WO2019031251A1 - キャスクおよび中性子遮蔽部の作製方法 - Google Patents

キャスクおよび中性子遮蔽部の作製方法 Download PDF

Info

Publication number
WO2019031251A1
WO2019031251A1 PCT/JP2018/027989 JP2018027989W WO2019031251A1 WO 2019031251 A1 WO2019031251 A1 WO 2019031251A1 JP 2018027989 W JP2018027989 W JP 2018027989W WO 2019031251 A1 WO2019031251 A1 WO 2019031251A1
Authority
WO
WIPO (PCT)
Prior art keywords
neutron shielding
cask
outer cylinder
shielding material
precast member
Prior art date
Application number
PCT/JP2018/027989
Other languages
English (en)
French (fr)
Inventor
晃 樋口
健太 濱田
森田 寛之
彰宏 秦
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to CN201880050872.5A priority Critical patent/CN111183489B/zh
Priority to US16/636,426 priority patent/US11107597B2/en
Publication of WO2019031251A1 publication Critical patent/WO2019031251A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F3/00Shielding characterised by its physical form, e.g. granules, or shape of the material
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/005Containers for solid radioactive wastes, e.g. for ultimate disposal
    • G21F5/008Containers for fuel elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • G21F5/10Heat-removal systems, e.g. using circulating fluid or cooling fins
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/32Apparatus for removing radioactive objects or materials from the reactor discharge area, e.g. to a storage place; Apparatus for handling radioactive objects or materials within a storage place or removing them therefrom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a method of making a cask and a neutron shield.
  • a spent fuel assembly (hereinafter simply referred to as "fuel assembly") taken out of a nuclear reactor is stored in a storage pool in a building and cooled for several to ten years. Thereafter, the fuel assembly is dry stored at an intermediate storage facility or the like for several decades. Since the fuel assembly continues to emit radiation such as neutrons and gamma rays, transportation and dry storage are carried out in a state of being housed in a cask, which is a dedicated container.
  • the cask is provided with a cylinder main body for accommodating the fuel assembly, an outer cylinder surrounding the periphery of the cylinder main body, and a plurality of fins circumferentially arranged between the cylinder main body and the outer cylinder, and the resin includes neutron shielding
  • the material is filled in the space defined by the barrel body, the outer cylinder and the fins.
  • the neutron shielding material suppresses the release of neutrons generated from the fuel assembly out of the cask.
  • JP-A 2004-125763 (Document 1) and JP-A 2001-318187 (Document 2) disclose a cask capable of efficiently transmitting the decay heat of the fuel assembly to the outer cylinder. There is. In the cask, a neutron shield molded at another place is inserted into the space defined by the barrel body, the outer cylinder and the heat transfer fins. A neutron shielding body is formed by filling resin (neutron shielding material) in the internal space of aluminum or copper honeycomb material.
  • the thermal expansion coefficient of the neutron shielding material is larger than the material (for example, carbon steel) used for the trunk body and the outer cylinder, when the fuel assembly is accommodated inside, the thermal shielding coefficient of the neutron shielding material The expansion may cause a large stress on the outer cylinder and the like. Such stress is preferably small in the design of the cask.
  • the present invention is directed to a cask, and aims to reduce stress generated in an outer cylinder or the like by thermal expansion of a neutron shielding material.
  • the cask according to the present invention has a cylindrical shape centering on a central axis, and a cylinder main body capable of containing a fuel assembly, a cylindrical outer cylinder surrounding the periphery of the cylinder main body, the cylinder main body and the outer cylinder And the cylindrical space is divided into a plurality of divided spaces by being arranged in the circumferential direction in the cylindrical space formed therebetween, and connecting the outer peripheral surface of the barrel main body and the inner peripheral surface of the outer cylinder.
  • a plurality of fins and a plurality of neutron shielding portions including a neutron shielding material filled in the plurality of divided spaces are provided, and each neutron shielding portion includes a void portion extending in an axial direction along the central axis.
  • each of the neutron shielding portions is a neutron shielding material filled between a formed pipe portion having a hollow portion which is the void portion, and the outer periphery of the formed pipe portion and the divided space. And a filling unit.
  • the formed pipe portion is formed of a formed member of a neutron shielding material.
  • the formed pipe portion is, in a cross section perpendicular to the axial direction, a first precast member disposed on one side of the void portion, and the other side of the void portion in the cross section, and the first precast member By bonding, it may comprise a second precast member that surrounds the periphery of the void portion together with the first precast member.
  • a joint between the first precast member and the second precast member have a labyrinth structure.
  • the void portion has a shape extending in the circumferential direction in a cross section perpendicular to the axial direction.
  • the present invention is also directed to a method of making a neutron shield in a cask.
  • the cask is cylindrical with a central axis as a center, and a cylinder main body capable of containing a fuel assembly, a cylindrical outer cylinder surrounding the periphery of the cylinder main body, and A plurality of cylindrical spaces are arranged in a circumferential direction in a cylindrical space formed between the trunk body and the outer cylinder, and connecting the outer peripheral surface of the trunk body and the inner peripheral surface of the outer cylinder.
  • the method of manufacturing the neutron shielding portion disposes a formed pipe portion having a hollow portion extending in the axial direction along the central axis in the divided space; Forming a filled portion by filling and curing a flowable neutron shielding material between the pipe portion and the outer edge of the divided space.
  • FIG. 1 is a view showing the appearance of a cask 1 according to an embodiment of the present invention.
  • the cask 1 is a container capable of containing the fuel assembly 9 (i.e., the spent fuel assembly).
  • the cask 1 has, for example, a substantially cylindrical shape centered on a central axis J1 facing in the vertical direction in FIG. In the following description, the vertical direction in FIG. 1 along the central axis J1 is also referred to as “axial direction”.
  • FIG. 2 and 3 are views showing a part of the cross section of the cask 1 (in the vicinity of the outer cylinder 3 described later).
  • 2 shows a cross section of the cask 1 perpendicular to the central axis J1
  • FIG. 3 shows a cross section of the cask 1 including the central axis J1.
  • the cask 1 includes a trunk body 2, an outer cylinder 3, a plurality of fins (heat transfer fins) 4, and a plurality of neutron shielding portions 5.
  • the trunk body 2 is a cylindrical container centered on the central axis J1.
  • the trunk body 2 is formed of metal such as carbon steel.
  • the barrel body 2 includes a body side wall 21 and two body end portions 22a and 22b.
  • the main body side wall portion 21 has a substantially cylindrical shape extending in the axial direction.
  • Each main body end 22a, 22b has a substantially cylindrical shape or a substantially disc shape.
  • the openings at both ends of the body side wall 21 in the axial direction are closed by the two body ends 22a and 22b, respectively.
  • both main-body-ends 22a and 22b are detachable lids.
  • the body end portions 22a and 22b are fixed to the body side wall portion 21 by bolting, for example.
  • one body end may be integrally formed with the body side wall 21.
  • a plurality of fuel assemblies 9 can be accommodated inside the trunk body 2 by removing the main body end which is the lid.
  • the internal space of the cylinder body 2 is partitioned by the basket so that the plurality of fuel assemblies 9 do not contact each other.
  • the outer cylinder 3 has a cylindrical shape centering on the central axis J1 and surrounds the periphery of the main body side wall 21 of the trunk main body 2.
  • the outer cylinder 3 is formed of metal such as carbon steel.
  • the outer cylinder 3 includes an outer cylinder side wall 31 and two outer cylinder ends 32a and 32b (see FIG. 3).
  • the outer cylinder side wall 31 has a substantially cylindrical shape extending in the axial direction, and the diameter of the outer cylinder side wall 31 is larger than the diameter of the main body side wall 21.
  • the outer cylinder end portions 32a and 32b are joined to the outer cylinder side wall portion 31 and the main body side wall portion 21 by welding, for example.
  • the plurality of fins 4 are arranged in the cylindrical space 41 in the circumferential direction centering on the central axis J1.
  • the plurality of fins 4 are formed of a metal such as copper.
  • Each fin 4 is a heat transfer member that connects the outer peripheral surface 211 of the trunk body 2 and the inner peripheral surface 311 of the outer cylinder 3.
  • Each fin 4 is welded to, for example, the main body side wall 21 and the outer cylinder side wall 31.
  • the connection positions of the plurality of fins 4 with respect to the outer peripheral surface 211 of the trunk body 2 are arranged at substantially constant intervals in the circumferential direction.
  • connection positions of the plurality of fins 4 with respect to the inner circumferential surface 311 of the outer cylinder 3 are also disposed at substantially constant intervals in the circumferential direction.
  • the cylindrical space 41 is divided into a plurality of divided spaces 42 (see FIG. 2) by the plurality of fins 4.
  • Each divided space 42 is a space filled with a neutron shielding material described later.
  • the length of the fins 4 in the axial direction is smaller than the length of the outer cylinder 3.
  • the fins 4 are not provided at both ends of the outer cylinder 3 in the axial direction, and the fins 4 are provided only at the central portion of the outer cylinder 3.
  • the plurality of neutron shielding units 5 are respectively provided in the plurality of divided spaces 42.
  • the neutron shielding portion 5 is provided in all the divided spaces 42.
  • Each neutron shielding unit 5 includes a shaped pipe unit 50 and a filling unit 55.
  • the formed pipe portion 50 is formed of a neutron shielding material.
  • the neutron shielding material is, for example, a polymer material containing a large amount of hydrogen, and is also referred to as a "resin".
  • the neutron shielding material is capable of shielding neutrons.
  • An example of a neutron shielding material is an epoxy resin mixed with boron carbide (B 4 C) and aluminum hydroxide.
  • the neutron shielding material has thermoplasticity.
  • the formed pipe portion 50 extends in the axial direction and has substantially the same length as the outer cylinder 3.
  • the formed pipe portion 50 has a hollow portion 59 extending along the entire axial length.
  • the formed pipe portion 50 is an assembly of a plurality of precast members 51 and 52.
  • the filling portion 55 is a neutron shielding material filled between the formed pipe portion 50 and the main body side wall portion 21, the outer cylinder side wall portion 31 and the fins 4, that is, between the formed pipe portion 50 and the outer edge of the divided space 42. It is. At normal temperature, the filling portion 55 is a hardened body of the neutron shielding material. Preferably, the neutron shielding material forming the filling portion 55 is the same type as the neutron shielding material of the formed pipe portion 50. In this case, the forming pipe portion 50 and the filling portion 55 can be considered to be substantially integral. The boundary between the two may not necessarily be clear.
  • the neutron shielding part 5 is a hollow structure formed of a neutron shielding material.
  • the filling portions 55 are continuous in the circumferential direction in the plurality of neutron shielding portions 5 at the both end portions.
  • the neutron shielding material of the filling part 55 and the neutron shielding material of the shaping pipe part 50 shall be the same kind, both may be a different kind.
