WO2019009211A1 - 反射型フォトマスクブランク及び反射型フォトマスク - Google Patents

反射型フォトマスクブランク及び反射型フォトマスク Download PDF

Info

Publication number
WO2019009211A1
WO2019009211A1 PCT/JP2018/024889 JP2018024889W WO2019009211A1 WO 2019009211 A1 WO2019009211 A1 WO 2019009211A1 JP 2018024889 W JP2018024889 W JP 2018024889W WO 2019009211 A1 WO2019009211 A1 WO 2019009211A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
tin oxide
reflective
light
Prior art date
Application number
PCT/JP2018/024889
Other languages
English (en)
French (fr)
Inventor
福上 典仁
古溝 透
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to SG11201913845YA priority Critical patent/SG11201913845YA/en
Priority to CN201880042350.0A priority patent/CN110785703B/zh
Priority to US16/626,290 priority patent/US11294270B2/en
Priority to EP18828644.7A priority patent/EP3650936A4/en
Priority to JP2019527677A priority patent/JP6888675B2/ja
Priority to KR1020197037791A priority patent/KR102666821B1/ko
Publication of WO2019009211A1 publication Critical patent/WO2019009211A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/48Protective coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/52Reflectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a reflective photomask used in lithography that uses extreme ultraviolet light as a light source and a reflective photomask blank for producing the same.
  • the exposure light source is being replaced from the conventional ArF excimer laser (wavelength 193 nm) to EUV (Extreme Ultra Violet: wavelength 13.5 nm).
  • EUV EUV is absorbed at a high rate by most materials. Therefore, in EUV lithography, a dioptric system that uses light transmission can not be used, and a transmissive photomask can not be used. Therefore, a reflective photomask is used as a photomask for EUV exposure (EUV mask).
  • a light reflection layer is formed on a glass substrate, which is a multilayer film in which a molybdenum (Mo) layer and a silicon (Si) layer are alternately stacked, and light having tantalum (Ta) as a main component is formed thereon.
  • Mo molybdenum
  • Ti silicon
  • Ta tantalum
  • lenses and transmission beam splitters can not be used as components constituting an optical system of an exposure machine, and reflection type components such as mirrors are used. Therefore, it is impossible to design the incident light to the EUV mask and the reflected light from the EUV mask on the same axis. Therefore, normally, in EUV lithography, the optical axis is inclined by 6 degrees with respect to the direction perpendicular to the EUV mask surface to enter EUV light, and the reflected light of the optical axis inclined by 6 degrees to the opposite side to the incident light is I am heading.
  • a film having tantalum (Ta) as a main component and a film thickness of 60 to 90 nm is used as a light absorption layer.
  • Ta tantalum
  • problems such as an increase in line edge roughness of a transfer pattern on a semiconductor substrate and an inability to form a line width to a targeted dimension may occur, which may deteriorate transfer performance.
  • An object of the present invention is to suppress or reduce the projection effect of a reflective photomask for pattern transfer using extreme ultraviolet light as a light source, improve the transfer performance to a semiconductor substrate, and improve the cleaning resistance of the light absorption layer. It is.
  • a first aspect of the present invention is a reflective photomask blank for producing a reflective photomask for pattern transfer using light of a wavelength of the extreme ultraviolet region as a light source, which is a substrate And a reflective layer formed on the substrate, and a light absorbing layer formed on the reflective layer.
  • the light absorption layer includes a tin oxide film having an atomic ratio (O / Sn) of oxygen (O) to tin (Sn) of more than 1.50 and 2.0 or less and a film thickness of 25 nm or more and 45 nm or less.
  • the second aspect of the present invention is formed on a substrate, a reflective layer formed on the substrate, and a reflective layer, and the atomic ratio (O / Sn) of oxygen (O) to tin (Sn) is 1.
  • It is a reflective photomask having a light absorption pattern layer including a tin oxide film having a film thickness of 25 nm or more and 25 nm or less and not less than 50 and not more than 2.0 and having a pattern formed thereon.
  • the projection effect of a reflective photomask for pattern transfer using an extreme ultraviolet light source is suppressed or reduced, the transfer performance to a semiconductor substrate is improved, and the cleaning resistance of the light absorption layer is expected to be improved. it can.
  • FIG. 1 is a cross-sectional view showing a reflective photomask according to an embodiment of the present invention. It is a graph which shows the optical constant of each metallic material in the wavelength of EUV. It is a graph which shows the relationship between the ratio (O / Sn) of oxygen to tin contained in a tin oxide film, and melting
  • Light absorbing layer is obtained as a result of the calculation in the case of tin oxide (SnO x) film and tantalum (Ta) film, which is a graph showing the relationship between the thickness of the light absorbing layer and the EUV reflectivity.
  • Light absorbing layer is obtained as a result of the calculation in the case of tin oxide (SnO x) film and tantalum (Ta) film, which is a graph showing the relationship between the thickness and the OD value of the light-absorbing layer. It shows the relationship between the thickness of the light absorption layer and the HV bias value of the pattern transferred by the photomask, which is obtained as a result of calculation when the light absorption layer is a tin oxide (SnO x ) film and a tantalum (Ta) film. It is a graph.
  • Light absorbing layer is obtained when tin oxide (SnO x) film and tantalum (Ta) film, OD value is a graph showing the calculation results of the HV bias value at 1.0, 2.0.
  • the thickness of the light absorption layer and the NILS of the pattern transferred by the photomask (in X direction and Y direction Is a graph showing the relationship with each value of The thickness of the light absorbing layer and the NILS (X direction and Y direction of the pattern transferred by the photomask) obtained as a result of calculation when the light absorbing layer is a tin oxide (SnO x ) film and a tantalum (Ta) film Is a graph showing the relationship with the average value). It is sectional drawing which shows the reflection type photomask blank of an Example.
  • FIG. 13 is a cross-sectional view for explaining the next process of FIG. 12 for a method of manufacturing a reflective photomask using the reflective photomask blank of the embodiment. It is sectional drawing which shows the reflection type photomask obtained in the Example.
  • the reflective photomask blank 10 of this embodiment includes a substrate 1, a reflective layer 2 formed on the substrate 1, a capping layer 3 formed on the reflective layer 2, and capping. And a light absorbing layer 4 formed on the layer 3.
  • the light absorption layer 4 is made of a tin oxide film having an atomic ratio (O / Sn) of oxygen (O) to tin (Sn) of more than 1.50 and 2.0 or less and a film thickness of 25 nm or more and 45 nm or less.
  • a substrate made of low expansion synthetic quartz or the like is used as the substrate 1.
  • the reflective photomask 20 of this embodiment includes a substrate 1, a reflective layer 2 formed on the substrate 1, a capping layer 3 formed on the reflective layer 2, and a capping layer And a light absorbing pattern layer 41 formed on the surface 3.
  • the light absorption pattern layer 41 is made of a tin oxide film having an atomic ratio (O / Sn) of oxygen (O) to tin (Sn) of more than 1.50 and 2.0 or less and a film thickness of 25 nm or more and 45 nm or less .
  • the light absorption pattern layer 41 is obtained by patterning the light absorption layer 4 of the reflective photomask blank 10.
  • the light absorbing layer (hereinafter, also simply referred to as “absorbing layer”) of the reflective photomask blank absorbs the irradiated EUV when it is dry-etched and formed into a predetermined exposure transfer pattern.
  • absorbing layer which is a material generally used at present
  • EUV absorbability is sufficient. Otherwise, the reflectance in the absorption layer region will be high. For this reason, in order to simultaneously achieve the thinning of the absorption layer and the light absorption of EUV, a material having a higher light absorption for EUV than the existing absorption layer material is required.
  • FIG. 3 shows the optical constants at the wavelength of the EUV region of each metal material, and the horizontal axis shows the refractive index n and the vertical axis shows the extinction coefficient k.
  • Materials having a high extinction coefficient k include Ag, Ni, Sn, Te and the like. The extinction coefficient of these materials is in the range of 0.07 to 0.08, which is about twice that of the conventional absorption layer material Ta of extinction coefficient 0.041. That is, these materials have high light absorption.
  • these high absorption materials can not be patterned because of poor dry etching properties (low volatility of halides of these elements), or because they have a low melting point, so they can be used during photomask fabrication or EUV exposure. Most of the materials have poor practicality as a light absorbing layer material for photomasks because they can not withstand heat.
  • washing was performed by three methods: SPM (sulfuric-acid and hydrogen-peroxide mixture) washing, APM (ammonium hydrogen-peroxide mixture) washing, and strong washing.
  • the tin oxide film has an atomic ratio of oxygen to tin (O / Sn) of more than 1.50 and 2.0 or less, sufficient resistance to heat during photomask fabrication or EUV exposure, and photomask fabrication Sufficient resistance to ultrasonic cleaning in the cleaning fluid (acid and alkali) and megasonic zone.
  • the tin oxide film is chemically stable, but can be patterned by dry etching using a chlorine-based gas. The reason is that the volatility of SnCl 4 , which is a compound of Sn and Cl, is higher than that of a compound of Cl and a highly absorbent material other than Sn.
  • the light absorbing layer of the reflective photomask blank and the reflective photomask is a tin oxide film having an O / Sn ratio of 1.5 to 2.0, which is the same as the case where the light absorbing layer is Sn alone. It can maintain light absorbency.
  • the configuration of the mask blank is such that a capping layer (protective layer) of Ru having a thickness of 2.5 nm exists under the absorption layer, and 40 pairs of reflective layers of Si and Mo exist below it.
