WO2019031301A1 - 流体供給装置および流体供給方法 - Google Patents

流体供給装置および流体供給方法 Download PDF

Info

Publication number
WO2019031301A1
WO2019031301A1 PCT/JP2018/028592 JP2018028592W WO2019031301A1 WO 2019031301 A1 WO2019031301 A1 WO 2019031301A1 JP 2018028592 W JP2018028592 W JP 2018028592W WO 2019031301 A1 WO2019031301 A1 WO 2019031301A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
fluid supply
pump
processing chamber
flow path
Prior art date
Application number
PCT/JP2018/028592
Other languages
English (en)
French (fr)
Inventor
俊英 吉田
皆見 幸男
篠原 努
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to US16/634,673 priority Critical patent/US20210125839A1/en
Priority to CN201880052011.0A priority patent/CN110998802B/zh
Priority to KR1020207000031A priority patent/KR102289575B1/ko
Priority to JP2019535122A priority patent/JP7146283B2/ja
Publication of WO2019031301A1 publication Critical patent/WO2019031301A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/013Single phase liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0518Semiconductors

Definitions

  • the present invention relates to a fluid supply apparatus and a fluid supply method of a fluid used in a drying process of various substrates such as semiconductor substrates, glass substrates for photomasks, and glass substrates for liquid crystal display.
  • a resist of a polymeric material is a polymeric material sensitive to light, X-rays, electron beams and the like, and in each process, chemical solutions such as a developing solution and a rinsing solution are used in the developing and rinsing steps. After the rinsing step, the drying step is essential.
  • the supply of carbon dioxide to the processing chamber of the supercritical fluid condenses and liquefies gaseous carbon dioxide (eg, 20 ° C., 5.0 MPa) from the supply source in a condenser (condenser) and stores it in a tank, Is pumped into the processing chamber (eg, 20.degree. C., 20.0 MPa).
  • Liquid carbon dioxide pumped to the processing chamber is heated (eg, 80 ° C., 20.0 MPa) just before the processing chamber or in the processing chamber to become a supercritical fluid.
  • the carbon dioxide in the liquid state pumped is pulsating so that the pressure of the liquid fluctuates significantly. For this reason, the supply amount of carbon dioxide which changes to the supercritical state immediately before or in the processing chamber becomes unstable, and it is difficult to stably supply the supercritical fluid of carbon dioxide.
  • An object of the present invention is to provide a fluid supply apparatus and a fluid supply method capable of stably supplying a supercritical fluid.
  • the fluid supply apparatus is a fluid supply apparatus for supplying a fluid in a liquid state to a processing chamber, which comprises A condenser for liquefying the gaseous state fluid; A tank for storing fluid liquefied by the condenser; A pump for pumping the liquefied fluid stored in the tank toward the processing chamber; It has a damper part in communication with the flow path on the discharge side of the pump and suppressing pressure fluctuation of the liquid discharged from the pump,
  • the current-damper tube portion is formed such that both ends are fixed at a predetermined position, both ends are fixed at a predetermined position, and the direction of the flow of the liquid is changed between the both ends.
  • the damper unit branches on the upstream side of an on-off valve provided in the middle of a flow path from the discharge side of the pump to the processing chamber, and returns the liquid discharged from the pump to the condenser.
  • the configuration provided in the flow path of can be adopted.
  • the condenser, the tank, the pump, and the on-off valve are provided in a main flow path connecting a fluid supply source for supplying the fluid in the gaseous state and the processing chamber.
  • the damper unit is provided in a branch flow channel that branches from between the pump and the on-off valve and is connected to the main flow channel upstream of the condenser.
  • the fluid in the liquid state which is pumped from the pump, returns to the condenser and the tank again through the branch flow passage when the on-off valve is closed.
  • the on-off valve is opened, the fluid in the liquid state is pumped to the processing chamber and heated by a heating unit provided in front of or in the processing chamber to change to a supercritical state. , Configuration can be adopted.
  • the fluid supply method of the present invention uses the fluid supply device configured as described above to supply fluid in a liquid state toward the processing chamber.
  • a semiconductor manufacturing apparatus is a fluid supply apparatus configured as described above; And a processing chamber for processing a substrate using the fluid supplied from the fluid supply device.
  • the substrate is processed using the fluid supply device having the above-described configuration.
  • the supercritical fluid can be stably supplied to the processing chamber.
  • FIG. 2 is a view showing a state in which liquid is supplied to the processing chamber in the fluid supply device of FIG. 1A. Phase diagram of carbon dioxide.
  • the front view which shows an example (spiral pipe
  • the schematic block diagram which shows other embodiment of a damper part.
  • the schematic block diagram which shows other embodiment of a damper part.
  • FIGS. 1A and 1B show a fluid supply device according to an embodiment of the present invention.
  • 1 is a fluid supply device
  • 10 is a damper unit
  • 20 is a spiral pipe
  • 100 is a CO2 supply source
  • 110 is an on-off valve
  • 120 is a check valve
  • 121 is a filter
  • 130 is a condenser
  • 140 is a tank
  • Reference numeral 150 denotes a pump
  • 160 denotes an automatic on-off valve
  • 170 denotes a back pressure valve
  • 500 denotes a processing chamber.
  • FIG. 1A shows a state in which the automatic opening / closing valve 160 is closed
  • FIG. 1B shows a state in which the automatic opening / closing valve 160 is opened.
  • the CO 2 supply source 100 supplies gaseous carbon dioxide (eg, 20 ° C., 5.0 MPa) to the main flow path 2.
  • gaseous carbon dioxide eg, 20 ° C., 5.0 MPa
