WO2019026474A1 - サブマウント、半導体レーザ装置及び熱アシストハードディスク装置 - Google Patents

サブマウント、半導体レーザ装置及び熱アシストハードディスク装置 Download PDF

Info

Publication number
WO2019026474A1
WO2019026474A1 PCT/JP2018/024074 JP2018024074W WO2019026474A1 WO 2019026474 A1 WO2019026474 A1 WO 2019026474A1 JP 2018024074 W JP2018024074 W JP 2018024074W WO 2019026474 A1 WO2019026474 A1 WO 2019026474A1
Authority
WO
WIPO (PCT)
Prior art keywords
submount
semiconductor laser
film
solder
disposed
Prior art date
Application number
PCT/JP2018/024074
Other languages
English (en)
French (fr)
Inventor
井島 新一
一將 長野
教夫 池戸
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019533969A priority Critical patent/JP7100641B2/ja
Publication of WO2019026474A1 publication Critical patent/WO2019026474A1/ja
Priority to US16/779,065 priority patent/US11171465B2/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/4806Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives
    • G11B5/4866Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives the arm comprising an optical waveguide, e.g. for thermally-assisted recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering

Definitions

  • the present disclosure relates to a submount, a semiconductor laser device including the submount, and a thermally assisted hard disk drive including the semiconductor laser device.
  • a submount having a substrate is used to mount an element such as a semiconductor laser chip.
  • Such a submount is generally formed by dividing a flat substrate by using a dicing blade or the like.
  • burrs may occur at the time of separation. Therefore, a technique for solving the problem of the burr generated in the submount has been proposed (see, for example, Patent Document 1).
  • burrs are generated in the cross section by forming a notch in the ridge line portion between the cross section of the submount and the surface adjacent to the cross section. Even in the case, it is trying to put the burr in the notch.
  • the problem of burrs may not be sufficiently solved.
  • the force may be concentrated at a valley-like portion located at the bottom of the notch at the time of division, and the submount may be divided at the portion.
  • the cross section of the submount can not be controlled with high accuracy, and the desired position and flatness of the cross section can not be realized.
  • the present disclosure has been made in order to solve such problems, and it is an object of the present disclosure to provide a submount or the like that is excellent in position accuracy of the sectional plane and flatness of the sectional plane.
  • a submount according to the present disclosure is a submount including a substrate having a first surface on which an element is mounted, the substrate being a first in-plane direction of the first surface.
  • a second surface disposed in a direction of 1, substantially perpendicular to the first surface, a third surface substantially perpendicular to the first surface and the second surface, the first surface and the first surface
  • a fourth surface substantially perpendicular to the second surface and opposite to the third surface, and substantially perpendicular to the second surface, the third surface and the fourth surface, and A fifth surface facing the first surface, a sixth surface facing the second surface, and a portion formed in a portion where the second surface and the third surface are adjacent to each other
  • a first notch and a second notch formed in a portion where the second surface and the fourth surface are adjacent to each other, and the first notch and the second Ri chipped portion has a concave surface comprising a curved surface.
  • FIG. 1 is a perspective view showing an outline of a submount according to the first embodiment.
  • FIG. 2 is a perspective view showing an outline of the semiconductor laser device according to the first embodiment.
  • FIG. 3 is a schematic view showing an outline of the thermally assisted hard disk drive according to the first embodiment.
  • FIG. 4 is a plan view showing the positional relationship between the semiconductor laser device and the slider in the thermally assisted hard disk drive according to the first embodiment.
  • FIG. 5 is a plan view showing the state after the etching process of the silicon wafer according to the first embodiment.
  • FIG. 6 is a plan view showing the modified region of the silicon wafer according to the first embodiment.
  • FIG. 7 is a cross-sectional view showing the silicon wafer singulation step according to the first embodiment.
  • FIG. 1 is a perspective view showing an outline of a submount according to the first embodiment.
  • FIG. 2 is a perspective view showing an outline of the semiconductor laser device according to the first embodiment.
  • FIG. 3 is a schematic view showing an outline of
  • FIG. 8 is a perspective view showing the configuration of the submount according to the first embodiment.
  • FIG. 9 is a plan view showing the shape of the silicon wafer according to the first embodiment.
  • FIG. 10 is a plan view showing a force applied to a silicon wafer when the silicon wafer on which the modified region according to the first embodiment is formed is divided.
  • FIG. 11 is a plan view showing a state in which the silicon wafer according to the first embodiment is divided into substrates.
  • FIG. 12A is a side view schematically showing the outline of the fourth surface of the submount when the angle formed by the first surface and the second surface of the submount according to the first embodiment is 90 °. is there.
  • FIG. 12B is a side view schematically showing the outline of the second surface of the submount when the angle between the first surface and the second surface of the submount according to the first embodiment is 90 °. is there.
  • FIG. 13A is a side view schematically showing the outline of the fourth surface of the submount when the angle between the first surface and the second surface of the submount according to Embodiment 1 is larger than 90 °. is there.
  • FIG. 13B is a side view schematically showing the outline of the second surface of the submount in the case where the angle between the first surface and the second surface of the submount according to Embodiment 1 is larger than 90 °. is there.
  • FIG. 13A is a side view schematically showing the outline of the fourth surface of the submount when the angle between the first surface and the second surface of the submount according to Embodiment 1 is larger than 90 °. is there.
  • FIG. 13B is a side view schematically showing the outline of the second surface of the submount in the case where the angle between the first
  • FIG. 14A is a view showing a state immediately before mounting the semiconductor laser device provided with the submount according to Embodiment 1 on the slider of the thermally assisted hard disk drive.
  • FIG. 14B is a diagram showing a state in which the semiconductor laser device provided with the submount according to the first embodiment is mounted on a slider of a thermally assisted hard disk drive.
  • FIG. 15A is a side view schematically showing an outline of a fourth surface of the submount when the angle formed by the first surface and the second surface of the submount according to Embodiment 1 is an acute angle.
  • FIG. 15B is a side view schematically showing the outline of the second surface of the submount when the angle between the first surface and the second surface of the submount according to Embodiment 1 is an acute angle. .
  • FIG. 16 is a three-sided view showing an outline of a semiconductor laser device provided with the submount according to the first embodiment.
  • FIG. 17A is a view showing a state immediately before mounting the semiconductor laser device shown in FIG. 16 on a slider of a thermally assisted hard disk drive.
  • FIG. 17B is a diagram showing a state in which the semiconductor laser device shown in FIG. 16 is mounted on a slider of a thermally assisted hard disk drive.
  • FIG. 18 is a cross-sectional view showing a step of forming a second surface and a sixth surface by etching the silicon wafer 201 which is a base material of the submount according to the first embodiment.
  • FIG. 17A is a view showing a state immediately before mounting the semiconductor laser device shown in FIG. 16 on a slider of a thermally assisted hard disk drive.
  • FIG. 17B is a diagram showing a state in which the semiconductor laser device shown in FIG. 16 is mounted on a slider of a thermally assisted hard disk drive.
  • FIG. 18 is
  • FIG. 19 is a side view showing the shape of the second metal film in the submount to which the first suppression means according to the first embodiment is not applied.
  • FIG. 20 is a side view showing the shape of the second metal film in the submount to which the first suppression means according to Embodiment 1 is applied.
  • FIG. 21A is a diagram showing a state just before mounting the semiconductor laser chip on the submount according to the first embodiment.
  • FIG. 21B is a view showing a state in which the semiconductor laser chip is mounted on the submount according to the first embodiment.
  • FIG. 22 is a three-sided view showing the structure of the semiconductor laser device according to the first embodiment.
  • FIG. 23A is a diagram showing a state immediately before mounting the semiconductor laser device according to the first embodiment on a slider of a thermally assisted hard disk drive.
  • FIG. 23A is a diagram showing a state immediately before mounting the semiconductor laser device according to the first embodiment on a slider of a thermally assisted hard disk drive.
  • FIG. 23B is a diagram showing the semiconductor laser device according to the first embodiment mounted on a slider of a thermally assisted hard disk drive.
  • FIG. 24A is a schematic cross-sectional view showing the method of forming the second metal film according to the first embodiment.
  • FIG. 24B is a schematic cross-sectional view showing the method of forming the second metal film in the first embodiment.
  • FIG. 25A is a diagram showing a state just before mounting the semiconductor laser chip on the submount according to the first embodiment.
  • FIG. 25B is a diagram showing the semiconductor laser chip mounted on the submount according to the first embodiment.
  • FIG. 26A is a diagram showing a state just before mounting the semiconductor laser chip on the submount according to the first embodiment.
  • FIG. 26B is a diagram showing the semiconductor laser chip mounted on the submount according to the first embodiment.
  • FIG. 27A is a diagram showing a state immediately before mounting the semiconductor laser device according to the first embodiment on a slider of a thermally assisted hard disk drive.
  • FIG. 27B is a diagram showing the semiconductor laser device according to the first embodiment mounted on a slider of a thermally assisted hard disk drive.
  • FIG. 28 is a trihedral view showing a structure of a semiconductor laser device of a comparative example.
  • FIG. 29 is a trihedral view showing the structure of the semiconductor laser device according to the first embodiment.
  • FIG. 30 is a plan view of a slider on which the semiconductor laser device according to the first embodiment is mounted.
  • FIG. 31 is a diagram showing the shape of the solder film of the submount according to the second embodiment.
  • FIG. 32 is a diagram showing the shape of the solder film of the submount according to the first modification of the second embodiment.
  • FIG. 33 is a diagram showing the shape of the solder film of the submount according to the second modification of the second embodiment.
  • FIG. 34A is a plan view showing the shape of the solder film of the submount according to Variation 3 of Embodiment 2.
  • FIG. 34B is a plan view showing the shape of the solder film of the submount according to Variation 4 of Embodiment 2.
  • FIG. 34C is a plan view showing the shape of the solder film of the submount according to Variation 5 of Embodiment 2.
  • FIG. 35 is a plan view showing the shape of the solder film of the submount according to the sixth modification of the second embodiment.
  • FIG. 36 is a view showing the structure of a submount according to the first modification.
  • FIG. 37 is a view showing the structure of the submount according to the second modification.
  • FIG. 38 is a view showing the structure of a submount according to the third modification.
  • FIG. 39 is a view showing the structure of a submount according to the fourth modification.
  • FIG. 40 is a three-sided view showing an outline of a semiconductor laser device provided with a submount according to the first modification of the first embodiment.
  • each drawing is a schematic view, and is not necessarily illustrated exactly. Therefore, the scale and the like do not necessarily match in each figure.
  • substantially the same components are denoted by the same reference numerals, and redundant description will be omitted or simplified.
  • Embodiment 1 [1-1. Submount Overview] First, the outline of the submount according to the first embodiment will be described with reference to the drawings.
  • FIG. 1 is a perspective view showing an outline of a submount 100 according to the present embodiment.
  • the submount 100 is a member provided with a substrate 110 for mounting an element such as a semiconductor laser chip.
  • the substrate 110 is a rectangular parallelepiped member, and is a Si substrate in the present embodiment.
  • the dimension of each side of the substrate 110 is, for example, about 0.1 mm or more and 1 mm or less.
  • the substrate 110 has a first surface 101, a second surface 102, a third surface 103, a fourth surface 104, a fifth surface 105, and a sixth surface. It has a surface 106, a first notch 113a, and a second notch 113b.
  • the first surface 101 is a surface on which an element such as a semiconductor laser chip is mounted.
  • the second surface 102 is disposed in a first direction D1 in the in-plane direction of the first surface 101, and is a surface substantially perpendicular to the first surface 101.
  • the third surface 103 is a surface substantially perpendicular to the first surface 101 and the second surface 102.
  • the fourth surface 104 is a surface that is substantially perpendicular to the first surface 101 and the second surface 102 and that faces the third surface 103.
  • the fifth surface 105 is a surface that is substantially perpendicular to the second surface 102, the third surface 103, and the fourth surface 104 and that faces the first surface 101.
  • the sixth surface 106 is a surface facing the second surface 102.
  • substantially perpendicular means substantially perpendicular, and for example, means approximately 85 ° or more and 95 ° or less.
  • the first notch 113a is a concave portion formed in a portion where the second surface 102 and the third surface 103 are adjacent to each other.
  • the second notch portion 113 b is a concave portion formed in a portion where the second surface 102 and the fourth surface 104 are adjacent to each other.
  • the first notch 113a and the second notch 113b respectively have a concave surface 114a including the curved surface 115a and a concave surface 114b including the curved surface 115b.
  • the submount 100 includes the first metal film 121 and the solder film 116 disposed on the first surface 101.
  • the solder film 116 is disposed on the first metal film 121.
  • an element such as a semiconductor laser chip can be joined via the solder film 116.
  • the configuration of the first metal film 121 is not particularly limited.
  • the first metal film 121 is, for example, a metal film in which Ti, Pt and Au are stacked from the substrate 110 side.
  • the film thickness of each layer of Ti, Pt and Au is, for example, about 0.05 ⁇ m or more and 1 ⁇ m or less.
  • Each layer of Ti, Pt and Au functions as an adhesion film, a diffusion prevention film and an electrode film, respectively.
  • a strip-shaped metal film removing portion 117 extending in the first direction D1 is formed on the first metal film 121.
  • the metal film removing portion 117 is a portion from which a portion of the first metal film 121 has been removed.
  • the Au layer of the first metal film 121 is removed in the metal film removing unit 117.
  • the solder film 116 is disposed on the fourth surface 104 side with respect to the metal film removing portion 117 on the first metal film 121.
  • the solder film 116 is disposed on the first surface 101 at a position on the fourth surface 104 side.
  • the first region R1 and the fourth surface 104 on the third surface 103 side divided such that the first surface 101 has an equal area by line segments perpendicular to the second surface 102.
  • the solder film 116 is disposed more in the second region R2 than in the first region R1.
  • the elements can be arranged offset to the submount 100.
  • the submount 100 also has a second metal film 122 disposed on the second surface 102.
  • the second surface 102 of the substrate 110 can be bonded to another member via solder or the like.
  • the configuration of the second metal film 122 is not particularly limited.
  • the second metal film 122 may have, for example, the same configuration as the first metal film 121.
  • the first notch 113 a and the second notch 113 b of the substrate 110 will be described in detail later.
  • the first surface 101, the second surface 102, the third surface 103, the fourth surface 104, the fifth surface 105, the sixth surface 106, and the first surface of the submount Even when the chipped portion 113a or the second chipped portion 113b is described, the first surface 101, the second surface 102, the third surface 103, the fourth surface 104, the fifth surface 105, The sixth surface 106, the first notch 113a or the second notch 113b show the configuration of the substrate provided with the submount.
  • FIG. 2 is a perspective view showing an outline of a semiconductor laser device 151 according to the present embodiment.
  • the semiconductor laser device 151 according to the present embodiment includes a submount 100 and a semiconductor laser chip 152 joined on the first surface 101 of the submount 100 via a solder film 116. Equipped with
  • the semiconductor laser chip 152 is an example of an element mounted on the first surface of the submount 100.
  • the semiconductor laser chip 152 is, for example, a known semiconductor laser chip containing gallium arsenide or a nitride semiconductor.
  • the length of the semiconductor laser chip 152 in the first direction D1 is approximately 200 ⁇ m or more and 300 ⁇ m or less.
  • the length of the semiconductor laser chip in the in-plane direction of the first surface 101 of the submount 100 and in the direction perpendicular to the first direction D1 is about 100 ⁇ m to 200 ⁇ m.
  • the emission surface 153 of the semiconductor laser chip 152 is disposed on the second surface 102 side of the submount 100.
  • the semiconductor laser device 151 will be described in detail later.
  • FIG. 3 is a schematic view showing an outline of the thermally assisted hard disk drive 600 according to the present embodiment.
  • FIG. 4 is a plan view showing the positional relationship between the semiconductor laser device 151 and the slider 602 in the thermally assisted hard disk drive 600 according to this embodiment.
  • the thermally assisted hard disk drive 600 includes the semiconductor laser device 151 and the slider 602. Further, as shown in FIG. 3, the thermally assisted hard disk drive 600 includes a suspension 603 and a disk 604. Although not shown in FIG. 3 for the sake of simplicity, as shown in FIG. 4, the semiconductor laser device 151 is mounted on the slider 602.
  • the slider 602 is a plate-like member for stabilizing the distance between the disk 604 and a recording head (not shown) disposed on the slider 602.
  • the slider 602 includes a near-field light generating element (not shown in FIGS. 3 and 4) that guides the laser to generate near-field light.
  • the suspension 603 is a member that supports the slider 602.
  • the disk 604 is a disk-shaped recording medium containing a magnetic material for recording.
  • the magnetic material contained in the disk 604 is heated by irradiating the disk 604 with the laser beam output from the semiconductor laser device 151. Thereby, the recording on the magnetic material can be assisted.
  • the silicon wafer 201 in which the first metal film 121 is formed in a predetermined region is prepared.
  • the silicon wafer 201 having the first metal film 121 on the main surface is subjected to ordinary photolithography and dry etching to form a plurality of through grooves 202 as shown in FIG.
  • FIG. 5 is a plan view showing the state of the silicon wafer 201 according to the present embodiment after the etching process.
  • the through groove 202 forms the second surface 102 and the sixth surface 106 of the substrate 110 of the submount 100. Further, a notch shape 203 corresponding to the first notch portion 113 a and the second notch portion 113 b of the substrate 110 is also formed.
  • the second metal film 122 is formed.
  • the first metal film 121, the second metal film 122, and the solder film 116 are formed by sputtering or electron beam evaporation.
  • the material for forming the substrate 110 of the submount 100 is not limited to silicon.
  • the substrate 110 may be formed of any of silicon, glass and silicon carbide.
  • the silicon wafer 201 is divided by expanding the silicon wafer 201. That is, the silicon wafer 201 is divided by stealth dicing.
  • Such an individualization process according to the present embodiment will be described using the drawings.
  • FIG. 6 is a plan view showing the modified region 211 of the silicon wafer 201 according to the present embodiment.
  • FIG. 7 is a cross-sectional view showing the singulation step of the silicon wafer 201 according to the present embodiment. A VII-VII cross section of FIG. 6 is shown in FIG. Note that FIG. 7 shows the metal film 221 formed on the main surface of the silicon wafer 201.
  • the metal film 221 includes a first metal film 121 and a solder film 116.
  • the modified region 211 is formed at a position where the cross section of the silicon wafer 201 is to be divided. More specifically, modified regions 211 including minute cracks are formed at positions corresponding to the third surface 103 and the fourth surface 104 of the substrate 110 of the submount 100.
  • the modified region 211 is formed by irradiating the silicon wafer 201 with the processing laser 302 from the lower surface of the silicon wafer 201 (that is, the surface corresponding to the fifth surface of the substrate 110) as shown in FIG. Ru. That is, the irradiation position 303 of the processing laser 302 becomes the modified region 211.
  • the processing laser 302 may be a laser having a wavelength that transmits the silicon wafer 201 and may have sufficient power to form the modified region 211.
  • the surface roughness (arithmetic average roughness Ra) of the lower surface of the silicon wafer 201 in FIG. 7 corresponding to the fifth surface 105 is 0.2 ⁇ m or less, and silicon which is a material constituting the substrate 110 is It is exposed. As a result, the scattering of the processing laser on the incident surface of the silicon wafer 201 can be suppressed, and the quality of the parting can be further enhanced.
  • each modified region 211 corresponds to the third surface 103 and the fourth surface 104 of the substrate 110.
  • FIG. 8 is a perspective view showing the configuration of the submount 100 according to the present embodiment.
