WO2019037448A1 - 多孔石墨烯薄膜的制备方法、多孔石墨烯薄膜及电子产品 - Google Patents

多孔石墨烯薄膜的制备方法、多孔石墨烯薄膜及电子产品 Download PDF

Info

Publication number
WO2019037448A1
WO2019037448A1 PCT/CN2018/083056 CN2018083056W WO2019037448A1 WO 2019037448 A1 WO2019037448 A1 WO 2019037448A1 CN 2018083056 W CN2018083056 W CN 2018083056W WO 2019037448 A1 WO2019037448 A1 WO 2019037448A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
particulate matter
film
porous graphene
particulate
Prior art date
Application number
PCT/CN2018/083056
Other languages
English (en)
French (fr)
Inventor
戴文勤
陈霞
Original Assignee
京东方科技集团股份有限公司
福州京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 福州京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/327,200 priority Critical patent/US11512000B2/en
Publication of WO2019037448A1 publication Critical patent/WO2019037448A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • C01B32/196Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0053Inorganic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0058Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0211Graphene or derivates thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • Embodiments of the present disclosure relate to a method of producing a porous graphene film, a porous graphene film, and an electronic product.
  • Graphene is a honeycomb planar film formed by carbon atoms in a sp 2 hybrid manner, and is a quasi-two-dimensional material having a thickness of only one atomic layer.
  • the unique carbon two-dimensional nanostructure of graphene makes it have high electrical conductivity, good thermal conductivity and excellent chemical stability. It has been widely studied in recent years and is considered to be an ideal new generation of conductive film.
  • the theoretical specific surface area of graphene is as high as 2630 m 2 g -1 , but due to the self-stacking phenomenon of graphene sheets, the applicable specific surface area of graphene is much smaller than this value in practical applications.
  • At least one embodiment of the present disclosure provides a method for preparing a porous graphene film, comprising: mixing a dispersion of graphene and a dispersion of particulate matter, performing a film forming process to form a graphene/particle mixed film; and removing the graphene / Particulate matter The particles in the film are mixed to form a porous graphene film.
  • the graphene is reduced graphene oxide.
  • a method for preparing a porous graphene film according to at least one embodiment of the present disclosure further includes: preparing graphene oxide, and then reducing the graphene oxide to obtain the reduced graphene oxide.
  • the graphene oxide is prepared using a Hummers method.
  • the particle size of the particles is from 0.3 ⁇ m to 3.0 ⁇ m.
  • the particulate matter is an organic polymer particulate or inorganic particulate matter.
  • the organic polymer particles are polystyrene particles, polypyrrole particles or polyaniline particles; the inorganic particles are silicon dioxide. Particulate matter, titanium dioxide particles or manganese dioxide particles.
  • the polystyrene particles are polystyrene microspheres having a diameter of about 0.3 micrometers to 3.0 micrometers.
  • a method for preparing a porous graphene film according to at least one embodiment of the present disclosure further includes: preparing the polystyrene microspheres by using styrene as a monomer and azobisisobutyronitrile as an initiator.
  • the graphene/particulate mixed film is formed by suction filtration.
  • a reduced graphene oxide dispersion and a particulate dispersion are prepared, and the reduced graphene oxide dispersion and the particulate matter are dispersed.
  • the liquid is mixed to form a mixed solution, and the pH of the mixed solution is adjusted to make the mixed liquid alkaline, and then the film forming treatment is performed.
  • the pH of the mixed solution is adjusted to about 9-11.
  • the particulate matter in the graphene/particle mixture film is removed by a solution immersion method or a high temperature calcination method.
  • the particulate matter in the graphene/particle mixture film is dissolved using tetrahydrofuran, toluene, dichloromethane or an acid solution to remove the Particulate matter; or subjecting the graphene/particulate mixed film to high temperature calcination using a temperature higher than a melting point of the particulate matter to melt the particulate matter in the graphene/particulate mixed film to remove the particulate matter.
  • At least one embodiment of the present disclosure provides a porous graphene prepared by any of the above methods.
  • An electronic product provided by at least one embodiment of the present disclosure includes the above porous graphene film prepared as a conductive layer.
  • FIG. 1 is a schematic view 1 of a method for preparing a porous graphene film according to an embodiment of the present disclosure
  • FIG. 2 is a schematic view 2 of a method for preparing a porous graphene film according to an embodiment of the present disclosure
  • FIG 3 is a scanning electron micrograph of a cross section of a porous graphene film according to an embodiment of the present disclosure.
  • a graphene film having a porous structure generally has a high specific surface area, the graphene sheet layer is liable to cause self-stacking, and the applicable specific surface area of graphene in practical applications is much smaller than its theoretical value.
  • the porous graphene film is usually prepared by a vapor deposition method, an electrostatic spray method, or the like. These methods are complicated in preparation process and high in cost, and are not suitable for mass production.
  • At least one embodiment of the present disclosure provides a method for preparing a porous graphene film, comprising: mixing a dispersion of graphene and a dispersion of particulate matter, performing a film forming process to form a graphene/particle mixed film; and removing the graphene / Particulate matter The particles in the film are mixed to form a porous graphene film.
  • At least one embodiment of the present disclosure provides a porous graphene prepared by the above method.
  • At least one embodiment of the present disclosure provides an electronic product including the above porous graphene film as a conductive layer.
  • This embodiment provides a method for preparing a porous graphene film. As shown in FIG. 1, the method includes steps S101-S103.
  • Step S101 mixing the dispersion of graphene and the dispersion of the particulate matter.
  • the raw material graphene and the particulate matter are respectively disposed as a dispersion of graphene and a dispersion of particulate matter.
  • Graphene and particulate matter may be commercially available or may be self-made.
  • the graphene may be in various suitable forms, for example, may be reduced graphene oxide (RGO), and the reduced graphene oxide has a reduced oxygen-containing functional group compared to graphene oxide, thereby having better conductivity. Sex.
  • the particulate matter may be, for example, a suitable particulate matter such as organic polymer particulate matter or inorganic particulate matter
  • the inorganic particulate matter may be, for example, silica particulate matter, titanium dioxide particulate matter or manganese dioxide particulate matter
