WO2019011254A1 - 一种化学机械抛光液 - Google Patents

一种化学机械抛光液 Download PDF

Info

Publication number
WO2019011254A1
WO2019011254A1 PCT/CN2018/095203 CN2018095203W WO2019011254A1 WO 2019011254 A1 WO2019011254 A1 WO 2019011254A1 CN 2018095203 W CN2018095203 W CN 2018095203W WO 2019011254 A1 WO2019011254 A1 WO 2019011254A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing rate
polishing liquid
polyquaternium
silicon oxide
Prior art date
Application number
PCT/CN2018/095203
Other languages
English (en)
French (fr)
Inventor
李守田
尹先升
贾长征
王雨春
Original Assignee
安集微电子科技(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安集微电子科技(上海)股份有限公司 filed Critical 安集微电子科技(上海)股份有限公司
Publication of WO2019011254A1 publication Critical patent/WO2019011254A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers

Definitions

  • the invention relates to the field of chemical mechanical polishing, in particular to a chemical mechanical polishing liquid.
  • Cerium oxide is an important CMP polishing liquid abrasive. Compared with traditional silica sol abrasives, cerium oxide has more efficient polishing properties for silica. It has been widely used in CMP polishing of STI and ILD. However, in STI CMP polishing applications, it is generally required to have a high polishing rate of the silicon dioxide dielectric layer, while the low silicon nitride dielectric layer has a low polishing rate, preferably the polishing rate of the silicon nitride dielectric layer. Can be close to zero. That is to say, a high selectivity ratio of silicon dioxide to silicon nitride is required. Organic molecules have been able to effectively inhibit the polishing rate of silicon nitride.
  • Electrochemical and Solid-State Letter (vol 8 (8), page G218-G221, year 2005) reported that compounds such as picolinic acid can Increasing the polishing rate of the polishing liquid to the silicon dioxide dielectric layer while suppressing the polishing rate of the silicon nitride is at least 20 times smaller than that of the ordinary polishing liquid, so that the selection ratio of the polishing liquid to silicon dioxide and silicon nitride exceeds 200.
  • Polyquaternium-37 has a unique ability to control the polishing rate of silicon oxide.
  • Polyquaternium-6 also has a unique ability to control the rate of silica polishing.
  • the disadvantage of Polyquaternium-6 (PQ-6) is that the solid content of the rubbing particles cannot be less than 0.2 wt%, and if it is lower than this value, the polishing rate on the pattern wafer is remarkably lowered.
  • Polyquaternium-37 (PQ-37) does not have this problem.
  • the present invention uses polyquaternium-37 (PQ-37) to control the polishing rate of silicon oxide, so that a high polishing rate of silicon oxide is achieved under high pressure, and a low polishing rate of silicon oxide is achieved at a low pressure, thereby achieving a comparison. Low dishing.
  • PQ-37 polyquaternium-37
  • the present invention provides a chemical mechanical polishing liquid.
  • the polishing liquid contains cerium oxide abrasive, polyquaternium-37 and a pH adjuster.
  • the formulation controls the polishing rate of the silicon oxide to achieve a higher polishing rate of silicon oxide at high pressures and a lower polishing rate of silicon oxide at low pressures, thereby achieving lower dishing (dishing ).
  • the present invention provides a chemical mechanical polishing liquid comprising cerium oxide abrasive particles, polyquaternium-37 and a pH adjuster.
  • the sol type cerium oxide abrasive particles have a concentration of from 0.1 to 1.0% by weight.
  • the polyquaternium-37 concentration is from 100 ppm to 1000 ppm.
  • the chemical mechanical polishing liquid has a pH of from 3.5 to 5.5.
  • the pH adjusting agent is potassium hydroxide (KOH) and/or nitric acid (HNO 3 ).
  • the invention has the advantages that the sol-type cerium oxide abrasive, the polyquaternium-37 and the pH adjuster are added to the polishing liquid, and the polishing rate of the silicon oxide can be effectively controlled, so that the polishing rate is high.
  • a higher polishing rate of silicon oxide is achieved under pressure, and a lower polishing rate of silicon oxide is achieved at a lower pressure, resulting in lower dishing.