  • FIGS. 4 and 5 show one formed pipe section 50.
  • FIG. FIG. 4 shows a cross section of the formed pipe portion 50 perpendicular to the axial direction
  • FIG. 5 shows the formed pipe portion 50 viewed along the circumferential direction.
  • the formed pipe portion 50 includes a plurality of precast members 51 and 52.
  • Each of the precast members 51 and 52 is a long molded member obtained in advance by molding (casting) a neutron shielding material in an external device, and is a hardened body of the neutron shielding material.
  • the hollow portion 59 is surrounded (formed) by the two precast members 51 and 52.
  • the first precast member 51 disposed on one side of the hollow portion 59 and the other side of the hollow portion 59 are combined with the first precast member 51 to form a first precast member.
  • a second precast member 52 surrounding the hollow portion 59 In the first precast member 51, the outer surface 511 opposite to the hollow portion 59 has an arc-like outer shape.
  • the outer surface 511 of the first precast member 51 is disposed along the inner circumferential surface 311 (see FIG. 2) of the outer cylinder 3.
  • the outer surface 521 opposite to the hollow portion 59 has a linear outer shape.
  • a substantially arc-shaped recessed portion 513 is formed on the inner surface 512 of the first precast member 51 opposite to the outer surface 511.
  • the recess 513 is recessed on the opposite side to the second precast member 52.
  • a step portion 514 is provided on both sides of the recess 513 on the inner surface 512. In the step portion 514, a portion separated from the recess 513 protrudes on the opposite side to the outer surface 511.
  • the shape of the edge of the step portion 514 is Z-shaped (dovetail-shaped).
  • a substantially arc-shaped recess 523 is formed on the inner surface 522 of the second precast member 52 opposite to the outer surface 521.
  • the recess 523 is recessed on the opposite side to the first precast member 51.
  • Stepped portions 524 are provided on both sides of the recess 523 on the inner surface 522.
  • a portion separated from the recess 523 is recessed toward the outer surface 521.
  • the shape of the edge of the step portion 524 is Z-shaped.
  • the shapes of the cross sections of the first precast member 51 and the second precast member 52 are constant along the axial direction.
  • the joint portion 53 is formed by the step portion 514 of the first precast member 51 and the step portion 524 of the second precast member 52 being engaged with each other.
  • the boundary between the step portion 514 and the step portion 524 is folded back in a Z shape at a plurality of times at an acute angle, and the coupling portion 53 has a labyrinth structure.
  • the recess 513 of the first precast member 51 and the recess 523 of the second precast member 52 face each other, and the hollow portion 59 described above is formed. Be done.
  • the hollow portion 59 has a shape extending along the circumferential direction (generally in the lateral direction in FIG. 4).
  • the width of the hollow portion 59 in the radial direction (substantially vertical direction in FIG. 4) perpendicular to the circumferential direction becomes maximum at the central portion in the circumferential direction, and gradually decreases toward the coupling portions 53.
  • the neutron shielding material is filled except for the hollow portion 59 and an auxiliary void portion 58 described later.
  • the hollow portion 59 is referred to as a "void portion 59".
  • the plurality of first precast members 51 are axially connected, and the plurality of second precast members 52 are also axially connected.
  • the plurality of first precast members 51 have the same structure.
  • the end portions of two axially adjacent first precast members 51 are bonded to each other by an adhesive, and the two first precast members 51 are connected.
  • the adhesive preferably contains a neutron shielding material, and more preferably contains the same kind of neutron shielding material as the precast members 51 and 52 and the filling portion 55.
  • the plurality of second precast members 52 have the same structure as one another.
  • the end portions of the two axially adjacent second precast members 52 are bonded to each other by an adhesive, and the two second precast members 52 are connected. In the axial direction, each connecting position of the plurality of first precast members 51 is different from any connecting position of the plurality of second precast members 52.
  • a neutron shielding material is filled as a filling portion 55 around the forming pipe portion 50 except for the vicinity of one outer cylinder end 32 a.
  • an auxiliary void portion 58 which is a space in which the neutron shielding material does not exist is provided.
  • the void portion 59 and the auxiliary void portion 58 are filled with air.
  • members e.g., disk-like members
  • a neutron shielding material (not shown) are also provided at the body end portions 22a and 22b.
  • the neutron shielding material is not disposed in all directions centered on the fuel assembly 9 inside the trunk body 2, for example, the auxiliary void portion 58 is a shielding defect portion in which neutrons are not shielded and Become.
  • the temperature of the trunk body 2 becomes high due to the decay heat of the fuel assembly 9, etc., and accordingly, the plurality of neutron shielding portions 5, the plurality of fins 4 and the outer cylinder 3 are The temperature also rises.
  • the temperature of the neutron shielding portion 5 rises to a temperature (120 to 130 ° C.) higher than the glass transition point of the neutron shielding material.
  • the thermal expansion coefficient of the neutron shielding material is higher than the thermal expansion coefficient of the metal material forming the trunk body 2, the fins 4 and the outer cylinder 3, and the volume of the neutron shielding material expands more than the metal material.
  • the neutron shielding material has the property of being in a rubbery state when its temperature is higher than the glass transition point.
  • the neutron shielding portion 5 (shaped pipe is formed so that the cross-sectional area of the void portion 59 perpendicular to the axial direction becomes smaller due to the thermal expansion of the neutron shielding material.
  • the part 50 and the filling part 55) are deformed.
  • the amount of change in the width of the void portion 59 in the radial direction is maximum at the central portion in the circumferential direction, and gradually decreases toward the coupling portions 53. Therefore, in the void portion 59 after deformation, the width is substantially constant in the circumferential direction, that is, the void portion 59 has a substantially linear shape along the circumferential direction.
  • the neutron shielding material expands so as to crush the void portion 59, so that the stresses generated in the outer cylinder side wall portion 31 and the main body side wall portion 21 due to the thermal expansion of the neutron shielding material are relatively large. It becomes smaller. In other words, the thermal stress in the outer cylinder side wall 31 and the main body side wall 21 is absorbed by the contraction of the void 59.
  • the neutron shield also expands axially. At this time, since the neutron shielding material extends in the axial direction so that the auxiliary void portion 58 is reduced, an excessively large stress is not generated on the outer cylinder end portions 32a and 32b.
  • the decay heat of the fuel assembly 9 decreases and the overall temperature of the cask 1 also decreases.
  • the neutron shielding material of the neutron shielding part 5 shrink
  • the neutron shielding material in a rubber state contracts so that the cross-sectional area of the void portion 59 perpendicular to the axial direction becomes large. That is, the void portion 59 is regenerated.
  • the contraction of the neutron shielding material causes the auxiliary void 58 to expand as well.
  • the temperature of the neutron shielding part 5 becomes lower than the glass transition point of a neutron shielding material, a neutron shielding material will harden
  • the shape of the neutron shielding portion 5 is substantially the same as that before the accommodation of the fuel assembly 9, and an unexpected large shielding defect does not occur.
  • the production of the neutron shielding portion 5 in the cask 1 will be described with reference to FIG.
  • a plurality of fins 4 are attached to the outer peripheral surface 211 of the trunk body 2, and further, the cask 1 in the middle of production in which the outer cylinder 3 is attached to the plurality of fins 4 is prepared (step S11). ).
  • the outer cylinder end 32 b is joined to one end (the lower end in FIG. 3) of the outer cylinder side wall 31 and the main body side wall 21, and the other end The outer cylinder end 32a is not yet joined to (the upper end in FIG. 3).
  • the cask 1 in the process of manufacture is held in a state where the outer cylinder end 32 b is disposed vertically lower than the outer cylinder side wall 31.
  • the plurality of divided spaces 42 are in the state of being opened upward.
  • a flange portion 212 protruding radially outward is provided at the upper portion of the main body side wall portion 21, and the main body end 22a has a portion overlapping the flange portion 212 in the axial direction.
  • FIG. 7 and FIG. 8 which will be described later, the above-described portions of the flange portion 212 and the main body end portion 22a which axially overlap with the plurality of divided spaces 42 are omitted.
  • the forming pipe portion 50 is prepared (step S12).
  • the formed pipe portion 50 is an assembly of the plurality of first precast members 51 and the plurality of second precast members 52.
  • the step portion of the one member is moved by moving one member of the first precast member 51 and the second precast member 52 in the axial direction (longitudinal direction) with respect to the other member. (4) is fitted into the stepped portion of the other member. Thereby, the first precast member 51 and the second precast member 52 are coupled.
  • An adhesive is used to connect the first precast members 51 with each other and to connect the second precast members 52 with each other in the assembly of the formed pipe portion 50.
  • the neutron shielding material may infiltrate into the void portion 59 from the connecting position of the first precast members 51 and the connecting position of the second precast members 52 when forming the filling portion 55 described later. Be prevented or suppressed.
  • the connection position of the first precast members 51 is different from the connection position of the second precast members 52 in the axial direction. Therefore, when connecting the first precast members 51 to each other, the step portions 514 of the two are fitted into the step portions 524 of the same second precast member 52 to complete the alignment between the two. The same applies to the case where the second precast members 52 are connected.
  • the adhesive is not used in the joint portion 53 between the first precast member 51 and the second precast member 52.
  • the adhesive may be used at the bonding portion 53.
  • each divided space 42 is in the state of being opened upward, and the formed pipe portion 50 is formed from the upper side of the divided space 42 (the outer edge of the flange portion 212 in FIG. It can be inserted into the divided space 42 through a gap with the circumferential surface 311.
  • the outer surface 511 of the first precast member 51 faces the inner circumferential surface 311 of the outer cylinder 3.
  • the curvature of the outer surface 511 of the first precast member 51 is substantially the same as the curvature of the inner circumferential surface 311 of the outer cylinder 3, and the outer surface 511 of the first precast member 51 and the inner circumferential surface 311 of the outer cylinder 3. And contact with almost without gap.
  • a gap may be provided between the first precast member 51 and the inner circumferential surface 311 of the outer cylinder 3.
  • a liquid (or paste) neutron shielding material is poured into the cylindrical space 41.
  • the lower part of the cylindrical space 41 is covered by the outer cylinder end 32b, and the neutron shielding material does not leak to the outside.
  • the neutron shielding material spreads in the circumferential direction, that is, in all the divided spaces 42.
