WO2019013147A1 - 水性樹脂組成物及び成形体 - Google Patents

水性樹脂組成物及び成形体 Download PDF

Info

Publication number
WO2019013147A1
WO2019013147A1 PCT/JP2018/025816 JP2018025816W WO2019013147A1 WO 2019013147 A1 WO2019013147 A1 WO 2019013147A1 JP 2018025816 W JP2018025816 W JP 2018025816W WO 2019013147 A1 WO2019013147 A1 WO 2019013147A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanofibers
meth
resin composition
aqueous
acrylate
Prior art date
Application number
PCT/JP2018/025816
Other languages
English (en)
French (fr)
Inventor
一喜 大松
未央 安井
金野 晴男
賢志 高市
Original Assignee
住友化学株式会社
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 日本製紙株式会社 filed Critical 住友化学株式会社
Priority to KR1020207003820A priority Critical patent/KR102537413B1/ko
Priority to JP2019529122A priority patent/JP7162589B2/ja
Priority to CN201880046178.6A priority patent/CN110869448B/zh
Publication of WO2019013147A1 publication Critical patent/WO2019013147A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio

Definitions

  • the present invention relates to an aqueous resin composition and a molded body containing nanofibers.
  • Patent No. 5976249 gazette Patent No. 5733761 gazette
  • An object of the present invention is to provide an aqueous resin composition containing nanofibers which can obtain a molded article having excellent transparency and a low linear expansion coefficient.
  • the present invention provides the following aqueous resin composition and molded article.
  • An aqueous resin composition comprising resin particles, nanofibers, and an aqueous medium, The light transmittance of the resin emulsion in which the concentration of the resin particles is 30% by mass is 80% or more at a wavelength of 600 nm and 40% or more at a wavelength of 400 nm, The aqueous nanofiber composition, wherein the nanofibers have an average aspect ratio of 10 or more and an average fiber diameter of 1 nm or more and 500 nm or less.
  • the resin particles are selected from the group consisting of polyurethane resins, (meth) acrylic resins, acrylonitrile-styrene copolymer resins, acrylonitrile-butadiene-styrene copolymer resins, epoxy resins, and mixtures thereof
  • nanofibers are at least one fiber selected from the group consisting of organic nanofibers, inorganic nanofibers, and a mixture thereof Composition.
  • the resin particles have a zeta potential ⁇ particle of a sample for evaluation (S p ) containing the resin particles of ⁇ 20 mV or less, In the nanofibers, the zeta potential ⁇ fiber of the evaluation sample (S f ) including the nanofibers is ⁇ 20 mV or less.
  • a molded article comprising resin particles and nanofibers, wherein When an area of 250 ⁇ m 2 is observed with a scanning electron microscope, the number of aggregates of the nanofibers of 1 ⁇ m 2 or more is 1 or less, The molded object whose distance between the said nanofibers is 10 nm or more and 1000 nm or less, when the area
  • water-based resin composition containing the nanofiber which can obtain the molded object which is excellent in transparency and whose linear expansion coefficient is low can be provided.
  • the aqueous resin composition of the present invention comprises resin particles, nanofibers and an aqueous medium,
  • the light transmittance of the resin emulsion in which the concentration of the resin particles is 30% by mass is 80% or more at a wavelength of 600 nm and 40% or more at a wavelength of 400 nm,
  • the nanofibers have an average aspect ratio of 10 or more and an average fiber diameter of 1 nm or more and 500 nm or less.
  • the aqueous resin composition comprises resin particles, nanofibers and an aqueous medium.
  • the amount of resin particles contained in the aqueous resin composition is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and 3 parts by mass or more in 100 parts by mass of the solid content of the aqueous resin composition. More preferably, it is usually 99 parts by mass or less, and preferably 97 parts by mass or less.
  • the resin particle has a light transmittance at a wavelength of 600 nm of 80% or more and 83% or more in a resin emulsion (hereinafter sometimes referred to as "resin emulsion (A)") in which the concentration of the resin particle is 30% by mass. Is preferably 85% or more, more preferably 87% or more, and usually less than 100%.
  • the resin particle has a light transmittance at a wavelength of 400 nm of 40% or more, preferably 45% or more, more preferably 50% or more, and usually less than 100%. is there.
  • the light transmittance of a molded article produced using the aqueous resin composition can be improved, and the linear expansion coefficient can be reduced.
  • the light transmittance can be measured by the measurement method described in the examples below.
  • the lower limit value of the primary particle diameter (average particle diameter) of the resin particles contained in the aqueous resin composition is 1 nm or more, preferably 5 nm or more, more preferably 8 nm or more, and 10 nm or more. More preferably, the upper limit value is 60 nm or less, preferably 55 nm or less, and more preferably 50 nm or less.
  • the primary particle diameter of the resin particles is a value measured for the resin particles in the aqueous resin composition using a dynamic light scattering type particle size distribution measuring device (FPAR-1000, manufactured by Otsuka Electronics Co., Ltd.) .
  • the zeta potential -20 particle of the evaluation sample (S p ) containing the resin particles is preferably ⁇ 20 mV or less, more preferably ⁇ 25 mV or less, and further preferably ⁇ 30 mV or less preferable.
  • the zeta potential is known as an indicator of dispersion stability, and in general, the larger the absolute value, the better the dispersion stability.
  • the value of the ratio of the zeta potential represented by ⁇ particle / ⁇ fiber is preferably 0.930 or more, more preferably 0.950 or more, and more preferably 0.960 or more as shown in the formula (1). Is more preferably 0.970 or more.
  • the value of the ratio of the zeta potential is preferably 1.600 or less, more preferably 1.500 or less, and still more preferably 1.400 or less as shown in the formula (1). And still more preferably 1.300 or less.
  • the value of the ratio of the zeta potential When the value of the ratio of the zeta potential is in the above range, the light transmittance of a molded article obtained using the aqueous resin composition can be improved, and the coefficient of linear expansion can be easily reduced.
  • the reason is considered as follows. That is, when the value of the ratio of the zeta potential described above is within the above range, the charge of the resin particles and the charge of the nanofibers when the resin particles and the nanofibers are dispersed in the aqueous medium are equal to each other. It can be considered that the size of the Thereby, since a suitable repulsive force is generated between the resin particles and the nanofibers, the resin particles and the nanofibers are less likely to aggregate in the aqueous resin composition, and the dispersion stability of both can be improved.
  • the method for preparing an evaluation sample (S p ) containing resin particles, and the zeta potential ⁇ particle of the evaluation sample (S p ) can be measured by the measurement method described in the examples below.
  • the resin particles preferably have a negative charge.
  • a method of imparting a negative charge to the resin particles a method of using a monomer having an anionic substituent as a monomer component forming the resin particles; in the case where the resin particles are dispersed in a dispersion medium such as water, resin emulsion
  • a surfactant such as an emulsifying agent
  • the surfactant is adsorbed on the surface of the resin particle, and therefore, the resin particle is negatively charged using a surfactant having a negative charge as the surfactant. And the like.
  • the resin particles have a negative charge and the nanofibers have a negative charge, a repulsive force is exerted between the resin particles and the nanofibers, so that the nanofibers in the aqueous resin composition are It is believed that the dispersion stability of the resin component can be enhanced.
  • the resin particles are at least one selected from the group consisting of polyurethane resins, (meth) acrylic resins, acrylonitrile-styrene copolymer resins, acrylonitrile-butadiene-styrene copolymer resins, epoxy resins, and mixtures thereof. It is preferable that it is the above particle
  • the resin particles are more preferably polyurethane resin.
  • “(Meth) acrylic” means at least one selected from acrylic and methacrylic. The same applies to the cases of “(meth) acrylate”, “(meth) acryloyloxy group”, “(meth) acryloyl group” and the like.
  • the polyurethane-based resin can be obtained by reacting a polyisocyanate compound and a polyol compound with, if necessary, another compound.
  • resin particles of a polyurethane resin are obtained as a resin emulsion, they can be obtained by reacting the above-mentioned compounds by a known acetone method, prepolymer mixing method, ketimine method, hot melt dispersion method or the like.
  • the organic polyisocyanate compound which has 2 or more of isocyanate groups in a molecule
  • numerator used for manufacture of the common polyurethane is mentioned.
  • polyol compound the compound which has 2 or more of hydroxyl groups in a molecule
  • numerator used for manufacture of the common polyurethane is mentioned.
  • polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, trimethylolpropane and glycerin; polyethylene glycol, polypropylene glycol, polytetramethylene ether Polyether polyols such as glycols; adipic acid, sebacic acid, itaconic acid, maleic anhydride, terephthalic acid, isophthalic acid, fumaric acid, succinic acid, oxalic acid, malonic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid Etc., ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol
  • Polyester polyols such as polycaprolactone polyol, poly ⁇ -methyl- ⁇ -valerolactone; polybutadiene polyol or hydrogenated product thereof, polycarbonate polyol, polythioether polyol, polyacrylic ester polyol etc. .
  • the polyurethane resin preferably has a hydrophilic group in the molecule in order to improve the dispersion stability in an aqueous medium.
  • the hydrophilic group may be any of an anionic group, a cationic group, and a nonionic group, but as described above, in the case where it is preferable that the resin particle has a negative charge, it is an anionic group Is preferred.
  • the anionic group a sulfonyl group, a carboxy group and the like are preferable, and usually, it is preferable to be neutralized by a neutralizing agent.
  • the neutralizing agent include tertiary amine compounds such as triethylamine and triethanolamine; inorganic alkali compounds such as sodium hydroxide; and ammonia.
  • the (meth) acrylic resin is a resin having a (meth) acrylate monomer having a (meth) acryloyl group as a main constituent monomer.
  • the (meth) acrylate monomer a monofunctional (meth) acrylate monomer having one (meth) acryloyloxy group in the molecule, and a bifunctional (meth) acrylate having two (meth) acryloyloxy groups in the molecule
  • Monomers and polyfunctional (meth) acrylate monomers having three or more (meth) acryloyloxy groups in the molecule can be mentioned.
  • An example of a monofunctional (meth) acrylate monomer is an alkyl (meth) acrylate.
  • alkyl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i- Examples include butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and the like.
  • aralkyl (meth) acrylates such as benzyl (meth) acrylate; (meth) acrylates of terpene alcohols such as isobornyl (meth) acrylate; tetrahydrofurfuryl structures such as tetrahydrofurfuryl (meth) acrylate (meth ) Acrylate; alkyl groups such as cyclohexyl (meth) acrylate, cyclohexylmethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate (Meth) acrylate having a cycloalkyl group at one site; aminoalkyl (meth) acrylate such as N, N-dimethylaminoethyl (meth) acrylate; 2-phenoxyethyl (meth) acrylate Acrylate,
  • monofunctional alkyl (meth) acrylates having a hydroxyl group at the alkyl site and monofunctional alkyl (meth) acrylates having a carboxyl group at the alkyl site can also be used.
  • monofunctional alkyl (meth) acrylate having a hydroxyl group at the alkyl site are 2-hydroxyethyl (meth) acrylate, 2- or 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2- Hydroxy-3-phenoxypropyl (meth) acrylate, trimethylolpropane mono (meth) acrylate, pentaerythritol mono (meth) acrylate.
  • monofunctional alkyl (meth) acrylates having a carboxyl group at the alkyl site are 2-carboxyethyl (meth) acrylate, ⁇ -carboxy-polycaprolactone (n ⁇ 2) mono (meth) acrylate, 1- [2- (Meth) acryloyloxyethyl] phthalic acid, 1- [2- (meth) acryloyloxyethyl] hexahydrophthalic acid, 1- [2- (meth) acryloyloxyethyl] succinic acid (2-acryloyloxyethyl succinate, A-SA), 4- [2- (meth) acryloyloxyethyl] trimellitic acid, N- (meth) acryloyloxy-N ', N'-dicarboxymethyl-p-phenylenediamine.
  • alkylene glycol di (meth) acrylate As a bifunctional (meth) acrylate monomer, alkylene glycol di (meth) acrylate, polyoxyalkylene glycol di (meth) acrylate, halogen substituted alkylene glycol di (meth) acrylate, di (meth) acrylate of aliphatic polyol, hydrogenated Di (meth) acrylate of dicyclopentadiene or tricyclodecanedialkanol, di (meth) acrylate of dioxane glycol or dioxane dialkanol, di (meth) acrylate of alkylene oxide adduct of bisphenol A or bisphenol F, bisphenol A or bisphenol The epoxy di (meth) acrylate of F etc. are mentioned.
  • difunctional (meth) acrylate monomers include ethylene glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1 , 6-Hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol di (meth) acrylate, ditrile Methylolpropane di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polyester Glycol di (meth) acrylate, polypropylene glycol di (
  • glycerin tri (meth) acrylate alkoxylated glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, ditrimethylol Propane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc.
  • the (meth) acrylamide monomer is preferably a (meth) acrylamide having a substituent at the N-position, a typical example of a substituent at the N-position being an alkyl group, but a nitrogen atom of (meth) acrylamide
  • the ring may have an oxygen atom as a ring member.
  • N-substituted (meth) acrylamides include N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, Nn-propyl (meth) acrylamide, N-i-propyl (meth) acrylamide, N- N-alkyl (meth) acrylamides such as n-butyl (meth) acrylamide, N-i-butyl (meth) acrylamide, N-t-butyl (meth) acrylamide, N-hexyl (meth) acrylamide; N, N- And N, N-dialkyl (meth) acrylamides such as dimethyl (meth) acrylamide and N, N-diethyl (meth) acrylamide.
  • the substituent at the N-position may be an alkyl group having a hydroxyl group, and examples thereof include N-hydroxymethyl (meth) acrylamide, N- (2-hydroxyethyl) (meth) acrylamide, N- (2) -Hydroxypropyl) (meth) acrylamide and the like.
