WO2019022244A1 - プラズマ処理装置用部材 - Google Patents

プラズマ処理装置用部材 Download PDF

Info

Publication number
WO2019022244A1
WO2019022244A1 PCT/JP2018/028321 JP2018028321W WO2019022244A1 WO 2019022244 A1 WO2019022244 A1 WO 2019022244A1 JP 2018028321 W JP2018028321 W JP 2018028321W WO 2019022244 A1 WO2019022244 A1 WO 2019022244A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma processing
processing apparatus
arithmetic
aluminum oxide
peripheral surface
Prior art date
Application number
PCT/JP2018/028321
Other languages
English (en)
French (fr)
Inventor
浩正 松藤
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN201880047916.9A priority Critical patent/CN110944962B/zh
Priority to JP2019532887A priority patent/JP6914335B2/ja
Priority to US16/633,351 priority patent/US11527388B2/en
Priority to KR1020207000799A priority patent/KR102341011B1/ko
Publication of WO2019022244A1 publication Critical patent/WO2019022244A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/10Rigid pipes of glass or ceramics, e.g. clay, clay tile, porcelain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/006Details of gas supplies, e.g. in an ion source, to a beam line, to a specimen or to a workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Definitions

  • the present disclosure relates to a member for a plasma processing apparatus used in a plasma processing apparatus.
  • Patent Document 1 describes that the corrosion resistance is enhanced by applying heat treatment after mechanically processing a ceramic component in contact with a corrosive gas.
  • the ceramic since the ceramic is machined using a drill or the like after firing, crystal grains exposed on the inner circumferential surface are mechanically broken and crystal grains adjacent to each other due to cracks or the like generated in the crystal grains. The pressing force between each other is reduced, and the crystal particles are easily dropped.
  • the grain boundary phase is easily in contact with the plasma generation gas.
  • the member for a plasma processing apparatus is a cylindrical member for a plasma processing apparatus made of a ceramic having a through hole in the axial direction, and the ceramic contains aluminum oxide as a main component, and a plurality of crystal particles. And an intergranular phase existing between the crystal grains, and the inner circumferential surface of the cylindrical body has an arithmetic average roughness Ra of 1 ⁇ m to 3 ⁇ m and an arithmetic height Rmax of 30 ⁇ m to 130 ⁇ m. .
  • FIG. 1 is a cross-sectional view showing a part of a plasma processing apparatus using the member for a plasma processing apparatus of the present embodiment.
  • the plasma processing apparatus shown in FIG. 1 includes a chamber 1 for disposing a member to be treated (not shown) in an internal space, and subjects the member to be treated to various kinds of processing such as pattern formation treatment by plasma and cleaning treatment.
  • a chamber 1 for disposing a member to be treated (not shown) in an internal space, and subjects the member to be treated to various kinds of processing such as pattern formation treatment by plasma and cleaning treatment.
  • an annular member 2 having flanges 2 a and 2 b at both ends is airtightly fixed to the chamber 1.
  • a cylindrical plasma processing apparatus member 3 made of ceramic provided with through holes 3a in the axial direction is disposed, and a flange is formed on the outer peripheral surface 3b of the plasma processing apparatus member 3.
  • the part 4 is joined.
  • the flange portion 4 is joined to the annular member 2 via the O-ring 5 to prevent the entry of air into the chamber 1 and to fix the plasma processing device member 3 to the annular member 2.
  • the gas for plasma generation is supplied from the upper opening of the member 3 for plasma processing apparatus to the chamber 1 through the through hole 3a. And contact the inner peripheral surface 3 c forming the through hole 3 a of the member 3 for plasma processing apparatus.
  • fluorine-based gas such as SF 6 , CF 4 , CHF 3 , ClF 3 , NF 3 , C 4 F 8 , HF, etc.
  • chlorine-based gas such as Cl 2 , HCl, BCl 3 , CCl 4 etc.
  • the ceramic that constitutes the member 3 for a plasma processing apparatus of the present disclosure in contact with these gases contains aluminum oxide as a main component.
  • Aluminum oxide has high corrosion resistance to plasma generation gas.
  • the main component in the present embodiment refers to the largest component of the total 100% by mass of all the components constituting the ceramic, and in particular, 90% by mass or more, and preferably 98% by mass.
  • Identification of each component is performed by an X-ray diffractometer using CuK ⁇ rays, and the content of each component may be determined by, for example, an ICP (Inductively Coupled Plasma) emission spectrometer or a fluorescent X-ray analyzer.
  • ICP Inductively Coupled Plasma
  • the components forming the grain boundary phase of this ceramic include oxides of silicon, magnesium and calcium.
  • the ceramic constituting the member 3 for a plasma processing apparatus is a so-called sintered body, and has a plurality of crystal particles and a grain boundary phase existing between the crystal particles.
  • Crystal grains are composed of the above-described main component crystals, and the grain boundary phase generally has inferior corrosion resistance to gas for plasma generation than crystal grains.
  • FIG. 2 is a scanning electron micrograph of the inner peripheral surface 3c of the member 3 for a plasma processing apparatus shown in FIG.
  • the member 3 for a plasma processing apparatus has a plurality of crystal particles 3 d on the inner peripheral surface 3 c forming the through hole 3 a.
  • it has a grain boundary phase (not shown) existing between crystal grains 3d.
  • the inner circumferential surface 3c of the member 3 for a plasma processing apparatus of the present disclosure has an arithmetic average roughness Ra of 1 ⁇ m to 3 ⁇ m, and an arithmetic height Rmax of 30 ⁇ m to 130 ⁇ m.
