WO2019019263A1 - Oled柔性显示面板及其制作方法 - Google Patents

Oled柔性显示面板及其制作方法 Download PDF

Info

Publication number
WO2019019263A1
WO2019019263A1 PCT/CN2017/100339 CN2017100339W WO2019019263A1 WO 2019019263 A1 WO2019019263 A1 WO 2019019263A1 CN 2017100339 W CN2017100339 W CN 2017100339W WO 2019019263 A1 WO2019019263 A1 WO 2019019263A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film layer
inorganic
split
oled
Prior art date
Application number
PCT/CN2017/100339
Other languages
English (en)
French (fr)
Inventor
唐凡
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US15/735,621 priority Critical patent/US10418590B2/en
Publication of WO2019019263A1 publication Critical patent/WO2019019263A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of flexible display panels, and in particular to an OLED flexible display panel and a method of fabricating the same.
  • flexible OLED display panels generally adopt a thin film package, and the package structure is a package structure of a plurality of inorganic thin films or a package structure in which a plurality of inorganic thin films/organic thin films are alternately deposited.
  • the inorganic film is usually very dense, and the film is stressed in the inorganic film during the deposition process, so that the inorganic film is inferior in bending property, and crack and peeling are liable to occur.
  • the inorganic film is required to have a certain thickness to achieve the function of blocking water and oxygen, and the increase of the thickness of the inorganic film further aggravates the problem of cracking and peeling. possibility.
  • the problem of film cracking or peeling easily occurs at the inorganic film, thereby causing a large area failure of the device in the flexible OLED display panel.
  • An object of the present invention is to provide an OLED flexible display panel in which an inorganic film is less likely to be cracked or peeled off, and a method for fabricating the same, in order to solve the problem that the inorganic film of the OLED flexible display panel is easily broken or bent during the bending process of the existing OLED flexible display panel.
  • Technical issues of stripping are to provide an OLED flexible display panel in which an inorganic film is less likely to be cracked or peeled off, and a method for fabricating the same, in order to solve the problem that the inorganic film of the OLED flexible display panel is easily broken or bent during the bending process of the existing OLED flexible display panel.
  • An embodiment of the present invention provides an OLED flexible display panel, including:
  • An OLED light emitting structure disposed on the flexible substrate
  • a first split mixed layer disposed on the first organic layer, comprising alternating first inorganic film layers and first split film layers;
  • a second split mixed layer disposed on the second organic layer comprising a second inorganic film layer and a second split film layer disposed alternately;
  • the first divided film layer is an inorganic film layer or an organic film layer having a modulus of elasticity smaller than that of the first inorganic film layer;
  • the second divided film layer is an inorganic film layer or an organic film layer having a modulus of elasticity smaller than that of the second inorganic film layer;
  • the length of the first inorganic film layer is greater than the length of the first divided film layer; the length of the second inorganic film layer is greater than the length of the second divided film layer;
  • the projection on the plane of the flexible substrate and the projection of the second divided film layer on the plane of the flexible substrate are offset from each other.
  • the integral inorganic layer is disposed on the OLED light emitting structure by an atomic layer deposition process.
  • the first organic layer is disposed in the integral inorganic layer by a coating process or an inkjet printing process;
  • the second organic layer is disposed on the first split mixed layer by a coating process or an inkjet printing process.
  • the integral inorganic layer is a layer of aluminum oxide or a layer of silicon nitride
  • the first organic layer and the second organic layer are an acrylate polymer layer, a styrene polymer layer or a silicone polymer layer;
  • the first inorganic film layer and the second inorganic film layer are an aluminum oxide layer, a silicon nitride layer, a silicon oxide layer or a silicon carbide layer.
  • the OLED flexible display panel further includes:
  • An inorganic protective layer is disposed between the OLED light emitting structure and the integral inorganic layer.
  • An embodiment of the present invention further provides an OLED flexible display panel, including:
  • An OLED light emitting structure disposed on the flexible substrate
  • a first split mixed layer disposed on the first organic layer, comprising alternating first inorganic film layers and first split film layers;
  • a second split mixed layer disposed on the second organic layer comprising a second inorganic film layer and a second split film layer disposed alternately;
  • the first divided film layer is an inorganic film layer or an organic film layer having a modulus of elasticity smaller than that of the first inorganic film layer;
  • the second divided film layer is an inorganic film layer or an organic film layer having a modulus of elasticity smaller than that of the second inorganic film layer.
  • the length of the first inorganic film layer is greater than the length of the first divided film layer; the length of the second inorganic film layer is greater than that of the second divided film layer length.
  • the projection of the first divided film layer on the plane of the flexible substrate and the projection of the second divided film layer on the plane of the flexible substrate are mutually offset.
  • the integral inorganic layer is disposed on the OLED light emitting structure by an atomic layer deposition process.
  • the first organic layer is disposed in the integral inorganic layer by a coating process or an inkjet printing process;
  • the second organic layer is disposed on the first split mixed layer by a coating process or an inkjet printing process.
  • the integral inorganic layer is a layer of aluminum oxide or a layer of silicon nitride
  • the first organic layer and the second organic layer are an acrylate polymer layer, a styrene polymer layer or a silicone polymer layer;
  • the first inorganic film layer and the second inorganic film layer are an aluminum oxide layer, a silicon nitride layer, a silicon oxide layer or a silicon carbide layer.
  • the OLED flexible display panel further includes:
  • An inorganic protective layer is disposed between the OLED light emitting structure and the integral inorganic layer.
  • the embodiment of the invention further provides a method for fabricating an OLED flexible display panel, which comprises:
  • the first divided film layer is an inorganic film layer or an organic film layer having a modulus of elasticity smaller than that of the first inorganic film layer;
  • the second divided film layer is an inorganic film layer or an organic film layer having a modulus of elasticity smaller than that of the second inorganic film layer.
  • the length of the first inorganic film layer is greater than the length of the first divided film layer; the length of the second inorganic film layer is greater than the second segmentation The length of the film layer.
  • the projection of the first split film layer on the plane of the flexible substrate and the projection of the second split film layer on the plane of the flexible substrate Staggered from each other.
  • the OLED flexible display panel of the present invention and the manufacturing method thereof are provided with the laminated structure of the split inorganic layer and the organic layer, so that the inorganic thin film in the OLED flexible display panel is less likely to be cracked or on the basis of better water blocking and oxygen barrier.