  • a capping layer protecting layer
  • CrN conductive layer made of CrN is present on the back of the substrate, using the optical constants (refractive index, extinction coefficient) of these layers, and the light absorbing layer The film thickness is changed.
  • the reflectance can be reduced to half or less for the same film thickness, for example, with a tin oxide (SnO x ) film relative to the Ta film, and the film thickness is reduced to less than half for the same reflectance it can.
  • the tin oxide film is effective as a light absorption film.
  • a thickness of at least 40 nm is required for a Ta film to obtain OD ⁇ ⁇ 1.0, whereas a thickness of about 17 nm is obtained for a tin oxide (SnO x ) film. It is good. Therefore, it is understood that the tin oxide film is effective as a light absorption film which can reduce the film thickness also from the viewpoint of the OD.
  • the tin film is effective as a light absorbing layer capable of reducing the film thickness.
  • the HV bias value is the line width difference of the transferred pattern depending on the direction of the mask pattern, that is, the difference between the line width in the H (horizontal) direction and the line width in the V (vertical) direction.
  • the line width in the H direction is the line width in the direction parallel to the plane formed by the incident light and the reflected light
  • the line width in the V direction is the line width in the direction perpendicular to the plane formed by the incident light and the reflected light Is shown.
  • the pattern used in this simulation is a mask pattern designed to have a size of 16 nm LS (Line and Space: 1: 1) on a semiconductor substrate. Therefore, in EUV lithography, since it is usually 1/4 reduction projection exposure, the pattern size on the EUV mask is 64 nm LS pattern. As shown in FIG. 7, it can be seen that the HV bias value of this transfer pattern becomes larger as the film thickness of the absorption layer becomes thicker for both the Ta film and the tin oxide film.
  • NILS Normalized Image Log Slope
  • the film thickness is 70 nm at which the OD is near 2
  • X NILS in Vertical Line Width Direction
  • Y NILS in Horizontal Line Width Direction
  • the graph in FIG. 10 shows the film thickness dependency of NILS (average value in the X direction and Y direction) calculated by calculation (the same simulation as described above) for the tin oxide film and the Ta film. From this figure, it can be seen that the NILS becomes smaller as the film thickness is smaller in either the tin oxide film or the Ta film. It can be inferred that the reason for this is that if the absorption film is thin, the reflectance of the absorption film region becomes high, the OD of the mask decreases, and the NILS decreases. Therefore, in order to obtain the NILS value necessary for pattern transfer, a certain degree of film thickness is required.
  • the value of NILS decreases as the film thickness is too thick.
  • the reflectance of the absorption film area decreases and the OD of the mask increases, but the OD is 2 or more (that is, the reflectance of the absorption film area is 1% or less of the reflectance of the reflection layer area Since the reflectance of the absorption film region is small in the first place, it is considered that there is no effect of increasing NILS even if the film thickness is further increased. If the absorption film is too thick, it is considered that NILS is lowered because the effect of oblique incidence of EUV on the edge portion of the mask pattern appears strongly.
  • NILS there is an optimum film thickness range to increase NILS showing pattern contrast.
  • a tin oxide film having a thickness of 45 nm or less as the light absorption layer of the reflective photomask blank and the reflective photomask, NILS (X direction and The average value in the Y direction can be increased.
  • the optimum film thickness is about 45 nm or more, but NILS does not exceed 1 at most film thickness of 45 nm or more.
  • the reflective photomask blank of the first aspect of the present invention and the reflective photomask of the second aspect have an atomic ratio (O / Sn) of oxygen (O) to tin (Sn) of greater than 1.50 and 2.0
  • a light absorption layer including a tin oxide film having a thickness of 25 nm or more and 45 nm or less is included below.
  • the range “more than 1.50 and 2.0 or less” of the atomic ratio (O / Sn) “1.51 or more and 2.0 or less” can be mentioned.
  • the light absorbing layer of the reflective photomask blank according to the first aspect of the present invention and the reflective photomask according to the second aspect includes a tin oxide film having a thickness of 25 nm to 45 nm, and thus a light absorbing layer made of a Ta film.
  • the influence of the projection effect can be reduced as compared with a reflective photomask blank and a reflective photomask having.
  • high NILS pattern contrast
  • improvement in the resolution of a transfer pattern and reduction in line edge roughness can be expected.
  • the thickness of the tin oxide film is 25 nm or more and 45 nm or less, it is compared with a reflective photomask blank and a reflective photomask having a light absorption layer including a tin oxide film whose thickness does not satisfy 25 nm or more and 45 nm or less. Then, the influence of the projection effect can be reduced. Furthermore, it has high cleaning resistance as compared to a reflective photomask blank and a reflective photomask in which the atomic ratio (O / Sn) of the tin oxide film contained in the light absorption layer is 1.50 or less. .
  • the material forming the tin oxide film contained in the light absorption layer is a total of tin (Sn) and oxygen (O). It is preferable to contain 80 atomic% or more. This is because if the tin oxide film contains components other than tin (Sn) and oxygen (O), the EUV absorptivity by the tin oxide film decreases, but if the component is less than 20 atomic%, EUV The decrease in absorption is very slight, and there is almost no decrease in the performance of the EUV mask as a light absorption layer.
  • metals such as Si, In, Te, Ta, Pt, Cr, and Ru, and light elements such as nitrogen and carbon may be mixed according to the purpose.
  • metals such as Si, In, Te, Ta, Pt, Cr, and Ru
  • light elements such as nitrogen and carbon
  • the testability can be increased.
  • nitrogen or carbon is mixed into the tin oxide film, it is possible to increase the etching speed in dry etching of the tin oxide film.
  • the reflective photomask blank of the first aspect of the present invention and the reflective photomask of the second aspect by having a light absorbing layer including a tin oxide film having a thickness of 25 nm or more and 45 nm or less The effect of the projection effect can be reduced, and higher NILS can be obtained as compared with the conventional product having a light absorption layer made of a Ta film. Therefore, the resolution improvement of the transfer pattern and the reduction of line edge roughness can be realized.
  • NILS in the X direction and Y direction approaches the HV bias value can be reduced, and a transfer pattern faithful to the mask pattern can be obtained.
  • a plurality of samples were produced in the following procedure as a reflective photomask blank 100 having a layer structure shown in FIG.
  • the reflective layer 12 having a multilayer structure consisting of 40 pairs of Si and Mo (total film thickness 280 nm) is formed, and on the reflective layer 12 the capping layer 13 made of Ru film is formed. It formed with a film thickness of 2.5 nm.
  • the light absorption layer 14 was formed on the capping layer 13.
  • a conductive layer 15 of CrN was formed to a thickness of 100 nm.
  • the light absorbing layer 14 was formed by changing the material (Ta or tin oxide) and the film thickness as shown in Table 2 for each sample.
  • the tin oxide film was formed to have an O / Sn ratio of 2.00 or 1.51.
  • the film formation of each layer was performed using a sputtering apparatus.
  • the tin oxide film was formed such that the O / Sn ratio was 2.00 or 1.51 by controlling the amount of oxygen introduced into the chamber during sputtering by reactive sputtering.
  • the film thickness of each layer was measured by a transmission electron microscope, and the O / Sn ratio of the tin oxide film was measured by XPS (X-ray photoelectron spectroscopy).
  • a reflective photomask was produced in the following procedure. First, a positive chemically amplified resist (SEBP 9012: manufactured by Shin-Etsu Chemical Co., Ltd.) was applied to a thickness of 170 nm on the light absorption layer 14 of the reflective photomask blank 100. Next, a predetermined pattern was drawn on the resist film with an electron beam drawing machine (JBX3030: manufactured by Nippon Denshi Co., Ltd.). Next, after prebaking at 110 ° C. for 10 minutes, development was performed using a spray developing machine (SFG 3000: manufactured by Sigma Meltech Co., Ltd.). Thus, a resist pattern 16 was formed on the light absorption layer 14 as shown in FIG.
  • SEBP 9012 manufactured by Shin-Etsu Chemical Co., Ltd.
  • patterning of the light absorption layer 14 was performed by dry etching using the resist pattern 16 as an etching mask.
  • an etching gas mainly composed of a fluorine-based gas is used, and in the sample in which the light absorption layer 14 is a tin oxide film, an etching gas mainly composed of a chlorine-based gas is used.
  • the light absorption layer 14 was made into the light absorption pattern layer 141.
  • the resist pattern 16 was peeled off. Thereby, as shown in FIG. 14, the capping of the reflective layer 12 having a multilayer structure consisting of 40 pairs of Si and Mo (total film thickness 280 nm) and the Ru film of 2.5 nm on the surface of the synthetic quartz substrate 11
  • Each sample of the reflective photomask 200 was obtained, which has the layer 13 and the light absorption pattern layer 141 in this order, and the conductive layer 15 is formed on the back surface of the synthetic quartz substrate 11.
  • a light absorption pattern layer was obtained by exposing each of the obtained samples of the reflective photomask 200 to a positive chemically amplified resist film for EUV formed on a wafer using an EUV exposure apparatus (NXE3300B manufactured by ASML). The 141 patterns were transferred. (Resolution of transfer pattern and line edge roughness) The resist pattern on the wafer thus formed was observed by an electron beam dimension measurement machine, and the line edge roughness was measured. The results are shown in Table 2.
  • the line edge roughness is 3.4 nm or less Yes, it turned out that even better results could be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