  • Arithmetic mean roughness Ra of inner skin 3c of member 3 for plasma processing devices of this indication is larger than a general grinding side. Moreover, although arithmetic height Rmax is about 4 times of arithmetic mean roughness Ra normally, arithmetic height Rmax of the internal peripheral surface 3c of the cylindrical body of the member 3 for plasma processing apparatuses of this embodiment is arithmetic mean The roughness Ra is 6.7 times or more.
  • the plasma generation gas flowing through the through holes 3a has grain boundaries with relatively low corrosion resistance to the plasma generation gas. It becomes difficult to touch the exposed part of the phase. As a result, it is possible to suppress the precipitation of particles generated by the corrosion of the exposed part of the grain boundary phase, and to reduce the generation of particles.
  • the gas for plasma generation easily flows smoothly in a laminar flow along the inner peripheral surface 3c, and as a result, the corrosion of the exposed part of the grain boundary phase is suppressed. can do.
  • arithmetic height Ra but also the arithmetic height Rmax can be adjusted by appropriately adjusting the raw material particle size and the heat treatment time after firing.
  • the arithmetic roughness Ra and the arithmetic height Rmax tend to decrease.
  • the arithmetic roughness Ra and the arithmetic height Rmax tend to be larger.
  • the average value of the kurtosis Rku on the inner peripheral surface 3c of the member 3 for a plasma processing apparatus may be 6 or more.
  • Kurtosis Rku is an index that represents kurtosis, which is a measure of the sharpness of the surface. And, if Kurtosis Rku is 3, the kurtosis of the portion to be the peak and the portion to become the valley on the surface indicates that it is in the state of normal distribution. On the other hand, if Kurtosis Rku is larger than 3, the peaks near the peaks and valleys become sharp, and if Kurtosis Rku becomes smaller than 3, mountains and valleys become The vicinity of the vertex has a crushed shape.
  • a recessed part is a part of part which becomes a valley of the inner peripheral surface 3c.
  • the average value of the kurtosis Rku determined from the roughness curve on the inner peripheral surface 3c of the member 3 for a plasma processing apparatus may be 9 or less.
  • the average value of the kurtosis Rku is 6 or more and 9 or less, the corrosion of the exposed portion is suppressed and the grain falling of the crystal particle 3d and a part thereof is suppressed. can do.
  • Kurtiss Rku may be determined in accordance with JIS B 0601: 2001, for example, using a laser microscope VK-9500 from Keyence Corporation.
  • the measurement mode is color depth
  • the measurement magnification is 400 times
  • the measurement range per location is 112 ⁇ m ⁇ 84 ⁇ m
  • the measurement pitch is 0.05 ⁇ m
  • the cutoff filter ⁇ s is 2.5 ⁇ m.
  • the cutoff filter ⁇ c may be 0.08 mm, and eight measurement points may be obtained.
  • the inner circumferential surface 3c of the member 3 for a plasma processing apparatus of the present disclosure may be a burned surface. If the inner circumferential surface 3c is a burned surface, grinding waste does not adhere to the inner circumferential surface 3c, so that generation of particles caused by detachment of grinding waste from the inner circumferential surface 3c can be suppressed it can.
  • the inner circumferential surface 3 c has a convex portion made of crystal particles 3 d of aluminum oxide, and as shown in FIG. 2, the surface of the convex portion may include a plurality of flat surfaces.
  • the gas for plasma generation is likely to flow smoothly in a laminar flow along the inner peripheral surface 3c, and as a result, corrosion of the exposed part of the grain boundary phase is further caused. It can be suppressed.
  • the heat treatment after firing is lengthened so that the external shape of the aluminum oxide crystal particles 3d is hexagonal single crystal Try to get closer to
  • Such a configuration can be observed using a scanning electron microscope with a measurement magnification of 2000 and a measurement range of 64 ⁇ m ⁇ 42 ⁇ m per location.
  • the ceramic may also contain magnesium aluminate.
  • magnesium aluminate When magnesium aluminate is contained in the grain boundary phase, the corrosion resistance of the grain boundary phase to fluorine-based gas is improved. Further, since magnesium aluminate has high corrosion resistance to hydrofluoric acid, the corrosion resistance in the case of removing the member 3 for a plasma processing apparatus and cleaning with hydrofluoric acid is improved.
  • the main components of aluminum oxide powder, powders of magnesium hydroxide, silicon oxide and calcium carbonate, a dispersant for dispersing aluminum oxide powder if necessary, and an organic binder are used as a ball mill, bead mill or vibration mill. Wet mixing to form a slurry.
  • the particle size is reduced even if the same raw material powder is used, and the arithmetic roughness Raya of the inner peripheral surface and the arithmetic height Rmax tend to be large.
  • the average particle size (D 50 ) of the aluminum oxide powder is 1.6 ⁇ m or more and 2.0 ⁇ m or less, and the content of magnesium hydroxide powder in a total of 100% by mass of the above-mentioned powder is 0.43 to 0.53 mass %, The content of silicon oxide powder is 0.039 to 0.041 mass%, and the content of calcium carbonate powder is 0.020 to 0.022 mass%.
  • the wet mixing time is, for example, 40 to 50 hours.
  • the organic binder is, for example, paraffin wax, wax emulsion (wax + emulsifier), PVA (polyvinyl alcohol), PEG (polyethylene glycol), PEO (polyethylene oxide) or the like.
  • the slurry obtained by the above-described method is spray-granulated to obtain granules, and then the granules are formed into a cylindrical shape by powder press molding, hydrostatic press molding (rubber press) or the like. Obtain a molded body.
  • through holes are formed in the axial direction using a drill made of sintered diamond.
  • the step of forming the through hole if the forming speed of the through hole is increased, the inner circumferential surface of the through hole is formed, and the arithmetic average roughness Ra and the arithmetic height Rmax easily become large. In particular, the arithmetic height Rmax is large. Prone.