  • the polyquaternium-37 (PQ-37) in the present invention is synthesized by a radical polymerization reaction, and the monomer of the polyquaternium-37 (PQ-37) is a methacryloyloxyethyltrimethyl group.
  • Ammonium chloride The specific preparation method is as follows: taking 200 ppm of hydrogen peroxide, 10 ppm of ferric nitrate and 80% of methacryloyloxyethyltrimethylammonium chloride aqueous solution for a few minutes until mixing, and then heating to 55 ° C, half an hour after free radicals The polymerization started and the solution was maintained at 55 degrees for 16 hours until the reaction was complete.
  • the specific reaction principle is shown in Reaction Scheme I. Wherein, the molecular structure of the monomer methacryloyloxyethyltrimethylammonium chloride is as shown in the structural formula I:
  • the synthetic PQ-37 raw materials selected in this example are commercially available. Specifically, according to the specific components and contents of the quaternary ammonium salt and cerium oxide in Table 1, the mixture is uniformly mixed, and the water is supplemented with 100% by mass, and the pH of the solution is adjusted with potassium hydroxide (KOH) or nitric acid (HNO 3 ) to obtain a comparison and implementation.
  • KOH potassium hydroxide
  • HNO 3 nitric acid
  • polishing liquids prepared in the above examples and comparative examples were respectively measured for the polishing rate of the TEOS blank wafer under different pressure conditions.
  • the specific polishing conditions are: Mirra, IC1010 polishing pad, Platten and Carrier rotation speeds of 93 rpm and 87 rpm, pressure 1.5 psi, 2 psi, 3 psi, 4 psi and 5 psi, polishing liquid flow rate of 150 mL/min, polishing time of 60 seconds. .
  • Comparative Example 2A contained 0.4% by weight of cerium oxide, 5 ppm of PQ-6; Comparative Example 2B contained 0.2% by weight of cerium oxide, 5 ppm of PQ-6; and Example 2C contained 0.2% by weight of cerium oxide, 475 ppm. PQ-37;
  • the above polishing liquid was uniformly mixed according to the above components, and the mass percentage was made up to 100% with water, and the pH was adjusted to 4.5 with potassium hydroxide (KOH) or nitric acid (HNO3).
  • KOH potassium hydroxide
  • HNO3 nitric acid
  • polishing solutions prepared in the above examples and comparative examples were respectively subjected to measurement of the polishing removal rate of the TEOS blank wafer and the STI pattern wafer under different pressure conditions.
  • the polishing conditions were as follows: the polishing machine was Mirra, the IC1010 polishing pad, the Platten and Carrier rotation speeds were 93 rpm and 87 rpm, respectively, the polishing liquid flow rate was 150 mL/min, and the polishing time was 30 seconds.
  • the TEOS and SiN film thicknesses were measured using a NanoSpec film thickness measurement system (NanoSpec 6100-300, Shanghai Nanospec Technology Corporation). Starting at 10 mm from the edge of the wafer, 49 points were measured at equal intervals on the diameter line. The polishing rate is an average of 49 points. The polishing rate measurement of the graphic wafer is set on a 500 um/500 um (line width/space) structure.
  • the data in Table 2 shows that the polishing solution containing polyquaternium-37 (PQ-37), when the content is 0.4 wt%, the polishing rate of TEOS on the STI pattern wafer is close to that of the blank wafer. At a solids content of 0.2 wt%, the polishing rate of TEOS on STI patterned wafers is much lower than (10 times) the polishing rate of blank wafers. On the other hand, a polishing solution containing polyquaternium-37 (PQ-37), when the content is 0.2 wt%, and the polishing rate is 2 psi, the polishing rate of TEOS on the STI pattern wafer is higher than that of the blank wafer. Polishing rate (1.37 times).
  • the present invention adds cerium oxide abrasive, polyquaternium-37 and pH adjuster to the polishing liquid, which can effectively control the polishing rate of silicon oxide, so as to achieve a higher polishing rate of silicon oxide under high pressure.
  • a lower polishing rate of silicon oxide is achieved at a low pressure, resulting in a lower dishing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