  • the neutron shielding material (specifically, the liquid component contained in the neutron shielding material, also called clear resin) is prevented or prevented from infiltrating into the void portion 59 from the gap between the step portions 514 and 524. Be done.
  • the neutron shielding material is inserted into the void portion 59 from the connection position. There is no intrusion.
  • a neutron shielding material may enter between the outer surface 511 of the first precast member 51 and the inner peripheral surface 311 of the outer cylinder 3.
  • Neutron shielding is performed in the plurality of divided spaces 42 until a liquid surface of liquid (or paste) neutron shielding material is formed at a position lower by a predetermined distance from the upper end surface (see FIG. 3) of the outer cylinder side wall portion 31
  • the flow of neutron shielding material is stopped.
  • a hardening agent is added to the liquid neutron shielding material, and the neutron shielding material hardens when a predetermined time elapses.
  • the filled neutron shielding material is filled between the outer edge of each divided space 42 and the formed pipe portion 50 and hardened to form the filled portion 55 (step S14). Thereby, preparation of the some neutron shielding part 5 is completed.
  • the filling portions 55 in the plurality of neutron shielding portions 5 continue in the circumferential direction.
  • the plurality of neutron shielding units 5 each include a neutron shielding material filled in the plurality of divided spaces 42. After the production of the neutron shielding portion 5, the outer cylinder end 32 a is joined to the upper end of the outer cylinder side wall 31 and the main body side wall 21, and the upper part of the divided space 42 is closed.
  • FIG. 9 shows the formed pipe section 50 viewed along the axial direction.
  • an elongated rectangular void portion 59 is provided, and the step portions 514 and 524 in FIG. 4 are omitted.
  • a recess 523 of a certain depth is provided, and in the inner surface 512 of the first precast member 51, no recess is provided.
  • notches 525 are provided on both outer sides of the recess 523, and an adhesive is applied to the notches 525 to make the first precast member 51 and the second precast member The member 52 is coupled.
  • the container for accommodating the test body is provided with a window in which the void portion 59 of the formed pipe portion 50 can be observed.
  • the same temperature change as the temperature change occurring in the cask 1 containing the fuel assembly 9 was reproduced for the test body. Specifically, first, the test body was heated from 20 ° C. to 150 ° C. in a thermostat, and then held at 150 ° C. for a predetermined time. At this time, it was confirmed that the void portion 59 of the formed pipe portion 50 became smaller through the window of the container. In fact, the width of the void portion 59 in the longitudinal direction of FIG. 9 is smaller than that of the end in the central portion in the lateral direction of FIG. In addition, the pressure calculated from the strain generated in the container (the pressure exerted on the container by the neutron shielding material that is thermally expanded) was less than 1 MPa. Subsequently, the temperature of the thermostat was lowered from 150 ° C. to 20 ° C. At this time, it was confirmed that the size of the void portion 59 returned to the original size (returned to the size before the experiment).
  • the pressure of the thermally expanding neutron shielding material on the container is 8 MPa or more The Therefore, in the test body provided with the void portion 59, it can be said that the stress generated in the container due to the thermal expansion of the neutron shielding material can be reduced.
  • a cask of a comparative example in which the forming pipe portion 50 is omitted is assumed.
  • the whole of the divided space 42 is filled with the neutron shielding material without a gap to constitute a neutron shielding portion.
  • the neutron shielding portion the cross section perpendicular to the axial direction is solid. Therefore, when the fuel assembly 9 is accommodated inside the trunk body 2, a large stress is generated in the outer cylinder side wall portion 31 and the main body side wall portion 21 due to the thermal expansion of the neutron shielding material of the neutron shielding portion.
  • the auxiliary void portion 58 also needs to be designed in advance. In other words, in the state where the neutron shielding portion is not thermally expanded, it is necessary to provide a large shielding defect (auxiliary void portion 58), and the neutron shielding performance of the cask of the comparative example is lowered.
  • the neutron shielding is performed so that the cross-sectional area (area of solid cross section) of the neutron shielding portion perpendicular to the axial direction decreases. Material shrinks. At this time, a gap is generated between the fin 4 and the neutron shielding portion, which may cause an unexpected shielding defect.
  • each neutron shielding portion 5 includes a void portion 59 which extends in the axial direction and whose periphery is directly surrounded by the neutron shielding material.
  • the thermal expansion of the neutron shielding material is absorbed by the void portion 59, and the stress generated in the outer cylinder 3 and the like by the thermal expansion of the neutron shielding material can be reduced.
  • the size (volume) of the auxiliary void portion 58 which is the shielding defect portion can be reduced.
  • the void portion 59 is regenerated and the neutron shielding portion 5 returns to the shape before expansion, thereby suppressing the generation of an unexpected shielding defect portion. it can.
  • the void portion 59 has a shape extending in the circumferential direction in a cross section perpendicular to the axial direction.
  • the neutron shielding part 5 it can suppress that the total thickness of the radial direction of the neutron shielding material relevant to the shielding rate of a neutron disperse
  • the void portion 59 in FIG. 4 in which the width at the circumferential center portion is larger than the width at the circumferential end portion becomes substantially linear along the circumferential direction due to the thermal expansion of the neutron shielding material. Thereby, the formation of the unnecessarily large void portion 59 can be suppressed, and the enlargement of the cask 1 can be suppressed.
  • each neutron shielding part 5 neutrons formed of a forming member of a neutron shielding material and filled between the forming pipe part 50 having a hollow part which is a void part 59 and the forming pipe part 50 and the outer edge of the divided space 42 A filling portion 55 which is a shielding material is provided.
  • the neutron shielding part 5 which has the void part 59 can be produced easily.
  • the neutron shielding material of the forming pipe unit 50 and the neutron shielding material of the filling unit 55 are of the same type, the affinity between the forming pipe unit 50 and the filling unit 55 can be improved, and between the two, It is possible to prevent or suppress the occurrence of unexpected gaps (shielding defects) and the like.
  • a neutron shield in which a neutron shielding material is filled in the internal space of aluminum or copper honeycomb material is used. It is also conceivable to use in the cask divided space. However, in such a neutron shield, the honeycomb material may be deformed due to the thermal expansion of the neutron shielding material, and when the neutron shielding material contracts due to the decrease in the temperature of the neutron shielding material, the honeycomb material and the neutron shielding material In the meantime, an unexpected gap (shield defect) occurs. Further, in the divided space, the total thickness of the neutron shielding material is reduced by the amount of the honeycomb material.
  • the formed pipe portion 50 itself is formed of the neutron shielding material, the total thickness of the neutron shielding material (the shielding ratio of neutrons) due to the presence of members formed of other types of materials. Can be prevented from becoming smaller. Further, as described above, since the void portion 59 is regenerated when the neutron shielding material shrinks, it is possible to suppress the occurrence of an unexpected shielding defect portion.
  • the formed pipe portion 50 is formed by divided precast (a plurality of precast members 51, 52), so that the formed pipe portion 50 is formed as compared with the case where the formed pipe portion 50 is integrally formed. Can be handled easily.
  • the first precast member 51 and the second precast member 52 are joined by fitting the step portion 514 and the step portion 524, the two can be easily aligned.
  • a liquid (or paste) neutron shielding material enters the void portion 59 when the filling portion 55 is formed. Can be prevented or suppressed.
  • the amount of adhesive used can be reduced, and the cost required for producing the neutron shielding portion 5 can be reduced.
  • the time required for application, curing, etc. of the adhesive can be shortened, and the time required for assembling the formed pipe portion 50 can be shortened.
  • the neutron shielding material is void portion 59 from the gap between the first precast member 51 and the second precast member 52 by applying the adhesive to the notch 525 without any gap. Penetration inside is prevented or suppressed.
  • FIG. 10 shows an example of such a shaped pipe portion 50, in which the void portion 59 has a rhombus extending along the circumferential direction.
  • the shape of the void portion 59 may be changed as appropriate.
  • the radial direction of the neutron shielding material It is possible to suppress that the total thickness of H. varies widely in the circumferential direction.
  • a plurality of void portions 59 may be provided in the formed pipe portion 50.
  • two void portions 59 extending in the axial direction are provided side by side in the circumferential direction.
  • a plurality of (two in FIG. 12) formed pipe portions 50 may be arranged in the circumferential direction in each divided space 42.
  • the cross-sectional shape and size of the void portion 59 may be changed depending on the axial position.
  • the void portion 59 need not necessarily be provided in the vicinity of the outer cylinder 3, and may be provided, for example, in the vicinity of the trunk body 2.
  • Such a neutron shielding portion 5 can be easily manufactured only by changing the position of the formed pipe portion 50 in the divided space 42 in step S13 of FIG.
  • the forming member forming the forming pipe portion 50 may be formed by machining such as cutting.
  • the formed pipe portion 50 may be configured by one formed member.
  • the forming pipe part 50 may be comprised by three or more forming members in each position of an axial direction.
  • the formed pipe portion 50 may be formed of a material other than the neutron shielding material.
  • the said material is a material which is not normally used as a neutron shielding material, for example, resin etc. which do not contain boron or cadmium. It is preferable that the said material also has the property which will be in a rubbery state by raise of temperature similarly to a neutron shielding material. As a result, when the temperature of the cask 1 rises and then falls, the void portion 59 can be regenerated to suppress the generation of the shielding defect portion.
  • the filling portions 55 of the plurality of neutron shielding portions 5 are continuous in the circumferential direction at both end portions of the outer cylinder 3 in the axial direction, but when each fin 4 extends from one end to the other end of the outer cylinder 3 A plurality of neutron shielding parts 5 may exist in a discontinuous state.
  • the inclinations of the plurality of fins 4 with respect to the outer peripheral surface 211 of the trunk body 2 may be gradually changed in the circumferential direction, and the shapes of the plurality of divided spaces 42 may be different from each other .
  • the formed pipe portion 50 is manufactured by an external device, and the neutron shielding material having fluidity is formed between the formed pipe portion 50 and the outer edge of the divided space 42.
  • the plurality of neutron shielding portions 5 can be appropriately manufactured.
  • the neutron shielding portion 5 may be manufactured by inserting a shaped pipe portion 50 whose outer shape is formed to the division space 42 into the division space 42.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Particle Accelerators (AREA)
  • Radiation-Therapy Devices (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