  • the temperature rise rate is 80 ° C./hour or more and 120 ° C./hour or less
  • the baking temperature is 1500 ° C. or more and 1700 ° C. or less
  • the holding time is 4 hours or more
  • the member for a plasma processing apparatus of the present embodiment can be obtained by firing at a temperature lowering rate of 80 ° C./hour or more and 120 ° C./hour or less for a time or less.
  • magnesium hydroxide powder in total of 100% by mass of aluminum oxide powder as main components and each powder of magnesium hydroxide, silicon oxide and calcium carbonate
  • the content may be 0.48 to 0.53 mass%
  • the content of silicon oxide powder may be 0.039 to 0.041 mass%
  • the content of calcium carbonate powder may be 0.020 to 0.022 mass%.
  • a through hole may be formed in the molded body by machining, and the inner circumferential surface on which the through hole is to be formed may be a baked skin surface without machining after firing.
  • the arithmetic height Rmax of the inner peripheral surface is increased by further promoting grain growth of each crystal grain by a method of raising the baking temperature, prolonging the baking time, or performing heat treatment after baking. Can.
  • the heating rate is 80 ° C./hour or more and 120 ° C./hour or less
  • the heat treatment temperature is 1300 ° C. or more and 1500 ° C. or less
  • the holding time is 2 hours or more and 4 hours or less
  • the temperature lowering rate is 80 ° C./hour or more 120 ° C./hour
  • Heat treatment may be performed as follows.
  • the member for a plasma processing apparatus is shown as a member for supplying a gas for plasma generation to the chamber, but the member for discharging the gas for plasma generation from the chamber or It may be a nozzle for generating a stable plasma from a gas.
  • a ball mill is wet mixed with an organic binder, an aluminum oxide powder which is the main component, each powder of magnesium hydroxide, silicon oxide and calcium carbonate, a dispersing agent for dispersing the aluminum oxide powder if necessary, and an organic binder. It was a slurry.
  • the average particle size (D 50 ) of the aluminum oxide powder is 1.8 ⁇ m
  • the content of the magnesium hydroxide powder in the total 100 mass% of the powder is 0.48 mass%
  • the content of the silicon oxide powder is The content of the calcium carbonate powder was 0.041% by mass.
  • the slurry obtained by the above-described method is spray granulated to obtain granules, and the granules are shaped by powder press molding to obtain a cylindrical shaped body.
  • the formed body in which the through holes were formed was placed in a firing furnace, and fired in the air atmosphere with a firing temperature of 1600 ° C. and a holding time of 5 hours.
  • the sample No. 1 which ground the inner peripheral surface of the member for plasma processing apparatuses was ground. I got one.
  • the sample No. The inner peripheral surface of 1 is a grinding surface.
  • each sample was sequentially washed with potassium hydroxide and a surfactant, ultrasonic washing, acid washing, and ultrasonic washing.
  • a hose for pure water supply was connected to the opening on one side of the through hole of each sample, and a container was connected to the opening on the other side.
  • pure water was supplied from a hose for 100 seconds at a flow rate of 5 mL / sec, and the number of particles contained in the pure water discharged into the container was measured using a liquid particle counter.
  • the particles to be measured had a diameter of more than 0.2 ⁇ m.
  • the container was subjected to ultrasonic cleaning, and it was confirmed that the number of particles having a diameter of more than 0.2 ⁇ m was 20 or less.
  • the number of particles generated from each sample is sample no.
  • the relative value when the number of particles generated from 1 is 1 is shown. The results are shown in Table 1.
  • the arithmetic mean roughness Ra and the arithmetic height Rmax of the inner peripheral surface of each sample were determined using a laser microscope VK-9500 from Keyence in accordance with JIS B 0601: 2001. As measurement conditions, color ultra depth measurement mode, measurement magnification 400 times, measurement range per point 112 ⁇ m ⁇ 84 ⁇ m, measurement pitch 0.05 ⁇ m, cutoff filter ⁇ s 2.5 ⁇ m, cutoff filter ⁇ c Arithmetic mean roughness Ra and arithmetic height Rmax were determined as 0.08 mm, and the values are shown in Table 1.
  • Sample No. 1 in which the arithmetic mean roughness Ra of the inner peripheral surface is 1 ⁇ m to 3 ⁇ m and the arithmetic height Rmax is 30 ⁇ m to 130 ⁇ m.
  • Sample Nos. 2, 4 to 6 and 8 have sample numbers 1 to 4 whose arithmetic mean roughness Ra or arithmetic height Rmax is out of the above-mentioned range. Particle generation was less than 1, 3, 7 and 9.
  • Sample No. 1 shown in Example 1 The sample No. 4 which is a member for a plasma processing apparatus is heat treated at a temperature raising rate of 100 ° C./hour, a heat treatment temperature of 1400 ° C., a holding time of 1 hour and a temperature lowering rate of 100 ° C. We got 10-13.
  • the arithmetic mean roughness Ra and the arithmetic height Rmax of the inner peripheral surface of each sample were measured using the same method as that shown in Example 1, and the values are shown in Table 2.
  • Kurtosis Rku on the inner circumferential surface of each sample was determined using a laser microscope VK-9500 from Keyence Corporation in accordance with JIS B 0601: 2001. As measurement conditions, color ultra depth measurement mode, measurement magnification 400 times, measurement range per point 112 ⁇ m ⁇ 84 ⁇ m, measurement pitch 0.05 ⁇ m, cutoff filter ⁇ s 2.5 ⁇ m, cutoff filter ⁇ c The average value of kurtosis Rku was determined with 0.08 mm and 8 measurement points, and the value is shown in Table 2.
  • Chamber 2 Annular member 3: Plasma treatment device member 3a: through hole 3b: outer peripheral surface 3c: inner peripheral surface 3d: crystal particle 4: flange 5: O ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