  • the phenomenon of peeling solving the technical problem that the inorganic film of the OLED flexible display panel is prone to cracking or peeling during the bending process of the existing OLED flexible display panel.
  • FIG. 1 is a schematic structural view of a first preferred embodiment of an OLED flexible display panel of the present invention
  • FIG. 2 is a schematic structural view of a second preferred embodiment of an OLED flexible display panel of the present invention.
  • FIG. 3 is a flow chart of a preferred embodiment of a method of fabricating an OLED flexible display panel of the present invention.
  • FIG. 1 is a schematic structural view of a first preferred embodiment of an OLED flexible display panel of the present invention.
  • the OLED flexible display panel 10 of the preferred embodiment includes a flexible substrate 11, an OLED light emitting structure 12, an integral inorganic layer 13, a first organic layer 14, a first split mixed layer 15, a second organic layer 16, and a second split mixture. Layer 17.
  • the OLED light emitting structure 12 is disposed on the flexible substrate 11.
  • the integral inorganic layer 13 is disposed on the OLED light emitting structure 12;
  • the first organic layer 14 is disposed on the integral inorganic layer 13;
  • the first split mixed layer 15 is disposed on the first organic layer 14, and includes the first inorganic film alternately disposed a layer 151 and a first split film layer 152;
  • a second organic layer 16 disposed on the first split mixed layer 15;
  • a second split mixed layer 17 disposed on the second organic layer 16, including alternating second inorganic layers
  • the film layer 171 and the second divided film layer 172 is disposed on the flexible substrate 11.
  • the integral inorganic layer 13 is disposed on the OLED light emitting structure 12;
  • the first organic layer 14 is disposed on the integral inorganic layer 13;
  • the first split mixed layer 15 is disposed on the first organic layer 14, and includes the first inorganic film alternately disposed a layer 151 and a first split film layer 152;
  • the first split film layer 152 is an inorganic film layer or an organic film layer having a lower elastic modulus than the first inorganic film layer 151
  • the second split film layer 172 is an inorganic film layer having an elastic modulus smaller than that of the second inorganic film layer 171 or organic Membrane layer.
  • the flexible substrate 11 may be an ultra-thin glass, a high molecular polymer or the like.
  • the OLED light emitting structure 12 includes an OLED light emitting structural member such as an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode.
  • the integral inorganic layer 13 is disposed on the OLED light emitting structure 12 such that the integral inorganic layer 13 can form a fine inorganic particle covering on the surface of the OLED light emitting structure 12 to form an ultrathin and dense water vapor barrier layer.
  • the monolithic inorganic layer 13 may be an aluminum oxide layer (Al 2 O 3 ) or a silicon nitride layer (SiN x ), and the overall inorganic layer 13 may have a thickness of 10 nm to 500 nm.
  • the first organic layer 14 is provided on the monolithic inorganic layer 13, and the first organic layer 14 may be an acrylate-based polymer layer, a styrene-based polymer layer or a silicone-based polymer layer.
  • the first organic layer 14 can planarize the entire inorganic layer 13 on the one hand, and can release the stress of the adjacent inorganic layer as a buffer layer on the other hand.
  • the first organic layer 14 has a thickness of 5 micrometers to 10 micrometers.
  • a second organic layer 16 is disposed on the first split mixed layer 15, and the second organic layer 16 may be an acrylate polymer layer, a styrene polymer layer or a silicone polymer layer.
  • the second organic layer 16 can perform a flattening process on the first partial mixed layer 15, and on the other hand can act as a buffer layer to release the stress of the adjacent inorganic layer.
  • the second organic layer 16 has a thickness of 5 micrometers to 10 micrometers.
  • the first split mixing layer 15 can be made by the following steps:
  • first inorganic film layer 151 of the first split mixed layer 15 on the first organic layer 14 by a first mask having a first inorganic film layer pattern; and subsequently passing through a second cover having a first split film layer pattern
  • the cover forms the first divided film layer 152 of the first split mixed layer 15 on the first organic layer 14.
  • the length of the first inorganic film layer 151 in the bending direction of the OLED flexible display panel 10 is greater than the length of the first divided film layer 152 in the bending direction of the OLED flexible display panel 10.
  • the thicknesses of the first inorganic film layer 151 and the first divided film layer 152 may be the same or different.
  • the first split mixed layer 15 having a soft-hard-soft-hard structure
  • the first split film layer 152 of the first split mixed layer 15 is smaller during the bending process of the OLED flexible display panel 10.
  • the modulus of elasticity therefore, the first split film layer 152 can absorb the tensile stress or compressive stress on the first split mixed layer 15 and adjacent structures, thereby avoiding the occurrence of cracking or peeling of the first split mixed layer 15.
  • the first inorganic film layer 151 of the first split mixed layer 15 may be an aluminum oxide layer, a silicon nitride layer, a silicon oxide layer or a silicon carbide layer, and the first divided film layer 152 of the first split mixed layer 15 may be It is an organic film layer such as an acrylate polymer layer, a styrene polymer layer or a silicone polymer layer, or an inorganic film layer such as an aluminum oxide layer, a silicon nitride layer, a silicon oxide layer or a silicon carbide layer.
  • the first inorganic film layer 151 and the first divided film layer 152 of the first divided mixed layer 15 have a thickness of 0.1 ⁇ m to 10 ⁇ m.
  • the second split mixed layer 17 can be made by the following steps:
  • a second split film layer 172 of the second split mixed layer 17 is formed on the second organic layer 16.
  • the length of the second inorganic film layer 171 in the bending direction of the OLED flexible display panel 10 is greater than the length of the second split film layer 172 in the bending direction of the OLED flexible display panel 10.
  • the thickness of the second inorganic film layer 171 and the second divided film layer 172 may be the same or different.
  • the second inorganic film layer 171 of the second divided mixed layer 17 may be an aluminum oxide layer, a silicon nitride layer, a silicon oxide layer or a silicon carbide layer.
  • the second split film layer 172 of the second split mixed layer 17 may be an organic film layer such as an acrylate polymer layer, a styrene polymer layer or a silicone polymer layer, or an aluminum oxide layer or nitride.
  • An inorganic film layer such as a silicon layer, a silicon oxide layer or a silicon carbide layer.
  • the second inorganic film layer 171 and the second divided film layer 172 of the second divided mixed layer 17 have a thickness of 0.1 ⁇ m to 10 ⁇ m.
  • the projection of the first split film layer 152 on the plane (or curved surface) of the flexible substrate 11 and the projection of the second split film layer 172 on the plane (or curved surface) of the flexible substrate 11 are mutually offset. This allows the first split mixed layer 15 and the second split mixed layer 17 to perform stress relief operations on different regions of the OLED flexible display panel 10, respectively, thereby further improving the operational stability of the OLED flexible display panel 10.
  • an inorganic protective layer 18 for protecting the OLED light emitting structure 12 is further disposed between the OLED light emitting structure 12 and the integral inorganic layer 13, and the inorganic protective layer 18 may be lithium fluoride formed by thermal evaporation (LiF ).
  • FIG. 2 is a schematic structural view of a second preferred embodiment of the OLED flexible display panel of the present invention; and the OLED flexible display panel of FIG. 2 further includes an inorganic protective layer 18.
