WO2019006895A1 - 一种协同控制NOx和CVOCs三叶草型催化剂的制备方法及其应用 - Google Patents

一种协同控制NOx和CVOCs三叶草型催化剂的制备方法及其应用 Download PDF

Info

Publication number
WO2019006895A1
WO2019006895A1 PCT/CN2017/103835 CN2017103835W WO2019006895A1 WO 2019006895 A1 WO2019006895 A1 WO 2019006895A1 CN 2017103835 W CN2017103835 W CN 2017103835W WO 2019006895 A1 WO2019006895 A1 WO 2019006895A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
cvocs
clover
nox
powder
Prior art date
Application number
PCT/CN2017/103835
Other languages
English (en)
French (fr)
Inventor
李俊华
甘丽娜
彭悦
于双江
王栋
陈建军
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2019006895A1 publication Critical patent/WO2019006895A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8659Removing halogens or halogen compounds
    • B01D53/8662Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2064Chlorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Definitions

  • the invention belongs to the technical field of synergistic control of nitrogen oxides (NO x ) and chlorine-containing volatile organic compounds (CVOCs) in environmental protection, and particularly relates to a preparation method and application thereof for synergistically controlling NOx and CVOCs clover-type catalysts.
  • NO x nitrogen oxides
  • CVOCs chlorine-containing volatile organic compounds
  • Waste incineration flue gas contains a large amount of pollutants such as nitrogen oxides (NO x ) and chlorine volatile organic compounds (CVOCs, Chloride Volatile Organic Compounds).
  • Nitrogen oxides not only directly endanger human health, but also cause photochemical smog, acid rain, and promote the formation of secondary particulate matter, causing great damage to the environment and society.
  • Chlorine-containing volatile organic compounds are the focus of current research in the field of environmental catalysis, and dioxin is a kind of highly toxic CVOCs, which not only seriously pollutes the environment but also has carcinogenic effects on human body. It mainly comes from waste incineration, steel sintering and Non-ferrous smelting and other industries.
  • the traditional high-temperature denitration catalyst is not suitable for waste incineration flue gas with complicated discharge conditions. . Therefore, the development of low-temperature denitrification synergistic de-VOCs catalytic system to achieve efficient and synergistic removal of nitrogen oxides and chlorine-containing volatile organic compounds and other atmospheric pollutants, has a wide market demand.
  • the powder catalyst causes an increase in bed lamination drop, and is inconvenient to load and unload, making it difficult to directly implement industrial applications. Therefore, it is necessary to prepare the catalytically active component into a certain shape by using a suitable molding process and an auxiliary agent. Structured catalyst. Compared to the cylindrical catalyst, the clover-type catalyst reduces the diameter of the catalyst, increases the specific surface area of the catalyst, and at the same time increases the mechanical strength and void ratio.
  • the object of the present invention is to provide a method for preparing and controlling NOx and CVOCs clover-type catalysts, and using titanium white powder or titanium tungsten powder as a carrier, and an organic vanadium compound as a vanadium precursor.
  • the catalyst is prepared by the "two-step method": in the first step, a powder catalyst is prepared by mechanical ball milling; and in the second step, a clover-type structured catalyst is prepared by an extrusion molding process.
  • the resulting catalysts are suitable for incineration, steel and non-ferrous smelting industries sintering flue gas NO x and CVOCs synergistic removal.
  • the invention has little change to the commercial vanadium-based catalyst system, but adopts the "two-step method", and the obtained catalyst not only obtains high denitration rate and removal efficiency of CVOCs, but also has high mechanical strength, A technology for preparing a clover-type catalyst which is more advantageous for industrial production and denitration synergistic removal of CVOCs.
  • a preparation method for synergistically controlling NOx and CVOCs clover-type catalysts using an organic vanadium compound as a vanadium precursor, titanium white powder, titanium tungsten powder or titanium molybdenum powder as a carrier, firstly preparing a powder catalyst by mechanical ball milling, and then using extrusion The forming process prepares a clover-type structured catalyst.
  • the active component of the catalyst is vanadium pentoxide.