  • the outer edge portions 112 on the first cutout portion 113 a side, the fifth surface 105 side and the sixth surface 106 side are modified by the processing laser 302. It is an unqualityed area.
  • the inner region 111 of the outer edge portion 112 is a region modified by the processing laser 302.
  • the surface roughness of the outer edge portion 112 not modified with the processing laser is smaller than the surface roughness of the inner region 111.
  • the surface roughness (Ra) of the inner region 111 is about 1.0 ⁇ m or less
  • the surface roughness (Ra) of the outer edge portion 112 is about 0.2 ⁇ m or less.
  • the surface roughness of the third surface 103 and the fourth surface 104 corresponding to the division in the singulation can be reduced.
  • the fourth surface 104 also has an outer edge portion 112 and an inner region 111 in the same manner as the third surface 103.
  • the surface roughness of the third surface 103 and the fourth surface 104 divided by stealth dicing as described above is rougher than the surface roughness of the second surface 102 formed by etching.
  • the first surface 101 is a (100) surface of Si.
  • the second surface 102, the third surface 103, and the fourth surface 104 are each a ⁇ 100 ⁇ surface of Si or each a ⁇ 110 ⁇ surface of Si.
  • FIG. 9 is a plan view showing the shape of a silicon wafer 201 according to the present embodiment.
  • the notch shape 203 of the silicon wafer 201 has a parallel surface 407 parallel to the surface to be the second surface 102 of the substrate 110 and a curved surface 408.
  • the width a in the horizontal direction in FIG. 9 of the parallel surface 407 is larger than the variation width b of the irradiation position of the processing laser.
  • FIG. 10 is a plan view showing a force applied to the silicon wafer 201 when the silicon wafer 201 in which the modified region 211 according to the present embodiment is formed is divided.
  • FIG. 11 is a plan view showing a state in which the silicon wafer 201 according to the present embodiment is divided into the substrate 110.
  • the silicon wafer 201 can be divided on the surface along the modified region 211. That is, in the present embodiment, it is possible to realize the submount 100 in which the accuracy of the position of the dividing surface and the flatness of the dividing surface are excellent.
  • the substrate 110 of the submount 100 has a first notch 113 a and a second notch 113 b corresponding to the notch shape 203 of the silicon wafer 201.
  • the first notch 113 a and the second notch 113 b respectively have seventh surfaces 107 a and 107 b corresponding to the parallel surface 407 of the silicon wafer 201. That is, the submount 100 has a seventh surface 107a substantially parallel to the second surface 102 in the vicinity of the third surface 103 in the first notch 113a. Further, the submount 100 has a seventh surface 107 b substantially parallel to the second surface 102 in the vicinity of the fourth surface 104 in the second cutout portion 113 b.
  • the seventh position can be formed even when the irradiation position of the processing laser varies. It is possible to suppress separation at positions other than the surfaces 107a and 107b. That is, it is possible to realize the submount 100 in which the positional accuracy of the partial cross section and the flatness of the partial cross section are good.
  • the length in the horizontal direction of FIG. 11 of the seventh surfaces 107a and 107b is about 10 ⁇ m.
  • the first notch 113 a and the second notch 113 b respectively have curved surfaces 115 a and 115 b corresponding to the curved surface 408 of the silicon wafer 201.
  • the curved surfaces 115 a and 115 b have an arc shape when viewed in plan from the first surface 101 side of the submount 100. That is, the shape of the cross section parallel to the first surface 101 of the curved surfaces 115a and 115b is an arc shape.
  • the radius of the curved surfaces 115 a and 115 b is about 10 ⁇ m. By setting the radius to 5 ⁇ m or more, concentration of the tensile force at positions corresponding to the curved surfaces 115 a and 115 b can be suppressed more reliably when the silicon wafer 201 is divided.
  • the extension of the third surface 103 and the extension of the second surface 102 in plan view from the first surface 101 side. From the point of intersection P23 with the line, the side on the third surface side is separated by 10 ⁇ m or more, and the side on the second surface side is separated by 20 ⁇ m or more.
  • the solder film 116 disposed on the first surface 101 melts, the melted solder can be guided to the second notch portion 113 b, and therefore the solder overflows to the second surface 102. Can be suppressed. The effects will be described in detail later.
  • the cross sections of the first notch portion 113a and the second notch portion 113b parallel to the first surface 101 extend from the first surface 101 side to the fifth surface 105 side.
  • the shapes are substantially similar.
  • the correlation will be described below.
  • 12A and 12B respectively show the fourth surface of submount 100 when angle ⁇ 12 formed by first surface 101 and second surface 102 of submount 100 according to the present embodiment is 90 °. It is a side view which shows the outline of 104 and the 2nd field 102 typically. 13A and 13B respectively show the fourth surface of submount 100 when angle ⁇ 12 formed between first surface 101 and second surface 102 of submount 100 according to the present embodiment is larger than 90 °. It is a side view which shows the outline of 104 and the 2nd field 102 typically. As shown in the drawings, the angle ⁇ 13 between the first surface 101 and the third surface 103 is 90 ° in any of the examples.
  • the angle ⁇ A between the normal L5 of the fifth surface 105 of the substrate 110 and the second surface 102 is 0 °, and the normal L5 and the third surface 103
  • the formed angle ⁇ B is also 0 °.
  • the value of ⁇ A is, for example, as shown in FIG. 12A, the end of the second surface 102 on the first surface 101 side is outside the substrate 110 than the end on the fifth surface 105 side. If it is positive, it may be negative if it is inside.
  • the value of ⁇ B is also positive, when the end on the first surface 101 side of the third surface 103 is on the outer side of the substrate 110 than the end on the fifth surface 105 side. It may be negative if it is
  • FIG. 14A is a view showing a state immediately before mounting the semiconductor laser device 151 including the submount 100 according to the present embodiment on the slider 602 of the thermally assisted hard disk drive.
  • FIG. 14B is a view showing a state in which the semiconductor laser device 151 including the submount 100 according to the present embodiment is mounted on the slider 602 of the thermally assisted hard disk drive.
  • FIGS. 14A and 14B an example using the submount 100 with the angle ⁇ 12 of 90 ° is shown.
  • the semiconductor laser device 151 is mounted on the slider 602 so that the emission surface 153 of the semiconductor laser chip 152 is opposed to the near-field light generating element 614 included in the slider 602.
  • the second surface 102 of the submount 100 is used as a mounting surface for the slider 602 on which the solder 613 is disposed.
  • the surface roughness 191 is generated on the second surface 102, the bonding strength between the second surface 102 and the slider 602 due to the solder 613 is reduced.
  • the second surface 102 is mounted by roughening the surface roughness of the second surface 102. There is a problem when making it a face.
  • FIGS. 15A and 15B respectively show the fourth surface 104 of the submount 100 when the angle ⁇ 12 between the first surface 101 and the second surface 102 of the submount 100 according to the present embodiment is an acute angle.
  • FIG. 7 is a side view schematically showing an outline of the second surface 102.
  • the angle ⁇ 13 between the first surface 101 and the third surface 103 is 90 °.
  • the second surface 102 is inclined with respect to the direction of the normal L5 of the fifth surface 105, and the angle ⁇ A is positive.
  • an angle ⁇ B between the normal line L5 and the third surface 103 is 0 °. That is, in this case, the inclination of the second surface 102 with respect to the normal L5 direction of the fifth surface 105 is larger than the inclination of the third surface 103 with respect to the normal L5 direction of the fifth surface.
  • FIG. 16 is a three-sided view showing an outline of a semiconductor laser device 151 provided with a submount 100 according to the present embodiment.
  • the semiconductor laser device 151 includes a submount 100 and a semiconductor laser chip 152 mounted on the submount 100.
  • the emission surface 153 of the semiconductor laser chip 152 is disposed on the second surface 102 side of the submount 100, the rear end surface 154 opposed to the emission surface 153 is disposed on the sixth surface 106 side, and the first surface
  • the semiconductor laser chip 152 is mounted on a position 101 closer to the fourth surface 104 than the third surface 103.
  • the semiconductor laser chip can be mounted on the end of the submount 100.
  • the angle ⁇ 12 between the first surface 101 and the second surface 102 of the submount 100 is an acute angle.
  • the second metal film 122 is formed on the second surface 102.
  • the first surface 101 of the submount 100 is provided with the semiconductor laser chip 152 via the first metal film 121 and the solder film 116.
  • the electrode 156 is bonded.
  • the surface facing the first surface 101 of the semiconductor laser chip 152 is bonded so as to be parallel to the first surface 101.
  • FIG. 17A is a view showing a state immediately before mounting the semiconductor laser device 151 shown in FIG. 16 on the slider 602 of the thermally assisted hard disk drive.
  • FIG. 17B is a diagram showing the semiconductor laser device 151 shown in FIG. 16 mounted on the slider 602 of the thermally assisted hard disk drive.
  • the emitting surface 153 of the semiconductor laser chip 152 is opposed to the near-field light generating element 614 included in the slider 602.
  • the semiconductor laser device 151 is mounted on the slider 602.
  • the second surface 102 of the submount 100 is used as a mounting surface on the slider 602 on which the solder 613 is disposed, with the second metal film 122 formed.
  • the bonding strength between the second surface 102 and the slider 602 by the solder 613 is good. Further, as shown in FIG.
  • FIG. 18 is a cross-sectional view showing a step of forming the second surface 102 and the sixth surface 106 by etching the silicon wafer 201 which is a base material of the submount 100 according to the present embodiment.
  • FIG. 18 shows the appearance of the cross section of the etching process at the position corresponding to XVIII-XVIII in FIG.
  • the silicon wafer 201 on which the resist 222 is formed is prepared, and as shown in the cross sectional view (b) Thus, the silicon wafer 201 is etched.
  • foreign matter 193 may exist on the silicon wafer 201.
  • Such foreign matter 193 tends to stay on the second surface 102 and the sixth surface 106, for example, when the angle ⁇ 12 between the first surface 101 and the second surface 102 is larger than 90 °.
  • surface roughness 191, vertical stripes 192 and the like are generated due to the foreign matter 193.
  • the vertical stripes 192 are not shown.
  • the angle ⁇ 12 is an acute angle
  • the foreign material 193 falls downward according to the gravity even if the foreign material 193 exists. For this reason, the foreign material 193 is difficult to stay on the second surface 102. Therefore, the foreign matter 193 can be prevented from affecting the surface roughness of the second surface 102 or the like.
  • the surface roughness is reduced by setting the dry etching conditions such that the average value of the in-plane variation of the silicon wafer 201 is in the range of 89.7 ° or more and smaller than 90 °.
  • the inventors have found in experiments that it can.
  • the surface roughness can be reduced even if ⁇ 12 is smaller than the above numerical value, the light utilization efficiency of the thermally assisted hard disk drive is lowered as described later.
  • First suppression means The first means for suppressing the influence of the inclination of the second surface 102 will be described. As a first suppression means, means for offsetting the inclination by the film thickness of the second metal film formed on the second surface 102 will be described using the drawings.
  • FIG. 19 is a side view showing the shape of the second metal film 122 in the submount 100 to which the first suppressing means according to the present embodiment is not applied.
  • FIG. 20 is a side view showing the shape of the second metal film 122a in the submount 100a to which the first suppression means according to the present embodiment is applied.
  • the second metal film 122 is formed on the second surface 102 with a substantially uniform film thickness.
  • the film thickness d1 of the end on the first surface 101 side of the second metal film 122 is substantially equal to the film thickness d2 of the end on the fifth surface 105 side of the second metal film 122. Therefore, an angle ⁇ 12 between the first surface 101 and the second surface 102 and an angle ⁇ 12a between the first surface 101 and the surface of the second metal film 122 are substantially the same.
  • the inclination ⁇ A of the second surface 102 with respect to the direction of the normal L5 of the fifth surface 105 is substantially the same as the inclination ⁇ A1 of the surface of the second metal film 122 with respect to the direction of the normal L5.
  • the submount 100a to which the first suppression means is applied has the second metal film 122a disposed on the second surface 102, and the second metal film 122a is The film thickness increases from the first surface 101 to the fifth surface 105. That is, the film thickness d1 of the end on the first surface 101 side of the second metal film 122a is smaller than the film thickness d2 of the end on the fifth surface 105 side of the second metal film 122a. Therefore, the angle ⁇ 12a between the first surface 101 and the surface of the second metal film 122a is larger than the angle ⁇ 12 between the first surface 101 and the second surface 102, and is closer to 90 °. . Further, the inclination ⁇ A1 of the second metal film 122a with respect to the normal L5 direction is smaller than the inclination ⁇ A of the second surface 102 with respect to the normal L5 direction of the fifth surface 105.
  • FIG. 21A is a view showing a state immediately before mounting the semiconductor laser chip 152 on the submount 100a according to the present embodiment.
  • FIG. 21B is a view showing a state in which the semiconductor laser chip 152 is mounted on the submount 100a according to the present embodiment.
  • the submount 100a is disposed on the heating stage 350.
  • the fifth surface 105 of the submount 100 a contacts the heating stage 350.
  • solder film 116 of submount 100a can be melted.
  • the semiconductor laser chip 152 is disposed above the submount 100 a while being held by the collet 311.
  • the posture that the electrode 156 of the semiconductor laser chip 152 faces the first surface 101 of the submount 100 a and the emission surface 153 of the semiconductor laser chip 152 is substantially parallel to the surface of the second metal film 122 a Is held by.
  • the average value of the in-plane variation of the silicon wafer 201 is about 89.9 °, and the minimum value of the entire in-plane variation is 89.4 ° or more, and the maximum value of ⁇ 12a is Is in the range of 90.4 ° or less.
  • the tilt angle of the collet is, for example, more than -1 ° and less than 1 °.
  • the semiconductor laser chip 152 is moved onto the solder film 116 in a melted state of the submount 100a while maintaining the above attitude. Subsequently, in a state where the electrode 156 of the semiconductor laser chip 152 is in contact with the melted solder film 116, the heating of the heating stage 350 is stopped to cool and solidify the solder film 116. Thus, a semiconductor laser device 151a as shown in FIG. 21B can be obtained. The structure of the semiconductor laser device 151a shown in FIG. 21B will be described using the drawings.
  • FIG. 22 is a three-sided view showing the structure of a semiconductor laser device 151a according to the present embodiment.
  • the semiconductor laser device 151a includes a submount 100a having a solder film 116 disposed on the first surface 101, and a solder film 116 on the first surface 101 of the submount 100a.
  • the emitting surface 153 of the semiconductor laser chip 152 is disposed on the second surface 102 side, and the surface of the second metal film 122 a and the emitting surface 153 are substantially parallel. .
  • the exit surface 153 and the surface of the second metal film 122a may be on the same plane.
  • the film thickness of the solder film 116 on the second surface 102 side is smaller than the film thickness of the solder film on the sixth surface 106 side.
  • FIG. 23A is a view showing a state immediately before mounting the semiconductor laser device 151a according to the present embodiment on the slider 602 of the thermally assisted hard disk drive.
  • FIG. 23B is a view showing a state in which the semiconductor laser device 151a according to the present embodiment is mounted on the slider 602 of the thermally assisted hard disk drive.
  • the emitting surface 153 of the semiconductor laser chip 152 is opposed to the near-field light generating element 614 included in the slider 602.
  • the semiconductor laser device 151 a is mounted on the slider 602.
  • the surface of the second metal film 122a of the submount 100a is used as a mounting surface to the slider 602 on which the solder 613 is disposed.
  • the surface of the second metal film 122 a is substantially parallel to the emission surface 153 of the semiconductor laser chip 152. For this reason, the space
  • the coupling efficiency between the laser emitted from the emission surface 153 and the near-field light generating element 614 can be enhanced. Therefore, the light utilization efficiency of the thermally assisted hard disk drive can be enhanced. That is, the power consumption of the thermally assisted hard disk drive can be reduced.
  • the influence of the inclination of the second surface 102 can be suppressed.
  • FIG. 24A and 24B are schematic cross-sectional views showing a method of forming the second metal film 122a and the second metal film 122 according to the present embodiment, respectively.
  • a second metal film 122a made of a metal material 232 is formed on the second surface 102 and the sixth surface 106 facing the through groove 202 of the silicon wafer 201 held by the base 240 by sputtering or electron beam evaporation.
  • the width X of the through groove 202 is appropriately set in accordance with the dimension of the submount 100 a and the like. For example, when the thickness (the dimension in the direction perpendicular to the first surface 101) of the submount 100a is about 200 ⁇ m, the width X of the through groove 202 may be about 20 ⁇ m or more and 200 ⁇ m or less.
  • Second suppression means The second means for suppressing the influence of the inclination of the second surface 102 will be described.
  • a second suppressing means means for mounting in a posture corresponding to the inclination of the second surface 102 when mounting an element on a submount will be described using the drawings.
  • FIG. 25A is a view showing a state immediately before mounting the semiconductor laser chip 152 on the submount 100 according to the present embodiment.
  • FIG. 25B is a view showing a state in which the semiconductor laser chip 152 is mounted on the submount 100 according to the present embodiment.
  • the present suppression means uses the submount 100 in which the second metal film 122 having a uniform film thickness is formed on the inclined second surface 102.
  • the submount 100 is disposed on the heating stage 350.
  • the fifth surface 105 of the submount 100 is in contact with the heating stage 350.
  • solder film 116 of submount 100 can be melted.
  • the semiconductor laser chip 152 is disposed above the submount 100 while being held by the collet 311.
  • the posture that the electrode 156 of the semiconductor laser chip 152 faces the first surface 101 of the submount 100 and the emission surface 153 of the semiconductor laser chip 152 is substantially parallel to the surface of the second metal film 122 Is held by. That is, as shown in FIG. 25A, the semiconductor laser chip 152 is held in an inclined posture.
  • the inclination angle of the semiconductor laser chip 152 that is, the inclination angle ⁇ D of the collet 311 is the angle ⁇ 12a between the first surface 101 of the submount 100 and the surface of the second metal film 122, and the semiconductor laser chip 152.
  • the angle ⁇ c between the upper surface 155 (surface on the rear side of the surface on which the electrode 156 is formed) and the exit surface 153 is obtained.
  • the semiconductor laser chip 152 is moved onto the solder film 116 in a melted state of the submount 100 while maintaining the above posture. Subsequently, in a state where the electrode 156 of the semiconductor laser chip 152 is in contact with the melted solder film 116, the heating of the heating stage 350 is stopped to cool and solidify the solder film 116.
  • a semiconductor laser device 151b in which the surface of the second metal film 122 and the emission surface 153 of the semiconductor laser chip 152 as shown in FIG. 25B are substantially parallel can be obtained.
  • the semiconductor laser device 151 b shown in FIG. 25B includes the submount 100 having the solder film 116 disposed on the first surface 101 and the solder film 116 on the first surface 101 of the submount 100. And a semiconductor laser chip 152 bonded via The emission surface 153 of the semiconductor laser chip 152 is disposed on the second surface 102 side, and the second surface 102 and the emission surface 153 are substantially parallel.
  • the mounting surface and the emission surface 153 can be made substantially parallel.
  • the film thickness of the solder film 116 is changed in the first direction D1. More specifically, in the semiconductor laser device 151b, the film thickness of the solder film 116 is small in the vicinity of the second surface 102 of the submount 100, and in the vicinity of the sixth surface 106, the film thickness of the solder film 116 is large. For this reason, for example, in the vicinity of the second surface 102, excess solder may flow out to the second surface 102 of the submount 100 or the like. Therefore, the configuration of a solder film for solving such a problem will be described with reference to the drawings.
  • FIG. 26A is a view showing a state immediately before mounting the semiconductor laser chip 152 on the submount 100 according to the present embodiment.
  • FIG. 26B is a view showing a state in which the semiconductor laser chip 152 is mounted on the submount 100 according to the present embodiment.
  • the submount 100 shown in FIG. 26A differs from the submount 100 shown in FIG. 25A in the configuration of the solder film 116x.
  • the submount 100 has a solder film 116x formed in a strip shape. Thereby, the amount of the solder film 116x can be freely changed according to the position. Therefore, the amount of solder film 116 x can be reduced at a position close to second surface 102 of submount 100, and the amount of solder film 116 x can be increased at a position close to sixth surface 106.
