WO2019010800A1 - 一种悬挂空铁双轮转辙同向同步转辙道岔 - Google Patents

一种悬挂空铁双轮转辙同向同步转辙道岔 Download PDF

Info

Publication number
WO2019010800A1
WO2019010800A1 PCT/CN2017/101097 CN2017101097W WO2019010800A1 WO 2019010800 A1 WO2019010800 A1 WO 2019010800A1 CN 2017101097 W CN2017101097 W CN 2017101097W WO 2019010800 A1 WO2019010800 A1 WO 2019010800A1
Authority
WO
WIPO (PCT)
Prior art keywords
rim plate
synchronous
track
ballast
turnout
Prior art date
Application number
PCT/CN2017/101097
Other languages
English (en)
French (fr)
Inventor
岳渠德
武长虹
郑辉
武子琛
何晓燕
郑强
冯昭君
张美艳
沈子钿
陈燕杰
陈亚军
胡俊涛
Original Assignee
中建空列(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中建空列(北京)科技有限公司 filed Critical 中建空列(北京)科技有限公司
Publication of WO2019010800A1 publication Critical patent/WO2019010800A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B7/00Switches; Crossings
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B7/00Switches; Crossings
    • E01B7/10Frogs

Definitions

  • the invention belongs to the technical field of rail transit, and in particular relates to a double-rotating two-wheel-turning synchronous synchronous turn-turn turnout.
  • the overall rotating suspension of the empty railway has the cumbersome weight, long rotation time, high rotational resistance, high cost, etc., and the vehicle is prone to operational safety accidents when the rotation is not in place.
  • the core-track rotary suspension of the empty railway ⁇ is achieved by the rotation of the common rail of the straight and side rows, but because the tip of the core rail and the longer part are not supported, the cantilever is not too thick by the cantilever (space limitation), so that the strength is insufficient and it is easy to break.
  • the empty railway ridges in the prior art have problems such as difficulty in rotation, slow speed, small turning angle, and unsafeness.
  • the present invention provides a two-wheel synchronous yoke synchronous synchronous yoke, which solves the problems of difficulty in rotating the hollow railway ridge, slow speed, small turning angle, and unsafe.
  • the main technical solutions adopted by the present invention include:
  • the utility model relates to a suspended iron double-rotating ⁇ synchronous synchronous turn ⁇ , comprising a ballast track beam, a rim plate disposed in the ballast track beam, and a plurality of cornice track beams, wherein the ballast track beam comprises a first end and a second end The first end is a single port end, and the second end includes a plurality of ports;
  • the rim plate is a pair of parallel track plates, and the two ends of the rim plate are respectively a fixed end and a free end;
  • the fixed end is connected to the one-port end of the ballast track beam; the free end is docked with the port rail beam;
  • the free end of the rim plate is rotated to the cornice rail beam of the vehicle selection route and docked with the cornice rail beam.
  • the fixed end of the rim plate is provided with a connecting device
  • the free end of the rim plate is provided with a docking device.
  • the connecting device comprises a rotating hinge
  • the fixed end is connected to the ballast rail beam by the rotating hinge;
  • the rim panel is rotatable relative to the ballast rail beam by the rotating hinge.
  • the rim board is connected with a driving component
  • the drive assembly drives the rim plate to rotate.
  • the switch control system controls the drive assembly.
  • the switch control system receives the cornice track beam information selected by the vehicle, and then determines whether the position of the rim plate needs to be adjusted according to the position information of the rim plate;
  • the ballast control system does not adjust the position of the rim plate
  • the ballast control system adjusts the position of the rim plate and the wheel The position of the seesaw is adjusted to correspond to the car received by the switch control system The location of the selected railroad track beam.
  • the rim plate is divided into a long turn and a short turn according to the length;
  • the rim plate When the free end of the rim plate reaches only the branching point of the ballast track beam, the rim plate is a short turn;
  • the rim plate When the free end of the rim plate can reach the branching of the ballast track beam, the rim plate is a long turn.
  • the rim plate rotates at an angle of 3-90°;
  • the number of the turnout is 1-12.
  • the material for manufacturing the rim plate comprises an elastic material.
  • the transition type includes single opening, symmetry, asymmetry, double opening, curved straight line, curved curve, straight line straight line, straight line curve.
  • the length of the transition of the hanging iron double-turning ramp is short, only the rim board rotates, the rotating mass is small, and the weight is light, so the required turning power is small, the turning time is fast, and the current rotation is the fastest. Turns.
  • the range of turnout number and turn angle is large, and the type of transition is divided into single open, symmetrical, asymmetrical, double open, curved straight straight, curved curved, straight straight straight, straight curved and other types. More, adaptability, according to the main line, station line, crossing line, different driving speed, vehicle segment, etc., the designer has multiple choices and optimized design.