  • the vanadium precursor is used in an amount of from 1 to 10 wt.%, based on the vanadium pentoxide which can be produced, to ensure that the vanadium pentoxide is contained in the catalyst in an amount of from 1 to 10% by weight.
  • the organic vanadium compound is one or a mixture of vanadyl oxalate, vanadyl acetylacetonate.
  • the carrier titanium tungsten powder contains one and a mixture of tungsten trioxide or molybdenum trioxide in an amount of 3-10 wt.%.
  • Step 1 preliminary mixing the carrier and the vanadium precursor, and then adding to the ball mill tank for ball milling, ball milling for 30-120 min, rotation speed of 20-80 rpm;
  • Step 2 The ball mill mixture is taken out and dried at 100-120 ° C for 4-10 h, and calcined at 400-550 ° C for 2-6 h in an air atmosphere to obtain denitration synergistic removal of the CVOCs catalyst powder;
  • Step 3 adding water, fiber and the powder catalyst obtained in the second step to the kneader and stirring for 10-60 min;
  • Step 4 Stepwise adding stearic acid, lactic acid, polyethylene oxide (PEO) and carboxymethyl cellulose (CMC) to the kneader, each step is 10-60 min, and stirring is continued to obtain a wet mass;
  • PEO polyethylene oxide
  • CMC carboxymethyl cellulose
  • Step 5 The wet mass obtained in the fourth step is extruded by an extruder, and dried and calcined to obtain a strip-shaped catalyst product.
  • the fibers may be glass fibers.
  • Rapid temperature rise rapid temperature rise to 110 ° C at 10 ° C / min at room temperature
  • Rapid temperature rise rapid temperature rise to 450-550 ° C at 10 ° C / min, and incubated at 450-550 ° C for 4h;
  • the resulting preparation of the present invention CVOCs cooperative control of NO x and clover catalyst may be applied to waste incineration, steel and non-ferrous smelting industries sintering flue gas NOx removal and dioxin synergistic reaction conditions: a temperature of 150-450 deg.] C, often Pressure, space velocity 60,000 h -1 , flue gas concentration: NO 500 ppm, C 6 H 5 Cl 100 ppm, NH 3 500 ppm, O 2 5 vol.%.
  • the present invention adopts a "two-step method": the first step is to prepare a powder catalyst by ball milling; the second step is to prepare a clover-type catalyst by extrusion molding, and the obtained catalyst not only obtains high denitration rate and removal efficiency of CVOCs, but also has the same High mechanical strength is a clover-type catalyst preparation technology that is more conducive to industrial production and denitration synergistic removal of CVOCs.
  • the molding process of the clover-type catalyst of the invention is slightly adjusted, and the preparation of the extruded honeycomb catalyst can be realized, which can meet the requirements of coordinated control of various flue gas multi-pollutants, and has wide application prospects.
  • FIG. 1 is a schematic view showing the efficiency of denitration synergistic removal of CVOCs of the clover-type catalyst of the present invention.
  • Fig. 2 is a view showing the compressive strength of the clover-type catalyst of the present invention.
  • Step 1 preliminary mixing of 200g titanium dioxide and 15g ammonium metavanadate, and then adding to the ball mill tank for ball milling, ball milling for 30min, rotation speed of 40 rev / min;
  • Step 2 The ball mill mixture is taken out and dried at 110 ° C for 4 h, and calcined at 500 ° C for 4 h in an air atmosphere to obtain a powder catalyst;
  • Step 3 200 g of the powder catalyst prepared in the second step and 6.2 g of the fiber are added to the kneader, stirred and gradually added to 60 mL of water, and continuously stirred for 30 min;
  • Step 4 Step by step 0.5g stearic acid, 2.4mL of lactic acid, 1.7g of polyethylene oxide (PEO) and 2.0g of carboxymethylcellulose (CMC) were added to the kneading machine at intervals of 30 minutes, and the mixture was continuously stirred to obtain wet materials. group;
  • PEO polyethylene oxide
  • CMC carboxymethylcellulose
  • Step 5 Install the clover mold, use the extruder to extrude the wet mass obtained in step four, dry at room temperature for 24 h, rapidly increase the temperature to 110 ° C at 10 ° C / min at room temperature; heat up at a slow rate of 2 ° C / min To 300 ° C; rapid temperature rise to 500 ° C at 10 ° C / min, and heat at 500 ° C for 4 h; Finally, with the furnace cooling to obtain a clover-type catalyst finished product.
  • Figure 1 shows the results of catalyst denitration synergistic removal of CVOCs activity.
