WO2016107406A1 - 一种化学机械抛光液及其应用 - Google Patents

一种化学机械抛光液及其应用 Download PDF

Info

Publication number
WO2016107406A1
WO2016107406A1 PCT/CN2015/097542 CN2015097542W WO2016107406A1 WO 2016107406 A1 WO2016107406 A1 WO 2016107406A1 CN 2015097542 W CN2015097542 W CN 2015097542W WO 2016107406 A1 WO2016107406 A1 WO 2016107406A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing liquid
mechanical polishing
chemical mechanical
liquid according
polishing
Prior art date
Application number
PCT/CN2015/097542
Other languages
English (en)
French (fr)
Inventor
陈宝明
高嫄
荆建芬
姚颖
潘依君
邱腾飞
王春梅
Original Assignee
陈宝明
高嫄
荆建芬
姚颖
潘依君
邱腾飞
王春梅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈宝明, 高嫄, 荆建芬, 姚颖, 潘依君, 邱腾飞, 王春梅 filed Critical 陈宝明
Publication of WO2016107406A1 publication Critical patent/WO2016107406A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives

Definitions

  • the present invention relates to a chemical mechanical polishing liquid and its use, in particular to a chemical mechanical polishing liquid involving silica polishing.
  • interlayer dielectric silicon dioxide or silicon dioxide doped with other elements is interposed between the metal wires as an interlayer dielectric (ILD).
  • CMP chemical mechanical polishing
  • the CMP process uses an abrasive-containing mixture and a polishing pad to polish the surface of the integrated circuit.
  • the substrate is placed in direct contact with a rotating polishing pad and a load is applied to the backside of the substrate with a load.
  • the gasket and the table rotate while maintaining a downward force on the back of the substrate, applying abrasive and chemically active solutions (often referred to as polishing fluids or polishing slurries) to the gasket.
  • polishing fluids or polishing slurries abrasive and chemically active solutions
  • Silica as a dielectric material commonly used in integrated circuits, involves the removal of a silicon dioxide dielectric layer in many polishing processes.
  • the polishing slurry is mainly used to remove the oxide dielectric layer and planarize; when the shallow trench isolation layer is polished, the polishing liquid is mainly used for removal and Flatten the oxide dielectric layer and stop on the silicon nitride; in the barrier polishing, the polishing solution needs to remove the silicon dioxide, copper and copper barrier layers; in the through silicon via (TSV) process, the formation of vias is also required
  • TSV through silicon via
  • This patent is intended to provide a highly concentrated polishing fluid suitable for polishing a variety of silica materials, which can be used for barrier polishing of through-silicon via (TSV) processes, and for integrated circuit copper interconnects.
  • TSV through-silicon via
  • Barrier polishing, silica interlaminar dielectric polishing, and shallow trench isolation polishing in the process have high silica, barrier removal rates, and lower silicon nitride removal rates under milder conditions.
  • the present invention provides a chemical mechanical polishing liquid comprising abrasive particles, an aminosilane reagent, and water.
  • the abrasive particles described herein are silica nanoparticles generally used in the art, and have a content of 0.5 to 30% by weight, preferably 2 to 25%, and a particle diameter of 20 to 200 nm, preferably 30 to 150 nm.
  • the aminosilane reagent has the following structural formula.
  • M is a hydrogen atom or an alkyl group having a carbon chain length of 1 to 12, an alkyl group having a substituent group, an aryl group or an aryl group having a substituent;
  • R3, R4, R5, and R6 are a hydrogen atom or an alkyl group having a carbon chain length of 1 to 12, an alkyl group having a substituent group, an aryl group or an aryl group having a substituent group.
  • the aminosilane reagent can be aminoethylmethyldiethoxysilane, aminoethylmethyldimethoxysilane, aminoethyldimethylmethoxysilane, aminopropylmethyldiethoxy Silane, aminopropylmethyldimethoxysilane, aminopropyldimethylmethoxysilane, aminopropyltrimethoxysilane, and the like.
  • the mass percentage concentration of the aminosilane compound is from 100 to 3,000 ppm, preferably from 300 to 2,000 ppm.
  • the polishing liquid may further include a azole compound, a complexing agent and an oxidizing agent.