  • the inorganic particulate may have a particle size of from 0.3 microns to 3 microns, such as 0.5 microns, 1 micron, 1.5 microns, 2 microns or 2.5 microns, and the like.
  • the organic polymer particles may be, for example, polystyrene (PS) particles, polypyrrole particles or polyaniline particles, etc., and the organic polymer particles may have a particle size of, for example, 0.3 micrometers to 3 micrometers, for example, 0.5 micrometers, 1 micrometer, 1.5 micrometers, 2 microns or 2.5 microns, etc.
  • PS polystyrene
  • polypyrrole particles or polyaniline particles etc.
  • the organic polymer particles may have a particle size of, for example, 0.3 micrometers to 3 micrometers, for example, 0.5 micrometers, 1 micrometer, 1.5 micrometers, 2 microns or 2.5 microns, etc.
  • polystyrene microspheres having a diameter of 0.3 ⁇ m to 3 ⁇ m or the like may be used.
  • These particles are hydrophobic on the surface and have ⁇ electrons, so that self-assembly can be produced by the hydrophobic interaction between the graphene and the particles and the ⁇ -electron interaction, thereby allowing the graphene to recombine well with the particles.
  • graphene and particulate matter may be mixed with distilled water to be disposed as a dispersion of graphene and a dispersion of particulate matter.
  • the graphene selected in the present embodiment is reduced graphene oxide (RGO) and the selected particles are polystyrene (PS) microspheres having a diameter of about 1.5 micrometers, for example, reduced graphene oxide and
  • the polystyrene microspheres are mixed with distilled water to be configured as, for example, (0.1-1) g/L (for example, 0.2 g/L, 0.5 g/L, 0.8 g/L or 1 g/L, etc.) of the reduced graphene oxide dispersion.
  • Polystyrene microsphere dispersion with (0.1-1) g/L for example, 0.1 g/L, 0.3 g/L, 0.5 g/L or 0.7 g/L, etc.
  • the ratio of the reduced graphene oxide to the polystyrene microspheres may be reduced by a ratio of (10-20):1, for example, 12:1, 15:1 or 17:1.
  • the graphene oxide dispersion is mixed with the polystyrene microsphere dispersion.
  • 75 mL of a reduced graphene oxide dispersion having a concentration of 0.2 g/L is mixed with 10 mL of a 0.1 g/L polystyrene microsphere dispersion to form reduced graphene oxide.
  • the pH of the mixture can be adjusted to make the mixture alkaline, for example, using a NH 3 ⁇ H 2 O solution to adjust the pH of the mixture to 9-11. For example, adjust to 10.
  • the graphene sheets have a large electrostatic repulsion between them, thereby avoiding the accumulation thereof, and the NH 3 ⁇ H 2 O solution can not only adjust the pH of the mixture, but also maintain The effect of the mixture is stable.
  • the mixture is stirred uniformly, and then, for example, sonication can be performed to uniformly mix the mixture.
  • Step S102 performing a film forming process to form a graphene/particulate mixed film.
  • a graphene/particulate mixed film can be formed by suction filtration.
  • a membrane having a certain pore diameter is used, for example, a mixture of graphene and particulate matter is subjected to suction filtration to form a membrane treatment using a PVDF filter having a pore diameter of 0.1 to 0.5 ⁇ m (for example, 0.22 ⁇ m).
  • the pore size of the filter membrane can be selected according to the actual conditions such as the size of the particulate matter.
  • Step S103 removing particulate matter in the graphene/particulate mixed film to form a porous graphene film.
  • a solution in a graphene/particulate mixed film can be removed by a solution immersion method or a high temperature calcination method.
  • the particulate matter used in the embodiment is a polystyrene particle
  • the particulate matter in the graphene/particle mixed film may be dissolved using an organic solvent capable of dissolving polystyrene such as tetrahydrofuran, toluene or dichloromethane; for example,
  • the prepared graphene/polystyrene particulate composite film is immersed in tetrahydrofuran (THF) for a certain period of time to partially or completely dissolve the polystyrene particles in the composite film, thereby forming a graphene film having a porous structure.
  • THF tetrahydrofuran
  • an acid solution such as hydrofluoric acid or the like may be used to dissolve the particulate matter in the graphene/particulate mixed film to form a graphene film having a porous structure.
  • a high-temperature calcination method may be employed in which a graphene/particulate mixed film is subjected to high-temperature calcination at a temperature higher than a melting point of the particulate matter to melt the particulate matter in the graphene/particulate mixed film to form a graphene film having a porous structure.
  • the high-temperature calcination process can be carried out, for example, in a shielding gas such as nitrogen or argon to prevent oxidation of the graphene.
  • the position of the particulate matter in the graphene/particulate mixed film is formed into a hole, and the size of the hole is substantially the same as the size of the particulate matter. Therefore, using the method provided in the embodiment, The size and distribution of the pores in the formed porous graphene film can be controlled by controlling the size and the amount of the particles, so that the porous graphene film prepared by the method provided by the embodiment has an ideal pore size and distribution, and has a comparative High specific surface area.
  • the pore size in the finally obtained porous graphene film is about 0.3 ⁇ m to 3 ⁇ m, and at this time, the porous graphene film may have a higher ratio.
  • the surface area, and the film also has excellent electrical conductivity, chemical and thermal stability, in addition to flexibility.
  • the method for preparing the porous graphene film may further include step S100.
  • Step S100 preparing graphene and particulate matter.
  • graphene and particulate matter can be made by themselves.
  • the method for preparing the reduced graphene oxide may include first preparing graphene oxide, and then reducing graphene oxide to obtain reduced graphene oxide.
  • graphene oxide can be prepared using the Hummers method.
  • the Hummers method is a process for oxidizing graphite powder by using potassium permanganate in concentrated sulfuric acid to obtain graphene oxide.
  • the graphene oxide obtained using this method can form a stable single layer graphene oxide suspension in water.
  • the preparation of graphene oxide using the Hummers method can include the following steps.
  • a certain amount of concentrated sulfuric acid, graphite powder, and sodium nitrate are uniformly mixed.
  • a mass ratio of 2:1 graphite powder and sodium nitrate may be mixed in a sufficient amount of concentrated sulfuric acid, for example, when the graphite powder is 1 g and the sodium nitrate is 0.5 g, the concentrated sulfuric acid may be 75 mL.
  • the mixture was mechanically stirred in an ice water bath for 30 minutes to make it homogeneously mixed. Thereafter, potassium permanganate was added to the above mixture.