本開示のプラズマ処理装置用部材は、貫通孔を軸方向に備えたセラミックスからなる筒状体のプラズマ処理装置用部材であって、セラミックスは、酸化アルミニウムを主成分とし、複数の結晶粒子と、結晶粒子間に存在する粒界相とを有し、筒状体の内周面は、算術平均粗さRaが1μm以上3μm以下であり、算術高さRmaxが30μm以上130μm以下である。

Description

プラズマ処理装置用部材
 本開示は、プラズマ処理装置に用いるプラズマ処理装置用部材に関する。
 従来、半導体素子を製造するにあたり、基板上の薄膜をエッチングして微細パターンを形成するためにプラズマ処理装置が用いられている。プラズマ処理装置にプラズマ生成用ガスを供給するためのプラズマ処理装置用部材には、微細パターンの欠損に繋がるパーティクルの発生を抑制するため、プラズマ生成用ガスに対して高い耐食性を有することが求められている。特許文献1には、腐食ガスと接触するセラミックス部品を機械的に加工した後、熱処理を施すことで、耐食性を高めることが記載されている。このセラミックス部品は、焼成後にドリル等を用いてセラミックスを機械加工しているため、内周面に露出する結晶粒子は機械的に破壊され、結晶粒子に生じたヒビ割れ等によって隣り合った結晶粒子同士の押圧力が低減したものとなり、結晶粒子の脱落が生じやすくなっている。また、粒界相がプラズマ生成用ガスと接触しやすくなっている。
特開平10-167859号公報
 本開示のプラズマ処理装置用部材は、貫通孔を軸方向に備えたセラミックスからなる筒状体のプラズマ処理装置用部材であって、前記セラミックスは、酸化アルミニウムを主成分とし、複数の結晶粒子と、該結晶粒子間に存在する粒界相とを有し、前記筒状体の内周面は、算術平均粗さRaが1μm以上3μm以下であり、算術高さRmaxが30μm以上130μm以下である。
本実施形態のプラズマ処理装置用部材を用いたプラズマ処理装置の一部を示す断面図である。 図1に示すプラズマ処理装置用部材の内周面の走査型電子顕微鏡写真である。
 本発明に係るプラズマ処理装置用部材について図を参照しながら説明する。
 図1は、本実施形態のプラズマ処理装置用部材を用いたプラズマ処理装置の一部を示す断面図である。
 図1に示すプラズマ処理装置は、内部空間に被処理部材(図示しない)を配置するチャンバー1を備え、プラズマによるパターン形成処理、クリーニング処理等の各種処理を被処理部材に施す。このチャンバー1の開口部1a上には、両端にフランジ2a、2bを備えた環状部材2が、チャンバー1に対して気密に固定されている。
 環状部材2の内部空間には、貫通孔3aを軸方向に備えてなるセラミックスからなる筒状体のプラズマ処理装置用部材3が配置され、プラズマ処理装置用部材3の外周面3bには、フランジ部4が接合されている。フランジ部4はOリング5を介して環状部材2に接合され、チャンバー1内への大気の浸入を防止するとともに、プラズマ処理装置用部材3を環状部材2に固定している。
 このような構成のプラズマ処理装置を用いて、被処理部材に各種処理を施す場合、プラズマ生成用ガスは、プラズマ処理装置用部材3の上側の開口部から貫通孔3aを通してチャンバー1に向って供給され、プラズマ処理装置用部材3の貫通孔3aを形成する内周面3cに接触する。
 プラズマ生成用ガスの例として、SF、CF、CHF、ClF、NF、C、HF等のフッ素系ガス、Cl、HCl、BCl、CCl等の塩素系ガスが挙げられる。
 これらのガスと接触する本開示のプラズマ処理装置用部材3を構成するセラミックスは、酸化アルミニウムを主成分とする。酸化アルミニウムは、プラズマ生成用ガスに対して高い耐食性を有している。
 ここで、本実施形態における主成分とは、セラミックスを構成する全成分の合計100質量%のうち、最も多い成分をいい、特に、90質量%以上、さらに98質量%であるとよい。各成分の同定はCuKα線を用いたX線回折装置で行い、各成分の含有量は、例えばICP(Inductively Coupled Plasma)発光分光分析装置または蛍光X線分析装置により求めればよい。
 このセラミックスの粒界相を形成する成分として珪素、マグネシウムおよびカルシウムの酸化物が挙げられる。
 プラズマ処理装置用部材3を構成するセラミックスは、いわゆる焼結体であり、複数の結晶粒子と、結晶粒子間に存在する粒界相とを有するものである。結晶粒子は、上述の主成分の結晶からなり、一般的に粒界相は、結晶粒子よりもプラズマ生成用ガスに対する耐食性が劣っている。
 図2は、図1に示すプラズマ処理装置用部材3の内周面3cを撮影した走査型電子顕微鏡写真である。
 図2に示すように、プラズマ処理装置用部材3は、貫通孔3aを形成する内周面3cにおいて、複数の結晶粒子3dを有している。また、結晶粒子3d間に存在する粒界相(図示せず)を有している。
 本開示のプラズマ処理装置用部材3の内周面3cは、算術平均粗さRaが1μm以上3μm以下であり、算術高さRmaxが30μm以上130μm以下である。
 本開示のプラズマ処理装置用部材3の内周面3cの算術平均粗さRaは、一般的な研削面よりも大きくなっている。また、通常、算術高さRmaxは算術平均粗さRaの4倍程度であるが、本実施形態のプラズマ処理装置用部材3の筒状体の内周面3cの算術高さRmaxは、算術平均粗さRaの6.7倍以上である。
 本開示のプラズマ処理装置用部材3は、内周面3cの算術高さRmaxが30μm以上であるため、貫通孔3aを流れるプラズマ生成用ガスは、プラズマ生成用ガスに対する耐食性が比較的低い粒界相の露出部に接触しにくくなる。その結果、粒界相の露出部の腐食によって発生する脱粒を抑制することができ、パーティクルの発生を低減することができる。
 また、算術高さRmaxが130μm以下であるため、プラズマ生成用ガスが、内周面3cに沿って層流となって滑らかに流れ易くなり、その結果、粒界相の露出部の腐食を抑制することができる。
 算術高さRaだけでなく、算術高さRmaxも原料粒径や焼成後の熱処理時間を適宜調整することによって調整することができる。