  • the azole compound may be one or more of the following: benzotriazole, methylbenzotriazole, 5-carboxy-3-amino-1,2,4-triazo Oxazole, histidine, 5-carboxybenzotriazole, 5-phenyltetrazolium, benzimidazole, 1,2,4-triazole, 3-amino-1,2,4 triazole, 4-amino-1,2,4 triazole.
  • the mass percentage concentration of the azole compound is preferably 0.001 to 1%, more preferably 0.01 to 0.3%.
  • the complexing agent described therein is an organic acid or an amino acid compound. Preferred is one or more selected from the group consisting of acetic acid, malonic acid, succinic acid, citric acid, glycine, valine, tyrosine, glutamic acid, lysine, arginine, and tyrosine. Amino acid, etc.
  • the concentration of the complexing agent is preferably 0.001 to 2% by weight, more preferably 0.01 to 1%.
  • the oxidizing agent described therein is preferably selected from one or more of the group consisting of hydrogen peroxide, peracetic acid, potassium persulfate and/or ammonium persulfate.
  • the mass percentage of the oxidizing agent is preferably from 0.01 to 5%, more preferably from 0.1 to 2%.
  • the chemical mechanical polishing liquid described therein has a pH of from 3.0 to 7.0, more preferably from 4.0 to 6.0.
  • the chemical mechanical polishing liquid of the present invention may further comprise other additives in the field such as a pH adjuster and a bactericide. Add the amount, the balance is water.
  • the invention can prepare a highly concentrated polishing liquid with a concentration ratio of 3 to 6 times.
  • the polishing liquid of the present application can increase the removal rate of silicon dioxide and suppress the removal rate of silicon nitride, thereby increasing the removal ratio of silicon dioxide to silicon nitride.
  • the removal rate of silicon dioxide and the removal ratio of silicon dioxide to silicon nitride are increased by adding an aminosilane coupling agent;
  • the present invention provides a high silica-low silicon nitride removal rate polishing fluid with high selectivity for TSV barrier polishing, barrier polishing in integrated circuit copper interconnect processes, interlayer dielectric silicon dioxide Polished and shallow grooved polished. It can meet the requirements of silica (Teos), silicon nitride, tantalum, titanium and copper removal rates in various polishing processes.
  • the desired polishing rate requirement can be achieved with a lower level of silica abrasive particles.
  • a highly concentrated polishing liquid can be prepared, which not only can effectively reduce the cost, but also facilitate storage and transportation.
  • the chemical mechanical polishing liquid of the present invention can be prepared by uniformly mixing the components other than the oxidizing agent, adjusting the pH to a desired pH with a pH adjusting agent (such as KOH or HNO3), and adding an oxidizing agent before use. Mix well.
  • a pH adjusting agent such as KOH or HNO3
  • the reagents and starting materials used in the present invention are commercially available.
  • the percentages of the ingredients in the examples are all mass percentages.
  • the particle size of the nanoparticles is greater than 350 nm. Therefore, in the conventional polishing liquid, the pH value of the comparative example 2 or 3 is generally selected to ensure the stability of the polishing liquid, but the polishing liquid also has defects, which are as follows. It will be explained in more detail.
  • the silane reagent without an amino group is also relatively inferior, and after being left at room temperature for 30 days, the pH is more than 6.5, and the particle diameter of the nanoparticles is more than 280 nm.
  • compositions 4 to 20 can prepare a highly concentrated polishing liquid which has excellent storage stability and polishing stability.
  • polishing performance of the above composition was investigated in this example, and the resulting composition was polished by the following conditions.
  • Comparative Example 1 does not contain aminosilane reagent, the removal rate of silica, tan, and titanium is too low to meet the removal rate requirement;
