WO2019004050A1 - 光触媒塗布液、光触媒構造体及びその製造方法 - Google Patents
光触媒塗布液、光触媒構造体及びその製造方法 Download PDFInfo
- Publication number
- WO2019004050A1 WO2019004050A1 PCT/JP2018/023600 JP2018023600W WO2019004050A1 WO 2019004050 A1 WO2019004050 A1 WO 2019004050A1 JP 2018023600 W JP2018023600 W JP 2018023600W WO 2019004050 A1 WO2019004050 A1 WO 2019004050A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- photocatalyst
- silane compound
- mass
- water
- producing
- Prior art date
Links
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 139
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 42
- 239000007788 liquid Substances 0.000 title claims abstract description 34
- 239000000463 material Substances 0.000 claims abstract description 45
- 229910000077 silane Inorganic materials 0.000 claims abstract description 44
- -1 silane compound Chemical class 0.000 claims abstract description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000000203 mixture Substances 0.000 claims abstract description 38
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 34
- 230000007062 hydrolysis Effects 0.000 claims abstract description 34
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 34
- 239000010419 fine particle Substances 0.000 claims abstract description 23
- 239000002253 acid Substances 0.000 claims abstract description 22
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 12
- 239000003054 catalyst Substances 0.000 claims abstract description 11
- 238000009833 condensation Methods 0.000 claims abstract description 8
- 230000005494 condensation Effects 0.000 claims abstract description 8
- 230000003301 hydrolyzing effect Effects 0.000 claims abstract description 7
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 6
- 238000000576 coating method Methods 0.000 claims description 85
- 239000011248 coating agent Substances 0.000 claims description 84
- 238000000034 method Methods 0.000 claims description 27
- 239000000758 substrate Substances 0.000 claims description 26
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 24
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 13
- 239000000919 ceramic Substances 0.000 claims description 9
- 239000011521 glass Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 239000004408 titanium dioxide Substances 0.000 claims description 6
- 239000004568 cement Substances 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 4
- 239000004567 concrete Substances 0.000 claims description 4
- 239000004575 stone Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 abstract description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 4
- 239000000377 silicon dioxide Substances 0.000 abstract description 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 41
- 239000010410 layer Substances 0.000 description 32
- 239000006185 dispersion Substances 0.000 description 13
- 239000002245 particle Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 9
- 238000003860 storage Methods 0.000 description 8
- 230000002378 acidificating effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000007921 spray Substances 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 6
- 229910017604 nitric acid Inorganic materials 0.000 description 6
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 238000004220 aggregation Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000002296 dynamic light scattering Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000003377 acid catalyst Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000001476 alcoholic effect Effects 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 229960000907 methylthioninium chloride Drugs 0.000 description 2
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 2
- 150000001282 organosilanes Chemical class 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910001930 tungsten oxide Inorganic materials 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- 241000345998 Calamus manan Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- DYIZHKNUQPHNJY-UHFFFAOYSA-N oxorhenium Chemical compound [Re]=O DYIZHKNUQPHNJY-UHFFFAOYSA-N 0.000 description 1
- SJLOMQIUPFZJAN-UHFFFAOYSA-N oxorhodium Chemical compound [Rh]=O SJLOMQIUPFZJAN-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 235000012950 rattan cane Nutrition 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910003449 rhenium oxide Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- 229910003450 rhodium oxide Inorganic materials 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- ZUEKXCXHTXJYAR-UHFFFAOYSA-N tetrapropan-2-yl silicate Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)OC(C)C ZUEKXCXHTXJYAR-UHFFFAOYSA-N 0.000 description 1
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/02—Polysilicates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/02—Emulsion paints including aerosols
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
Definitions
- the present invention relates to a photocatalyst coating solution and a method for producing the same, a photocatalyst structure and a method for producing the same.
- the photocatalyst is supported on the surface of various materials to make it easy to remove dirt in exterior materials of buildings and products around water, and is used to prevent fogging of glass products and the like by means of hydrophilicity.
- a heat-resistant material such as ceramics
- a photocatalyst layer is supported on the surface
- the photocatalyst is often supported by baking at a high temperature of about 500 ° C. in a form incorporated in the manufacturing process of the material. .
- the strength of the photocatalytic film may be poor.
- Patent Document 1 describes that a hydrolyzable silicon compound is added to an aqueous dispersion of photocatalytic titanium oxide particles and reacted, and this solution is applied to a substrate and dried at 100 ° C. to form a coating film. There is. It has been shown that it is preferable to use an alkoxysilane hydrolyzate in combination for specific photocatalytic materials.