  • the structure is novel and the rotation is flexible.
  • 1 is a plan view showing a double-turn ramp in a two-wheeled turn-to-turn synchronous turn-to-turn ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
  • Table 3 is a drawing of Table 1 in a specific embodiment of a suspended iron double-rotation synchronous synchronous transfer tunnel according to the present invention
  • Figure 4 is a drawing of Table 1 of the embodiment of the suspension iron-iron double-rotation synchronous synchronous transfer tunnel of the present invention
  • Figure 5 is a drawing of Table 1 of the embodiment of the suspension iron-iron double-rotation synchronous synchronous transfer tunnel of the present invention
  • Figure 6 is a drawing of Table 1 in a specific embodiment of a suspended iron double-rotation synchronous synchronous transfer tunnel according to the present invention
  • Figure 7 is a drawing of Table 2 of the embodiment of the suspension iron-iron double-rotation synchronous synchronous transfer tunnel of the present invention.
  • Figure 8 is a drawing of Table 2 of the embodiment of the suspension iron-iron double-rotation synchronous synchronous transfer tunnel of the present invention.
  • Figure 9 is a drawing of Table 2 of the embodiment of the suspension iron-iron double-rotation synchronous synchronous transfer tunnel of the present invention.
  • Figure 10 is a drawing of Table 2 of the embodiment of the suspension iron-iron double-rotation synchronous synchronous transfer tunnel of the present invention.
  • Figure 11 is a drawing of Table 2 of the embodiment of the suspension iron-iron double-rotation synchronous synchronous transfer tunnel of the present invention.
  • Figure 12 is a cross-sectional view taken along line 1-1 of Figure 1 in a specific embodiment of a suspended iron double-rotation synchronous synchronous transfer tunnel according to the present invention
  • Figure 13 is a cross-sectional view taken along line 2-2 of Figure 1 in a specific embodiment of a suspended iron double-turning synchronous synchronous turn-turning turn according to the present invention
  • Figure 14 is a view showing a specific embodiment of a suspended iron double-rotation synchronous synchronous transfer tunnel according to the present invention; a cross-sectional view of 3-3;
  • Figure 15 is a cross-sectional view taken along line 4-4 of Figure 1 in a specific embodiment of the suspended iron double-rotation synchronous synchronous transfer tunnel of the present invention
  • Figure 16 is a cross-sectional view taken along line 2'-2' of Figure 1 in a specific embodiment of a suspended iron double-rotary co-rotating synchronous turn tunnel;
  • Figure 17 is a cross-sectional view taken along line 3'-3' of Figure 1 in a specific embodiment of the suspended iron double-rotation synchronous synchronous transfer tunnel of the present invention
  • Figure 18 is a cross-sectional view taken along line 4'-4' of Figure 1 of a specific embodiment of a suspended iron two-wheel turn-to-coupling synchronous turn tunnel.
  • the embodiment discloses a suspended iron double-rotating synchronous synchronous turn-turn turnout, including a ballast track beam, a rim plate disposed in the ballast track beam, and a plurality of ballast track beams, wherein the ballast track beam includes the first And the second end, the first end is a single port end, and the second end comprises a plurality of ports;
  • the track beam comprises a first end and a second end, and the first end and the second end are convenient for presentation.
  • the first end is a single port end, and the actual The upper end is the one end of the vehicle in the embodiment;
  • the plurality of the mouth rail beams described in the embodiment are the outlets of the separate lanes of the switch according to the embodiment (note that the embodiment)
  • the outlet described in the above is not the exit of the vehicle, but refers to the exit of the wheel of the vehicle from the exit of the ballast rail.
  • the vehicle in this embodiment only has its wheels running in the track beam.
  • the mouthpieces are at least two, and only in this way can the lane change of the vehicle be realized.
  • the mouthpieces described in this embodiment may also be three or more. Of course, each of the mouthpieces needs a corresponding mouthpiece. Beam, as described in this embodiment The vehicle can safely complete the transition.
  • the rim plate is a pair of parallel track plates, and the two ends of the rim plate are respectively a fixed end and a free end;
  • the rim plate described in this embodiment is a very important component, because the vehicle described in this embodiment realizes the transition by the rotation of the rim plate; of course, the fixed end described in this embodiment It is fixed at the single-end end of the ballast track beam described in this embodiment, and the other end is the free end of the random strain, and can be docked with any one of the jaws.
  • the fixed end is connected to the one-port end of the ballast track beam; the free end is docked with the port rail beam;
  • the free end of the rim plate is rotated to the cornice rail beam of the vehicle selection route and docked with the cornice rail beam.
  • the rim plate described in this embodiment actually functions as a temporary track.
  • the ballast track beam described in this embodiment refers only to the part of the track beam that realizes the turning process.