  • N-substituted (meth) acrylamide which forms a 5- or 6-membered ring
  • specific examples thereof include N-acryloyl
  • pyrrolidine 3- (meth) acryloyl-2-oxazolidinone
  • 4- (meth) acryloyl morpholine N- (meth) acryloyl piperidine and the like.
  • An acrylonitrile-styrene copolymer resin is a resin having acrylonitrile and a styrenic monomer as constituent monomers.
  • the acrylonitrile-styrene copolymer resin preferably contains 25 to 75 parts by mass of acrylonitrile and 75 to 25 parts by mass of a styrene-based monomer with respect to 100 parts by mass of all the monomers constituting the copolymer.
  • styrene-based monomer examples include styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, ethylstyrene, dimethylstyrene, p-tert-butylstyrene, 2,4-dimethylstyrene, methoxystyrene, chloro Styrene, bromostyrene, fluorostyrene, nitrostyrene, chloromethylstyrene, vinyltoluene, acetoxystyrene, p-dimethylaminomethylstyrene and the like.
  • the acrylonitrile-butadiene-styrene copolymer resin is a resin having acrylonitrile, butadiene and a styrenic monomer as constituent monomers.
  • the acrylonitrile-butadiene-styrene copolymer resin has 20 to 40 parts by mass of acrylonitrile, 25 to 50 parts by mass of butadiene, and 25 to 50 parts by mass of styrene-based monomer, based on 100 parts by mass of all monomers constituting the copolymer. Is preferred.
  • As a styrene-type monomer what was mentioned to the above-mentioned specific example can be used.
  • the epoxy resin is not particularly limited as long as it is a compound having two or more glycidyl groups per molecule.
  • bisphenol A bisphenol F, 1,1'-bis (3-t-butyl-6-methyl-4-hydroxyphenyl) butane, tetramethylbiphenol, naphthalenediol, etc.
  • Ether compounds derived from dihydric phenols glycidyl ester compounds derived from aromatic carboxylic acids such as p-hydroxybenzoic acid, m-hydroxybenzoic acid, terephthalic acid and isophthalic acid, or triglycidyl An isocyanurate etc. can be mentioned.
  • novolac epoxy resin derived from novolac resin which is a reaction product of phenols such as phenol, o-cresol, m-cresol, p-cresol and formaldehyde, fluoroglycine And glycidyl ether compounds derived from trivalent or higher phenols such as tris- (4-hydroxyphenyl) -methane and 1,1,2,2-tetrakis (4-hydroxyphenyl).
  • phenols such as phenol, o-cresol, m-cresol, p-cresol and formaldehyde
  • fluoroglycine And glycidyl ether compounds derived from trivalent or higher phenols such as tris- (4-hydroxyphenyl) -methane and 1,1,2,2-tetrakis (4-hydroxyphenyl).
  • the resin emulsion can be produced by a known method such as bulk polymerization, solution polymerization, bulk suspension polymerization, suspension polymerization, emulsion polymerization and the like.
  • the nanofibers have an average aspect ratio (average fiber length / average fiber diameter) of 10 or more, and usually 10000 or less.
  • the lower limit of the average fiber diameter of the nanofibers is 1 nm or more, preferably 2 nm or more, and the upper limit is 500 nm or less, preferably 200 nm or less, 50 nm or less More preferable.
  • the average fiber length of the nanofibers is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, still more preferably 0.2 ⁇ m or more, and preferably 100 ⁇ m or less.
  • the thickness is more preferably 20 ⁇ m or less, and still more preferably 4 ⁇ m or less.
  • the average aspect ratio is calculated based on the obtained average fiber length and average fiber diameter.
  • the average fiber length of nanofibers can be calculated as follows. Nanofibers are fixed on mica sections, and the length of 200 fibers fixed on mica sections is measured using an atomic force microscope (AFM), and the length (weighted) average fiber length is calculated. In addition, measurement of fiber length is performed in the range of arbitrary length using image analysis software WinROOF (made by Mitani Corporation).
  • the average fiber diameter of the nanofibers can be calculated as follows.
  • a nanofiber dispersion is prepared by diluting the concentration of nanofibers to 0.001% by mass. This diluted dispersion is thinly spread on a mica sample base and dried by heating to prepare a sample for observation. The observation sample is observed by an atomic force microscope (AFM) to measure the cross-sectional height of the shape image, and the weighted average fiber diameter can be calculated.
  • a nanofiber dispersion is prepared by diluting the concentration of nanofibers to 0.001% by mass. This diluted dispersion is thinly spread on a mica sample base and dried by heating to prepare a sample for observation. The observation sample is observed by an atomic force microscope (AFM) to measure the cross-sectional height of the shape image, and the weighted average fiber diameter can be calculated.
  • AFM atomic force microscope
  • nanofibers include: natural polymer nanofibers such as cellulose nanofibers; organic nanofibers such as synthetic polymer nanofibers such as polyamide resin nanofibers; aluminum hydroxide nanofibers, alumina nanofibers, silica nanofibers, silica Inorganic nanofibers such as acid aluminum nanofibers, titania nanofibers, zirconia nanofibers, carbon nanofibers, etc .; and at least one fiber selected from the group consisting of mixtures thereof are preferable. More preferably, the nanofibers include at least one of cellulose nanofibers and aluminum hydroxide nanofibers.
  • Cellulose forming cellulose nanofibers has a ⁇ glucose unit in which a hydroxyl group at the 1-position and a hydroxyl group at the 4-position of ⁇ -glucose are linked by condensation polymerization of a large number of ⁇ -glucose.
  • a cellulose nanofiber the cellulose nanofiber which has a carboxylate group, the cellulose nanofiber which does not have a carboxylate group, and these mixtures can be mentioned.
  • a carboxylate group-containing cellulose nanofiber As a carboxylate group-containing cellulose nanofiber, the microfibril surface of cellulose is subjected to an oxidation reaction catalyzed by a nitroxy radical species such as TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxyl radical).
  • TEMPO 2,2,6,6-tetramethylpiperidinyl-1-oxyl radical
  • oxidized cellulose nanofibers carboxymethyl cellulose (CMC), etc. Can be mentioned.
  • the hydroxyl group at the position 2, 3 or 6 of the ⁇ -glucose unit on the surface of the microfibrils of cellulose is a carboxymethyl group (-CH 2 -COOH) or a carboxymethyl sodium group (-CH) 2- COONa) is substituted.
  • the cellulose nanofiber which does not have a carboxylate group can be obtained by refine
  • the cellulose nanofibers may be reduced oxidized cellulose nanofibers.
  • the reduced type oxidized cellulose nanofibers can be obtained, for example, by subjecting the above-mentioned oxidized cellulose nanofibers to reduction treatment.
  • reduction treatment oxidized cellulose nanofibers having a ketone group at the 2- and 3-positions of the ⁇ -glucose unit and oxidized cellulose nanofibers having an aldehyde group at the 6-position of the ⁇ -glucose unit in addition to the ketone group
  • a reduced oxidized cellulose nanofiber is obtained in which at least a part of the ketone group and / or the aldehyde group is converted to an alcoholic hydroxyl group.
  • said ketone group is produced
  • said aldehyde group is produced
  • the amount of ketone group or the amount of ketone group and aldehyde group in the reduced type oxidized cellulose nanofiber is smaller than the above amount in the oxidized cellulose nanofiber before the reduction step.
  • the reduced type oxidized cellulose nanofibers can be produced, for example, by the method described in JP-A-2017-2135.
  • polyamide resin nanofibers aluminum hydroxide nanofibers, alumina nanofibers, silica nanofibers, aluminum silicate nanofibers, titania nanofibers, zirconia nanofibers, for example, those produced by a known electrospinning method can be used.
  • carbon nanofibers can be used, for example, those manufactured by a known method such as a method of manufacturing from hydrocarbons by a CVD method using transition metal nanoparticles as a catalyst.
  • the nanofibers preferably have a negative charge.
  • negatively charged nanofibers include carboxylate groups-containing cellulose nanofibers and nanofibers into which a negative charge is introduced by a known method. Since the nanofibers have a negative charge and the resin particles have a negative charge, a repulsive force is exerted between the nanofibers and the resin particles, thereby enhancing the dispersion stability of the nanofibers and the resin component in the aqueous resin composition. It is thought that can be done.
  • the zeta potential ⁇ fiber of the evaluation sample (S f ) containing nanofibers is preferably ⁇ 20 mV or less, more preferably ⁇ 23 mV or less, still more preferably ⁇ 25 mV or less, and ⁇ 30 mV or less It is even more preferred that And zeta potential zeta fiber of the evaluation sample (S f) containing nanofibers, and the zeta potential zeta particle of the evaluation sample containing resin particles (S p), is preferably in the relationship of the above formula (1) .
  • the pH of the aqueous dispersion of nanofibers can be adjusted with an aqueous sodium hydroxide solution or the like.
  • the evaluation sample (S f ) containing nanofibers and the evaluation sample (S f ) zeta potential ⁇ fiber can be measured by the measurement method described in the examples below.
  • the aqueous medium is water alone or a mixed solvent containing water as a main component and a component miscible with water.
  • miscible components include organic solvents such as alcohol solvents.
  • a "main component” means the component with most content (mass%) among the components which make a solvent.
  • Additives include, for example, antioxidants, metal deactivators, flame retardants, plasticizers, flame retardant aids, light resistance improvers, slip agents, inorganic fillers, organic fillers, reinforcing agents, pigments and dyes, etc.
  • the coloring agent, the mold release agent, the antibacterial agent, the antifungal agent, the viscosity modifier, the ultraviolet absorber, the antistatic agent, etc. may be added singly or in combination of two or more.
  • the aqueous resin composition can be obtained by mixing resin particles, nanofibers and an aqueous medium.
  • the resin particles may be in the form of a resin emulsion dispersed in an aqueous medium
  • the nanofibers may be in the form of a nanofiber dispersion dispersed in an aqueous medium.
  • the aqueous medium used for the resin emulsion and the aqueous medium used for the nanofiber dispersion may be the same or different.
  • aqueous resin composition examples include a method of adding a resin emulsion or resin particles to a nanofiber dispersion, a method of adding a nanofiber or nanofiber dispersion to a resin emulsion, etc. It is preferred to add a resin emulsion to the dispersion.
  • the mixing of the resin particles, the nanofibers and the aqueous medium can be performed using a known stirrer, and can be performed by, for example, a homomixer, a homogenizer, a refiner, a beater, a grinder, an ultrasonic device or the like.
  • the temperature at which the resin particles, nanofibers and aqueous medium are stirred is preferably 10 ° C. or more, more preferably 30 ° C. or more, still more preferably 50 ° C. or more, and 60 ° C. or more Most preferably, it is 90 ° C. or less, more preferably 85 ° C. or less.
  • the stirring of the above three components is usually 100 rpm or more, preferably 300 rpm or more, more preferably 500 rpm or more, still more preferably 1000 rpm or more, and usually 10000 rpm or less. It is preferably 7,000 rpm or less, more preferably 5,000 rpm or less, and still more preferably 4,000 rpm or less.
  • a molded object can be produced using an aqueous resin composition.
  • the molded body can be obtained, for example, by drying the aqueous resin composition and removing the aqueous medium.
  • the molded body contains resin particles and nanofibers
  • the light transmittance of the resin emulsion in which the concentration of the resin particles is 30% by mass is 80% or more at a wavelength of 600 nm and 40% or more at a wavelength of 400 nm
  • the nanofibers may have an average aspect ratio of 10 or more and an average fiber diameter of 1 nm or more and 50 nm or less.
  • the resin particles preferably have a primary particle diameter of 1 nm or more and 60 nm or less. The description of the resin particles and the nanofibers is the same as that described above.
  • the molded body can be a molded body molded into a desired shape such as particulate, granular, pellet, film, plate, spherical, cylindrical, prismatic, conical, pyramidal and the like.
  • the formed body is, for example, a method of applying an aqueous resin composition to a substrate surface by a spray or the like and drying to form a film-like formed body, the aqueous resin composition is put into a forming die and dried to have a predetermined shape. It can be produced by a method of forming a molded product, a method of forming a film by injecting the aqueous resin composition into a devolatilizing extruder, and forming a film-shaped molded product.
  • the molded body may have a single layer structure or a multilayer structure.
  • a plurality of layers produced using the aqueous resin composition may be laminated, and the layer produced using the aqueous resin composition and other than the aqueous resin composition What laminated
  • stacked the layer which used the resin composition may be used.
  • another layer may be formed by dipping, spraying, spin coating, bar coating or the like, and a molded article having a multilayer structure is produced by coextrusion. It is also good.
  • the light transmittance at a wavelength of 400 nm is preferably 50% or more, more preferably 60% or more, and still more preferably 70% or more when the molded product is formed into a film having a thickness of 300 ⁇ m.
  • the light transmittance at a wavelength of 600 nm is preferably 85% or more, more preferably 87% or more, and still more preferably 90% or more when the molded product is formed into a film shape having a thickness of 300 ⁇ m. .
  • the light transmittance of the molded product can be measured by using a spectrophotometer for the light transmittance of the molded product in the thickness direction.
  • the above-mentioned molded product has a small linear expansion coefficient measured in the range of room temperature to 200 ° C., it is possible to suppress the shape change and the dimensional change even when used under an environment accompanied by a temperature change.
  • an aqueous resin composition in which the light transmittance of the resin emulsion (A) is 80% or more at a wavelength of 600 nm and 40% or more at a wavelength of 400 nm a molded article having excellent light transmittance and linear expansion coefficient You can get Further, by using a resin particle having a primary particle diameter of 1 nm or more and 60 nm or less, it is easy to manufacture a molded article having a high light transmittance and a small linear expansion coefficient.