  • the OLED flexible display panel of the preferred embodiment is provided with a laminated structure of a split inorganic layer and an organic layer, so that the inorganic thin film in the OLED flexible display panel is less likely to be cracked or peeled off on the basis of better water and oxygen barrier. phenomenon.
  • FIG. 3 is a preferred embodiment of a method for fabricating an OLED flexible display panel of the present invention.
  • the manufacturing method of the OLED flexible display panel of the preferred embodiment includes:
  • Step S301 providing a flexible substrate
  • Step S302 fabricating an OLED light emitting structure on the flexible substrate
  • Step S303 forming an integral inorganic layer on the flexible substrate by an atomic layer deposition process
  • Step S304 preparing a first organic layer on a flexible substrate by a coating process or an inkjet printing process
  • Step S305 forming a first inorganic film layer on the flexible substrate through the first mask
  • Step S306 the first split film layer is formed on the flexible substrate by the second mask, so that the first split film layer and the first inorganic film layer constitute the first split mixed layer;
  • Step S307 a second organic layer is disposed on the flexible substrate by a coating process or an inkjet printing process;
  • Step S308 forming a second inorganic film layer on the flexible substrate through the third mask
  • Step S309 the second split film layer is formed on the flexible substrate by the fourth mask, so that the second split film layer and the second inorganic film layer constitute the second split mixed layer.
  • step S301 a flexible substrate is provided, which may be ultra-thin glass, high molecular polymer or the like. Then it proceeds to step S302.
  • an OLED light emitting structure is formed on a flexible substrate, and the OLED light emitting structure includes an OLED light emitting structure component such as an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode. Then it proceeds to step S303.
  • an OLED light emitting structure component such as an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode.
  • step S303 an integral inorganic layer is formed on the OLED light-emitting structure by an atomic layer deposition process.
  • the integral inorganic layer can form a better inorganic particle coverage on the surface of the OLED light-emitting structure to form an ultra-thin and dense water-gas barrier layer.
  • the bulk inorganic layer may be an aluminum oxide layer (Al 2 O 3 ) or a silicon nitride layer (SiNx), and the thickness of the overall inorganic layer is from 10 nm to 500 nm. Then it proceeds to step S304.
  • the first organic layer is disposed on the overall inorganic layer, and the first organic layer may be an acrylate polymer layer, a styrene polymer layer or a silicone polymer layer.
  • the first organic layer can planarize the entire inorganic layer on the one hand, and can release the stress of the adjacent inorganic layer as a buffer layer on the other hand.
  • the first organic layer has a thickness of from 5 micrometers to 10 micrometers. Then it proceeds to step S305.
  • step S305 a first inorganic film layer of the first split mixed layer is formed on the first organic layer by the first mask having the first inorganic film layer pattern. Then it proceeds to step S306.
  • a first split film layer of the first split mixed layer is formed on the first organic layer by a second mask having a first split film layer pattern.
  • the length of the first inorganic film layer in the bending direction of the OLED flexible display panel is greater than the length of the first divided film layer in the bending direction of the OLED flexible display panel.
  • the thickness of the first inorganic film layer and the first divided film layer may be the same or different.
  • the first inorganic film layer of the first split mixed layer may be an aluminum oxide layer, a silicon nitride layer, a silicon oxide layer or a silicon carbide layer, and the first divided film layer of the first split mixed layer may be an acrylate type
  • An organic film layer such as a polymer layer, a styrene polymer layer or a silicone polymer layer, or an inorganic film layer such as an aluminum oxide layer, a silicon nitride layer, a silicon oxide layer or a silicon carbide layer.
  • the first inorganic film layer and the first divided film layer of the first split mixed layer have a thickness of 0.1 ⁇ m to 10 ⁇ m. Then it proceeds to step S307.
  • step S307 by a coating process or an inkjet printing process (ink Print)
  • a second organic layer is disposed on the first split mixed layer, and the second organic layer may be an acrylate polymer layer, a styrene polymer layer or a silicone polymer layer.
  • the second organic layer can, on the one hand, perform a flat process on the first split mixed layer and on the other hand can act as a buffer layer to release the stress of the adjacent inorganic layer.
  • the second organic layer has a thickness of from 5 micrometers to 10 micrometers. Then it proceeds to step S308.
  • step S308 the second inorganic film layer of the second split mixed layer is formed on the second organic layer by the third mask having the second inorganic film layer pattern; then, the process proceeds to step S309.
  • a second split film layer of the second split mixed layer is formed on the second organic layer by the fourth mask having the second split film layer pattern.
  • the length of the second inorganic film layer in the bending direction of the OLED flexible display panel is greater than the length of the second divided film layer in the bending direction of the OLED flexible display panel.
  • the thickness of the second inorganic film layer and the second divided film layer may be the same or different.
  • the second inorganic film layer of the second split mixed layer may be an aluminum oxide layer, a silicon nitride layer, a silicon oxide layer or a silicon carbide layer.
  • the second split film layer of the second split mixed layer may be an organic film layer such as an acrylate polymer layer, a styrene polymer layer or a silicone polymer layer, or an aluminum oxide layer or a silicon nitride layer.
  • An inorganic film layer such as a silicon oxide layer or a silicon carbide layer.
  • the second inorganic film layer and the second divided film layer of the second split mixed layer have a thickness of 0.1 ⁇ m to 10 ⁇ m.
  • the projection of the first split film layer on the plane (or curved surface) of the flexible substrate and the projection of the second split film layer on the plane (or curved surface) of the flexible substrate are mutually offset.
  • the first split mixed layer and the second split mixed layer respectively perform stress relieving operations on different regions of the OLED flexible display panel, thereby further improving the working stability of the OLED flexible display panel.
  • step S302 the step may be further included between step S302 and step S303:
  • An inorganic protective layer for protecting the OLED light emitting structure is provided, and the inorganic protective layer may be lithium fluoride (LiF) formed by thermal evaporation.
  • LiF lithium fluoride
  • the OLED flexible display panel of the present invention and the manufacturing method thereof are provided with the laminated structure of the split inorganic layer and the organic layer, so that the inorganic thin film in the OLED flexible display panel is less likely to be cracked or on the basis of better water blocking and oxygen barrier.
  • the phenomenon of peeling solving the technical problem that the inorganic film of the OLED flexible display panel is prone to cracking or peeling during the bending process of the existing OLED flexible display panel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED柔性显示面板,其包括柔性基板(11)、OLED发光结构(12)、整体无机层(13)、第一有机层(14)、第一分体混合层(15)、第二有机层(16)以及第二分体混合层(17);其中第一分体混合层(15)包括交替设置的第一无机膜层(151)和第一分割膜层(152);第二分体混合层(17)包括交替设置的第二无机膜层(171)和第二分割膜层(172)。

