤を加熱する加熱装置とを備え、
     前記加熱装置は、
     前記永久磁石を前記ロータコアの前記磁石用孔部に挿入した後、前記接着剤を前記希釈溶剤が揮発する気化開始温度以上でかつ前記膨張開始温度未満の温度帯の温度に加熱するとともに、加熱開始温度から前記気化開始温度以上でかつ前記膨張開始温度未満の温度帯の温度に加熱するまでの出力よりも小さい出力で前記接着剤の温度を上昇させることにより、前記希釈溶剤を揮発させ、
     前記希釈溶剤を揮発させた後、前記接着剤を前記膨張開始温度以上の温度に加熱することにより前記膨張剤を膨張させ、
     前記膨張剤を膨張させた後に、前記接着剤を硬化温度以上の温度に加熱することにより前記接着剤を硬化させて、前記接着剤により前記永久磁石と前記ロータコアとを固定する、ロータの製造装置。
PCT/JP2018/030719 2017-08-21 2018-08-21 ロータの製造方法およびロータの製造装置 WO2019039442A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18848797.9A EP3621181B1 (en) 2017-08-21 2018-08-21 Rotor manufacturing method and rotor manufacturing device
JP2019537625A JP6711463B2 (ja) 2017-08-21 2018-08-21 ロータの製造方法およびロータの製造装置
US16/625,302 US11165316B2 (en) 2017-08-21 2018-08-21 Method for manufacturing a rotor and device for manufacturing a rotor
CN201880040980.4A CN110771010B (zh) 2017-08-21 2018-08-21 转子的制造方法以及转子的制造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017158332 2017-08-21
JP2017-158332 2017-08-21

Publications (1)

Publication Number Publication Date
WO2019039442A1 true WO2019039442A1 (ja) 2019-02-28

Family

ID=65439327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030719 WO2019039442A1 (ja) 2017-08-21 2018-08-21 ロータの製造方法およびロータの製造装置

Country Status (5)

Country Link
US (1) US11165316B2 (ja)
EP (1) EP3621181B1 (ja)
JP (1) JP6711463B2 (ja)
CN (1) CN110771010B (ja)
WO (1) WO2019039442A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7172114B2 (ja) * 2018-04-24 2022-11-16 Tdk株式会社 永久磁石及びモータの製造方法
US11588385B2 (en) * 2020-10-30 2023-02-21 GM Global Technology Operations LLC Method for gel curing a varnish of a stator assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151362A (ja) 2005-11-30 2007-06-14 Toyota Motor Corp 永久磁石固定方法
EP3001542A1 (en) * 2014-09-26 2016-03-30 ALSTOM Renewable Technologies Permanent magnet rotors
WO2016148294A1 (ja) * 2015-03-18 2016-09-22 アイシン・エィ・ダブリュ株式会社 回転電機用のロータ及び製造方法
JP2017052950A (ja) * 2014-06-11 2017-03-16 Dic株式会社 接着テープ、物品、モーター及び物品の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006311782A (ja) * 2005-03-30 2006-11-09 Toyota Motor Corp ロータおよびその製造方法
JP2007174872A (ja) * 2005-12-26 2007-07-05 Nitto Shinko Kk モータ磁性部材接着用加熱発泡シート
JP2010239792A (ja) * 2009-03-31 2010-10-21 Hitachi Metals Ltd コア部材とリング状希土類系永久磁石を接着固定してなる接着体の製造方法
JP2012244838A (ja) * 2011-05-23 2012-12-10 Toyota Motor Corp 回転電機用ロータ、回転電機、および、回転電機用ロータの製造方法
US20130313923A1 (en) * 2012-05-23 2013-11-28 Remy Technologies, Llc Thermally conductive coating for permanent magnets in electric machine
US20140077648A1 (en) * 2012-09-17 2014-03-20 Technische Universitat Chemnitz Electric winding for electric energy converters or machines, method for manufacturing same and electric machine
JP5972249B2 (ja) * 2013-11-27 2016-08-17 三菱電機株式会社 磁石埋込型回転子
WO2015190234A1 (ja) * 2014-06-11 2015-12-17 Dic株式会社 接着テープ、物品及びモーター
JP2016127771A (ja) * 2015-01-08 2016-07-11 トヨタ自動車株式会社 回転電機ロータ
JP6759607B2 (ja) * 2016-02-04 2020-09-23 Dic株式会社 物品の製造方法及びモーターの製造方法
JP6696564B2 (ja) * 2016-03-14 2020-05-20 アイシン・エィ・ダブリュ株式会社 ロータの製造方法
JP6095827B1 (ja) * 2016-04-14 2017-03-15 三菱電機株式会社 回転電機用回転子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151362A (ja) 2005-11-30 2007-06-14 Toyota Motor Corp 永久磁石固定方法
JP2017052950A (ja) * 2014-06-11 2017-03-16 Dic株式会社 接着テープ、物品、モーター及び物品の製造方法
EP3001542A1 (en) * 2014-09-26 2016-03-30 ALSTOM Renewable Technologies Permanent magnet rotors
WO2016148294A1 (ja) * 2015-03-18 2016-09-22 アイシン・エィ・ダブリュ株式会社 回転電機用のロータ及び製造方法

Also Published As

Publication number Publication date
EP3621181A1 (en) 2020-03-11
US20200161945A1 (en) 2020-05-21
CN110771010B (zh) 2021-06-18
CN110771010A (zh) 2020-02-07
JP6711463B2 (ja) 2020-06-17
EP3621181B1 (en) 2021-03-31
JPWO2019039442A1 (ja) 2020-02-27
US11165316B2 (en) 2021-11-02
EP3621181A4 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
WO2017170982A1 (ja) 回転電機用ロータ
US11043863B2 (en) Rotor manufacturing method
WO2019039442A1 (ja) ロータの製造方法およびロータの製造装置
US10714995B2 (en) Rotor for rotary electric machine and manufacturing method
JP6849057B2 (ja) ロータの製造方法
JP7519235B2 (ja) ロータコアの製造方法
US11342821B2 (en) Method for manufacturing a rotor
US11431212B2 (en) Method of manufacturing rotor
JP6737454B2 (ja) ロータの製造方法および接着剤の塗布装置
JP6926908B2 (ja) ロータの製造方法
JP2018117503A (ja) 回転電機用ロータ及び回転電機用ロータの製造方法
JP2018174634A (ja) 誘導機用ロータ及び誘導機用ロータの製造方法
WO2024127833A1 (ja) 回転電機用ロータの製造方法
JP2020068616A (ja) ステータを組み込んだモータジャケットの製造方法
JP2022023605A (ja) モータの製造方法
JP2020137182A (ja) 回転電機用ロータの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537625

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018848797

Country of ref document: EP

Effective date: 20191203

NENP Non-entry into the national phase

Ref country code: DE