  • carbon dioxide supplied from the CO 2 source 100 is in the state of P1 in FIG. 2.
  • the carbon dioxide in this state is sent to the condenser 130 through the on-off valve 110, the check valve 120, and the filter 121.
  • the condenser 130 cools the supplied gaseous carbon dioxide to liquefy and condense, and the liquefied and condensed carbon dioxide is stored in the tank 140.
  • the carbon dioxide stored in the tank 140 is in a state (3 ° C., 5 MPa) as shown by P2 in FIG.
  • carbon dioxide in a liquid state in the state as P2 in FIG. 2 is sent to the pump 150 and pumped to the discharge side of the pump 150, whereby a liquid state as shown in P3 in FIG. ° C, 20 MPa).
  • an automatic on-off valve 160 is provided in the middle of the main flow path 2 connecting the pump 150 and the processing chamber 500.
  • a branch flow path 3 branches from between the pump 150 of the main flow path 2 and the automatic opening / closing valve 160.
  • the branch flow path 3 branches from the main flow path 2 between the pump 150 and the automatic opening / closing valve 160, and is connected to the main flow path 2 again on the upstream side of the filter 121.
  • the branch portion 3 and the back pressure valve 170 are provided in the branch flow path 3.
  • the back pressure valve 170 releases the liquid to the filter 121 side when the pressure of the fluid (liquid) on the discharge side of the pump 150 becomes equal to or higher than a set pressure (for example, 20 MPa). This prevents the pressure of the liquid on the discharge side of the pump 150 from exceeding the set pressure.
  • a set pressure for example, 20 MPa
  • the automatic open / close valve 160 When the automatic open / close valve 160 is closed, the liquid pumped from the pump 150 returns to the condenser 130 and the tank 140 again through the branch flow path 3 as shown in FIG. 1A.
  • the automatic on-off valve 160 When the automatic on-off valve 160 is opened, carbon dioxide in a liquid state is pumped to the processing chamber 500 as shown in FIG. 1B.
  • the pumped carbon dioxide in the liquid state is heated by a heater (not shown) provided immediately before or in the processing chamber 500 to be in a supercritical state (80 ° C., 20 MPa) such as P4 shown in FIG. .
  • the liquid discharged from the pump 150 pulsates not a little.
  • the main flow path 2 is filled with liquid up to the processing chamber 500
  • the branch flow path 3 is also filled with liquid up to the back pressure valve 170. Therefore, when the liquid discharged from the pump 150 pulsates, the pressure of carbon dioxide in the liquid state in the main flow path 2 and the branch flow path 3 periodically fluctuates. Carbon dioxide in the liquid state is poorly compressible. Therefore, when the pressure of carbon dioxide in the liquid state periodically fluctuates, the flow rate of carbon dioxide in the liquid state supplied to the processing chamber 500 also fluctuates accordingly. When the flow rate of carbon dioxide in the liquid state supplied is greatly fluctuated, the amount of carbon dioxide supplied to the supercritical state immediately before or in the processing chamber 500 is also greatly fluctuated.
  • the damper portion 10 is provided in the branch flow path 3 to damp the pulsation of the liquid discharged from the pump 150, thereby suppressing the periodic pressure fluctuation of the liquid discharged from the pump 150. Stabilize the supply amount of carbon dioxide that has been changed to the supercritical state.
  • the damper portion 10 is a current transformation tube portion fixed at a predetermined position at both ends and formed so as to change the flow direction of the liquid between the both ends, as shown in FIG. It has a spiral pipe 20 connected in series to the flow path 3.
  • a spiral tube, a corrugated tube, a serpentine tube or the like may be used as the current transformation tube portion in addition to the spiral tube (helical tube).
  • the shape of the spiral or spiral need not be circular, but may be rectangular.
  • the spiral pipe 20 is provided with pipe joints 21 and 24 at the lower end and the upper end respectively, and the spiral pipe 20 is connected in series to the branch flow path 3 by the pipe joints 21 and 24.
  • the pipe 22 constituting the spiral pipe 20 is formed of, for example, a metal material such as stainless steel.
  • the diameter of the pipe 22 is 6.35 mm
  • the total length L of the spiral part 23 is 280 mm
  • the diameter D1 of the spiral part 23 is about 140 mm
  • the number of turns of the spiral part 23 is 22
  • the total length of the pipe 22 is about 9800 mm.
  • FIG. 4A shows another embodiment of the damper portion.
  • the spiral pipe 20 is connected in parallel to the branch flow path 3, and the orifice 30 is provided between the branch flow path 3 and the spiral pipe 20.
  • the pulsation (periodical pressure fluctuation) of the liquid discharged from the pump 150 is suppressed as in the first embodiment, and a supercritical state occurs immediately before the processing chamber 500 or in the processing chamber 500.
  • the changed supply of carbon dioxide can be stabilized.
  • FIG. 4B shows still another embodiment of the damper portion.
  • the damper portion shown in FIG. 4B connects two spiral pipes 20 in parallel, inserts them into the branch flow path 3, and provides an orifice 30 between the branch flow path 3 and one spiral pipe 20.
  • the pulsation (periodical pressure fluctuation) of the liquid discharged from the pump 150 is suppressed as in the first embodiment, and a supercritical state occurs immediately before the processing chamber 500 or in the processing chamber 500.
  • the changed supply of carbon dioxide can be stabilized.
  • the present invention is not limited to this, and the damper portion 10 is provided in the main flow passage 2 on the discharge side of the pump 150 It is also possible.
  • carbon dioxide was illustrated as a fluid in the above-mentioned embodiment, it is not necessarily limited to this, and the present invention is applicable if it is a fluid which can be changed to a supercritical state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