第一態様の反射型フォトマスクブランク(10)は、基板(1)と、基板(1)上に形成された反射層(2)と、反射層(2)の上に形成された光吸収層(4)を有する。光吸収層(4)は、錫(Sn)に対する酸素(O)の原子数比(O/Sn)が1.50を超え2.0以下で、膜厚が25nm以上45nm以下の酸化錫膜を含む。これにより、極端紫外線を光源としたパターン転写用の反射型フォトマスクの射影効果が抑制または軽減され、半導体基板への転写性能が向上するとともに、光吸収層の洗浄耐性が向上する。

Description

反射型フォトマスクブランク及び反射型フォトマスク
 本発明は、極端紫外線を光源としたリソグラフィで使用する反射型フォトマスクおよびこれを作製するための反射型フォトマスクブランクに関する。
 半導体デバイスの製造プロセスにおいては、半導体デバイスの微細化に伴い、フォトリソグラフィ技術の微細化に対する要求が高まっている。フォトリソグラフィにおける転写パターンの最小解像寸法は、露光光源の波長に大きく依存し、波長が短いほど最小解像寸法を小さく出来る。よって、転写パターンの更なる微細化を実現するために、露光光源は、従来のArFエキシマレーザー(波長193nm)から、波長13.5nmのEUV(Extreme Ultra Violet:極端紫外線)に置き換わりつつある。
 EUVは、ほとんどの物質により高い割合で吸収される。そのため、EUVリソグラフィでは、光の透過を利用する屈折光学系が使用できないし、透過型のフォトマスクも使用できない。よって、EUV露光用のフォトマスク(EUVマスク)としては、反射型のフォトマスクが使用される。
 特許文献1には、ガラス基板上にモリブデン(Mo)層及びシリコン(Si)層を交互に積層した多層膜からなる光反射層を形成し、その上にタンタル(Ta)を主成分とする光吸収層を形成し、この光吸収層にパターンを形成することで得られたEUVフォトマスクが開示されている。
 また、露光機の光学系を構成する部品としても、レンズや透過型のビームスプリッターは使用できず、ミラーなどの反射型部品を使用することになる。よって、EUVマスクへの入射光とEUVマスクからの反射光を同軸上とする設計ができない。そのため、通常、EUVリソグラフィでは、EUVマスク面に垂直な方向に対して光軸を6度傾けてEUVを入射し、入射光とは反対側に6度傾いた光軸の反射光を半導体基板に向かわせている。
特開2011-176162号公報
 このように、EUVリソグラフィでは、光軸を傾斜させることから、EUVマスクへの入射光が、EUVマスクのマスクパターン(パターン化された光吸収層)の影を発生させる。この影の発生に伴い生じる問題が射影効果と呼ばれている。この射影効果は、光軸を傾斜させるEUVリソグラフィの原理的課題である。
 現在のEUVマスクブランクでは、光吸収層として膜厚60~90nmのタンタル(Ta)を主成分とした膜が用いられている。このマスクブランクを用いて作製したEUVマスクでパターン転写の露光を行った場合、入射方向とマスクパターンの向きの関係によっては、マスクパターンの影となるエッジ部分で、コントラストの低下を引き起こす恐れがある。これに伴い、半導体基板上の転写パターンのラインエッジラフネスの増加や、線幅が狙った寸法に形成できないなどの問題が生じ、転写性能が悪化する可能性がある。
 また、EUVマスクブランクおよびEUVマスクには、今後の量産化に向けて、光吸収層の洗浄耐性を向上させることも求められている。
 本発明の課題は、極端紫外線を光源としたパターン転写用の反射型フォトマスクの射影効果を抑制または軽減し、半導体基板への転写性能を向上させるとともに、光吸収層の洗浄耐性を向上させることである。
 上記課題を解決するために、本発明の第一態様は、極端紫外領域の波長の光を光源としたパターン転写用の反射型フォトマスクを作製するための反射型フォトマスクブランクであって、基板と、基板上に形成された反射層と、反射層の上に形成された光吸収層と、を有する。光吸収層は、錫(Sn)に対する酸素(O)の原子数比(O/Sn)が1.50を超え2.0以下で、膜厚が25nm以上45nm以下の酸化錫膜を含む。
 本発明の第二態様は、基板と、基板上に形成された反射層と、反射層の上に形成され、錫(Sn)に対する酸素(O)の原子数比(O/Sn)が1.50を超え2.0以下で、膜厚が25nm以上45nm以下の酸化錫膜を含み、パターンが形成されている光吸収パターン層と、を有する反射型フォトマスクである。
 本発明によれば、極端紫外線を光源としたパターン転写用の反射型フォトマスクの射影効果が抑制または軽減され、半導体基板への転写性能が向上するとともに、光吸収層の洗浄耐性の向上が期待できる。
本発明の実施形態の反射型フォトマスクブランクを示す断面図である。 本発明の実施形態の反射型フォトマスクを示す断面図である。 EUVの波長における各金属材料の光学定数を示すグラフである。 酸化錫膜に含まれる錫に対する酸素の比(O/Sn)と融点との関係を示すグラフである。 光吸収層が酸化錫(SnOx)膜およびタンタル(Ta)膜の場合に計算の結果得られた、光吸収層の膜厚とEUV反射率との関係を示すグラフである。 光吸収層が酸化錫(SnOx)膜およびタンタル(Ta)膜の場合に計算の結果得られた、光吸収層の膜厚とOD値との関係を示すグラフである。 光吸収層が酸化錫(SnOx)膜およびタンタル(Ta)膜の場合に計算の結果得られた、光吸収層の膜厚とフォトマスクで転写されたパターンのHVバイアス値との関係を示すグラフである。 光吸収層が酸化錫(SnOx)膜およびタンタル(Ta)膜の場合に得られた、OD値が1.0、2.0でのHVバイアス値の計算結果を示すグラフである。 光吸収層が酸化錫(SnOx)膜およびタンタル(Ta)膜の場合に計算の結果得られた、光吸収層の膜厚とフォトマスクで転写されたパターンのNILS(X方向およびY方向での各値)との関係を示すグラフである。 光吸収層が酸化錫(SnOx)膜およびタンタル(Ta)膜の場合に計算の結果得られた、光吸収層の膜厚とフォトマスクで転写されたパターンのNILS(X方向とY方向の平均値)との関係を示すグラフである。 実施例の反射型フォトマスクブランクを示す断面図である。 実施例の反射型フォトマスクブランクを用いた反射型フォトマスクの作製方法の一工程を説明する断面図である。 実施例の反射型フォトマスクブランクを用いた反射型フォトマスクの作製方法について、図12の次の工程を説明する断面図である。 実施例で得られた反射型フォトマスクを示す断面図である。
[実施形態]
 以下、この発明の実施形態について説明するが、この発明は以下に示す実施形態に限定されない。以下に示す実施形態では、この発明を実施するために技術的に好ましい限定がなされているが、この限定はこの発明の必須要件ではない。