キャスク(1)は、胴本体(2)と、外筒(3)と、複数のフィン(4)と、複数の中性子遮蔽部(5)とを備える。胴本体(2)は、中心軸を中心とする筒状であり、燃料集合体を収容可能である。外筒(3)は、胴本体(2)の周囲を囲む筒状である。複数のフィン(4)は、胴本体(2)と外筒(3)との間に形成される筒状空間(41)において周方向に配列され、胴本体(2)の外周面(211)と外筒(3)の内周面(311)とを接続することにより、筒状空間(41)を複数の分割空間(42)に分割する。複数の中性子遮蔽部(5)は、複数の分割空間(42)に充填された中性子遮蔽材を含む。各中性子遮蔽部(5)は、中心軸に沿う軸方向に延びるボイド部(59)を備える。これにより、燃料集合体をキャスク(1)の内部に収容した際に、中性子遮蔽材の熱膨張により外筒(3)等に生じる応力を低減することができる。

Description

キャスクおよび中性子遮蔽部の作製方法
 本発明は、キャスクおよび中性子遮蔽部の作製方法に関する。
 従来、原子炉から取り出された使用済燃料集合体(以下、単に「燃料集合体」という。)は、建屋内の貯蔵プールに保管され、数年~十数年に亘って冷却される。その後、燃料集合体は、数十年に亘って中間貯蔵施設等で乾式貯蔵される。燃料集合体は、中性子やガンマ線等の放射線を放出し続けるため、専用の容器であるキャスクに収容された状態で輸送や乾式貯蔵が行われる。キャスクは、燃料集合体を収容する胴本体と、胴本体の周囲を囲む外筒と、胴本体と外筒との間において周方向に配列される複数のフィンとを備え、樹脂を含む中性子遮蔽材が、胴本体、外筒およびフィンにより区画される空間に充填される。中性子遮蔽材により、燃料集合体から発生する中性子がキャスク外に放出されることが抑制される。
 なお、特開2004-125763号公報(文献1)および特開2001-318187号公報(文献2)では、燃料集合体の崩壊熱を効率的に外筒に伝えることが可能なキャスクが開示されている。当該キャスクでは、胴本体、外筒および伝熱フィンにより区画される空間に、別の場所で成形した中性子遮蔽体が挿入される。中性子遮蔽体は、アルミニウムまたは銅製のハニカム材の内部空間にレジン(中性子遮蔽材)を充填することにより形成される。
 ところで、キャスクでは、中性子遮蔽材の熱膨張率が、胴本体および外筒に用いられる材料(例えば、炭素鋼)よりも大きいため、燃料集合体を内部に収容した際に、中性子遮蔽材の熱膨張により外筒等に大きな応力が生じる場合がある。このような応力は、キャスクの設計上、小さいことが好ましい。
 本発明は、キャスクに向けられており、中性子遮蔽材の熱膨張により外筒等に生じる応力を低減することを目的としている。
 本発明に係るキャスクは、中心軸を中心とする筒状であり、燃料集合体を収容可能な胴本体と、前記胴本体の周囲を囲む筒状の外筒と、前記胴本体と前記外筒との間に形成される筒状空間において周方向に配列され、前記胴本体の外周面と前記外筒の内周面とを接続することにより、前記筒状空間を複数の分割空間に分割する複数のフィンと、前記複数の分割空間に充填された中性子遮蔽材を含む複数の中性子遮蔽部とを備え、各中性子遮蔽部が、前記中心軸に沿う軸方向に延びるボイド部を備える。
 本発明によれば、中性子遮蔽材の熱膨張により外筒等に生じる応力を低減することができる。
 本発明の一の好ましい形態では、前記各中性子遮蔽部が、前記ボイド部である中空部を有する成形パイプ部と、前記成形パイプ部と分割空間の外縁との間に充填された中性子遮蔽材である充填部とをさらに備える。
 この場合に、好ましくは、前記成形パイプ部が、中性子遮蔽材の成形部材により形成される。
 前記成形パイプ部が、前記軸方向に垂直な断面において、前記ボイド部の一方側に配置される第1プレキャスト部材と、前記断面において前記ボイド部の他方側に配置され、前記第1プレキャスト部材と結合することにより、前記第1プレキャスト部材と共に前記ボイド部の周囲を囲む第2プレキャスト部材とを備えてもよい。
 前記第1プレキャスト部材と前記第2プレキャスト部材との結合部が、ラビリンス構造を有することが好ましい。
 本発明の他の好ましい形態では、前記軸方向に垂直な断面において、前記ボイド部が前記周方向に沿って延びる形状を有する。
 本発明は、キャスクにおける中性子遮蔽部の作製方法にも向けられている。当該中性子遮蔽部の作製方法では、前記キャスクが、中心軸を中心とする筒状であり、燃料集合体を収容可能な胴本体と、前記胴本体の周囲を囲む筒状の外筒と、前記胴本体と前記外筒との間に形成される筒状空間において周方向に配列され、前記胴本体の外周面と前記外筒の内周面とを接続することにより、前記筒状空間を複数の分割空間に分割する複数のフィンとを備え、前記中性子遮蔽部の作製方法が、前記中心軸に沿う軸方向に延びる中空部を有する成形パイプ部を分割空間内に配置する工程と、前記成形パイプ部と前記分割空間の外縁との間に、流動性を有する中性子遮蔽材を充填し、硬化させることにより充填部を形成する工程とを備える。
 上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。
キャスクの外観を示す図である。 キャスクを示す断面図である。 キャスクを示す断面図である。 成形パイプ部を示す断面図である。 成形パイプ部を示す図である。 中性子遮蔽部の作製の流れを示す図である。 複数の分割空間を示す図である。 複数の分割空間を示す図である。 試験体において用いた成形パイプ部を示す図である。 成形パイプ部の他の例を示す図である。 成形パイプ部の他の例を示す図である。 成形パイプ部の他の例を示す図である。
 図1は、本発明の一の実施の形態に係るキャスク1の外観を示す図である。キャスク1は、燃料集合体9(すなわち、使用済燃料集合体)を収容可能な容器である。キャスク1は、例えば、図1中の上下方向を向く中心軸J1を中心とする略円柱状である。以下の説明では、中心軸J1に沿う図1中の上下方向を「軸方向」ともいう。
 図2および図3は、キャスク1の断面の一部(後述の外筒3の近傍)を示す図である。図2では、中心軸J1に垂直なキャスク1の断面を示し、図3では、中心軸J1を含むキャスク1の断面を示す。
 キャスク1は、胴本体2と、外筒3と、複数のフィン(伝熱フィン)4と、複数の中性子遮蔽部5とを備える。胴本体2は、中心軸J1を中心とする筒状の容器である。胴本体2は、炭素鋼等の金属にて形成される。胴本体2は、本体側壁部21と、2つの本体端部22a,22bとを備える。例えば、本体側壁部21は、軸方向に延びる略円筒状である。各本体端部22a,22bは、略円柱状または略円板状である。軸方向における本体側壁部21の両端開口は、2つの本体端部22a,22bによりそれぞれ閉塞される。図3の例では、双方の本体端部22a,22bが、着脱可能な蓋部である。本体端部22a,22bは、例えば、ボルト締めにより本体側壁部21に固定される。胴本体2の設計によっては、一方の本体端部が本体側壁部21と一体的に形成されてもよい。キャスク1では、蓋部である本体端部を取り外すことにより、胴本体2の内部に、複数の燃料集合体9(図1参照)が収容可能である。実際には、胴本体2の内部空間は、複数の燃料集合体9が互いに接触しないように、バスケットにより仕切られている。
 外筒3は、中心軸J1を中心とする筒状であり、胴本体2の本体側壁部21の周囲を囲む。外筒3は、炭素鋼等の金属にて形成される。外筒3は、外筒側壁部31と、2つの外筒端部32a,32b(図3参照)とを備える。例えば、外筒側壁部31は、軸方向に延びる略円筒状であり、外筒側壁部31の直径は、本体側壁部21の直径よりも大きい。本体側壁部21と外筒側壁部31との間、すなわち、胴本体2の外周面211と外筒3の内周面311との間には、中心軸J1を中心とする筒状空間41が形成される。中心軸J1に垂直な断面における筒状空間41の形状は略円環状である。軸方向において筒状空間41は外筒側壁部31の全長に亘る。2つの外筒端部32a,32bは、略円環状であり、軸方向における筒状空間41の両端は、外筒端部32a,32bによりそれぞれ閉塞(ほぼ密閉)される。外筒端部32a,32bは、例えば溶接等により外筒側壁部31および本体側壁部21に接合される。
 複数のフィン4は、筒状空間41において中心軸J1を中心とする周方向に配列される。複数のフィン4は、銅等の金属にて形成される。各フィン4は、胴本体2の外周面211と外筒3の内周面311とを接続する伝熱部材である。各フィン4は、例えば、本体側壁部21および外筒側壁部31に対して溶接される。胴本体2の外周面211に対する複数のフィン4の接続位置は、周方向にほぼ一定の間隔で配置される。外筒3の内周面311に対する複数のフィン4の接続位置も、周方向にほぼ一定の間隔で配置される。キャスク1では、複数のフィン4により筒状空間41が複数の分割空間42(図2参照)に分割される。各分割空間42は、後述の中性子遮蔽材が充填される空間である。軸方向におけるフィン4の長さは、外筒3の長さよりも小さい。図3の例では、軸方向における外筒3の両端部にはフィン4は設けられず、外筒3の中央部のみにフィン4が設けられる。