  • the zeta potential zeta particle of the evaluation sample containing resin particles (S p), and, along with the zeta potential zeta fiber samples for evaluation containing nanofibers (S f) is less than -20 mV, the above-mentioned equation (1
  • the aqueous resin composition satisfying the above relationship facilitates production of a molded article having a high light transmittance and a small linear expansion coefficient.
  • the molded body has one or less aggregate of nanofibers of 1 ⁇ m 2 or more when the region of 250 ⁇ m 2 is observed with a scanning electron microscope.
  • the upper limit of the size of the aggregate of nanofibers is, for example, 100 ⁇ m 2 or less, preferably 50 ⁇ m 2 or less. The presence of aggregates larger than this may lead to loss of transparency. Therefore, it is preferable that the number of aggregates over 100 ⁇ m 2 be zero, and it is more preferable that the number of aggregates over 50 ⁇ m 2 be zero.
  • the aggregate of nanofibers preferably has one or less aggregate of 0.75 ⁇ m 2 or more, and one aggregate of 0.50 ⁇ m 2 or more
  • the number of aggregates of nanofibers of 0.40 ⁇ m 2 or more is more preferably 1 or less.
  • the upper limit of the size of the aggregate in this case is also, for example, 100 ⁇ m 2 or less, preferably 50 ⁇ m 2 or less, as described above.
  • the distance between nanofibers is preferably 10 nm or more, more preferably 20 nm or more, and 1000 nm or less Is more preferably 800 nm or less, still more preferably 600 nm or less, still more preferably 500 nm or less, and may be 400 nm or less or 300 nm or less.
  • the distance between the nanofibers becomes large, it is difficult to reduce the linear expansion coefficient, and when the distance between the nanofibers is too small, the formed body may become brittle.
  • the molded product contains resin particles and nanofibers, and the linear expansion coefficient of the molded product is 50 ppm / K or less in the temperature range of 90 ° C. to 100 ° C., and in the temperature range of 190 ° C. to 200 ° C. It may be 70 ppm / K or less.
  • the linear expansion coefficient of the molded body is preferably 45 ppm / K or less in a temperature range of 90 ° C. to 100 ° C., more preferably 40 ppm / K or less, and a temperature range of 190 ° C. to 200 ° C. Is preferably 60 ppm / K or less, more preferably 50 ppm / K or less.
  • the linear expansion coefficient of a molded object can be measured by the measurement method demonstrated by the Example mentioned later.
  • a resin emulsion dispersed in water was prepared so that the concentration of the resin particles was 30% by mass.
  • the prepared resin emulsion was placed in a quartz cell with an optical path length of 1 cm, and the light transmittance at a wavelength of 300 nm to 800 nm was measured using a spectrophotometer U-4100 (manufactured by Hitachi High-Technologies Corp.).
  • aqueous dispersion of cellulose nanofibers was prepared by diluting the concentration of cellulose nanofibers to 0.001% by mass. This diluted dispersion was thinly spread on a mica sample base, and dried by heating at 50 ° C. to prepare a sample for observation. The observation sample was observed with an atomic force microscope (AFM) to measure the cross-sectional height of the shape image, and the weighted average fiber diameter (nm) was calculated.
  • AFM atomic force microscope
  • the average fiber length (nm) of the nanofibers was measured as follows. Cellulose nanofibers were fixed on mica sections, and the length of 200 fibers fixed on the sections of mica was measured using an atomic force microscope (AFM) to calculate the length (weighted) average fiber length. The measurement of the fiber length was performed using an image analysis software WinROOF (manufactured by Mitani Corporation). The average aspect ratio (average fiber length / average fiber diameter) of the nanofibers was calculated from the average fiber length (nm) of the obtained nanofibers and the average fiber diameter (nm) of the nanofibers measured above.
  • AFM atomic force microscope
  • zeta potential ⁇ particle The zeta potential ⁇ particle was measured using the sample for evaluation (S p ) under the following measurement conditions.
  • -Measuring device Nano Particle Analyzer SZ-100 (manufactured by HORIBA) ⁇ Measurement cell: Flow cell unit ⁇ Measurement method: Laser Doppler method ⁇ Average electric field: About 16 V / cm Mobility measurement: Measurement at five points of 0.15 mm, 0.325 mm, 0.5 mm, 0.675 mm, and 0.85 mm from the lower end of the measurement cell Integration: Three times at each mobility measurement point Mobility: Calculated from Mori-Okamoto equation ⁇ Zeta potential calculation: Smoluchowski method ⁇ Measurement temperature: about 25 ° C.
  • Light transmittance of molded body The prepared 300 ⁇ m thick molded body is cut into a size of 50 mm long and 50 mm wide, and a wavelength of 600 nm in the thickness direction of the cut molded body using a spectrophotometer U-4100 (manufactured by Hitachi High-Technologies Corp.) The light transmittance of 400 nm was measured.
  • a section obtained by cutting a prepared 300- ⁇ m-thick molded body into a suitable size is immersed in a 0.5% aqueous solution of ruthenium tetraoxide at room temperature for 12 hours to stain nanofibers in the molded body, and then using a microtome.
  • a thin section for transmission electron microscope observation of the molded body was produced so as to have a thickness of about 100 nm, to obtain a sample for observation.
  • Samples for observation were observed for 10 fields of view under conditions of an acceleration voltage of 30 kV and magnifications of 5000 times and 50000 times using a field emission scanning electron microscope (FE-SEM) (S-4800, manufactured by Hitachi High-Technologies Corporation) The image was taken to obtain an electron microscope image. The number of aggregates of nanofibers was calculated by the following procedure using the obtained electron microscope image, and the distance between the nanofibers was measured.
  • FE-SEM field emission scanning electron microscope
  • the number of aggregates of nanofibers having an area of 1 ⁇ m 2 or more was counted in an electron microscope image of 10 fields of view in which an area of 250 ⁇ m 2 was observed at a magnification of 5000 ⁇ .
  • the area of the aggregate is the area of the portion appearing black in the electron microscope image, and in calculating the area, it is assumed that the portion appearing black is circular, and the largest portion of the image appears black.
  • the diameter and the length of the portion having the minimum diameter were measured, and the area was calculated on the assumption that the sum of the lengths of both and dividing by 2 is the diameter.
  • a binarization process is performed so that the ratio of the portion appearing as nanofibers in the image is equal to the addition ratio for each of the electron microscope images of 10 fields of observation of the area of 4 ⁇ m 2 at a magnification of 50000 ⁇ did.
  • a line perpendicular to the direction in which the nanofibers are most oriented (hereinafter referred to as “orthogonal line”) is drawn to an arbitrary position by an arbitrary number, The distance between nanofibers adjacent to each other on each orthogonal line was calculated using the image analysis software WinROOF (manufactured by Mitani Corp.).
  • the distance between adjacent nanofibers was calculated as the distance between the middle points of the length in the direction of the orthogonal line of the nanofibers (the width of the nanofibers).
  • the distance between adjacent nanofibers was calculated at a total of 100 locations so as to include at least 10 arbitrary locations on one orthogonal line, and the average value was defined as the distance between the nanofibers.
  • Example 1 Manufacture of nanofibers
  • Softwood unbleached kraft pulp (whiteness 85%) 500 g (absolutely dry) is added to 500 ml of an aqueous solution of 780 mg of TEMPO (Sigma Aldrich) and 75.5 g of sodium bromide, and the pulp is uniformly dispersed. Stir until.
  • an aqueous solution of sodium hypochlorite was added to 6.0 mmol / g to start the oxidation reaction.
  • the pH in the system decreased, but 3M aqueous sodium hydroxide solution was sequentially added to adjust to pH 10. The reaction was terminated when sodium hypochlorite was consumed and the pH in the system did not change.
  • the mixture after reaction was filtered through a glass filter for pulp separation, and the pulp was thoroughly washed with water to obtain oxidized pulp (carboxylated cellulose).
  • the pulp yield at this time was 90%, the time required for the oxidation reaction was 90 minutes, and the amount of carboxyl groups was 1.6 mmol / g.
  • the oxidized pulp obtained in the above step is adjusted to 1.0% (w / v) with water and treated three times with an ultrahigh pressure homogenizer (20 ° C., 150 MPa) to obtain water of carboxylate group-containing cellulose nanofibers Dispersion 1 (hereinafter sometimes referred to as “nanofiber aqueous dispersion 1”) was obtained.
  • the average fiber diameter, the average aspect ratio, and the zeta potential ⁇ ⁇ ⁇ ⁇ fiber were measured for the obtained fibers by the above-described procedure. As a result, the average fiber diameter was 4 nm, the average fiber length was 500 nm, the average aspect ratio was 125, and ⁇ fiber was ⁇ 36.3 mV.
  • the aqueous dispersion 1 of nanofibers and the resin emulsion were used such that the amount of the nanofibers was 5 parts by mass and the amount of the resin particles was 95 parts by mass with respect to 100 parts by mass of the solid content of the aqueous resin composition.
  • the primary particle diameter, light transmittance, and zeta potential ⁇ particle of the resin emulsion (a) used were measured according to the above-mentioned procedure to calculate ⁇ particle / ⁇ fiber . The results are shown in Tables 1 and 2.
  • the obtained aqueous resin composition was charged into a petri dish, the aqueous medium was removed at a temperature of 50 ° C., and a film-like molded product having a thickness of 300 ⁇ m was obtained.
  • the light transmittance and the coefficient of linear expansion of the obtained molded product were measured by the above-described procedure. The results are shown in Table 2.
  • Example 2 The aqueous dispersion 1 of the nanofibers and the resin latex (a) were used such that the nanofibers were 10 parts by mass and the resin particles were 90 parts by mass with respect to 100 parts by mass of the solid content of the aqueous resin composition
  • An aqueous resin composition and a molded body were obtained in the same manner as in Example 1 except for the above.
  • the primary particle diameter, light transmittance, zeta potential ⁇ particle and light transmittance and linear expansion coefficient of the molded product of the resin emulsion used were measured by the above-mentioned procedure to calculate ⁇ particle / ⁇ fiber . The results are shown in Tables 1 and 2.
  • Example 2 an electron microscope image was taken according to the procedure of the above-mentioned [observation of nanofibers in the molded body]. It was confirmed that the electron microscope images obtained from 10 fields of view were all substantially the same. Representative images of the obtained electron microscope images are shown in FIGS. 1 (a) and (b) (magnifications are 5000 ⁇ and 50000 ⁇ , respectively). In addition, the number of aggregates of nanofibers having a diameter of 1 ⁇ m 2 or more calculated according to the above-described procedure was 0, and the distance between the nanofibers was 140 nm.
  • Example 3 Manufacture of nanofibers
  • the pH of the “water dispersion 1 of nanofibers” obtained in Example 1 is adjusted to pH 10 using a 0.5 M aqueous solution of sodium hydroxide, and then the solid content of cellulose nanofibers is 100% by mass. 5% by mass of sodium borohydride was added, and the reaction was carried out for 24 hours with stirring at room temperature (20 to 25 ° C.) to obtain a reduced cellulose nanofiber dispersion.
  • the reduced cellulose nanofiber dispersion was dried in a constant temperature drier at 105 ° C. for 3 to 4 hours to obtain a dried solid of reduced cellulose nanofibers.
  • the dried solid of the reduced cellulose nanofibers was suspended in water to prepare a slurry having a solid content of 1% by mass.
  • the obtained slurry was stirred at 6,000 rpm for 10 minutes using a homomixer to obtain a reduced dispersion type cellulose nanofiber dispersion (water dispersion 2 of nanofibers) having a solid content of 1% by mass after redispersion.
  • the average fiber diameter, the average aspect ratio, and the zeta potential ⁇ ⁇ ⁇ ⁇ fiber were measured for the obtained fibers by the above-described procedure. As a result, the average fiber diameter was 4 nm, the average fiber length was 500 nm, the aspect ratio was 125, and ⁇ fiber was -42.7 mV.
  • aqueous resin composition (Production of aqueous resin composition) An aqueous resin composition and a molded body were obtained in the same manner as in Example 2 except that the aqueous dispersion of reduced cellulose nanofibers obtained above was used as the aqueous dispersion of nanofibers.
  • the primary particle diameter, light transmittance, zeta potential ⁇ particle and light transmittance and linear expansion coefficient of the molded product of the resin emulsion used were measured by the above-mentioned procedure to calculate ⁇ particle / ⁇ fiber . The results are shown in Tables 1 and 2.
  • Comparative Example 5 An aqueous resin composition was prepared in the same manner as in Example 1, except that the aqueous dispersion of reduced cellulose nanofibers obtained in Example 3 was used and the resin latex (b) shown in Table 2 was used as the resin latex. An object and a molded body were obtained. The primary particle diameter, light transmittance, zeta potential ⁇ particle and light transmittance and linear expansion coefficient of the molded product of the resin emulsion used were measured by the above-mentioned procedure to calculate ⁇ particle / ⁇ fiber . The results are shown in Tables 1 and 2.
  • the resin emulsions (a) to (e) in Tables 1 and 2 are all resin emulsions containing a urethane resin, and Resin emulsion (a): U-coat UWS-145, Sanyo Chemical Industries, Ltd., anionic resin emulsion (b): Superflex 460, Dai-ichi Kogyo Seiyaku Co., Ltd., anionic resin emulsion (c): Permarin UA-150, Sanyo Chemical Industries, Ltd.
  • Example 2 As shown in Table 2, in Examples 1 to 3, a molded article excellent in light transmittance at 600 nm and 400 nm and excellent in linear expansion coefficient in the range of 90 to 100 ° C. and in the range of 190 to 200 ° C. can be obtained. I understand. Further, from the results of observation of the formed body using an electron microscope image (see FIGS. 1 (a) and 1 (b)), the formed body obtained in Example 2 is a dispersion of nanofibers in the formed body. It turns out that it is excellent in sex.