 図1に示すように、この実施形態の反射型フォトマスクブランク10は、基板1と、基板1上に形成された反射層2と、反射層2の上に形成されたキャッピング層3と、キャッピング層3の上に形成された光吸収層4と、を有する。光吸収層4は、錫(Sn)に対する酸素(O)の原子数比(O/Sn)が1.50を超え2.0以下で、膜厚が25nm以上45nm以下の酸化錫膜からなる。基板1としては、低膨張性の合成石英などからなる基板が用いられる。
 図2に示すように、この実施形態の反射型フォトマスク20は、基板1と、基板1上に形成された反射層2と、反射層2の上に形成されたキャッピング層3と、キャッピング層3の上に形成された光吸収パターン層41と、を有する。光吸収パターン層41は、錫(Sn)に対する酸素(O)の原子数比(O/Sn)が1.50を超え2.0以下で、膜厚が25nm以上45nm以下の酸化錫膜からなる。光吸収パターン層41は反射型フォトマスクブランク10の光吸収層4がパターニングされたものである。
[本発明に至るまでの考察]
(吸収膜の光吸収性について)
 反射型フォトマスクブランクの光吸収層(以下、単に「吸収層」とも称する。)は、ドライエッチングされて所定の露光転写パターンに形成された際に、照射されたEUVを吸収するものである。課題となっている射影効果を低減するためには、吸収層を薄くする必要があるが、現在一般に使用されている材料であるTa(タンタル)を単に薄くした場合、EUVの吸収性が充分でなく、吸収層領域における反射率が高くなってしまう。このため、吸収層の薄膜化とEUVの光吸収性を同時に達成する為には、既存の吸収層材料よりもEUVに対して高い光吸収性を有する材料が必要である。
(高吸収材料の欠点について)
 図3は、各金属材料のEUV領域の波長における光学定数を示すものであり、横軸に屈折率n、縦軸に消衰係数kを示している。消衰係数kの高い材料としては、Ag、Ni、Sn、Teなどがある。これらの材料の消衰係数は0.07から0.08の範囲にあり、従来の吸収層材料であるTaの消衰係数0.041の約2倍である。つまり、これらの材料は高い光吸収性を有する。しかし、これらの高吸収材料は、ドライエッチング性が悪い(これらの元素のハロゲン化物の揮発性が低い)ためにパターニングが出来ないか、あるいは融点が低いためにフォトマスク作製時やEUV露光時の熱に耐えられないため、フォトマスクの光吸収層材料として実用性に乏しいものがほとんどである。
(酸化錫膜のO/Sn比と融点および薬液耐性との関係について)
 そのような欠点を回避するために、反射型フォトマスクブランクおよび反射型フォトマスクの光吸収層を、酸化錫膜とすることを考えた。Sn単体では、融点が230℃付近と低く、熱的安定性と洗浄耐性に問題があるが、酸化錫膜にすることで、融点を大幅に高く出来る。また、実際に、反応性スパッタリングによりO/Sn比の異なる酸化錫膜を複数作製し、熱分析装置によりその融点を測定したところ、図4に示すように、O/Sn比が大きいほど融点が高いことが分かった。
 次に、同様に作製した複数のサンプルについて、洗浄による光吸収層の膜減りの有無を確認した。
 洗浄は、SPM(sulfuric-acid and hydrogen-peroxide mixture)洗浄、APM(ammonium hydrogen-peroxide mixture)洗浄、強洗浄の三種類の方法で行った。
 SPM洗浄の条件は、硫酸:過酸化水素水=4:1(体積比)、温度100℃、浸漬時間90分とした。
 APM洗浄の条件は、アンモニア:過酸化水素水:水=1:1:5(体積比)、温度90℃、浸漬時間90分とした。
 強洗浄は、メガソニック帯域での超音波(1MHz、4W)を付与した状態で、上記条件でのSPM洗浄と上記条件でのAPM洗浄をこの順に続けて行った。
 そして、膜減りの有無については、分析用電子天秤による計測で洗浄前後のサンプルの重量変化を調べ、膜厚5nmに相当する重量の変化があった場合に、膜減りが「有り」と判断した。
 表1に示すように、O/Sn比が1.50未満の酸化錫膜ではSPM洗浄で膜減りが見られた。また、O/Sn比が1.50以下の酸化錫膜では強洗浄で膜減りが見られた。
Figure JPOXMLDOC01-appb-T000001
 これらの結果から以下のことが分かる。錫に対する酸素の原子数比(O/Sn)が1.50を超え2.0以下の酸化錫膜であれば、フォトマスク作製時やEUV露光時の熱に充分な耐性と、フォトマスク作製時の洗浄液(酸やアルカリ)およびメガソニック帯域での超音波洗浄に対する充分な耐性を有することが出来る。
 また、酸化錫膜は、化学的に安定している一方で、塩素系ガスを用いたドライエッチングが可能であるため、パターニングが出来る。その理由は、SnとClの化合物であるSnCl4の揮発性が、Sn以外の高吸収材料とClとの化合物よりも高いためである。
(酸化錫膜のO/Sn比と光吸収性との関係について)
 EUVに対する光学定数(消衰係数、屈折率)は、O/Sn比が1.5~2.0の酸化錫と錫単体とでほとんど変化しない。そのため、反射型フォトマスクブランクおよび反射型フォトマスクの光吸収層をO/Sn比が1.5~2.0の酸化錫膜とすることで、光吸収層がSn単体である場合と同様の光吸収性を維持できる。
 実際に、酸素の含有量を、O/Sn比が1.5以上2.0以下の範囲で変化させた酸化錫膜サンプルを複数作製し、波長13.5nm(EUV領域)における光学定数を測定すると、いずれも屈折率n=0.930~0.935、消衰係数k=0.0714~0.0721という値が得られた。これは、図3に示すSn単体の値に近い値である。つまり、O/Sn比が1.5以上2.0以下の酸化錫とSn単体とでは、光学定数がほぼ同じである。
(Ta膜と酸化錫膜とにおける反射率、OD、および膜厚の比較)
 実際に測定した酸化膜(O/Sn比が1.5以上2.0以下のテストサンプル)の光学定数の平均値(屈折率n=0.933、消衰係数k=0.0718)を基に、酸化錫からなる光吸収層を用いた場合のEUV反射率を算出した。また、マスクの基本性能を示すOD値(Optical Density:吸収層部と反射層部のコントラスト)を、下記の(1)式を用いて計算した。
 OD=-log(Ra/Rm)…(1)
 (1)式において、Rmは反射層領域からの反射光強度であり、Raは光吸収層領域からの反射光強度である。
 当然、EUVリソグラフィにおいてOD値は高いほど良い。なお、この計算は、マスクブランクの構成を、吸収層の下に厚さ2.5nmのRuによるキャッピング層(保護層)が存在し、さらにその下にSiとMoによる反射層が40ペア存在し、その下に平坦な合成石英製の基板が存在し、基板の裏面にCrNから成る導電層が存在する構成として、これら各層の光学定数(屈折率、消衰係数)を用い、光吸収層の膜厚を変化させて行っている。
