WO2019039169A1 - 重荷重用タイヤ加硫用金型、重荷重用タイヤの製造方法及び重荷重用タイヤ - Google Patents

重荷重用タイヤ加硫用金型、重荷重用タイヤの製造方法及び重荷重用タイヤ Download PDF

Info

Publication number
WO2019039169A1
WO2019039169A1 PCT/JP2018/027654 JP2018027654W WO2019039169A1 WO 2019039169 A1 WO2019039169 A1 WO 2019039169A1 JP 2018027654 W JP2018027654 W JP 2018027654W WO 2019039169 A1 WO2019039169 A1 WO 2019039169A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
tire
lower mold
sector
heavy
Prior art date
Application number
PCT/JP2018/027654
Other languages
English (en)
French (fr)
Inventor
智洋 ▲高▼橋
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2019039169A1 publication Critical patent/WO2019039169A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould

Definitions

  • the present invention relates to a heavy duty tire vulcanizing mold, a method of manufacturing the heavy duty tire, and a heavy duty tire.
  • the lower mold has a molding surface that mainly molds one sidewall portion of the tire.
  • the upper mold has a stamping surface which can be approached and separated with respect to the lower mold and mainly molds the other sidewall portion of the tire.
  • the sector mold has a ring-like shape as a whole and is composed of arc-shaped segments divided in a circumferential direction, and has a stamping surface mainly imprinting the tread portion of the tire.
  • the unvulcanized tire green tire
  • the upper mold is made to approach the lower mold.
  • the arced segments are then synchronously moved to the radially innermost position to close the mold.
  • the arc-shaped segments are in close contact with each other to form a continuous ring, and the upper and lower molds and the sector mold are in close contact with each other, and the green tire is accommodated therein.
  • high temperature, high pressure steam is injected into the mold, and the green tire is vulcanized while being pressed against the upper, sector molding surface of the sector mold.
  • projections for lug groove formation are formed on the inner surface of the lower mold.
  • the green tire when the green tire is placed on the lower mold, the green tire may ride on the protrusions formed on the lower mold, which may cause a center deviation in the tire width direction.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a mold for vulcanizing a heavy load tire capable of preventing a center deviation in the tire width direction, a method for manufacturing a heavy load tire, and a heavy load tire. It is to provide a tire.
  • the heavy-duty tire vulcanizing mold according to the first feature includes an upper mold and a lower mold for molding the sidewall portion, and a sector mold installed between the upper mold and the lower mold for molding the tread portion.
  • the division position of the sector mold and the lower mold is in the range of 76% to 95% of the distance from the tire equator to the shoulder end in the tire width direction.
  • the method for manufacturing a heavy load tire comprises the steps of: placing an unvulcanized tire on a lower mold; closing the upper mold, the lower mold, and the sector mold by bringing them into close contact with each other; And v. Curing the tire.
  • the division position of the sector mold and the lower mold is in the range of 76% to 95% of the distance from the tire equator to the shoulder end in the tire width direction.
  • the heavy load tire according to the first feature is a heavy load tire wherein the division position of the sector mold and the lower mold is within a range of 76% to 95% of the distance from the tire equator to the shoulder end in the tire width direction.
  • the mold is manufactured by vulcanizing the unvulcanized tire after closing the mold by bringing the upper mold, the lower mold and the sector mold into close contact with each other with the unvulcanized tire placed inside. Ru.
  • FIG. 1 is a partial cross-sectional view of a heavy duty tire vulcanizing mold according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing how a tire before vulcanization is placed on a lower mold according to a comparative example.
  • FIG. 3 is a cross-sectional view showing how a tire before vulcanization is placed on the lower mold according to the embodiment of the present invention.
  • FIG. 4 is a flowchart showing a method of manufacturing a heavy load tire according to an embodiment of the present invention.
  • the heavy load tire vulcanizing mold 1 includes a lower mold 10, an upper mold 20, and a sector mold 30 disposed between the lower mold 10 and the upper mold 20.
  • the state of the heavy load tire vulcanizing mold 1 shown in FIG. 1 indicates a state in which the heavy load tire vulcanizing mold 1 is closed, that is, a clamped state.