Abstract

水性樹脂組成物は、樹脂粒子とナノファイバーと水性媒体とを含む。樹脂粒子の濃度が30質量%である樹脂エマルションの光線透過率が、波長600nmにおいて80%以上であるとともに、波長400nmにおいて40%以上である。ナノファイバーは、平均アスペクト比が10以上であるとともに、平均繊維径が1nm以上500nm以下である。

Description

水性樹脂組成物及び成形体
 本発明は、ナノファイバーを含有する水性樹脂組成物及び成形体に関する。
 セルロースナノファイバー等のナノファイバーは、樹脂等の他の材料と複合化した複合材料として用いることにより、機械的特性等を向上できることが知られている(例えば、特許文献1、2等)。
特許第5976249号公報 特許第5733761号公報
 本発明は、透明性に優れ、線膨張率が低い成形体を得ることができるナノファイバーを含有する水性樹脂組成物の提供を目的とする。
 本発明は、以下に示す水性樹脂組成物及び成形体を提供する。
 〔1〕 樹脂粒子とナノファイバーと水性媒体とを含む水性樹脂組成物であって、
 前記樹脂粒子の濃度が30質量%である樹脂エマルションの光線透過率が、波長600nmにおいて80%以上であるとともに、波長400nmにおいて40%以上であり、
 前記ナノファイバーは、平均アスペクト比が10以上であるとともに、平均繊維径が1nm以上500nm以下である、水性樹脂組成物。
 〔2〕 前記樹脂粒子は、1次粒子径が1nm以上60nm以下である、〔1〕に記載の水性樹脂組成物。
 〔3〕 前記樹脂粒子は、ポリウレタン系樹脂、(メタ)アクリル系樹脂、アクリロニトリル-スチレン共重合体系樹脂、アクリロニトリル-ブタジエン-スチレン共重合体系樹脂、エポキシ系樹脂、及びこれらの混合物からなる群より選ばれる少なくとも1種以上の粒子である、〔1〕又は〔2〕に記載の水性樹脂組成物。
 〔4〕 前記ナノファイバーは、有機ナノファイバー、無機ナノファイバー、及びこれらの混合物からなる群より選ばれる少なくとも1種以上のファイバーである、〔1〕~〔3〕のいずれかに記載の水性樹脂組成物。
 〔5〕 前記ナノファイバーは、セルロースナノファイバーを含む、〔1〕~〔4〕のいずれかに記載の水性樹脂組成物。
 〔6〕 前記樹脂粒子及び前記ナノファイバーは、負電荷を有する、〔1〕~〔5〕のいずれかに記載の水性樹脂組成物。
 〔7〕 前記樹脂粒子は、前記樹脂粒子を含む評価用試料(S)のゼータ電位ζparticleが、-20mV以下であり、
 前記ナノファイバーは、前記ナノファイバーを含む評価用試料(S)のゼータ電位ζfiberが、-20mV以下であり、
 前記ゼータ電位ζparticle及び前記ゼータ電位ζfiberは、下記式(1)の関係を満たす、〔1〕~〔6〕のいずれかに記載の水性樹脂組成物。
  0.930≦ζparticle/ζfiber≦1.600   (1)
 〔8〕 〔1〕~〔7〕のいずれかに記載の水性樹脂組成物を用いて作製された成形体。
 〔9〕 厚み300μmのフィルム形状とした場合の光線透過率が、波長400nmにおいて50%以上であるとともに、波長600nmにおいて85%以上である、〔8〕に記載の成形体。
 〔10〕 樹脂粒子とナノファイバーとを含む成形体であって、
 250μmの領域を走査型電子顕微鏡で観察したときに、1μm以上の前記ナノファイバーの凝集体が1個以下であり、
 4μmの領域を走査型電子顕微鏡で観察したときに、前記ナノファイバー間の距離が10nm以上1000nm以下である、成形体。
 本発明によれば、透明性に優れ、線膨張率が低い成形体を得ることができるナノファイバーを含有する水性樹脂組成物を提供することができる。
実施例2で得たフィルム状の成形体から得た観察用サンプルの電子顕微鏡画像であり、(a)は、倍率5000倍の電子顕微鏡画像であり、(b)は、倍率50000倍の電子顕微鏡画像である。
 本発明の水性樹脂組成物は、樹脂粒子とナノファイバーと水性媒体とを含み、
 樹脂粒子の濃度が30質量%である樹脂エマルションの光線透過率は、波長600nmにおいて80%以上であるとともに、波長400nmにおいて40%以上であり、
 ナノファイバーは、平均アスペクト比が10以上であるとともに、平均繊維径が1nm以上500nm以下である。
 (水性樹脂組成物)
 水性樹脂組成物は、樹脂粒子とナノファイバーと水性媒体とを含む。水性樹脂組成物に含まれる樹脂粒子は、水性樹脂組成物の固形分100質量部中、1質量部以上であることが好ましく、2質量部以上であることがより好ましく、3質量部以上であることがより好ましく、また、通常99質量部以下であり、97質量部以下であることが好ましい。
 (樹脂粒子)
 樹脂粒子は、樹脂粒子の濃度が30質量%である樹脂エマルション(以下、「樹脂エマルション(A)」ということがある。)において、波長600nmにおける光線透過率が80%以上であり、83%以上であることが好ましく、85%以上であることがより好ましく、87%以上であることがさらに好ましく、通常100%未満である。また、樹脂粒子は、樹脂エマルション(A)において、波長400nmにおける光線透過率が40%以上であり、45%以上であることが好ましく、50%以上であることがさらに好ましく、通常100%未満である。樹脂エマルション(A)が上記範囲であることにより、水性樹脂組成物を用いて作製された成形体の光線透過率を向上することができ、線膨張率を低減することができる。光線透過率は、後述の実施例で説明する測定方法によって測定することができる。
 水性樹脂組成物に含まれる樹脂粒子は、1次粒子径(平均粒子径)の下限値が1nm以上であり、5nm以上であることが好ましく、8nm以上であることがより好ましく、10nm以上であることがさらに好ましく、また、上限値が60nm以下であり、55nm以下であることが好ましく、50nm以下であることがより好ましい。樹脂粒子の1次粒子径を小さくすることにより、水性樹脂組成物を用いて得られる成形体の光線透過率を向上し、線膨張率を低減させやすい。樹脂粒子の1次粒子径は、水性樹脂組成物中における樹脂粒子について、動的光散乱式粒径分布測定装置(FPAR-1000、大塚電子(株)製)を用いて測定された値である。
 樹脂粒子は、この樹脂粒子を含む評価用試料(S)のゼータ電位ζparticleが、-20mV以下であることが好ましく、-25mV以下であることがより好ましく、-30mV以下であることがさらに好ましい。ゼータ電位は、分散安定性の指標として知られており、一般にその絶対値が大きいほど分散安定性に優れていることを示す。
 樹脂粒子を含む評価用試料(S)のゼータ電位ζparticleと、後述するナノファイバーを含む評価用試料(S)のゼータ電位ζfiberとは、下記式(1):
   0.930≦ζparticle/ζfiber≦1.600   (1)
の関係にあることが好ましい。ζparticle/ζfiberで表されるゼータ電位の比の値は、式(1)に示すように0.930以上であることが好ましく、0.950以上であることがより好ましく、0.960以上であることがさらに好ましく、0.970以上であることがさらにより好ましい。また、上記ゼータ電位の比の値は、式(1)に示すように1.600以下であることが好ましく、1.500以下であることがより好ましく、1.400以下であることがさらに好ましく、1.300以下であることがさらにより好ましい。
 上記ゼータ電位の比の値が上記の範囲内であることにより、水性樹脂組成物を用いて得られる成形体の光線透過率を向上し、線膨張率を低減させやすい。この理由は次のように考えられる。すなわち、上記したゼータ電位の比の値が上記の範囲内であることにより、水性媒体中に樹脂粒子とナノファイバーとを分散させたときの、樹脂粒子の電荷とナノファイバーの電荷とを同程度の大きさとすることができると考えられる。これにより、樹脂粒子とナノファイバーとの間に適度な反発力が生じるため、水性樹脂組成物中において樹脂粒子とナノファイバーとが凝集しにくく、両者の分散安定性を向上することができ、成形体の光線透過率を向上し、線膨張率を低減させやすくなると考えられる。樹脂粒子を含む評価用試料(S)の調製方法、及び、評価用試料(S)のゼータ電位ζparticleは、後述の実施例で説明する測定方法によって測定することができる。
 樹脂粒子は負電荷を有することが好ましい。樹脂粒子に負電荷を付与する方法としては、樹脂粒子をなすモノマー成分として、アニオン性の置換基を有するモノマーを用いる方法;樹脂粒子が水等の分散媒に分散したものである場合、樹脂エマルションを得る際に乳化剤等の界面活性剤が用いられると樹脂粒子表面に界面活性剤が吸着した状態にあるため、この界面活性剤として負電荷を有する界面活性剤を用いて樹脂粒子に負電荷を付与する方法;等を挙げることができる。これにより、後述するように、樹脂粒子が負電荷を有し、ナノファイバーが負電荷を有することにより、樹脂粒子とナノファイバーとの間に斥力が働くため、水性樹脂組成物中においてナノファイバー及び樹脂成分の分散安定性を高めることができると考えられる。
 樹脂粒子は、ポリウレタン系樹脂、(メタ)アクリル系樹脂、アクリロニトリル-スチレン共重合体系樹脂、アクリロニトリル-ブタジエン-スチレン共重合体系樹脂、エポキシ系樹脂、及びこれらの混合物からなる群より選ばれる少なくとも1種以上の粒子であることが好ましい。樹脂粒子は、ポリウレタン系樹脂であることがより好ましい。「(メタ)アクリル」とは、アクリル及びメタクリルから選択される少なくとも一方を意味する。「(メタ)アクリレート」、「(メタ)アクリロイルオキシ基」、「(メタ)アクリロイル基」等というときについても同様である。
 ポリウレタン系樹脂は、ポリイソシアナート化合物とポリオール化合物と、さらに必要に応じて他の化合物とを反応させることで得ることができる。ポリウレタン系樹脂の樹脂粒子を樹脂エマルションとして得る場合には、公知のアセトン法、プレポリマーミキシング法、ケチミン法、ホットメルトディスパージョン法等によって上記の化合物を反応させて得ることができる。
 ポリイソシアナート化合物としては、通常のポリウレタンの製造に使用される、分子内にイソシアナート基を2個以上有する有機ポリイソシアナート化合物が挙げられる。例えば、1,4-テトラメチレンジイソシアナート、1,6-ヘキサメチレンジイソシアナート(HDI)、2,2,4-トリメチルヘキサメチレンジイソシアナート、3-イソシアナートメチル-3,5,5-トリメチルシクロヘキシルイソシアナート、ジシクロヘキシルメタン-4,4’-ジイソシアナート、メチルシクロヘキシル-2,4-ジイソシアナート、メチルシクロヘキシル-2,6-ジイソシアナート、キシリレンジイソシアナート(XDI)、1,3-ビス(イソシアナート)メチルシクロヘキサン、テトラメチルキシリレンジイソシアナート、トランスシクロヘキサン-1,4-ジイソシアナート、リジンジイソシアナート等の脂肪族ジイソシアナート類;2,4-トルイレンジイソシアナート(TDI)、2,6-トルイレンジイソシアナート(TDI)、ジフェニルメタン-4,4’-ジイソシアナート(MDI)、1,5’-ナフテンジイソシアナート、トリジンジイソシアナート、ジフェニルメチルメタンジイソシアナート、テトラアルキルジフェニルメタンジイソシアナート、4,4’-ジベンジルジイソシアナート、1,3-フェニレンジイソシアナート等の芳香族ジイソシアナート類;リジンエステルトリイソシアナート、トリフェニルメタントリイソシアナート、1,6,11-ウンデカントリイソシアナート、1,8-イソシアナート4,4-イソシアナートメチルオクタン、1,3,6-ヘキサメチレントリイソシアナート、ビシクロヘプタントリイソシアナート、トリメチロールプロパンとトルイレンジイソシアナートとのアダクト体、トリメチロールプロパンと1,6-ヘキサメチレンジイソシアナートとのアダクト体等のトリイソシアナート類等が挙げられる。これらは単独で又は2種以上を組み合わせて用いてもよい。
 ポリオール化合物としては、通常のポリウレタンの製造に使用される、分子内に水酸基を2個以上有する化合物が挙げられる。例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、トリメチロールプロパン、グリセリン等の多価アルコール類;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール等のポリエーテルポリオール類;アジピン酸、セバシン酸、イタコン酸、無水マレイン酸、テレフタル酸、イソフタル酸、フマル酸、コハク酸、シュウ酸、マロン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸等のジカルボン酸類と、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、1,3-プロパンジオール、トリプロピレングリコール、トリメチロールプロパン、グリセリン等のポリオール化合物とから得られるポリエステルポリオール類;ポリカプロラクトンポリオール、ポリβ-メチル-δ-バレロラクトン等のポリラクトン系ポリエステルポリオール類;ポリブタジエンポリオール又はその水添物、ポリカーボネートポリオール、ポリチオエーテルポリオール、ポリアクリル酸エステルポリオール等が挙げられる。