 図5から分かるように、Ta膜に対して酸化錫(SnOx)膜では、例えば同じ膜厚の場合は反射率を半分以下に低くでき、同じ反射率の場合は膜厚を半分以下に低減できる。このように酸化錫膜は光吸収膜として有効である。
 図6から分かるように、例えばOD≧1.0を得るためには、Ta膜では少なくとも40nm以上の厚さが必要であるのに対して、酸化錫(SnOx)膜では約17nmの厚さでよい。よって、ODという観点からも、酸化錫膜は、膜厚を低減できる光吸収膜として有効であることが分かる。
 また、例えばOD=2.0を得るためには、Ta膜では少なくとも70nm以上の厚さが必要であるのに対して、酸化錫膜では26nmの厚さでよく、OD=2においても、酸化錫膜は、膜厚を低減できる光吸収層として有効であることが分かる。
 このように、酸化錫膜を用いることで、マスクの基本性能を示すOD値を維持したまま、光吸収層を薄くすることが可能になる。
(Ta膜と酸化錫膜とで、HVバイアスの比較)
 次に、射影効果の影響を評価するために、Ta膜と酸化錫膜のそれぞれで、膜厚を振ったときにHVバイアス値がどのように変化するかを、FDTD(時間領域差分)法によるシミュレータを用いたシミュレーションにより比較した。なお、シミュレーション条件は、光源の波長は13.5nm(EUV波長)、NAは0.33、入射角は6度とし、照明はクエーサーを用いた。
 HVバイアス値とは、マスクパターンの向きに依存した転写パターンの線幅差、つまり、H(Horizontal)方向の線幅とV(Vertical)方向の線幅との差のことである。H方向の線幅とは、入射光と反射光が作る面と平行な向きの線幅を、V方向の線幅とは、入射光と反射光が作る面に対して垂直な向きの線幅を示している。
 射影効果により影響を受けるのはHorizontalのパターンサイズで、その転写パターンのエッジ部のコントラスト低下や線幅(Y方向)の減少が生じる。射影効果の影響を受けたパターンは、転写後の線幅が小さくなる為、Verticalの転写パターンサイズとHorizontalの転写パターンサイズとで、線幅差(いわゆるHVバイアス)が生じる。
 本シミュレーションに用いたパターンは、半導体基板上で16nmのLS(LineとSpaceが1:1)となるサイズで、マスクパターンを設計したものである。したがって、EUVリソグラフィでは、通常4分の1の縮小投影露光であるため、EUVマスク上のパターンサイズは64nmのLSパターンとなる。この転写パターンのHVバイアス値は、図7に示すように、Ta膜、酸化錫膜共に吸収層の膜厚が厚いほど大きくなることが分かる。
 ここで、OD=2程度となるTa膜(膜厚70nm)と酸化錫膜(膜厚26nm)のそれぞれのHVバイアス値を比較したところ、Ta膜では10.5nmと非常に大きいが、酸化錫膜では3.3nmと大幅に低減でき、改善している(図8)。さらにOD=1となるTa膜(40nm)と酸化錫膜(17nm)でも、HVバイアスはTa膜で3.2nm、酸化錫膜で2.1nmとなる。
 このように、反射型フォトマスクブランクおよびフォトマスクの光吸収層材料に酸化錫を用いることで、射影効果の影響(HVバイアス)を大幅に低減できることが分かる。
(Ta膜と酸化錫膜とで、NILSの比較)
 射影効果の影響は、NILS(Normalized Image Log Slope)と呼ばれるパターンコントラストにも現れる。NILSは転写パターンの光強度分布から明部と暗部の傾きを示す特性値であり、値は大きい方が、パターン転写性(解像性、ラインエッジラフネスなど)が良い。光吸収層をなすTaと酸化錫の光学定数を用いて、計算(上記と同じシミュレーション)によりNILSを評価した。その結果を図9に示す。
 図9に示すように、Ta膜の場合、ODが2付近になる膜厚70nmで、X(Verticalの線幅方向のNILS)が1.5、Y(Horizontalの線幅方向のNILS)が0.2となっている。つまり、射影効果の影響を受けるHorizontalの線幅方向(Y方向)のNILSが大幅に悪化する。
 このような、X方向とY方向のパターンコントラスト(NILS)の大きな差が、上述したように、Ta膜の大きなHVバイアス値を引き起こしている。
 一方、酸化錫膜の場合は、ODが2付近になる膜厚26nmで、X=1.4、Y=0.9となり、Y方向のNILSが大幅に改善するため、HVバイアス値も小さくなる。
 もとより、Y方向のNILS(パターンコントラスト)の低下は、HVバイアスに影響するだけでなく、転写パターンのラインエッジラフネスの増大に繋がり、最悪の場合、解像出来なくなることも大きな問題である。
 図10のグラフは、酸化錫膜とTa膜について、計算(上記と同じシミュレーション)により算出したNILS(X方向とY方向の平均値)の膜厚依存性を示している。この図から、酸化錫膜とTa膜のいずれの場合でも、膜厚が薄いとNILSが小さくなることが分かる。このようになる理由は、吸収膜が薄いと、吸収膜領域で反射率が高くなることでマスクのODが小さくなって、NILSが低下するためと推測できる。したがって、パターンの転写に必要なNILSの値を得るためには、ある程度の膜厚が必要である。
 また、図10から、膜厚が厚過ぎるとNILSの値が低下することも分かる。吸収膜が厚い場合、吸収膜領域の反射率が低くなり、マスクのODが大きくなるが、ODが2以上(つまり、吸収膜領域での反射率が、反射層領域の反射率の1%以下)では、そもそも吸収膜領域の反射率が小さいため、それ以上膜厚を厚くしても、NILSを大きくする効果はないと考えられる。それよりも、吸収膜が厚すぎると、マスクパターンのエッジ部分に、斜め入射するEUVがパターンの影になる影響が強く現れるために、NILSが低下すると考えられる。
 このように、パターンコントラストを示すNILSを大きくするには、最適な膜厚範囲があることが分かる。
 図10から分かるように、反射型フォトマスクブランクおよび反射型フォトマスクの光吸収層として膜厚が45nm以下の酸化錫膜を用いることで、Ta膜を用いた場合よりも、NILS(X方向とY方向の平均値)を高くすることができる。Ta膜の場合、最適な膜厚は概ね45nm以上であるが、45nm以上のほとんどの膜厚でNILSは1を超えていない。
[本発明の第一態様および第二態様について]
 本発明の第一態様の反射型フォトマスクブランクおよび第二態様の反射型フォトマスクは、錫(Sn)に対する酸素(O)の原子数比(O/Sn)が1.50を超え2.0以下で、膜厚が25nm以上45nm以下の酸化錫膜を含む光吸収層を有する。原子数比(O/Sn)の範囲「1.50を超え2.0以下」の例としては、「1.51以上2.0以下」が挙げられる。
 本発明の第一態様の反射型フォトマスクブランクおよび第二態様の反射型フォトマスクが有する光吸収層は、膜厚が25nm以上45nm以下の酸化錫膜を含むため、Ta膜からなる光吸収層を有する反射型フォトマスクブランクおよび反射型フォトマスクと比較して、射影効果の影響を小さく出来る。その結果、高いNILS(パターンコントラスト)が得られ、転写パターンの解像性の向上やラインエッジラフネスの低減が期待できる。