  • the semiconductor laser chip 152 By mounting the semiconductor laser chip 152 on the submount 100 via such a solder film 116x, the film thickness of the solder film 116 in the vicinity of the second surface 102 of the submount 100 as shown in FIG. 26B. In the vicinity of the sixth surface 106, the semiconductor laser device 151c having a large thickness of the solder film 116 can be obtained.
  • the semiconductor laser device 151c in which the surface of the second metal film 122 and the emission surface 153 of the semiconductor laser chip 152 are substantially parallel can be obtained.
  • the solder can be prevented from flowing out to the second surface 102 of the submount 100 or the like.
  • FIG. 27A is a view showing a state immediately before mounting the semiconductor laser device 151c according to the present embodiment on the slider 602 of the thermally assisted hard disk drive.
  • FIG. 27B is a view showing a state in which the semiconductor laser device 151c according to the present embodiment is mounted on the slider 602 of the thermally assisted hard disk drive.
  • the semiconductor laser device 151c is mounted on the slider 602 so that the emission surface 153 of the semiconductor laser chip 152 faces the near-field light generating element 614 included in the slider 602.
  • the second surface 102 of the submount 100 is used as a mounting surface on the slider 602 on which the solder 613 is disposed, with the second metal film 122 formed.
  • the semiconductor laser device 151 c is held by the collet 311 such that the surface of the second metal film 122 is parallel to the surface of the slider 602.
  • the inclination angle ⁇ E of the collet 311 is obtained from an angle ⁇ 12a formed by the first surface 101 of the submount 100 and the surface of the second metal film 122.
  • the semiconductor laser device 151c can be mounted on the slider 602.
  • the semiconductor laser device 151c since the surface of the second metal film 122 formed on the second surface 102 and the emission surface 13 are substantially parallel, the distance between the emission surface 153 and the near-field light generating element 614 is narrowed. be able to. Thereby, the coupling efficiency between the laser emitted from the emission surface 153 and the near-field light generating element 614 can be enhanced. Therefore, the light utilization efficiency of the thermally assisted hard disk drive can be enhanced. That is, the power consumption of the thermally assisted hard disk drive can be reduced.
  • the influence of the inclination of the second surface 102 can be suppressed.
  • FIG. 28 is a trihedral view showing a structure of a semiconductor laser device 1151 of a comparative example.
  • FIG. 28 shows a plan view (a), a side view (b) and a front view (c) of the semiconductor laser device 1151 of the comparative example.
  • FIG. 29 is a trihedral view showing a structure of a semiconductor laser device 151a according to the present embodiment.
  • FIG. 29 shows a plan view (a), a side view (b) and a front view (c) of a semiconductor laser device 151a according to the present embodiment.
  • 28 and 29 show a state in which the solder 312 has flowed out of the solder film 116.
  • the semiconductor laser device 1151 of the comparative example shown in FIG. 28 is different from the semiconductor laser device 151a according to the present embodiment in that the notch structure is not formed in the substrate 1110, and the other points are the same.
  • the solder 312 may flow onto the second metal film 122.
  • the second metal film 122 is a surface to be a mounting surface for the slider 602 or the like of the semiconductor laser device 1151. Therefore, the solder 312 can adversely affect the mounting of the semiconductor laser device 1151.
  • the semiconductor laser chip 152 is joined to the submount 100a and the first surface 101 of the submount 100a via the first metal film 121 and the solder film 116.
  • the semiconductor laser chip 152 is disposed such that the emission surface 153 is on the second surface 102 side.
  • the semiconductor laser chip 152 is disposed across at least one of the first notch 113 a and the second notch 113 b when viewed in plan from the first surface 101 side.
  • the semiconductor laser chip 152 is disposed across the second notch 113b when viewed in plan from the first surface 101 side. Be done.
  • the melted solder 312 mainly flows out to the second notch portion 113b and hardly flows out onto the second metal film 122a.
  • the melted solder 312 spreads to the curved surface 115b at the second notch 113b, but does not contact the second metal film 122a. That is, in the semiconductor laser device 151a according to the present embodiment, the solder film formed of the solder 312 is disposed in the second notch 113b, and not disposed on the second metal film 122a. Therefore, the adverse effect of the solder 312 on the mounting of the semiconductor laser device 151a can be suppressed. That is, deterioration in the quality of the second surface 102 of the submount 100a can be suppressed.
  • the solder 312 flows out to the second cutout 113b.
  • the configuration of the semiconductor laser device according to the aspect of the present invention is not limited to this.
  • the solder 312 may flow into the first notch 113a. That is, in the semiconductor laser device according to the present embodiment, the solder film formed by the solder 312 is disposed in at least one of the first notch 113 a and the second notch 113 b.
  • the thermally assisted hard disk drive according to the present embodiment includes the above-described semiconductor laser devices and a slider 602 on which the semiconductor laser device is mounted.
  • a thermally assisted hard disk drive will be briefly described with reference to the drawings.
  • FIG. 30 is a plan view of the slider 602 on which the semiconductor laser device 151 according to the present embodiment is mounted.
  • each semiconductor laser device is disposed at the end of the slider 602. Further, although not shown in FIG. 30, the emission surface 153 of each semiconductor laser device is disposed to face the mounting surface of the slider 602. Also, the second surface 102 of the submount provided in each semiconductor laser device is the mounting surface for the slider 602. Therefore, since the semiconductor laser device can be mounted on the second surface 102 with a small surface roughness, the bonding strength between each semiconductor laser device and the slider 602 can be increased.
  • the submount according to the present embodiment is different from the submount 100 according to the first embodiment or the like in the configuration of the solder film.
  • the solder film 116 is uniformly provided, as in the case of the submount 100 described above, when the element is bonded to the melted solder film 116, the solder is from the bonding region between the submount 100 and the element On the outside, it may flow out to the second surface 102, especially when the amount of solder increases.
  • the film thickness or width of the solder film is reduced to suppress the flow of the solder, the bonding strength is reduced. Therefore, in the present embodiment, a submount having a solder film in which solder does not easily flow out and which has high bonding strength will be described using the drawings.
  • FIG. 31 is a view showing the shape of the solder film 116a of the submount 500a according to the present embodiment.
  • FIG. 32 is a diagram showing the shape of the solder film 116b of the submount 500b according to the first modification of the present embodiment.
  • FIG. 33 is a view showing the shape of the solder film 116c of the submount 500c according to the second modification of the present embodiment. 31 to 33, a plan view (a) and a front view (b) are shown.
  • the submount 500a according to the present embodiment differs from the submount 100 according to the first embodiment in the configuration of the solder film 116a, and is identical in the other configuration.
  • the submount 500a has a patterned solder film 116a. More specifically, as shown in the plan view (a) of FIG. 31, in the submount 500a, the solder film 116a has a plurality of strip portions arranged in parallel. Therefore, according to the solder film 116a, the amount of solder can be reduced more than that of the solder film 116 according to the first embodiment, so that the flow of solder can be suppressed.
  • the 31 can be made equal to that of the solder film 116 according to the first embodiment. Further, by arranging in parallel in the width direction of the plurality of strip portions, it is possible to suppress the decrease in bonding strength due to the small width of each of the plurality of strip portions.
  • the formation method of the patterned solder film 116a is not particularly limited, for example, it can be formed using a lift-off method. That is, a patterned resist film is formed on the surface on which the solder film 116a is to be formed, and a solder film is uniformly formed on the surface on which the resist film is formed, and then the resist film is formed on the resist film. Solder may be removed.
  • the width and interval of the strip-shaped portions may be set appropriately in accordance with the size of the junction region between the submount and the element.
  • the plurality of band-shaped portions may be a band-shaped pattern arranged in parallel with at least three or more. The positions of the end portions of the plurality of strip-shaped portions on the second surface 102 side are closer to the fourth surface 104 side from the second surface 102 along the shape of the second notch 113 b. It may be separated.
  • the plurality of strip-shaped portions extend in the direction parallel to the first direction D1.
  • the direction in which the solder contained in the solder film 116a flows when the solder film 116a melts is mainly the direction perpendicular to the first direction D1. For this reason, it can suppress that a solder flows into the 2nd surface 102 used as the mounting surface of submount 500a.
  • the plurality of strip portions of the solder film may not necessarily extend in a direction parallel to the first direction D1.
  • the plurality of strip portions may extend in the direction intersecting the first direction D1.
  • the plurality of strip portions extend in the direction perpendicular to the first direction D1.
  • the plurality of strip portions of the solder film may not necessarily extend in only one direction, but may extend in more than one direction.
  • the solder film 116c has a solder film 116c1 having a first band-like portion extending in a direction parallel to the first direction D1.
  • a solder film 116c2 having a second band-like portion extending in a direction intersecting the first direction D1.
  • the second band-shaped portion of the solder film 116c2 according to the second modification extends in the direction perpendicular to the first direction D1.
  • the solder film 116c according to the second modification at least a portion of the first band-shaped portion is disposed closer to the second surface 102 than the second band-shaped portion.
  • the first band-shaped portion extending in the direction parallel to the first direction D1 is disposed on the second surface 102 side, whereby the flow of the solder to the second surface 102 can be suppressed.
  • the widths of the plurality of strip-shaped portions may not necessarily be uniform.
  • an example in which the widths of the plurality of band-like portions are not uniform will be described using the drawings.
  • FIG. 34A is a plan view showing the shape of a solder film 116d of a submount 500d according to Variation 3 of the present embodiment.
  • FIG. 34B is a plan view showing the shape of the solder film 116e of the submount 500e according to Variation 4 of the present embodiment.
  • FIG. 34C is a plan view showing the shape of the solder film 116f of the submount 500f according to the fifth modification of the present embodiment. In each of FIGS. 34A to 34C, only the portion where the solder film is formed and the periphery thereof are shown among the submounts.
  • each of the plurality of strip-shaped portions of the solder film 116d according to the third modification of the present embodiment extends in a direction parallel to the first direction, and the width is not uniform.
  • the width at the longitudinal center of each strip portion is greater than the width at the longitudinal ends.
  • each of the plurality of strip-shaped portions of the solder film 116d has a tapered shape in which the width narrows outward from the center of the arranged region of the plurality of strip-shaped portions.
  • the width of each band-like portion increases as it approaches the center of the region where the solder film 116d is formed.
  • the amount of solder in the vicinity of the end of the solder film 116d can be reduced, so that the flow of solder can be suppressed.
  • the width of the band-like portion in the central portion of the solder film 116d is larger than the width of the band-like portion at the end, the air gap in the joint portion can be reduced. Therefore, according to the solder film 116d according to the present modification, the bonding strength can be increased.
  • the plurality of strip-like portions are the same as in the first and second modifications of the present embodiment.
  • the extending direction is not particularly limited.
  • the plurality of strip portions may extend in the direction perpendicular to the first direction.
  • the positions of the end portions of the plurality of strip-shaped parts on the fourth surface 104 side are closer to the second surface 102 side from the fourth surface 104 along the shape of the second notch 113 b. It may be separated.
  • the plurality of strip-shaped portions may extend in a plurality of directions.
  • the solder film 116f includes a solder film 116f1 having a plurality of strip portions extending in parallel to the first direction D1, and a solder film 116f2 having a plurality of strip portions extending in a direction intersecting the first direction D1. And.
  • FIG. 35 is a plan view showing the shape of the solder film 116g of the submount 500g according to the sixth modification of the present embodiment.
  • the solder film 116g of the submount 500g according to the sixth modification includes solder films 116g0, 116g1 and 116g2.
  • the solder film 116g0 is a sheet-like solder film disposed at the center of the region where the solder film 116g is to be formed.
  • the solder film 116g1 is disposed outside the solder film 116g0 in the region where the solder film 116g is to be formed, and has a plurality of strip-shaped portions extending in parallel with the first direction D1.
  • the solder film 116g2 is disposed outside the solder film 116g0 in the region where the solder film 116g is to be formed, and has a plurality of strip portions extending in the direction perpendicular to the first direction D1. Further, at least a part of the solder films 116g1 and 116g2 is connected to the solder film 116g0.
  • the solder film 116g As in the case of the solder film according to the present embodiment and each modification, the flow of solder can be suppressed, and the bonding strength can be increased. Further, in the present modification, since the sheet-like solder film 116g0 is disposed at the center of the region where the solder film 116g is formed, the bonding strength can be further enhanced. In addition, since the solder film 116g0 is disposed at the center of the region where the solder film 116g is formed, the solder of the solder film 116g0 hardly flows out.
  • each submount having a patterned solder film had a notch structure.
  • a submount having a solder film which suppresses solder flow-out and has a good bonding strength does not necessarily have to have a notch structure.
  • a submount having a patterned solder film and having no notch structure will be described with reference to the drawings.
  • FIG. 36 is a view showing the structure of a submount 700a according to the first modification.
  • a plan view (a) and a front view (b) are shown.
  • a submount 700a includes a substrate 710 having a first surface 701 on which an element is mounted.
  • the substrate 710 is disposed in a first direction D1 in the in-plane direction of the first surface 701, and a second surface 702 substantially perpendicular to the first surface 701, and a first surface 701 and a second surface 702.
  • a fourth surface 704 that is substantially perpendicular to the first surface 701 and the second surface 702 and that faces the third surface 703, and a second surface 702.
  • a fifth surface 705 substantially perpendicular to the third surface 703 and the fourth surface 704 and facing the first surface 701, and a sixth surface 706 facing the second surface 702; Have.
  • the submount 700 a has a first metal film 721 and a patterned solder film 716 a on the first surface 701.
  • the solder film 716 is disposed on the first metal film 721.
  • the first metal film 721 has the same configuration as the first metal film 121 according to the second embodiment.
  • a strip-shaped metal film removing portion 717 extending in the first direction D1 is formed in the first metal film 721.
  • the metal film removing unit 717 has the same configuration as the metal film removing unit 117 according to the second embodiment.
  • the submount 700a is different from the submount 500a according to the second embodiment in that it has no cutout structure, and is otherwise identical.
  • the solder film 716a has the same shape as the solder film 116a according to the second embodiment. Therefore, according to the solder film 716a, the amount of solder can be reduced more than that of the solder film 116 according to the first embodiment, so that the flow of solder can be suppressed.
  • the film thickness d of the solder film 716a shown in the front view (b) of FIG. 36 can be made equal to that of the solder film 116 according to the first embodiment. Further, by arranging the plurality of strip-shaped portions in the width direction, it is possible to suppress a decrease in bonding strength due to the small width of each of the plurality of strip-shaped portions.
  • the configuration of the patterned solder film of the submount 700a according to the first modification is not limited to the configuration of the solder film 716a.
  • the submount 700a an example in which the configuration of the solder film is changed will be described using the drawings.
  • FIG. 37 is a view showing the structure of a submount 700b according to the second modification.
  • FIG. 38 is a view showing the structure of a submount 700c according to the third modification.
  • a plan view (a) and a front view (b) are shown.
  • the submount 700b according to the second modification shown in FIG. 37 has a solder film 716b. Since the solder film 716b has the same shape as the solder film 116b according to the first modification of the second embodiment, the same effect as the solder film 116b can be obtained.
  • the submount 700c according to the third modification shown in FIG. 38 has a solder film 716c. Since the solder film 716c has the same shape as the solder film 116c according to the second modification of the second embodiment, the same effect as the solder film 116c can be obtained.
  • the submount 100 in which the surface roughness of the second surface 102 used as the mounting surface is reduced has a notch structure.
  • the submount capable of reducing the surface roughness of the mounting surface does not necessarily have to have the notch structure.
  • a submount capable of reducing the surface roughness of the mounting surface and having no notch structure will be described with reference to the drawings.
  • FIG. 39 is a view showing the structure of a submount 700d according to the fourth modification.
  • FIG. 39 shows a plan view (a), a front view (b) and a side view (c) of a submount 700d according to the fourth modification.
  • a submount 700d according to the fourth modification includes a substrate 710a having a first surface 701 on which an element is mounted.
  • the substrate 710 a is disposed in a first direction D 1 in the in-plane direction of the first surface 701, and a second surface 702 substantially perpendicular to the first surface 701, and the first surface 701 and the second surface 702.
  • a fourth surface 704 that is substantially perpendicular to the first surface 701 and the second surface 702 and that faces the third surface 703, and a second surface 702.
  • the second surface 702 is inclined with respect to the direction of the normal L5 of the fifth surface 705.
  • the substrate 710a of the submount 700d is different from the substrate 110 such as the submount 100a according to the first embodiment in that it has no cutout structure, and is otherwise identical. Therefore, in the submount 700d according to the fourth modification, as with the submount 100a according to the first embodiment, since the second surface 702 having a small surface roughness is used, the second surface 702 is used as a mounting surface. Can increase the bonding strength.
  • the submount 700d has a solder film 716c patterned in the same manner as the solder film 716c of the submount 700c according to the third modification.
  • the solder film 716 of the submount 700d can exhibit the same effect as the solder film 716c of the submount 700c according to the third modification.
  • the present disclosure also includes a semiconductor laser device including the submounts according to the first to fourth modifications and the semiconductor laser chip 152.
  • the present disclosure also includes a thermally assisted hard disk drive including the submount according to the first to fourth modifications, the semiconductor laser chip 152, and the slider 602.
  • the shape of the curved surface in the notch structure is not necessarily limited to the cross-sectional arc shape.
  • the curved surface 115 may have a parabola cross section.
  • the first metal film 121 disposed on the first surface 101 is not limited to the configuration of each of the above embodiments.
  • FIG. 40 is a three-sided view showing an outline of a semiconductor laser device 151 d provided with a submount 100 d according to the first modification of the first embodiment.
  • the semiconductor laser device 151d shown in FIG. 40 differs from the semiconductor laser device 151 according to the first embodiment in the configuration of the first metal film 121c of the submount 100d, and is identical in the other points.
  • the first metal film 121c has a notch 121C at its outer edge in a plan view.
  • the shape of the notch 121C is not particularly limited, but in the present modification, it is a rectangular shape.
  • the submount according to the present disclosure is particularly applicable to a semiconductor laser device and a thermally assisted hard disk drive which require a bonding strength with a semiconductor laser chip.
  • Submount 101 701 first surface 102, 702 second surface 103, 703 third surface 104, 704 fourth surface 105, 705 fifth surface 106, 706 sixth surface 107a, 107b seventh surface 110, 710, 710a, 1110 substrate 111 inner region 112 outer edge portion 113a first notch 113b Second notch 114a, 114b Concave surface 115a, 115b Curved surface 116, 116a, 116b, 116c, 116c1, 116c2, 116d, 116e, 116f, 116f1, 116f2, 116g, 116g0, 116g1, 116g2, 116x, 716a, 7 6b, 716c solder film 117, 717 metal film removing portion 121, 121c, 721 first metal film 121C notch 122, 122a