  • potassium permanganate is slowly added to the above mixture at a mass ratio of graphite powder to potassium permanganate of 2:9, and the resulting mixture is allowed to stand in an ice water bath for a certain period of time, for example, for 2 hours, to carry out an oxidation reaction. Thereafter, the above mixture is placed in a constant temperature water bath such as 35 ° C and stirring is continued to continue the oxidation reaction, which may be carried out, for example, for 3 hours. After the end of the above process, a certain amount of dilute sulfuric acid was poured into the above mixture and the reaction was continued.
  • a certain amount of dilute sulfuric acid with a mass fraction of 5% is slowly dropped into the above mixture, and the temperature of the constant temperature water bath is adjusted after the dilute sulfuric acid is added, for example, the temperature of the constant temperature water bath is adjusted to 95 ° C, and the reaction is continued. For example, 1 hour. Thereafter, a certain amount of hydrogen peroxide solution was added and the reaction was continued.
  • the temperature of the constant temperature water bath again, for example, adjusting the temperature of the constant temperature water bath to 60 ° C, and slowly adding a certain amount of hydrogen peroxide solution, for example, a 30% by mass hydrogen peroxide solution to the above mixture, The mixture is continuously stirred at a temperature of 60 ° C for a certain period of time, for example 2 hours, to complete the reaction.
  • the volume ratio of concentrated sulfuric acid, dilute sulfuric acid, and hydrogen peroxide solution may be, for example, 3:6:1.
  • the mixture obtained in the above process was washed with dilute hydrochloric acid.
  • dilute hydrochloric acid concentrated hydrochloric acid having a mass fraction of 37% and distilled water are mixed at a volume ratio of 1:10 to obtain dilute hydrochloric acid, and the resulting mixture is washed by low-speed centrifugation using the diluted hydrochloric acid.
  • the resulting mixture can be washed at a speed of from 1000 to 1500 rpm, and the washing process can be carried out a plurality of times, for example, for 10 to 15 minutes each time until no more sulfate ions are present in the solution.
  • the supernatant obtained by the above centrifugation process is taken and subjected to high-speed centrifugal washing using deionized water, for example, washing can be carried out at a rotational speed of 10,000 to 15,000 rpm, and the washing process can also be carried out a plurality of times, for example, for 20 to 25 minutes each time. .
  • washing can be carried out at a rotational speed of 10,000 to 15,000 rpm, and the washing process can also be carried out a plurality of times, for example, for 20 to 25 minutes each time. .
  • Take the solid at the bottom of the centrifuge tube obtained by the above centrifugation process continue the centrifugal washing with deionized water until the pH of the washing liquid is close to 7, and then place the centrifuged product in a freeze-drying box for freeze-drying to finally obtain dried graphite oxide. Alkene.
  • ruthenium oxide oxide can be reduced using hydrazine hydrate (N 2 H 4 ⁇ H 2 O) as a reducing agent.
  • the graphene oxide is mixed with hydrazine hydrate, and the pH of the mixed solution is adjusted to 9-11 with ammonia water (NH 3 ⁇ H 2 O), for example, adjusted to about 10, followed by a water bath at, for example, 98 to 100 ° C.
  • the lower reflux is carried out, for example, for 1 hour to obtain a reduced graphene oxide (RGO) solution having good dispersibility.
  • the particulate matter can also be made by itself.
  • the preparation method of the polystyrene microsphere may include: preparing styrene micro by using styrene as a monomer and azobisisobutyronitrile (AIBN) as an initiator. ball.
  • AIBN azobisisobutyronitrile
  • preparing polystyrene microspheres can include the following steps.
  • a reaction solvent is disposed, and the reaction solvent may be, for example, an aqueous polyvinyl alcohol solution which can be obtained, for example, by mixing a polyvinyl alcohol aqueous solution having a mass fraction of 3% and distilled water in a ratio of 4:25 by volume.
  • styrene containing azobisisobutyronitrile is added to the above solvent, and for example, styrene containing azobisisobutyronitrile may be added dropwise under stirring, for example, stirring the reaction solvent at a stirring speed of 400 rpm, and Under the stirring, for example, an AIBN/styrene mixture containing 0.3 g of AIBN per 10 mL of styrene was added dropwise. Thereafter, the temperature of the above mixture is heated to 82 to 85 ° C under a nitrogen atmosphere, and styrene is polymerized at this temperature, and the reaction can be continued, for example, for 2 hours. After the completion of the reaction, the product after the above polymerization reaction was repeatedly washed with ethanol to finally obtain polystyrene microspheres. The polystyrene microspheres finally obtained in this example have a diameter of about 1.5 microns.
  • the diameter of the polystyrene microspheres can be controlled by adjusting the concentration of the reactants and the reaction conditions, so that the diameter of the polystyrene microspheres can be selected according to the desired pore size of the porous graphene film. Further, a specific preparation process of the polystyrene microspheres is further selected.
  • the preparation method of the porous graphene film provided by the embodiment is simple in preparation, low in cost, high in yield, and the porous structure of the obtained porous graphene film can be regulated.
  • This embodiment provides a porous graphene film which is produced by the method of the above-described embodiment of the present disclosure.
  • the film forms pores at the position where the particles are removed, so that the size and distribution of the pores in the porous structure of the film can be adjusted by selecting the size and amount of the particles as needed.
  • FIG. 3 is a scanning electron micrograph of a porous graphene film provided by combining reduced graphene oxide with polystyrene microspheres having a diameter of about 1.5 ⁇ m and then using a solution. Obtained by removing the polystyrene microspheres by immersion.
  • the size of the pores is substantially about 1.5 ⁇ m, that is, substantially the same as the size of the particulate polystyrene microspheres. Therefore, the porous graphene film provided by the present embodiment can have a desired pore size and distribution, has a high specific surface area, and the film also has excellent electrical conductivity, chemical and thermal stability, and further has flexibility.
  • the embodiment provides an electronic product comprising the conductive film prepared by the above porous graphene film.
  • the electronic product can be, for example, an OLED display panel, a touch panel, a capacitor, a solar cell, an optoelectronic display, etc., and the type of the electronic product is not limited in this embodiment.
  • the conductive film prepared by the porous graphene film can be used as a semiconductor antistatic material or an electrode material in the electronic product, for example, and can also replace the ITO film with higher cost. This embodiment does not limit the specific use of the porous graphene film. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种多孔石墨烯薄膜的制备方法、多孔石墨烯薄膜及电子产品。该多孔石墨烯薄膜的制备方法包括:将石墨烯的分散液和颗粒物的分散液混合,进行成膜处理以形成石墨烯/颗粒物混合薄膜;去除石墨烯/颗粒物混合薄膜中的颗粒物以形成多孔石墨烯薄膜。利用该方法制备出的多孔石墨烯薄膜具有较高的比表面积,还具有优异的导电性能。