- Patent Document 2 describes that a coating material composition containing silica-coated photocatalytic titanium dioxide and an acid partial hydrolyzate of tetraalkoxysilane in a specific ratio is suitable for organic substrates. There is.
- Patent Document 3 describes a coating method in which a mixture of tetraalkoxysilane and anatase type titanium oxide sol is applied to a substrate, and hydrolysis and dehydration condensation polymerization are performed by heating.
- Patent Document 4 a silicone resin obtained by hydrolyzing a tetrafunctional hydrolyzable organosilane at a molar ratio of water to hydrolyzable groups of less than 1 in the presence of an acidic catalyst as a main component, and a filler It describes that a paint containing the above is applied to a substrate and baked at 250 ° C., and that an acidic catalyst may be used as a filler such as a titanium oxide sol.
- Patent Document 5 after hydrolyzing a tetrafunctional hydrolyzable organosilane with hydrochloric acid, nitric acid peptized titanium oxide water so that the titanium oxide content is 30 to 70% by weight with respect to the total solid after film formation.
- the paint obtained by mixing with a sol is applied to a substrate and fired at 120 ° C. or higher.
- the present invention has a photocatalyst coating solution for easily forming a photocatalyst layer having excellent strength and sufficient photocatalytic activity, a method for producing the same, and a photocatalyst layer having excellent strength and sufficient photocatalytic activity. It aims at providing a photocatalyst structure and its manufacturing method.
- the inventors of the present invention have applied a photocatalyst coating liquid containing an acid-catalyzed hydrolysis of tetraalkoxysilane in the presence of a photocatalyst and a specific amount of alcohol onto a substrate to solve the above problems. It has been found that a body can be obtained, and the present invention has been completed.
- a method for producing a photocatalyst coating solution which is represented by the formula (1) Si (OR) 4 (1) (Wherein R represents an alkyl group having 1 to 4 carbon atoms, and four Rs may be the same or different) and a hydrolyzable silane compound represented by the formula: Mix monohydric alcohol, acid, water and fine particles of photocatalytic material, The content of the hydrolyzable silane compound is 5% by mass or less in terms of SiO 2 , and the molar ratio (water / hydrolyzable group) of the hydrolyzable group of the hydrolyzable silane compound to the water is 8 or more Preparing a mixture in which the content of the C 1-4 monovalent alcohol is 20 to 50% by mass, and The manufacturing method of a photocatalyst coating liquid including the process of performing hydrolysis or hydrolytic condensation using the said acid as a catalyst to the hydrolysable silane compound in the said mixture.
- a method for producing a photocatalyst structure comprising the step of applying the photocatalyst coating solution according to (5) above to the surface of a substrate to form a photocatalyst layer.
- the photocatalyst coating liquid of the present invention can form a photocatalyst layer which is excellent in strength and exhibits sufficient photocatalytic activity. Moreover, the photocatalyst coating liquid of this invention is excellent in storage stability. According to the method for producing a photocatalyst coating solution of the present invention, a photocatalyst coating solution capable of forming a photocatalyst layer having excellent strength and sufficient photocatalytic activity can be produced, and it is produced by the method for producing a photocatalyst coating solution of the present invention The photocatalyst coating solution is excellent in storage stability.
- the photocatalyst structure of the present invention has a photocatalyst layer which is excellent in strength and exhibits sufficient photocatalytic activity. According to the method for producing a photocatalyst structure of the present invention, it is possible to produce a photocatalyst structure having a photocatalyst layer which is excellent in strength and exhibits sufficient photocatalytic activity.