 ポリウレタン系樹脂は、水性媒体中での分散安定性を向上させるために、分子内に親水基を有することが好ましい。親水性基としては、アニオン性基、カチオン性基、ノニオン性基のいずれであってもよいが、上記したように樹脂粒子が負電荷を有することが好ましい場合には、アニオン性基であることが好ましい。アニオン性基としては、スルホニル基、カルボキシ基等が好ましく、通常、中和剤によって中和されることが好ましい。中和剤としては、トリエチルアミン、トリエタノールアミン等の3級アミン化合物;水酸化ナトリウム等の無機アルカリ化合物;アンモニア等が挙げられる。
 (メタ)アクリル系樹脂は、(メタ)アクリロイル基を有する(メタ)アクリレートモノマーを主な構成モノマーとする樹脂である。
 (メタ)アクリレートモノマーとしては、分子内に1個の(メタ)アクリロイルオキシ基を有する単官能(メタ)アクリレートモノマー、分子内に2個の(メタ)アクリロイルオキシ基を有する2官能(メタ)アクリレートモノマー、分子内に3個以上の(メタ)アクリロイルオキシ基を有する多官能(メタ)アクリレートモノマーが挙げられる。
 単官能(メタ)アクリレートモノマーの一例は、アルキル(メタ)アクリレートである。アルキル(メタ)アクリレートの具体例を挙げると、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等が挙げられる。また、ベンジル(メタ)アクリレートのようなアラルキル(メタ)アクリレート;イソボルニル(メタ)アクリレートのようなテルペンアルコールの(メタ)アクリレート;テトラヒドロフルフリル(メタ)アクリレートのようなテトラヒドロフルフリル構造を有する(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、シクロヘキシルメチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレートのようなアルキル基部位にシクロアルキル基を有する(メタ)アクリレート;N,N-ジメチルアミノエチル(メタ)アクリレートのようなアミノアルキル(メタ)アクリレート;2-フェノキシエチル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレートのようなアルキル部位にエーテル結合を有する(メタ)アクリレートも単官能(メタ)アクリレートモノマーとして用いることができる。
 さらに、アルキル部位に水酸基を有する単官能アルキル(メタ)アクリレートや、アルキル部位にカルボキシル基を有する単官能アルキル(メタ)アクリレートも用いることができる。アルキル部位に水酸基を有する単官能アルキル(メタ)アクリレートの具体例は、2-ヒドロキシエチル(メタ)アクリレート、2-又は3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、トリメチロールプロパンモノ(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレートを含む。アルキル部位にカルボキシル基を有する単官能アルキル(メタ)アクリレートの具体例は、2-カルボキシエチル(メタ)アクリレート、ω-カルボキシ-ポリカプロラクトン(n≒2)モノ(メタ)アクリレート、1-[2-(メタ)アクリロイルオキシエチル]フタル酸、1-[2-(メタ)アクリロイルオキシエチル]ヘキサヒドロフタル酸、1-[2-(メタ)アクリロイルオキシエチル]コハク酸(2-アクリロイルオキシエチルサクシネート、A-SA)、4-[2-(メタ)アクリロイルオキシエチル]トリメリット酸、N-(メタ)アクリロイルオキシ-N’,N’-ジカルボキシメチル-p-フェニレンジアミンを含む。
 2官能(メタ)アクリレートモノマーとしては、アルキレングリコールジ(メタ)アクリレート、ポリオキシアルキレングリコールジ(メタ)アクリレート、ハロゲン置換アルキレングリコールジ(メタ)アクリレート、脂肪族ポリオールのジ(メタ)アクリレート、水添ジシクロペンタジエン又はトリシクロデカンジアルカノールのジ(メタ)アクリレート、ジオキサングリコール又はジオキサンジアルカノールのジ(メタ)アクリレート、ビスフェノールA又はビスフェノールFのアルキレンオキシド付加物のジ(メタ)アクリレート、ビスフェノールA又はビスフェノールFのエポキシジ(メタ)アクリレート等が挙げられる。
 2官能(メタ)アクリレートモノマーのより具体的な例を挙げれば、エチレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ジトリメチロールプロパンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、シリコーンジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールエステルのジ(メタ)アクリレート、2,2-ビス[4-(メタ)アクリロイルオキシエトキシエトキシフェニル]プロパン、2,2-ビス[4-(メタ)アクリロイルオキシエトキシエトキシシクロヘキシル]プロパン、水添ジシクロペンタジエニルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、1,3-ジオキサン-2,5-ジイルジ(メタ)アクリレート〔別名:ジオキサングリコールジ(メタ)アクリレート〕、ヒドロキシピバルアルデヒドとトリメチロールプロパンとのアセタール化合物〔化学名:2-(2-ヒドロキシ-1,1-ジメチルエチル)-5-エチル-5-ヒドロキシメチル-1,3-ジオキサン〕のジ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート等が挙げられる。
 3官能以上の多官能(メタ)アクリレートモノマーとしては、グリセリントリ(メタ)アクリレート、アルコキシ化グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の3官能以上の脂肪族ポリオールのポリ(メタ)アクリレート;3官能以上のハロゲン置換ポリオールのポリ(メタ)アクリレート;グリセリンのアルキレンオキシド付加物のトリ(メタ)アクリレート;トリメチロールプロパンのアルキレンオキシド付加物のトリ(メタ)アクリレート;1,1,1-トリス[(メタ)アクリロイルオキシエトキシエトキシ]プロパン;トリス(ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート等が挙げられる。
 (メタ)アクリルアミドモノマーは、好ましくはN-位に置換基を有する(メタ)アクリルアミドであり、そのN-位の置換基の典型的な例はアルキル基であるが、(メタ)アクリルアミドの窒素原子とともに環を形成していてもよく、この環は、炭素原子及び(メタ)アクリルアミドの窒素原子に加え、酸素原子を環構成員として有してもよい。さらに、その環を構成する炭素原子には、アルキルやオキソ(=O)のような置換基が結合していてもよい。
 N-置換(メタ)アクリルアミドの具体例は、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-n-プロピル(メタ)アクリルアミド、N-i-プロピル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミド、N-i-ブチル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミドのようなN-アルキル(メタ)アクリルアミド;N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミドのようなN,N-ジアルキル(メタ)アクリルアミドを含む。また、N-位の置換基は水酸基を有するアルキル基であってもよく、その例として、N-ヒドロキシメチル(メタ)アクリルアミド、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、N-(2-ヒドロキシプロピル)(メタ)アクリルアミド等がある。さらに、上述のN-位の置換基が環を形成する場合として、5員環又は6員環を形成するN-置換(メタ)アクリルアミドを挙げることができ、その具体例としては、N-アクリロイルピロリジン、3-(メタ)アクリロイル-2-オキサゾリジノン、4-(メタ)アクリロイルモルホリン、N-(メタ)アクリロイルピペリジン等がある。
 アクリロニトリル-スチレン共重合体系樹脂は、アクリロニトリルと、スチレン系モノマーとを構成モノマーとする樹脂である。アクリロニトリル-スチレン共重合体系樹脂は、共重合体をなす全モノマー100質量部に対し、アクリロニトリルが25~75質量部、スチレン系モノマーが75~25質量部であることが好ましい。
 スチレン系モノマーの具体例としては、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、エチルスチレン、ジメチルスチレン、p-tert-ブチルスチレン、2,4-ジメチルスチレン、メトキシスチレン、クロロスチレン、ブロモスチレン、フルオロスチレン、ニトロスチレン、クロロメチルスチレン、ビニルトルエン、アセトキシスチレン、p-ジメチルアミノメチルスチレン等がある。
 アクリロニトリル-ブタジエン-スチレン共重合体系樹脂は、アクリロニトリル、ブタジエン、スチレン系モノマーを構成モノマーとする樹脂である。アクリロニトリル-ブタジエン-スチレン共重合体系樹脂は、共重合体をなす全モノマー100質量部に対し、アクリロニトリルが20~40質量部、ブタジエンが25~50質量部、スチレン系モノマーが25~50質量質量部であることが好ましい。スチレン系モノマーとしては、上記した具体例に挙げたものを用いることができる。
 エポキシ系樹脂は、一分子あたりグリシジル基が2個以上有する化合物であれば特に限定されない。具体的には、ビスフェノ-ルA、ビスフェノ-ルF、1,1’-ビス(3-t-ブチル-6-メチル-4-ヒドロキシフェニル)ブタン、テトラメチルビフェノ-ル、ナフタレンジオ-ル等の二価フェノ-ル類から誘導されるグリシジルエ-テル化合物、p-オキシ安息香酸、m-オキシ安息香酸、テレフタル酸、イソフタル酸等の芳香族カルボン酸から誘導されるグリシジルエステル化合物、あるいはトリグリシジルイソシアヌレ-ト等を挙げることができる。また、フェノ-ル、o-クレゾ-ル、m-クレゾ-ル、p-クレゾ-ル等のフェノ-ル類とホルムアルデヒドの反応生成物であるノボラック樹脂から誘導されるノボラック系エポキシ樹脂、フロログリシン、トリス-(4-ヒドロキシフェニル)-メタン、1,1,2,2,-テトラキス(4-ヒドロキシフェニル)等の3価以上のフェノ-ル類から誘導されるグリシジルエ-テル化合物等を挙げることができる。これらの中から1種類乃至2種類以上を組み合わせて用いることができる。
 樹脂粒子を樹脂エマルションとして得る場合、樹脂エマルションは、塊状重合法、溶液重合法、塊状懸濁重合法、懸濁重合法、乳化重合法等の公知の方法により製造することができる。
 (ナノファイバー)
 ナノファイバーは、平均アスペクト比(平均繊維長/平均繊維径)が10以上であり、通常10000以下である。また、ナノファイバーは、平均繊維径の下限値が1nm以上であり、2nm以上であることが好ましく、また、上限値が500nm以下であり、200nm以下であることが好ましく、50nm以下であることがより好ましい。ナノファイバーの平均繊維長は、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましく、0.2μm以上であることがさらに好ましく、また、100μm以下であることが好ましく、20μm以下であることがより好ましく、4μm以下であることがさらに好ましい。平均アスペクト比は、得られた平均繊維長及び平均繊維径に基づいて算出する。
 ナノファイバーの平均繊維長は、次のようにして算出することができる。ナノファイバーをマイカ切片上に固定し、原子間力顕微鏡(AFM)を用いて、マイカ切片上に固定された200本の繊維長を測定し、長さ(加重)平均繊維長を算出する。なお、繊維長の測定は、画像解析ソフトWinROOF(三谷商事社製)を用いて、任意の長さの範囲で行う。
 また、ナノファイバーの平均繊維径は、次のようにして算出することができる。ナノファイバーの濃度が0.001質量%となるように希釈したナノファイバー分散液を調製する。この希釈分散液をマイカ製試料台に薄く延ばし、加熱乾燥させて観察用試料を作製する。この観察用試料を原子間力顕微鏡(AFM)によって観察して形状像の断面高さを計測し、加重平均繊維径を算出することができる。
 ナノファイバーとしては、例えば、セルロースナノファイバー等の天然高分子系ナノファイバー、ポリアミド樹脂ナノファイバー等合成高分子系ナノファイバー等の有機ナノファイバー;水酸化アルミニウムナノファイバー、アルミナナノファイバー、シリカナノファイバー、ケイ酸アルミニウムナノファイバー、チタニアナノファイバー、ジルコニアナノファイバー、カーボンナノファイバー等の無機ナノファイバー;これらの混合物からなる群より選ばれる少なくとも1種以上のファイバーであることが好ましい。ナノファイバーは、セルロースナノファイバー及び水酸化アルミニウムナノファイバーのうち少なくとも一方を含むことがより好ましい。