Description

OLED柔性显示面板及其制作方法 技术领域
本发明涉及柔性显示面板领域,特别是涉及一种OLED柔性显示面板及其制作方法。
背景技术
目前柔性OLED显示面板一般采用薄膜封装,其封装结构为多层无机薄膜的封装结构或者多层无机薄膜/有机薄膜交替沉积的封装结构。无机薄膜通常很致密,在沉积过程中由于无机薄膜中存在薄膜应力,使得无机薄膜的弯折性较差,容易产生破裂(crack)和剥离(peeling)。
而且,为了防止水氧渗入到OLED显示面板内部,需要无机薄膜具有一定的厚度,以达到阻水阻氧的作用,而无机膜层厚度的增加,又会进一步加剧了产生破裂和剥离问题产生的可能性。特别是OLED柔性显示面板,当OLED柔性显示面板进行弯曲或折叠的过程中,很容易在无机薄膜处发生薄膜破裂或剥离的问题,从而导致柔性OLED显示面板中的器件大面积失效。
故,有必要提供一种OLED柔性显示面板及其制作方法,以解决现有技术所存在的问题。
技术问题
本发明的目的在于提供一种无机薄膜不易产生破裂或剥离的OLED柔性显示面板及其制作方法;以解决现有的OLED柔性显示面板在弯曲过程中,OLED柔性显示面板的无机薄膜容易产生破裂或剥离的技术问题。
技术解决方案
本发明实施例提供一种OLED柔性显示面板,其包括:
柔性基板;
OLED发光结构,设置在所述柔性基板上;
整体无机层,设置在所述OLED发光结构上;
第一有机层,设置在所述整体无机层上;
第一分体混合层,设置在所述第一有机层上,其包括交替设置的第一无机膜层和第一分割膜层;
第二有机层,设置在所述第一分体混合层上;以及
第二分体混合层,设置在所述第二有机层上,其包括交替设置的第二无机膜层和第二分割膜层;
其中所述第一分割膜层为弹性模量小于所述第一无机膜层的无机膜层或有机膜层;
所述第二分割膜层为弹性模量小于所述第二无机膜层的无机膜层或有机膜层;
其中所述第一无机膜层的长度大于所述第一分割膜层的长度;所述第二无机膜层的长度大于所述第二分割膜层的长度;所述第一分割膜层在所述柔性基板所在平面上的投影与所述第二分割膜层在所述柔性基板所在平面上的投影相互错开。
在本发明所述的OLED柔性显示面板中,通过原子层沉积工艺在所述OLED发光结构上设置所述整体无机层。
在本发明所述的OLED柔性显示面板中,通过涂布工艺或喷墨印刷工艺在所述整体无机层设置所述第一有机层;
通过涂布工艺或喷墨印刷工艺在所述第一分体混合层上设置所述第二有机层。
在本发明所述的OLED柔性显示面板中,所述整体无机层为三氧化二铝层或氮化硅层;
所述第一有机层和所述第二有机层为丙烯酸酯类聚合物层、苯乙烯类聚合物层或有机硅类聚合物层;
所述第一无机膜层和所述第二无机膜层为三氧化二铝层、氮化硅层、氧化硅层或碳化硅层。
在本发明所述的OLED柔性显示面板中,所述OLED柔性显示面板还包括:
无机保护层,设置在所述OLED发光结构和所述整体无机层之间。
本发明实施例还提供一种OLED柔性显示面板,其包括:
柔性基板;
OLED发光结构,设置在所述柔性基板上;
整体无机层,设置在所述OLED发光结构上;
第一有机层,设置在所述整体无机层上;
第一分体混合层,设置在所述第一有机层上,其包括交替设置的第一无机膜层和第一分割膜层;
第二有机层,设置在所述第一分体混合层上;以及
第二分体混合层,设置在所述第二有机层上,其包括交替设置的第二无机膜层和第二分割膜层;
其中所述第一分割膜层为弹性模量小于所述第一无机膜层的无机膜层或有机膜层;
所述第二分割膜层为弹性模量小于所述第二无机膜层的无机膜层或有机膜层。
在本发明所述的OLED柔性显示面板中,所述第一无机膜层的长度大于所述第一分割膜层的长度;所述第二无机膜层的长度大于所述第二分割膜层的长度。
在本发明所述的OLED柔性显示面板中,所述第一分割膜层在所述柔性基板所在平面上的投影与所述第二分割膜层在所述柔性基板所在平面上的投影相互错开。
在本发明所述的OLED柔性显示面板中,通过原子层沉积工艺在所述OLED发光结构上设置所述整体无机层。
在本发明所述的OLED柔性显示面板中,通过涂布工艺或喷墨印刷工艺在所述整体无机层设置所述第一有机层;
通过涂布工艺或喷墨印刷工艺在所述第一分体混合层上设置所述第二有机层。
在本发明所述的OLED柔性显示面板中,所述整体无机层为三氧化二铝层或氮化硅层;
所述第一有机层和所述第二有机层为丙烯酸酯类聚合物层、苯乙烯类聚合物层或有机硅类聚合物层;
所述第一无机膜层和所述第二无机膜层为三氧化二铝层、氮化硅层、氧化硅层或碳化硅层。
在本发明所述的OLED柔性显示面板中,所述OLED柔性显示面板还包括:
无机保护层,设置在所述OLED发光结构和所述整体无机层之间。
本发明实施例还提供一种OLED柔性显示面板的制作方法,其包括:
提供一柔性基板;
在所述柔性基板上制作OLED发光结构;
通过原子层沉积工艺,在所述柔性基板上制作整体无机层;
通过涂布工艺或喷墨印刷工艺,在所述柔性基板上制作第一有机层;
通过第一遮罩,在所述柔性基板上制作第一无机膜层;
通过第二遮罩,在所述柔型基板上制作第一分割膜层,以使得所述第一分割膜层和所述第一无机膜层构成所述第一分体混合层;
通过涂布工艺或喷墨印刷工艺,在所述柔性基板设置所述第二有机层;
通过第三遮罩,在所述柔型基板上制作第二无机膜层;以及
通过第四遮罩,在所述柔性基板上制作第二分割膜层,以使得所述第二分割膜层和所述第二无机膜层构成所述第二分体混合层;
其中所述第一分割膜层为弹性模量小于所述第一无机膜层的无机膜层或有机膜层;
所述第二分割膜层为弹性模量小于所述第二无机膜层的无机膜层或有机膜层。
在本发明所述的OLED柔性显示面板的制作方法中,所述第一无机膜层的长度大于所述第一分割膜层的长度;所述第二无机膜层的长度大于所述第二分割膜层的长度。
在本发明所述的OLED柔性显示面板的制作方法中,所述第一分割膜层在所述柔性基板所在平面上的投影与所述第二分割膜层在所述柔性基板所在平面上的投影相互错开。
有益效果