  • Comparative Example 4 contains a non-amino silane reagent, which is the second The polishing rate of silicon oxide or the like is still very low, so that the specific silane reagent provided by the present application, that is, the aminosilane reagent, has a new function with respect to other kinds of silane reagents.
  • Comparative Example 2 is an acidic polishing liquid having a higher removal rate of silica, tantalum, and titanium, but a higher removal rate of silicon nitride.
  • Comparative Example 3 is an alkaline polishing liquid which also has a high removal rate of silica, tantalum and titanium, but the removal rate of silicon nitride is very high and cannot be used for polishing TSV barrier layer and shallow trench isolation layer (TSV).
  • TSV trench isolation layer
  • the polishing of the barrier layer and the shallow trench isolation layer requires a high silica low silicon nitride removal rate polishing solution, the polishing process is finally stopped on the silicon nitride material, and the polishing liquid has a high abrasive particle content, and the concentrate cannot be prepared.
  • Example 1 incorporates an aminosilane-based reagent at a lower abrasive particle content. It has a very high silica material removal rate and a very low silicon nitride removal rate, which can be used to polish a variety of dielectric materials involving silicon dioxide.
  • Example 2 is based on the addition of an oxidizing agent, which can be used to polish metal materials such as copper, tantalum and titanium, which have a high removal rate of tan and titanium; and compositions 3 to 20 respectively add other different additives or
  • the composition consisting of nanoparticles of different sizes has the adjustability of the removal rate of materials such as copper, tantalum and titanium, meets the requirements of different process processes in the integrated circuit, and expands its applicability and applicability; 95 nm is used in the composition.
  • the abrasive particles when the silica content in the polishing solution is more than 6%, the polishing rate of the silica material can reach 2000 A/min or more, and can also be used for polishing various silica materials in an integrated circuit.
  • polishing performance of the above composition was investigated in this example, and the obtained composition was polished by the following conditions.
  • the specific data is shown in Table 3: polishing conditions: Mirra, the polishing pad was a Fujibo polishing pad, and the downward pressure was 1.5 psi.
  • Comparative Example 3 shows that the aminosilane reagent is not contained in Comparative Example 1, and the removal rates of silica, tan, and titanium are too low to meet the removal rate requirements in the process; Comparative Examples 2 and 3 are acidic and alkaline polishing.
  • the liquid has a high removal rate of silica, tantalum and titanium, but the polishing liquid has a high content of abrasive particles, and it is impossible to prepare a concentrate, and the cost is too high.
  • Comparative Example 4 contains other kinds of silane reagents, and the removal rate of silica, tantalum and titanium is too low to meet the removal rate requirement in the process.
  • Embodiments 1-20 of the present invention incorporate an aminosilane-based reagent which has a high removal rate of a silica-based dielectric material at a lower solid content and pressure, when different additives are added or different sizes are used.
  • the composition of the nano particles has the adjustability of the removal rate of materials such as copper, tantalum, titanium, carbon doped low dielectric constant silica, and meets the requirements of different process processes.
  • the present invention is suitable for polishing a barrier layer in a through silicon via (TSV) process, and can also be used for barrier polishing in an integrated circuit copper interconnection process, interlaminar dielectric polishing, and shallow trench isolation polishing. It has a high barrier removal rate and a high planarization efficiency under mild conditions.
  • the polishing solution can be used to prepare highly concentrated products, which not only can effectively reduce the cost, but also facilitate storage and transportation.
  • wt% of the present invention refers to the mass percentage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