  • the ballast track beam described in this embodiment needs to be connected to the normal track beam in actual use to achieve the opening, and it should be noted that the wheel of the vehicle described in this embodiment actually walks on the track beam.
  • the traveling wheel of the vehicle described in this embodiment travels on the rim board only when walking to the turnout, and the vehicle in the embodiment is changed to the traveling route by the rotation of the rim.
  • the fixed end of the rim plate described in this embodiment is provided with a connecting device
  • the connecting device described in this embodiment includes a rotating hinge that connects the fixed end of the rim plate of the embodiment and the bottom of the single end of the ballast track beam described in this embodiment,
  • the rim plate described in this embodiment is a pair of parallel track plates, so that the fixed ends of the pair of parallel track plates are connected to the ballast track beam through a rotating hinge.
  • the free end of the rim plate is provided with a docking device, and the docking device is capable of accurately and safely rotating the rim plate according to the embodiment to the corresponding raft.
  • the mouth is docked to ensure that the vehicle described in the embodiment can be safely realized Transition.
  • the rim plate can be rotated relative to the ballast track beam by the rotating hinge.
  • the rim plate described in this embodiment is connected with a driving component
  • the driving component in this embodiment is not limited to a certain type of motive, and may be, for example, an electric motor or an electromagnetic brake.
  • the rim plate described in the present embodiment relies on the driving component to provide power for rotation, which saves manpower and material resources, and has the advantages of accurate rotation and fast rotation speed.
  • the suspended empty iron two-wheel-turning synchronous synchronous switch in the embodiment further includes a switch control system
  • the switch control system described in this embodiment controls the drive assembly.
  • the suspended iron double-wheel-turning synchronous synchronous transfer ramp is received before the vehicle passes, and the switch control system receives the information of the selected rail beam of the vehicle, and then according to the rim board The position information determines whether it is necessary to adjust the position of the rim board;
  • the ballast control system does not adjust the position of the rim plate
  • the ballast control system adjusts the position of the rim plate and the wheel The position of the seesaw is adjusted to correspond to the position of the cornice track beam selected by the vehicle control system.
  • the suspended iron double-rotation synchronous synchronous turnout ⁇ described in the embodiment further includes a ballast tail guide plate L, and the ballast tail guide plate can guide the embodiment. After entering the cornice, the vehicle smoothly enters the cornice rail beam described in this embodiment.
  • the double-turn ⁇ ⁇ is the two rim plates to realize the synchronous rotation (rotation) in the same direction.
  • the single-turn ⁇ is taken as an example for illustration.
  • the plane is shown in Figure 1.
  • the section is taken according to the position of Fig. 1, and the structure is as shown in Figs. 12, 13, 14, and 15 in the traveling sequence when traveling straight.
  • the cross section is taken according to the position of Fig. 1, and the structure is shown in Figs. 12, 16, 17, and 18 in the traveling sequence when traveling sideways.
  • the rotation of the double-turning stern of the empty iron is faster and the rotation time is shorter.
  • the turning rim slab is separated from the track beam.
  • the rim is rotated, only the rim plate rotates, the track beam does not move, and the turning quality is small.
  • the vehicle wheel inside the ballast track beam described in this embodiment further includes a guiding system
  • the rim plate in the embodiment is divided into a long turn and a short turn according to the length;
  • the rim plate When the free end of the rim plate reaches only the branching point of the ballast track beam, the rim plate is a short turn;
  • the rim plate When the free end of the rim plate can reach the branching of the ballast track beam, the rim plate is a long turn.
  • the angle of rotation of the rim plate is 3-90°
  • the number of the turnout is 1-12.
  • the material of the rim plate in the embodiment includes an elastic material.
  • the conversion type described in the embodiment includes single opening, symmetry, asymmetry, double opening, curved straight line, curved curve, straight line straight line, and straight line curve.
  • the length of the transition of the suspended iron double-turning turnout described in this embodiment is short, except that the rim plate rotates, the rotation quality is small, and the weight is light, so the required rotational power is small, and the rotation time is shorter.
  • Fast is the fastest turning ball; in addition, in the embodiment, the rim plate is not in the track beam, and the rim plate is in the track beam, as described in this embodiment.
  • the rim plate equipment is protected by the ballast rail beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