 セルロースナノファイバーをなすセルロースは、多数のβ-グルコースの縮合重合により、β-グルコースの1位の水酸基と4位の水酸基とが結合したβグルコース単位を有する。セルロースナノファイバーとしては、カルボキシレート基を有するセルロースナノファイバー、カルボキシレート基を有しないセルロースナノファイバー、及びこれらの混合物を挙げることができる。
 カルボキシレート基含有セルロースナノファイバーとしては、TEMPO(2,2,6,6-テトラメチルピペリジニル-1-オキシルラジカル)等のニトロキシラジカル種を触媒とする酸化反応によって、セルロースのミクロフィブリル表面のβ-グルコース単位の6位がカルボキシル基(-COOH)又はカルボキシナトリウム基(-COONa)に酸化されたもの(以下、「酸化セルロースナノファイバー」ということがある。)、カルボキシメチルセルロース(CMC)等を挙げることができる。CMCは、セルロースのミクロフィブリル表面のβ-グルコース単位の2位、3位、6位の少なくともいずれかの位置の水酸基が、カルボキシメチル基(-CH-COOH)又はカルボキシメチルナトリウム基(-CH-COONa)に置換されたものである。また、カルボキシレート基を有しないセルロースナノファイバーは、化学処理を行わず、物理処理のみで微細化することによって得ることができる。
 セルロースナノファイバーは、還元型酸化セルロースナノファイバーであってもよい。還元型酸化セルロースナノファイバーは、例えば、上記した酸化セルロースナノファイバーを還元処理することによって得ることができる。この還元処理により、β-グルコース単位の2位及び3位にケトン基を有する酸化セルロースナノファイバーや、このケトン基に加えてβ-グルコース単位の6位にアルデヒド基を有する酸化セルロースナノファイバーにおける、ケトン基及び/又はアルデヒド基の少なくとも一部をアルコール性水酸基に変換した還元型酸化セルロースナノファイバーが得られる。なお、上記のケトン基は、酸化セルロースナノファイバーを得る際の酸化反応の副反応により生成するものであり、上記のアルデヒド基は、酸化反応の条件によって生成するものである。還元型酸化セルロースナノファイバーにおけるケトン基の量、又は、ケトン基及びアルデヒド基の量は、還元工程前の酸化セルロースナノファイバーにおける上記量よりも少なくなる。還元型酸化セルロースナノファイバーは、例えば、特開2017-2135号公報に記載の方法によって製造することができる。
 ポリアミド樹脂ナノファイバー、水酸化アルミニウムナノファイバー、アルミナナノファイバー、シリカナノファイバー、ケイ酸アルミニウムナノファイバー、チタニアナノファイバー、ジルコニアナノファイバーは、例えば、公知のエレクトロスピニング法等によって製造したものを用いることができる。また、カーボンナノファイバーは、例えば、遷移金属のナノ粒子を触媒として用いて、炭化水素からCVD法によって製造する方法等の公知の方法によって製造したものを用いることができる。
 ナノファイバーは負電荷を有することが好ましい。負電荷を有するナノファイバーとしては、カルボキシレート基含有セルロースナノファイバーや、ナノファイバーに公知の方法によって負電荷を導入したものを挙げることができる。ナノファイバーが負電荷を有し、樹脂粒子が負電荷を有することにより、ナノファイバーと樹脂粒子との間に斥力が働くため、水性樹脂組成物中においてナノファイバー及び樹脂成分の分散安定性を高めることができると考えられる。
 ナノファイバーを含む評価用試料(S)のゼータ電位ζfiberは、-20mV以下であることが好ましく、-23mV以下であることがより好ましく、-25mV以下であることがさらに好ましく、-30mV以下であることがさらにより好ましい。ナノファイバーを含む評価用試料(S)のゼータ電位ζfiberと、樹脂粒子を含む評価用試料(S)のゼータ電位ζparticleとは、上記した式(1)の関係にあることが好ましい。ナノファイバーの水分散体のpHは、水酸化ナトリウム水溶液等によって調整することができる。ナノファイバーを含む評価用試料(S)、及び、評価用試料(S)ゼータ電位ζfiberは、後述の実施例で説明する測定方法によって測定することができる。
 (水性媒体)
 水性媒体は、水単独、又は、水を主成分とし水と混和性のある成分を含む混合溶媒である。混和性のある成分としては、アルコール系溶媒等の有機溶媒を挙げることができる。なお、「主成分」とは、溶媒をなす成分のうち最も含有量(質量%)の多い成分をいう。
 (その他の成分)
 水性樹脂組成物には、必要に応じて一般的な添加剤を添加することができる。添加剤としては、例えば、酸化防止剤、金属不活性剤、難燃剤、可塑剤、難燃助剤、耐光性改良剤、スリップ剤、無機充填剤、有機充填剤、強化材、顔料や染料等の着色剤、離型剤、抗菌剤、抗かび剤、粘度調整剤、紫外線吸収剤、帯電防止剤等を、単独で又は2種以上を混合して添加することができる。
 (水性樹脂組成物の製造方法)
 水性樹脂組成物は、樹脂粒子とナノファイバーと水性媒体とを混合することによって得ることができる。樹脂粒子は、水性媒体に分散した樹脂エマルションの形態であってもよく、ナノファイバーは、水性媒体に分散したナノファイバー分散体の形態であってもよい。この場合、樹脂エマルションに用いる水性媒体と、ナノファイバー分散体に用いる水性媒体とは、同じであってもよく異なっていてもよい。水性樹脂組成物は、例えば、ナノファイバー分散体に、樹脂エマルション又は樹脂粒子を添加する方法、樹脂エマルションにナノファイバー又はナノファイバー分散体を添加する方法等を挙げることができるが、ナノファイバーの水分散体に樹脂エマルジョンを添加することが好ましい。樹脂粒子とナノファイバーと水性媒体との混合は、公知の撹拌機を使用して行うことができ、例えば、ホモミキサー、ホモジナイザー、リファイナー、ビーター、グラインダー、超音波装置等によって行うことができる。
 樹脂粒子とナノファイバーと水性媒体とを撹拌するときの温度は、10℃以上であることが好ましく、30℃以上であることがより好ましく、50℃以上であることがさらに好ましく、60℃以上であることが最も好ましく、また、90℃以下であることが好ましく、85℃以下であることがより好ましい。また、上記した3成分の撹拌は、通常100rpm以上であり、300rpm以上であることが好ましく、500rpm以上であることがより好ましく、1000rpm以上であることがさらに好ましく、また、通常10000rpm以下であり、7000rpm以下であることが好ましく、5000rpm以下であることがより好ましく、4000rpm以下であることがさらに好ましい。
 (成形体)
 成形体は、水性樹脂組成物を用いて作製することができる。成形体は、例えば、水性樹脂組成物を乾燥し、水性媒体を除去して得ることができる。
 また、成形体は、樹脂粒子とナノファイバーとを含み、
 樹脂粒子の濃度が30質量%である樹脂エマルションの光線透過率は、波長600nmにおいて80%以上であるとともに、波長400nmにおいて40%以上であり、
 ナノファイバーは、平均アスペクト比が10以上であるとともに、平均繊維径が1nm以上50nm以下であるものであってもよい。樹脂粒子は、1次粒子径が1nm以上60nm以下であることが好ましい。樹脂粒子及びナノファイバーの説明については、上記した説明と同様である。
 成形体は、粒子状、顆粒状、ペレット状、フィルム状、板状、球状、円柱状、角柱状、円錐状、角錐状等の所望の形状に成形した成形体とすることができる。成形体は、例えば、水性樹脂組成物を基板表面にスプレー等により塗布し、乾燥してフィルム状の成形体を形成する方法、水性樹脂組成物を成形型に投入し、乾燥して所定形状の成形体を形成する方法、水性樹脂組成物を脱揮押出機に投入して製膜してフィルム状の成形体を形成する方法等によって作製することができる。
 成形体は、単層構造であってもよく、多層構造であってもよい。多層構造を有する成形体では、水性樹脂組成物を用いて作製された層を複数積層したものであってもよく、水性樹脂組成物を用いて作製された層と水性樹脂組成物以外の他の樹脂組成物を用いた層とを積層したものであってもよい。多層構造の成形体を製造する際には、ディッピング法、スプレー法、スピンコート法、バーコート法等によって他の層を形成してもよく、共押出し法により多層構造の成形体を製造してもよい。
 成形体は、厚み300μmのフィルム形状とした場合の波長400nmにおける光線透過率が50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがさらに好ましい。また、成形体は、厚み300μmのフィルム形状とした場合の波長600nmにおける光線透過率が85%以上であることが好ましく、87%以上であることがより好ましく、90%以上であることがさらに好ましい。これにより、光線透過率に優れた成形体を得ることができる。成形体の光線透過率は、成形体の厚み方向の光線透過率を分光光度計を用いて測定することができる。
 上記の成形体は、室温~200℃の範囲で測定した線膨張率が小さいため、温度変化を伴う環境下において使用された場合にも、形状変化や寸法変化を抑制することができる。特に、樹脂エマルション(A)の光線透過率が、波長600nmにおいて80%以上であるとともに波長400nmにおいて40%以上である水性樹脂組成物を用いることにより、光線透過率及び線膨張率に優れる成形体を得ることができる。また、樹脂粒子として1次粒子径が1nm以上60nm以下であるものを用いることにより、高い光線透過率を有し、線膨張率が小さい成形体を製造しやすくなる。さらに、樹脂粒子を含む評価用試料(S)のゼータ電位ζparticle、及び、ナノファイバーを含む評価用試料(S)のゼータ電位ζfiberが-20mV以下であるとともに、上記した式(1)の関係を満たす水性樹脂組成物により、高い光線透過率を有し、線膨張率が小さい成形体を製造しやすくなる。
 また、成形体は、250μmの領域を走査型電子顕微鏡で観察したときに、1μm以上のナノファイバーの凝集体が1個以下であることが好ましい。ナノファイバーの凝集体の大きさの上限値は、例えば100μm以下であり、好ましくは50μm以下である。これよりも大きな凝集体が存在すると、透明性が損なわれることがある。したがって、100μm超の凝集体は0個であることが好ましく、50μm超の凝集体は0個であることがより好ましい。
 ナノファイバーの凝集体は、250μmの領域を走査型電子顕微鏡で観察したときに、0.75μm以上の凝集体が1個以下であることが好ましく、0.50μm以上の凝集体が1個以下であることがより好ましく、0.40μm以上のナノファイバーの凝集体が1個以下であることがさらに好ましい。この場合の凝集体の大きさの上限値も、上記のとおり、例えば100μm以下であり、好ましくは50μm以下である。
 成形体は、4μmの領域を走査型電子顕微鏡で観察したときに、ナノファイバー間の距離が、10nm以上であることが好ましく、20nm以上であることがより好ましく、また、1000nm以下であることが好ましく、800nm以下であることがより好ましく、600nm以下であることがさらに好ましく、500nm以下であることがさらにより好ましく、400nm以下であってもよいし、300nm以下であってもよい。ナノファイバー間の距離が大きくなると線膨張率を低減しにくくなり、ナノファイバー間の距離が小さすぎると成形体が脆くなることがある。
 さらに、成形体は、樹脂粒子とナノファイバーとを含み、成形体の線膨張率が、温度90℃以上100℃以下の範囲において50ppm/K以下であり、温度190℃以上200℃以下の範囲において70ppm/K以下であるものであってもよい。成形体の線膨張率は、温度90℃以上100℃以下の範囲において45ppm/K以下であることが好ましく、40ppm/K以下であることがより好ましく、また、温度190℃以上200℃以下の範囲において、60ppm/K以下であることが好ましく、50ppm/K以下であることがより好ましい。成形体の線膨張率は、後述する実施例で説明する測定方法によって測定することができる。
 以下の実施例及び比較例では、次のように評価を行った。例中、含有量ないし使用量を表す%及び部は、特に断りのない限り質量基準である。
 [樹脂エマルションの光線透過率の測定]
 樹脂粒子の濃度が30質量%となるように水に分散した樹脂エマルションを用意した。用意した樹脂エマルションを光路長1cmの石英セルに入れ、波長300nm~800nmにおける光線透過率を分光光度計U-4100((株)日立ハイテクノロジーズ製)を用いて測定した。
 [樹脂粒子の1次粒子径の測定]
 動的光散乱式粒径分布測定装置(「FPAR-1000」大塚電子(株)製)を用い、水性樹脂組成物中の粒子の1次粒子径が測定できるように水性樹脂組成物を水で希釈して、水性樹脂組成物中の粒子の1次粒子径(平均粒子径)を測定した。