本发明涉及一种化学机械抛光液及其应用,该抛光液含有研磨颗粒、氨基硅烷试剂和水。本发明适合于硅通孔(TSV)工艺中阻挡层的抛光,还可用于集成电路铜互连制程中的阻挡层抛光、二氧化硅层间介质抛光和浅槽隔离层抛光,在较温和的条件下具有高的阻挡层去除速率,较高的平坦化效率。抛光液可制备高浓缩的产品,不但可以有效降低成本,还便于储存和运输。

Description

一种化学机械抛光液及其应用 技术领域
本发明涉及一种化学机械抛光液及其应用,尤其是应用于涉及二氧化硅抛光的化学机械抛光液。
背景技术
在集成电路的制造过程中,硅晶圆基片上往往构建了成千上万的结构单元,这些结构单元通过多层金属互连进一步形成功能性电路和元器件。在多层金属互连结构中,金属导线之间填充二氧化硅或掺杂其他元素的二氧化硅作为层间介电质(ILD)。随着集成电路金属互连技术的发展和布线层数的增加,化学机械抛光(CMP)已经广泛应用于芯片制造过程中的表面平坦化。这些平坦化的芯片表面有助于多层集成电路的生产,且防止将介电层涂覆在不平表面上引起的畸变。
CMP工艺就是使用一种含磨料的混合物和抛光垫抛光集成电路表面。在典型的化学机械抛光方法中,将衬底直接与旋转抛光垫接触,用一载重物在衬底背面施加压力。在抛光期间,垫片和操作台旋转,同时在衬底背面保持向下的力,将磨料和化学活性溶液(通常称为抛光液或抛光浆料)涂于垫片上,该抛光液与正在抛光的薄膜发生化学反应开始进行抛光过程。
二氧化硅作为集成电路中常用的介电材料,在很多抛光工艺中都会涉及二氧化硅介电层的去除。如在氧化物层间介质抛光过程中,抛光浆料主要用于去除氧化物介电层并平坦化;在浅沟槽隔离层抛光时,抛光液主要用于去除以及 平坦化氧化物介电层并停在氮化硅上;在阻挡层抛光中,抛光液需要去除二氧化硅,铜和铜阻挡层;在硅通孔(TSV)工艺,通孔的形成也需要用抛光液去除多余的二氧化硅。在这些抛光工艺中,都要求较高的氧化物介电层的去除速率以保证产能。为了达到较高的氧化物材料去除速率,通常通过提高研磨颗粒的用量来达到,这样做会提高抛光液的成本,而且研磨颗粒用量的增大不利于浓缩。现有技术WO2010033156A2中使用了季铵盐,季膦盐,氨基硅烷类化合物用于抛光过程中提高二氧化硅材料的去除速率。
在CMP过程中除了要严格控制表面污染物以及杜绝金属腐蚀外,还要具有较低的蝶形凹陷和抛光均一性才能保证更加可靠的电性能,特别是阻挡层的平坦化过程中需要在更短的时间和更低的压力下快速移除阻挡层材料。本专利旨在提供一种高浓缩的适合于多种涉及二氧化硅材料抛光的抛光液,其可用于硅通孔(TSV)工艺中阻挡层抛光的抛光液,还可用于集成电路铜互连制程中的阻挡层抛光、二氧化硅层间介质抛光和浅槽隔离层抛光,在较温和的条件下具有高的二氧化硅、阻挡层去除速率和较低的氮化硅去除速率。
发明内容
本发明提供了一种化学机械抛光液,包含研磨颗粒、氨基硅烷试剂和水。
其中所述的研磨颗粒为本领域常用的二氧化硅纳米颗粒,含量为0.5~30wt%,优选为2~25%;粒径为20~200nm,优选为30~150nm。
其中氨基硅烷试剂具有如下结构式所示。
Figure PCTCN2015097542-appb-000001
n=1~12,
R1,R2=
Figure PCTCN2015097542-appb-000002
x=0,1,且M为氢原子或碳链长度为1~12的烷基、带有 取代基团的烷基、芳基或带有取代基团的芳基;
R3,R4,R5,R6为氢原子或碳链长度为1~12的烷基、带有取代基团的烷基、芳基或带有取代基团的芳基。