 例えば、原料粒径が、小さくなると算術粗さRa、算術高さRmaxは小さくなる傾向にある。熱処理時間が長くなると、算術粗さRa、算術高さRmaxは大きくなる傾向にある。
 また、プラズマ処理装置用部材3の内周面3cにおけるクルトシスRkuの平均値は、6以上であってもよい。
 ここで、クルトシスRkuとは、表面の鋭さの尺度である尖度を表す指標である。そして、クルトシスRkuが3であるならば、表面における山となる部分および谷となる部分の尖度は正規分布の状態であることを示す。一方、クルトシスRkuが3よりも大きくなれば、山となる部分および谷となる部分の頂点近傍は尖った形状となり、クルトシスRkuが3よりも小さくなれば、山となる部分および谷となる部分の頂点近傍は潰れたような形状となる。
 クルトシスRkuの平均値が6以上であると、内周面3cに存在する凹部が深くなり、この凹部が粒界相に該当する場合には、プラズマ生成用ガスが粒界相の露出部に接触しにくくなり、露出部の腐食が抑制される。なお、凹部は、内周面3cの谷となる部分の一部である。
 また、プラズマ処理装置用部材3の内周面3cにおける粗さ曲線から求められるクルトシスRkuの平均値は、9以下であってもよい。
 クルトシスRkuの平均値が9を超えると、内周面3cの凹部が深くなり、この凹部が粒界相に該当する場合には、粒界相が結晶粒子3d同士を結合する力が弱くなりやすい。このような場合、プラズマ生成用ガスが貫通孔3aを流れると、結晶粒子3dおよびその一部が脱粒するおそれが高くなる。
 クルトシスRkuの平均値が、6以上9以下であると、プラズマ生成用ガスが貫通孔3aを流れても、露出部の腐食が抑制されるととともに、結晶粒子3dおよびその一部の脱粒を抑制することができる。
 クルトシスRkuは、JIS B 0601:2001に準拠し、例えば、キーエンス社のレーザ顕微鏡VK-9500を用いて求めればよい。レーザ顕微鏡VK-9510を用いる場合、例えば、測定モードをカラー超深度、測定倍率を400倍、1箇所当りの測定範囲を112μm×84μm、測定ピッチを0.05μm、カットオフフィルタλsを2.5μm、カットオフフィルタλcを0.08mm、測定箇所を8箇所として求めればよい。
 また、本開示のプラズマ処理装置用部材3の内周面3cは、焼き肌面であってもよい。内周面3cが、焼き肌面であると、研削屑が内周面3cに付着することがないので、研削屑が内周面3cから脱離することによって生じるパーティクルの発生を抑制することができる。
 また、内周面3cは、酸化アルミニウムの結晶粒子3dからなる凸部を有しており、図2に示すように凸部の表面は複数の平面を含んでいてもよい。内周面3cがこのような構成であると、プラズマ生成用ガスが、内周面3cに沿って層流となって滑らかに流れ易くなり、その結果、粒界相の露出部の腐食をさらに抑制することができる。
 このような複数の平面を含む酸化アルミニウムの結晶粒子3dを内周面3cに形成するには、例えば、焼成後の熱処理を長くして、酸化アルミニウムの結晶粒子3dの外形を六方晶の単結晶に近づくようにするとよい。
 このような構成は、走査型電子顕微鏡を用いて測定倍率を2000倍、1箇所当りの測定範囲を64μm×42μmとして観察することができる。
 また、セラミックスは、アルミン酸マグネシウムを含んでいてもよい。アルミン酸マグネシウムが粒界相に含まれていると、フッ素系ガスに対する、粒界相の耐食性が向上する。また、アルミン酸マグネシウムは、フッ酸に対する耐食性が高いので、プラズマ処理装置用部材3を取り外してフッ酸で洗浄する場合の耐食性が向上する。
 次に、本開示のプラズマ処理装置用部材の製造方法の一例を説明する。
 まず、主成分である酸化アルミニウム粉末と、水酸化マグネシウム、酸化珪素および炭酸カルシウムの各粉末と、必要に応じて酸化アルミニウム粉末を分散させる分散剤と、有機結合剤とをボールミル、ビーズミルまたは振動ミルにより湿式混合してスラリーとする。
 この湿式混合の時間を長くすると同じ原料粉末を用いた場合であっても、その粒径が小さくなり、内周面の算術粗さRaya、算術高さRmaxが大きくなりやすい。
 ここで、酸化アルミニウム粉末の平均粒径(D50)は1.6μm以上2.0μm以下であり、上記粉末の合計100質量%における水酸化マグネシウム粉末の含有量は0.43~0.53質量%、酸化珪素粉末の含有量は0.039~0.041質量%、炭酸カルシウム粉末の含有量は0.020~0.022質量%である。
 湿式混合する時間は、例えば、40~50時間である。また、有機結合剤は、例えば、パラフィンワックス、ワックスエマルジョン(ワックス+乳化剤)、PVA(ポリビニールアルコール)、PEG(ポリエチレングリコール)、PEO(ポリエチレンオキサイド)等である。
 次に、上述した方法によって得たスラリーを噴霧造粒して顆粒を得た後、この顆粒を粉末プレス成形法や静水圧プレス成形法(ラバープレス法)等により、成形することで円柱状の成形体を得る。
 次に、焼結ダイヤモンド製のドリルを用いて軸方向に貫通孔を形成する。この貫通孔を形成する工程において、貫通孔の形成速度を速くすると、貫通孔の内周面があれて算術平均粗さRa、算術高さRmaxが大きくなりやすく、特に、算術高さRmaxが大きくなりやすい。
 次に、貫通孔を形成した成形体を大気雰囲気中で、例えば、昇温速度を80℃/時間以上120℃/時間以下、焼成温度を1500℃以上1700℃以下、保持時間を4時間以上6時間以下、降温速度を80℃/時間以上120℃/時間以下として焼成することによって、本実施形態のプラズマ処理装置用部材を得ることができる。
 酸化アルミニウムを主成分とし、アルミン酸マグネシウムを含むセラミックスを得るには、主成分である酸化アルミニウム粉末と、水酸化マグネシウム、酸化珪素および炭酸カルシウムの各粉末の合計100質量%における水酸化マグネシウム粉末の含有量を0.48~0.53質量%、酸化珪素粉末の含有量を0.039~0.041質量%、炭酸カルシウム粉末の含有量を0.020~0.022質量%とすればよい。
 成形体に機械加工で貫通孔を形成し、焼成後に機械加工を施すことなく、貫通孔を形成する内周面を焼き肌面とすればよい。