一种悬挂空铁双轮转辙同向同步转辙道岔,包括道岔轨道梁、设置在道岔轨道梁内的轮辙板、多个岔口轨道梁,道岔轨道梁包括第一端和第二端,第一端为单口端,第二端包括多个岔口;轮辙板为一对平行的轨道板,且轮辙板的两端分别为固定端和自由端;固定端与道岔轨道梁的单口端连接;自由端与岔口轨道梁对接;在车辆通过前,轮辙板的自由端转动到车辆选择路线的岔口轨道梁并与岔口轨道梁对接。该悬挂空铁双轮转辙同向同步转辙道岔具有道岔转动方便、速度块、转辙角度大、安全性高的优点。

Description

一种悬挂空铁双轮转辙同向同步转辙道岔 技术领域
本发明属于轨道交通技术领域,尤其涉及一种悬挂空铁双轮转辙同向同步转辙道岔。
背景技术
1、目前悬挂空铁道岔有整体转动式、整体横移式、心轨转动式等,都存在缺陷和不足。
2、整体转动式悬挂空铁道岔存在笨重、转动时间长、转动阻力大、造价高等,并存在转动不到位时车辆易发生运营安全事故等。
3、整体横移式悬挂空铁道岔更笨重,转动时间更长,动力更大,造价更高,也存在移动不到位发生车辆运营安全事故的可能。
4、心轨转动式悬挂空铁道岔是靠直行和侧行的共同部位的心轨转动来实现,但由于心轨尖端和较长的部位没有支承,靠悬臂作用,心轨板又不能太厚(空间限制),以至强度不足,容易破坏。
现有技术中的空铁道岔存在转动困难、速度慢、转辙角度小、不安全等问题。
发明内容
(一)要解决的技术问题
针对现有存在的技术问题,本发明提供一种悬挂空铁双轮转辙同向同步转辙道岔,解决了现有技术中空铁道岔转动困难、速度慢、转辙角度小、不安全等问题。
(二)技术方案
为了达到上述目的,本发明采用的主要技术方案包括:
一种悬挂空铁双轮转辙同向同步转辙道岔,包括道岔轨道梁、设置在道岔轨道梁内的轮辙板、多个岔口轨道梁,所述道岔轨道梁包括第一端和第二端,所述第一端为单口端,所述第二端包括多个岔口;
所述轮辙板为一对平行的轨道板,且所述轮辙板的两端分别为固定端和自由端;
所述固定端与所述道岔轨道梁的单口端连接;所述自由端与所述岔口轨道梁对接;
在车辆通过前,所述轮辙板的自由端转动到所述车辆选择路线的岔口轨道梁并与所述岔口轨道梁对接。
优选地,所述轮辙板的固定端设有连接装置;
所述轮辙板的自由端设有对接装置。
优选地,所述连接装置包括转动铰;
所述固定端通过所述转动铰与所述道岔轨道梁连接;
所述轮辙板通过所述转动铰能够实现相对于道岔轨道梁转动。
优选地,所述轮辙板连接有驱动组件;
所述驱动组件驱使所述轮辙板转动。
优选地,还包括道岔控制系统;
所述道岔控制系统控制所述驱动组件。
优选地,在车辆通过前,所述道岔控制系统接收车辆选择的岔口轨道梁信息,然后根据所述轮辙板的位置信息进行判断是否需要调整所述轮辙板的位置;
当所述轮辙板的位置信息对应所述道岔控制系统接收到的车辆选择的岔口轨道梁信息时,所述道岔控制系统不对所述轮辙板的位置进行调整;
当所述轮辙板的位置信息不对应所述道岔控制系统接收到的车辆选择的岔口轨道梁信息时,所述道岔控制系统将对所述轮辙板的位置进行调整,并将所述轮辙板的位置调整至对应所述道岔控制系统接收到的车 辆选择的岔口轨道梁位置。
优选地,所述轮辙板根据长度分为长转辙和短转辙;
所述轮辙板的自由端仅达到所述道岔轨道梁的分岔处时,所述轮辙板为短转辙;
所述轮辙板的自由端能够达到所述道岔轨道梁的分岔外时,所述轮辙板为长转辙。
优选地,所述轮辙板转动的角度为3-90°;
道岔号数为1-12号。
优选地,制造轮辙板的材质包括有弹性材质。
优选地,转辙型式包括单开、对称、不对称、双开、曲线出直岔、曲线出曲岔、直线出直岔、直线出曲岔。
(三)有益效果
本发明的有益效果是:本发明提供的悬挂空铁双轮转辙同向同步转辙道岔具有以下有益效果:
1、悬挂空铁双转辙道岔的转辙长度较短,只是轮辙板转动,转动质量较小,重量较轻,因此需要的转动动力较小,转动时间较快,是目前转动最快的道岔。
2、转辙是在轨道梁内,不会出现较大事故。
3、转辙在轨道梁内,转辙机械设备受到保护。
4、道岔号数和转辙角度范围较大,转辙型式分为单开、对称、不对称、双开、曲线出直岔、曲线出曲岔、直线出直岔、直线出曲岔等类型较多,适应性强,可根据正线、站线、渡线、不同行车速度、车辆段等情况,设计者多项选择、优化设计。