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Lasers (AREA)
  • Magnetic Heads (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

サブマウント(100)は、基板(110)を備え、基板(110)は、第1の面(101)と、第1の面(101)と略垂直な第2の面(102)と、第1の面(101)及び第2の面(102)と略垂直な第3の面(103)と、第1の面(101)及び第2の面(102)と略垂直であり、かつ、第3の面(103)と対向する第4の面(104)と、第2の面(102)、第3の面(103)及び第4の面(104)と略垂直であり、かつ、第1の面(101)と対向する第5の面(105)と、第2の面(102)と対向する第6の面(106)と、第2の面(102)と第3の面(103)とが隣接する部分に形成された第1の切り欠け部(113a)と、第2の面(102)と第4の面(104)とが隣接する部分に形成された第2の切り欠け部(113b)とを有し、第1の切り欠け部(113a)及び第2の切り欠け部(113b)は、各々、曲面を含む凹面を有する。

Description

サブマウント、半導体レーザ装置及び熱アシストハードディスク装置
 本開示は、サブマウント、当該サブマウントを備える半導体レーザ装置、及び、当該半導体レーザ装置を備える熱アシストハードディスク装置に関する。
 従来、半導体レーザチップなどの素子を搭載するため基板を備えるサブマウントが用いられている。このようなサブマウントは、一般に、平板状の基板を、ダイシングブレードなどを用いて分断することによって形成されている。このように形成されるサブマウントにおいて、分断時にバリが発生し得る。そのため、サブマウントに発生するバリの問題を解消するための技術が提案されている(例えば、特許文献1など参照)。
 特許文献1に開示されたサブマウントの製造方法においては、サブマウントの分断面と、当該分断面と隣接した面との稜線部に切り欠け部を形成することによって、分断面にバリが発生した場合においても、バリを切り欠け部内に収めようとしている。
特開2016-103564号公報
 しかしながら、特許文献1に開示されたサブマウントの製造方法においても、バリの問題を十分に解消できない場合がある。例えば、分断時に切り欠け部の底に位置する谷状の部分に力が集中し、当該部分でサブマウントが分断される場合がある。このため、サブマウントの分断面を精度よくコントロールできず、所望の分断面の位置及び平坦度を実現できないという問題がある。
 本開示は、このような課題を解決するためになされたものであり、分断面の位置の精度及び分断面の平坦度が良好なサブマウント等を提供することを目的とする。
 上記目的を達成するために、本開示に係るサブマウントは、素子を搭載する第1の面を有する基板を備えるサブマウントであって、前記基板は、前記第1の面の面内方向の第1の方向に配置され、前記第1の面と略垂直な第2の面と、前記第1の面及び前記第2の面と略垂直な第3の面と、前記第1の面及び前記第2の面と略垂直であり、かつ、前記第3の面と対向する第4の面と、前記第2の面、前記第3の面及び前記第4の面と略垂直であり、かつ、前記第1の面と対向する第5の面と、前記第2の面と対向する第6の面と、前記第2の面と前記第3の面とが隣接する部分に形成された第1の切り欠け部と、前記第2の面と前記第4の面とが隣接する部分に形成された第2の切り欠け部とを有し、前記第1の切り欠け部及び前記第2の切り欠け部は、曲面を含む凹面を有する。
 本開示によれば、分断面の位置の精度及び分断面の平坦度が良好なサブマウント等を提供できる。
図1は、実施の形態1に係るサブマウントの概要を示す斜視図である。 図2は、実施の形態1に係る半導体レーザ装置の概要を示す斜視図である。 図3は、実施の形態1に係る熱アシストハードディスク装置の概要を示す模式図である。 図4は、実施の形態1に係る熱アシストハードディスク装置における半導体レーザ装置及びスライダの位置関係を示す平面図である。 図5は、実施の形態1に係るシリコンウェハのエッチング処理後の状態を示す平面図である。 図6は、実施の形態1に係るシリコンウェハの改質領域を示す平面図である。 図7は、実施の形態1に係るシリコンウェハの個片化工程を示す断面図である。 図8は、実施の形態1に係るサブマウントの構成を示す斜視図である。 図9は、実施の形態1に係るシリコンウェハの形状を示す平面図である。 図10は、実施の形態1に係る改質領域が形成されたシリコンウェハを分断する際に、シリコンウェハに加わる力を示す平面図である。 図11は、実施の形態1に係るシリコンウェハを基板に分断した状態を示す平面図である。 図12Aは、実施の形態1に係るサブマウントの第1の面と第2の面とのなす角が90°である場合のサブマウントの第4の面の概要を模式的に示す側面図である。 図12Bは、実施の形態1に係るサブマウントの第1の面と第2の面とのなす角が90°である場合のサブマウントの第2の面の概要を模式的に示す側面図である。 図13Aは、実施の形態1に係るサブマウントの第1の面と第2の面とのなす角が90°より大きい場合のサブマウントの第4の面の概要を模式的に示す側面図である。 図13Bは、実施の形態1に係るサブマウントの第1の面と第2の面とのなす角が90°より大きい場合のサブマウントの第2の面の概要を模式的に示す側面図である。 図14Aは、実施の形態1に係るサブマウントを備える半導体レーザ装置を熱アシストハードディスク装置のスライダに実装する直前の状態を示す図である。 図14Bは、実施の形態1に係るサブマウントを備える半導体レーザ装置を熱アシストハードディスク装置のスライダに実装した状態を示す図である。 図15Aは、実施の形態1に係るサブマウントの第1の面と第2の面とのなす角が鋭角である場合のサブマウントの第4の面の概要を模式的に示す側面図である。 図15Bは、実施の形態1に係るサブマウントの第1の面と第2の面とのなす角が鋭角である場合のサブマウントの第2の面の概要を模式的に示す側面図である。 図16は、実施の形態1に係るサブマウントを備える半導体レーザ装置の外形を示す三面図である。 図17Aは、図16に示される半導体レーザ装置を熱アシストハードディスク装置のスライダに実装する直前の状態を示す図である。 図17Bは、図16に示される半導体レーザ装置を熱アシストハードディスク装置のスライダに実装した状態を示す図である。 図18は、実施の形態1に係るサブマウントの母材であるシリコンウェハ201をエッチングすることによって、第2の面及び第6の面を形成する工程を示す断面図である。 図19は、実施の形態1に係る第1の抑制手段を施していないサブマウントにおける第2の金属膜の形状を示す側面図である。 図20は、実施の形態1に係る第1の抑制手段を施したサブマウントにおける第2の金属膜の形状を示す側面図である。 図21Aは、実施の形態1に係るサブマウントに半導体レーザチップを実装する直前の状態を示す図である。 図21Bは、実施の形態1に係るサブマウントに半導体レーザチップを実装した状態を示す図である。 図22は、実施の形態1に係る半導体レーザ装置の構造を示す三面図である。 図23Aは、実施の形態1に係る半導体レーザ装置を熱アシストハードディスク装置のスライダに実装する直前の状態を示す図である。 図23Bは、実施の形態1に係る半導体レーザ装置を熱アシストハードディスク装置のスライダに実装した状態を示す図である。 図24Aは、実施の形態1に係る第2の金属膜の形成方法を示す模式的な断面図である。 図24Bは、実施の形態1に係る第2の金属膜の形成方法を示す模式的な断面図である。 図25Aは、実施の形態1に係るサブマウントに半導体レーザチップを実装する直前の状態を示す図である。 図25Bは、実施の形態1に係るサブマウントに半導体レーザチップを実装した状態を示す図である。 図26Aは、実施の形態1に係るサブマウントに半導体レーザチップを実装する直前の状態を示す図である。 図26Bは、実施の形態1に係るサブマウントに半導体レーザチップを実装した状態を示す図である。 図27Aは、実施の形態1に係る半導体レーザ装置を熱アシストハードディスク装置のスライダに実装する直前の状態を示す図である。 図27Bは、実施の形態1に係る半導体レーザ装置を熱アシストハードディスク装置のスライダに実装した状態を示す図である。 図28は、比較例の半導体レーザ装置の構造を示す三面図である。 図29は、実施の形態1に係る半導体レーザ装置の構造を示す三面図である。 図30は、実施の形態1に係る半導体レーザ装置が実装されたスライダの平面図である。 図31は、実施の形態2に係るサブマウントのはんだ膜の形状を示す図である。 図32は、実施の形態2の変形例1に係るサブマウントのはんだ膜の形状を示す図である。 図33は、実施の形態2の変形例2に係るサブマウントのはんだ膜の形状を示す図である。 図34Aは、実施の形態2の変形例3に係るサブマウントのはんだ膜の形状を示す平面図である。 図34Bは、実施の形態2の変形例4に係るサブマウントのはんだ膜の形状を示す平面図である。 図34Cは、実施の形態2の変形例5に係るサブマウントのはんだ膜の形状を示す平面図である。 図35は、実施の形態2の変形例6に係るサブマウントのはんだ膜の形状を示す平面図である。 図36は、変形例1に係るサブマウントの構造を示す図である。 図37は、変形例2に係るサブマウントの構造を示す図である。 図38は、変形例3に係るサブマウントの構造を示す図である。 図39は、変形例4に係るサブマウントの構造を示す図である。 図40は、実施の形態1の変形例1に係るサブマウントを備える半導体レーザ装置の外形を示す三面図である。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、並びに、ステップ(工程)及びステップの順序などは、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺などは必ずしも一致していない。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 (実施の形態1)
 [1-1.サブマウントの概要]
 まず、実施の形態1に係るサブマウントの概要について図面を用いて説明する。
 図1は、本実施の形態に係るサブマウント100の概要を示す斜視図である。
 本実施の形態に係るサブマウント100は、半導体レーザチップなどの素子を搭載するための基板110を備える部材である。
 基板110は、直方体状の部材であり、本実施の形態では、Si基板である。基板110の各辺の寸法は、例えば、0.1mm以上、1mm以下程度である。
 図1に示されるように、基板110は、第1の面101と、第2の面102と、第3の面103と、第4の面104と、第5の面105と、第6の面106と、第1の切り欠け部113aと、第2の切り欠け部113bとを有する。
 第1の面101は、半導体レーザチップなどの素子を搭載する面である。第2の面102は、第1の面101の面内方向の第1の方向D1に配置され、第1の面101と略垂直な面である。第3の面103は、第1の面101及び第2の面102と略垂直な面である。第4の面104は、第1の面101及び第2の面102と略垂直であり、かつ、第3の面103と対向する面である。第5の面105は、第2の面102、第3の面103及び第4の面104と略垂直であり、かつ、第1の面101と対向する面である。第6の面106は、第2の面102と対向する面である。
 ここで、略垂直とは、概ね垂直であることを意味し、例えば、85°以上、95°以下程度であることを意味する。
 第1の切り欠け部113aは、第2の面102と第3の面103とが隣接する部分に形成された凹状の部分である。第2の切り欠け部113bは、第2の面102と第4の面104とが隣接する部分に形成された凹状の部分である。第1の切り欠け部113a及び第2の切り欠け部113bは、それぞれ、曲面115aを含む凹面114a及び曲面115bを含む凹面114bを有する。
 本実施の形態では、サブマウント100は、第1の面101上に配置される第1の金属膜121、及び、はんだ膜116を有する。はんだ膜116は、第1の金属膜121上に配置される。これにより、半導体レーザチップなどの素子をはんだ膜116を介して接合することができる。
 第1の金属膜121の構成は、特に限定されない。第1の金属膜121は、例えば、基板110側からTi、Pt及びAuが積層された金属膜である。Ti、Pt及びAuの各層の膜厚は、例えば、0.05μm以上、1μm以下程度である。Ti、Pt及びAuの各層は、それぞれ、密着膜、拡散防止膜及び電極膜として機能する。
 また、本実施の形態では、第1の金属膜121には、第1の方向D1に延びる帯状の金属膜除去部117が形成されている。金属膜除去部117は、第1の金属膜121の一部を除去した部分である。本実施の形態では、金属膜除去部117は、第1の金属膜121のうち、Au層が除去されている。はんだ膜116は、第1の金属膜121上の金属膜除去部117に対して第4の面104側に配置されている。これにより、素子をサブマウント100に接合するためにはんだ膜116を熔融した場合に、金属膜除去部117を超えてはんだ膜116が第3の面103側に流れることを抑制できる。
 また、はんだ膜116は、第1の面101上の第4の面104側の位置に配置される。言い換えると、第1の面101を第2の面102に対して垂直な線分によって均等な面積を有するように分割された第3の面103側の第1の領域R1と第4の面104側の第2の領域R2とにおいて、はんだ膜116が第1の領域R1より第2の領域R2により多く配置される。これにより、サブマウント100に素子をオフセットして配置できる。
 また、サブマウント100は、第2の面102上に配置される第2の金属膜122を有する。これにより、基板110の第2の面102をはんだなどを介して他の部材に接合できる。第2の金属膜122の構成は、特に限定されない。第2の金属膜122は、例えば、第1の金属膜121と同様の構成を有してもよい。
 基板110の第1の切り欠け部113a及び第2の切り欠け部113bなどについては、後で詳述する。
 なお、以降の記載で、サブマウントの第1の面101、第2の面102、第3の面103、第4の面104、第5の面105、第6の面106、第1の切り欠け部113aまたは第2の切り欠け部113bと記載する場合であっても、第1の面101、第2の面102、第3の面103、第4の面104、第5の面105、第6の面106、第1の切り欠け部113aまたは第2の切り欠け部113bは、サブマウントの備えた基板の有する構成を示す。
 [1-2.半導体レーザ装置の概要]
 次に、本実施の形態に係る半導体レーザ装置の概要について説明する。以下では、上記サブマウント100を用いる半導体レーザ装置について、図面を用いて説明する。
 図2は、本実施の形態に係る半導体レーザ装置151の概要を示す斜視図である。図2に示されるように、本実施の形態に係る半導体レーザ装置151は、サブマウント100と、サブマウント100の第1の面101上にはんだ膜116を介して接合された半導体レーザチップ152とを備える。
 半導体レーザチップ152は、サブマウント100の第1の面に搭載される素子の一例である。半導体レーザチップ152は、例えば、ガリウム砒素、又は、窒化物半導体を含む公知の半導体レーザチップである。本実施の形態では、半導体レーザチップ152の第1の方向D1における長さが200μm以上、300μm以下程度である。サブマウント100の第1の面101の面内方向であって、第1の方向D1と垂直な方向における半導体レーザチップの長さは、100μm以上、200μm以下程度である。また、半導体レーザチップ152の出射面153は、サブマウント100の第2の面102側に配置される。
 半導体レーザ装置151については、後で詳述する。
 [1-3.熱アシストハードディスク装置の概要]
 次に、本実施の形態に係る熱アシストハードディスク装置の概要について図面を用いて説明する。
 図3は、本実施の形態に係る熱アシストハードディスク装置600の概要を示す模式図である。図4は、本実施の形態に係る熱アシストハードディスク装置600における半導体レーザ装置151及びスライダ602の位置関係を示す平面図である。
 本実施の形態に係る熱アシストハードディスク装置600は、上記半導体レーザ装置151と、スライダ602とを備える。また、図3に示されるように、熱アシストハードディスク装置600は、サスペンション603と、ディスク604とを備える。なお、簡略化のため図3には示されていないが、図4に示されるように、スライダ602には、半導体レーザ装置151が搭載される。
 スライダ602は、スライダ602に配置された記録ヘッドなど(不図示)とディスク604との間隔を安定化させるための板状の部材である。スライダ602は、レーザを導光して近接場光を発生させる近接場光発生素子(図3及び図4には不図示)を備える。
 サスペンション603は、スライダ602を支持する部材である。ディスク604は、記録用の磁性材料を含む円盤状の記録媒体である。
 本実施の形態に係る熱アシストハードディスク装置600においては、半導体レーザ装置151から出力されたレーザ光をディスク604に照射することによって、ディスク604に含まれる磁性材料を加熱する。これにより、磁性材料への記録をアシストすることができる。
 [1-4.サブマウントの製造方法]
 次に、上述した本実施の形態に係るサブマウント100の製造方法について説明する。以下、シリコンウェハを母材として用いるサブマウント100の製造方法について図面を用いて説明する。
 所定の領域に第1の金属膜121を形成したシリコンウェハ201を準備する。第1の金属膜121を主面上に備えたシリコンウェハ201に通常のフォトリソグラフィ、ドライエッチングを行い、図5に示すように複数の貫通溝202を形成する。図5は、本実施の形態に係るシリコンウェハ201のエッチング処理後の状態を示す平面図である。貫通溝202によって、サブマウント100の基板110の第2の面102及び第6の面106が形成される。また、基板110の第1の切り欠け部113a及び第2の切り欠け部113bに対応する切り欠け形状203も形成される。貫通溝202の形成後に第2の金属膜122を形成する。
 第1の金属膜121、第2の金属膜122及びはんだ膜116は、スパッタリング法もしくは電子ビーム蒸着法によって形成される。