Description

多孔石墨烯薄膜的制备方法、多孔石墨烯薄膜及电子产品
本申请要求于2017年8月22日递交的中国专利申请第201710723153.2号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种多孔石墨烯薄膜的制备方法、多孔石墨烯薄膜及电子产品。
背景技术
石墨烯是一种由碳原子以sp 2杂化方式形成的蜂窝状平面薄膜,是一种只有一个原子层厚度的准二维材料。石墨烯的如此独特的碳二维纳米结构使其具有较高的电导率、良好的导热性能及优异的化学稳定性,近年来被广泛研究,被认为是理想的新一代导电薄膜。石墨烯的理论比表面积高达2630m 2g -1,但是由于石墨烯片层的自堆积现象,导致在实际应用中石墨烯的可应用比表面积远小于该值。
发明内容
本公开至少一实施例提供一种多孔石墨烯薄膜的制备方法,包括:将石墨烯的分散液和颗粒物的分散液混合,进行成膜处理以形成石墨烯/颗粒物混合薄膜;去除所述石墨烯/颗粒物混合薄膜中的所述颗粒物以形成多孔石墨烯薄膜。
例如,本公开至少一实施例提供的一种多孔石墨烯薄膜的制备方法中,所述石墨烯为还原的氧化石墨烯。
例如,本公开至少一实施例提供的一种多孔石墨烯薄膜的制备方法,还包括:制备氧化石墨烯,然后将所述氧化石墨烯还原以得到所述还原的氧化石墨烯。
例如,本公开至少一实施例提供的一种多孔石墨烯薄膜的制备方法中,使用Hummers法制备所述氧化石墨烯。
例如,本公开至少一实施例提供的一种多孔石墨烯薄膜的制备方法中,所述颗粒物的粒度为0.3微米-3.0微米。
例如,本公开至少一实施例提供的一种多孔石墨烯薄膜的制备方法中,所述颗粒物为有机聚合物颗粒物或无机颗粒物。
例如,本公开至少一实施例提供的一种多孔石墨烯薄膜的制备方法中,所述有机聚合物颗粒物为聚苯乙烯颗粒物、聚吡咯颗粒物或聚苯胺颗粒物;所述无机物颗粒物为二氧化硅颗粒物、二氧化钛颗粒物或二氧化锰颗粒物。
例如,本公开至少一实施例提供的一种多孔石墨烯薄膜的制备方法中,所述聚苯乙烯颗粒物为直径为约0.3微米-3.0微米的聚苯乙烯微球。
例如,本公开至少一实施例提供的一种多孔石墨烯薄膜的制备方法,还包括:以苯乙烯为单体,以偶氮二异丁腈为引发剂制备所述聚苯乙烯微球。
例如,本公开至少一实施例提供的一种多孔石墨烯薄膜的制备方法中,使用抽滤法形成所述石墨烯/颗粒物混合薄膜。
例如,本公开至少一实施例提供的一种多孔石墨烯薄膜的制备方法中,配制还原的氧化石墨烯分散液和颗粒物分散液,并将所述还原的氧化石墨烯分散液和所述颗粒物分散液混合以形成混合液,调节所述混合液pH值使所述混合液呈碱性,之后进行所述成膜处理。
例如,本公开至少一实施例提供的一种多孔石墨烯薄膜的制备方法中,调节所述混合液pH值至约9-11。
例如,本公开至少一实施例提供的一种多孔石墨烯薄膜的制备方法中,使用溶液浸泡法或高温煅烧法去除所述石墨烯/颗粒物混合薄膜中的所述颗粒物。
例如,本公开至少一实施例提供的一种多孔石墨烯薄膜的制备方法中,使用四氢呋喃、甲苯、二氯甲烷或酸溶液溶解所述石墨烯/颗粒物混合薄膜中的所述颗粒物以去除所述颗粒物;或者使用高于所述颗粒物熔点的温度对所述石墨烯/颗粒物混合薄膜进行高温煅烧使所述石墨烯/颗粒物混合薄膜中的所述颗粒物熔融以去除所述颗粒物。
本公开至少一实施例提供一种多孔石墨烯,由上述任一方法制备。
本公开至少一实施例提供的一种电子产品,包括上述多孔石墨烯薄膜制备作为导电层。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开一实施例提供的多孔石墨烯薄膜的制备方法的示意图一;
图2为本公开一实施例提供的多孔石墨烯薄膜的制备方法的示意图二;
图3为本公开一实施例提供的多孔石墨烯薄膜截面的扫描电镜图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
虽然具有多孔结构的石墨烯薄膜通常具有较高的比表面积,但是石墨烯片层容易产生自堆积现象,导致石墨烯在实际应用中的可应用比表面积远小于其理论值。多孔石墨烯薄膜通常采用气相沉积法、静电喷雾法等方法制备,这些方法制备过程复杂、成本高,不适于大规模生产。
本公开至少一实施例提供一种多孔石墨烯薄膜的制备方法,包括:将石墨烯的分散液和颗粒物的分散液混合,进行成膜处理以形成石墨烯/颗粒物混合薄膜;去除所述石墨烯/颗粒物混合薄膜中的所述颗粒物以形成多孔石墨烯薄膜。
本公开至少一实施例提供一种由上述方法制备的多孔石墨烯。
本公开至少一实施例提供一种包括上述多孔石墨烯薄膜作为导电层的电子产品。
下面通过几个具体的实施例对本公开的多孔石墨烯薄膜的制备方法、多孔石墨烯薄膜及电子产品进行说明。
实施例一
本实施例提供一种多孔石墨烯薄膜的制备方法,如图1所示,该方法包括步骤S101-S103。