  • Figure 2 shows the compressive strength test results of the catalyst. Test conditions: 3-5mm length of clover-type catalyst for pollutant synergistic control activity evaluation, 0.2g catalyst, NO 500 ppm, NH 3 500 ppm, C 6 H 5 Cl 100 ppm, O 2 5 vol.%, N 2 equilibrium, total flue gas flow rate of 200 mL/min, gas space velocity GHSV 60,000 h -1 (standard condition).
  • Step 1 preliminary mixing of 200g titanium dioxide and 34g acetylacetonate vanadium, and then added to the ball mill tank for ball milling, ball milling 30min, speed 40 rev / min;
  • Step 2 The ball mill mixture is taken out and dried at 110 ° C for 4 h, and calcined at 450 ° C for 4 h in an air atmosphere to obtain a powder catalyst;
  • Step 3 200 g of the powder catalyst prepared in the second step and 6.2 g of the fiber are added to the kneader, stirred and gradually added to 80 mL of water, and continuously stirred for 50 min;
  • Step 4 Step by step 1.5g stearic acid, 4.8mL of lactic acid, 1.0g of polyethylene oxide (PEO) and 1.0g of carboxymethylcellulose (CMC) were added to the kneader, each step was 30min, continuous stirring to obtain wet material group;
  • PEO polyethylene oxide
  • CMC carboxymethylcellulose
  • Step 5 Install the clover mold, use the extruder to extrude the wet mass obtained in step four, dry at room temperature for 24 h, rapidly increase the temperature to 110 ° C at 10 ° C / min at room temperature; heat up at a slow rate of 2 ° C / min To 300 ° C; rapid temperature rise to 450 ° C at 10 ° C / min, and heat at 450 ° C for 4 h; Finally, with the furnace cooling to obtain the finished clover-type catalyst.
  • Figure 1 shows the results of catalyst denitration synergistic removal of CVOCs activity.
  • Figure 2 shows the compressive strength test results of the catalyst. Test conditions: 3-5mm length of clover-type catalyst for pollutant synergistic control activity evaluation, 0.2g catalyst, NO 500 ppm, NH 3 500 ppm, C 6 H 5 Cl 100 ppm, O 2 5 vol.%, N 2 equilibrium, total flue gas flow rate of 200 mL/min, gas space velocity GHSV 60,000 h -1 (standard condition).
  • Step 1 preliminary mixing of 200g titanium tungsten powder and 20g vanadyl oxalate, and then adding to a ball mill tank for ball milling, ball milling for 30min, rotation speed of 80 rev / min;
  • Step 2 The ball mill mixture is taken out and dried at 110 ° C for 4 h, and calcined at 500 ° C for 4 h in an air atmosphere to obtain a powder catalyst;
  • Step 3 200 g of the powder catalyst prepared in the second step and 6.2 g of the fiber are added to the kneader, stirred and gradually added to 60 mL of water, and continuously stirred for 30 min;
  • Step 4 Step by step 0.5g stearic acid, 2.4mL of lactic acid, 1.7g of polyethylene oxide (PEO) and 2.0g of carboxymethylcellulose (CMC) were added to the kneading machine at intervals of 30 minutes, and the mixture was continuously stirred to obtain wet materials. group;
  • PEO polyethylene oxide
  • CMC carboxymethylcellulose
  • Step 5 Install the clover mold, use the extruder to extrude the wet mass obtained in step four, dry at room temperature for 24 h, rapidly increase the temperature to 110 ° C at 10 ° C / min at room temperature; heat up at a slow rate of 2 ° C / min To 300 ° C; rapid temperature rise to 500 ° C at 10 ° C / min, and heat at 500 ° C for 4 h; Finally, with the furnace cooling to obtain a clover-type catalyst finished product.
  • Figure 1 shows the results of catalyst denitration synergistic removal of CVOCs activity.
  • Figure 2 shows the compressive strength test results of the catalyst. Test conditions: 3-5mm length of clover-type catalyst for pollutant synergistic control activity evaluation, 0.2g catalyst, NO 500 ppm, NH 3 500 ppm, C 6 H 5 Cl 100 ppm, O 2 5 vol.%, N 2 equilibrium, total flue gas flow rate of 200 mL/min, gas space velocity GHSV 60,000 h -1 (standard condition).
  • the denitration activity of vanadium oxalate catalyst is similar to that of ammonium metavanadate catalyst.
  • the oxidation rate of CVOCs is higher than that of ammonium metavanadate catalyst, but lower than that of acetylacetonate vanadium oxide catalyst; its compressive strength is about 73N/cm. 3 .
  • the vanadium acetylacetonate catalyst not only denitrates and desorbs chlorine-containing volatile organic compounds, but also has synergistic removal efficiency superior to other catalysts, and its compressive strength is also high.
  • the catalyst obtained by the "two-step method” not only obtains high denitration rate and removal efficiency of CVOCs, but also has high mechanical strength, and is a technology for preparing a clover-type catalyst for denitration synergistic removal of CVOCs which is more advantageous for industrial production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