 なお、サブマウント100の基板110を形成する材料はシリコンに限定されない。例えば、基板110は、シリコン、ガラス及び炭化シリコンのいずれかで形成されてもよい。
 次に、シリコンウェハ201を分断することによって個片化する工程について説明する。本実施の形態では、シリコンウェハ201の分断位置に加工用レーザを照射して改質領域を形成した後、シリコンウェハ201をエキスパンドすることによって、シリコンウェハ201を分断する。つまり、ステルスダイシングによって、シリコンウェハ201を分断する。本実施の形態に係るこのような個片化工程について図面を用いて説明する。
 図6は、本実施の形態に係るシリコンウェハ201の改質領域211を示す平面図である。図7は、本実施の形態に係るシリコンウェハ201の個片化工程を示す断面図である。図7には、図6のVII-VII断面が示される。なお、図7には、シリコンウェハ201の主面上に形成された金属膜221が示されている。金属膜221は、第1の金属膜121及びはんだ膜116を含む。
 図6に示されるように、シリコンウェハ201において分断面となる位置に、改質領域211が形成される。より具体的には、サブマウント100の基板110における第3の面103及び第4の面104に対応する位置に微小なクラックを含む改質領域211が形成される。
 改質領域211は、図7に示されるように、シリコンウェハ201の下面(つまり、基板110の第5の面に対応する面)からシリコンウェハ201に加工用レーザ302を照射することによって形成される。つまり、加工用レーザ302の照射位置303が改質領域211となる。加工用レーザ302は、シリコンウェハ201を透過する波長のレーザであって、改質領域211の形成に十分なパワーを有していればよい。また、第5の面105に対応する図7におけるシリコンウェハ201の下面の表面粗さ(算術平均粗さRa)は、0.2μm以下であり、かつ、基板110を構成する材料であるシリコンが露出している。これにより、加工用レーザのシリコンウェハ201への入射面における散乱を抑制することができるため、分断品質をより一層高めることができる。
 シリコンウェハ201に改質領域211を形成した後、シリコンウェハ201に貼り付けられたテープ材306を引き延ばす。ここで、改質領域211に、加工用レーザ302によってクラックが形成されているため、テープ材306を引き延ばした場合に、シリコンウェハ201を各改質領域211で分断することができる。これにより、基板110を形成することができる。上述したように、各改質領域211は、基板110の第3の面103及び第4の面104に対応する。
 以上のような工程により形成されたサブマウント100について図面を用いて説明する。図8は、本実施の形態に係るサブマウント100の構成を示す斜視図である。
 図8に示されるサブマウント100の第3の面103において、第1の切り欠け部113a側、第5の面105側及び第6の面106側の外縁部112は、加工用レーザ302によって改質されていない領域である。一方、第3の面103において、外縁部112の内側領域111は、加工用レーザ302によって改質された領域である。ここで、加工用レーザで改質されていない外縁部112の表面粗さは、内側領域111の表面粗さよりも小さい。本実施の形態では、内側領域111の表面粗さ(Ra)は、1.0μm以下程度であり、外縁部112の表面粗さ(Ra)は、0.2μm以下程度である。このように、本実施の形態に係るサブマウント100の製造方法によれば、個片化における分断面に対応する第3の面103及び第4の面104の表面粗さを低減することができる。なお、図示しないが、第4の面104も第3の面103と同様に外縁部112及び内側領域111を有する。
 また、上述のようにステルスダイシングによって分断された第3の面103及び第4の面104の表面粗さは、エッチングによって形成された第2の面102の表面粗さより粗い。
 また、本実施の形態では、第1の面101は、Siの(100)面である。また、第2の面102と第3の面103と第4の面104とは、各々、Siの{100}面であるか、又は、各々、Siの{110}面である。これにより、ステルスダイシングによる分断方向を基板110の材料であるSiの結晶方位に対応させることができる。このため分断品質を更に高めることができる。
 [1-5.サブマウントの切り欠け部]
 ここで、上述したサブマウント100の製造方法における切り欠け部の作用及び効果について図面を用いて説明する。
 図9は、本実施の形態に係るシリコンウェハ201の形状を示す平面図である。図9に示されるように、シリコンウェハ201の切り欠け形状203は、基板110の第2の面102となる面と平行な平行面407と、曲面408とを有する。平行面407の図9における水平方向の幅aは、加工用レーザの照射位置のばらつき幅bより大きい。このような切り欠け形状203を有するシリコンウェハ201に加工用レーザを照射して分断する際に、シリコンウェハ201に加わる力について図面を用いて説明する。
 図10は、本実施の形態に係る改質領域211が形成されたシリコンウェハ201を分断する際に、シリコンウェハ201に加わる力を示す平面図である。図11は、本実施の形態に係るシリコンウェハ201を基板110に分断した状態を示す平面図である。
 図10に示されるように、加工用レーザの照射位置303からなる改質領域211が形成されたシリコンウェハ201を図10の水平方向にエキスパンドすると、シリコンウェハ201の切り欠け形状203付近には、矢印で示される方向に力が加わる。ここで、改質領域211には、微小なクラックが形成されているため、シリコンウェハ201は、図11に示されるように、改質領域211に沿って分断される。特に、本実施の形態では、上述のとおり、切り欠け形状203において、平行面407の幅aが、加工用レーザの照射位置のばらつき幅bより大きいため、平行面407以外の曲面408などにおいてシリコンウェハ201が分断されることを抑制できる。また、切り欠け形状203において、平行面407と曲面408とがなめらかにつながっているため、特定の位置に引っ張り力が集中することが抑制される。したがって、改質領域211に沿った面において、シリコンウェハ201を分断することができる。つまり、本実施の形態では、分断面の位置の精度及び分断面の平坦度が良好なサブマウント100を実現できる。
 本実施の形態では、サブマウント100の基板110は、シリコンウェハ201の切り欠け形状203に対応する第1の切り欠け部113a及び第2の切り欠け部113bを有する。第1の切り欠け部113a及び第2の切り欠け部113bは、それぞれ、シリコンウェハ201の平行面407に対応する第7の面107a及び107bを有する。つまり、サブマウント100は、第1の切り欠け部113aにおいて、第3の面103の近傍に、第2の面102と略平行な第7の面107aを有する。また、サブマウント100は、第2の切り欠け部113bにおいて、第4の面104の近傍に、第2の面102と略平行な第7の面107bを有する。
 サブマウント100がこのような第7の面107a及び107bを有することにより、シリコンウェハ201を分断してサブマウント100を形成する際に、加工用レーザの照射位置がばらつく場合にも、第7の面107a及び107b以外の位置で分断されることを抑制できる。つまり、分断面の位置の精度及び分断面の平坦度が良好なサブマウント100を実現できる。
 本実施の形態では、第7の面107a及び107bの図11の水平方向における長さは、約10μmである。当該長さを5μm以上とすることで、シリコンウェハ201を分断する際に、第7の面107a及び107b以外の位置で分断されることをより確実に抑制できる。
 また、第1の切り欠け部113a及び第2の切り欠け部113bは、それぞれ、シリコンウェハ201の曲面408に対応する曲面115a及び115bを有する。本実施の形態では、曲面115a及び115bは、サブマウント100の第1の面101側から平面視した場合に、円弧形状を有する。つまり、曲面115a及び115bの第1の面101と平行な断面の形状は円弧形状である。本実施の形態では、曲面115a及び115bの半径は、約10μmである。当該半径を5μm以上とすることで、シリコンウェハ201の分断時に曲面115a及び115bに対応する位置に引っ張り力が集中することをより確実に抑制できる。
 また、言い換えると、図11に示されるように、第1の面101において、第1の面101側からの平面視した場合の第3の面103の延長線と前記第2の面102の延長線との交点P23から、第3の面側の辺は10μm以上離間し,前記第2の面側の辺は20μm以上離間している。これにより、第1の面101に配置されるはんだ膜116が熔融した場合に、熔融したはんだを第2の切り欠け部113bに誘導することができるため、第2の面102へのはんだのはみ出しを抑制できる。当該効果については、後で詳述する。
 また、本実施の形態では、第1の切り欠け部113a及び第2の切り欠け部113bの第1の面101と平行な断面は、第1の面101側から第5の面105側まで、略相似の形状である。
 [1-6.第2の面の構成]
 次に、本実施の形態に係るサブマウント100の基板110における第2の面102の表面粗さを改善するための構成について説明する。
 発明者らは、基板110における第1の面101と第2の面102とのなす角と、第2の面102の表面粗さとが相関を有することを見出した。以下、当該相関について説明する。
 まず、第1の面101と第2の面102とのなす角が90°以上である場合について図面を用いて説明する。図12A及び図12Bは、それぞれ、本実施の形態に係るサブマウント100の第1の面101と第2の面102とのなす角θ12が90°である場合のサブマウント100の第4の面104及び第2の面102の概要を模式的に示す側面図である。図13A及び図13Bは、それぞれ、本実施の形態に係るサブマウント100の第1の面101と第2の面102とのなす角θ12が90°より大きい場合のサブマウント100の第4の面104及び第2の面102の概要を模式的に示す側面図である。なお、各図に示されるように、第1の面101と第3の面103とのなす角θ13は、いずれの例においても90°である。
 図12A及び図12Bに示される例では基板110の第5の面105の法線L5と第2の面102とのなす角θAは0°であり、法線L5と第3の面103とのなす角θBも0°である。なお、θAの値は、例えば、図12Aに示されるように、第2の面102の第1の面101側の端部の方が、第5の面105側の端部より基板110の外側にある場合に正、内側にある場合に負としてもよい。θBの値も、θAと同様に、第3の面103の第1の面101側の端部の方が、第5の面105側の端部より基板110の外側にある場合に正、内側にある場合に負としてもよい。
 図12A及び図12Bに示されるように、第1の面101と第2の面102とのなす角θ12が90°である場合、つまり、θAが0°である場合、第2の面102に表面荒れ191が発生する。また、図13A及び図13Bに示されるように、角θ12が90°より大きい場合、つまり、θAが負である場合、第2の面102の表面荒れ191及び突起状の縦スジ192が発生する。
 このように、角θ12が90°以上である場合には第2の面102の表面粗さが比較的粗い。ここで、第2の面102の表面粗さが粗い場合に生じる問題について図面を用いて説明する。
 図14Aは、本実施の形態に係るサブマウント100を備える半導体レーザ装置151を熱アシストハードディスク装置のスライダ602に実装する直前の状態を示す図である。図14Bは、本実施の形態に係るサブマウント100を備える半導体レーザ装置151を熱アシストハードディスク装置のスライダ602に実装した状態を示す図である。図14A及び図14Bにおいては、角θ12が90°であるサブマウント100を用いる例が示されている。
 図14A及び図14Bに示されるように、スライダ602が備える近接場光発生素子614に、半導体レーザチップ152の出射面153が対向するように半導体レーザ装置151がスライダ602に実装される。この場合、サブマウント100の第2の面102は、はんだ613が配置されたスライダ602への実装面として使用される。ここで、図12Bに示されるように、第2の面102に表面荒れ191が発生しているため、第2の面102とスライダ602とのはんだ613による接合強度が低下する。
 以上のように、第1の面101と第2の面102とのなす角θ12が90°以上である場合、第2の面102の表面粗さが粗いことにより、第2の面102を実装面とする場合に問題が生じる。
 次に、第1の面101と第2の面102とのなす角θ12が90°未満(つまり、鋭角)である場合について図面を用いて説明する。図15A及び図15Bは、それぞれ、本実施の形態に係るサブマウント100の第1の面101と第2の面102とのなす角θ12が鋭角である場合のサブマウント100の第4の面104及び第2の面102の概要を模式的に示す側面図である。なお、本例においても、第1の面101と第3の面103とのなす角θ13は90°である。また、言い換えると、第5の面105の法線L5方向に対して、第2の面102が傾いており、角θAは正である。また、法線L5と第3の面103とのなす角θBは0°である。つまり、この場合、第5の面105の法線L5方向に対する第2の面102の傾きは、第5の面の法線L5方向に対する第3の面103の傾きより大きい。
 図15A及び図15Bに示されるように、第1の面101と第2の面102とのなす角θ12が鋭角である場合、第2の面102に、表面荒れ191、縦スジ192などの発生が抑制され、表面粗さが比較的小さい。このような第2の面102を実装面として用いる例について図面を用いて説明する。
 図16は、本実施の形態に係るサブマウント100を備える半導体レーザ装置151の外形を示す三面図である。
 図16に示されるように、半導体レーザ装置151は、サブマウント100と、サブマウント100に搭載される半導体レーザチップ152とを備える。また、半導体レーザチップ152の出射面153は、サブマウント100の第2の面102側に配置され、出射面153と対向する後端面154は第6の面106側に配置され、第1の面101上において、半導体レーザチップ152は、第3の面103より第4の面104に近い位置に搭載される。このように半導体レーザ装置151においては、サブマウント100の端に半導体レーザチップを搭載できる。
 図16の側面図(b)に示されるように、サブマウント100の第1の面101と第2の面102とのなす角θ12は、鋭角である。図16の平面図(a)及び側面図(b)に示されるように、第2の面102には、第2の金属膜122が形成される。図16の側面図(b)及び正面図(c)に示されるように、サブマウント100の第1の面101には、第1の金属膜121およびはんだ膜116を介して半導体レーザチップ152の電極156が接合される。ここで、半導体レーザチップ152の第1の面101と対向する面は、第1の面101と平行となるように接合される。
 図16に示されるような半導体レーザ装置151を熱アシストハードディスク装置のスライダ602に実装する例について説明する。
 図17Aは、図16に示される半導体レーザ装置151を熱アシストハードディスク装置のスライダ602に実装する直前の状態を示す図である。図17Bは、図16に示される半導体レーザ装置151を熱アシストハードディスク装置のスライダ602に実装した状態を示す図である。
 図17A及び図17Bに示される例では、図14A及び図14Bに示された例と同様に、スライダ602が備える近接場光発生素子614に、半導体レーザチップ152の出射面153が対向するように、半導体レーザ装置151がスライダ602に実装される。この場合、サブマウント100の第2の面102は、第2の金属膜122が形成された状態で、はんだ613が配置されたスライダ602への実装面として使用される。ここで、図15Bに示されるように、第2の面102の表面粗さは小さいため、第2の面102とスライダ602とのはんだ613による接合強度は良好である。また、図17Bに示されるように、θ12が鋭角である場合には、第1の面101に平行に接合された半導体レーザチップ152の出射面153がスライダ602に対して傾斜する。したがって、スライダ602(又は、近接場光発生素子614)から出射面153までの距離を大きくできるため、出射面153がスライダ602と接触することを抑制できる。
 ここで、本実施の形態に係るサブマウント100の第1の面101と第2の面102とのなす角θ12が鋭角である場合に、第2の面102の表面粗さが良好となる理由について図面を用いて説明する。
 図18は、本実施の形態に係るサブマウント100の母材であるシリコンウェハ201をエッチングすることによって、第2の面102及び第6の面106を形成する工程を示す断面図である。図18には、図5のXVIII-XVIIIに対応する位置のエッチング工程の断面の様子が示される。
 図18に示される例では、まず、図18の断面図(a)に示されるように、レジスト222が形成されたシリコンウェハ201が用意され、断面図(b)に示されるようにエッチングガス230によって、シリコンウェハ201がエッチングされる。このとき、シリコンウェハ201上に、異物193が存在し得る。このような異物193は、例えば、第1の面101と第2の面102とのなす角θ12が90°より大きい場合、第2の面102及び第6の面106に留まり易い。このため、異物193に起因して、表面荒れ191、縦スジ192などが発生する。なお、図18においては、縦スジ192は示していない。一方、角θ12が鋭角である場合には、異物193が存在したとしても、異物193は、重力に従って下方に落下する。このため、異物193が、第2の面102に留まりにくい。したがって、異物193が第2の面102などの表面粗さに影響を及ぼすことを低減できる。
 θ12の鋭角の数値例としては、シリコンウェハ201の面内ばらつきにおける平均値が89.7°以上、90°よりも小さい範囲となるようにドライエッチングの条件を設定することで表面粗さが低減できることを発明者らは実験で見出した。
 θ12が上記数値よりも小さくても表面粗さは低減できるが、後述するように熱アシストハードディスク装置の光利用効率が低下する。
 [1-7.第2の面の傾斜の影響の抑制手段]