 また、焼成温度を高くする、焼成時間を長くする、または、焼成後に熱処理するなどの方法によって、それぞれの結晶粒子の粒成長をより促すことにより、内周面の算術高さRmaxを大きくすることができる。
 筒状体の内周面の粗さ曲線のクルトシスRkuの平均値が6.0以上であるプラズマ処理装置用部材を得るには、焼成後に酸化アルミニウムの結晶が粒成長するように熱処理すればよく、例えば、昇温速度を80℃/時間以上120℃/時間以下、熱処理温度を1300℃以上1500℃以下、保持時間を2時間以上4時間以下、降温速度を80℃/時間以上120℃/時間以下として熱処理すればよい。
 なお、本開示は、前述した実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更、改良、組合せ等が可能である。
 図1に示す例では、プラズマ処理装置用部材は、プラズマ生成用ガスをチャンバーに供給する部材として示したが、プラズマ生成用ガスをチャンバーから排出する部材や、チャンバー内に配置され、プラズマ生成用ガスから安定したプラズマを発生させるためのノズルであってもよい。
 まず、主成分である酸化アルミニウム粉末と、水酸化マグネシウム、酸化珪素および炭酸カルシウムの各粉末と、必要に応じて酸化アルミニウム粉末を分散させる分散剤と、有機結合剤とをボールミルにより湿式混合してスラリーとした。
 ここで、酸化アルミニウム粉末の平均粒径(D50)は1.8μmであり、上記粉末の合計100質量%における水酸化マグネシウム粉末の含有量を0.48質量%、酸化珪素粉末の含有量を0.04質量%、炭酸カルシウム粉末の含有量を0.021質量%とした。
 次に、上述した方法によって得たスラリーを噴霧造粒して顆粒を得た後、この顆粒を粉末プレス成形法により、成形することで円柱状の成形体を得た。
 次に、焼結ダイヤモンド製のドリルを用いて軸方向に貫通孔を形成した。
 次に、貫通孔を形成した成形体を焼成炉の中に配置し、大気雰囲気中で、焼成温度を1600℃、保持時間を5時間として焼成した。
 また、一部の試料には、焼成後に、昇温速度を100℃/時間、熱処理温度を1400℃、保持時間を表1に示す時間、降温速度を100℃/時間として熱処理を施し、プラズマ処理装置用部材である試料No.2~9を得た。
 これら試料No.2~9の内周面は、焼き肌面となっている。
 また、比較例として、プラズマ処理装置用部材の内周面を研削した試料No.1を得た。この試料No.1の内周面は、研削面となっている。
 そして、各試料に、水酸化カリウムおよび界面活性剤による洗浄、超音波洗浄、酸洗浄、超音波洗浄を順次施した。
 そして、各試料の貫通孔の一方側の開口部に純水供給用のホース、他方側の開口部に容器をそれぞれ接続した。次に、流速を5mL/秒として、ホースから純水を100秒間供給し、容器に排出された純水に含まれる、パーティクルの個数を液中パーティクルカウンタ-を用いて測定した。なお、測定の対象とするパーティクルは、直径が0.2μmを超えるものとした。また、容器は、接続する前に、超音波洗浄を行い、直径が0.2μmを超えるパーティクルの個数が20個以下であることが確認されたものを用いた。
 ここで、各試料から発生するパーティクルの個数は、試料No.1から発生したパーティクルの個数を1としたときの相対値で示した。結果を表1に示す。
 また、各試料を構成する成分を、CuKα線を用いたX線回折装置で行った結果、酸化アルミニウムが同定された。また、各金属元素の含有量を、ICP(Inductively Coupled Plasma)発光分光分析装置で測定した結果、アルミニウムの含有量が最も多く、酸化アルミニウムが主成分であることがわかった。
 また、各試料の内周面の算術平均粗さRaおよび算術高さRmaxは、JIS B 0601:2001に準拠し、キーエンス社のレーザ顕微鏡VK-9500を用いて求めた。測定条件としては、測定モードをカラー超深度、測定倍率を400倍、1箇所当りの測定範囲を112μm×84μm、測定ピッチを0.05μm、カットオフフィルタλsを2.5μm、カットオフフィルタλcを0.08mmとして算術平均粗さRaおよび算術高さRmaxを求め、その値を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、内周面の算術平均粗さRaが1μm以上3μm以下であり、算術高さRmaxが30μm以上130μm以下である試料No.2、4~6、8は、算術平均粗さRaまたは算術高さRmaxが上述した範囲外である試料No.1、3、7、9よりもパーティクルの発生が少なかった。
 実施例1に示す試料No.4に、昇温速度を100℃/時間、熱処理温度を1400℃、保持時間を表1に示す時間、降温速度を100℃/時間として熱処理を施し、プラズマ処理装置用部材である試料No.10~13を得た。
 そして、実施例1で示した方法と同じ方法を用いて、各試料から発生するパーティクルの個数を実施例1に示す試料No.1から発生したパーティクルの個数を1としたときの相対値で示した。
 また、各試料の内周面の算術平均粗さRaおよび算術高さRmaxは、実施例1に示す方法と同じ方法を用いて測定し、その値を表2に示した。
 各試料の内周面のクルトシスRkuは、JIS B 0601:2001に準拠し、キーエンス社のレーザ顕微鏡VK-9500を用いて求めた。測定条件としては、測定モードをカラー超深度、測定倍率を400倍、1箇所当りの測定範囲を112μm×84μm、測定ピッチを0.05μm、カットオフフィルタλsを2.5μm、カットオフフィルタλcを0.08mm、測定箇所を8箇所としてクルトシスRkuの平均値を求め、その値を表2に示した。
Figure JPOXMLDOC01-appb-T000002
 試料No.11~13のように、筒状体の内周面のクルトシスRkuの平均値が6.0以上であれば、パーティクルの発生が少ないことがわかる。
1 :チャンバー
2 :環状部材
3 :プラズマ処理装置用部材
3a:貫通孔
3b:外周面
3c:内周面
3d:結晶粒子
4 :フランジ部
5 :Oリング
 