 図2に示すように、複数の中性子遮蔽部5は、複数の分割空間42にそれぞれ設けられる。実際には、全ての分割空間42に、中性子遮蔽部5が設けられる。各中性子遮蔽部5は、成形パイプ部50と、充填部55とを備える。成形パイプ部50は、中性子遮蔽材により形成される。中性子遮蔽材は、例えば、水素を多く含有する高分子材料であり、「レジン」とも呼ばれる。中性子遮蔽材は、中性子を遮蔽することが可能である。中性子遮蔽材の一例は、ボロンカーバイド(BC)および水酸化アルミニウムを混合したエポキシ樹脂である。中性子遮蔽材は、熱可塑性を有する。成形パイプ部50は、軸方向に延びており、外筒3とほぼ同じ長さを有する。成形パイプ部50は、軸方向の全長に亘って延びる中空部59を有する。後述するように、成形パイプ部50は、複数のプレキャスト部材51,52の組立体である。
 充填部55は、成形パイプ部50と、本体側壁部21、外筒側壁部31およびフィン4との間、すなわち、成形パイプ部50と分割空間42の外縁との間に充填された中性子遮蔽材である。常温では、充填部55は、中性子遮蔽材の硬化体である。好ましくは、充填部55を構成する中性子遮蔽材は、成形パイプ部50の中性子遮蔽材と同じ種類である。この場合、成形パイプ部50および充填部55は、ほぼ一体的であると捉えることができる。両者の境界は、必ずしも明確でなくてもよい。中性子遮蔽部5は、中性子遮蔽材により形成される中空構造体である。既述のように、軸方向における外筒3の両端部にはフィン4は設けられていないため、当該両端部では、複数の中性子遮蔽部5において充填部55が周方向に連続する。以下の説明では、充填部55の中性子遮蔽材と、成形パイプ部50の中性子遮蔽材とが同じ種類であるものとするが、両者は、異なる種類であってもよい。
 図4および図5は、1つの成形パイプ部50を示す図である。図4では、軸方向に垂直な成形パイプ部50の断面を示し、図5では、周方向に沿って見た成形パイプ部50を示している。成形パイプ部50は、複数のプレキャスト部材51,52を備える。各プレキャスト部材51,52は、外部の装置における中性子遮蔽材の成形(鋳造)により予め得られた長尺の成形部材であり、中性子遮蔽材の硬化体である。図4に示すように、軸方向に垂直な成形パイプ部50の断面では、2つのプレキャスト部材51,52により中空部59が囲まれる(形成される)。すなわち、成形パイプ部50では、中空部59の一方側に配置される第1プレキャスト部材51と、中空部59の他方側に配置され、第1プレキャスト部材51と結合することにより、第1プレキャスト部材51と共に中空部59の周囲を囲む第2プレキャスト部材52とが設けられる。第1プレキャスト部材51において、中空部59と反対側の外面511は、円弧状の外形を有する。分割空間42では、第1プレキャスト部材51の外面511が、外筒3の内周面311(図2参照)に沿うように配置される。また、第2プレキャスト部材52において、中空部59と反対側の外面521は、直線状の外形を有する。
 図4に示す成形パイプ部50の断面において、第1プレキャスト部材51における外面511とは反対側の内面512には、略円弧状の凹部513が形成される。凹部513は、第2プレキャスト部材52とは反対側に窪む。内面512において凹部513の両外側には、段差部514が設けられる。段差部514では、凹部513から離れた部位が、外面511とは反対側に突出する。段差部514の縁の形状は、Z字状(蟻溝状)である。第2プレキャスト部材52において外面521とは反対側の内面522には、略円弧状の凹部523が形成される。凹部523は、第1プレキャスト部材51とは反対側に窪む。内面522において凹部523の両外側には、段差部524が設けられる。段差部524では、凹部523から離れた部位が、外面521側に窪む。段差部524の縁の形状は、Z字状である。例えば、第1プレキャスト部材51および第2プレキャスト部材52の断面の形状は、軸方向に沿って一定である。
 成形パイプ部50では、第1プレキャスト部材51の段差部514と、第2プレキャスト部材52の段差部524とが互いに係合することにより、結合部53が形成される。成形パイプ部50の断面において、段差部514と段差部524との境界線は、Z字状に複数回かつ鋭角に折り返されており、結合部53はラビリンス構造を有する。第1プレキャスト部材51と第2プレキャスト部材52とが結合した状態では、第1プレキャスト部材51の凹部513と、第2プレキャスト部材52の凹部523とが互いに対向し、既述の中空部59が形成される。軸方向に垂直な成形パイプ部50の断面において、中空部59は、周方向(図4中の略横方向)に沿って延びる形状を有する。周方向に垂直な径方向(図4中の略縦方向)における中空部59の幅は、周方向の中央部において最大となり、各結合部53に向かうに従って漸次減少する。各分割空間42では、原則として、中空部59および後述の補助ボイド部58を除き、中性子遮蔽材が満たされている。以下の説明では、中空部59を「ボイド部59」と呼ぶ。
 図5に示すように、成形パイプ部50では、複数の第1プレキャスト部材51が軸方向に連結され、複数の第2プレキャスト部材52も軸方向に連結される。複数の第1プレキャスト部材51は、互いに同じ構造を有する。軸方向に隣接する2つの第1プレキャスト部材51の端部は、接着剤により互いに接合され、当該2つの第1プレキャスト部材51が連結される。接着剤は、中性子遮蔽材を含むことが好ましく、プレキャスト部材51,52および充填部55と同種の中性子遮蔽材を含むことがより好ましい。複数の第2プレキャスト部材52は、互いに同じ構造を有する。軸方向に隣接する2つの第2プレキャスト部材52の端部は、接着剤により互いに接合され、当該2つの第2プレキャスト部材52が連結される。軸方向において、複数の第1プレキャスト部材51における各連結位置は、複数の第2プレキャスト部材52におけるいずれの連結位置とも相違する。
 図3に示すように、分割空間42では、一方の外筒端部32aの近傍を除き、成形パイプ部50の周囲に、中性子遮蔽材が充填部55として充填される。分割空間42において外筒端部32aと充填部55の端面との間には、中性子遮蔽材が存在しない空間である補助ボイド部58が設けられる。各分割空間42において、ボイド部59および補助ボイド部58には空気が充填される。
 キャスク1では、本体端部22a,22bにも、図示省略の中性子遮蔽材の部材(例えば、円板状の部材)が設けられる。燃料集合体9が胴本体2の内部に収容された際に、燃料集合体9から発生する中性子の外部への放出が、中性子遮蔽部5および本体端部22a,22bの中性子遮蔽材により遮蔽される。実際には、胴本体2の内部の燃料集合体9を中心とする全方向に対して中性子遮蔽材が配置される訳ではなく、例えば、補助ボイド部58は、中性子が遮蔽されない遮蔽欠損部となる。
 燃料集合体9が収容されたキャスク1では、燃料集合体9の崩壊熱等により胴本体2の温度が高くなり、これに伴い、複数の中性子遮蔽部5、複数のフィン4および外筒3の温度も高くなる。例えば、中性子遮蔽部5の温度は、中性子遮蔽材のガラス転移点よりも高い温度(120~130℃)まで上昇する。このとき、中性子遮蔽材の熱膨張係数は、胴本体2、フィン4および外筒3を形成する金属材料の熱膨張係数よりも高く、中性子遮蔽材の体積は当該金属材料よりも大きく膨張する。また、中性子遮蔽材は、その温度がガラス転移点よりも高くなると、ゴム状態となる性質を有する。実際のキャスク1では、中性子遮蔽材の熱膨張により、図4中に二点鎖線にて示すように、軸方向に垂直なボイド部59の断面積が小さくなるように中性子遮蔽部5(成形パイプ部50および充填部55)が変形する。詳細には、径方向におけるボイド部59の幅の変化量は、周方向の中央部において最大となり、各結合部53に向かうに従って漸次減少する。したがって、変形後におけるボイド部59では、当該幅が周方向にほぼ一定、すなわち、ボイド部59が、周方向に沿う略線状となる。
 以上のように、中性子遮蔽部5では、ボイド部59が潰れるように中性子遮蔽材が膨張することにより、中性子遮蔽材の熱膨張により外筒側壁部31および本体側壁部21に生じる応力が比較的小さくなる。換言すると、外筒側壁部31および本体側壁部21における熱応力が、ボイド部59の収縮により吸収される。実際には、中性子遮蔽材は軸方向にも膨張する。このとき、補助ボイド部58が小さくなるように、中性子遮蔽材が軸方向に伸びるため、外筒端部32a,32bに対して過度に大きな応力が生じることはない。