步骤S101:将石墨烯的分散液和颗粒物的分散液混合。
本实施例中,将原料石墨烯和颗粒物分别配置成石墨烯的分散液和颗粒物的分散液。石墨烯和颗粒物可以是市售的,也可以是自制的。本实施例中,石墨烯可以为各种适当形式,例如可以为还原的氧化石墨烯(RGO),经过还原的氧化石墨烯与氧化石墨烯相比其含氧官能团减少,因此具有更好的导电性。本实施例中,颗粒物例如可以为有机聚合物颗粒物或无机颗粒物等合适的颗粒物,该无机颗粒物例如可以为二氧化硅颗粒物、二氧化钛颗粒物或二氧化锰颗粒物。例如,该无机颗粒物的粒度可以为0.3微米-3微米,例如0.5微米、1微米、1.5微米、2微米或2.5微米等。有机聚合物颗粒物例如可以为聚苯乙烯(PS)颗粒物、聚吡咯颗粒物或聚苯胺颗粒物等,该有机聚合物颗粒物的粒度例如可以为0.3微米-3微米,例如0.5微米、1微米、1.5微米、2微米或2.5微米等。例如在一个示例中,可以选用直径为0.3微米-3微米的聚苯乙烯微球等。这些颗粒物表面疏水并且具有π电子,因此可以通过石墨烯与颗粒物之间的疏水作用和π电子相互作用而产生自组装,进而使石墨烯与颗粒物很好地复合。
本实施例中,例如可以将石墨烯和颗粒物分别与蒸馏水混合从而配置成石墨烯的分散液和颗粒物的分散液。例如,当本实施例选用的石墨烯为还原的氧化石墨烯(RGO),选用的颗粒物为直径为约1.5微米的聚苯乙烯(PS)微球时,例如可以分别将还原的氧化石墨烯和聚苯乙烯微球与蒸馏水混合从而配置成例如(0.1-1)g/L(例如0.2g/L、0.5g/L、0.8g/L或1g/L等)的还原的氧化石墨烯分散液与(0.1-1)g/L(例如0.1g/L、0.3g/L、0.5g/L或0.7g/L等)的聚苯乙烯微球分散液。本实施例中,例如可以以还原的氧化石墨烯与聚苯乙烯微球的质量比为(10-20):1的比例,例如12:1、15:1 或17:1的比例将还原的氧化石墨烯分散液与聚苯乙烯微球分散液进行混合。例如在一个实施例中,将75mL的浓度为0.2g/L的还原的氧化石墨烯分散液与10mL的0.1g/L的聚苯乙烯微球分散液混合在一起,从而形成还原的氧化石墨烯与聚苯乙烯微球的质量比为15:1的混合液。
本实施例中,将石墨烯分散液与颗粒物分散液混合后,还可以调节混合液的pH值使混合液呈碱性,例如使用NH 3·H 2O溶液调节混合液的pH至9-11,例如调节到10。在该碱性条件下,石墨烯片层之间具有较大的静电斥力,从而避免其产生堆积,同时NH 3·H 2O溶液不仅可以起到调节混合液pH的作用,还可以起到维持混合液稳定的作用。调节混合液pH值后,将混合液搅拌均匀,之后还可以进行例如超声处理以均匀混合液。
步骤S102:进行成膜处理以形成石墨烯/颗粒物混合薄膜。
本实施例中,例如可以使用抽滤法形成石墨烯/颗粒物混合薄膜。例如,使用具有一定孔径的滤膜,例如使用具有直径为0.1-0.5μm(例如0.22μm)的孔径的PVDF滤膜对石墨烯与颗粒物的混合液进行抽滤成膜处理。该滤膜的孔径大小可以根据颗粒物的尺寸等实际情况进行选择。将石墨烯与颗粒物的混合液倒在所选择的滤膜上,并在滤膜下方进行抽真空,使混合液中的溶剂从滤膜中流出,而将石墨烯与颗粒物的混合物留在滤膜之上,从而形成石墨烯/颗粒物复合膜。之后,将所得到的复合膜在空气中干燥,干燥完成后将复合膜从滤膜上剥离下即得到独立的石墨烯/颗粒物复合膜。
步骤S103:去除石墨烯/颗粒物混合薄膜中的颗粒物以形成多孔石墨烯薄膜。
本实施例中,例如可以使用溶液浸泡法或高温煅烧法等方法去除石墨烯/颗粒物混合薄膜中的颗粒物。例如,当本实施例中采用的颗粒物为聚苯乙烯颗粒物时,可以使用四氢呋喃、甲苯、二氯甲烷等能够溶解聚苯乙烯的有机溶剂溶解石墨烯/颗粒物混合薄膜中的颗粒物;例如,可以将制备好的石墨烯/聚苯乙烯颗粒物复合膜浸入四氢呋喃(THF)中一段时间,以使复合膜中的聚苯乙烯颗粒物部分或完全溶解,从而形成具有多孔结构的石墨烯薄膜。当本实施例中采用的颗粒物为二氧化硅或二氧化钛颗粒物时,可以使用酸溶液,例如氢氟酸等溶解石墨烯/颗粒物混合薄膜中的颗粒物,从而形成具有多孔结构的石墨烯薄膜。例如,本实施例还可以采用高温煅烧法,即使用高于颗粒物熔点的温度对石墨烯/颗粒物混合薄膜进行高温煅烧使石墨烯/颗粒物 混合薄膜中的颗粒物熔融从而形成具有多孔结构的石墨烯薄膜,该高温煅烧过程例如可以在氮气、氩气等保护气体中进行,以免石墨烯发生氧化。
本实施例中,当石墨烯/颗粒物混合薄膜中的颗粒物除去后,薄膜中原本存在颗粒物的位置即形成孔洞,并且该孔洞的大小与颗粒物的大小基本相同,因此利用本实施例提供的方法,可以通过控制颗粒物的大小与加入量来调控所形成的多孔石墨烯薄膜中孔洞的大小与分布,因此利用本实施例提供的方法制备的多孔石墨烯薄膜具有理想的孔洞大小与分布,并且具有较高的比表面积。