提供一种化学机械抛光液,包含氧化铈磨料颗粒、聚季铵盐及pH调节剂。其中的聚季铵盐可控制氧化硅的抛光速率,使得在高压下达到高的氧化硅抛光速率,在低压下实现低的氧化硅的抛光速率,从而取得较低碟形凹陷(dishing)。

Description

一种化学机械抛光液 技术领域
本发明涉及化学机械抛光领域,尤其涉及一种化学机械抛光液。
背景技术
氧化铈是一种重要的CMP抛光液磨料,相比于传统硅溶胶磨料,氧化铈对二氧化硅材质具有更高效的抛光特性,已广泛应用于STI和ILD的CMP抛光。但是,在STI的CMP抛光应用中,通常要求具备高的二氧化硅介质层的抛光速率要高,而低的氮化硅介质层的抛光速率要低,最好氮化硅介质层的抛光速率可以接近于零。也就是说,要求高的二氧化硅对氮化硅的选择比。有机分子能够有效地抑制氮化硅的抛光速率已有许多报道,比如,Electrochemical and Solid-State Letter(vol 8(8),page G218-G221,year 2005)报道吡啶甲酸(picolinic acid)等化合物能够提高抛光液对二氧化硅介质层的抛光速率,同时抑制氮化硅的抛光速率,相比普通抛光液减小至少20倍,使得抛光液对二氧化硅和氮化硅的选择比超过200。
但是,在STI应用中,除了抑制氮化硅的抛光速率,同时还要控制碟形凹陷(dishing)。其中一种取得低碟形凹陷数值的方式是在高的压力下(比如,4psi或5psi下),采用高的氧化硅的抛光速率,在低的压力下(比如,1.5psi下),采用低的氧化硅的抛光速率。换言之,氧化硅的速率对压力的曲线,应该偏离传统的Prestonian线性方程。而在图形的晶圆抛光时,则需高点的地方要承受大的压力,低点(trench)承受的压力要比高点低很多,CMP的目的就是去除高点的材料,实现平整化。
有报道发现,带正电的季氨盐会对同样带正电的氧化铈摩擦颗粒产生强 的电荷排斥作用,但是对带负电的氧化硅晶圆有强的吸引作用,从而达到控制氧化硅抛光速率的目的。但是不是所有的季铵盐都能很好的控制氧化硅的抛光速率。
发明内容
本发明发现聚季铵盐-37(PQ-37)有独特的控制氧化硅抛光速率的能力。聚季铵盐-6(PQ-6)也有独特的控制氧化硅抛光速率的能力。但是,聚季铵盐-6(PQ-6)的缺点是摩擦颗粒的固含量不能低于0.2wt%,如果低于该值,图形晶圆上的抛光速率就会显著降低。而聚季铵盐-37(PQ-37)没有这个问题。本发明用聚季铵盐-37(PQ-37)来控制氧化硅的抛光速率,使得在高压下达到高的氧化硅的抛光速率,在低压下实现低的氧化硅的抛光速率,从而取得较低的碟形凹陷(dishing)。
具体地,本发明提供一种化学机械抛光液。该抛光液包含氧化铈磨料、聚季铵盐-37及pH调节剂。该配方可以控制氧化硅的抛光速率,使得在高的压力下达到较高的氧化硅的抛光速率,在低的压力下达到较低的氧化硅的抛光速率,从而取得较低碟形凹陷(dishing)。
本发明在于提供一种化学机械抛光液,其包含氧化铈研磨颗粒、聚季铵盐-37及pH调节剂。
优选地,所述溶胶型氧化铈研磨颗粒浓度为0.1-1.0wt%。
优选地,所述的聚季铵盐-37浓度为100ppm~1000ppm。
优选地,所述化学机械抛光液的pH值为3.5-5.5。
优选地,所述pH调节剂为氢氧化钾(KOH)和/或硝酸(HNO 3)。
与现有技术相比较,本发明的优势在于:本发明在抛光液添加溶胶型氧化铈磨料、聚季铵盐-37及pH调节剂,可以有效地控制氧化硅的抛光速率,使得在高的压力下达到较高的氧化硅的抛光速率,在低的压力下达到较低的氧化硅的抛光速率,从而取得较低碟形凹陷(dishing)。
具体实施方式
下面结合具体实施例详细阐述本发明的优势。
本发明中的聚季铵盐-37(PQ-37)是通过自由基聚合反应合成的,而聚季铵盐-37(PQ-37)的单体是甲基丙烯酰氧乙基三甲基氯化铵。其具体制备方法为,取200ppm双氧水,10ppm硝酸铁与80%的甲基丙烯酰氧乙基三甲基氯化铵水溶液混合几分钟直至混匀,然后加热到55℃,半个小时后自由基聚合反应开始,溶液维持在55度16小时,直到反应完成。具体反应原理如反应式I所示。其中,单体甲基丙烯酰氧乙基三甲基氯化铵的分子结构如结构式I所示:
Fe 2++H 2O 2→Fe 3++HO·+OH -                  (1)
Fe 3++H 2O 2→Fe 2++HOO·+H +                    (2)
HO·+n CH 2=CHR-CH 3→OH -+(-CH 2-CHRCH 3-) n   (3)
R=-COO-CH 2CH 2N(CH 3) 3Cl
反应式I
Figure PCTCN2018095203-appb-000001
结构式I
本实施例中所选用合成PQ-37原料皆市售可得。具体按照表1中季铵盐和氧化铈的具体组分和含量混合均匀,用水补足质量百分比至100%,以氢氧化钾(KOH)或硝酸(HNO 3)调节溶液pH,得到对比及具体实施例如下:
表1.对比例及实施例配比及具体实施结果
Figure PCTCN2018095203-appb-000002
将上述实施例和对比例中配制的抛光液分别在不同压力条件下测量对TEOS空白晶圆的抛光速率。
具体抛光条件为,抛光机台为Mirra,IC1010抛光垫,Platten和Carrier转速分别为93rpm和87rpm,压力1.5psi,2psi、3psi、4psi和5psi,抛光液流速为150mL/min,抛光时间为60秒。
上述对比例和实施例的结果表示,聚季铵盐-37(PQ-37)的浓度变化对TEOS抛光速率具有显著的影响。从表1中可以看出,与空白基准样对比,如实施例1B,当聚季铵盐-37(PQ-37)浓度为250ppm时,在3psi到5psi压力区间内,氧化硅的抛光速率高于空白基准样;而,当聚季铵盐-37(PQ-37)的浓度在250ppm到500ppm时,在压力为5psi时,抛光液对氧化硅抛光速率逐渐降低,但降低强度在低压力区(1.5psi到2psi)加快。上述数据表明,在不同抛光液pH条件下,调节抛光液配方中氧化铈和聚季铵盐-7浓度,对应抛光速率与抛光压力条件间均表现出非线性关系。可见,聚季铵盐-37的 添加,使氧化铈抛光液显示出典型的非普林斯顿压力-抛光速率曲线关系,对Dishing的出现有良好的抑制效果。如表2所示,对比例2A中含有0.4wt%氧化铈,5ppm PQ-6;对比例2B中含有0.2wt%氧化铈,5ppm PQ-6;实施例2C中含有0.2wt%氧化铈,475ppm PQ-37;将上述抛光液按照上述组分混合均匀,用水补足质量百分比至100%,以氢氧化钾(KOH)或硝酸(HNO3)调节pH至4.5。得到对比及具体实施例如下表所示:
表2 对比抛光液和本发明抛光液的抛光效果列表
Figure PCTCN2018095203-appb-000003
将上述实施例和对比例中配制的抛光液分别进行不同压力条件下测量TEOS空白晶圆及STI图形晶圆的抛光去除速率。
其抛光条件为,抛光机台为Mirra,IC1010抛光垫,Platten和Carrier转速分别为93rpm和87rpm,,抛光液流速为150mL/min,抛光时间为30秒。
TEOS和SiN膜厚是用NanoSpec膜厚测量系统(NanoSpec6100-300,Shanghai Nanospec Technology Corporation)测出的。从晶圆边缘10mm开始,在直径线上以同等间距测49个点。抛光速率是49点的平均值。图形晶圆的抛光速率测量设在500um/500um(线宽/空间)结构上。
表2的数据表明,含聚季铵盐-37(PQ-37)的抛光液,当其含量是0.4wt%时,在STI图形晶圆上TEOS的抛光速率与空白晶圆的抛光速率接近。在0.2wt%的固含量时,在STI图形晶圆上TEOS的抛光速率远远低于(10倍)空白晶圆的抛光速率。另一方面,含聚季铵盐-37(PQ-37)的抛光液,当其含量是0.2wt%时,抛光压力为2psi时,在STI图形晶圆上TEOS的抛光速率高于空白晶圆的抛光速率(1.37倍)。
综上可见,本发明在抛光液添加氧化铈磨料、聚季铵盐-37及pH调节剂,可以有效地控制氧化硅的抛光速率,使得在高的压力下达到较高的氧化硅的抛光速率,在低的压力下达到较低的氧化硅的抛光速率,从而取得较低碟形凹陷(dishing)。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (6)