本发明的OLED柔性显示面板及其制作方法通过设置分体无机层和有机层的层叠结构,使得OLED柔性显示面板中的无机薄膜在可以较好的阻水阻氧的基础上,不易产生破裂或剥离的现象;解决了现有的OLED柔性显示面板在弯曲过程中,OLED柔性显示面板的无机薄膜容易产生破裂或剥离的技术问题。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1为本发明的OLED柔性显示面板的第一优选实施例的结构示意图;
图2为本发明的OLED柔性显示面板的第二优选实施例的结构示意图;
图3为本发明的OLED柔性显示面板的制作方法的优选实施例的流程图。
本发明的最佳实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参照图1,图1为本发明的OLED柔性显示面板的第一优选实施例的结构示意图。本优选实施例的OLED柔性显示面板10包括柔性基板11、OLED发光结构12、整体无机层13、第一有机层14、第一分体混合层15、第二有机层16以及第二分体混合层17。
OLED发光结构12设置在柔性基板11上。整体无机层13设置在OLED发光结构12上;第一有机层14设置在整体无机层13上;第一分体混合层15设置在第一有机层14上,其包括交替设置的第一无机膜层151和第一分割膜层152;第二有机层16设置在第一分体混合层15上;第二分体混合层17设置在第二有机层16上,其包括交替设置的第二无机膜层171和第二分割膜层172。
其中第一分割膜层152为弹性模量小于第一无机膜层151的无机膜层或有机膜层,第二分割膜层172为弹性模量小于第二无机膜层171的无机膜层或有机膜层。
其中柔性基板11可为超薄玻璃或高分子聚合物等。该OLED发光结构12包括阳极、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层以及阴极等OLED发光结构部件。
具体的,可通过原子层沉积工艺(ALD,Atomic Layer Deposition)在OLED发光结构12上设置整体无机层13,这样整体无机层13可在OLED发光结构12表面形成较好的无机颗粒覆盖,以形成超薄致密的水气阻挡层。该整体无机层13可为三氧化二铝层(Al2O3)或氮化硅层(SiNx),整体无机层13的厚度为10纳米至500纳米。
可通过涂布工艺或喷墨印刷工艺(ink print)在整体无机层13设置第一有机层14,第一有机层14可为丙烯酸酯类聚合物层、苯乙烯类聚合物层或有机硅类聚合物层。第一有机层14一方面可对整体无机层13进行平坦化处理,另一方面可以作为缓冲层释放相邻无机层的应力。第一有机层14的厚度为5微米至10微米。
同样可通过涂布工艺或喷墨印刷工艺(ink print)在第一分体混合层15上设置第二有机层16,第二有机层16可为丙烯酸酯类聚合物层、苯乙烯类聚合物层或有机硅类聚合物层。第二有机层16一方面可对第一分体混合层15进行平坦话处理,另一方面可以作为缓冲层释放相邻无机层的应力。第二有机层16的厚度为5微米至10微米。
第一分体混合层15可通过以下步骤制成:
通过具有第一无机膜层图案的第一遮罩,在第一有机层14上制作第一分体混合层15的第一无机膜层151;随后通过具有第一分割膜层图案的第二遮罩,在第一有机层14上制作第一分体混合层15的第一分割膜层152。其中第一无机膜层151在OLED柔性显示面板10的弯曲方向的长度大于第一分割膜层152在OLED柔性显示面板10的弯曲方向的长度。第一无机膜层151和第一分割膜层152的厚度可以相同也可以不相同。
这样可形成具有软-硬-软-硬结构的第一分体混合层15,OLED柔性显示面板10在弯折过程中,由于第一分体混合层15的第一分割膜层152具有较小的弹性模量,因此第一分割膜层152可以吸收第一分体混合层15以及相邻结构上的张应力或压应力,从而避免第一分体混合层15的破裂或剥离现象的产生。第一分体混合层15的第一无机膜层151可为三氧化二铝层、氮化硅层、氧化硅层或碳化硅层,第一分体混合层15的第一分割膜层152可为丙烯酸酯类聚合物层、苯乙烯类聚合物层或有机硅类聚合物层等有机膜层,或三氧化二铝层、氮化硅层、氧化硅层或碳化硅层等无机膜层。第一分体混合层15的第一无机膜层151和第一分割膜层152的厚度为0.1微米至10微米。
第二分体混合层17可通过以下步骤制成:
通过具有第二无机膜层图案的第三遮罩,在第二有机层16上制作第二分体混合层17的第二无机膜层171;随后通过具有第二分割膜层图案的第四遮罩,在第二有机层16上制作第二分体混合层17的第二分割膜层172。其中第二无机膜层171在OLED柔性显示10面板的弯曲方向的长度大于第二分割膜层172在OLED柔性显示面板10的弯曲方向的长度。第二无机膜层171和第二分割膜层172的厚度可以相同也可以不相同。
这样可形成具有软-硬-软-硬结构的第二分体混合层17,OLED柔性显示面板10在弯折过程中,由于第二分体混合层17的第二分割膜层172具有较小的弹性模量,因此第二分割膜层172可以吸收第二分体混合层17以及相邻结构上的张应力或压应力,从而避免第二分体混合层17的破裂或剥离现象的产生。第二分体混合层17的第二无机膜层171可为三氧化二铝层、氮化硅层、氧化硅层或碳化硅层。第二分体混合层17的第二分割膜层172可为丙烯酸酯类聚合物层、苯乙烯类聚合物层或有机硅类聚合物层等有机膜层,或三氧化二铝层、氮化硅层、氧化硅层或碳化硅层等无机膜层。第二分体混合层17的第二无机膜层171和第二分割膜层172的厚度为0.1微米至10微米。
第一分割膜层152在柔性基板11所在平面(或曲面)上的投影与第二分割膜层172在柔性基板11所在平面(或曲面)上的投影相互错开。这样可使得第一分体混合层15和第二分体混合层17分别对OLED柔性显示面板10的不同区域进行应力消除操作,从而进一步提高了OLED柔性显示面板10的工作稳定性。
优选的,在OLED发光结构12和整体无机层13之间还设置有用于对OLED发光结构12进行保护的无机保护层18,该无机保护层18可为通过热蒸镀形成的氟化锂(LiF)。如图2所示,图2为本发明的OLED柔性显示面板的第二优选实施例的结构示意图;图2中的OLED柔性显示面板还包括无机保护层18。