5、结构新颖,转动灵活。
附图说明
图1为本发明悬挂空铁双轮转辙同向同步转辙道岔中双转辙道岔是2个轮辙板实现同向同步转辙,单开道岔的平面示意图;
图2为本发明悬挂空铁双轮转辙同向同步转辙道岔具体实施例中表1附图;
图3为本发明悬挂空铁双轮转辙同向同步转辙道岔具体实施例中表1附图;
图4为本发明悬挂空铁双轮转辙同向同步转辙道岔具体实施例中表1附图;
图5为本发明悬挂空铁双轮转辙同向同步转辙道岔具体实施例中表1附图;
图6为本发明悬挂空铁双轮转辙同向同步转辙道岔具体实施例中表1附图;
图7为本发明悬挂空铁双轮转辙同向同步转辙道岔具体实施例中表2附图;
图8为本发明悬挂空铁双轮转辙同向同步转辙道岔具体实施例中表2附图;
图9为本发明悬挂空铁双轮转辙同向同步转辙道岔具体实施例中表2附图;
图10为本发明悬挂空铁双轮转辙同向同步转辙道岔具体实施例中表2附图;
图11为本发明悬挂空铁双轮转辙同向同步转辙道岔具体实施例中表2附图;
图12为本发明悬挂空铁双轮转辙同向同步转辙道岔具体实施例中图1的1-1处的截面图;
图13为本发明悬挂空铁双轮转辙同向同步转辙道岔具体实施例中图1的2-2处的截面图;
图14为本发明悬挂空铁双轮转辙同向同步转辙道岔具体实施例中图 1的3-3处的截面图;
图15为本发明悬挂空铁双轮转辙同向同步转辙道岔具体实施例中图1的4-4处的截面图;
图16为本发明悬挂空铁双轮转辙同向同步转辙道岔具体实施例中图1的2’-2’处的截面图;
图17为本发明悬挂空铁双轮转辙同向同步转辙道岔具体实施例中图1的3’-3’处的截面图;
图18为本发明悬挂空铁双轮转辙同向同步转辙道岔具体实施例中图1的4’-4’处的截面图。
具体实施方式
为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明作详细描述。
实施例1
本实施例公开了一种悬挂空铁双轮转辙同向同步转辙道岔,包括道岔轨道梁、设置在道岔轨道梁内的轮辙板、多个岔口轨道梁,所述道岔轨道梁包括第一端和第二端,所述第一端为单口端,所述第二端包括多个岔口;
详细地,本实施例中所述道轨道梁包括第一端和第二端,所述第一端和第二端是为了表述方便,当然,需要说明的是,第一端为单口端,实际上就是本实施例中车辆进入的一端;此外,本实施例中所述的多个岔口轨道梁即为本实施例中所述的转辙道岔分开路线的出口(需要说明的是,本实施例中所述的出口并不是车辆的出口,而是指车辆的车轮走出道岔轨道梁的出口,此外,本实施例中所述车辆只有其车轮在轨道梁内行走),当然,本实施例中所述的岔口至少为两个,只有这样才能实现车辆的换道,同理,本实施例中所述的岔口也可以为3个或3个以上,当然所述每一个岔口都需要对应一个岔口轨道梁,使得本实施例中所述 的车辆能够安全完成转轨。
所述轮辙板为一对平行的轨道板,且所述轮辙板的两端分别为固定端和自由端;
具体地,本实施例中所述的轮辙板是一个很重要的部件,因为本实施例中所述的车辆是通过轮辙板的转动来实现转轨;当然本实施例中所述的固定端是固定在本实施例中所述的道岔轨道梁的单口端,另一端也就是自由端随机应变,可以与任何一个岔口对接。
所述固定端与所述道岔轨道梁的单口端连接;所述自由端与所述岔口轨道梁对接;
在车辆通过前,所述轮辙板的自由端转动到所述车辆选择路线的岔口轨道梁并与所述岔口轨道梁对接。
需要说明的是,本实施例中所述的轮辙板实际上也起到了临时轨道的作用,此外,本实施例中所述的道岔轨道梁仅是指实现转辙过程的这部分轨道梁,当然本实施例中所述的道岔轨道梁在实际使用中需要与正常的轨道梁连接,以实现通车,需要指出的是本实施例中所述的车辆的车轮实际上是在轨道梁上行走,只是在行走到转辙道岔时本实施例中所述的车辆的行走轮在所述轮辙板上行走,通过所述轮辙板的转动进而使得本实施例中所的车辆改行走路线。
此外,本实施例中所述的轮辙板的固定端设有连接装置;
具体地,本实施例中所述的连接装置包括有转动铰,所述转动铰连接本实施例所述的轮辙板的固定端和本实施例中所述的道岔轨道梁的单口端的底部,当然,本实施例中所述的轮辙板为一对平行的轨道板,因此所述的一对平行的轨道板的固定端均需通过转动铰与所述道岔轨道梁连接。