- the method for producing a photocatalyst coating solution of the present invention is represented by the formula (1) Si (OR) 4 (1) (Wherein R represents an alkyl group having 1 to 4 carbon atoms, and four Rs may be the same or different) and a hydrolyzable silane compound represented by the formula:
- a monohydric alcohol, an acid, water, and fine particles of the photocatalyst material are mixed, and in the mixture, the content of the hydrolyzable silane compound is 5% by mass or less in terms of SiO 2 , and the hydrolyzable silane
- the molar ratio (water / hydrolyzable group) of the hydrolyzable group of the compound to the water in the photocatalyst coating solution is 8 or more, and the content of the monohydric alcohol having 1 to 4 carbon atoms is 20 to 50 mass
- a step of performing hydrolysis or hydrolytic condensation on the hydrolyzable silane compound in the mixture using the acid as a catalyst is represented by the formula (1) Si (OR) 4 (1) (Where
- the photocatalyst coating liquid of this invention is Formula (1) Si (OR) 4 (1) (Wherein R represents an alkyl group having 1 to 4 carbon atoms, and four Rs may be the same or different) and a hydrolyzable silane compound represented by the formula: A monohydric alcohol, an acid, water, and fine particles of the photocatalyst material are mixed, and the content of the hydrolyzable silane compound is 5% by mass or less in terms of SiO 2 , and the hydrolyzability of the hydrolyzable silane compound A mixture having a molar ratio of water group to water (water / hydrolyzable group) of 8 or more and a content of the monohydric alcohol having 1 to 4 carbon atoms of 20 to 50% by mass, and the mixture is prepared
- the photocatalyst coating liquid is obtained by hydrolysis or hydrolytic condensation using the acid as a catalyst.
- the content of SiO 2 in terms refers to the content when the Si of the hydrolyzable silane compound is converted into SiO 2 all.
- hydrolysable silane compound represented by Formula (1) at least 1 sort (s) should just be contained, and 2 or more types of mixtures may be sufficient.
- examples of the hydrolyzable silane compound represented by the formula (1) include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane and tetraisopropoxysilane. Particularly, tetraethoxysilane is preferable in that the coating solution after hydrolysis has low toxicity.
- the content of the hydrolyzable silane compound in the mixture is 5% by mass or less and 4% by mass or less in terms of SiO 2 with respect to the total amount of the mixture. Is more preferred.
- the lower limit is not particularly limited as long as film formation is possible, but 1% by mass or more is preferable, and 2% by mass or more is more preferable.
- the content of the hydrolyzable silane compound in the mixture is preferably 1 to 5% by mass, more preferably 2 to 4% by mass in terms of SiO 2 with respect to the total amount of the mixture.
- the molar ratio (water / hydrolyzable group) of hydrolyzable group to water in the hydrolyzable silane compound in the mixture is 8 or more, 10 It is preferable that it is more than.
- the upper limit of the molar ratio is not particularly limited, but is preferably 20 or less, and more preferably 16 or less.
- the molar ratio is preferably 8 to 20, more preferably 10 to 16.
- the mixture At the start of hydrolysis in the production of the photocatalyst coating solution of the present invention, it is necessary for the mixture to have 20 to 50% by mass of monohydric alcohol having 1 to 4 carbon atoms with respect to the total amount of the mixture.
- monohydric alcohol examples include methanol, ethanol, 1-propanol, 2-propanol, n-butanol, sec-butanol, tert-butanol, and a mixture of two or more selected from these.
- ethanol, 1-propanol, 2-propanol or a mixture of two or more selected from these is preferable from the viewpoint of low harmfulness.
- the amount of monohydric alcohol is less than 20% by mass, even if the hydrolyzable silane compound is mixed with other components, it separates into two phases, and hydrolysis is not easy, so it is possible to obtain a stable photocatalyst coating liquid Have difficulty. If the amount of monohydric alcohol is 20% by mass or more, the hydrolysis proceeds by strong stirring. When the amount of the monohydric alcohol is more than 50% by mass, aggregation of solid content occurs after addition of the hydrolyzable silane compound, and a uniform and stable photocatalyst coating solution can not be obtained.
- the content of the monohydric alcohol having 1 to 4 carbon atoms in the mixture is preferably 30 to 50% by mass, and more preferably 40 to 50% by mass.
- the method of adding water for preparing the mixture in the present invention is not particularly limited, but it is preferable to be mixed as water in an acidic aqueous solution or aqueous dispersion of a photocatalytic material described later.
- the content of the hydrolyzable silane compound, the molar ratio of the hydrolyzable group of the hydrolyzable silane compound to the total added amount of water, and the amount of the photocatalytic material if necessary may be added appropriately to adjust the ratio of
- the monohydric alcohol can be previously mixed with a necessary amount of water and mixed as an aqueous alcohol solution.
- the hydrolyzable silane compound represented by Formula (1) is hydrolyzed in the presence of water, and the hydrolyzate is further dehydrated to be converted to a condensate.
- heating or catalysts such as acids, alkalis and the like are used to promote this hydrolysis.
- an acid is used as a hydrolysis catalyst. If an alkali is used as a hydrolysis catalyst, the condensation is more likely to proceed after hydrolysis, and the viscosity of the coating solution is thereby increased or gelled, so that the coating solution becomes unstable without being able to withstand long-term storage. It is also difficult to handle, especially when applied by spray. The use of acids avoids these problems.