Claims (3)

  1.  貫通孔を軸方向に備えたセラミックスからなる筒状体のプラズマ処理装置用部材であって、
     前記セラミックスは、酸化アルミニウムを主成分とし、複数の結晶粒子と、該結晶粒子間に存在する粒界相とを有し、
     前記筒状体の内周面は、算術平均粗さRaが1μm以上3μm以下であり、算術高さRmaxが30μm以上130μm以下である、プラズマ処理装置用部材。
  2.  前記筒状体の内周面は、クルトシスRkuの平均値が6.0以上である、請求項1に記載のプラズマ処理装置用部材。
  3.  前記筒状体の内周面は、酸化アルミニウムの結晶粒子からなる凸部を有しており、該凸部の表面は複数の平面からなる、請求項1または2に記載のプラズマ処理装置用部材。
     
     
PCT/JP2018/028321 2017-07-28 2018-07-27 プラズマ処理装置用部材 WO2019022244A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880047916.9A CN110944962B (zh) 2017-07-28 2018-07-27 等离子体处理装置用构件
JP2019532887A JP6914335B2 (ja) 2017-07-28 2018-07-27 プラズマ処理装置用部材
US16/633,351 US11527388B2 (en) 2017-07-28 2018-07-27 Member for plasma processing devices
KR1020207000799A KR102341011B1 (ko) 2017-07-28 2018-07-27 플라스마 처리 장치용 부재

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-146772 2017-07-28
JP2017146772 2017-07-28

Publications (1)

Publication Number Publication Date
WO2019022244A1 true WO2019022244A1 (ja) 2019-01-31

Family

ID=65040225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028321 WO2019022244A1 (ja) 2017-07-28 2018-07-27 プラズマ処理装置用部材

Country Status (5)