当然,本实施例中所述轮辙板的自由端设有对接装置,所述对接装置是为了实现本实施例中所述的轮辙板在转动到所对应的岔口时能够精准、安全的与所述岔口对接,保障实施例中所述的车辆能够安全地实现 转轨。
此外,还需要说明的是,本实施例中所述轮辙板通过所述转动铰能够实现相对于道岔轨道梁转动。
接下来需要详细说明的是本实施例中所述的轮辙板是如何实现转动;
具体地,本实施例中所述的轮辙板连接有驱动组件;
当然,本实施例中的驱动组件并不局限于某一种动机,比如:可以为电动动机或者电磁制动等。
此外,需要说明的是,本实施中所述的轮辙板依靠驱动组件提供动力进行转动,节省了人力、物力,而且具有转动准确、转动速度快等优点。
另外,本实施例中所述的悬挂空铁双轮转辙同向同步转辙道岔还包括道岔控制系统;
详细地,本实施例中所述的道岔控制系统控制所述驱动组件。
具体地,本实实施例中所述的悬挂空铁双轮转辙同向同步转辙道岔在车辆通过前,所述道岔控制系统接收车辆选择的岔口轨道梁信息,然后根据所述轮辙板的位置信息进行判断是否需要调整所述轮辙板的位置;
当所述轮辙板的位置信息对应所述道岔控制系统接收到的车辆选择的岔口轨道梁信息时,所述道岔控制系统不对所述轮辙板的位置进行调整;
当所述轮辙板的位置信息不对应所述道岔控制系统接收到的车辆选择的岔口轨道梁信息时,所述道岔控制系统将对所述轮辙板的位置进行调整,并将所述轮辙板的位置调整至对应所述道岔控制系统接收到的车辆选择的岔口轨道梁位置。
此外,本实施例中所述的悬挂空铁双轮转辙同向同步转辙道岔还包括有道岔尾部导向板L,所述道岔尾部导向板,能够起到引导本实施例中 所述车辆在进入岔口处后顺利的驶入本实施例中所述的岔口轨道梁。
双转辙道岔是2个轮辙板实现同向同步转辙(转动),以单开道岔为例进行说明,其平面如图1所示,其他类型道岔大同小异。
按照图1的位置截取截面,直向行驶时按行驶顺序其结构如图12、13、14、15所示。
按照图1的位置截取截面,侧向行驶时按行驶顺序其结构如图12、16、17、18所示。
悬挂空铁双转辙道岔的转动较快,转动时间较短。
转辙轮辙板与轨道梁分离,转动时只是轮辙板转动,轨道梁不动,转辙质量较小。
此外,本实施例中所述的道岔轨道梁内部的车辆车轮还包括有导向系统;
转辙时,导向系统与轮辙板同步转辙,以实现导向引导。过岔过程中轮轴与道岔轨道梁的位置关系直行或左行时如图12、13、14、15所示,导向系统如图13、14所示,图12和图13之间导向设有柔性(弹性)过渡区段,图4和图5之间导向设有柔性(弹性)过渡区段;侧行或右行如图12、16、17、18所示,图12和图16之间导向设有柔性(弹性)过渡区段,图17和图18之间导向设有柔性(弹性)过渡区段。
此外,如表1和表2所示:本实施例中所述轮辙板根据长度分为长转辙和短转辙;
所述轮辙板的自由端仅达到所述道岔轨道梁的分岔处时,所述轮辙板为短转辙;
所述轮辙板的自由端能够达到所述道岔轨道梁的分岔外时,所述轮辙板为长转辙。
需要说明的是,本实施例中所述轮辙板转动的角度为3-90°;
道岔号数为1-12号。
此外,本实施例中所述轮辙板的材质包括有弹性材质。
当然,本实施例中所述转辙型式包括单开、对称、不对称、双开、曲线出直岔、曲线出曲岔、直线出直岔、直线出曲岔。
悬挂空铁双转辙道岔主要参数(长转辙式)表1
Figure PCTCN2017101097-appb-000001
悬挂空铁双转辙道岔主要参数(短转辙式)表2
Figure PCTCN2017101097-appb-000002
综上,本实施例中所述的悬挂空铁双转辙道岔的转辙长度较短,只是轮辙板转动,转动质量较小,重量较轻,因此需要的转动动力较小,转动时间较快,是目前转动最快的道岔;此外,本实施例中所述轮辙板在轨道梁内,不会出现较大事故,同理,轮辙板在轨道梁内,本实施例中所述的轮辙板设备受到道岔轨道梁的保护。
以上结合具体实施例描述了本发明的技术原理,这些描述只是为了解释本发明的原理,不能以任何方式解释为对本发明保护范围的限制。基于此处解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其它具体实施方式,这些方式都将落入本发明的保护范围之内。