【課題】超臨界流体を安定的に供給可能な流体供給装置および流体供給方法を提供する。 【解決手段】超臨界流体へ変化させる前の液体状態の流体を処理室500に向けて供給する流体供給装置1であって、気体状態の二酸化炭素を凝縮液化するコンデンサ130と、コンデンサ130により凝縮液化された流体を貯留するタンク140と、タンク140に貯留された液化された二酸化炭素を処理室500へ向けて圧送するポンプ150と、ポンプ150の吐出側と連通する流路2に設けられ、ポンプ150から吐出される液体の周期的な圧力変動を抑制するダンパ部10を有し、ダンパ部10は、両端部が所定の位置に固定され、かつ、ポンプ150から吐出される液体が流通するスパイラル状に形成されたスパイラル管20を有する。

Description

流体供給装置および流体供給方法
 本発明は、半導体基板、フォトマスク用ガラス基板、液晶表示用ガラス基板などの各種基板の乾燥工程等に用いられる流体の流体供給装置および流体供給方法に関する。
 大規模で高密度、高性能な半導体デバイスは、シリコンウエハ上に成膜したレジストに対して露光、現像、リンス洗浄、乾燥を経てパターンを形成した後、コーティング、エッチング、リンス洗浄、乾燥等のプロセスを経て製造される。特に、高分子材料のレジストは、光、X線、電子線などに感光する高分子材料であり、各工程において、現像、リンス洗浄工程では現像液、リンス液等の薬液を使用しているため、リンス洗浄工程後は乾燥工程が必須である。
 この乾燥工程において、レジスト基板上に形成したパターン間のスペース幅が90nm程度以下になるとパターン間に残存する薬液の表面張力(毛細管力)の作用により、パターン間にラプラス力が作用してパターン倒れが生ずる問題が発生する。そのパターン間に残存する薬液の表面張力の作用によるパターン倒れを防止するために、パターン間に作用する表面張力を軽減する乾燥プロセスとして、二酸化炭素の超臨界流体を用いた方法が知られている(例えば、特許文献1~4)。
特開2014-22520号公報 特開2006-294662号公報 特開2004-335675号公報 特開2002-33302号公報
 二酸化炭素の超臨界流体の処理チャンバへの供給は、供給源からの気体状態の二酸化炭素(例えば、20℃、5.0MPa)をコンデンサ(凝縮器)で凝縮液化してタンクに貯留し、これをポンプで処理チャンバへ圧送することで行われる(例えば、20℃、20.0MPa)。処理チャンバに圧送された液体状の二酸化炭素は、処理チャンバの直前又は処理チャンバ内で加熱され(例えば、80℃、20.0MPa)、超臨界流体となる。
 しかしながら、ポンプで圧送される液体状態の二酸化炭素は、脈動するため、液体の圧力が大きく変動する。このため、処理チャンバの直前又は処理チャンバ内で超臨界状態に変化する二酸化炭素の供給量が不安定となり、二酸化炭素の超臨界流体を安定的に供給するのが困難であった。
 本発明の目的は、超臨界流体を安定的に供給可能な流体供給装置および流体供給方法を提供することにある。
 本発明の流体供給装置は、液体状態の流体を処理室に向けて供給する流体供給装置であって、
 気体状態の流体を液化するコンデンサと、
 前記コンデンサにより液化された流体を貯留するタンクと、
 前記タンクに貯留された液化された流体を前記処理室へ向けて圧送するポンプと、
 前記ポンプの吐出側の流路と連通し、前記ポンプから吐出される液体の圧力変動を抑制するダンパ部を有し、
 前記ダンパ部は、両端部が所定の位置に固定され、両端部が所定の位置に固定され、かつ、前記両端部の間で液体の流れの方向を変更させるように形成された変流管部を有する。
 好適には、前記ダンパ部は、前記ポンプの吐出側から前記処理室に至る流路の途中に設けられた開閉弁の上流側で分岐し、前記ポンプから吐出された液体を前記コンデンサに戻すための流路に設けられている、構成を採用できる。
 さらに好適には、前記コンデンサ、前記タンク、前記ポンプおよび前記開閉弁は、前記気体状態の流体を供給する流体供給源と前記処理室とを結ぶメイン流路に設けられ、
 前記ダンパ部は、前記ポンプと前記開閉弁との間から分岐し、前記コンデンサの上流の前記メイン流路に接続される分岐流路に設けられ、
 前記ポンプから圧送される前記液体状態の流体は、前記開閉弁が閉じられた状態では、前記分岐流路を通じて再び前記コンデンサおよび前記タンクに戻り、