一种协同控制氮氧化物(NOx)和含氯挥发性有机物(CVOCs)三叶草型催化剂的制备方法及其应用,该催化剂采用有机钒化合物为钒前驱体,钛白粉或钛钨粉为载体,利用"两步法"制备催化剂:具体地,第一步,利用机械球磨法制备得到粉体催化剂;第二步,采用挤出成型工艺制备三叶草型的结构化催化剂。所得催化剂适用于垃圾焚烧、钢铁烧结和有色冶炼等行业工业烟气的NOx和CVOCs分别脱除,也适用于NOx和CVOCs协同脱除。与现有商业催化剂相比,对商业钒基催化剂体系改动不大,但采用"两步法",所得催化剂不仅获得高脱硝率和CVOCs脱除效率,同时具有较高的机械强度和耐磨性能,是一种更利于工业化生产的脱硝协同脱除CVOCs的三叶草型催化剂制备技术。

Description

一种协同控制NOx和CVOCs三叶草型催化剂的制备方法及其应用 技术领域
本发明属于环境保护中的氮氧化物(NOx)和含氯挥发性有机物(CVOCs)协同控制技术领域,特别涉及一种协同控制NOx和CVOCs三叶草型催化剂的制备方法及其应用。
背景技术
垃圾焚烧烟气中含有大量的氮氧化物(NOx)和含氯挥发性有机物(CVOCs,Chloride Volatile Organic Compounds)等污染物。氮氧化物不仅直接危害人体健康,还能引起光化学烟雾、酸雨,促进二次颗粒物的生成,对环境和社会造成巨大损害。含氯可挥发性有机化合物是目前环境催化领域研究的重点,而二噁英是一类毒性很强的CVOCs,不仅严重污染环境并且对人体有致癌作用,其主要来源于垃圾焚烧、钢铁烧结和有色冶炼等行业。随着环保政策的逐步落实,将有更多垃圾焚烧企业需要建设烟气排放控制工程。然而,现有成熟的烟气排放控制技术大多应用于燃煤电厂,其烟气排放特征与垃圾焚烧烟气差异很大,现有技术难以直接应用。目前,氨气选择性催化还原技术(NH3-SCR)是国际上应用最为广泛的烟气脱硝技术。用于电厂的传统钒钨钛催化剂体系反应工作温度为300-420℃,而一般垃圾焚烧炉排放烟气温度较低(<300℃),传统高温脱硝催化剂不适合排放状况复杂的垃圾焚烧烟气。因此,开发低温脱硝协同脱CVOCs催化体系,实现高效协同脱除氮氧化物和含氯挥发性有机物等大气污染物,具有广泛的市场需求。
对于工业催化剂,不仅需要具有优异的污染物脱除效率和选择性,还应具有一定的物化性质:较小的床层阻力、较大的比表面积、较高的机械强度和热稳定性。粉体催化剂会造成床层压降增大,且装卸不便,难以直接实现工业应用。因此,需要采用合适的成型工艺与助剂将催化活性组分制备成具有一定形 貌的结构化催化剂。相比较圆柱型催化剂,三叶草型催化剂降低了催化剂的直径,增加了催化剂的比表面积,同时提高了机械强度和空隙率。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种协同控制NOx和CVOCs三叶草型催化剂的制备方法及其应用,采用钛白粉或钛钨粉为载体,有机钒化合物为钒前驱体,利用“两步法”制备催化剂:第一步,利用机械球磨法制备得到粉体催化剂;第二步,采用挤出成型工艺制备三叶草型的结构化催化剂。所得催化剂适用于垃圾焚烧、钢铁烧结和有色冶炼等行业烟气的NOx和CVOCs协同脱除。与现有商业催化剂相比,本发明对商业钒基催化剂体系改动不大,但采用“两步法”,所得催化剂不仅获得高脱硝率和CVOCs脱除效率,同时具有较高的机械强度,是一种更利于工业化生产的脱硝协同脱除CVOCs的三叶草型催化剂制备技术。
为了实现上述目的,本发明采用的技术方案是:
一种协同控制NOx和CVOCs三叶草型催化剂的制备方法,采用有机钒化合物为钒前驱体,钛白粉、钛钨粉或钛钼粉为载体,首先利用机械球磨法制备粉体催化剂,然后采用挤出成型工艺制备三叶草型的结构化催化剂。
所述催化剂的活性组分为五氧化二钒。
所述钒前驱体的用量以所能产生的五氧化二钒计,保证五氧化二钒在催化剂中的含量为1-10wt.%。
所述有机钒化合物为草酸氧钒、乙酰丙酮氧钒中的一种或几种的混合物。
所述载体钛钨粉中含有三氧化钨或三氧化钼的一种及混合物,含量为3-10wt.%。
所述制备步骤具体如下:
步骤一:将载体和钒前驱体初步混合,然后加入球磨罐中进行球磨,球磨30-120min,转速20-80转/min;
步骤二:将球磨混合物取出于100-120℃干燥4-10h,空气氛围下400-550℃焙烧2-6h,得到脱硝协同脱除CVOCs催化剂粉体;
步骤三:将水、纤维和步骤二得到的粉体催化剂加入捏合机中并搅拌10-60min;
步骤四:分步将硬脂酸、乳酸、聚氧化乙烯(PEO)和羧甲基纤维素(CMC)加入捏合机中,每步间隔10-60min,持续搅拌得到湿料团;
步骤五:利用挤出机对步骤四得到的湿料团进行挤出成型,经干燥、焙烧得到条型催化剂成品。
优选地,以重量计,所述步骤三中,粉体催化剂100份、纤维1-10份、水10-200份、硬脂酸0.1-5.0份、乳酸1.0-10份、聚氧化乙烯(PEO)0.1-5.0份、羧甲基纤维素(CMC)0.1-10份,所述纤维可以为玻璃纤维。
所述步骤五的干燥和焙烧程序如下:
(1)室温干燥:至于室内干燥24h;
(2)马弗炉中焙烧:
快速升温,室温下10℃/min快速升温至110℃;
慢速升温,以2℃/min慢速升温至300℃;
快速升温,以10℃/min快速升温至450-550℃,并在450-550℃保温4h;
最后,随炉冷却,得到脱硝协同脱除CVOCs三叶草型催化剂成品。