 次に、本実施の形態に係るサブマウント100の第2の面102の傾斜の影響を抑制する手段について説明する。上述したようにサブマウント100の第2の面102と第1の面101とのなす角θ12が鋭角である場合、サブマウント100を備える半導体レーザ装置151の出射面153と、スライダ602との距離が拡大する。これにより、出射面153がスライダ602と接することは抑制されるが、一方で、出射面153から出射されるレーザと、スライダ602が備える近接場光発生素子614との結合効率が低下する。したがって、熱アシストハードディスク装置の光利用効率が低下する。そこで、第2の面102の傾斜の影響の抑制手段として二つの手段について説明する。
 [1-7-1.第1の抑制手段]
 第2の面102の傾斜の影響の第1の抑制手段について説明する。第1の抑制手段として、第2の面102に形成する第2の金属膜の膜厚によって当該傾斜を相殺する手段について図面を用いて説明する。
 図19は、本実施の形態に係る第1の抑制手段を施していないサブマウント100における第2の金属膜122の形状を示す側面図である。図20は、本実施の形態に係る第1の抑制手段を施したサブマウント100aにおける第2の金属膜122aの形状を示す側面図である。
 図19に示されるように、第1の抑制手段を施していないサブマウント100においては、第2の金属膜122は、実質的に均一な膜厚で第2の面102に形成されている。例えば、第2の金属膜122の第1の面101側の端部の膜厚d1は、第2の金属膜122の第5の面105側の端部の膜厚d2と実質的に等しい。このため、第1の面101と第2の面102とのなす角θ12と、第1の面101と第2の金属膜122の表面とのなす角θ12aとは略同一である。また、第5の面105の法線L5方向に対する第2の面102の傾きθAは、法線L5方向に対する第2の金属膜122の表面の傾きθA1と略同一である。
 一方、図20に示されるように、第1の抑制手段を施したサブマウント100aは、第2の面102上に配置される第2の金属膜122aを有し、第2の金属膜122aの膜厚は、第1の面101から第5の面105に向かって厚くなっている。つまり、第2の金属膜122aの第1の面101側の端部の膜厚d1は、第2の金属膜122aの第5の面105側の端部の膜厚d2より小さい。このため、第1の面101と第2の面102とのなす角θ12より、第1の面101と第2の金属膜122aの表面とのなす角θ12aの方が大きく、より90°に近い。また、第5の面105の法線L5方向に対する第2の面102の傾きθAより、法線L5方向に対する第2の金属膜122aの傾きθA1の方が小さい。
 図20に示されるサブマウント100aに半導体レーザチップ152を実装する方法について、図面を用いて説明する。図21Aは、本実施の形態に係るサブマウント100aに半導体レーザチップ152を実装する直前の状態を示す図である。図21Bは、本実施の形態に係るサブマウント100aに半導体レーザチップ152を実装した状態を示す図である。
 図21Aに示されるように、サブマウント100aは、加熱ステージ350上に配置される。サブマウント100aの第5の面105が、加熱ステージ350に接する。加熱ステージ350を加熱することによって、サブマウント100aのはんだ膜116を熔融することができる。一方、半導体レーザチップ152は、コレット311によって保持された状態で、サブマウント100aの上方に配置される。ここで、半導体レーザチップ152の電極156は、サブマウント100aの第1の面101と対向し、かつ、半導体レーザチップ152の出射面153が第2の金属膜122aの表面と略平行となる姿勢で保持される。ここで、本実施の形態では、θ12aは、シリコンウェハ201の面内ばらつきにおける平均値が89.9°程度であり、かつ、面内ばらつき全体での最小値は89.4°以上、最大値は90.4°以下の範囲である。コレットの傾斜角は、例えば、-1°より大きく1°未満である。
 続いて、コレット311を用いて、半導体レーザチップ152を上記の姿勢を維持したまま、サブマウント100aの熔融した状態のはんだ膜116上に移動させる。続いて半導体レーザチップ152の電極156を熔融したはんだ膜116に接触させた状態で、加熱ステージ350の加熱を停止することによってはんだ膜116を冷却し、凝固させる。このようにして図21Bに示されるような半導体レーザ装置151aを得られる。図21Bに示される半導体レーザ装置151aの構造について、図面を用いて説明する。
 図22は、本実施の形態に係る半導体レーザ装置151aの構造を示す三面図である。図22に示されるように、半導体レーザ装置151aは、第1の面101上に配置されたはんだ膜116を有するサブマウント100aと、サブマウント100aの第1の面101上にはんだ膜116を介して接合された半導体レーザチップ152とを備え、半導体レーザチップ152の出射面153は第2の面102側に配置され、第2の金属膜122aの表面と、出射面153とが略平行である。また、出射面153と、第2の金属膜122aの表面とは同一平面上にあってもよい。
 また、半導体レーザ装置151aにおいて、角θ12aは、わずかに90°より小さいため、第2の面102側のはんだ膜116の膜厚が、第6の面106側のはんだ膜の膜厚より薄い。
 図22に示される半導体レーザ装置151aを熱アシストハードディスク装置において使用する例について図面を用いて説明する。図23Aは、本実施の形態に係る半導体レーザ装置151aを熱アシストハードディスク装置のスライダ602に実装する直前の状態を示す図である。図23Bは、本実施の形態に係る半導体レーザ装置151aを熱アシストハードディスク装置のスライダ602に実装した状態を示す図である。
 図23A及び図23Bに示される例では、図17A及び図17Bに示された例と同様に、スライダ602が備える近接場光発生素子614に、半導体レーザチップ152の出射面153が対向するように、半導体レーザ装置151aがスライダ602に実装される。この場合、サブマウント100aの第2の金属膜122aの表面が、はんだ613が配置されたスライダ602への実装面として使用される。ここで、上述のとおり、第2の金属膜122aの表面は、半導体レーザチップ152の出射面153と略平行である。このため、図17Bに示される例より、出射面153と近接場光発生素子614との間隔を狭めることができる。これにより、出射面153から出射されるレーザと近接場光発生素子614との結合効率を高めることができる。したがって、熱アシストハードディスク装置の光利用効率を高めることができる。つまり、熱アシストハードディスク装置の低消費電力化が可能となる。
 以上のように、サブマウント100aによれば、第2の面102の傾斜の影響を抑制することができる。
 ここで、サブマウント100aの第2の金属膜122aの形成方法について、サブマウント100の第2の金属膜122を、例えば第5の面105の方向から形成する方法と比較しながら図面を用いて説明する。図24A及び図24Bは、それぞれ、本実施の形態に係る第2の金属膜122a及び第2の金属膜122の形成方法を示す模式的な断面図である。
 基台240で保持されたシリコンウェハ201の貫通溝202に対向する第2の面102及び第6の面106にスパッタリング法もしくは電子ビーム蒸着法によって金属材料232からなる第2の金属膜122aを形成する。ここで、図24Aに示されるように、貫通溝202の幅Xを狭くすることによって、第1の面101に近い部分に金属材料が届きにくくなるため、第1の面101に近い部分の方が金属膜の膜厚が小さくなる。これにより、第1の面101から第5の面105に向かって膜厚が厚くなる第2の金属膜122aを形成できる。貫通溝202の幅Xは、サブマウント100aの寸法などに応じて適宜設定される。例えば、サブマウント100aの厚さ(第1の面101に垂直な方向の寸法)が200μm程度である場合には、貫通溝202の幅Xは、20μm以上、200μm以下程度であればよい。
 一方、図24Bに示されるように、貫通溝202の幅X1を十分に大きくした場合には、膜厚が均一な第2の金属膜122が形成される。
 [1-7-2.第2の抑制手段]
 第2の面102の傾斜の影響の第2の抑制手段について説明する。第2の抑制手段として、サブマウントに素子を実装する際に、第2の面102の傾斜に対応する姿勢で実装する手段について図面を用いて説明する。
 図25Aは、本実施の形態に係るサブマウント100に半導体レーザチップ152を実装する直前の状態を示す図である。図25Bは、本実施の形態に係るサブマウント100に半導体レーザチップ152を実装した状態を示す図である。
 図25A及び図25Bに示されるように、本抑制手段においては、傾斜した第2の面102に均一な膜厚の第2の金属膜122が形成されたサブマウント100を用いる。
 図25Aに示されるように、サブマウント100は、加熱ステージ350上に配置される。サブマウント100の第5の面105が、加熱ステージ350に接する。加熱ステージ350を加熱することによって、サブマウント100のはんだ膜116を熔融することができる。一方、半導体レーザチップ152は、コレット311によって保持された状態で、サブマウント100の上方に配置される。ここで、半導体レーザチップ152の電極156は、サブマウント100の第1の面101と対向し、かつ、半導体レーザチップ152の出射面153が第2の金属膜122の表面と略平行となる姿勢で保持される。つまり、図25Aに示されるように、半導体レーザチップ152は傾斜した姿勢で保持される。ここで、半導体レーザチップ152の傾斜角、つまり、コレット311の傾斜角θDは、サブマウント100の第1の面101と第2の金属膜122の表面とのなす角θ12aと、半導体レーザチップ152の上面155(電極156が形成される面の裏側の面)と出射面153とのなす角θCとから求められる。
 続いて、コレット311を用いて、半導体レーザチップ152を上記の姿勢を維持したまま、サブマウント100の熔融した状態のはんだ膜116上に移動させる。続いて半導体レーザチップ152の電極156を熔融したはんだ膜116に接触させた状態で、加熱ステージ350の加熱を停止することによってはんだ膜116を冷却し、凝固させる。このようにして図25Bに示されるような第2の金属膜122の表面と半導体レーザチップ152の出射面153とが略平行な半導体レーザ装置151bを得られる。
 以上のように、図25Bに示される半導体レーザ装置151bは、第1の面101上に配置されたはんだ膜116を有するサブマウント100と、サブマウント100の第1の面101上にはんだ膜116を介して接合された半導体レーザチップ152とを備える。そして、半導体レーザチップ152の出射面153は第2の面102側に配置され、第2の面102と、出射面153とが略平行である。
 このような半導体レーザ装置151bによれば、第2の金属膜122が形成された第2の面102を実装面として用いる場合に、実装面と出射面153とを略平行にできるため、第2の面102の傾斜の影響を抑制できる。
 また、図25Bに示されるように、半導体レーザ装置151bにおいて、はんだ膜116の膜厚が、第1の方向D1に対して変化している。より具体的には、半導体レーザ装置151bにおいて、サブマウント100の第2の面102付近においては、はんだ膜116の膜厚が小さく、第6の面106付近においては、はんだ膜116の膜厚が大きい。このため、例えば、第2の面102付近において、余分なはんだがサブマウント100の第2の面102などに流れ出るおそれがある。そこで、このような問題を解決するためのはんだ膜の構成について図面を用いて説明する。
 図26Aは、本実施の形態に係るサブマウント100に半導体レーザチップ152を実装する直前の状態を示す図である。図26Bは、本実施の形態に係るサブマウント100に半導体レーザチップ152を実装した状態を示す図である。
 図26Aに示されるサブマウント100は、はんだ膜116xの構成において、図25Aに示されるサブマウント100と相違する。図26Aに示される例では、サブマウント100は、帯状に形成されたはんだ膜116xを有する。これにより、はんだ膜116xの量を位置に応じて自由に変化させることができる。したがって、サブマウント100の第2の面102に近い位置においては、はんだ膜116xの量を少なくし、第6の面106に近い位置においては、はんだ膜116xの量を多くすることができる。このようなはんだ膜116xを介してサブマウント100に半導体レーザチップ152を実装することによって、図26Bに示されるような、サブマウント100の第2の面102付近においては、はんだ膜116の膜厚が小さく、第6の面106付近においては、はんだ膜116の膜厚が大きい半導体レーザ装置151cを得ることができる。
 以上のように、第2の金属膜122の表面と半導体レーザチップ152の出射面153とが略平行な半導体レーザ装置151cを得られる。また、半導体レーザチップ152を実装する際に、はんだがサブマウント100の第2の面102などに流出することを抑制できる。
 続いて、第2の抑制手段を適用した半導体レーザ装置による第2の面102の傾斜の影響の抑制について図面を用いて説明する。図27Aは、本実施の形態に係る半導体レーザ装置151cを熱アシストハードディスク装置のスライダ602に実装する直前の状態を示す図である。図27Bは、本実施の形態に係る半導体レーザ装置151cを熱アシストハードディスク装置のスライダ602に実装した状態を示す図である。
 図27Aに示されるように、スライダ602が備える近接場光発生素子614に、半導体レーザチップ152の出射面153が対向するように半導体レーザ装置151cがスライダ602に実装される。この場合、サブマウント100の第2の面102は、第2の金属膜122が形成された状態で、はんだ613が配置されたスライダ602への実装面として使用される。ここで、第2の金属膜122の表面が、スライダ602の表面と平行となるように半導体レーザ装置151cは、コレット311によって保持される。コレット311の傾斜角θEは、サブマウント100の第1の面101と第2の金属膜122の表面とのなす角θ12aから求められる。
 これにより、図27Bに示されるように、半導体レーザ装置151cをスライダ602に実装できる。半導体レーザ装置151cでは、第2の面102に形成された第2の金属膜122の表面と出射面13とが略平行であるため、出射面153と近接場光発生素子614との間隔を狭めることができる。これにより、出射面153から出射されるレーザと近接場光発生素子614との結合効率を高めることができる。したがって、熱アシストハードディスク装置の光利用効率を高めることができる。つまり、熱アシストハードディスク装置の低消費電力化が可能となる。
 以上のように、本抑制手段によれば、第2の面102の傾斜の影響を抑制することができる。
 [1-8.サブマウントの切り欠け構造の効果]
 次に、本実施の形態に係るサブマウントの切り欠け構造の効果について説明する。本実施の形態に係るサブマウントの切り欠け構造は、上述したサブマウントの製造における効果だけでなく、その使用時における効果も奏する。以下では、本実施の形態に係るサブマウントに半導体レーザチップを実装する場合について、比較例と比較しながら図面を用いて説明する。
 図28は、比較例の半導体レーザ装置1151の構造を示す三面図である。図28には、比較例の半導体レーザ装置1151の平面図(a)、側面図(b)及び正面図(c)が示されている。図29は、本実施の形態に係る半導体レーザ装置151aの構造を示す三面図である。図29には、本実施の形態に係る半導体レーザ装置151aの平面図(a)、側面図(b)及び正面図(c)が示されている。なお、図28及び図29には、はんだ膜116からはんだ312が流れ出た状態が示されている。
 図28に示される比較例の半導体レーザ装置1151は、基板1110に切り欠け構造が形成されていない点において、本実施の形態に係る半導体レーザ装置151aと相違し、その他の点において一致する。
 図28に示されるように、比較例の半導体レーザ装置1151では、基板1110に切り欠け構造が形成されていないため、はんだ312が、第2の金属膜122上に流れ出る場合がある。上述したように第2の金属膜122は、半導体レーザ装置1151のスライダ602などに対する実装面となる面である。そのため、はんだ312が、半導体レーザ装置1151の実装に悪影響を及ぼし得る。
 一方、本実施の形態に係る半導体レーザ装置151aは、サブマウント100aと、サブマウント100aの第1の面101上に第1の金属膜121およびはんだ膜116を介して接合された半導体レーザチップ152とを備え、半導体レーザチップ152は、出射面153が第2の面102側となるように配置される。また、半導体レーザチップ152は、第1の面101側から平面視した場合に、第1の切り欠け部113a及び第2の切り欠け部113bの少なくとも一方にまたがって配置される。本実施の形態では、図29の平面図(a)に示されるように、半導体レーザチップ152は、第1の面101側から平面視した場合に、第2の切り欠け部113bにまたがって配置される。
 これにより、図29の正面図(c)に示されるように、熔融したはんだ312は、主に第2の切り欠け部113bに流れ出し、第2の金属膜122a上には流れ出にくい。熔融したはんだ312は、第2の切り欠け部113bにおいて、曲面115bまで広がるものの、第2の金属膜122aとは接触しない。つまり、本実施の形態に係る半導体レーザ装置151aにおいては、第2の切り欠け部113bに、はんだ312によって形成されたはんだ膜が配置され、第2の金属膜122a上には配置されない。そのため、はんだ312が、半導体レーザ装置151aの実装に与える悪影響を抑制できる。つまり、サブマウント100aの第2の面102の品質の劣化を抑制できる。
 なお、図29に示される例では、半導体レーザチップ152及びはんだ膜116が第2の切り欠け部113b側に配置されるため、はんだ312が第2の切り欠け部113bに流れ出たが、本実施の形態に係る半導体レーザ装置の構成はこれに限定されない。半導体レーザチップ152及びはんだ膜116が第1の切り欠け部113a側に配置される場合には、はんだ312が第1の切り欠け部113aに流れ出てもよい。つまり、本実施の形態に係る半導体レーザ装置は、はんだ312によって形成されたはんだ膜が第1の切り欠け部113a及び第2の切り欠け部113bの少なくとも一方に配置される。
 [1-9.熱アシストハードディスク装置]
 次に、本実施の形態に係る熱アシストハードディスク装置について説明する。本実施の形態に係る熱アシストハードディスク装置は、上記各半導体レーザ装置と、当該半導体レーザ装置が搭載されるスライダ602とを備える。以下、このような熱アシストハードディスク装置について図面を用いて簡潔に説明する。