  • the lower mold 10 has a molding surface 11 that mainly molds one sidewall portion of the unvulcanized tire 40.
  • the upper mold 20 has a molding surface 21 mainly for molding the other sidewall portion of the unvulcanized tire 40.
  • the sector mold 30 has a molding surface 31 that mainly molds the tread portion of the tire.
  • the sector mold 30 is composed of a plurality of arc-shaped segments divided in the circumferential direction of the tire, which has a ring shape as a whole in a clamped state.
  • the heavy load tire vulcanizing mold 1 is provided with an outer ring 71 on the radially outer side of the sector mold 30. The outer ring 71 moves the arc-shaped segments of the sector mold 30 radially inward or radially outward.
  • lug groove forming projections 50 for forming lug grooves (grooves extending in the tire width direction W) on the unvulcanized tire 40 are formed.
  • lug groove forming projections 51 are formed on the molding surface 21 of the upper mold 20.
  • lug groove forming projections 52 and 53 are formed on the molding surface 31 of the sector mold 30.
  • the lug groove forming projections 52, 50 extending from the sector mold 30 to the lower mold 10 in the clamped state are divided at the dividing position 60 of the lower mold 10 and the sector mold 30.
  • a distance L1 shown in FIG. 1 is a distance from the tire equator line CL to a shoulder end 70 which is a shoulder portion of the unvulcanized tire 40.
  • the tire equator line CL is a line passing through the center of the width of the unvulcanized tire 40.
  • the shoulder end 70 is an area on the tread widthwise outer side of the tread ground contact end of the tread portion.
  • a distance L2 shown in FIG. 1 is a distance from the tire equator line CL to the dividing position 60.
  • the distance L2 is set to be 76% to 95% of the distance L1.
  • the dividing position 60 is in the range of 76% to 95% of the distance L1 in the tire width direction W.
  • the lug groove forming projections 54 are formed on the lower mold 10, and the sector mold 30 has lug groove forming projections. Has not been formed.
  • the distance L3 shown in FIG. 2 is set to be smaller than 76% of the distance L1. That is, the division position 61 is set to a position smaller than 76% of the distance L1.
  • the unvulcanized tire 40 rides on the edge 80 of the lug groove forming protrusion 54.
  • the division position 60 is set in the range of 76% to 95% of the distance L1 in the tire width direction W.
  • the lug groove forming protrusion 54 shown in FIG. 2 is divided, and a part (a lug groove forming protrusion 52) is formed on the sector mold 30, and the rest (a lug groove forming protrusion).
  • the portion 50) is formed on the lower mold 10.
  • the method of manufacturing a heavy load tire includes an unvulcanized tire preparation step S ⁇ b> 10 and a vulcanization step S ⁇ b> 20.
  • the unvulcanized tire 40 is placed on the lower mold 10. At this time, since the divided position 60 is in the range of 76% to 95% of the distance L1 in the tire width direction W, the unvulcanized tire 40 does not ride on the edge 80.
  • the upper mold 20 is made to approach the lower mold 10 until the distance between the lower mold 10 and the upper mold 20 becomes a predetermined distance.
  • the arc-shaped segments of the sector mold 30 are synchronized and moved radially inward. As the arcuate segments move to the radially inner limit, they come into close contact with one another and form a continuous ring.
  • the lower mold 10, the upper mold 20 and the sector mold 30 are in close contact and closed, and the unvulcanized tire 40 is accommodated in the inner space thereof.
  • a high-temperature, high-pressure vulcanizing medium is injected into a bladder disposed in the mold, and the unvulcanized tire 40 is vulcanized while being pressed against the molding surface 11, 21, or 31, thereby producing a heavy load tire.
  • the division position 60 is set to be within the range of 76% to 95% of the distance L1 from the tire equator line CL to the shoulder end 70 in the tire width direction W. It can be determined from the load on the mold assembly machine including the ring 71. Further, the upper limit numerical value of 95% is not limited.
  • the sector mold 30 is a numerical value that can be appropriately changed by making the sector mold 30 into a lightweight structure such as hollowing.
  • the heavy load tire according to the present embodiment is applied to a heavy load vehicle such as a construction vehicle.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