本发明制备所得协同控制NOx和CVOCs三叶草型催化剂可应用于垃圾焚烧、钢铁烧结和有色冶炼等行业烟气的氮氧化物和二噁英协同脱除,反应条件:温度150-450℃,常压,空速60,000h-1,烟气浓度:NO 500ppm,C6H5Cl 100ppm,NH3 500ppm,O2 5vol.%。
与现有技术相比,本发明的有益效果是:
1.本发明采用“两步法”:第一步,球磨法制备粉体催化剂;第二步,挤出成型制备三叶草型催化剂,所得催化剂不仅获得高脱硝率和CVOCs脱除效率,同时具有较高的机械强度,是一种更利于工业化生产的脱硝协同脱除CVOCs的三叶草型催化剂制备技术。
2.本发明的三叶草型催化剂成型工艺稍作调整,可实现挤出型蜂窝体催化剂的制备,可满足多种烟气多污染物协同控制的需求,具有广泛应用前景。
附图说明
图1是本发明三叶草型催化剂的脱硝协同脱除CVOCs效率示意图。
图2是本发明三叶草型催化剂的抗压强度示意图。
具体实施方式
下面结合具体实例,对本发明进行进一步阐述说明。
实施例一
步骤一:将200g钛白粉和15g偏钒酸铵初步混合,然后加入球磨罐中进行球磨,球磨30min,转速40转/min;
步骤二:将球磨混合物取出于110℃干燥4h,空气氛围下500℃焙烧4h,得到粉体催化剂;
步骤三:将步骤二制得的200g粉体催化剂和6.2g纤维加入捏合机中,搅拌并逐渐加入60mL水,持续搅拌30min;
步骤四:分步将0.5g硬脂酸、2.4mL乳酸、1.7g聚氧化乙烯(PEO)和2.0g羧甲基纤维素(CMC)加入捏合机中,每步间隔30min,持续搅拌得到湿料团;
步骤五:装上三叶草型模具,利用挤出机对步骤四得到的湿料团进行挤出成型,室温干燥24h,室温下10℃/min快速升温至110℃;以2℃/min慢速升温至300℃;以10℃/min快速升温至500℃,并在500℃保温4h;最后,随炉冷却得到三叶草型催化剂成品。
图1为催化剂脱硝协同脱除CVOCs活性测试结果,图2为催化剂的抗压强度测试结果,测试条件:选取3-5mm长度的三叶草型催化剂用于污染物协同控制活性评价,0.2g催化剂,NO 500ppm,NH3 500ppm,C6H5Cl 100ppm,O2 5vol.%,N2平衡,烟气总流量为200mL/min,气体空速GHSV 60,000h-1(标况)。
可以看出,随着反应温度的升高,偏钒酸铵催化剂的脱硝活性先升高后下降,CVOCs的氧化率逐渐升高,其抗压强度约为90N/cm3
实施例二
步骤一:将200g钛白粉和34g乙酰丙酮氧钒初步混合,然后加入球磨罐中进行球磨,球磨30min,转速40转/min;
步骤二:将球磨混合物取出于110℃干燥4h,空气氛围下450℃焙烧4h,得到粉体催化剂;
步骤三:将步骤二制得的200g粉体催化剂和6.2g纤维加入捏合机中,搅拌并逐渐加入80mL水,持续搅拌50min;
步骤四:分步将1.5g硬脂酸、4.8mL乳酸、1.0g聚氧化乙烯(PEO)和1.0g羧甲基纤维素(CMC)加入捏合机中,每步间隔30min,持续搅拌得到湿料团;
步骤五:装上三叶草型模具,利用挤出机对步骤四得到的湿料团进行挤出成型,室温干燥24h,室温下10℃/min快速升温至110℃;以2℃/min慢速升温至300℃;以10℃/min快速升温至450℃,并在450℃保温4h;最后,随炉冷却得到三叶草型催化剂成品。
图1为催化剂脱硝协同脱除CVOCs活性测试结果,图2为催化剂的抗压强度测试结果,测试条件:选取3-5mm长度的三叶草型催化剂用于污染物协同控制活性评价,0.2g催化剂,NO 500ppm,NH3 500ppm,C6H5Cl 100ppm,O2 5vol.%,N2平衡,烟气总流量为200mL/min,气体空速GHSV 60,000h-1(标况)。
可以看出,乙酰丙酮氧化剂的氮氧化物和CVOCs的脱除率明显高于偏钒酸铵催化剂,CVOCs的T50低至270℃左右。其抗压强度约为125N/cm3
实施例三
步骤一:将200g钛钨粉和20g草酸氧钒初步混合,然后加入球磨罐中进行球磨,球磨30min,转速80转/min;
步骤二:将球磨混合物取出于110℃干燥4h,空气氛围下500℃焙烧4h,得到粉体催化剂;
步骤三:将步骤二制得的200g粉体催化剂和6.2g纤维加入捏合机中,搅拌并逐渐加入60mL水,持续搅拌30min;
步骤四:分步将0.5g硬脂酸、2.4mL乳酸、1.7g聚氧化乙烯(PEO)和2.0g羧甲基纤维素(CMC)加入捏合机中,每步间隔30min,持续搅拌得到湿料团;
步骤五:装上三叶草型模具,利用挤出机对步骤四得到的湿料团进行挤出成型,室温干燥24h,室温下10℃/min快速升温至110℃;以2℃/min慢速升温 至300℃;以10℃/min快速升温至500℃,并在500℃保温4h;最后,随炉冷却得到三叶草型催化剂成品。
图1为催化剂脱硝协同脱除CVOCs活性测试结果,图2为催化剂的抗压强度测试结果,测试条件:选取3-5mm长度的三叶草型催化剂用于污染物协同控制活性评价,0.2g催化剂,NO 500ppm,NH3 500ppm,C6H5Cl 100ppm,O2 5vol.%,N2平衡,烟气总流量为200mL/min,气体空速GHSV 60,000h-1(标况)。
可以看出,草酸氧钒催化剂的脱硝活性与偏钒酸铵催化剂相近,CVOCs的氧化率高于偏钒酸铵催化剂,但均低于乙酰丙酮氧钒催化剂;其抗压强度约为73N/cm3。乙酰丙酮氧钒催化剂不仅脱硝脱含氯挥发性有机物或两者协同脱除效率都优于其他催化剂,并且,其抗压强度也较高。说明本发明采用“两步法”所得催化剂不仅获得高脱硝率和CVOCs脱除效率,同时具有较高的机械强度,是一种更利于工业化生产的脱硝协同脱除CVOCs的三叶草型催化剂制备技术。