- a soluble inorganic acid such as hydrochloric acid, nitric acid or sulfuric acid, an organic acid such as acetic acid, or solid fine particles dispersible in a liquid such as acidic silica sol
- Hydrochloric acid or nitric acid is preferred because it does not affect the strength or photocatalytic activity.
- the amount of the acid used for the hydrolysis of the hydrolyzable silane compound is in the range of 0.0001 to 0.01 in terms of the ratio of the number of equivalents of the acid to the number of moles of the hydrolyzable silane compound, or
- the pH is preferably 1 to 5.
- the pH is more preferably 1 to 3, and the stability is particularly excellent in the same pH range after hydrolysis.
- the acid dispersion may be used also as an acid catalyst without particularly adding an acid.
- the photocatalyst material fine particles used for the photocatalyst containing coating liquid of the present invention are fine particles made of an inorganic material containing a metal oxide or the like having photocatalytic activity.
- the main components of the photocatalytic material include titanium oxide, zinc oxide, tin oxide, zirconium oxide, tungsten oxide, chromium oxide, molybdenum oxide, iron oxide, nickel oxide, ruthenium oxide, ruthenium oxide, vanadium oxide, niobium oxide, tantalum oxide, rhodium oxide, Rhenium oxide etc. are mentioned.
- titanium oxide, tungsten oxide and the like, particularly anatase type or rutile type titanium oxide are preferable.
- those doped with an element such as nitrogen, carbon or sulfur can also be used.
- a metal to which a metal such as Pt, Rh, Ru, Nb, Cu, Sn, Ni, Fe, Ag or the like or an oxide thereof is added can also be used.
- rutile-type titanium oxide on which CuO is supported is preferable because it exhibits a photocatalytic function in response to visible light as well as ultraviolet light.
- the average particle size of the photocatalyst material particles to be mixed is not necessarily limited, but preferably 200 nm or less, and 1 to 20 nm so that the photocatalyst layer formed by application of the photocatalyst coating liquid does not become excessively uneven. Is more preferred.
- the average particle size of the photocatalyst material particles can be determined by dynamic light scattering measurement.
- the fine particles of the photocatalytic material may be in the form of powder, but in order to facilitate mixing, it is preferable to be in the form of a suspension or a sol dispersed in a solvent.
- the dispersion liquid may be used also as an acid catalyst without particularly adding an acid.
- the content of the fine particles of the photocatalyst material in the mixture is not necessarily limited, but is preferably 0.5 to 10% by mass, and is 1 to 4% by mass with respect to the total amount of the mixture. More preferable.
- the mass ratio of the hydrolyzable silane compound to the SiO 2 equivalent mass and the photocatalyst material fine particles is preferably 1: 5 to 10: 1, and more preferably 1: 2 to 3: 1.
- the method for producing a photocatalyst coating liquid according to the present invention is characterized in that a hydrolysis step is carried out after mixing at least the above-mentioned components into a mixture.
- a hydrolysis step is carried out after mixing at least the above-mentioned components into a mixture.
- the method and order of mixing of the components are not necessarily limited, in order to carry out the hydrolysis of the hydrolyzable silane compound under appropriate conditions, at least a monohydric alcohol having 1 to 4 carbon atoms, an acid, and It is preferable to first mix water and the fine particles of the photocatalytic material, and to mix the hydrolyzable silane compound into this mixture. Furthermore, prior to this, it is preferable to mix a monohydric alcohol with water to make an alcohol aqueous solution, make photocatalyst particles into a uniform dispersion in an acidic aqueous solution, and mix the two types to make the above mixture. In this case, the alcohol aqueous solution, the photocatalyst fine particle dispersion, and the hydrolyzable silane compound, which are starting materials of the photocatalyst coating solution, can be stably stored for a long time.
- the hydrolysis step is then carried out by stirring the above mixture.
- the temperature of the hydrolysis step is preferably adjusted to 60 ° C. or less, and particularly preferably adjusted to 30 ° C. or less in an environment where the room temperature is 30 ° C. or less.
- stirring is performed for a fixed time under the above conditions. This time is not particularly limited, but is preferably 10 minutes or more. Further, since no particular effect can be obtained even in a long time, in practice, it is preferably 1 hour or less, and more preferably 30 minutes or less.
- the hydrolyzable silane compound is completely hydrolyzed. This can be confirmed using H-NMR by the absence of the alkyl group in the silane compound.