 前記開閉弁が開放されると、前記液体状態の流体は、前記処理室へ圧送され、超臨界状態に変化させるべく、前記処理室の手前又は前記処理室内に設けられた加熱ユニットにより加熱される、構成を採用できる。
 本発明の流体供給方法は、上記構成の流体供給装置を用いて、液体状態の流体を処理室に向けて供給する。
 本発明の半導体製造装置は、上記構成の流体供給装置と、
 前記流体供給装置から供給される流体を用いて基体を処理する処理室と、を有する
 本発明の半導体製造方法は、上記構成の流体供給装置を用いて、基体の処理をする。
 本発明によれば、ダンパ部によりポンプで圧送される流体の脈動を吸収して液体状態の流体の圧力変動を抑制できるので、処理チャンバに超臨界流体を安定的に供給することができる。
本発明の一実施形態に係る流体供給装置の構成図であって、流体を循環させている状態の図。 図1Aの流体供給装置において処理チャンバに液体を供給している状態を示す図。 二酸化炭素の状態図。 ダンパ部の一例(スパイラル管)を示す正面図。 ダンパ部の他の実施形態を示す概略構成図。 ダンパ部のさらに他の実施形態を示す概略構成図。
 以下、本発明の実施形態について図面を参照して説明する。
第1実施形態
 図1Aおよび図1Bに本発明の一実施形態に係る流体供給装置を示す。本実施形態では、流体として二酸化炭素を使用する場合について説明する。
図1Aおよび図1Bにおいて、1は流体供給装置、10はダンパ部、20はスパイラル管、100はCO2供給源、110は開閉弁、120はチェック弁、121はフィルタ、130はコンデンサ、140はタンク、150はポンプ、160は自動開閉弁、170は背圧弁、500は処理チャンバを示す。また、図中のPは圧力センサ、TCは温度センサを示す。図1Aは自動開閉弁160が閉じた状態を示しており、図1Bは自動開閉弁160が開放された状態を示す。
 処理チャンバ500では、シリコンウエハ等の半導体基板の処理が行われる。なお、本実施形態では、処理対象として、シリコンウエハを例示するが、これに限定されるわけではなく、ガラス基板等の他の処理対象でもよい。
 CO2供給源100は、気体状態の二酸化炭素(例えば、20℃、5.0MPa)をメイン流路2へ供給する。図2を参照すると、CO2供給源100から供給される二酸化炭素は、図2のP1の状態にある。この状態の二酸化炭素は、開閉弁110、チェック弁120、フィルタ121を通じてコンデンサ130に送られる。
 コンデンサ130では、供給される気体状態の二酸化炭素を冷却することで、液化凝縮し、液化凝縮された二酸化炭素はタンク140に貯留される。タンク140に貯留された二酸化炭素は、図2のP2のような状態(3℃、5MPa)となる。タンク140の底部から図2のP2のような状態にある液体状態の二酸化炭素がポンプ150に送られ、ポンプ150の吐出側に圧送されることで、図2のP3のような液体状態(20℃、20MPa)となる。
 ポンプ150と処理チャンバ500とを結ぶメイン流路2の途中には、自動開閉弁160が設けられている。メイン流路2のポンプ150と自動開閉弁160の間からは、分岐流路3が分岐している。分岐流路3は、ポンプ150と自動開閉弁160の間で、メイン流路2から分岐し、フィルタ121の上流側で再びメイン流路2に接続されている。分岐流路3には、ダンパ部10および背圧弁170が設けられている。
 背圧弁170は、ポンプ150の吐出側の流体(液体)の圧力が設定圧力(例えば20MPa)以上になると、フィルタ121側へ液体をリリースする。これにより、ポンプ150の吐出側の液体の圧力が設定圧力を超えるのを防ぐ。
 自動開閉弁160が閉じられた状態では、図1Aに示すように、ポンプ150から圧送される液体は、分岐流路3を通って再びコンデンサ130およびタンク140に戻る。
 自動開閉弁160が開放されると、図1Bに示すように、液体状態の二酸化炭素が処理チャンバ500へ圧送される。圧送された液体状態の二酸化炭素は、処理チャンバ500の直前又は処理チャンバ500内に設けられた図示しないヒータにより加熱され、図2に示すP4のような超臨界状態(80℃、20MPa)となる。
 ここで、ポンプ150から吐出される液体は少なからず脈動する。