优选地,氨基硅烷试剂的可为氨乙基甲基二乙氧基硅烷、氨乙基甲基二甲氧基硅烷、氨乙基二甲基甲氧基硅烷、氨丙基甲基二乙氧基硅烷、氨丙基甲基二甲氧基硅烷、氨丙基二甲基甲氧基硅烷、氨丙基三甲氧基硅烷等。
氨基硅烷类化合物的质量百分比浓度为100~3000ppm,优选为300~2000ppm。
其中,该抛光液中还可以包括氮唑类化合物、络合剂和氧化剂。
其中所述的氮唑类化合物,可为下列中的一种或多种:苯并三氮唑、甲基苯并三氮唑、5-羧基-3-氨基-1,2,4-三氮唑,组氨酸,5-羧基苯并三氮唑、5-苯基四氮唑、苯并咪唑、1,2,4-三氮唑、3-氨基-1,2,4三氮唑、4-氨基-1,2,4三氮唑。所述的唑类化合物的质量百分比浓度较佳的为0.001~1%,更佳的为0.01~0.3%。
其中所述的络合剂为有机酸或氨基酸类化合物。较佳的选自下列中的一种或多种:乙酸、丙二酸、丁二酸、柠檬酸、甘氨酸、脯氨酸、酪氨酸、谷氨酸、赖氨酸、精氨酸、酪氨酸等。所述的络合剂的质量百分比的浓度较佳的为0.001~2%,更佳的为0.01~1%。
其中所述的氧化剂较佳的选自下列中的一种或多种:过氧化氢、过氧乙酸,过硫酸钾和/或过硫酸铵。所述的氧化剂的质量百分比浓度较佳的为0.01~5%,更佳的为0.1~2%。
其中所述的化学机械抛光液的pH值为3.0~7.0,更佳的为4.0~6.0。
本发明的化学机械抛光液还可以包含pH调节剂和杀菌剂等其他本领域添 加剂,余量为水。
本发明可制备高浓缩的抛光液,浓缩倍数为3~6倍。
本申请的抛光液可以提高二氧化硅的去除速率,并抑制氮化硅的去除速率,从而提高了二氧化硅对氮化硅的去除速率选择比。
本发明的积极进步效果在于:
1.通过加入氨基硅烷类偶联剂提高了二氧化硅的去除速率和二氧化硅对氮化硅的去除速率选择比;
2.本发明提供了一种高二氧化硅-低氮化硅去除速率的抛光液,其高选择性可用于TSV阻挡层抛光、集成电路铜互连制程中阻挡层抛光、层间介质二氧化硅抛光和浅槽隔离抛光。可以满足各种抛光工艺中二氧化硅(Teos)、氮化硅、钽、钛、铜去除速率的要求。
3.使用本发明的配方,能够在二氧化硅研磨颗粒含量较低的情形下,达到所需的抛光速率要求。且可制备高浓缩的抛光液,不但可以有效降低成本,还便于储存运输。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
本发明的化学机械抛光液可按下述方法制备:将除氧化剂以外的其他组分按比例混合均匀,用pH调节剂(如KOH或HNO3)调节到所需要的pH值,使用前加氧化剂,混合均匀即可。
本发明所用试剂及原料均市售可得。实施例中各成分百分比均为质量百分比。
表1实施例及对比例配方
Figure PCTCN2015097542-appb-000003
Figure PCTCN2015097542-appb-000004
实施例中对比抛光液1不含有氨基硅烷试剂,当pH=5时稳定性很差,pH和纳米颗粒粒径会随着放置时间迅速增大直至凝胶,其在室温放置30天后,pH大于7,纳米颗粒粒径大于350nm。故在传统的抛光液中,一般选择对比例2或3的pH值,从而保证抛光液的稳定,但是这种抛光液也存在缺陷,这在以下 将更详细地说明。对比抛光液2为酸性(pH=3)抛光液,研磨颗粒含量为20%;对比抛光液3为碱性(pH=10)抛光液,研磨颗粒含量为15%;对比抛光液4为添加了不带有氨基基团的硅烷试剂,稳定性也比较差,其在室温放置30天后,pH大于6.5,纳米颗粒粒径大于280nm。
实施例中组合物4~20都可以制备高浓缩的抛光液,其具有优异的储存稳定性和抛光稳定性。
效果实例1