 図30は、本実施の形態に係る半導体レーザ装置151が実装されたスライダ602の平面図である。
 図30に示されるように、各半導体レーザ装置は、スライダ602の端部に配置される。また、図30には示されないが、各半導体レーザ装置の出射面153は、スライダ602の実装面に対向して配置される。また、各半導体レーザ装置が備えるサブマウントの第2の面102がスライダ602に対する実装面となる。このため、表面粗さの小さい第2の面102において実装することができるため、各半導体レーザ装置とスライダ602との接合強度を高めることができる。
 (実施の形態2)
 次に、実施の形態2に係るサブマウントについて説明する。本実施の形態に係るサブマウントは、はんだ膜の構成において、実施の形態1に係るサブマウント100などと相違する。上述した、サブマウント100などのように、はんだ膜116が一様に設けられたサブマウントでは、熔融したはんだ膜116に素子を接合させた場合、はんだがサブマウント100と素子との接合領域より外側に、特にはんだの量が多くなると第2の面102に流れ出る場合がある。一方、はんだの流れ出しを抑制するために、はんだ膜の膜厚又は幅を縮小すると、接合強度が低下する。そこで、本実施の形態では、はんだが流れ出にくく、かつ、接合強度の高いはんだ膜を有するサブマウントについて図面を用いて説明する。
 図31は、本実施の形態に係るサブマウント500aのはんだ膜116aの形状を示す図である。図32は、本実施の形態の変形例1に係るサブマウント500bのはんだ膜116bの形状を示す図である。図33は、本実施の形態の変形例2に係るサブマウント500cのはんだ膜116cの形状を示す図である。図31~図33においては、平面図(a)と正面図(b)とが示されている。
 本実施の形態に係るサブマウント500aは、はんだ膜116aの構成において、実施の形態1に係るサブマウント100と相違し、その他の構成において一致する。サブマウント500aは、パターニングされたはんだ膜116aを有する。より具体的には、図31の平面図(a)に示されるように、サブマウント500aにおいて、はんだ膜116aは、並列に配置された複数の帯状の部分を有する。したがって、はんだ膜116aによれば、実施の形態1に係るはんだ膜116より、はんだの量を低減できるため、はんだの流れ出しを抑制できる。一方、図31の正面図(b)に示されるはんだ膜116aの膜厚dは、実施の形態1に係るはんだ膜116と同等とすることができる。また、複数の帯状の部分の幅方向に並列に配列することによって、複数の帯状の部分の各々の幅が小さいことによる接合強度の低下を抑制できる。
 パターニングされたはんだ膜116aの形成方法は、特に限定されないが、例えば、リフトオフ法を用いて形成できる。つまり、はんだ膜116aを形成する面に、パターニングされたレジスト膜を形成し、レジスト膜が形成された当該面上にはんだ膜を一様に形成した後、レジスト膜とともに、レジスト膜上に形成されたはんだを除去してもよい。
 また、はんだ膜116aにおいて、複数の帯状の部分は、互いに分離されているため、複数の帯状の部分が繋がっている場合より、はんだの流れ出しを抑制できる。並列に配置された複数の帯状の部分については、サブマウントと素子との接合領域の大きさに応じて適宜帯状の部分の幅と間隔とが設定されればよい。また、複数の帯状の部分は、少なくとも3本以上の平行に配置された帯状のパターンであってもよい。第2の面102側における複数の帯状の部分の端部の位置は、第2の切り欠け部113bの形状に沿って、第4の面104側に配置されるものほど第2の面102から離れていてもよい。
 また、本実施の形態に係るはんだ膜116aにおいて、図31に示されるように、複数の帯状の部分は、第1の方向D1と平行方向に延びる。この場合、はんだ膜116aの熔融時にはんだ膜116aに含まれるはんだが流れる方向は、主に第1の方向D1に垂直な方向となる。このため、サブマウント500aの実装面となる第2の面102にはんだが流れることを抑制できる。
 なお、はんだ膜の複数の帯状の部分は、必ずしも第1の方向D1と平行方向に延びなくてもよい。例えば、図32に示される変形例1に係るサブマウント500bのはんだ膜116bのように、複数の帯状の部分は、第1の方向D1と交差する方向に延びてもよい。はんだ膜116bにおいては、複数の帯状の部分は、第1の方向D1と垂直方向に延びる。
 また、はんだ膜の複数の帯状の部分は、必ずしも一つの方向だけに延びなくてもよく、複数の方向に延びてもよい。例えば、図33に示される変形例2に係るサブマウント500cのはんだ膜116cのように、はんだ膜116cは、第1の方向D1と平行方向に延びる第1の帯状の部分を有するはんだ膜116c1と、第1の方向D1と交差する方向に延びる第2の帯状の部分を有するはんだ膜116c2とを含んでもよい。なお、変形例2に係るはんだ膜116c2が有する第2の帯状の部分は、第1の方向D1と垂直方向に延びる。
 また、図33に示されるように、変形例2に係るはんだ膜116cでは、第1の帯状の部分の少なくとも一部は、第2の帯状の部分より、第2の面102側に配置される。このように、第1の方向D1と平行方向に延びる第1の帯状の部分が、第2の面102側に配置されることにより、第2の面102へはんだが流れ出ることを抑制できる。
 また、以上では、はんだ膜が、幅が略一定の複数の帯状の部分を有する例を示したが、複数の帯状の部分の幅は、必ずしも一様でなくてもよい。以下、複数の帯状の部分の幅が一様でない例について図面を用いて説明する。
 図34Aは、本実施の形態の変形例3に係るサブマウント500dのはんだ膜116dの形状を示す平面図である。図34Bは、本実施の形態の変形例4に係るサブマウント500eのはんだ膜116eの形状を示す平面図である。図34Cは、本実施の形態の変形例5に係るサブマウント500fのはんだ膜116fの形状を示す平面図である。なお、図34A~図34Cにおいては、各サブマウントのうち、はんだ膜が形成されている部分及びその周辺だけが示されている。
 図34Aに示されるように、本実施の形態の変形例3に係るはんだ膜116dの複数の帯状の部分の各々は、第1の方向と平行方向に延び、かつ、幅が一様ではない。図34Aに示される例では、各帯状の部分の長手方向の中央における幅が、長手方向の端部における幅より大きい。言い換えると、はんだ膜116dの複数の帯状の部分の各々は、複数の帯状の部分の配置された領域の中心から外側に向けて幅が細くなるテーパ形状である。さらに言い換えると、各帯状の部分の幅は、はんだ膜116dが形成される領域の中央に近づくにしたがって増大する。これにより、はんだ膜116dの端部付近におけるはんだの量を低減できるため、はんだの流れ出しを抑制できる。しかも、はんだ膜116dの中央部分における帯状の部分の幅は端部における帯状部分の幅より大きいため、接合部分における空隙を減少させることができる。したがって、本変形例に係るはんだ膜116dによれば、接合強度を高めることができる。
 また、このようなはんだ膜116の複数の帯状の部分の各々の幅が一様でない場合においても、上記の本実施の形態の変形例1及び変形例2と同様に、複数の帯状の部分が延びる方向は特に限定されない。図34Bに示される本実施の形態の変形例4に係るはんだ膜116eのように、複数の帯状の部分は、第1の方向と垂直方向に延びてもよい。第4の面104側における複数の帯状の部分の端部の位置は、第2の切り欠け部113bの形状に沿って、第2の面102側に配置されるものほど第4の面104から離れていてもよい。また、図34Cに示される本実施の形態の変形例5に係るはんだ膜116fのように、複数の帯状の部分は、複数の方向に延びてもよい。例えば、はんだ膜116fは、第1の方向D1と平行方向に延びる複数の帯状の部分を有するはんだ膜116f1と、第1の方向D1と交差する方向に延びる複数の帯状の部分を有するはんだ膜116f2とを含む。
 また、以上では、はんだ膜の複数の帯状の部分が互いに分離されている例を示したが、複数の帯状の部分は必ずしも互いに分離されていなくてもよい。以下、はんだ膜の複数の帯状の部分の少なくとも一部が接続された例について図面を用いて説明する。
 図35は、本実施の形態の変形例6に係るサブマウント500gのはんだ膜116gの形状を示す平面図である。
 図35に示されるように、変形例6に係るサブマウント500gが有するはんだ膜116gは、はんだ膜116g0、116g1及び116g2を含む。はんだ膜116g0は、はんだ膜116gが形成される領域の中央に配置される一つのシート状のはんだ膜である。はんだ膜116g1は、はんだ膜116gが形成される領域のはんだ膜116g0より外側に配置され、かつ、第1の方向D1と平行方向に延びる複数の帯状の部分を有する。はんだ膜116g2は、はんだ膜116gが形成される領域のはんだ膜116g0より外側に配置され、かつ、第1の方向D1と垂直方向に延びる複数の帯状の部分を有する。また、はんだ膜116g1及び116g2の少なくとも一部は、はんだ膜116g0と接続されている。このようなはんだ膜116gによっても、本実施の形態及び各変形例に係るはんだ膜と同様に、はんだの流れ出しを抑制でき、かつ、接合強度を高めることができる。さらに、本変形例では、はんだ膜116gが形成される領域の中央に配置されたシート状のはんだ膜116g0を含むため、接合強度をより一層高めることができる。しかも、はんだ膜116g0は、はんだ膜116gが形成される領域の中央に配置されるため、はんだ膜116g0のはんだは流れ出しにくい。
 (変形例など)
 以上、本開示に係るサブマウント等について、実施の形態に基づいて説明したが、本開示は、上記の実施の形態に限定されるものではない。
 例えば、実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 例えば、実施の形態2では、パターニングされたはんだ膜を有する各サブマウントは、切り欠け構造を有した。しかしながら、はんだの流れ出しを抑制し、かつ、接合強度が良好なはんだ膜を有するサブマウントは、必ずしも切り欠け構造を有する必要はない。以下、パターニングされたはんだ膜を有し、かつ、切り欠け構造を有しないサブマウントについて図面を用いて説明する。
 図36は、変形例1に係るサブマウント700aの構造を示す図である。図36においては、平面図(a)と正面図(b)とが示されている。
 図36に示されるように、変形例1に係るサブマウント700aは、素子を搭載する第1の面701を有する基板710を備える。基板710は、第1の面701の面内方向の第1の方向D1に配置され、第1の面701と略垂直な第2の面702と、第1の面701及び第2の面702と略垂直な第3の面703と、第1の面701及び第2の面702と略垂直であり、かつ、第3の面703と対向する第4の面704と、第2の面702、第3の面703及び第4の面704と略垂直であり、かつ、第1の面701と対向する第5の面705と、第2の面702と対向する第6の面706とを有する。
 また、サブマウント700aは、第1の面701上に第1の金属膜721、及び、パターニングされたはんだ膜716aを有する。はんだ膜716は、第1の金属膜721上に配置される。第1の金属膜721は、実施の形態2に係る第1の金属膜121と同様の構成を有する。また、第1の金属膜721には、第1の方向D1に延びる帯状の金属膜除去部717が形成されている。金属膜除去部717は、実施の形態2に係る金属膜除去部117と同様の構成を有する。
 つまり、サブマウント700aは、実施の形態2に係るサブマウント500aと、切り欠け構造を有さない点において相違し、その他の点において一致する。
 はんだ膜716aは、上記実施の形態2に係るはんだ膜116aと同様の形状を有する。したがって、はんだ膜716aによれば、実施の形態1に係るはんだ膜116より、はんだの量を低減できるため、はんだの流れ出しを抑制できる。一方、図36の正面図(b)に示されるはんだ膜716aの膜厚dは、実施の形態1に係るはんだ膜116と同等とすることができる。また、複数の帯状の部分を幅方向に配列することによって、複数の帯状の部分の各々の幅が小さいことによる接合強度の低下を抑制できる。
 また、変形例1に係るサブマウント700aのパターニングされたはんだ膜の構成は、はんだ膜716aの構成に限定されない。以下、サブマウント700aにおいて、はんだ膜の構成を代えた例について図面を用いて説明する。
 図37は、変形例2に係るサブマウント700bの構造を示す図である。図38は、変形例3に係るサブマウント700cの構造を示す図である。図37及び図38においては、平面図(a)と正面図(b)とが示されている。
 図37に示される変形例2に係るサブマウント700bは、はんだ膜716bを有する。はんだ膜716bは、上記実施の形態2の変形例1に係るはんだ膜116bと同様の形状を有するため、はんだ膜116bと同様の効果を奏することができる。
 また、図38に示される変形例3に係るサブマウント700cは、はんだ膜716cを有する。はんだ膜716cは、上記実施の形態2の変形例2に係るはんだ膜116cと同様の形状を有するため、はんだ膜116cと同様の効果を奏することができる。
 また、実施の形態1では、実装面として使用される第2の面102の表面粗さの低減されたサブマウント100は、切り欠け構造を有した。しかしながら、実装面の表面粗さを低減できるサブマウントは、必ずしも切り欠け構造を有する必要はない。以下、実装面の表面粗さを低減できるサブマウントであって、かつ、切り欠け構造を有しないサブマウントについて図面を用いて説明する。
 図39は、変形例4に係るサブマウント700dの構造を示す図である。図39には、変形例4に係るサブマウント700dの平面図(a)、正面図(b)及び側面図(c)が示されている。
 図39に示されるように、変形例4に係るサブマウント700dは、素子を搭載する第1の面701を有する基板710aを備える。基板710aは、第1の面701の面内方向の第1の方向D1に配置され、第1の面701と略垂直な第2の面702と、第1の面701及び第2の面702と略垂直な第3の面703と、第1の面701及び第2の面702と略垂直であり、かつ、第3の面703と対向する第4の面704と、第2の面702、第3の面703及び第4の面704と略垂直であり、かつ、第1の面701と対向する第5の面705と、第2の面702と対向する第6の面706とを有する。また、第2の面702は、第5の面705の法線L5方向に対して傾いている。
 つまり、サブマウント700dの基板710aは、実施の形態1に係るサブマウント100aなどの基板110と、切り欠け構造を有さない点において相違し、その他の点において一致する。したがって、変形例4に係るサブマウント700dにおいては、実施の形態1に係るサブマウント100aと同様に、表面粗さの小さい第2の面702を有するため、第2の面702を実装面として用いることで接合強度を高めることができる。
 また、サブマウント700dにおいては、上記変形例3に係るサブマウント700cのはんだ膜716cと同様にパターニングされたはんだ膜716cを有する。これにより、サブマウント700dのはんだ膜716は、上記変形例3に係るサブマウント700cのはんだ膜716cと同様の効果を奏することができる。
 また、上記実施の形態と同様に、上記変形例1~変形例4に係る各サブマウントと、半導体レーザチップ152を備える半導体レーザ装置も本開示に含まれる。
 また、上記実施の形態と同様に、上記変形例1~変形例4に係る各サブマウントと、半導体レーザチップ152と、スライダ602とを備える熱アシストハードディスク装置も本開示に含まれる。
 また、上記実施の形態に係る各サブマウントにおいて、切り欠け構造における曲面の形状は、必ずしも断面円弧形状に限定されない。例えば、当該曲面115の形状は、断面が放物線状の曲面などであってもよい。
 加えて、サブマウント100は、第1の面101上に配置される第1の金属膜121は、上記各実施の形態の構成に限定されない。ここで、第一金属膜の構成の一例について図40を用いて説明する。図40は、実施の形態1の変形例1に係るサブマウント100dを備える半導体レーザ装置151dの外形を示す三面図である。図40に示す半導体レーザ装置151dは、サブマウント100dの第一金属膜121cの構成において、実施の形態1に係る半導体レーザ装置151と相違し、その他の点において一致する。図40に示すように、第一金属膜121cは、その平面視において、外縁部に切り欠け121Cを有する。切り欠け121Cの形状は特に限定されないが、本変形例では、矩形形状である。
 本開示に係るサブマウントは、半導体レーザチップとの接合強度が要求される半導体レーザ装置及び熱アシストハードディスク装置において特に利用可能である。
 100、100a、100d、500a、500b、500c、500d、500e、500f、500g、700a、700b、700c、700d サブマウント
 101、701 第1の面
 102、702 第2の面
 103、703 第3の面
 104、704 第4の面
 105、705 第5の面
 106、706 第6の面
 107a、107b 第7の面
 110、710、710a、1110 基板
 111 内側領域
 112 外縁部
 113a 第1の切り欠け部
 113b 第2の切り欠け部
 114a、114b 凹面
 115a、115b 曲面
 116、116a、116b、116c、116c1、116c2、116d、116e、116f、116f1、116f2、116g、116g0、116g1、116g2、116x、716a、716b、716c はんだ膜
 117、717 金属膜除去部
 121、121c、721 第1の金属膜
 121C 切り欠け
 122、122a 第2の金属膜
 151、151a、151b、151c、151d、1151 半導体レーザ装置
 152 半導体レーザチップ
 153 出射面
 154 後端面
 155 上面
 156 電極
 191 表面荒れ
 192 縦スジ
 193 異物
 201 シリコンウェハ
 202 貫通溝
 203 切り欠け形状
 211 改質領域
 221 金属膜
 240 基台
 302 加工用レーザ
 303 照射位置
 306 テープ材
 311 コレット
 312、613 はんだ
 350 加熱ステージ
 407 平行面
 408 曲面
 600 熱アシストハードディスク装置
 602 スライダ
 603 サスペンション
 604 ディスク
 614 近接場光発生素子
 D1 第1の方向
 d1、d2 膜厚