 ポンプ150から吐出される液体を処理チャンバ500へ供給する際に、処理チャンバ500までメイン流路2は液体で充填されているとともに、分岐流路3も背圧弁170まで液体が充填されている。このため、ポンプ150から吐出される液体が脈動すると、メイン流路2および分岐流路3内の液体状態の二酸化炭素の圧力が周期的に変動する。
 液体状態の二酸化炭素は、圧縮性が乏しい。このため、液体状態の二酸化炭素の圧力が周期的に変動すると、処理チャンバ500に供給される液体状態の二酸化炭素の流量もそれに応じて大きく変動する。供給される液体状態の二酸化炭素の流量が大きく変動すると、処理チャンバ500の直前あるいは処理チャンバ500内で超臨界状態に変化させた二酸化炭素の供給量も大きく変動してしまう。
 このため、本実施形態では、分岐流路3にダンパ部10を設けて、ポンプ150から吐出される液体の脈動を減衰させて、ポンプ150から吐出される液体の周期的な圧力変動を抑制して、超臨界状態に変化させた二酸化炭素の供給量を安定化させる。
 ダンパ部10は、両端部が所定の位置に固定され、かつ、前記両端部の間で液体の流れの方向を変更させるように形成された変流管部とし、図3に示すように、分岐流路3に直列に接続されたスパイラル管20を有する。
 なお、変流管部として、スパイラル管(螺旋管)以外にも、渦巻形の管、波形の管、蛇行管等でもよい。螺旋や渦巻の形状は、円形である必要はなく、角型であっても良い。
 スパイラル管20は、下端部および上端部にそれぞれ管継手21,24が設けられており、これらの管継手21,24によりスパイラル管20が分岐流路3に直列に接続される。
 スパイラル管20を構成する管22は、例えば、ステンレス鋼等の金属材料で形成されている。管22の直径は6.35mm、スパイラル部23の全長Lは280mm、スパイラル部23の直径D1が140mm程度、スパイラル部23の巻数は22巻、管22の全長は9800mm程度である。
 本発明者の実験によれば、両端部が固定されたスパイラル管20は、内部に充填された液体の圧力が変動すると、液体の圧力変動に応じて振動(弾性変形)することがわかった。すなわち、液体が脈動する際にスパイラル管20でエネルギが消費されることにより、ポンプ150から吐出される液体の脈動(圧力変動)を抑制するダンパ作用が発揮されると推測される。
 この結果、処理チャンバ500の直前(手前)あるいは処理チャンバ500内で超臨界状態に変化させた二酸化炭素の供給量を安定化させることができた。
第2実施形態
 図4Aにダンパ部の他の実施形態を示す。
 図4Aに示すダンパ部は、分岐流路3に対してスパイラル管20を並列に接続し、分岐流路3とスパイラル管20との間にオリフィス30を設けている。
 このような構成としても、第1実施形態と同様に、ポンプ150から吐出される液体の脈動(周期的な圧力変動)が抑制され、処理チャンバ500の直前あるいは処理チャンバ500内で超臨界状態に変化させた二酸化炭素の供給量を安定化させることができる。
第3実施形態
 図4Bにダンパ部のさらに他の実施形態を示す。
 図4Bに示すダンパ部は、2つのスパイラル管20を並列に接続し、これらを分岐流路3に挿入するとともに、分岐流路3と一方のスパイラル管20との間にオリフィス30を設けている。
 このような構成としても、第1実施形態と同様に、ポンプ150から吐出される液体の脈動(周期的な圧力変動)が抑制され、処理チャンバ500の直前あるいは処理チャンバ500内で超臨界状態に変化させた二酸化炭素の供給量を安定化させることができる。
 上記実施形態では、ダンパ部10を分岐流路3に設けた場合について例示したが、本発明はこれに限定されるわけではなく、ポンプ150の吐出側のメイン流路2にダンパ部10を設けることも可能である。
 上記実施形態では、流体として二酸化炭素を例示したが、これに限定されるわけではなく、超臨界状態に変化させ得る流体であれば、本発明を適用可能である。
1 流体供給装置
2 メイン流路
3 分岐流路
10 ダンパ部
20 スパイラル管
30 オリフィス
100 CO2供給源
110 開閉弁
120 チェック弁 
121 フィルタ
130 コンデンサ
140 タンク
150 ポンプ
160 自動開閉弁
170 背圧弁
500 処理チャンバ(処理室)