 キャスク1の内部への燃料集合体9の収容から、数年~数十年が経過すると、燃料集合体9の崩壊熱等が少なくなり、キャスク1の全体の温度も低下する。これにより、中性子遮蔽部5の中性子遮蔽材が収縮する。このとき、ボイド部59内の空気の存在により、軸方向に垂直なボイド部59の断面積が大きくなるように、ゴム状態の中性子遮蔽材が収縮する。すなわち、ボイド部59が再生される。中性子遮蔽材の収縮により、補助ボイド部58も同様に広がる。そして、中性子遮蔽部5の温度が、中性子遮蔽材のガラス転移点よりも低くなると、中性子遮蔽材が硬化する。中性子遮蔽材が硬化した状態では、中性子遮蔽部5の形状は、燃料集合体9の収容前とほぼ同じであり、予期しない大きな遮蔽欠損部が生じることはない。
 次に、キャスク1における中性子遮蔽部5の作製について、図6を参照して説明する。中性子遮蔽部5の作製では、胴本体2の外周面211に複数のフィン4が取り付けられ、さらに、複数のフィン4に外筒3が取り付けられた製造途中のキャスク1が準備される(ステップS11)。製造途中のキャスク1では、外筒側壁部31および本体側壁部21の一方の端部(図3中の下側の端部)に、外筒端部32bが接合されており、他方の端部(図3中の上側の端部)には外筒端部32aは未だ接合されていない。製造途中のキャスク1は、外筒端部32bを外筒側壁部31よりも鉛直方向下側に配置した状態で保持される。上側から下方を向いて当該キャスク1を見た場合、図7に示すように、複数の分割空間42は上方に開放された状態である。実際には、図3に示すように、本体側壁部21の上部において径方向外側に突出するフランジ部212が設けられ、本体端部22aは、フランジ部212と軸方向に重なる部位を有する。図7および後述の図8では、複数の分割空間42と軸方向に重なるフランジ部212および本体端部22aの上記部位の図示を省略している。
 続いて、成形パイプ部50が準備される(ステップS12)。既述のように、成形パイプ部50は、複数の第1プレキャスト部材51および複数の第2プレキャスト部材52の組立体である。成形パイプ部50の組立では、第1プレキャスト部材51および第2プレキャスト部材52の一方の部材を他方の部材に対して軸方向(長手方向)に移動することにより、当該一方の部材の段差部が、当該他方の部材の段差部に嵌め込まれる。これにより、第1プレキャスト部材51と第2プレキャスト部材52とが結合される。上記作業は、複数の第1プレキャスト部材51および複数の第2プレキャスト部材52に対して繰り返されるとともに、複数の第1プレキャスト部材51が軸方向に連結され、複数の第2プレキャスト部材52も軸方向に連結される。その結果、軸方向に延びるボイド部59を有する成形パイプ部50が組み立てられる。
 成形パイプ部50の組立において、第1プレキャスト部材51同士の連結、および、第2プレキャスト部材52同士の連結には、接着剤が利用される。これにより、後述の充填部55の形成の際に、第1プレキャスト部材51同士の連結位置、および、第2プレキャスト部材52同士の連結位置から、ボイド部59内に中性子遮蔽材が浸入することが防止または抑制される。好ましい成形パイプ部50では、軸方向において、第1プレキャスト部材51同士の連結位置と、第2プレキャスト部材52同士の連結位置とが異なる。したがって、第1プレキャスト部材51同士を連結する際に、両者の段差部514を同じ第2プレキャスト部材52の段差部524に嵌め込むことにより、両者の位置合わせが完了する。第2プレキャスト部材52同士を連結する場合において同様である。なお、第1プレキャスト部材51と第2プレキャスト部材52との結合部53には、当該接着剤は利用されない。結合部53において当該接着剤が利用されてもよい。
 成形パイプ部50が準備されると、図8に示すように、製造途中のキャスク1の各分割空間42内に成形パイプ部50が配置される(ステップS13)。既述のように、各分割空間42は上方に開放された状態であり、成形パイプ部50は、分割空間42の上側から(図3中のフランジ部212の外縁と外筒側壁部31の内周面311との間の隙間を介して)分割空間42内に挿入可能である。分割空間42内では、第1プレキャスト部材51の外面511が、外筒3の内周面311と対向する。好ましいキャスク1では、第1プレキャスト部材51の外面511の曲率が、外筒3の内周面311の曲率とほぼ同じであり、第1プレキャスト部材51の外面511と外筒3の内周面311とがほぼ隙間なく接する。なお、第1プレキャスト部材51と外筒3の内周面311との間に隙間が設けられてもよい。
 続いて、筒状空間41内に液状(またはペースト状)の中性子遮蔽材が流し込まれる。このとき、筒状空間41の下方は、外筒端部32bにより覆われており、中性子遮蔽材が外部に漏れ出すことはない。また、複数のフィン4の上側および下側から、中性子遮蔽材が周方向、すなわち、全ての分割空間42に広がる。このとき、流し込まれた中性子遮蔽材により第2プレキャスト部材52の外面521が第1プレキャスト部材51に向かって押されるため、第1プレキャスト部材51の段差部514と第2プレキャスト部材52の段差部524(図4参照)とが密着する。その結果、段差部514,524間の隙間から中性子遮蔽材(詳細には、中性子遮蔽材に含まれる液状成分であり、クリアレジンとも呼ばれる。)がボイド部59内に浸入することが防止または抑制される。既述のように、第1プレキャスト部材51同士の連結位置、および、第2プレキャスト部材52同士の連結位置には接着剤が充填されるため、中性子遮蔽材が当該連結位置からボイド部59内に浸入することはない。なお、第1プレキャスト部材51の外面511と外筒3の内周面311との間に中性子遮蔽材が浸入してもよい。
 外筒側壁部31の上端面(図3参照)から所定距離だけ下方の位置に、液状(またはペースト状)の中性子遮蔽材の液面が形成されるまで、複数の分割空間42内に中性子遮蔽材が流し込まれ、その後、中性子遮蔽材の流し込みが停止される。液状の中性子遮蔽材には硬化剤が添加されており、所定時間が経過することにより、中性子遮蔽材が硬化する。以上のように、各分割空間42の外縁と成形パイプ部50との間に、流動性を有する中性子遮蔽材を充填し、硬化させることにより充填部55が形成される(ステップS14)。これにより、複数の中性子遮蔽部5の作製が完了する。実際には、軸方向においてフィン4が設けられていない範囲では、複数の中性子遮蔽部5において充填部55が周方向に連続する。複数の中性子遮蔽部5は、複数の分割空間42に充填された中性子遮蔽材をそれぞれ含む。中性子遮蔽部5の作製後、外筒側壁部31および本体側壁部21の上側の端部に、外筒端部32aが接合され、分割空間42の上方が閉塞される。
 次に、中性子遮蔽部5を模擬した試験体を用いた実験について述べる。試験体は、金属製の所定の容器内に成形パイプ部を配置し、その周囲に中性子遮蔽材を充填して充填部を形成したものである。ここでは、図9に示す成形パイプ部50を用いた。図9では、軸方向に沿って見た成形パイプ部50を示している。当該成形パイプ部50では、細長い矩形のボイド部59が設けられ、図4の段差部514,524は省略される。詳細には、第2プレキャスト部材52の内面522において、一定の深さの凹部523が設けられ、第1プレキャスト部材51の内面512には、凹部は設けられない。また、第2プレキャスト部材52の内面522において、当該凹部523の両外側には切欠き部525が設けられ、切欠き部525に接着剤を塗布することにより、第1プレキャスト部材51と第2プレキャスト部材52とが結合される。試験体を収容する容器には、成形パイプ部50のボイド部59が観察可能な窓が設けられる。
 本実験では、燃料集合体9を収容したキャスク1において生じる温度変化と同様の温度変化を、試験体に対して再現した。具体的には、まず、試験体を恒温槽内で20℃から150℃まで加熱し、その後、所定時間の間、150℃で保持した。このとき、容器の窓を介して成形パイプ部50のボイド部59が小さくなることを確認した。実際には、図9の縦方向におけるボイド部59の幅は、図9の横方向における中央部において、端部よりも小さくなった。また、容器に生じるひずみから算出した圧力(熱膨張する中性子遮蔽材が容器に及ぼす圧力)は、1MPa未満であった。続いて、恒温槽の温度を150℃から20℃まで下げた。このとき、ボイド部59の大きさが元に戻る(実験前の大きさに戻る)ことを確認した。
 一方、容器の内部を中性子遮蔽材で満たした場合、すなわち、中性子遮蔽部5にボイド部59を設けない場合の同様の実験では、熱膨張する中性子遮蔽材が容器に及ぼす圧力は8MPa以上であった。したがって、ボイド部59を設けた試験体では、中性子遮蔽材の熱膨張により容器に生じる応力を低減することができるといえる。