 また、酸化錫膜の膜厚が25nm以上45nm以下であることにより、膜厚が25nm以上45nm以下を満たさない酸化錫膜を含む光吸収層を有する反射型フォトマスクブランクおよび反射型フォトマスクと比較して、射影効果の影響を小さく出来る。さらに、光吸収層に含まれる酸化錫膜の原子数比(O/Sn)が1.50以下である反射型フォトマスクブランクおよび反射型フォトマスクと比較して、高い洗浄耐性を有するものとなる。
 本発明の第一態様の反射型フォトマスクブランクおよび第二態様の反射型フォトマスクにおいて、光吸収層に含まれる酸化錫膜を形成する材料は、錫(Sn)と酸素(O)を合計で80原子%以上含有することが好ましい。
 これは、酸化錫膜に錫(Sn)と酸素(O)以外の成分が含まれていると、酸化錫膜によるEUV吸収性が低下するが、その成分が20原子%未満であれば、EUV吸収性の低下はごく僅かであり、EUVマスクの光吸収層としての性能の低下はほとんど無いためである。
 錫と酸素以外の材料として、Si、In、Te、Ta、Pt、Cr、Ruなどの金属や、窒素や炭素などの軽元素を、その目的に応じて混合することがある。
 例えば、Inを酸化錫膜に入れることで、透明性を確保しながら、膜に導電性を付与することが可能となるため、波長190~260nmのDUV光を用いたマスクパターン検査において、検査性を高くすることが可能となる。あるいは、窒素や炭素を酸化錫膜に混合した場合、酸化錫膜のドライエッチングの際のエッチングスピードを高めることが可能となる。
 以上のように、本発明の第一態様の反射型フォトマスクブランクおよび第二態様の反射型フォトマスクによれば、膜厚が25nm以上45nm以下の酸化錫膜を含む光吸収層を有することで、射影効果の影響を低減でき、Ta膜からなる光吸収層を有する従来品と比べて、高いNILSが得られる。そのため、転写パターンの解像性向上やラインエッジラフネスの低減が実現出来る。また、X方向とY方向のNILSが近づくため、HVバイアス値も低減でき、マスクパターンに忠実な転写パターンが得られる。
 以下、本発明の実施例を説明する。
(反射型フォトマスクブランクの作製)
 図11に示す層構造の反射型フォトマスクブランク100として、複数のサンプルを以下の手順で作製した。
 先ず、合成石英製の基板11の上に、SiとMoの40ペア(合計膜厚280nm)からなる多層構造の反射層12を形成し、反射層12の上にRu膜からなるキャッピング層13を2.5nmの膜厚で形成した。次に、キャッピング層13の上に光吸収層14を形成した。次に、基板11の裏面に、CrNからなる導電層15を100nmの膜厚で形成した。
 光吸収層14は、各サンプルで、表2に示すように材料(Taまたは酸化錫)および膜厚を変えて形成した。酸化錫膜は、O/Sn比が2.00または1.51になるように成膜した。
 各層の成膜はスパッタリング装置を用いて行った。酸化錫膜は、反応性スパッタリング法により、スパッタリング中にチャンバーに導入する酸素の量を制御することで、O/Sn比が2.00または1.51となるように成膜した。各層の膜厚は透過電子顕微鏡により測定し、酸化錫膜のO/Sn比はXPS(X線光電子分光測定法)で測定した。
(反射型フォトマスクの作製)
 得られた反射型フォトマスクブランク100の各サンプルを用い、以下の手順で反射型フォトマスクを作製した。
 先ず、反射型フォトマスクブランク100の光吸収層14上に、ポジ型化学増幅レジスト(SEBP9012:信越化学社製)を170nmの膜厚で塗布した。次に、このレジスト膜に、電子線描画機(JBX3030:日本電子社製)で所定のパターンを描画した。次に、110℃、10分のプリベーク処理を行った後、スプレー現像機(SFG3000:シグマメルテック社製)を用いて現像処理をした。これにより、図12に示すように、光吸収層14上にレジストパターン16が形成された。
 次に、レジストパターン16をエッチングマスクとしたドライエッチングにより、光吸収層14のパターニングを行った。光吸収層14がTa膜であるサンプルでは、フッ素系ガスを主体としたエッチングガスを用い、光吸収層14が酸化錫膜であるサンプルでは、塩素系ガスを主体としたエッチングガスを用いた。これにより、図13に示すように、光吸収層14が光吸収パターン層141とされた。
 次に、レジストパターン16を剥離した。これにより、図14に示すように、合成石英製の基板11の表面に、SiとMoの40ペア(合計膜厚280nm)からなる多層構造の反射層12、2.5nmのRu膜からなるキャッピング層13、および光吸収パターン層141をこの順に有し、合成石英製の基板11の裏面に導電層15が形成された、反射型フォトマスク200の各サンプルを得た。
(ウェハ露光)
 得られた反射型フォトマスク200の各サンプルを用い、ウェハ上に形成されたEUV用ポジ型化学増幅レジスト膜に、EUV露光装置(ASML社製のNXE3300B)を用いた露光で、光吸収パターン層141のパターンを転写した。
(転写パターンの解像性とラインエッジラフネス)
 このようにして形成されたウェハ上のレジストパターンを、電子線寸法測定機により観察し、ラインエッジラフネスの測定を実施した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、光吸収層として、O/Sn比が2.00または1.51で、膜厚25nm以上45nm以下のSnO膜を有する反射型フォトマスクを用いた場合、解像性に問題が無く、ラインエッジラフネスは3.6nm以下であった。この値は、光吸収層としてTa膜を有する反射型フォトマスクを用いた場合よりも低かった。
 つまり、光吸収層として、O/Sn比が2.00または1.51で、膜厚25nm以上45nm以下のSnO膜を有する反射型フォトマスクを用いることで、良好な結果が得られることが分かった。また、光吸収層として、O/Sn比が2.00または1.51で、膜厚32nm以上45nm以下のSnO膜を有する反射型フォトマスクを用いた場合、ラインエッジラフネスが3.4nm以下であり、さらに良好な結果が得られることが分かった。
 以上の結果から、本発明の第一態様の反射型フォトマスクブランクおよび第二態様の反射型フォトマスクを用いることにより、転写パターンのリソグラフィ特性(解像性、ラインエッジラフネス)が従来よりも向上することが確認できた。
1 基板
2 反射層
3 キャッピング層
4 光吸収層
41 光吸収パターン層
11 基板
12 反射層
13 キャッピング層
14 光吸収層
141 光吸収パターン層
15 導電層
16 レジストパターン
10 反射型フォトマスクブランク
20 反射型フォトマスク
100 反射型フォトマスクブランク
200 反射型フォトマスク