此实例中研究了上述组合物的抛光性能,将制得的组合物通过下述条件进行抛光,具体数据如表2:抛光条件:Mirra,抛光垫为IC1010抛光垫,向下压力为3.0psi,转速为抛光盘/抛光头=93/87rpm,抛光液流速为150ml/min,抛光时间为1min。
表2
Figure PCTCN2015097542-appb-000005
Figure PCTCN2015097542-appb-000006
由表2中结果显示:对比例1中不含氨基硅烷试剂,其二氧化硅、坦、钛去除速率太低,无法满足去除速率要求;对比例4中含有非氨基的硅烷试剂,其对二氧化硅等的研磨速率仍然很低,故说明了本申请所提供的特定硅烷试剂,即氨基硅烷试剂,相对其他种类的硅烷试剂,具有新的功能。对比例2为酸性抛光液,其具有较高的二氧化硅、坦、钛去除速率,但氮化硅的去除速率较高。且为了达到较高的抛光速率,对比例2抛光液的研磨颗粒含量很高,无法制备浓缩液。对比例3为碱性抛光液,其也具有较高的二氧化硅、坦、钛去除速率,但氮化硅的去除速率非常高,无法用在TSV阻挡层和浅槽隔离层的抛光(TSV阻挡层和浅槽隔离层的抛光需要高二氧化硅低氮化硅去除速率的抛光液,抛光过程最终停止在氮化硅材料上),而且抛光液的研磨颗粒含量也很高,无法制备浓缩液。
效果实例中实施例1加入了氨基硅烷类试剂,在较低的研磨颗粒含量下具 有很高的二氧化硅材料去除速率、很低的氮化硅去除速率,可用来抛光各种涉及二氧化硅的介电材料。实施例2在实施例1的基础上加入了氧化剂,可用来抛光铜、坦、钛等金属材料,其具有较高的坦、钛去除速率;组合物3~20分别再加入其它不同的添加剂或使用不同大小的纳米颗粒组成的组合物,具有对铜、坦、钛等材料去除速率的可调性,满足集成电路中不同工艺制程的要求,扩展其应用性和适用性;组合物中使用95nm的研磨颗粒,当抛光液中二氧化硅含量大于6%,二氧化硅材料的抛光速率可达2000A/min以上,还可以用于集成电路中多种二氧化硅材料的抛光。
效果实例2
此实例中研究了上述组合物的抛光性能,将制得的组合物通过下述条件进行抛光,具体数据如表3:抛光条件:Mirra,抛光垫为Fujibo抛光垫,向下压力为1.5psi,转速为抛光盘/抛光头=93/87rpm,抛光液流速为150ml/min,抛光时间为1min。
表3
Figure PCTCN2015097542-appb-000007
Figure PCTCN2015097542-appb-000008
由表3的数据显示:对比例1中不含氨基硅烷试剂,其二氧化硅、坦、钛去除速率太低,无法满足工艺制程中去除速率要求;对比例2和3为酸性和碱性抛光液,其具有较高的二氧化硅、坦、钛去除速率,但抛光液的研磨颗粒含量很高,无法制备浓缩液,成本太高。对比例4中含有其他种类的硅烷试剂,其对二氧化硅、坦、钛去除速率也太低,无法满足工艺制程中去除速率要求
本发明的实施例1~20加入了氨基硅烷类试剂,可在较低的固含量和压力下具有很高的二氧化硅类介电材料的去除速率,当加入了不同的添加剂或使用不同大小的纳米颗粒组成的组合物,具有对铜、坦、钛、碳掺杂的低介电常数二氧化硅等材料去除速率的可调性,满足不同工艺制程的要求。
综上本发明适合于硅通孔(TSV)工艺中阻挡层的抛光,还可用于集成电路铜互连制程中的阻挡层抛光、二氧化硅层间介质抛光和浅槽隔离层抛光,在较温和的条件下具有高的阻挡层去除速率,较高的平坦化效率。抛光液可制备高浓缩的产品,不但可以有效降低成本,还便于储存和运输。
应当理解的是,本发明所述wt%均指的是质量百分含量。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (23)