  1. 一种化学机械抛光液,包含氧化铈磨料、聚季铵盐及pH调节剂。
  2. 如权利要求1所述的化学机械抛光液,其特征在于,所述的聚季铵盐选自聚季铵盐-37。
  3. 如权利要求1所述的化学机械抛光液,其特征在于,所述氧化铈磨料浓度为0.1-1.0wt%。
  4. 如权利要求1所述的化学机械抛光液,其特征在于,所述的聚季铵盐-37浓度为100ppm~1000ppm。
  5. 如权利要求1所述的化学机械抛光液,其特征在于,所述化学机械抛光液的pH值为3.5-5.5。
  6. 如权利要求1所述的化学机械抛光液,其特征在于,所述pH调节剂为氢氧化钾(KOH)和/或硝酸(HNO 3)。
PCT/CN2018/095203 2017-07-13 2018-07-10 一种化学机械抛光液 WO2019011254A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710569909.2 2017-07-13
CN201710569909.2A CN109251674B (zh) 2017-07-13 2017-07-13 一种化学机械抛光液

Publications (1)

Publication Number Publication Date
WO2019011254A1 true WO2019011254A1 (zh) 2019-01-17

Family

ID=65001099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095203 WO2019011254A1 (zh) 2017-07-13 2018-07-10 一种化学机械抛光液

Country Status (3)

Country Link
CN (1) CN109251674B (zh)
TW (1) TWI805596B (zh)
WO (1) WO2019011254A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116200127A (zh) * 2021-11-30 2023-06-02 安集微电子(上海)有限公司 一种制备纳米复合颗粒分散液的方法及纳米复合颗粒分散液、化学机械抛光液
CN118222187A (zh) * 2022-12-13 2024-06-21 安集微电子科技(上海)股份有限公司 一种氧化铈的表面处理方法、一种氧化铈及其用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724346A (zh) * 2008-10-10 2010-06-09 安集微电子(上海)有限公司 一种化学机械抛光液
CN102464947A (zh) * 2010-11-19 2012-05-23 安集微电子(上海)有限公司 一种化学机械抛光液
WO2016141259A1 (en) * 2015-03-05 2016-09-09 Cabot Microelectronics Corporation Polishing composition containing cationic polymer additive
WO2016140968A1 (en) * 2015-03-05 2016-09-09 Cabot Microelectronics Corporation Polishing composition containing ceria abrasive