本优选实施例的OLED柔性显示面板通过设置分体无机层和有机层的层叠结构,使得OLED柔性显示面板中的无机薄膜在可以较好的阻水阻氧的基础上,不易产生破裂或剥离的现象。
本发明还提供一种OLED柔性显示面板的制作方法,请参照图3,图3为本发明的OLED柔性显示面板的制作方法的优选实施例。本优选实施例的OLED柔性显示面板的制作方法包括:
步骤S301,提供一柔性基板;
步骤S302,在柔性基板上制作OLED发光结构;
步骤S303,通过原子层沉积工艺,在柔性基板上制作整体无机层;
步骤S304,通过涂布工艺或喷墨印刷工艺,在柔性基板上制作第一有机层;
步骤S305,通过第一遮罩,在柔性基板上制作第一无机膜层;
步骤S306,通过第二遮罩,在柔型基板上制作第一分割膜层,以使得第一分割膜层和第一无机膜层构成第一分体混合层;
步骤S307,通过涂布工艺或喷墨印刷工艺,在柔性基板设置第二有机层;
步骤S308,通过第三遮罩,在柔型基板上制作第二无机膜层;
步骤S309,通过第四遮罩,在柔性基板上制作第二分割膜层,以使得第二分割膜层和第二无机膜层构成第二分体混合层。
下面详细说明本优选实施例的OLED柔性显示面板的制作方法的面板制作流程。
在步骤S301中,提供一柔性基板,该柔性基板可为超薄玻璃或高分子聚合物等。随后转到步骤S302。
在步骤S302中,在柔性基板上制作OLED发光结构,该OLED发光结构包括阳极、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层以及阴极等OLED发光结构部件。随后转到步骤S303。
在步骤S303中,通过原子层沉积工艺,在OLED发光结构上制作整体无机层。这样整体无机层可在OLED发光结构表面形成较好的无机颗粒覆盖,以形成超薄致密的水气阻挡层。该整体无机层可为三氧化二铝层(Al2O3)或氮化硅层(SiNx),整体无机层的厚度为10纳米至500纳米。随后转到步骤S304。
在步骤S304中,通过涂布工艺或喷墨印刷工艺(ink print),在整体无机层设置第一有机层,第一有机层可为丙烯酸酯类聚合物层、苯乙烯类聚合物层或有机硅类聚合物层。第一有机层一方面可对整体无机层进行平坦化处理,另一方面可以作为缓冲层释放相邻无机层的应力。第一有机层的厚度为5微米至10微米。随后转到步骤S305。
在步骤S305中,通过具有第一无机膜层图案的第一遮罩,在第一有机层上制作第一分体混合层的第一无机膜层。随后转到步骤S306。
在步骤S306中,通过具有第一分割膜层图案的第二遮罩,在第一有机层上制作第一分体混合层的第一分割膜层。其中第一无机膜层在OLED柔性显示面板的弯曲方向的长度大于第一分割膜层在OLED柔性显示面板的弯曲方向的长度。第一无机膜层和第一分割膜层的厚度可以相同也可以不相同。
这样可形成具有软-硬-软-硬结构的第一分体混合层,OLED柔性显示面板在弯折过程中,由于第一分体混合层的第一分割膜层具有较小的弹性模量,因此第一分割膜层可以吸收第一分体混合层以及相邻结构上的张应力或压应力,从而避免第一分体混合层的破裂或剥离现象的产生。第一分体混合层的第一无机膜层可为三氧化二铝层、氮化硅层、氧化硅层或碳化硅层,第一分体混合层的第一分割膜层可为丙烯酸酯类聚合物层、苯乙烯类聚合物层或有机硅类聚合物层等有机膜层,或三氧化二铝层、氮化硅层、氧化硅层或碳化硅层等无机膜层。第一分体混合层的第一无机膜层和第一分割膜层的厚度为0.1微米至10微米。随后转到步骤S307。
在步骤S307中,通过涂布工艺或喷墨印刷工艺(ink print)在第一分体混合层上设置第二有机层,第二有机层可为丙烯酸酯类聚合物层、苯乙烯类聚合物层或有机硅类聚合物层。第二有机层一方面可对第一分体混合层进行平坦话处理,另一方面可以作为缓冲层释放相邻无机层的应力。第二有机层的厚度为5微米至10微米。随后转到步骤S308。
在步骤S308中,通过具有第二无机膜层图案的第三遮罩,在第二有机层上制作第二分体混合层的第二无机膜层;随后转到步骤S309。
在步骤S309中,通过具有第二分割膜层图案的第四遮罩,在第二有机层上制作第二分体混合层的第二分割膜层。其中第二无机膜层在OLED柔性显示面板的弯曲方向的长度大于第二分割膜层在OLED柔性显示面板的弯曲方向的长度。第二无机膜层和第二分割膜层的厚度可以相同也可以不相同。
这样可形成具有软-硬-软-硬结构的第二分体混合层,OLED柔性显示面板在弯折过程中,由于第二分体混合层的第二分割膜层具有较小的弹性模量,因此第二分割膜层可以吸收第二分体混合层以及相邻结构上的张应力或压应力,从而避免第二分体混合层的破裂或剥离现象的产生。第二分体混合层的第二无机膜层可为三氧化二铝层、氮化硅层、氧化硅层或碳化硅层。第二分体混合层的第二分割膜层可为丙烯酸酯类聚合物层、苯乙烯类聚合物层或有机硅类聚合物层等有机膜层,或三氧化二铝层、氮化硅层、氧化硅层或碳化硅层等无机膜层。第二分体混合层的第二无机膜层和第二分割膜层的厚度为0.1微米至10微米。
其中第一分割膜层在柔性基板所在平面(或曲面)上的投影与第二分割膜层在柔性基板所在平面(或曲面)上的投影相互错开。这样可使得第一分体混合层和第二分体混合层分别对OLED柔性显示面板的不同区域进行应力消除操作,从而进一步提高了OLED柔性显示面板的工作稳定性。
这样即完成了本优选实施例的OLED柔性显示面板的制作方法的制作流程。
优选的,在步骤S302和步骤S303之间还可包括步骤:
设置对OLED发光结构进行保护的无机保护层,该无机保护层可为通过热蒸镀形成的氟化锂(LiF)。
本发明的OLED柔性显示面板及其制作方法通过设置分体无机层和有机层的层叠结构,使得OLED柔性显示面板中的无机薄膜在可以较好的阻水阻氧的基础上,不易产生破裂或剥离的现象;解决了现有的OLED柔性显示面板在弯曲过程中,OLED柔性显示面板的无机薄膜容易产生破裂或剥离的技术问题。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (15)