 ここで、成形パイプ部50を省略した比較例のキャスクを想定する。比較例のキャスクでは、補助ボイド部58を除き、分割空間42の全体に中性子遮蔽材が隙間なく充填されて中性子遮蔽部が構成される。当該中性子遮蔽部では、軸方向に垂直な断面が中実である。したがって、燃料集合体9が胴本体2の内部に収容された際に、中性子遮蔽部の中性子遮蔽材の熱膨張により、外筒側壁部31および本体側壁部21において大きな応力が生じる。また、軸方向における中性子遮蔽材の伸びも大きくなるため、補助ボイド部58も予め大きく設計する必要がある。換言すると、中性子遮蔽部が熱膨張していない状態において、大きな遮蔽欠損部(補助ボイド部58)を設ける必要があり、比較例のキャスクの中性子遮蔽性能が低下する。また、燃料集合体9の崩壊熱等が少なくなり、中性子遮蔽部の温度が低下すると、軸方向に垂直な中性子遮蔽部の断面積(中実の断面の面積)が小さくなるように、中性子遮蔽材が収縮する。このとき、フィン4と中性子遮蔽部との間に隙間が生じて、予期しない遮蔽欠損部が発生する可能性がある。
 一方、図2のキャスク1では、各中性子遮蔽部5が、軸方向に延びるとともに、周囲が中性子遮蔽材により直接的に囲まれるボイド部59を備える。これにより、中性子遮蔽材の熱膨張がボイド部59により吸収され、中性子遮蔽材の熱膨張により外筒3等に生じる応力を低減することができる。また、遮蔽欠損部である補助ボイド部58の大きさ(体積)を小さくすることができる。さらに、キャスク1の温度が上昇した後、低下した際に、ボイド部59が再生されて中性子遮蔽部5が膨張前の形状に戻ることにより、予期しない遮蔽欠損部が生じることを抑制することができる。
 キャスク1では、軸方向に垂直な断面において、ボイド部59が周方向に沿って延びる形状を有する。これにより、中性子遮蔽部5において、中性子の遮蔽率に関係する中性子遮蔽材の径方向の合計厚さが、周方向に大きくばらつくことを抑制することができる。また、周方向の中央部における幅が、周方向の端部における幅よりも大きい図4のボイド部59は、中性子遮蔽材の熱膨張により周方向に沿う略線状となる。これにより、不必要に大きなボイド部59の形成を抑制して、キャスク1の大型化を抑制することができる。
 各中性子遮蔽部5では、中性子遮蔽材の成形部材により形成され、ボイド部59である中空部を有する成形パイプ部50と、成形パイプ部50と分割空間42の外縁との間に充填された中性子遮蔽材である充填部55とが設けられる。これにより、ボイド部59を有する中性子遮蔽部5を容易に作製することができる。成形パイプ部50の中性子遮蔽材と、充填部55の中性子遮蔽材とが同じ種類であることにより、成形パイプ部50と充填部55との親和性を向上することができ、両者の間に、予期しない隙間(遮蔽欠損部)等が生じることを防止または抑制することができる。
 ところで、例えば、特開2004-125763号公報および特開2001-318187号公報(上記文献1および2)のように、アルミニウムまたは銅製のハニカム材の内部空間に中性子遮蔽材を充填した中性子遮蔽体を、キャスクの分割空間において用いることも考えられる。しかしながら、このような中性子遮蔽体では、中性子遮蔽材の熱膨張によりハニカム材が変形することがあり、中性子遮蔽体の温度の低下により中性子遮蔽材が収縮した際に、ハニカム材と中性子遮蔽材との間に、予期しない隙間(遮蔽欠損部)が生じてしまう。また、分割空間では、ハニカム材の分だけ中性子遮蔽材の合計厚さが小さくなる。
 これに対し、キャスク1では、成形パイプ部50自体が中性子遮蔽材により形成されるため、他の種類の材料により形成された部材の存在により、中性子遮蔽材の合計厚さ(中性子の遮蔽率)が小さくなることを防止することができる。また、既述のように、中性子遮蔽材が収縮する際に、ボイド部59が再生するため、予期しない遮蔽欠損部が発生することを抑制することができる。
 中性子遮蔽部5の作製では、成形パイプ部50が分割プレキャスト(複数のプレキャスト部材51,52)により形成されることにより、成形パイプ部50を一体的に形成する場合に比べて、成形パイプ部50を容易に取り扱うことができる。また、段差部514と段差部524とを嵌め合わせることにより、第1プレキャスト部材51と第2プレキャスト部材52とが結合されるため、両者の位置合わせを容易に行うことができる。
 第1プレキャスト部材51と第2プレキャスト部材52との結合部53が、ラビリンス構造を有することにより、充填部55の形成時に液状(またはペースト状)の中性子遮蔽材がボイド部59内に浸入することを防止または抑制することができる。また、結合部53において接着剤を使用しないことにより、接着剤の使用量を少なくして、中性子遮蔽部5の作製に要するコストを削減することができる。さらに、接着剤の塗布や硬化等に要する時間を短縮して、成形パイプ部50の組立に要する時間を短縮することができる。なお、図9の成形パイプ部50では、切欠き部525に接着剤を隙間なく塗布することにより、第1プレキャスト部材51と第2プレキャスト部材52との間の隙間から中性子遮蔽材がボイド部59内に浸入することが防止または抑制される。
 上記キャスク1および中性子遮蔽部5の作製方法では様々な変形が可能である。
 成形パイプ部50において、ボイド部59の幅が周方向の中央部において最大となり、周方向の端部に向かうに従って漸次減少する他の形状が採用されてもよい。図10は、このような成形パイプ部50の一例であり、当該成形パイプ部50では、ボイド部59が周方向に沿って延びる菱形である。このように、ボイド部59の形状は適宜変更されてよい。ボイド部59が周方向に沿って延びる形状を有する図4、図9および図10の成形パイプ部50(並びに、後述の図11および図12の成形パイプ部50)では、中性子遮蔽材の径方向の合計厚さが、周方向に大きくばらつくことを抑制することができる。
 成形パイプ部50において複数のボイド部59が設けられてもよい。図11に示す例では、それぞれが軸方向に延びる2つのボイド部59が周方向に並んで設けられる。また、図12に示すように、各分割空間42において複数の(図12では、2つの)成形パイプ部50が周方向に配列されてもよい。成形パイプ部50の設計によっては、軸方向の位置に応じて、ボイド部59の断面形状および大きさが変更されてもよい。
 分割空間42において、ボイド部59は、必ずしも外筒3近傍に設けられる必要はなく、例えば、胴本体2の近傍に設けられてもよい。このような中性子遮蔽部5は、図6のステップS13において、分割空間42内における成形パイプ部50の位置を変更するのみで容易に作製可能である。
 成形パイプ部50を構成する成形部材は、切削等の機械加工により形成されてもよい。成形パイプ部50は、1つの成形部材により構成されてもよい。また、軸方向の各位置において成形パイプ部50が、3以上の成形部材により構成されてもよい。成形パイプ部50が、中性子遮蔽材以外の材料により形成されてもよい。当該材料は、通常、中性子遮蔽材として用いられない材料であり、例えば、ボロンやカドミウムを含まない樹脂等である。当該材料も、中性子遮蔽材と同様に、温度の上昇によりゴム状態となる性質を有することが好ましい。これにより、キャスク1の温度が上昇した後、低下した際に、ボイド部59を再生して、遮蔽欠損部が発生することを抑制することができる。
 上記キャスク1では、軸方向における外筒3の両端部において、複数の中性子遮蔽部5の充填部55が周方向に連続するが、各フィン4が外筒3の一端から他端まで延びる場合等、複数の中性子遮蔽部5が互いに不連続な状態で存在してもよい。
 例えば、軸方向に垂直なキャスク1の断面において、胴本体2の外周面211に対する複数のフィン4の傾きが、周方向に漸次変更され、複数の分割空間42の形状が互いに相違してもよい。この場合でも、中性子遮蔽部5の上記作製方法では、成形パイプ部50を外部の装置にて作製し、成形パイプ部50と分割空間42の外縁との間に、流動性を有する中性子遮蔽材を充填して充填部55を形成するため、複数の中性子遮蔽部5を適切に作製することができる。キャスク1の設計によっては、外形が分割空間42に合わせて形成された成形パイプ部50を当該分割空間42に挿入することにより、中性子遮蔽部5が作製されてもよい。
 上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。
 発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。
 1  キャスク
 2  胴本体
 3  外筒
 4  フィン
 5  中性子遮蔽部
 9  燃料集合体
 41  筒状空間
 42  分割空間
 50  成形パイプ部
 51,52  プレキャスト部材
 53  結合部
 55  充填部
 59  ボイド部(中空部)
 211  (胴本体の)外周面
 311  (外筒の)内周面
 J1  中心軸
 S11~S14  ステップ