重荷重用タイヤ加硫用金型(1)は、サイドウォール部を型付けする上モールド(20)及び下モールド(10)と、上モールド(20)と下モールド(10)との間に設置され、トレッド部を型付けするセクターモールド(30)とを備える。セクターモールド(30)と下モールド(10)との分割位置は、タイヤ幅方向Wにおいて、タイヤ赤道線CLからショルダー端(70)までの距離の76%~95%の範囲内である。

Description

重荷重用タイヤ加硫用金型、重荷重用タイヤの製造方法及び重荷重用タイヤ
 本発明は、重荷重用タイヤ加硫用金型、重荷重用タイヤの製造方法及び重荷重用タイヤに関する。
 従来、タイヤモールドとして、上モールドと、下モールドと、上、下モールド間に設置されるセクターモールドを備えたものが知られている(特許文献1参照)。下モールドは、タイヤの一方のサイドウォール部を主に型付けする型付け面を有する。上モールドは、下モールドに対して接近および離隔可能でタイヤの他方のサイドウォール部を主に型付けする型付け面を有する。また、セクターモールドは、全体としてリング状を呈するとともに円周方向に複数分割された弧状セグメントからなり、タイヤのトレッド部を主に型付けする型付け面を有する。
 このようなモールドを用いて未加硫のタイヤ(生タイヤ)を加硫する場合には、下モールド上に生タイヤを搬入して載置した後、上モールドを下モールドに接近させる。次に、弧状セグメントを同期して半径方向最内側位置まで移動させ、モールドを閉止する。このとき、弧状セグメントは互いに密着して連続リング状となり、上、下モールド及びセクターモールドが互いに密着して、その内部に生タイヤが収納される。その後、モールド内に高温、高圧の蒸気を注入し生タイヤを下、上、セクターモールドの型付け面に押付けながら加硫する。
特開2015-145114号公報
 ところで、ラグ溝を有する重荷重用タイヤの製造に用いられる加硫金型には、下モールドの内面にラグ溝形成用の突起が形成される。重荷重用タイヤのように大型のタイヤでは、生タイヤを下モールドに載置する際、下モールドに形成された突起に生タイヤが乗り上げてしまい、タイヤ幅方向のセンターずれが生じるおそれがある。
 本発明は、上記問題に鑑みて成されたものであり、その目的は、タイヤ幅方向のセンターずれを防止することができる重荷重用タイヤ加硫用金型、重荷重用タイヤの製造方法及び重荷重用タイヤを提供することである。
 第1の特徴に係る重荷重用タイヤ加硫用金型は、サイドウォール部を型付けする上モールド及び下モールドと、上モールドと下モールドとの間に設置され、トレッド部を型付けするセクターモールドとを備える。セクターモールドと下モールドとの分割位置は、タイヤ幅方向において、タイヤ赤道線からショルダー端までの距離の76%~95%の範囲内である。
 第1の特徴に係る重荷重用タイヤの製造方法は、下モールドに未加硫タイヤを載置する工程と、上モールド、下モールド及びセクターモールドを互いに密着させることにより閉止する工程と、未加硫タイヤを加硫する工程とを備える。セクターモールドと下モールドとの分割位置は、タイヤ幅方向において、タイヤ赤道線からショルダー端までの距離の76%~95%の範囲内である。
 第1の特徴に係る重荷重用タイヤは、セクターモールドと下モールドとの分割位置が、タイヤ幅方向において、タイヤ赤道線からショルダー端までの距離の76%~95%の範囲内である重荷重用タイヤ加硫用金型を、内部に未加硫タイヤを載置した状態で、上モールド、下モールド及びセクターモールドを互いに密着させることにより閉止した後、未加硫タイヤを加硫することにより製造される。
 本発明によれば、重荷重用タイヤにおいてタイヤ幅方向のセンターずれを防止することができる。
図1は、本発明の実施形態に係る重荷重用タイヤ加硫用金型の一部断面図である。 図2は、比較例に係る下モールドに加硫前タイヤを載置する様子を示す断面図である。 図3は、本発明の実施形態に係る下モールドに加硫前タイヤを載置する様子を示す断面図である。 図4は、本発明の実施形態に係る重荷重用タイヤの製造方法を示すフローチャートである。
 以下、本発明の実施形態について、図面を参照して説明する。図面の記載において同一部分には同一符号を付して説明を省略する。
 図1を参照して、本実施形態に係る重荷重用タイヤ加硫用金型1の構成を説明する。図1に示すように、重荷重用タイヤ加硫用金型1は、下モールド10と、上モールド20と、下モールド10と上モールド20との間に設置されたセクターモールド30とを備える。図1に示す重荷重用タイヤ加硫用金型1の状態は、重荷重用タイヤ加硫用金型1を閉じた状態、すなわち型締め状態を示す。
 下モールド10は、未加硫タイヤ40の一方のサイドウォール部を主に型付けする型付け面11を有する。同様に、上モールド20は、未加硫タイヤ40の他方のサイドウォール部を主に型付けする型付け面21を有する。セクターモールド30は、タイヤのトレッド部を主に型付けする型付け面31を有する。また、セクターモールド30は、型締め状態で、全体としてリング状を呈する、タイヤ周方向に分割された複数の弧状セグメントからなる。また、重荷重用タイヤ加硫用金型1は、セクターモールド30の径方向外側にアウターリング71を備える。アウターリング71は、セクターモールド30の弧状セグメントを径方向内側または径方向外側に移動させる。