  1. 一种OLED柔性显示面板,其包括:
    柔性基板;
    OLED发光结构,设置在所述柔性基板上;
    整体无机层,设置在所述OLED发光结构上;
    第一有机层,设置在所述整体无机层上;
    第一分体混合层,设置在所述第一有机层上,其包括交替设置的第一无机膜层和第一分割膜层;
    第二有机层,设置在所述第一分体混合层上;以及
    第二分体混合层,设置在所述第二有机层上,其包括交替设置的第二无机膜层和第二分割膜层;
    其中所述第一分割膜层为弹性模量小于所述第一无机膜层的无机膜层或有机膜层;
    所述第二分割膜层为弹性模量小于所述第二无机膜层的无机膜层或有机膜层;
    其中所述第一无机膜层的长度大于所述第一分割膜层的长度;所述第二无机膜层的长度大于所述第二分割膜层的长度;所述第一分割膜层在所述柔性基板所在平面上的投影与所述第二分割膜层在所述柔性基板所在平面上的投影相互错开。
  2. 根据权利要求1所述的OLED柔性显示面板,其中通过原子层沉积工艺在所述OLED发光结构上设置所述整体无机层。
  3. 根据权利要求1所述的OLED柔性显示面板,其中通过涂布工艺或喷墨印刷工艺在所述整体无机层设置所述第一有机层;
    通过涂布工艺或喷墨印刷工艺在所述第一分体混合层上设置所述第二有机层。
  4. 根据权利要求1所述的OLED柔性显示面板,其中所述整体无机层为三氧化二铝层或氮化硅层;
    所述第一有机层和所述第二有机层为丙烯酸酯类聚合物层、苯乙烯类聚合物层或有机硅类聚合物层;
    所述第一无机膜层和所述第二无机膜层为三氧化二铝层、氮化硅层、氧化硅层或碳化硅层。
  5. 根据权利要求1所述的OLED柔性显示面板,其中所述OLED柔性显示面板还包括:
    无机保护层,设置在所述OLED发光结构和所述整体无机层之间。
  6. 一种OLED柔性显示面板,其包括: 柔性基板;
    OLED发光结构,设置在所述柔性基板上;
    整体无机层,设置在所述OLED发光结构上;
    第一有机层,设置在所述整体无机层上;
    第一分体混合层,设置在所述第一有机层上,其包括交替设置的第一无机膜层和第一分割膜层;
    第二有机层,设置在所述第一分体混合层上;以及
    第二分体混合层,设置在所述第二有机层上,其包括交替设置的第二无机膜层和第二分割膜层;
    其中所述第一分割膜层为弹性模量小于所述第一无机膜层的无机膜层或有机膜层;
    所述第二分割膜层为弹性模量小于所述第二无机膜层的无机膜层或有机膜层。
  7. 根据权利要求6所述的OLED柔性显示面板,其中所述第一无机膜层的长度大于所述第一分割膜层的长度;所述第二无机膜层的长度大于所述第二分割膜层的长度。
  8. 根据权利要求6所述的OLED柔性显示面板,其中所述第一分割膜层在所述柔性基板所在平面上的投影与所述第二分割膜层在所述柔性基板所在平面上的投影相互错开。
  9. 根据权利要求6所述的OLED柔性显示面板,其中通过原子层沉积工艺在所述OLED发光结构上设置所述整体无机层。
  10. 根据权利要求6所述的OLED柔性显示面板,其中
    通过涂布工艺或喷墨印刷工艺在所述整体无机层设置所述第一有机层;
    通过涂布工艺或喷墨印刷工艺在所述第一分体混合层上设置所述第二有机层。
  11. 根据权利要求6所述的OLED柔性显示面板,其中
    所述整体无机层为三氧化二铝层或氮化硅层;
    所述第一有机层和所述第二有机层为丙烯酸酯类聚合物层、苯乙烯类聚合物层或有机硅类聚合物层;
    所述第一无机膜层和所述第二无机膜层为三氧化二铝层、氮化硅层、氧化硅层或碳化硅层。
  12. 根据权利要求6所述的OLED柔性显示面板,其中所述OLED柔性显示面板还包括:
    无机保护层,设置在所述OLED发光结构和所述整体无机层之间。
  13. 一种OLED柔性显示面板的制作方法,其包括:
    提供一柔性基板;
    在所述柔性基板上制作OLED发光结构;
    通过原子层沉积工艺,在所述柔性基板上制作整体无机层;
    通过涂布工艺或喷墨印刷工艺,在所述柔性基板上制作第一有机层;
    通过第一遮罩,在所述柔性基板上制作第一无机膜层;
    通过第二遮罩,在所述柔型基板上制作第一分割膜层,以使得所述第一分割膜层和所述第一无机膜层构成所述第一分体混合层;
    通过涂布工艺或喷墨印刷工艺,在所述柔性基板设置所述第二有机层;
    通过第三遮罩,在所述柔型基板上制作第二无机膜层;以及
    通过第四遮罩,在所述柔性基板上制作第二分割膜层,以使得所述第二分割膜层和所述第二无机膜层构成所述第二分体混合层;
    其中所述第一分割膜层为弹性模量小于所述第一无机膜层的无机膜层或有机膜层;
    所述第二分割膜层为弹性模量小于所述第二无机膜层的无机膜层或有机膜层。
  14. 根据权利要求13所述的OLED柔性显示面板的制作方法,其中所述第一无机膜层的长度大于所述第一分割膜层的长度;所述第二无机膜层的长度大于所述第二分割膜层的长度。
  15. 根据权利要求13所述的OLED柔性显示面板的制作方法,其中所述第一分割膜层在所述柔性基板所在平面上的投影与所述第二分割膜层在所述柔性基板所在平面上的投影相互错开。
PCT/CN2017/100339 2017-07-25 2017-09-04 Oled柔性显示面板及其制作方法 WO2019019263A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/735,621 US10418590B2 (en) 2017-07-25 2017-09-04 OLED flexible display panel and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710609359.2A CN107482127A (zh) 2017-07-25 2017-07-25 Oled柔性显示面板及其制作方法
CN201710609359.2 2017-07-25