  1. 一种化学机械抛光液,其中,所述抛光液包含研磨颗粒、氨基硅烷试剂和水。
  2. 如权利要求1所述的化学机械抛光液,其中,所述研磨颗粒为二氧化硅纳米颗粒。
  3. 如权利要求1所述的化学机械抛光液,其中,所述研磨颗粒的含量为0.5~30wt%。
  4. 如权利要求1所述的化学机械抛光液,其中,所述研磨颗粒的含量为2~25wt%。
  5. 如权利要求1所述的化学机械抛光液,其中,所述研磨颗粒的粒径为20~200nm。
  6. 如权利要求1所述的化学机械抛光液,其中,所述研磨颗粒的粒径为30~150nm。
  7. 如权利要求1所述的化学机械抛光液,其中,所述氨基硅烷试剂具有如下结构式所示:
    Figure PCTCN2015097542-appb-100001
    其中,n=1~12,
    Figure PCTCN2015097542-appb-100002
    x=0,1,且M为氢原子或碳链长度为1~12的烷基、带有取代基团的烷基、芳基或带有取代基团的芳基;
    R3,R4,R5,R6为氢原子或碳链长度为1~12的烷基、带有取代基团的烷基、芳基或带有取代基团的芳基。
  8. 如权利要求1所述的化学机械抛光液,其中,所述氨基硅烷试剂选自氨乙基甲基二乙氧基硅烷、氨乙基甲基二甲氧基硅烷、氨乙基二甲基甲氧基硅烷、氨丙基甲基二乙氧基硅烷、氨丙基甲基二甲氧基硅烷、氨丙基二甲基甲氧基硅烷、氨丙基三甲氧基硅烷中的一种或多种。
  9. 如权利要求1所述的化学机械抛光液,其中,所述氨基硅烷类化合物的浓度为100~3000ppm。
  10. 如权利要求1所述的化学机械抛光液,其中,所述氨基硅烷类化合物的浓度为300~2000ppm。
  11. 如权利要求1所述的化学机械抛光液,其中,所述抛光液还包括氮唑类化合物、络合剂和氧化剂。
  12. 如权利要求11所述的化学机械抛光液,其中,所述氮唑类化合物选自苯并三氮唑、甲基苯并三氮唑、5-羧基-3-氨基-1,2,4-三氮唑,组氨酸,5-羧基苯并三氮唑、5-苯基四氮唑、苯并咪唑、1,2,4-三氮唑、3-氨基-1,2,4三氮唑、4-氨基-1,2,4三氮唑中的一种或多种。
  13. 如权利要求11所述的化学机械抛光液,其中,所述氮唑类化合物的含量为0.001~1wt%。
  14. 如权利要求11所述的化学机械抛光液,其中,所述氮唑类化合物的含量为0.01~0.3wt%。
  15. 如权利要求11所述的化学机械抛光液,其中,所述络合剂为有机酸或氨基酸类化合物。
  16. 如权利要求15所述的化学机械抛光液,其中,所述络合剂选自乙酸、丙二酸、丁二酸、柠檬酸、甘氨酸、脯氨酸、酪氨酸、谷氨酸、赖氨酸、精氨酸、 酪氨酸中的一种或多种。
  17. 如权利要求11所述的化学机械抛光液,其中,所述络合剂的含量为0.001~2wt%。
  18. 如权利要求11所述的化学机械抛光液,其中,所述络合剂的含量为0.01~1wt%。
  19. 如权利要求11所述的化学机械抛光液,其中,所述氧化剂选自过氧化氢、过氧乙酸,过硫酸钾和/或过硫酸铵中的一种或多种。
  20. 如权利要求11所述的化学机械抛光液,其中,所述氧化剂的含量为0.01~5wt%.
  21. 如权利要求11所述的化学机械抛光液,其中,所述氧化剂的含量为0.1~2wt%。
  22. 如权利要求1所述的化学机械抛光液,其中,所述抛光液的pH值为3.0~7.0。
  23. 如权利要求1所述的化学机械抛光液,其中,所述抛光液的pH值为4.0~6.0。
PCT/CN2015/097542 2014-12-29 2015-12-16 一种化学机械抛光液及其应用 WO2016107406A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410856725.0A CN105802510A (zh) 2014-12-29 2014-12-29 一种化学机械抛光液及其应用
CN201410856725.0 2014-12-29