例如,在颗粒物的粒度选择为0.3微米-3微米的情况下,最终得到的多孔石墨烯薄膜中的孔洞大小即为约0.3微米-3微米,此时,多孔石墨烯薄膜可以具有较高的比表面积,并且该薄膜还具有优异的导电性、化学及热稳定性,此外还具有柔性。
本实施例的另一个示例中,如图2所示,多孔石墨烯薄膜的制备方法还可以包括步骤S100。
步骤S100:制备石墨烯和颗粒物。
本实施例中,石墨烯和颗粒物可以自制。例如,当选用的石墨烯为还原的氧化石墨烯(RGO)时,该还原的氧化石墨烯的制备方法可以包括:首先制备氧化石墨烯,然后将氧化石墨烯还原以得到还原的氧化石墨烯。
例如,可以使用Hummers法制备氧化石墨烯。Hummers法为使用高锰酸钾在浓硫酸中使石墨粉末发生氧化反应,从而得到氧化石墨烯。使用该方法获得的氧化石墨烯在水中可以形成稳定的单层氧化石墨烯悬浮液。
例如,使用Hummers法制备氧化石墨烯可以包括如下步骤。
将一定量的浓硫酸、石墨粉末、硝酸钠混合均匀。例如在一个示例中可以将质量比为2:1石墨粉末和硝酸钠在足够量的浓硫酸中混合,例如当石墨粉末为1g,硝酸钠为0.5g时,浓硫酸可以为75mL。将上述混合物在冰水浴中机械搅拌30分钟使其混合均匀。之后,在上述混合物中加入高锰酸钾。例如以石墨粉末与高锰酸钾的质量比为2:9的比例在上述混合物中缓慢加入高锰酸钾,并将所得混合物在冰水浴下放置一定时间,例如2小时,使氧化反应进行。之后,将上述混合物放置在例如35℃的恒温水浴锅中继续搅拌,使氧化反应继续进行,该过程例如可以进行3小时。上述过程结束后,将一定量的稀硫酸倒入上述混合物中并使反应继续进行。例如将一定量的质量分 数为5%的稀硫酸缓慢滴入到上述混合物中,当稀硫酸滴加完毕后调节恒温水浴锅的温度,例如将恒温水浴锅的温度调至95℃,并继续反应例如1小时。之后,加入一定量的过氧化氢溶液并使反应继续进行。例如,再次调节恒温水浴锅的温度,例如将恒温水浴锅的温度调至60℃,并将一定量的过氧化氢溶液,例如质量分数为30%的过氧化氢溶液缓慢加入到上述混合物中,并在60℃的温度下持续搅拌一定时间,例如2小时,使反应进行完全。本实施例中,浓硫酸、稀硫酸、过氧化氢溶液的体积比例如可以为3:6:1。
上述反应结束后,使用稀盐酸对上述过程得到的混合物进行洗涤。例如,将质量分数为37%的浓盐酸与蒸馏水以体积比为1:10的比例进行混合得到稀盐酸,并利用该稀盐酸低速离心洗涤所得到的混合物。例如可以采用1000~1500rpm的转速洗涤所得到的混合物,该洗涤过程可以进行多次,每次例如可以进行10~15分钟,直至溶液中不再有硫酸根离子。取上述离心过程得到的上清液,并使用去离子水进行高速离心洗涤,例如可以采用10,000~15,000rpm的转速进行洗涤,该洗涤过程也可以进行多次,每次例如可以进行20~25分钟。取上述离心过程得到的离心管底部的固体,使用去离子水继续反复离心洗涤直至洗涤液的pH值接近7为止,然后将离心产物放置于冷冻干燥箱中进行冷冻干燥,最终得到干燥的氧化石墨烯。
在获得了氧化石墨烯后,进行氧化石墨烯的还原反应。例如可以使用水合肼(N 2H 4·H 2O)为还原剂将氧化石墨烯还原。例如,将氧化石墨烯与水合肼混合,并利用氨水(NH 3·H 2O)将混合溶液的pH值调节到9-11,例如调节到10左右,之后在例如98~100℃的水浴锅下回流例如1小时,从而得到分散性良好的还原的氧化石墨烯(RGO)溶液。
本实施例中,颗粒物也可以自制。例如,当所选择的颗粒物为聚苯乙烯微球,该聚苯乙烯微球的制备方法可以包括:以苯乙烯为单体,以偶氮二异丁腈(AIBN)为引发剂制备聚苯乙烯微球。
例如,制备聚苯乙烯微球可以包括如下步骤。首先,配置反应溶剂,该反应溶剂例如可以为聚乙烯醇水溶液,该溶剂例如可以通过将质量分数为3%的聚乙烯醇水溶液和蒸馏水以体积比为4:25的比例混合而获得。之后在上述溶剂中加入含有偶氮二异丁腈的苯乙烯,例如可以在搅拌的条件下逐滴加入含有偶氮二异丁腈的苯乙烯,例如采用400rpm的搅拌速度搅拌上述反应溶剂,并在该搅拌条件下逐滴加入例如每10mL苯乙烯中含有0.3g AIBN 的AIBN/苯乙烯混合液。之后在氮气的保护气氛下,将上述混合液的温度加热至82~85℃,苯乙烯将在此温度下发生聚合反应,该反应例如可以持续进行2小时。反应结束后,使用乙醇反复洗涤上述聚合反应后的产物,最终得到聚苯乙烯微球。本示例最终获得的聚苯乙烯微球的直径约为1.5微米。
本实施例中,例如可以通过调控反应物的浓度和反应条件来控制聚苯乙烯微球的直径,从而可以根据所需的多孔石墨烯薄膜的孔径大小来选择聚苯乙烯微球的直径的大小,再进一步选择聚苯乙烯微球的具体制备工艺。
本实施例提供的多孔石墨烯薄膜的制备方法制备过程简单、成本低廉、成品率高,并且制得的多孔石墨烯薄膜的多孔结构可调控。
实施例二
本实施例提供一种多孔石墨烯薄膜,该多孔石墨烯薄膜由本公开的上述实施例的方法制得。该薄膜在颗粒物除去的位置形成孔洞,从而该薄膜所具有的多孔结构中孔洞的大小与分布可以根据需求通过选择颗粒物的大小与加入量进行调整。