 下モールド10の型付け面11には、未加硫タイヤ40にラグ溝(タイヤ幅方向Wに向かって延びる溝)を形成するためのラグ溝形成用突起部50が形成されている。同様に、上モールド20の型付け面21には、ラグ溝形成用突起部51が形成されている。同様に、セクターモールド30の型付け面31には、ラグ溝形成用突起部52,53が形成されている。
 型締め状態でセクターモールド30から下モールド10に亘って延びるラグ溝形成用突起部52,50は、下モールド10及びセクターモールド30の分割位置60で分割されている。
 図1に示す距離L1は、タイヤ赤道線CLから、未加硫タイヤ40の肩の部分であるショルダー端70までの距離である。タイヤ赤道線CLとは、未加硫タイヤ40のタイヤ幅の中心を通る線である。ショルダー端70とは、トレッド部のトレッド接地端のタイヤ幅方向外側の領域である。図1に示す距離L2は、タイヤ赤道線CLから、分割位置60までの距離である。本実施形態において、距離L2は、距離L1の76%~95%になるように設定される。換言すれば、分割位置60は、タイヤ幅方向Wにおいて、距離L1の76%~95%の範囲内となる。分割位置60をこの範囲内に設定することにより、未加硫タイヤ40のタイヤ幅方向Wのセンターずれを防止することができる。この点について、図2,3を参照して詳しく説明する。
 図2に示すように、比較例に係る重荷重用タイヤ加硫用金型2では、ラグ溝形成用突起部54が下モールド10に形成されており、セクターモールド30にはラグ溝形成用突起部は形成されていない。図2に示す距離L3は、距離L1の76%より小さくなるように設定される。つまり、分割位置61は、距離L1の76%より小さくなる位置に設定される。図2に示すように、未加硫タイヤ40を下モールド10に載置しようとすると、未加硫タイヤ40がラグ溝形成用突起部54のエッジ80に乗り上げてしまう。この状態でセクターモールド30を密着させて加硫を行うと、矢印81に示すように本来のタイヤ赤道線CLがタイヤ赤道線CL’にずれてしまい、タイヤ幅方向Wのセンターずれが発生する。
 そこで、本実施形態では、図3に示すように、分割位置60が、タイヤ幅方向Wにおいて、距離L1の76%~95%の範囲内となるように設定した。分割位置60の変更に伴い、図2に示すラグ溝形成用突起部54は分割されて、一部(ラグ溝形成用突起部52)はセクターモールド30に形成され、残り(ラグ溝形成用突起部50)は下モールド10に形成される。これにより、未加硫タイヤ40を下モールド10に載置した際、未加硫タイヤ40がエッジ80に乗り上げることがなくなり、未加硫タイヤ40を所望の位置まで押し下げることが可能となる。これにより、未加硫タイヤ40のタイヤ幅方向Wのセンターずれを防止することができる。
 次に、図4のフローチャートを参照して、本実施形態に係る重荷重用タイヤ加硫用金型1を用いた重荷重用タイヤの製造方法を説明する。図4に示すように、重荷重用タイヤの製造方法は、未加硫タイヤ準備工程S10と、加硫工程S20とを含む。
 未加硫タイヤ準備工程S10において、下モールド10上に未加硫タイヤ40が載置される。このとき、分割位置60が、タイヤ幅方向Wにおいて、距離L1の76%~95%の範囲内であるため、未加硫タイヤ40がエッジ80に乗り上げることはなくなる。
 加硫工程S20において、下モールド10と上モールド20と間の距離が所定の間隔となるまで、上モールド20を下モールド10に接近させる。次に、アウターリング71をセクターモールド30に対して相対的に上側に移動させることにより、セクターモールド30の弧状セグメントを同期させて径方向内側に移動させる。弧状セグメントが径方向内側限まで移動すると、これら弧状セグメントは互いに密着して連続リング状となる。このとき、下モールド10、上モールド20及びセクターモールド30は密着して閉止し、その内部空間に未加硫タイヤ40が収納される。その後、モールド内に配置されたブラダーに高温、高圧の加硫媒体を注入し、未加硫タイヤ40を型付け面11,21,31に押付けながら加硫することにより、重荷重用タイヤが製造される。
 上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
 本実施形態では、分割位置60が、タイヤ幅方向Wにおいて、タイヤ赤道線CLからショルダー端70までの距離L1の76%~95%の範囲内となるように設定したが、この数値は、アウターリング71を含めたモールド組立機に係る負荷から求めることができる。また、95%という上限の数値は、限定されるものではなく、例えば、セクターモールド30を中空化等の軽量構造とすることで、適宜変更可能な数値である。
 本実施形態に係る重荷重用タイヤは、建設車両などの重荷重車両に適用される。
 日本国特許出願第2017-159914号(出願日:2017年8月23日)の全内容は、ここに援用される。
1 重荷重用タイヤ加硫用金型
10 下モールド
20 上モールド
30 セクターモールド
40 未加硫タイヤ
50、51、52、53 ラグ溝形成用突起部
60 分割位置
70 ショルダー端
71 アウターリング
80 エッジ