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030077240A1 (en) * 2001-10-24 2003-04-24 Clariant International, Ltd. Use of high-purity phenylsilsesquioxane liquids for the preparation of cosmetic and pharmaceutical compositions
KR100661273B1 (ko) * 2005-04-28 2006-12-26 테크노세미켐 주식회사 고단차 산화막의 평탄화를 위한 화학기계적 연마조성물
US9303187B2 (en) * 2013-07-22 2016-04-05 Cabot Microelectronics Corporation Compositions and methods for CMP of silicon oxide, silicon nitride, and polysilicon materials
CN107851568B (zh) * 2015-07-13 2021-10-08 Cmc材料股份有限公司 用于加工介电基板的方法及组合物
KR20170076191A (ko) * 2015-12-24 2017-07-04 주식회사 케이씨텍 연마입자-분산층 복합체 및 그를 포함하는 연마 슬러리 조성물
CN106927495A (zh) * 2015-12-31 2017-07-07 安集微电子科技(上海)有限公司 一种氧化铈的制备方法及其cmp应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724346A (zh) * 2008-10-10 2010-06-09 安集微电子(上海)有限公司 一种化学机械抛光液
CN102464947A (zh) * 2010-11-19 2012-05-23 安集微电子(上海)有限公司 一种化学机械抛光液
WO2016141259A1 (en) * 2015-03-05 2016-09-09 Cabot Microelectronics Corporation Polishing composition containing cationic polymer additive
WO2016140968A1 (en) * 2015-03-05 2016-09-09 Cabot Microelectronics Corporation Polishing composition containing ceria abrasive

Also Published As

Publication number Publication date
CN109251674A (zh) 2019-01-22
TW201908431A (zh) 2019-03-01
CN109251674B (zh) 2021-12-17
TWI805596B (zh) 2023-06-21

Similar Documents

Publication Publication Date Title
JP4853287B2 (ja) Cmp研磨剤及び基板の研磨方法
JP6762390B2 (ja) 研磨用組成物、研磨方法および基板の製造方法
US8900335B2 (en) CMP polishing slurry and method of polishing substrate
KR101134590B1 (ko) 분산 안정성이 우수한 연마 슬러리의 제조방법
TWI814731B (zh) 化學機械拋光液
CN109251671B (zh) 一种化学机械抛光液
JP2013540850A (ja) N−置換ジアゼニウムジオキシド及び/又はn’−ヒドロキシジアゼニウムオキシド塩を含有する水性研磨剤組成物
KR100600429B1 (ko) 산화세륨을 포함하는 cmp용 슬러리
WO2018179787A1 (ja) 研磨液、研磨液セット及び研磨方法
JP7254722B2 (ja) 硬質研磨粒子を用いない硬質材料研磨
WO2016101332A1 (zh) 一种化学机械抛光液
TWI805596B (zh) 化學機械拋光液
CN109251675B (zh) 一种化学机械抛光液
WO2016107406A1 (zh) 一种化学机械抛光液及其应用
CN109251673A (zh) 一种化学机械抛光液
US20230027829A1 (en) Chemical mechanical polishing solution
CN109251677B (zh) 一种化学机械抛光液
JP2014187268A (ja) Cmp研磨剤及び基板の研磨方法
TWI818914B (zh) 化學機械拋光液
CN109251680A (zh) 一种化学机械抛光液
KR101875002B1 (ko) 열안정성과 연마효율이 우수한 화학-기계적 연마 슬러리
JP2001007059A (ja) Cmp研磨剤及び基板の研磨方法
TW201606061A (zh) 有機膜硏磨用組成物及硏磨方法
JP2024516576A (ja) 誘電材料を研磨するためのcmp組成物
WO2021121044A1 (zh) 一种化学机械抛光液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831894

Country of ref document: EP

Kind code of ref document: A1