例如,图3为本实施例提供的一种多孔石墨烯薄膜的扫描电镜图,该多孔石墨烯薄膜是通过将还原的氧化石墨烯与直径约为1.5微米的聚苯乙烯微球复合然后使用溶液浸泡法去除聚苯乙烯微球而得到的。如图3所示,该多孔石墨烯薄膜所具有的多孔结构中,孔洞的大小基本在1.5微米左右,即基本与颗粒物聚苯乙烯微球的尺寸相同。因此,本实施例提供的多孔石墨烯薄膜可以具有理想的孔洞大小与分布,具有较高的比表面积,并且该薄膜还具有优异的导电性、化学及热稳定性,此外还具有柔性。
实施例三
本实施例提供一种电子产品,该电子产品包括上述多孔石墨烯薄膜制备的导电薄膜。该电子产品例如可以为OLED显示面板、触摸屏、电容器、太阳能电池、光电显示器等,本实施例对电子产品的种类不做限定。多孔石墨烯薄膜制备的导电薄膜在该电子产品中例如可以作为半导体防静电材料或电极材料等,例如还可以替代成本较高的ITO薄膜,本实施例对多孔石墨烯薄膜的具体用途不做限定。
还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种多孔石墨烯薄膜的制备方法,包括:
    将石墨烯的分散液和颗粒物的分散液混合,进行成膜处理以形成石墨烯/颗粒物混合薄膜;
    去除所述石墨烯/颗粒物混合薄膜中的所述颗粒物以形成多孔石墨烯薄膜。
  2. 根据权利要求1所述的多孔石墨烯薄膜的制备方法,其中,所述石墨烯为还原的氧化石墨烯。
  3. 根据权利要求2所述的多孔石墨烯薄膜的制备方法,还包括:制备氧化石墨烯,然后将所述氧化石墨烯还原以得到所述还原的氧化石墨烯。
  4. 根据权利要求3所述的多孔石墨烯薄膜的制备方法,其中,使用Hummers法制备所述氧化石墨烯。
  5. 根据权利要求1-4任一所述的多孔石墨烯薄膜的制备方法,其中,所述颗粒物的粒度为0.3微米-3.0微米。
  6. 根据权利要求1-5任一所述的多孔石墨烯薄膜的制备方法,其中,所述颗粒物为有机聚合物颗粒物或无机颗粒物。
  7. 根据权利要求6所述的多孔石墨烯薄膜的制备方法,其中,所述有机聚合物颗粒物为聚苯乙烯颗粒物、聚吡咯颗粒物或聚苯胺颗粒物;
    所述无机颗粒物为二氧化硅颗粒物、二氧化钛颗粒物或二氧化锰颗粒物。
  8. 根据权利要求7所述的多孔石墨烯薄膜的制备方法,其中,所述聚苯乙烯颗粒物为直径为约0.3微米-3.0微米的聚苯乙烯微球。
  9. 根据权利要求8所述的多孔石墨烯薄膜的制备方法,还包括:以苯乙烯为单体,以偶氮二异丁腈为引发剂制备所述聚苯乙烯微球。
  10. 根据权利要求1-9任一所述的多孔石墨烯薄膜的制备方法,其中,使用抽滤法形成所述石墨烯/颗粒物混合薄膜。
  11. 根据权利要求1-10任一所述的多孔石墨烯薄膜的制备方法,其中,配制还原的氧化石墨烯分散液和颗粒物分散液,并将所述还原的氧化石墨烯分散液和所述颗粒物分散液混合以形成混合液,调节所述混合液pH值使所述混合液呈碱性,之后进行所述成膜处理。
  12. 根据权利要求11所述的多孔石墨烯薄膜的制备方法,其中,调节所述混合液pH值至约9-11。
  13. 根据权利要求1-12任一所述的多孔石墨烯薄膜的制备方法,其中,使用溶液浸泡法或高温煅烧法去除所述石墨烯/颗粒物混合薄膜中的所述颗粒物。
  14. 根据权利要求13所述的多孔石墨烯薄膜的制备方法,其中,使用四氢呋喃、甲苯、二氯甲烷或酸溶液溶解所述石墨烯/颗粒物混合薄膜中的所述颗粒物以去除所述颗粒物;或者
    使用高于所述颗粒物熔点的温度对所述石墨烯/颗粒物混合薄膜进行高温煅烧使所述石墨烯/颗粒物混合薄膜中的所述颗粒物熔融以去除所述颗粒物。
  15. 一种多孔石墨烯薄膜,由权利要求1-14任一所述的方法制备。
  16. 一种电子产品,包括如权利要求15所述的多孔石墨烯薄膜作为导电层。
PCT/CN2018/083056 2017-08-22 2018-04-13 多孔石墨烯薄膜的制备方法、多孔石墨烯薄膜及电子产品 WO2019037448A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/327,200 US11512000B2 (en) 2017-08-22 2018-04-13 Porous graphene film, its manufacturing method and electronic product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710723153.2 2017-08-22
CN201710723153.2A CN107689271A (zh) 2017-08-22 2017-08-22 多孔石墨烯薄膜的制备方法、多孔石墨烯薄膜及电子产品