 

Claims (10)

  1.  液体状態の流体を処理室に向けて供給する流体供給装置であって、
     気体状態の流体を液化するコンデンサと、
     前記コンデンサにより液化された流体を貯留するタンクと、
     前記タンクに貯留された液化された流体を前記処理室へ向けて圧送するポンプと、
     前記ポンプの吐出側の流路と連通し、前記ポンプから吐出される液体の圧力変動を抑制するダンパ部を有し、
     前記ダンパ部は、両端部が所定の位置に固定され、かつ、前記両端部の間で液体の流れの方向を変更させるように形成された変流管部を有する、ことを特徴とする流体供給装置。
  2.  前記ダンパ部は、前記ポンプと前記ポンプの吐出側から前記処理室に至る流路の途中に設けられた開閉弁との間で分岐した流路に設けられており、前記分岐した分岐流路は、前記ポンプから吐出された液体を前記コンデンサに戻すための流路である、ことを特徴とする請求項1に記載の流体供給装置。
  3.  前記コンデンサ、前記タンク、前記ポンプおよび前記開閉弁は、前記気体状態の流体を供給する流体供給源と前記処理室とを結ぶメイン流路に設けられ、
     前記ダンパ部は、前記ポンプと前記開閉弁との間から分岐し、前記コンデンサの上流の前記メイン流路に接続される分岐流路に設けられ、
     前記ポンプから圧送される前記液体状態の流体は、前記開閉弁が閉じられた状態では、前記分岐流路を通じて再び前記コンデンサおよび前記タンクに戻り、
     前記開閉弁が開放されると、前記液体状態の流体は、前記処理室へ圧送され、超臨界状態に変化させるべく、前記処理室の手前又は前記処理室内に設けられた加熱ユニットにより加熱される、請求項2に記載の流体供給装置。
  4.  前記ダンパ部は、前記開閉弁が開放された状態で、前記ポンプから吐出される液体の圧力変動を抑制するように設けられている、請求項3に記載の流体供給装置。
  5.  前記メイン流路には、前記コンデンサよりも上流側の前記分岐流路との接続部の上流に前記流体供給源側への流体の逆流を防ぐ逆止弁が設けられている、請求項3又は4に記載の流体供給装置。
  6.  前記変流管部は、スパイラル管、渦巻形の管、波形の管および蛇行管のいずれかを含む、請求項1ないし5のいずれかに記載の流体供給装置。
  7.  前記流体は、二酸化炭素を含む、請求項1ないし6のいずれかに記載の流体供給装置。
  8.  請求項1ないし7のいずれかに記載の流体供給装置を用いて、液体状態の流体を処理室に向けて供給することを特徴とする流体供給方法。
  9.  請求項1ないし7のいずれかに記載の流体供給装置と、
     前記流体供給装置から供給される流体を用いて基体を処理する処理室と、を有する半導体製造装置。
  10.  請求項1ないし7のいずれかに記載の流体供給装置供給される流体を用いて基体の処理をする半導体製造方法。
PCT/JP2018/028592 2017-08-10 2018-07-31 流体供給装置および流体供給方法 WO2019031301A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/634,673 US20210125839A1 (en) 2017-08-10 2018-07-31 Fluid supply device and fluid supply method
CN201880052011.0A CN110998802B (zh) 2017-08-10 2018-07-31 流体供给装置和流体供给方法
KR1020207000031A KR102289575B1 (ko) 2017-08-10 2018-07-31 유체공급 장치 및 유체공급 방법
JP2019535122A JP7146283B2 (ja) 2017-08-10 2018-07-31 流体供給装置および流体供給方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-156177 2017-08-10
JP2017156177 2017-08-10