Publications (1)

Publication Number Publication Date
WO2019019263A1 true WO2019019263A1 (zh) 2019-01-31

Family

ID=60595831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100339 WO2019019263A1 (zh) 2017-07-25 2017-09-04 Oled柔性显示面板及其制作方法

Country Status (3)

Country Link
US (1) US10418590B2 (zh)
CN (1) CN107482127A (zh)
WO (1) WO2019019263A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107492601A (zh) * 2017-09-30 2017-12-19 京东方科技集团股份有限公司 一种显示器件及其封装方法、显示装置
CN108615821B (zh) 2018-04-28 2020-07-17 武汉华星光电半导体显示技术有限公司 显示面板的柔性盖板
CN108831305A (zh) 2018-06-22 2018-11-16 京东方科技集团股份有限公司 一种盖板及其制备方法、显示面板、显示装置
CN109065760B (zh) * 2018-08-22 2021-04-27 京东方科技集团股份有限公司 封装结构及封装方法、显示装置
CN109256482B (zh) * 2018-08-31 2020-08-14 云谷(固安)科技有限公司 显示面板及其制造方法
CN109461831B (zh) * 2018-08-31 2020-09-04 云谷(固安)科技有限公司 一种有机发光显示面板及其制备方法
KR20200080844A (ko) * 2018-12-27 2020-07-07 엘지디스플레이 주식회사 보호 필름을 포함하는 플렉서블 디스플레이 장치
JP6814230B2 (ja) 2019-01-11 2021-01-13 株式会社Joled 発光パネル、発光装置および電子機器
CN109872631B (zh) * 2019-03-18 2021-04-27 京东方科技集团股份有限公司 一种可拉伸显示模组及其制作方法和显示设备
CN110518146B (zh) * 2019-08-30 2022-02-25 京东方科技集团股份有限公司 薄膜封装结构及显示面板
CN110473901B (zh) * 2019-08-30 2022-03-29 云谷(固安)科技有限公司 柔性显示面板及其制备方法、显示装置
CN111129348A (zh) * 2019-12-24 2020-05-08 武汉华星光电半导体显示技术有限公司 显示面板及其制造方法
CN114141970A (zh) * 2021-11-29 2022-03-04 深圳市华星光电半导体显示技术有限公司 显示面板、显示装置及显示面板制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593371A (zh) * 2012-03-16 2012-07-18 四川长虹电器股份有限公司 有机电致发光器件的封装结构
US8461760B1 (en) * 2012-05-17 2013-06-11 Samsung Display Co., Ltd. Thin film encapsulation for flat panel display device and method of manufacturing thin film encapsulation structure
CN104638126A (zh) * 2013-11-12 2015-05-20 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN104638166A (zh) * 2013-11-12 2015-05-20 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN206490095U (zh) * 2017-01-11 2017-09-12 上海天马有机发光显示技术有限公司 一种显示面板及显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9293730B2 (en) * 2013-10-15 2016-03-22 Samsung Display Co., Ltd. Flexible organic light emitting diode display and manufacturing method thereof
KR102271586B1 (ko) * 2013-10-15 2021-07-02 삼성디스플레이 주식회사 가요성 유기 발광 표시 장치 및 그 제조 방법
KR102136790B1 (ko) * 2013-11-15 2020-07-23 삼성디스플레이 주식회사 플렉서블 디스플레이 장치와, 이의 제조 방법
CN104269426A (zh) 2014-09-01 2015-01-07 京东方科技集团股份有限公司 一种显示面板及其制备方法和显示装置
CN104538425B (zh) * 2014-12-19 2018-01-12 上海天马微电子有限公司 一种阻挡膜及其制作方法、显示装置
US9837634B2 (en) * 2015-07-20 2017-12-05 Apple Inc. Electronic device display with multi-layer flexible encapsulation
KR102329978B1 (ko) * 2015-10-28 2021-11-22 엘지디스플레이 주식회사 플렉서블 유기발광다이오드 표시장치
CN105938873A (zh) * 2016-07-01 2016-09-14 武汉华星光电技术有限公司 一种柔性显示装置及其制造方法
TWI596748B (zh) * 2016-08-15 2017-08-21 財團法人工業技術研究院 顯示裝置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593371A (zh) * 2012-03-16 2012-07-18 四川长虹电器股份有限公司 有机电致发光器件的封装结构
US8461760B1 (en) * 2012-05-17 2013-06-11 Samsung Display Co., Ltd. Thin film encapsulation for flat panel display device and method of manufacturing thin film encapsulation structure
CN104638126A (zh) * 2013-11-12 2015-05-20 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN104638166A (zh) * 2013-11-12 2015-05-20 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN206490095U (zh) * 2017-01-11 2017-09-12 上海天马有机发光显示技术有限公司 一种显示面板及显示装置

Also Published As

Publication number Publication date
US20190036076A1 (en) 2019-01-31
US10418590B2 (en) 2019-09-17
CN107482127A (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
WO2019019263A1 (zh) Oled柔性显示面板及其制作方法
WO2015190807A1 (ko) 그래핀 구조체 및 그 제조 방법
WO2019100523A1 (zh) 一种柔性触控显示屏的制作方法
WO2018018683A1 (zh) 一种柔性有机发光二极管显示器及其制作方法
WO2019100455A1 (zh) 一种柔性触控显示屏及其制作方法
WO2018086240A1 (zh) 柔性显示面板及柔性显示装置
WO2016119280A1 (zh) 氧化物薄膜晶体管及其制作方法
WO2019015020A1 (zh) 一种液晶显示面板的制作方法
WO2016106797A1 (zh) 一种柔性有机发光显示器及其制作方法
WO2017008340A1 (zh) 显示面板及其制作方法
WO2018196078A1 (zh) 阵列基板及制造方法、显示装置
WO2018176566A1 (zh) 一种阵列基板的制作方法及阵列基板
WO2011068388A2 (ko) 베리어 필름 및 이를 포함하는 전자 장치
WO2019037224A1 (zh) 显示屏及其制备方法
WO2018233180A1 (zh) 一种金属线的制作方法及阵列基板
WO2019051968A1 (zh) 彩膜基板的制作方法
WO2019056517A1 (zh) 薄膜晶体管结构及其制作方法
WO2019100415A1 (zh) 柔性 oled 显示面板及其封装方法
WO2019015191A1 (zh) 一种显示面板及其制程
WO2018032558A1 (zh) 一种阵列基板及其制作方法
WO2017067062A1 (zh) 一种双栅极薄膜晶体管及其制作方法、以及阵列基板
WO2019061711A1 (zh) 一种薄膜晶体管阵列基板的制作方法
WO2017063207A1 (zh) 阵列基板及其制造方法
WO2017152450A1 (zh) Ffs模式的阵列基板及制作方法
WO2017140015A1 (zh) 双栅极tft阵列基板及制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918718

Country of ref document: EP

Kind code of ref document: A1