Claims (3)

  1.  サイドウォール部を型付けする上モールド及び下モールドと、
     前記上モールドと前記下モールドとの間に設置され、トレッド部を型付けするセクターモールドとを備え、
     前記セクターモールドと前記下モールドとの分割位置は、タイヤ幅方向において、タイヤ赤道線からショルダー端までの距離の76%~95%の範囲内であることを特徴とする重荷重用タイヤ加硫用金型。
  2.  サイドウォール部を型付けする上モールド及び下モールドと、
     前記上モールドと前記下モールドとの間に設置され、トレッド部を型付けするセクターモールドとを備え、
     前記下モールドに未加硫タイヤを載置する工程と、
     前記上モールド、前記下モールド及び前記セクターモールドを互いに密着させることにより閉止する工程と、
     前記未加硫タイヤを加硫する工程とを有し、
     前記セクターモールドと前記下モールドとの分割位置が、タイヤ幅方向において、タイヤ赤道線からショルダー端までの距離の76%~95%の範囲内であることを特徴とする重荷重用タイヤの製造方法。
  3.  サイドウォール部を型付けする上モールド及び下モールドと、
     前記上モールドと前記下モールドとの間に設置され、トレッド部を型付けするセクターモールドとを備え、
     前記セクターモールドと前記下モールドとの分割位置が、タイヤ幅方向において、タイヤ赤道線からショルダー端までの距離の76%~95%の範囲内である重荷重用タイヤ加硫用金型を、内部に未加硫タイヤを載置した状態で、前記上モールド、前記下モールド及び前記セクターモールドを互いに密着させることにより閉止した後、前記未加硫タイヤを加硫することにより製造された重荷重用タイヤ。
PCT/JP2018/027654 2017-08-23 2018-07-24 重荷重用タイヤ加硫用金型、重荷重用タイヤの製造方法及び重荷重用タイヤ WO2019039169A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-159914 2017-08-23
JP2017159914A JP2019038129A (ja) 2017-08-23 2017-08-23 重荷重用タイヤ加硫用金型、重荷重用タイヤの製造方法及び重荷重用タイヤ