Claims (7)

  1.  キャスクであって、
     中心軸を中心とする筒状であり、燃料集合体を収容可能な胴本体と、
     前記胴本体の周囲を囲む筒状の外筒と、
     前記胴本体と前記外筒との間に形成される筒状空間において周方向に配列され、前記胴本体の外周面と前記外筒の内周面とを接続することにより、前記筒状空間を複数の分割空間に分割する複数のフィンと、
     前記複数の分割空間に充填された中性子遮蔽材を含む複数の中性子遮蔽部と、
    を備え、
     各中性子遮蔽部が、前記中心軸に沿う軸方向に延びるボイド部を備える。
  2.  請求項1に記載のキャスクであって、
     前記各中性子遮蔽部が、
     前記ボイド部である中空部を有する成形パイプ部と、
     前記成形パイプ部と分割空間の外縁との間に充填された中性子遮蔽材である充填部と、
    をさらに備える。
  3.  請求項2に記載のキャスクであって、
     前記成形パイプ部が、中性子遮蔽材の成形部材により形成される。
  4.  請求項2または3に記載のキャスクであって、
     前記成形パイプ部が、
     前記軸方向に垂直な断面において、前記ボイド部の一方側に配置される第1プレキャスト部材と、
     前記断面において前記ボイド部の他方側に配置され、前記第1プレキャスト部材と結合することにより、前記第1プレキャスト部材と共に前記ボイド部の周囲を囲む第2プレキャスト部材と、
    を備える。
  5.  請求項4に記載のキャスクであって、
     前記第1プレキャスト部材と前記第2プレキャスト部材との結合部が、ラビリンス構造を有する。
  6.  請求項1ないし5のいずれか1つに記載のキャスクであって、
     前記軸方向に垂直な断面において、前記ボイド部が前記周方向に沿って延びる形状を有する。
  7.  キャスクにおける中性子遮蔽部の作製方法であって、
     前記キャスクが、
     中心軸を中心とする筒状であり、燃料集合体を収容可能な胴本体と、
     前記胴本体の周囲を囲む筒状の外筒と、
     前記胴本体と前記外筒との間に形成される筒状空間において周方向に配列され、前記胴本体の外周面と前記外筒の内周面とを接続することにより、前記筒状空間を複数の分割空間に分割する複数のフィンと、
    を備え、
     前記中性子遮蔽部の作製方法が、
     前記中心軸に沿う軸方向に延びる中空部を有する成形パイプ部を分割空間内に配置する工程と、
     前記成形パイプ部と前記分割空間の外縁との間に、流動性を有する中性子遮蔽材を充填し、硬化させることにより充填部を形成する工程と、
    を備える。
PCT/JP2018/027989 2017-08-08 2018-07-25 キャスクおよび中性子遮蔽部の作製方法 WO2019031251A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880050872.5A CN111183489B (zh) 2017-08-08 2018-07-25 核废料桶和中子屏蔽部的制作方法
US16/636,426 US11107597B2 (en) 2017-08-08 2018-07-25 Cask and method of producing neutron shield

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017153612A JP6918624B2 (ja) 2017-08-08 2017-08-08 キャスクおよび中性子遮蔽部の作製方法
JP2017-153612 2017-08-08

Publications (1)

Publication Number Publication Date
WO2019031251A1 true WO2019031251A1 (ja) 2019-02-14

Family

ID=65272081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027989 WO2019031251A1 (ja) 2017-08-08 2018-07-25 キャスクおよび中性子遮蔽部の作製方法

Country Status (4)

Country Link
US (1) US11107597B2 (ja)
JP (1) JP6918624B2 (ja)
CN (1) CN111183489B (ja)
WO (1) WO2019031251A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083281A (ja) * 1999-09-09 2001-03-30 Mitsubishi Heavy Ind Ltd キャスクおよびキャスクの製造方法、並びに埋没型
JP2001083296A (ja) * 1999-09-10 2001-03-30 Hitachi Ltd 発熱物質収納容器
JP2001318187A (ja) * 2000-05-02 2001-11-16 Mitsubishi Heavy Ind Ltd キャスク
JP2002311187A (ja) * 2001-04-19 2002-10-23 Mitsubishi Heavy Ind Ltd 放射性物質貯蔵部材の製造方法および押出成形用ビレット
JP2003149382A (ja) * 2001-11-15 2003-05-21 Mitsubishi Heavy Ind Ltd 使用済み燃料集合体格納用角状パイプおよびバスケット、並びに放射性物質格納容器
JP2004125763A (ja) * 2002-09-30 2004-04-22 Mitsubishi Heavy Ind Ltd 放射性物質格納容器およびその製造方法
US20080265182A1 (en) * 2006-10-11 2008-10-30 Singh Krishna P Apparatus for providing additional radiation shielding to a container holding radioactive materials, and method of using the same to handle and/or process radioactive materials
US20120037632A1 (en) * 2010-08-12 2012-02-16 Singh Krishna P Ventilated system for storing high level radioactive waste

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021684A (ja) * 1999-07-06 2001-01-26 Mitsubishi Heavy Ind Ltd 使用済燃料輸送貯蔵用キャスク、放射線遮蔽体及びその形成方法
JP2001201589A (ja) * 2000-01-21 2001-07-27 Mitsubishi Heavy Ind Ltd キャスク製造方法
JP4172128B2 (ja) * 2000-02-23 2008-10-29 株式会社Ihi 使用済燃料貯蔵装置
JP3416657B2 (ja) 2001-01-25 2003-06-16 三菱重工業株式会社 キャスクおよびキャスクの製造方法
JP3207841B1 (ja) * 2000-07-12 2001-09-10 三菱重工業株式会社 アルミニウム複合粉末およびその製造方法、アルミニウム複合材料、使用済み燃料貯蔵部材およびその製造方法
KR100709829B1 (ko) * 2002-07-23 2007-04-23 미츠비시 쥬고교 가부시키가이샤 캐스크 및 캐스크의 제조 방법
JP4520117B2 (ja) * 2003-07-04 2010-08-04 株式会社神戸製鋼所 放射性物質の輸送貯蔵キャスク
JP2006226787A (ja) * 2005-02-16 2006-08-31 Hitachi Ltd 使用済み燃料収納容器
JP2009145127A (ja) * 2007-12-12 2009-07-02 Mitsubishi Heavy Ind Ltd 放射性物質格納容器及び放射性物質格納容器の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083281A (ja) * 1999-09-09 2001-03-30 Mitsubishi Heavy Ind Ltd キャスクおよびキャスクの製造方法、並びに埋没型
JP2001083296A (ja) * 1999-09-10 2001-03-30 Hitachi Ltd 発熱物質収納容器
JP2001318187A (ja) * 2000-05-02 2001-11-16 Mitsubishi Heavy Ind Ltd キャスク
JP2002311187A (ja) * 2001-04-19 2002-10-23 Mitsubishi Heavy Ind Ltd 放射性物質貯蔵部材の製造方法および押出成形用ビレット
JP2003149382A (ja) * 2001-11-15 2003-05-21 Mitsubishi Heavy Ind Ltd 使用済み燃料集合体格納用角状パイプおよびバスケット、並びに放射性物質格納容器
JP2004125763A (ja) * 2002-09-30 2004-04-22 Mitsubishi Heavy Ind Ltd 放射性物質格納容器およびその製造方法
US20080265182A1 (en) * 2006-10-11 2008-10-30 Singh Krishna P Apparatus for providing additional radiation shielding to a container holding radioactive materials, and method of using the same to handle and/or process radioactive materials
US20120037632A1 (en) * 2010-08-12 2012-02-16 Singh Krishna P Ventilated system for storing high level radioactive waste

Also Published As

Publication number Publication date
CN111183489B (zh) 2023-06-27
JP2019032241A (ja) 2019-02-28
US20200176144A1 (en) 2020-06-04
US11107597B2 (en) 2021-08-31
JP6918624B2 (ja) 2021-08-11
CN111183489A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
KR100499208B1 (ko) 캐스크 및 그의 제조 방법
EP3399629B1 (en) Rotor manufacturing method
EP1524673B1 (en) Cask and method of producing the same
JP3600535B2 (ja) キャスク
JP2007205931A (ja) 放射性物質用金属キャスク
WO2001018823A1 (fr) Château de transport
WO2019031251A1 (ja) キャスクおよび中性子遮蔽部の作製方法
US20100266094A1 (en) Dual-cooled nuclear fuel rod having annular plugs and method of manufacturing the same
KR102372292B1 (ko) 고정자 코어와 일체로 형성된 하우징을 포함하는 모터 제조방법
WO2011148742A1 (ja) 放射性物質格納容器
JP4241869B2 (ja) 放射性物質格納容器
JP6497296B2 (ja) タンクの製造方法
JP2008076408A (ja) 放射性物質格納容器
JP4052450B2 (ja) 放射性物質格納容器
JP2006226787A (ja) 使用済み燃料収納容器
JP4783197B2 (ja) 金属キャスクおよびその製造方法
KR101598802B1 (ko) 가스켓 제조방법
KR102193217B1 (ko) 사용후연료 운반 및 건식 저장용기용 중성자차폐박스 조립용 지그 및 이를 이용한 조립 방법
JP6574394B2 (ja) 放射性物質収納容器
JP4221042B2 (ja) 放射性物質格納容器
CN215064004U (zh) 一种换热器分段壳体处石墨盘根安装密封结构
JP2008107362A (ja) 放射性物質格納容器
JP2021012051A (ja) 放射性物質の収納容器とその製造方法
JP2024061964A (ja) 放射性物質収納容器及び放射性物質収納容器の製造方法
JPS60221135A (ja) 拡管方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18845239

Country of ref document: EP

Kind code of ref document: A1