 [ナノファイバーの平均繊維径(nm)の測定]
 セルロースナノファイバーの濃度が0.001質量%となるように希釈したセルロースナノファイバー水分散液を調製した。この希釈分散液をマイカ製試料台に薄く延ばし、50℃で加熱乾燥させて観察用試料を作製した。この観察用試料を原子間力顕微鏡(AFM)で観察して形状像の断面高さを計測し、加重平均繊維径(nm)を算出した。
 [ナノファイバーの平均アスペクト比の測定]
 ナノファイバーの平均繊維長(nm)は、次のようにして測定した。セルロースナノファイバーをマイカ切片上に固定し、原子間力顕微鏡(AFM)を用いて、マイカ切片上に固定された200本の繊維長を測定し、長さ(加重)平均繊維長を算出した。なお、繊維長の測定は、画像解析ソフトWinROOF(三谷商事社製)を用いて行った。得られたナノファイバーの平均繊維長(nm)と上記で測定したナノファイバーの平均繊維径(nm)とから、ナノファイバーの平均アスペクト比(平均繊維長/平均繊維径)を算出した。
 [樹脂粒子を含む評価用試料(S)のゼータ電位ζparticleの測定]
 (評価用試料(S)の準備)
 約pH6の超純水に塩化ナトリウムを加えて10mMの塩化ナトリウム水溶液を調製した。この塩化ナトリウム水溶液に、0.1N又は0.01Nの水酸化ナトリウム水溶液を添加して、pHを7に調整したpH調整液を得た。このpH調整液10mLに対し、樹脂粒子の濃度が0.12質量%となるように樹脂エマルションを混合して調製した電気泳動液を作製し評価用試料(S)とした。
 (ゼータ電位ζparticleの測定)
 評価用試料(S)を用いて、下記の測定条件でゼータ電位ζparticleを測定した。
・測定装置:Nano Particle Analyzer SZ-100(HORIBA製)
・測定セル:フローセルユニット
・測定法:レーザードップラー法
・平均電場:約16V/cm
・移動度測定:測定セルの下端から、0.15mm、0.325mm、0.5mm、0.675mm、0.85mmの5ポイントにおいて測定
・積算:移動度測定の各ポイントで3回
・真の移動度:森・岡本の式より計算
・ゼータ電位計算:Smoluchowski法
・測定温度:約25℃。
 [ナノファイバーのゼータ電位ζfiberの測定]
 pH調整液に添加する成分を、樹脂エマルションに代えて、ナノファイバーの濃度が1質量%であるナノファイバーの水分散体として、ナノファイバーの濃度が0.12質量%となるように調製した電気泳動液を作製したこと以外は、上記(評価用試料(S)の準備)と同様の手順で評価用試料(S)を得た。得られた評価用試料(S)を用いて、上記(ゼータ電位ζparticleの測定)に記載した測定条件でゼータ電位ζfiberを測定した。
 [成形体の光線透過率]
 作製した厚み300μmの成形体を縦50mm、横50mmの大きさにカットし、分光光度計U-4100((株)日立ハイテクノロジーズ製)を用いて、カットした成形体の厚み方向における波長600nm及び400nmの光線透過率を測定した。
 [成形体の線膨張率の測定]
 作製した厚み300μmの成形体を縦20mm、横5mmの大きさにカットし、70℃の真空乾燥オーブンにて24時間以上真空乾燥した。真空乾燥した成形体について、セイコーインスツル(株)社製 TMA6100型を用い、引張モードにて、90~100℃(90℃以上100℃以下)及び190~200℃(190℃以上200℃以下)の範囲における線膨張率を測定した。この際、昇温速度を5℃/minとし、50mL/minの流量で窒素を供給しながら窒素雰囲気下で測定を行った。
 [成形体中のナノファイバーの観察]
 作製した厚み300μmの成形体を適当な大きさに切り出した切片を、0.5%四酸化ルテニウム水溶液に室温で12時間浸漬して、成形体中のナノファイバーを染色した後、ミクロトームを用いて厚み約100nmとなるように成形体の透過電子顕微鏡観察用薄片を作製して、観察用サンプルを得た。観察用サンプルを、電界放出型走査電子顕微鏡(FE-SEM)(S-4800、株式会社日立ハイテクノロジーズ製)を用いて、加速電圧30kV、倍率5000倍及び50000倍の条件で、それぞれ10視野について撮影を行い、電子顕微鏡画像を得た。得られた電子顕微鏡画像を用いて、次の手順でナノファイバーの凝集体の個数を算出し、ナノファイバー間の距離を測定した。
 (ナノファイバーの凝集体の個数)
 倍率5000倍で、250μmの領域を観察した10視野の電子顕微鏡画像において、面積1μm以上のナノファイバーの凝集体の個数を数えた。なお、凝集体の面積は、電子顕微鏡画像において黒く表れた部分の面積であり、面積の算出にあたっては、この黒く表れた部分が円形状であると仮定し、画像中の黒く表れた部分において最大径及び最小径となる部分の長さを測定し、両者の長さを足し合わせて2で除したものが直径であると仮定して、面積を算出した。
 (ナノファイバー間の距離)
 倍率50000倍で、4μmの領域を観察した10視野の電子顕微鏡画像のそれぞれに対し、画像中のナノファイバーとして現れた部分の割合が、その添加割合に等しくなるように二値化処理を施した。次いで、二値化処理を施した画像において、ナノファイバーが最も配向している方向に対して直交する線(以下、「直交線」という。)を任意の箇所に、任意の本数引き、それぞれの直交線と交わるナノファイバーについて、各直交線上で隣り合うナノファイバー同士の間の距離を、画像解析ソフトWinROOF(三谷商事社製)を用いて算出した。このとき、隣り合うナノファイバー同士の間の距離は、ナノファイバーの直交線の方向の長さ(ナノファイバーの幅)の中点間の距離として算出した。1つの直交線上において少なくとも任意の10箇所を含むようにして、合計100箇所について隣り合うナノファイバー同士の間の距離を算出し、その平均値をナノファイバー間の距離とした。
 〔実施例1〕
 (ナノファイバーの製造)
 針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)500g(絶乾)をTEMPO(Sigma Aldrich社)780mgと臭化ナトリウム75.5gとを溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。次いで次亜塩素酸ナトリウム水溶液を6.0mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムが消費され、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水洗することで酸化されたパルプ(カルボキシル化セルロース)を得た。この時のパルプ収率は90%であり、酸化反応に要した時間は90分、カルボキシル基量は1.6mmol/gであった。
 上記の工程で得られた酸化パルプを水で1.0%(w/v)に調整し、超高圧ホモジナイザー(20℃、150MPa)で3回処理して、カルボキシレート基含有セルロースナノファイバーの水分散体1(以下、「ナノファイバーの水分散体1」ということがある。)を得た。得られた繊維について、上記した手順で、平均繊維径、平均アスペクト比、ゼータ電位ζfiberを測定した。その結果、平均繊維径が4nm、平均繊維長500nm、平均アスペクト比が125、ζfiberが-36.3mVであった。
 (水性樹脂組成物の製造)
 上記で得られたナノファイバーの水分散体1を温度80℃で1時間撹拌した後、ナノファイバーの水分散体1の撹拌を行いながら、ウレタン系樹脂の樹脂粒子を含む樹脂エマルション(a)(ユーコートUWS-145、三洋化成社製)を滴下した。その後、さらに温度80℃で1時間撹拌して、室温に冷却して水性樹脂組成物を得た。上記ナノファイバーの水分散体1及び上記樹脂エマルションは、水性樹脂組成物の固形分100質量部に対して、ナノファイバーが5質量部、樹脂粒子が95質量部となるように用いた。用いた樹脂エマルション(a)の1次粒子径、光線透過率、及びゼータ電位ζparticleを、上記した手順で測定し、ζparticle/ζfiberを算出した。その結果を表1及び表2に示す。
 (成形体の製造)
 得られた水性樹脂組成物をシャーレに投入し、温度50℃で水性媒体を除去し、厚み300μmのフィルム状の成形体を得た。得られた成形体について、上記した手順で、光線透過率及び線膨張率を測定した。その結果を表2に示す。
 〔実施例2〕
 水性樹脂組成物の固形分100質量部に対して、ナノファイバーが10質量部、樹脂粒子が90質量部となるように、上記ナノファイバーの水分散体1及び上記樹脂ラテックス(a)を用いたこと以外は、実施例1と同様にして水性樹脂組成物及び成形体を得た。用いた樹脂エマルションの1次粒子径、光線透過率、及びゼータ電位ζparticle、成形体の光線透過率及び線膨張率を、上記した手順で測定し、ζparticle/ζfiberを算出した。その結果を表1及び表2に示す。
 また、実施例2で得られた成形体を用い、上記した[成形体中のナノファイバーの観察]の手順にしたがって電子顕微鏡画像を撮影を行った。10視野から得られた電子顕微鏡画像は、いずれもほぼ同じ画像であることを確認した。得られた電子顕微鏡画像のうち代表的な画像を、図1(a)及び(b)(それぞれ倍率は、5000倍及び50000倍)に示す。また、上記した手順にしたがって算出した直径が1μm以上のナノファイバーの凝集体の個数は0個であり、ナノファイバー間の距離は、140nmであった。
 〔比較例1~4〕
 樹脂ラテックスとして表2に示す樹脂ラテックス(b)~(e)を用いたこと以外は、実施例1と同様にして、水性樹脂組成物及び成形体を得た。用いた樹脂エマルションの1次粒子径、光線透過率、及びゼータ電位ζparticle、成形体の光線透過率及び線膨張率を、上記した手順で測定し、ζparticle/ζfiberを算出した。その結果を表1及び表2に示す。
 〔実施例3〕
 (ナノファイバーの製造)
 実施例1で得た「ナノファイバーの水分散体1」のpHを、0.5Mの水酸化ナトリウム水溶液を用いてpH10に調整した後、セルロースナノファイバーの固形分100質量%に対して2.5質量%の水素化ホウ素ナトリウムを加え、室温(20~25℃)で撹拌しながら反応を24時間行い、還元型セルロースナノファイバー分散体を得た。この還元型セルロースナノファイバー分散体を、105℃の恒温乾燥機中で3~4時間乾燥させ、還元型セルロースナノファイバーの乾燥固形物を得た。さらにこの還元型セルロースナノファイバーの乾燥固形物を水に懸濁して、固形分含量が1質量%のスラリーを調製した。得られたスラリーを、ホモミキサーを用いて6000rpmで10分間撹拌し、固形分含量が1質量%の再分散後の還元型セルロースナノファイバー分散体(ナノファイバーの水分散体2)を得た。得られた繊維について、上記した手順で、平均繊維径、平均アスペクト比、ゼータ電位ζfiberを測定した。その結果、平均繊維径が4nm、平均繊維長が500nm、アスペクト比が125、ζfiberが-42.7mVであった。
 (水性樹脂組成物の製造)
 ナノファイバーの水分散体として、上記で得られた還元されたセルロースナノファイバーの水分散体を用いこと以外は実施例2と同様にして水性樹脂組成物及び成形体を得た。用いた樹脂エマルションの1次粒子径、光線透過率、及びゼータ電位ζparticle、成形体の光線透過率及び線膨張率を、上記した手順で測定し、ζparticle/ζfiberを算出した。その結果を表1及び表2に示す。
 〔比較例5〕
 実施例3で得られた還元されたセルロースナノファイバーの水分散体を用い、樹脂ラテックスとして表2に示す樹脂ラテックス(b)を用いたこと以外は、実施例1と同様にして、水性樹脂組成物及び成形体を得た。用いた樹脂エマルションの1次粒子径、光線透過率、及びゼータ電位ζparticle、成形体の光線透過率及び線膨張率を、上記した手順で測定し、ζparticle/ζfiberを算出した。その結果を表1及び表2に示す。
 なお、表1及び表2中の樹脂エマルション(a)~(e)は、いずれもウレタン系樹脂を含む樹脂エマルションであり、それぞれ、
 樹脂エマルション(a):ユーコートUWS-145、三洋化成社製、アニオン性
 樹脂エマルション(b):スーパーフレックス460、第一工業製薬社製、アニオン性
 樹脂エマルション(c):パーマリンUA-150、三洋化成社製、アニオン性
 樹脂エマルション(d):スーパーフレックス420NS、第一工業製薬社製、アニオン性
 樹脂エマルション(e):スーパーフレックス300、第一工業製薬社製、アニオン性を表す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1~3では、600nm及び400nmにおける光線透過率に優れ、90~100℃の範囲及び190~200℃の範囲における線膨張率に優れた成形体が得られることがわかる。また、電子顕微鏡画像(図1(a),(b)を参照。)を用いて成形体を観察した結果から、実施例2で得られた成形体は、成形体中でのナノファイバーの分散性に優れていることがわかる。