Publications (1)

Publication Number Publication Date
WO2019039169A1 true WO2019039169A1 (ja) 2019-02-28

Family

ID=65438811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027654 WO2019039169A1 (ja) 2017-08-23 2018-07-24 重荷重用タイヤ加硫用金型、重荷重用タイヤの製造方法及び重荷重用タイヤ

Country Status (2)

Country Link
JP (1) JP2019038129A (ja)
WO (1) WO2019039169A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7125363B2 (ja) 2019-03-04 2022-08-24 Kyb株式会社 緩衝器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001225609A (ja) * 2000-02-15 2001-08-21 Bridgestone Corp 空気入りタイヤ
WO2017108359A1 (en) * 2015-12-21 2017-06-29 Compagnie Generale Des Etablissements Michelin Self-locking mold comprising a shoulder spacer for molding and vulcanization of tires

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001225609A (ja) * 2000-02-15 2001-08-21 Bridgestone Corp 空気入りタイヤ
WO2017108359A1 (en) * 2015-12-21 2017-06-29 Compagnie Generale Des Etablissements Michelin Self-locking mold comprising a shoulder spacer for molding and vulcanization of tires

Also Published As

Publication number Publication date
JP2019038129A (ja) 2019-03-14

Similar Documents

Publication Publication Date Title
US10583584B2 (en) Tire vulcanization mold, tire vulcanization device, and tire production method
CN102069536B (zh) 分段轮胎模具
EP1629963B1 (en) Tire curing bladder
CN102159384B (zh) 用于控制模制环形固定结构的阶段的方法、设备
JP2009006600A (ja) タイヤ加硫用コンテナ
WO2019039169A1 (ja) 重荷重用タイヤ加硫用金型、重荷重用タイヤの製造方法及び重荷重用タイヤ
EP1038657B1 (en) Method and apparatus for moulding and curing tyres for vehicle wheels
US11020919B2 (en) Tire vulcanization mold, tire vulcanization device, and tire production method
JP2014117924A (ja) タイヤ加硫用金型およびタイヤの製造方法
US10843426B2 (en) Tire vulcanization mold, tire vulcanization device, and tire production method
JP2008213289A (ja) タイヤ製造用内型および該内型を用いたタイヤ製造方法
JP2016107534A (ja) 空気入りタイヤおよびその製造方法並びに空気入りタイヤの製造用加硫金型
US10730257B2 (en) Tire vulcanization mold, tire vulcanization device, and tire production method
CN109986817B (zh) 轮胎用模具以及轮胎的制造方法
JP2008179046A (ja) タイヤ加硫用金型
JP7131196B2 (ja) タイヤ用モールド及びタイヤの製造方法
JP2007084035A (ja) 空気入りタイヤ及びその製造方法
JPH0623866A (ja) 空気入りラジアルタイヤの製造方法
KR100913593B1 (ko) 카카스플라이 성형 드럼
JPH07164449A (ja) タイヤの加硫用金型
RU2375186C2 (ru) Способ и устройство для изготовления пневматических шин
JP2005212278A (ja) タイヤの製造方法
KR20090028072A (ko) 타이어 가류용 블래더
JP2021062590A (ja) タイヤ製造装置及びビードリング
JP2005119196A (ja) タイヤ成形装置及びタイヤの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847539

Country of ref document: EP

Kind code of ref document: A1