Claims (10)

  1. 一种协同控制NOx和CVOCs三叶草型催化剂的制备方法,其特征在于,采用有机钒化合物为钒前驱体,钛白粉、钛钨粉或钛钼粉为载体,首先利用机械球磨法制备粉体催化剂,然后采用挤出成型工艺制备三叶草型的结构化催化剂。
  2. 根据权利要求1所述协同控制NOx和CVOCs三叶草型催化剂的制备方法,其特征在于,所述催化剂的活性组分为五氧化二钒。
  3. 根据权利要求1所述协同控制NOx和CVOCs三叶草型催化剂的制备方法,其特征在于,所述钒前驱体的用量以所能产生的五氧化二钒计,保证五氧化二钒在催化剂中的含量为1-10wt.%。
  4. 根据权利要求1所述协同控制NOx和CVOCs三叶草型催化剂的制备方法,其特征在于,所述有机钒化合物为草酸氧钒、乙酰丙酮氧钒中的一种或几种的混合物。
  5. 根据权利要求1所述协同控制NOx和CVOCs三叶草型催化剂的制备方法,其特征在于,所述载体钛钨粉中含有三氧化钨或三氧化钼的一种及混合物,含量为3-10wt.%。
  6. 根据权利要求1所述协同控制NOx和CVOCs三叶草型催化剂的制备方法,其特征在于,所述制备步骤具体如下:
    步骤一:将载体和钒前驱体初步混合,然后加入球磨罐中进行球磨,球磨30-120min,转速20-80转/min;
    步骤二:将球磨混合物取出于100-120℃干燥4-10h,空气氛围下400-550℃焙烧2-6h,得到脱硝协同脱除CVOCs催化剂粉体;
    步骤三:将水、纤维和步骤二得到的粉体催化剂加入捏合机中并搅拌10-60min;
    步骤四:分步将硬脂酸、乳酸、聚氧化乙烯(PEO)和羧甲基纤维素(CMC) 加入捏合机中,每步间隔10-60min,持续搅拌得到湿料团;
    步骤五:利用挤出机对步骤四得到的湿料团进行挤出成型,经干燥、焙烧得到条型催化剂成品。
  7. 根据权利要求6所述协同控制NOx和CVOCs三叶草型催化剂的制备方法,其特征在于,以重量计,所述步骤三中,粉体催化剂100份、纤维1-10份、水10-200份、硬脂酸0.1-5.0份、乳酸1.0-10份、聚氧化乙烯(PEO)0.1-5.0份、羧甲基纤维素(CMC)0.1-10份。
  8. 根据权利要求5所述协同控制NOx和CVOCs三叶草型催化剂的制备方法,其特征在于,所述步骤五的干燥和焙烧程序如下:
    (1)室温干燥:至于室内干燥24h;
    (2)马弗炉中焙烧:
    快速升温,室温下10℃/min快速升温至110℃;
    慢速升温,以2℃/min慢速升温至300℃;
    快速升温,以10℃/min快速升温至450-550℃,并在450-550℃保温4h;
    最后,随炉冷却,得到脱硝协同脱除CVOCs三叶草型催化剂成品。
  9. 根据权利要求1制备所得协同控制NOx和CVOCs三叶草型催化剂应用于垃圾焚烧、钢铁烧结和有色冶炼等行业烟气的氮氧化物和二噁英协同脱除。
  10. 根据权利要求7所述应用,其特征在于,反应条件:温度150-450℃,常压,空速60,000h-1,烟气浓度:NO 500ppm,C6H5Cl 100ppm,NH3500ppm,O25vol.%。
PCT/CN2017/103835 2017-07-04 2017-09-28 一种协同控制NOx和CVOCs三叶草型催化剂的制备方法及其应用 WO2019006895A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710539456.9 2017-07-04
CN201710539456.9A CN107376895B (zh) 2017-07-04 2017-07-04 一种协同控制NOx和CVOCs三叶草型催化剂的制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2019006895A1 true WO2019006895A1 (zh) 2019-01-10