Claims (29)

  1.  素子を搭載する第1の面を有する基板を備えるサブマウントであって、
     前記基板は、
     前記第1の面の面内方向の第1の方向に配置され、前記第1の面と略垂直な第2の面と、
     前記第1の面及び前記第2の面と略垂直な第3の面と、
     前記第1の面及び前記第2の面と略垂直であり、かつ、前記第3の面と対向する第4の面と、
     前記第2の面、前記第3の面及び前記第4の面と略垂直であり、かつ、前記第1の面と対向する第5の面と、
     前記第2の面と対向する第6の面と、
     前記第2の面と前記第3の面とが隣接する部分に形成された第1の切り欠け部と、
     前記第2の面と前記第4の面とが隣接する部分に形成された第2の切り欠け部とを有し、
     前記第1の切り欠け部及び前記第2の切り欠け部は、曲面を含む凹面を有する
     サブマウント。
  2.  前記第1の切り欠け部において、前記第3の面近傍に、前記第2の面と略平行な第7の面を有する
     請求項1に記載のサブマウント。
  3.  前記第1の切り欠け部において、前記曲面の前記第1の面と平行な断面の形状は半径5μm以上の円弧形状である
     請求項2に記載のサブマウント。
  4.  前記第1の面において、前記第1の面側からの平面視した場合の前記第3の面の延長線と前記第2の面の延長線との交点から、前記第3の面側の辺は10μm以上離間し,前記第2の面側の辺は20μm以上離間している
     請求項1に記載のサブマウント。
  5.  前記第3の面及び前記第4の面の表面粗さは、前記第2の面の表面粗さより粗い
     請求項1に記載のサブマウント。
  6.  前記第3の面において、前記第1の切り欠け部側、前記第5の面側及び前記第6の面側の外縁部の表面粗さは、前記外縁部の内側領域の表面粗さよりも小さい
     請求項1に記載のサブマウント。
  7.  前記第5の面は表面粗さRaが0.2μm以下であり,かつ、前記基板を構成する材料が露出している
     請求項1に記載のサブマウント。
  8.  前記第1の面上に配置されるはんだ膜を有する
     請求項1~7のいずれか1項に記載のサブマウント。
  9.  前記第1の面を前記第2の面に対して垂直な線分によって均等な面積を有するように分割された前記第3の面側の第1の領域と前記第4の面側の第2の領域とにおいて、前記はんだ膜が前記第1の領域より前記第2の領域により多く配置される
     請求項8に記載のサブマウント。
  10.  前記第1の面上に配置される第1の金属膜を有し、
     前記はんだ膜は、前記第1の金属膜上に配置される
     請求項8に記載のサブマウント。
  11.  前記第2の面上に配置される第2の金属膜を有する
     請求項1に記載のサブマウント。
  12.  前記基板は、シリコン、ガラス及び、炭化シリコンのいずれかで形成される
     請求項1に記載のサブマウント。
  13.  前記第5の面の法線方向に対して、前記第2の面が傾いており、
     前記第1の面と前記第2の面とのなす角は、鋭角となっている
     請求項1に記載のサブマウント。
  14.  前記第2の面上に配置される第2の金属膜を有し、
     前記第5の面の法線方向に対する前記第2の面の傾きより、前記第5の面の法線方向に対する前記第2の金属膜の表面の傾きの方が小さい
     請求項13に記載のサブマウント。
  15.  前記第2の面上に配置される第2の金属膜を有し、
     前記第2の金属膜の膜厚は、前記第1の面から前記第5の面に向かって厚くなっている
     請求項13に記載のサブマウント。
  16.  前記はんだ膜は、並列に配置された複数の帯状の部分を有する
     請求項8に記載のサブマウント。
  17.  前記複数の帯状の部分は、互いに分離されている
     請求項16に記載のサブマウント。
  18.  前記複数の帯状の部分は、前記第1の方向と平行方向に延びる
     請求項16に記載のサブマウント。
  19.  請求項8~10、16~18のいずれか1項に記載のサブマウントと、
     前記サブマウントの前記第1の面上に前記はんだ膜を介して接合された半導体レーザチップとを備え、
     前記半導体レーザチップの出射面は、前記第2の面側に配置される
     半導体レーザ装置。
  20.  前記半導体レーザチップは、前記第1の面側から平面視した場合に、前記第1の切り欠け部及び前記第2の切り欠け部の少なくとも一方にまたがって配置される
     請求項19に記載の半導体レーザ装置。
  21.  請求項13に記載のサブマウントであって、前記第1の面上に配置されたはんだ膜と、
     前記第2の面上に配置される第2の金属膜とを有するサブマウントと、
     前記サブマウントの前記第1の面上に前記はんだ膜を介して接合された半導体レーザチップとを備え、
     前記半導体レーザチップの出射面は前記第2の面側に配置され、
     前記第2の金属膜の表面と、前記出射面とが略平行である
     半導体レーザ装置。
  22.  前記はんだ膜の膜厚が、前記第1の方向に対して変化している
     請求項21に記載の半導体レーザ装置。
  23.  前記第2の面側の前記はんだ膜の膜厚が、前記第6の面側の前記はんだ膜の膜厚より薄い
     請求項22に記載の半導体レーザ装置。
  24.  前記はんだ膜は、前記第1の切り欠け部及び前記第2の切り欠け部の少なくとも一方に配置される
     請求項19に記載の半導体レーザ装置。
  25.  請求項19~24のいずれか1項に記載の半導体レーザ装置と、
     前記半導体レーザ装置が搭載されるスライダとを備える
     熱アシストハードディスク装置。
  26.  サブマウントと、前記サブマウントに搭載される半導体レーザチップとを備える半導体レーザ装置において、
     前記サブマウントは、
     前記半導体レーザチップを搭載する第1の面と、
     前記第1の面の面内方向の第1の方向に配置され、前記第1の面と略垂直な第2の面と、
     前記第1の面及び前記第2の面と略垂直な第3の面と、
     前記第1の面及び前記第2の面と略垂直であり、かつ、前記第3の面と対向する第4の面と、
     前記第2の面、前記第3の面及び前記第4の面と略垂直であり、かつ、前記第1の面と対向する第5の面と、
     前記第2の面と対向する第6の面と、
     前記第2の面と前記第3の面とが隣接する部分に形成された第1の切り欠け部と、
     前記第2の面と前記第4の面とが隣接する部分に形成された第2の切り欠け部とを有し、
     前記半導体レーザチップの出射面は前記第2の面側に配置され、
     前記出射面と対向する後端面は前記第6の面側に配置され、
     前記第1の面上において、前記半導体レーザチップは、前記第3の面より前記第4の面に近い位置に搭載される
     半導体レーザ装置。
  27.  素子を搭載する第1の面を有する基板とはんだ膜とを備えるサブマウントであって、
     前記基板は、
     前記第1の面の面内方向の第1の方向に配置され、前記第1の面と略垂直な第2の面と、
     前記第1の面及び前記第2の面と略垂直な第3の面と、
     前記第1の面及び前記第2の面と略垂直であり、かつ、前記第3の面と対向する第4の面と、
     前記第2の面、前記第3の面及び前記第4の面と略垂直であり、かつ、前記第1の面と対向する第5の面と、
     前記第2の面と対向する第6の面とを有し、
     前記はんだ膜は、前記第1の面上にパターニングして形成されている
     サブマウント。
  28.  前記第2の面は、前記第5の面の法線方向に対して傾いている
     請求項27に記載のサブマウント。
  29.  素子を搭載する第1の面を有する基板とはんだ膜とを備えるサブマウントであって、
     前記基板は、
     前記第1の面の面内方向の第1の方向に配置され、前記第1の面と略垂直な第2の面と、
     前記第1の面及び前記第2の面と略垂直な第3の面と、
     前記第1の面及び前記第2の面と略垂直であり、かつ、前記第3の面と対向する第4の面と、
     前記第2の面、前記第3の面及び前記第4の面と略垂直であり、かつ、前記第1の面と対向する第5の面と、
     前記第2の面と対向する第6の面とを有し、
     前記第2の面は、前記第5の面の法線方向に対して傾いており、
     前記はんだ膜は、前記第1の面上にパターニングして形成されている
     サブマウント。
PCT/JP2018/024074 2017-08-04 2018-06-26 サブマウント、半導体レーザ装置及び熱アシストハードディスク装置 WO2019026474A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019533969A JP7100641B2 (ja) 2017-08-04 2018-06-26 サブマウント、半導体レーザ装置及び熱アシストハードディスク装置
US16/779,065 US11171465B2 (en) 2017-08-04 2020-01-31 Submount for semiconductor laser device on heat assisted recording device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017151533 2017-08-04
JP2017-151533 2017-08-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/779,065 Continuation US11171465B2 (en) 2017-08-04 2020-01-31 Submount for semiconductor laser device on heat assisted recording device

Publications (1)

Publication Number Publication Date
WO2019026474A1 true WO2019026474A1 (ja) 2019-02-07

Family

ID=65233878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024074 WO2019026474A1 (ja) 2017-08-04 2018-06-26 サブマウント、半導体レーザ装置及び熱アシストハードディスク装置

Country Status (3)

Country Link
US (1) US11171465B2 (ja)
JP (1) JP7100641B2 (ja)
WO (1) WO2019026474A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258370A (ja) * 2002-03-01 2003-09-12 Hitachi Ltd 半導体レーザ素子及び光モジュール
JP2010010514A (ja) * 2008-06-30 2010-01-14 Fujitsu Microelectronics Ltd 半導体装置の製造方法及び半導体装置
JP2012114322A (ja) * 2010-11-26 2012-06-14 Shinko Electric Ind Co Ltd 半導体ウエハの分割方法
JP2013004148A (ja) * 2011-06-17 2013-01-07 Hitachi Ltd 光伝送モジュール、並びにその製造装置及び製造方法
JP2014241378A (ja) * 2013-06-12 2014-12-25 シャープ株式会社 半導体レーザ装置の製造方法及び熱アシスト磁気記録ヘッド
JP2016516295A (ja) * 2013-03-06 2016-06-02 シーゲイト テクノロジー エルエルシーSeagate Technology LLC サブマウント組立体の一体化
JP2016103564A (ja) * 2014-11-28 2016-06-02 シチズンファインデバイス株式会社 基板および基板の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5544184A (en) * 1994-06-10 1996-08-06 Sdl, Inc. Semiconductor illumination system with expansion matched components
JP4326297B2 (ja) * 2003-09-30 2009-09-02 シャープ株式会社 モノリシック多波長レーザ素子およびその製造方法
JP4987632B2 (ja) 2007-08-30 2012-07-25 株式会社東芝 半導体素子の製造方法、サブマウントの製造方法及び電子部品
JP5368957B2 (ja) * 2009-12-04 2013-12-18 シャープ株式会社 半導体レーザチップの製造方法
US9475151B1 (en) * 2012-10-30 2016-10-25 Western Digital (Fremont), Llc Method and apparatus for attaching a laser diode and a slider in an energy assisted magnetic recording head
JP2020072254A (ja) * 2018-10-30 2020-05-07 パナソニック株式会社 サブマウント及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258370A (ja) * 2002-03-01 2003-09-12 Hitachi Ltd 半導体レーザ素子及び光モジュール
JP2010010514A (ja) * 2008-06-30 2010-01-14 Fujitsu Microelectronics Ltd 半導体装置の製造方法及び半導体装置
JP2012114322A (ja) * 2010-11-26 2012-06-14 Shinko Electric Ind Co Ltd 半導体ウエハの分割方法
JP2013004148A (ja) * 2011-06-17 2013-01-07 Hitachi Ltd 光伝送モジュール、並びにその製造装置及び製造方法
JP2016516295A (ja) * 2013-03-06 2016-06-02 シーゲイト テクノロジー エルエルシーSeagate Technology LLC サブマウント組立体の一体化
JP2014241378A (ja) * 2013-06-12 2014-12-25 シャープ株式会社 半導体レーザ装置の製造方法及び熱アシスト磁気記録ヘッド
JP2016103564A (ja) * 2014-11-28 2016-06-02 シチズンファインデバイス株式会社 基板および基板の製造方法

Also Published As

Publication number Publication date
JP7100641B2 (ja) 2022-07-13
US20200169059A1 (en) 2020-05-28
US11171465B2 (en) 2021-11-09
JPWO2019026474A1 (ja) 2020-08-20

Similar Documents

Publication Publication Date Title
TWI623111B (zh) 發光元件的製造方法
JP6305127B2 (ja) 半導体レーザ光源
EP1557917A1 (en) Integrated semiconductor light-emitting device and method for manufacturing same
JP7146736B2 (ja) 窒化物半導体発光素子の製造方法
JP2009004820A (ja) 窒化物系半導体素子およびその製造方法
KR101679852B1 (ko) 발광 장치 및 그 제조 방법
JP2006278694A (ja) 光半導体装置
JP2010272554A (ja) 光学部品及びその製造方法
JP5275558B2 (ja) 半導体デバイスにおけるオーバースプレー被覆(overspraycoating)の制御
WO2019026474A1 (ja) サブマウント、半導体レーザ装置及び熱アシストハードディスク装置
JP2002171021A (ja) 半導体レーザ、半導体レーザの製造方法および半導体レーザの実装方法
JP2020072254A (ja) サブマウント及びその製造方法
JP2006185931A (ja) 半導体レーザー装置およびその製造方法
JP4202814B2 (ja) 半導体レーザ装置の製造方法
JP2006332521A (ja) 半導体レーザー装置
JP2016122757A (ja) 半導体レーザ装置の製造方法及び製造装置
JP2009147205A (ja) 導波路型固体レーザ媒質および導波路型レーザ装置
JPH01280388A (ja) 半導体素子の製造方法
JPH02278781A (ja) 半導体レーザダイオード
JP6362026B2 (ja) レーザ装置、レーザ加工機及び表示装置
WO2021200582A1 (ja) 量子カスケードレーザ素子の製造方法
WO2021200552A1 (ja) 量子カスケードレーザ素子及び量子カスケードレーザ装置
WO2022264210A1 (ja) 半導体レーザー装置および半導体レーザー装置の製造方法
WO2021200549A1 (ja) 量子カスケードレーザ素子及び量子カスケードレーザ装置
JP2007273897A (ja) 多波長半導体レーザ装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019533969

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841876

Country of ref document: EP

Kind code of ref document: A1