Publications (1)

Publication Number Publication Date
WO2019031301A1 true WO2019031301A1 (ja) 2019-02-14

Family

ID=65272040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028592 WO2019031301A1 (ja) 2017-08-10 2018-07-31 流体供給装置および流体供給方法

Country Status (6)

Country Link
US (1) US20210125839A1 (ja)
JP (1) JP7146283B2 (ja)
KR (1) KR102289575B1 (ja)
CN (1) CN110998802B (ja)
TW (1) TWI717624B (ja)
WO (1) WO2019031301A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531478A (ja) * 2000-04-18 2003-10-21 エス.シー.フルーイズ,インコーポレイテッド 半導体ウエハの処理のための超臨界流体の搬送・回収システム
JP2007500940A (ja) * 2003-07-29 2007-01-18 東京エレクトロン株式会社 処理チャンバ内のみへの処理化学物質のフローの制御
JP2013159499A (ja) * 2012-02-02 2013-08-19 Japan Organo Co Ltd 液化炭酸ガス製造装置及びその洗浄方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2851058A (en) * 1956-12-26 1958-09-09 Houdaille Industries Inc Tuned pulse damper
US4679597A (en) * 1985-12-20 1987-07-14 Kim Hotstart Mfg. Co., Inc. Liquid pulsation dampening device
KR20020033302A (ko) 2000-10-30 2002-05-06 박종섭 에스램셀의 제조 방법
JP2002224627A (ja) * 2001-02-05 2002-08-13 Tokyo Electron Ltd 基板の洗浄方法および装置
JP3863116B2 (ja) * 2002-03-14 2006-12-27 株式会社小松製作所 流体温度調節装置
CN100384545C (zh) * 2002-09-30 2008-04-30 松下电器产业株式会社 流体排出装置和流体排出方法
JP3914134B2 (ja) * 2002-11-06 2007-05-16 日本電信電話株式会社 超臨界乾燥方法及び装置
JP3965693B2 (ja) 2003-05-07 2007-08-29 株式会社日立ハイテクサイエンスシステムズ 微細構造乾燥処理法とその装置及びその高圧容器
JP4008390B2 (ja) * 2003-07-30 2007-11-14 三菱重工業株式会社 ポンプ
JP4546314B2 (ja) 2005-04-06 2010-09-15 株式会社日立ハイテクノロジーズ 微細構造乾燥処理法及びその装置
JP4621066B2 (ja) * 2005-04-22 2011-01-26 アネスト岩田株式会社 粉体定量供給装置
KR101062253B1 (ko) * 2006-06-16 2011-09-06 도쿄엘렉트론가부시키가이샤 액 처리 장치
JP2008078507A (ja) * 2006-09-22 2008-04-03 Univ Of Yamanashi 導電体の選択形成方法および半導体装置の製造方法
US8215922B2 (en) * 2008-06-24 2012-07-10 Aurora Sfc Systems, Inc. Compressible fluid pumping system for dynamically compensating compressible fluids over large pressure ranges
US8133038B2 (en) * 2008-12-30 2012-03-13 Samsung Electronics Co., Ltd. Hermetic compressor
WO2011043194A1 (en) * 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2012087983A (ja) * 2010-10-19 2012-05-10 Tokyo Electron Ltd 流体加熱装置及び基板処理装置
JP5459185B2 (ja) * 2010-11-29 2014-04-02 東京エレクトロン株式会社 液処理装置、液処理方法及び記憶媒体
JP5019082B1 (ja) * 2011-03-25 2012-09-05 栗田工業株式会社 液体加熱方法及び液体加熱装置並びに加熱液体供給装置