Claims (5)

  1.  極端紫外線を光源としたパターン転写用の反射型フォトマスクを作製するための反射型フォトマスクブランクであって、
     基板と、
     前記基板上に形成された多層膜からなる反射層と、
     前記反射層の上に形成された光吸収層と、
    を有し、
     前記光吸収層は、錫(Sn)に対する酸素(O)の原子数比(O/Sn)が1.50を超え2.0以下で、膜厚が25nm以上45nm以下の酸化錫膜を含む反射型フォトマスクブランク。
  2.  前記酸化錫膜の膜厚は32nm以上45nm以下である請求項1に記載の反射型フォトマスクブランク。
  3.  前記酸化錫膜を形成する材料は、錫(Sn)と酸素(O)を合計で80原子%以上含有する請求項1または2に記載の反射型フォトマスクブランク。
  4.  前記光吸収層と前記反射層との間に形成されたキャッピング層を有する請求項1~3のいずれか一項に記載の反射型フォトマスクブランク。
  5.  基板と、
     前記基板上に形成された反射層と、
     前記反射層の上に形成され、錫(Sn)に対する酸素(O)の原子数比(O/Sn)が1.50を超え2.0以下で、膜厚が25nm以上45nm以下の酸化錫膜を含み、パターンが形成されている光吸収パターン層と、
    を有する反射型フォトマスク。
PCT/JP2018/024889 2017-07-05 2018-06-29 反射型フォトマスクブランク及び反射型フォトマスク WO2019009211A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG11201913845YA SG11201913845YA (en) 2017-07-05 2018-06-29 Reflective photomask blank and reflective photomask
CN201880042350.0A CN110785703B (zh) 2017-07-05 2018-06-29 反射型光掩模坯以及反射型光掩模
US16/626,290 US11294270B2 (en) 2017-07-05 2018-06-29 Reflective photomask blank and reflective photomask
EP18828644.7A EP3650936A4 (en) 2017-07-05 2018-06-29 BLANK OF A REFLECTIVE PHOTO MASK AND REFLECTIVE PHOTO MASK
JP2019527677A JP6888675B2 (ja) 2017-07-05 2018-06-29 反射型フォトマスクブランク及び反射型フォトマスク
KR1020197037791A KR102666821B1 (ko) 2017-07-05 2018-06-29 반사형 포토마스크 블랭크 및 반사형 포토마스크

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-132026 2017-07-05
JP2017132026 2017-07-05