Publications (1)

Publication Number Publication Date
WO2019037448A1 true WO2019037448A1 (zh) 2019-02-28

Family

ID=61153643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083056 WO2019037448A1 (zh) 2017-08-22 2018-04-13 多孔石墨烯薄膜的制备方法、多孔石墨烯薄膜及电子产品

Country Status (3)

Country Link
US (1) US11512000B2 (zh)
CN (1) CN107689271A (zh)
WO (1) WO2019037448A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113996254A (zh) * 2021-11-08 2022-02-01 华中科技大学 具有光耦合魔角吸收效应石墨烯包覆聚苯乙烯微球及制备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107689271A (zh) 2017-08-22 2018-02-13 京东方科技集团股份有限公司 多孔石墨烯薄膜的制备方法、多孔石墨烯薄膜及电子产品
CN109621740B (zh) * 2018-12-27 2021-07-20 华南理工大学 一种孔径可控超疏水聚合膜及其制备方法
CN111547707A (zh) * 2020-04-24 2020-08-18 中国科学院山西煤炭化学研究所 一种石墨烯气泡薄膜及其制备方法和应用
CN112622357A (zh) * 2020-12-02 2021-04-09 成都飞机工业(集团)有限责任公司 多层多孔高导电性能的石墨烯薄膜及其制造方法
CN114774087B (zh) * 2022-04-11 2023-07-04 广州大学 一种制备石墨烯导热膜的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103903879A (zh) * 2014-02-19 2014-07-02 国家纳米科学中心 一种多孔石墨烯/MnO2复合薄膜及其制备方法和用途
CN104538209A (zh) * 2014-12-09 2015-04-22 国家纳米科学中心 一种多孔石墨烯-MnO2复合薄膜、其制备方法及其用途
US20170029279A1 (en) * 2015-07-31 2017-02-02 Graphene Square, Inc. Apparatus and Method of Manufacturing Graphene Film
CN107689271A (zh) * 2017-08-22 2018-02-13 京东方科技集团股份有限公司 多孔石墨烯薄膜的制备方法、多孔石墨烯薄膜及电子产品

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102107868A (zh) * 2011-03-01 2011-06-29 哈尔滨工程大学 一种多孔石墨烯材料的制备方法
CN103950928B (zh) * 2014-05-22 2016-08-24 苏州斯迪克新材料科技股份有限公司 一种石墨烯的制备方法
CN104261403B (zh) * 2014-10-27 2016-05-04 福州大学 一种三维多孔结构石墨烯的制备方法
CN104743548A (zh) * 2015-03-16 2015-07-01 浙江大学 一种多孔石墨烯及其制备方法和应用
CN105129787A (zh) * 2015-09-10 2015-12-09 上海大学 三维分级多孔石墨烯的制备方法
CN105523547B (zh) 2016-01-25 2017-09-29 浙江大学 一种超柔性高导热石墨烯膜及其制备方法
CN107032329A (zh) * 2016-02-03 2017-08-11 全球能源互联网研究院 一种纳米-微米分级孔道结构的三维石墨烯及其制备方法
CN105621355B (zh) * 2016-03-08 2018-01-02 上海大学 一种空心石墨烯球负载纳米二硫化锡复合材料及其制备方法
CN106395802B (zh) * 2016-09-08 2020-08-11 山东理工大学 一种石墨烯多孔膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103903879A (zh) * 2014-02-19 2014-07-02 国家纳米科学中心 一种多孔石墨烯/MnO2复合薄膜及其制备方法和用途
CN104538209A (zh) * 2014-12-09 2015-04-22 国家纳米科学中心 一种多孔石墨烯-MnO2复合薄膜、其制备方法及其用途
US20170029279A1 (en) * 2015-07-31 2017-02-02 Graphene Square, Inc. Apparatus and Method of Manufacturing Graphene Film
CN107689271A (zh) * 2017-08-22 2018-02-13 京东方科技集团股份有限公司 多孔石墨烯薄膜的制备方法、多孔石墨烯薄膜及电子产品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113996254A (zh) * 2021-11-08 2022-02-01 华中科技大学 具有光耦合魔角吸收效应石墨烯包覆聚苯乙烯微球及制备
CN113996254B (zh) * 2021-11-08 2022-10-28 华中科技大学 具有光耦合魔角吸收效应石墨烯包覆聚苯乙烯微球及制备

Also Published As

Publication number Publication date
CN107689271A (zh) 2018-02-13
US20210354990A1 (en) 2021-11-18
US11512000B2 (en) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2019037448A1 (zh) 多孔石墨烯薄膜的制备方法、多孔石墨烯薄膜及电子产品
Zhao et al. Scalable 3D self‐assembly of MXene films for flexible sandwich and microsized supercapacitors
Wang et al. Preparation of titania-coated polystyrene particles in mixed solvents by ammonia catalysis
TW201633586A (zh) 用於鋰離子電池陽極的方法與材料
Liu et al. Two-step self-assembly of hierarchically-ordered nanostructures
JP5357323B1 (ja) 酸化グラフェンの製造方法
KR101438184B1 (ko) 미세입자의 계면 자기조립 현상을 이용한 대면적 필름 및 그 제조방법
JP2013139371A (ja) 硫黄−グラフェン複合材料の製造方法
KR101975033B1 (ko) 비반복적이고 불규칙적인 3차원 기공을 포함하는 그래핀 및 이의 제조 방법
US11104989B2 (en) Chemical vapor deposition process to build 3D foam-like structures
Sun et al. Different Dimensional Nanostructured Silicon Materials: From Synthesis Methodology to Application in High‐Energy Lithium‐Ion Batteries
TW201707258A (zh) 能量儲存裝置、其電極以及矽藻殼
WO2011118878A9 (ko) 나노 와이어 제조용 블록공중합체 및 이의 제조방법
Mackay et al. Template-free electrochemical synthesis of tin nanostructures
WO2014183243A1 (zh) 一种制备石墨烯材料的方法及其在化学储能和/或转化中的用途
Yu et al. Fabrication of binary and ternary hybrid particles based on colloidal lithography
TW201442951A (zh) 碳奈米管集合體及其製造方法
JP2020531387A (ja) 自立グラフェン膜およびその製造方法
KR20130075566A (ko) 전도도가 향상된 실리카-폴리 아닐린 코어-쉘 나노 입자 박막 제조방법
US10913045B2 (en) Porous microsphere and method for preparing the same
Qi et al. Fabrication of bowl-like porous WO 3 film by colloidal crystal template-assisted electrodeposition method
KR101270441B1 (ko) 그라핀 분산액 및 그 제조 방법
JP2015229619A (ja) 二酸化チタンとグラフェンとの複合体、およびその製造方法。
JP6097490B2 (ja) 酸化物の製造方法
CN107986327A (zh) 二氧化钛纳米薄膜的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/08/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18848082

Country of ref document: EP

Kind code of ref document: A1