Claims (10)

  1. 一种悬挂空铁双轮转辙同向同步转辙道岔,其特征在于,包括道岔轨道梁、设置在道岔轨道梁内的轮辙板、多个岔口轨道梁,所述道岔轨道梁包括第一端和第二端,所述第一端为单口端,所述第二端包括多个岔口;
    所述轮辙板为一对平行的轨道板,且所述轮辙板的两端分别为固定端和自由端;
    所述固定端与所述道岔轨道梁的单口端连接;所述自由端与所述岔口轨道梁对接;
    在车辆通过前,所述轮辙板的自由端转动到所述车辆选择路线的岔口轨道梁并与所述岔口轨道梁对接。
  2. 如权利要求1所述的悬挂空铁双轮转辙同向同步转辙道岔,其特征在于,所述轮辙板的固定端设有连接装置;
    所述轮辙板的自由端设有对接装置。
  3. 如权利要求2所述的悬挂空铁双轮转辙同向同步转辙道岔,其特征在于,所述连接装置包括转动铰;
    所述固定端通过所述转动铰与所述道岔轨道梁连接;
    所述轮辙板通过所述转动铰能够实现相对于道岔轨道梁转动。
  4. 如权利要求3所述的悬挂空铁双轮转辙同向同步转辙道岔,其特征在于,所述轮辙板连接有驱动组件;
    所述驱动组件驱使所述轮辙板转动。
  5. 如权利要求4所述的悬挂空铁双轮转辙同向同步转辙道岔,其特征在于,还包括道岔控制系统;
    所述道岔控制系统控制所述驱动组件。
  6. 如权利要求5所述的悬挂空铁双轮转辙同向同步转辙道岔,其特征在于,在车辆通过前,所述道岔控制系统接收车辆选择的岔口轨道梁信息,然后根据所述轮辙板的位置信息进行判断是否需要调整所述轮辙板的位置;
    当所述轮辙板的位置信息对应所述道岔控制系统接收到的车辆选择的岔口轨道梁信息时,所述道岔控制系统不对所述轮辙板的位置进行调整;
    当所述轮辙板的位置信息不对应所述道岔控制系统接收到的车辆选择的岔口轨道梁信息时,所述道岔控制系统将对所述轮辙板的位置进行调整,并将所述轮辙板的位置调整至对应所述道岔控制系统接收到的车辆选择的岔口轨道梁位置。
  7. 如权利要求1-6任一项所述的悬挂空铁双轮转辙同向同步转辙道岔,其特征在于,所述轮辙板根据长度分为长转辙和短转辙;
    所述轮辙板的自由端仅达到所述道岔轨道梁的分岔处时,所述轮辙板为短转辙;
    所述轮辙板的自由端能够达到所述道岔轨道梁的分岔外时,所述轮辙板为长转辙。
  8. 如权利要求4所述的悬挂空铁双轮转辙同向同步转辙道岔,其特征在于,所述轮辙板转动的角度为3-90°;
    道岔号数为1-12号。
  9. 如权利要求1-6任一项所述的悬挂空铁双轮转辙同向同步转辙道岔,其特征在于,轮辙板的材质包括有弹性材质。
  10. 如权利要求1-6任一项所述的悬挂空铁双轮转辙同向同步转辙道岔,其特征在于,转辙型式包括单开、对称、不对称、双开、曲线出直岔、曲线出曲岔、直线出直岔、直线出曲岔。
PCT/CN2017/101097 2017-07-10 2017-09-08 一种悬挂空铁双轮转辙同向同步转辙道岔 WO2019010800A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710558210.6A CN107268344B (zh) 2017-07-10 2017-07-10 一种悬挂空铁双轮转辙同向同步转辙道岔
CN201710558210.6 2017-07-10

Publications (1)

Publication Number Publication Date
WO2019010800A1 true WO2019010800A1 (zh) 2019-01-17

Family

ID=60071754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101097 WO2019010800A1 (zh) 2017-07-10 2017-09-08 一种悬挂空铁双轮转辙同向同步转辙道岔

Country Status (2)