Claims (10)

  1.  樹脂粒子とナノファイバーと水性媒体とを含む水性樹脂組成物であって、
     前記樹脂粒子の濃度が30質量%である樹脂エマルションの光線透過率が、波長600nmにおいて80%以上であるとともに、波長400nmにおいて40%以上であり、
     前記ナノファイバーは、平均アスペクト比が10以上であるとともに、平均繊維径が1nm以上500nm以下である、水性樹脂組成物。
  2.  前記樹脂粒子は、1次粒子径が1nm以上60nm以下である、請求項1に記載の水性樹脂組成物。
  3.  前記樹脂粒子は、ポリウレタン系樹脂、(メタ)アクリル系樹脂、アクリロニトリル-スチレン共重合体系樹脂、アクリロニトリル-ブタジエン-スチレン共重合体系樹脂、エポキシ系樹脂、及びこれらの混合物からなる群より選ばれる少なくとも1種以上の粒子である、請求項1又は2に記載の水性樹脂組成物。
  4.  前記ナノファイバーは、有機ナノファイバー、無機ナノファイバー、及びこれらの混合物からなる群より選ばれる少なくとも1種以上のファイバーである、請求項1~3のいずれか1項に記載の水性樹脂組成物。
  5.  前記ナノファイバーは、セルロースナノファイバーを含む、請求項1~4のいずれか1項に記載の水性樹脂組成物。
  6.  前記樹脂粒子及び前記ナノファイバーは、負電荷を有する、請求項1~5のいずれか1項に記載の水性樹脂組成物。
  7.  前記樹脂粒子は、前記樹脂粒子を含む評価用試料(S)のゼータ電位ζparticleが、-20mV以下であり、
     前記ナノファイバーは、前記ナノファイバーを含む評価用試料(S)のゼータ電位ζfiberが、-20mV以下であり、
     前記ゼータ電位ζparticle及び前記ゼータ電位ζfiberは、下記式(1)の関係を満たす、請求項1~6のいずれか1項に記載の水性樹脂組成物。
      0.930≦ζparticle/ζfiber≦1.600   (1)
  8.  請求項1~7のいずれか1項に記載の水性樹脂組成物を用いて作製された成形体。
  9.  厚み300μmのフィルム形状とした場合の光線透過率が、波長400nmにおいて50%以上であるとともに、波長600nmにおいて85%以上である、請求項8に記載の成形体。
  10.  樹脂粒子とナノファイバーとを含む成形体であって、
     250μmの領域を走査型電子顕微鏡で観察したときに、1μm以上の前記ナノファイバーの凝集体が1個以下であり、
     4μmの領域を走査型電子顕微鏡で観察したときに、前記ナノファイバー間の距離が10nm以上1000nm以下である、成形体。
PCT/JP2018/025816 2017-07-11 2018-07-09 水性樹脂組成物及び成形体 WO2019013147A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207003820A KR102537413B1 (ko) 2017-07-11 2018-07-09 수성 수지 조성물 및 성형체
JP2019529122A JP7162589B2 (ja) 2017-07-11 2018-07-09 水性樹脂組成物及び成形体
CN201880046178.6A CN110869448B (zh) 2017-07-11 2018-07-09 水性树脂组合物及成型体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017135605 2017-07-11
JP2017-135605 2017-07-11

Publications (1)

Publication Number Publication Date
WO2019013147A1 true WO2019013147A1 (ja) 2019-01-17

Family

ID=65001334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025816 WO2019013147A1 (ja) 2017-07-11 2018-07-09 水性樹脂組成物及び成形体

Country Status (4)

Country Link
JP (1) JP7162589B2 (ja)
KR (1) KR102537413B1 (ja)
CN (1) CN110869448B (ja)
WO (1) WO2019013147A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152755A (ja) * 2019-03-18 2020-09-24 大王製紙株式会社 スプレー用溶液及びスプレー容器
JP2020200436A (ja) * 2019-10-07 2020-12-17 サイデン化学株式会社 複合樹脂組成物

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218878A (ja) * 1991-03-18 1994-08-09 Agency Of Ind Science & Technol ヒートシール性を有する生分解性フィルム又はシート
JP2012051991A (ja) * 2010-08-31 2012-03-15 Nagoya Univ セルロースナノファイバー分散体及びその製造方法
JP2013104045A (ja) * 2011-11-16 2013-05-30 Sumitomo Seika Chem Co Ltd セルロース繊維含有組成物、および該組成物を用いた樹脂成形体
JP5733761B2 (ja) * 2012-03-05 2015-06-10 第一工業製薬株式会社 樹脂組成物およびそれを含有する皮膜形成剤、並びに皮膜
JP2016148044A (ja) * 2014-04-30 2016-08-18 Dic株式会社 水性顔料分散体および水性インク
JP5976249B1 (ja) * 2016-03-30 2016-08-23 第一工業製薬株式会社 水分散体およびコーティング材
JP2016188353A (ja) * 2015-03-27 2016-11-04 三洋化成工業株式会社 セルロースナノファイバーの製造方法、並びにセルロースナノファイバー含有樹脂もしくは樹脂前駆体の製造方法
WO2017006997A1 (ja) * 2015-07-07 2017-01-12 第一工業製薬株式会社 樹脂補強用混合物、繊維強化樹脂混合物、並びに、繊維強化樹脂及びその製造方法
JP2017025283A (ja) * 2015-11-25 2017-02-02 第一工業製薬株式会社 セルロースエステル水性分散体
JP2017043571A (ja) * 2015-08-28 2017-03-02 四国化成工業株式会社 1,3,4,6−テトラキス((メタ)アクリロイルオキシアルキル)グリコールウリル化合物、その合成方法および該グリコールウリル化合物の利用
JP2017043750A (ja) * 2015-11-25 2017-03-02 第一工業製薬株式会社 セルロースエステル水性分散体
JP2017043647A (ja) * 2015-08-24 2017-03-02 第一工業製薬株式会社 セルロースエステル水性分散体
JP2017043648A (ja) * 2015-08-24 2017-03-02 第一工業製薬株式会社 セルロースエステル水性分散体
JP2017115047A (ja) * 2015-12-25 2017-06-29 第一工業製薬株式会社 セルロースナノファイバーおよび樹脂組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54106249A (en) 1978-02-08 1979-08-21 Nippon Telegr & Teleph Corp <Ntt> Production of optical fiber cable and tape shaping jig
WO2008054034A1 (en) * 2006-10-31 2008-05-08 Korea Research Institute Of Chemical Technology Method for manufacturing epoxy nanocomposite material containing vapor-grown carbon nanofibers and its products thereby
CN103396572A (zh) * 2013-08-19 2013-11-20 南京林业大学 一种木质纤维素纳米纤维/丙烯酸树脂复合膜的制备方法
CA2944415C (en) * 2014-03-31 2018-05-15 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Production method for readily dispersible cellulose composition, readily dispersible cellulose composition, cellulose dispersion resin composition, and production method for water-based dispersant for cellulose
CN104672741B (zh) * 2015-03-26 2018-05-08 北京化工大学 高固含量阴离子型自乳化水性环氧树脂乳液及其制备方法
JP2017043751A (ja) * 2015-11-25 2017-03-02 第一工業製薬株式会社 セルロースエステル水性分散体
CN105820376A (zh) * 2016-03-17 2016-08-03 莫海尼·M·塞恩 一种耐热柔性纳米复合材料薄片及其制备方法
CN106366615B (zh) * 2016-09-21 2018-11-02 华南理工大学 一种用于三维打印的纳米纤维素/光固化树脂材料及其制备方法与应用

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218878A (ja) * 1991-03-18 1994-08-09 Agency Of Ind Science & Technol ヒートシール性を有する生分解性フィルム又はシート
JP2012051991A (ja) * 2010-08-31 2012-03-15 Nagoya Univ セルロースナノファイバー分散体及びその製造方法
JP2013104045A (ja) * 2011-11-16 2013-05-30 Sumitomo Seika Chem Co Ltd セルロース繊維含有組成物、および該組成物を用いた樹脂成形体
JP5733761B2 (ja) * 2012-03-05 2015-06-10 第一工業製薬株式会社 樹脂組成物およびそれを含有する皮膜形成剤、並びに皮膜
JP2016148044A (ja) * 2014-04-30 2016-08-18 Dic株式会社 水性顔料分散体および水性インク
JP2016188353A (ja) * 2015-03-27 2016-11-04 三洋化成工業株式会社 セルロースナノファイバーの製造方法、並びにセルロースナノファイバー含有樹脂もしくは樹脂前駆体の製造方法
WO2017006997A1 (ja) * 2015-07-07 2017-01-12 第一工業製薬株式会社 樹脂補強用混合物、繊維強化樹脂混合物、並びに、繊維強化樹脂及びその製造方法
JP2017043647A (ja) * 2015-08-24 2017-03-02 第一工業製薬株式会社 セルロースエステル水性分散体
JP2017043648A (ja) * 2015-08-24 2017-03-02 第一工業製薬株式会社 セルロースエステル水性分散体
JP2017043571A (ja) * 2015-08-28 2017-03-02 四国化成工業株式会社 1,3,4,6−テトラキス((メタ)アクリロイルオキシアルキル)グリコールウリル化合物、その合成方法および該グリコールウリル化合物の利用
JP2017025283A (ja) * 2015-11-25 2017-02-02 第一工業製薬株式会社 セルロースエステル水性分散体
JP2017043750A (ja) * 2015-11-25 2017-03-02 第一工業製薬株式会社 セルロースエステル水性分散体
JP2017115047A (ja) * 2015-12-25 2017-06-29 第一工業製薬株式会社 セルロースナノファイバーおよび樹脂組成物
JP5976249B1 (ja) * 2016-03-30 2016-08-23 第一工業製薬株式会社 水分散体およびコーティング材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152755A (ja) * 2019-03-18 2020-09-24 大王製紙株式会社 スプレー用溶液及びスプレー容器
JP2020200436A (ja) * 2019-10-07 2020-12-17 サイデン化学株式会社 複合樹脂組成物

Also Published As

Publication number Publication date
JP7162589B2 (ja) 2022-10-28
JPWO2019013147A1 (ja) 2020-07-02
KR20200028428A (ko) 2020-03-16
KR102537413B1 (ko) 2023-05-26
CN110869448A (zh) 2020-03-06
CN110869448B (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
TWI476224B (zh) 胺甲酸酯樹脂組成物、含有其之塗布劑及黏著劑、及使用其所獲得之硬化物及硬化物之製造方法
TW201139460A (en) Process for production of fine cellulose fiber dispersion
JP6087369B2 (ja) ナノ粒子を含む塗料保護フィルム
TW201005054A (en) Deformable film with radiation-curing coating and shaped articles produced therefrom
JP5141628B2 (ja) 水性樹脂分散体及びその製造方法
Wang et al. Effect of nanosilica content on properties of polyurethane/silica hybrid emulsion and its films
CA2689732A1 (en) Ambient cure water-based coatings for writable-erasable surfaces
WO2019013147A1 (ja) 水性樹脂組成物及び成形体
CN104927524A (zh) 一种耐擦洗和防御外来异物划伤损害及高耐酸的汽车清漆及包含该清漆的汽车涂料
Serkis et al. Nanocomposites made from thermoplastic waterborne polyurethane and colloidal silica. The influence of nanosilica type and amount on the functional properties
TW201323497A (zh) 造膜助劑及含有其之水性樹脂組成物及鋼板表面處理劑
TW201231569A (en) Coating solution for forming transparent coated film and substrate with the transparent coated film
JP2011016995A (ja) 修飾セルロース繊維分散液の製造方法及びセルロース複合材料の製造方法
Ramesh et al. Properties and characterization techniques for waterborne polyurethanes
Yari et al. Toughened acrylic/melamine thermosetting clear coats using POSS molecules: Mechanical and morphological studies
Jiang et al. Effect of carbon fiber‐graphene oxide multiscale reinforcements on the thermo‐mechanical properties of polyurethane elastomer
Zhu et al. Properties and paper sizing application of waterborne polyurethanemicroemulsions: Effects of extender, cross‐linker, and polyol
EP3786244A1 (en) Adhesion method employing polymer microparticle-containing curable resin composition having excellent workability, and laminate obtained using said adhesion method
Wang et al. Environmentally friendly plant‐based waterborne polyurethane for hydrophobic and heat‐resistant films
Patti et al. Structure‐property relationships of waterborne polyurethane (WPU) in aqueous formulations
Khan et al. Performance of advanced waterborne wood coatings reinforced with cellulose nanocrystals
JP2020026466A (ja) 化粧材用コーティング剤
JP2013155237A (ja) 水性樹脂組成物、それを含むコーティング剤、接着剤及び繊維集束剤
CN107709012A (zh) 叠层膜及其制造方法
DE102020210505A1 (de) Klebeband mit Polyurethanträger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019529122

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207003820

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18832610

Country of ref document: EP

Kind code of ref document: A1