Publications (1)

Publication Number Publication Date
WO2019009211A1 true WO2019009211A1 (ja) 2019-01-10

Family

ID=64950081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024889 WO2019009211A1 (ja) 2017-07-05 2018-06-29 反射型フォトマスクブランク及び反射型フォトマスク

Country Status (8)

Country Link
US (1) US11294270B2 (ja)
EP (1) EP3650936A4 (ja)
JP (1) JP6888675B2 (ja)
KR (1) KR102666821B1 (ja)
CN (1) CN110785703B (ja)
SG (1) SG11201913845YA (ja)
TW (1) TWI761546B (ja)
WO (1) WO2019009211A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021085382A1 (ja) * 2019-10-29 2021-05-06
WO2021230297A1 (ja) * 2020-05-14 2021-11-18 凸版印刷株式会社 反射型マスクブランク及び反射型マスク
WO2022149530A1 (ja) * 2021-01-08 2022-07-14 株式会社トッパンフォトマスク 反射型フォトマスクブランク及び反射型フォトマスク
KR20220139879A (ko) 2020-02-12 2022-10-17 호야 가부시키가이샤 반사형 마스크 블랭크, 반사형 마스크 및 반도체 장치의 제조 방법
WO2022255458A1 (ja) * 2021-06-02 2022-12-08 株式会社トッパンフォトマスク 反射型フォトマスクブランク及び反射型フォトマスク

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210155863A (ko) * 2020-06-16 2021-12-24 삼성전자주식회사 극자외선 리소그래피용 위상 반전 마스크 및 이를 이용한 반도체 소자의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099931A (ja) * 2007-09-27 2009-05-07 Toppan Printing Co Ltd 反射型フォトマスクブランク及びその製造方法、反射型フォトマスク及びその製造方法並びに半導体素子の製造方法
JP2010103463A (ja) * 2008-09-25 2010-05-06 Toppan Printing Co Ltd 反射型フォトマスクブランク、反射型フォトマスク、半導体装置製造方法
WO2010113700A1 (ja) * 2009-04-02 2010-10-07 凸版印刷株式会社 反射型フォトマスクおよび反射型フォトマスクブランク
JP2011176162A (ja) 2010-02-25 2011-09-08 Toppan Printing Co Ltd 反射型フォトマスクおよび反射型フォトマスクブランクならびにその製造方法
JP2013532381A (ja) * 2010-06-15 2013-08-15 カール・ツァイス・エスエムティー・ゲーエムベーハー Euvリソグラフィ用のマスク、euvリソグラフィシステム、及びマスクの結像を最適化する方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121908A (ja) * 2003-10-16 2005-05-12 Advanced Display Inc 反射型液晶表示装置および半透過型液晶表示装置ならびにこれらの製法
JP4802462B2 (ja) * 2004-07-27 2011-10-26 三菱電機株式会社 薄膜トランジスタアレイ基板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099931A (ja) * 2007-09-27 2009-05-07 Toppan Printing Co Ltd 反射型フォトマスクブランク及びその製造方法、反射型フォトマスク及びその製造方法並びに半導体素子の製造方法
JP2010103463A (ja) * 2008-09-25 2010-05-06 Toppan Printing Co Ltd 反射型フォトマスクブランク、反射型フォトマスク、半導体装置製造方法
WO2010113700A1 (ja) * 2009-04-02 2010-10-07 凸版印刷株式会社 反射型フォトマスクおよび反射型フォトマスクブランク
JP2011176162A (ja) 2010-02-25 2011-09-08 Toppan Printing Co Ltd 反射型フォトマスクおよび反射型フォトマスクブランクならびにその製造方法
JP2013532381A (ja) * 2010-06-15 2013-08-15 カール・ツァイス・エスエムティー・ゲーエムベーハー Euvリソグラフィ用のマスク、euvリソグラフィシステム、及びマスクの結像を最適化する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3650936A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021085382A1 (ja) * 2019-10-29 2021-05-06
JP7363913B2 (ja) 2019-10-29 2023-10-18 Agc株式会社 反射型マスクブランクおよび反射型マスク
KR20220139879A (ko) 2020-02-12 2022-10-17 호야 가부시키가이샤 반사형 마스크 블랭크, 반사형 마스크 및 반도체 장치의 제조 방법
WO2021230297A1 (ja) * 2020-05-14 2021-11-18 凸版印刷株式会社 反射型マスクブランク及び反射型マスク
WO2022149530A1 (ja) * 2021-01-08 2022-07-14 株式会社トッパンフォトマスク 反射型フォトマスクブランク及び反射型フォトマスク
WO2022255458A1 (ja) * 2021-06-02 2022-12-08 株式会社トッパンフォトマスク 反射型フォトマスクブランク及び反射型フォトマスク

Also Published As

Publication number Publication date
US20200159106A1 (en) 2020-05-21
CN110785703B (zh) 2023-07-21
JPWO2019009211A1 (ja) 2020-04-30
KR102666821B1 (ko) 2024-05-16
TWI761546B (zh) 2022-04-21
KR20200018476A (ko) 2020-02-19
EP3650936A4 (en) 2020-09-09
SG11201913845YA (en) 2020-01-30
US11294270B2 (en) 2022-04-05
EP3650936A1 (en) 2020-05-13
TW201907224A (zh) 2019-02-16
JP6888675B2 (ja) 2021-06-16
CN110785703A (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
JP6888675B2 (ja) 反射型フォトマスクブランク及び反射型フォトマスク
TW201842208A (zh) 反射型光罩基底、反射型光罩及其製造方法、與半導體裝置之製造方法
JP7279131B2 (ja) 反射型フォトマスクブランク及び反射型フォトマスク
JP2022009220A (ja) 反射型マスクブランク、反射型マスクの製造方法、及び半導体装置の製造方法
JP7346088B2 (ja) 反射型フォトマスクブランクス及び反射型フォトマスク
CN110770652B (zh) 掩模坯料、相移掩模及半导体器件的制造方法
JP2019139085A (ja) 反射型フォトマスクブランク及び反射型フォトマスク
TW201831987A (zh) 反射型光罩基底、反射型光罩及其製造方法、與半導體裝置之製造方法
WO2021085192A1 (ja) 反射型マスク及び反射型マスクの製造方法
JP7059679B2 (ja) 反射型フォトマスクブランク及び反射型フォトマスク
JP2019138971A (ja) 反射型フォトマスクブランク及び反射型フォトマスク
JP2019207359A (ja) マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
WO2022172916A1 (ja) 反射型フォトマスクブランク及び反射型フォトマスク
WO2022153657A1 (ja) 反射型フォトマスクブランク及び反射型フォトマスク
WO2022264832A1 (ja) 反射型フォトマスク及び反射型フォトマスクの製造方法
JP2021173977A (ja) 反射型フォトマスクブランクス及び反射型フォトマスク
JP2004085759A (ja) ハーフトーン型位相シフトマスク用ブランクス及びハーフトーン型位相シフトマスク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019527677

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197037791

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018828644

Country of ref document: EP

Effective date: 20200205