Family

ID=60335115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103835 WO2019006895A1 (zh) 2017-07-04 2017-09-28 一种协同控制NOx和CVOCs三叶草型催化剂的制备方法及其应用

Country Status (2)

Country Link
CN (1) CN107376895B (zh)
WO (1) WO2019006895A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111366677A (zh) * 2020-04-15 2020-07-03 华南理工大学 协同脱除一氧化氮、苯、甲苯的scr催化剂性能评价装置
CN115845834A (zh) * 2022-12-08 2023-03-28 润和催化剂股份有限公司 一种三叶草条形脱硝催化剂及其制备方法
CN116116451A (zh) * 2022-11-25 2023-05-16 光大环境科技(中国)有限公司 一种低温协同脱硝脱二噁英的复合催化剂制备方法
CN116272953A (zh) * 2023-02-28 2023-06-23 东南大学 用于氮氧化物与CVOCs协同脱除催化剂及制备与应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107970948A (zh) * 2017-12-15 2018-05-01 江苏龙净科杰催化剂再生有限公司 烟气同时脱硝脱VOCs用蜂窝状催化剂及其制备方法
CN108283921A (zh) * 2018-01-10 2018-07-17 北京国电龙源环保工程有限公司 60孔scr脱硝催化剂模块及其制备方法
CN108355680B (zh) * 2018-03-28 2020-11-06 环境保护部华南环境科学研究所 一种协同控制固定源烟气中多种污染物的催化剂及其制备方法
CN108636430B (zh) * 2018-04-20 2020-10-13 华东理工大学 一种钒修饰的磷酸锆多相催化剂的制备方法及其应用
CN109759102B (zh) * 2019-02-01 2020-05-26 清华大学 脱硝协同脱CVOCs的催化剂及其制备方法和应用
CN109731593B (zh) * 2019-02-01 2020-07-31 山东大学 Scr催化剂粉体及其制备方法和应用
CN110538569A (zh) * 2019-09-25 2019-12-06 湖南碧德环保科技有限公司 一种烟气干法脱硝剂及制备方法
CN110665511B (zh) * 2019-09-27 2021-12-17 华南理工大学 一种用于净化高硫燃煤烟气中挥发性有机物的钛基复合催化剂及其制备方法与应用
CN113559846A (zh) * 2021-07-28 2021-10-29 苏州西热节能环保技术有限公司 用于催化燃烧脱除烟气氯苯的scr催化剂改性方法及催化剂
CN113786828B (zh) * 2021-09-16 2023-12-29 清华大学 一种用于NOx和CVOCs的协同脱除的催化剂及其制备方法和用途
CN114653360A (zh) * 2022-04-22 2022-06-24 安徽工业大学 一种适用于水泥窑scr脱硝的新型催化剂