Country Link
US (1) US11527388B2 (ja)
JP (1) JP6914335B2 (ja)
KR (1) KR102341011B1 (ja)
CN (1) CN110944962B (ja)
WO (1) WO2019022244A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060180A1 (ja) * 2019-09-27 2021-04-01 京セラ株式会社 プラズマ処理装置用部材、その製造方法およびプラズマ処理装置
WO2022210427A1 (ja) * 2021-03-30 2022-10-06 京セラ株式会社 有底筒状体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167859A (ja) * 1996-12-05 1998-06-23 Ngk Insulators Ltd セラミックス部品およびその製造方法
JP2001250814A (ja) * 2000-03-06 2001-09-14 Hitachi Ltd プラズマ処理装置
JP2008156160A (ja) * 2006-12-25 2008-07-10 Kyocera Corp 耐食性部材およびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209182A (ja) * 1998-01-22 1999-08-03 Sumitomo Metal Ind Ltd プラズマ耐食部材
JP4213790B2 (ja) * 1998-08-26 2009-01-21 コバレントマテリアル株式会社 耐プラズマ部材およびそれを用いたプラズマ処理装置
KR100712715B1 (ko) * 2001-01-31 2007-05-04 도시바세라믹스가부시키가이샤 표면에 미세한 돌기를 형성시킨 세라믹스부재 및 그제조방법
JPWO2002083597A1 (ja) * 2001-04-12 2004-08-05 イビデン株式会社 セラミック接合体およびその製造方法、半導体ウエハ用セラミック構造体
JP4683783B2 (ja) * 2001-08-02 2011-05-18 コバレントマテリアル株式会社 半導体製造装置用耐プラズマ部材の製造方法
US7319080B2 (en) * 2002-09-20 2008-01-15 Tokuyama Corporation Aluminum nitride sintered compact
JP4126461B2 (ja) * 2004-10-18 2008-07-30 京セラ株式会社 プラズマプロセス装置用部材
CN100522870C (zh) * 2005-01-27 2009-08-05 京瓷株式会社 复合陶瓷及其制法
JP4571561B2 (ja) * 2005-09-08 2010-10-27 トーカロ株式会社 耐プラズマエロージョン性に優れる溶射皮膜被覆部材およびその製造方法
WO2010015414A1 (de) * 2008-08-07 2010-02-11 Deru Gmbh Verfahren zum herstellen eines keramikbauteils
JP6462449B2 (ja) * 2015-03-26 2019-01-30 京セラ株式会社 高周波用窓部材および半導体製造装置用部材ならびにフラットパネルディスプレイ(fpd)製造装置用部材
JP6473830B2 (ja) * 2015-10-30 2019-02-20 京セラ株式会社 シャワープレート、半導体製造装置およびシャワープレートの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167859A (ja) * 1996-12-05 1998-06-23 Ngk Insulators Ltd セラミックス部品およびその製造方法
JP2001250814A (ja) * 2000-03-06 2001-09-14 Hitachi Ltd プラズマ処理装置
JP2008156160A (ja) * 2006-12-25 2008-07-10 Kyocera Corp 耐食性部材およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060180A1 (ja) * 2019-09-27 2021-04-01 京セラ株式会社 プラズマ処理装置用部材、その製造方法およびプラズマ処理装置
JPWO2021060180A1 (ja) * 2019-09-27 2021-04-01
JP7329610B2 (ja) 2019-09-27 2023-08-18 京セラ株式会社 プラズマ処理装置用部材、その製造方法およびプラズマ処理装置
WO2022210427A1 (ja) * 2021-03-30 2022-10-06 京セラ株式会社 有底筒状体

Also Published As

Publication number Publication date
KR102341011B1 (ko) 2021-12-20
US11527388B2 (en) 2022-12-13
JPWO2019022244A1 (ja) 2020-07-16
KR20200018608A (ko) 2020-02-19
CN110944962A (zh) 2020-03-31
CN110944962B (zh) 2022-05-31
US20200152422A1 (en) 2020-05-14
JP6914335B2 (ja) 2021-08-04

Similar Documents

Publication Publication Date Title
JP6473830B2 (ja) シャワープレート、半導体製造装置およびシャワープレートの製造方法
JPWO2014119177A1 (ja) ガスノズルおよびこれを用いたプラズマ装置
JP2008156160A (ja) 耐食性部材およびその製造方法
WO2019022244A1 (ja) プラズマ処理装置用部材
JP3864958B2 (ja) 耐プラズマ性を有する半導体製造装置用部材およびその作製方法
JP4798693B2 (ja) プラズマ処理装置用イットリアセラミックス部品及びその製造方法
TWI785577B (zh) 透氣性構件、半導體製造裝置用構件、栓塞及吸著構件
JP2006199562A (ja) 耐食性部材およびそれを用いた半導体・液晶製造装置用部材
KR102530856B1 (ko) 가스 노즐, 가스 노즐의 제조 방법, 및 플라즈마 처리 장치
EP3816136A1 (en) Ceramic sintered body and member for plasma treatment device
CN101671171A (zh) 等离子体处理装置用陶瓷
WO2020204087A1 (ja) 耐食性セラミックス
JP6889268B2 (ja) プラズマ処理装置用部材およびプラズマ処理装置
JP7329610B2 (ja) プラズマ処理装置用部材、その製造方法およびプラズマ処理装置
JP2007223828A (ja) イットリアセラミックス焼結体およびその製造方法
JP2007326744A (ja) 耐プラズマ性セラミックス部材
JP2006089358A (ja) 酸化アルミニウム質焼結体およびその製造方法ならびにこれを用いた半導体製造装置
JP7211664B2 (ja) 耐食性セラミックス
JP7112509B2 (ja) セラミックチューブ
WO2022092023A1 (ja) 帯電緩和用構造体
JP2007063068A (ja) イットリアセラミックス焼結体
JP2020164406A (ja) 耐食性部材
CN117355926A (zh) 聚焦环以及等离子处理装置
JP2004259768A (ja) 真空チャンバー用部材およびその製造方法
JP2007077005A (ja) イットリアセラミックス焼結体およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838242

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532887

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207000799

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838242

Country of ref document: EP

Kind code of ref document: A1