Publications (1)

Publication Number Publication Date
WO2016107406A1 true WO2016107406A1 (zh) 2016-07-07

Family

ID=56284210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097542 WO2016107406A1 (zh) 2014-12-29 2015-12-16 一种化学机械抛光液及其应用

Country Status (3)

Country Link
CN (1) CN105802510A (zh)
TW (1) TW201623555A (zh)
WO (1) WO2016107406A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4293087A1 (en) * 2022-06-15 2023-12-20 SK enpulse Co., Ltd. Composition for semiconductor processing and method of fabricating semiconductor device using the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108117839B (zh) * 2016-11-29 2021-09-17 安集微电子科技(上海)股份有限公司 一种具有高氮化硅选择性的化学机械抛光液
CN108250975A (zh) * 2016-12-28 2018-07-06 安集微电子科技(上海)股份有限公司 一种化学机械抛光液及其应用
CN108624234A (zh) * 2017-03-21 2018-10-09 安集微电子科技(上海)股份有限公司 一种化学机械抛光液
CN107629758A (zh) * 2017-08-22 2018-01-26 长江存储科技有限责任公司 一种制造半导体器件用研磨剂及其制备方法
CN109855931A (zh) * 2018-12-20 2019-06-07 河钢股份有限公司 一种奥氏体合金ebsd样品的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040118051A1 (en) * 2002-11-05 2004-06-24 Jsr Corporation Polishing pad
CN101802116A (zh) * 2007-09-21 2010-08-11 卡伯特微电子公司 利用经氨基硅烷处理的研磨剂颗粒的抛光组合物和方法
CN101802125A (zh) * 2007-09-21 2010-08-11 卡伯特微电子公司 使用经氨基硅烷处理的研磨剂颗粒的抛光组合物和方法
CN102585704A (zh) * 2010-12-17 2012-07-18 韩国首尔步瑞株式会社 化学机械抛光浆料组合物及使用其制造半导体器件的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040118051A1 (en) * 2002-11-05 2004-06-24 Jsr Corporation Polishing pad
CN101802116A (zh) * 2007-09-21 2010-08-11 卡伯特微电子公司 利用经氨基硅烷处理的研磨剂颗粒的抛光组合物和方法
CN101802125A (zh) * 2007-09-21 2010-08-11 卡伯特微电子公司 使用经氨基硅烷处理的研磨剂颗粒的抛光组合物和方法
CN102585704A (zh) * 2010-12-17 2012-07-18 韩国首尔步瑞株式会社 化学机械抛光浆料组合物及使用其制造半导体器件的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4293087A1 (en) * 2022-06-15 2023-12-20 SK enpulse Co., Ltd. Composition for semiconductor processing and method of fabricating semiconductor device using the same

Also Published As

Publication number Publication date
TW201623555A (zh) 2016-07-01
CN105802510A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
JP6023125B2 (ja) 化学的機械的研磨スラリー組成物およびそれを使用した銅のための方法およびシリコン貫通ビア適用
TWI721074B (zh) 一種化學機械拋光液及其應用
WO2016107406A1 (zh) 一种化学机械抛光液及其应用
TWI443729B (zh) 研磨液及使用它之研磨方法
TWI462999B (zh) 用於介電薄膜之促進速率之化學機械拋光(cmp)組合物
TWI796520B (zh) 阻絕物漿移除速率改良
TWI814030B (zh) 研磨用組成物、研磨方法、及基板之製造方法
WO2007000852A1 (ja) 研磨剤および半導体集積回路装置の製造方法
TWI727052B (zh) 研磨液、化學機械研磨方法
CN109401631A (zh) 用于铜和硅通孔(tsv)应用的化学机械平面化(cmp)组合物及其方法
TW201333128A (zh) 化學機械拋光液
TW202039775A (zh) 用於銅及貫穿矽通孔應用的化學機械研磨
TWI413679B (zh) 研磨液
JP6279156B2 (ja) 研磨用組成物
TW200400553A (en) Process for the chemical-mechanical polishing of metal substrates
TW201623556A (zh) 一種氮唑類化合物在提高化學機械拋光液穩定性中的應用
WO2015096630A1 (zh) 一种用于钴阻挡层抛光的化学机械抛光液
CN104745145A (zh) 一种二氧化硅颗粒改性的制备方法及应用
TW202041628A (zh) 選擇性化學機械平坦化研磨
TW201723113A (zh) 一種用於阻擋層平坦化的化學機械拋光液
JP2012146938A (ja) 化学機械研磨用水系分散体およびそれを用いた化学機械研磨方法
CN103773244A (zh) 一种碱性化学机械抛光液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15875084

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 15875084

Country of ref document: EP

Kind code of ref document: A1