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101415488A (zh) * 2006-04-03 2009-04-22 韩国电力技术株式会社 通过引入球磨研磨制备在宽温度范围显示良好的氮氧化物去除性能的钒/氧化钛基催化剂的方法及其应用
CN106902807A (zh) * 2017-04-25 2017-06-30 北京环境工程技术有限公司 一种颗粒式低温scr催化剂及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103495417B (zh) * 2013-09-30 2016-02-03 山东爱亿普环保科技有限公司 烟气脱硝脱二噁英特种陶瓷催化剂及其制备方法
CN104801296A (zh) * 2015-04-13 2015-07-29 宜兴市宜刚环保工程材料有限公司 一种新型脱除二噁英催化剂及其制备方法
CN105013473A (zh) * 2015-07-20 2015-11-04 福建紫荆环境工程技术有限公司 一种同时脱除二噁英和nox的催化剂及其制备方法
CN105148948B (zh) * 2015-07-21 2018-01-30 安徽元琛环保科技股份有限公司 一种可脱除二噁英的脱硝催化剂及其制备方法
CN105126813A (zh) * 2015-10-09 2015-12-09 清华大学 高比表面脱硝催化剂及其制备和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101415488A (zh) * 2006-04-03 2009-04-22 韩国电力技术株式会社 通过引入球磨研磨制备在宽温度范围显示良好的氮氧化物去除性能的钒/氧化钛基催化剂的方法及其应用
CN106902807A (zh) * 2017-04-25 2017-06-30 北京环境工程技术有限公司 一种颗粒式低温scr催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LINA GAN ET AL.: "Improved Low-Temperature Activity of V205- WO 3/TiO2 for Denitration Using Different Vanadium Precursors", CATALYSTS, vol. 6, no. 2, 5 February 2016 (2016-02-05), pages 25, XP055562538 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111366677A (zh) * 2020-04-15 2020-07-03 华南理工大学 协同脱除一氧化氮、苯、甲苯的scr催化剂性能评价装置
CN116116451A (zh) * 2022-11-25 2023-05-16 光大环境科技(中国)有限公司 一种低温协同脱硝脱二噁英的复合催化剂制备方法
CN115845834A (zh) * 2022-12-08 2023-03-28 润和催化剂股份有限公司 一种三叶草条形脱硝催化剂及其制备方法
CN116272953A (zh) * 2023-02-28 2023-06-23 东南大学 用于氮氧化物与CVOCs协同脱除催化剂及制备与应用

Also Published As

Publication number Publication date
CN107376895A (zh) 2017-11-24
CN107376895B (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
WO2019006895A1 (zh) 一种协同控制NOx和CVOCs三叶草型催化剂的制备方法及其应用
CN103464139B (zh) 一种结构化烟气脱硝催化剂的制备方法
US20190224663A1 (en) Preparation Method of Denitration Catalyst with Wide Operating Temperature Range for Flue Gas
CN101590404B (zh) 一种低钒脱硝催化剂及其制备方法和应用
CN104014331B (zh) 介孔二氧化钛球负载的Mn-Ce-W复合氧化物脱硝催化剂的制备方法
CN105289644B (zh) 一种平板式抗硫低温scr脱硝催化剂及其制备方法
CN102716752A (zh) 低温scr脱硝催化剂的制备方法
CN102489294B (zh) 一种挤出成型的低温scr催化剂及其制备方法
CN103252231A (zh) 一种脱硝催化剂及其制备方法
JP2018527168A (ja) 窒素酸化物除去用scr触媒及びその製造方法
CN109821531B (zh) 一种基于氧化铈载体的平板式高温抗硫scr脱硝催化剂及其制备方法
CN107126949B (zh) 一种抗砷中毒的scr脱硝催化剂及其制备方法
CN114210320A (zh) 一种异质双原子低温耐硫scr催化剂及其制备方法
CN101811039B (zh) 一种硫改性二氧化铈催化剂的制备方法及制备的催化剂
CN102259009A (zh) 基于硫酸根促进的TiO2载体的SCR烟气脱硝催化剂及制备方法
CN106268786A (zh) 一种低温脱硝催化剂及其制备方法
CN109759102B (zh) 脱硝协同脱CVOCs的催化剂及其制备方法和应用
CN105233814A (zh) 一种核壳结构的铈基氧化物催化剂、制备方法及其用途
CN112403485A (zh) 一种V/Cu/B/W-TiO2-ZrO2复合低温脱硝催化剂的生产方法
CN110694612A (zh) 稀土基低钒中低温烟气脱硝催化剂及其制备方法
CN106362733A (zh) 一种耐高温锰基氧化物催化剂及其制备方法
CN113600176A (zh) 一种烟气协同脱硝脱汞催化剂的制备方法及催化剂
CN113209960A (zh) 一种蜂窝式脱硝催化剂及其制备方法及应用
CN105664917A (zh) 一种分层结构的铈基氧化物催化剂、制备方法及其用途
CN109731593B (zh) Scr催化剂粉体及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916532

Country of ref document: EP

Kind code of ref document: A1