JP3168588U (ja) * 2011-04-08 2011-06-16 アドバンス電気工業株式会社 流体供給量調節装置
JP5679910B2 (ja) * 2011-06-03 2015-03-04 住友重機械工業株式会社 クライオポンプ制御装置、クライオポンプシステム、及びクライオポンプの真空度保持判定方法
JP5912596B2 (ja) * 2012-02-02 2016-04-27 オルガノ株式会社 流体二酸化炭素の供給装置及び供給方法
JP5716710B2 (ja) 2012-07-17 2015-05-13 東京エレクトロン株式会社 基板処理装置、流体の供給方法及び記憶媒体
JP5837962B1 (ja) * 2014-07-08 2015-12-24 株式会社日立国際電気 基板処理装置、半導体装置の製造方法およびガス整流部
JP5953565B1 (ja) * 2015-02-23 2016-07-20 防衛装備庁長官 冷凍ピンチャック装置および冷凍ピンチャック方法
KR101702840B1 (ko) * 2015-09-08 2017-02-06 주식회사 만도 유압 브레이크 시스템의 맥동 저감 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531478A (ja) * 2000-04-18 2003-10-21 エス.シー.フルーイズ,インコーポレイテッド 半導体ウエハの処理のための超臨界流体の搬送・回収システム
JP2007500940A (ja) * 2003-07-29 2007-01-18 東京エレクトロン株式会社 処理チャンバ内のみへの処理化学物質のフローの制御
JP2013159499A (ja) * 2012-02-02 2013-08-19 Japan Organo Co Ltd 液化炭酸ガス製造装置及びその洗浄方法

Also Published As

Publication number Publication date
JPWO2019031301A1 (ja) 2020-07-02
US20210125839A1 (en) 2021-04-29
KR102289575B1 (ko) 2021-08-13
KR20200014403A (ko) 2020-02-10
TWI717624B (zh) 2021-02-01
TW201921209A (zh) 2019-06-01
CN110998802A (zh) 2020-04-10
CN110998802B (zh) 2023-08-29
JP7146283B2 (ja) 2022-10-04

Similar Documents

Publication Publication Date Title
CN110998801B (zh) 流体供给装置和流体供给方法
JP5912596B2 (ja) 流体二酸化炭素の供給装置及び供給方法
KR20190001753A (ko) 초임계유체 가열장치 및 이를 포함하는 기판처리장치
KR20200035357A (ko) 기판 처리 시스템 및 처리 유체 공급 방법
WO2019031301A1 (ja) 流体供給装置および流体供給方法
JP2014101241A (ja) 精製二酸化炭素の供給システムおよび方法
US8803039B2 (en) Heating unit, substrate processing apparatus, and method for heating fluid
JP6512307B2 (ja) Icp質量分析装置
US7650915B2 (en) Method for removing vapor within heat pipe
JP2018157042A (ja) 処理液供給装置、基板処理装置、および処理液供給方法
US7290572B2 (en) Method for purging a high purity manifold
KR102227726B1 (ko) 유체공급 장치 및 이 장치에 있어서의 액체배출 방법
KR101482041B1 (ko) 증기 건조 장치
KR200493388Y1 (ko) 일체형 압력 센서
KR20190092899A (ko) 기판 처리 장치
KR101092109B1 (ko) 이소프로필 알코올 공급장치
KR100938247B1 (ko) 배관 가열 장치
KR20020039114A (ko) 반도체장치 제조용 케미컬가스 공급장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18842910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535122

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207000031

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18842910

Country of ref document: EP

Kind code of ref document: A1