Country Link
CN (1) CN107268344B (zh)
WO (1) WO2019010800A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107630392A (zh) * 2017-10-31 2018-01-26 中唐空铁集团有限公司 基于磁性件的空铁道岔系统
CN108773380A (zh) * 2018-05-30 2018-11-09 王海涛 悬挂式轨道交通的轨道转换系统
CN109455200B (zh) * 2018-12-28 2023-11-03 广州汇宏科技有限公司 一种轨道车自动转向分岔系统及其控制方法
CN109680569A (zh) * 2019-01-02 2019-04-26 中国铁建重工集团有限公司 悬挂式单轨道岔及其使用方法
CN110983874B (zh) * 2019-11-25 2021-09-07 西京学院 一种轮轨结构悬挂式prt弹性岔轨道岔结构及转辙方法
CN113215873B (zh) * 2021-05-26 2022-01-11 燕山大学 悬挂式货运道岔钢轨随动锁轨器及其工作过程
CN113403889A (zh) * 2021-08-04 2021-09-17 杨清福 滑移式轨道分合道岔
CN117565924B (zh) * 2024-01-15 2024-03-15 成都云的交通技术有限公司 一种道岔换向装置及换向方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106049200A (zh) * 2016-07-20 2016-10-26 中车长江车辆有限公司 一种悬挂式单轨车辆道岔系统
CN205662792U (zh) * 2016-05-31 2016-10-26 西南石油大学 一种梁内悬挂式空列轨道道岔
CN106740994A (zh) * 2017-01-13 2017-05-31 王国伟 跨座式单轨轨道的变轨装置、方法及轨道

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034908U (zh) * 1973-07-21 1975-04-14
KR0130945B1 (ko) * 1994-06-21 1998-04-14 김인기 승객신속운송시스템의 주행제어장치
CN201512288U (zh) * 2009-09-09 2010-06-23 江苏天奇物流系统工程股份有限公司 空中y型道岔
CN205098878U (zh) * 2015-10-22 2016-03-23 昆山欧赛斯悬挂输送系统有限公司 一种悬挂输送装置用道岔
CN206256326U (zh) * 2016-11-15 2017-06-16 上海沃典工业自动化有限公司 一种空中线电动道岔
CN206666934U (zh) * 2017-07-10 2017-11-24 中建空列(北京)科技有限公司 一种悬挂空铁双轮辙转辙道岔

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205662792U (zh) * 2016-05-31 2016-10-26 西南石油大学 一种梁内悬挂式空列轨道道岔
CN106049200A (zh) * 2016-07-20 2016-10-26 中车长江车辆有限公司 一种悬挂式单轨车辆道岔系统
CN106740994A (zh) * 2017-01-13 2017-05-31 王国伟 跨座式单轨轨道的变轨装置、方法及轨道

Also Published As

Publication number Publication date
CN107268344A (zh) 2017-10-20
CN107268344B (zh) 2018-05-25

Similar Documents

Publication Publication Date Title
WO2019010800A1 (zh) 一种悬挂空铁双轮转辙同向同步转辙道岔
CN104908753B (zh) 大运能直达轨交系统
WO2014173028A1 (zh) 平交路口纵横互动人车公交便利反瓶颈模式交通
CN110983874B (zh) 一种轮轨结构悬挂式prt弹性岔轨道岔结构及转辙方法
CN105523047B (zh) 低空悬挂式单轨轨道车
US20130327244A1 (en) Autonomous moving highway
CN104408949B (zh) 基于右转车辆和公交车共用车道的公交优先信号控制方法
CN101792993A (zh) 十字路口的完全互通式三层立交系统
CN107476145B (zh) 一种悬挂空铁单侧车轮悬空道岔系统
CN201634980U (zh) 十字路口的完全互通式三层立交系统
CN103738342B (zh) 独立驱动型索道交通系统
CN202187259U (zh) 无红绿灯路口
CN102910173B (zh) 一种悬挂式单轨快速公交系统的道岔转向机构
JP6746240B2 (ja) 車輪機構および車輪機構が走行可能な鉄道システム
CN206287766U (zh) 高铁的车厢、轨道结构
CN206666934U (zh) 一种悬挂空铁双轮辙转辙道岔
CN205152737U (zh) 分体式立交桥
CN104875747B (zh) 轨道交通线
CN114144346A (zh) 一种多轨道变轨系统及其变轨方法、可变轨车辆
WO2012094792A1 (zh) 一种铁路系统
CN203681537U (zh) 独立驱动型索道交通系统
CN108385458A (zh) 一种无障碍十字路口
CN103481894A (zh) 恒速环绕传输系统的列车
CN211139304U (zh) 一种空中轨道车、空中轨道和空中轨道交通系统
CN209320955U (zh) 一种侧挂式轨道交通运行系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917630

Country of ref document: EP

Kind code of ref document: A1