- the photocatalyst coating solution thus prepared can be stably stored for a long period of time if it is around room temperature.
- the photocatalyst coating liquid of the present invention has a solid content concentration, that is, a total concentration of the above-mentioned fine particles of the photocatalyst material and the SiO 2 equivalent of the hydrolyzable silane compound is 0.3 to 20% by mass based on the total amount of the photocatalyst coating liquid. Is preferred. If the amount is less than 0.3% by mass, the amount of fixing as a photocatalyst layer may be small and the photocatalytic activity may not be sufficient. If the amount is more than 20% by mass, the photocatalyst layer may be excessively uneven to impair the appearance.
- the photocatalyst layer does not necessarily have to be continuous, but it is desirable that the photocatalyst material fine particles are uniformly dispersed, so it is preferable to make the solid concentration low.
- the solid concentration is preferably 0.3 to 10% by mass, and more preferably 0.3 to 5% by mass.
- the manufacturing method of the photocatalyst structure of this invention is a method including the process of apply
- the base is not necessarily limited.
- a method of applying directly on the substrate itself may be adopted, or an adhesive layer is formed in advance on the substrate surface, and the photocatalyst coating solution is applied on the adhesive layer.
- An adhesive layer is a structure provided in order to improve the adhesiveness of a base material and a photocatalyst layer, and to prevent peeling etc.
- the substrate is an organic material
- the substrate is preferably any of metal, glass, ceramics, stone, concrete, cement, or a composite material composed of two or more of them, which is heat resistant. There is no need to provide a layer. Ceramic products such as pottery and rattan are particularly preferable, and specific applications include tiles, tiles and the like, and most preferably tiles used as outer wall materials of buildings.
- the photocatalyst coating solution is simply applied and dried at normal temperature after the application is possible, heating is preferable.
- the heating increases the toughness of the photocatalytic layer.
- the heating method is not particularly limited, and may be a method of preheating the substrate or a method of heating after coating, and may be appropriately selected.
- the temperature of the material surface is preferably 50 ° C. or higher, and more preferably 100 ° C. or higher.
- the upper limit of the material surface temperature is not particularly limited, but is preferably 300 ° C. or less because it has no effect even if the temperature is too high.
- the preheating is to heat the material to be coated before coating, and to make the temperature of the material surface at the time of coating be a certain temperature or higher.
- the temperature of the material surface at the time of application is preferably 50 ° C. or more, more preferably 100 ° C. or more, and the preheating causes the photocatalyst coating solution to rapidly dry and cure.
- the temperature of the material surface at the time of application is preferably 300 ° C. or less, because if the temperature is too high, the coating film may become excessively nonuniform during application.
- the step of applying the photocatalyst coating solution in the present invention is not particularly limited, and any known method such as dipping, spraying, spin coating, bar coating, curtain coating, roll coating, brush coating, etc. may be used. Can. Among them, the spray method is preferable from the viewpoint of being suitable for introduction into the process of producing a ceramic product and from the viewpoint that a uniform photocatalyst layer excellent in strength can be obtained because the temperature of the substrate is not sharply reduced.
- the thickness of the photocatalytic layer after curing is not particularly limited, but is preferably 0.1 to 5 ⁇ m, more preferably 0.2 to 5 ⁇ m, in view of exhibiting excellent photocatalytic activity and strength. Is 0.5 to 3 ⁇ m.
- the photocatalytic layer does not necessarily cover the surface of the substrate continuously or completely. Rather, it is preferable that the photocatalytic layer be discontinuously and uniformly dispersed on the surface of the substrate in order to improve the appearance. In some cases, either form can be selected depending on the substrate and application. In order to adopt such a discontinuous dispersion form, the spray method is easy to carry out and is preferred. On the other hand, in order to increase the photocatalytic activity, it is preferable that the coverage by the photocatalytic layer be high, and the effect of enhancing the photocatalytic activity is poor even if the film is thickened. When the spray method is used, lowering the solid concentration of the photocatalyst coating solution can increase the coverage without excessively thickening the film. From the above points, in order to increase the photocatalytic activity using the spray method, the solid content concentration of the photocatalyst coating solution is preferably 0.3 to 10% by mass, and is preferably 0.3 to 5% by mass. Is more preferred.
- Example 1 Anatase-type photocatalytic titanium dioxide (manufactured by Wako Pure Chemical Industries, Ltd.) was ground by a bead mill under nitric acid condition (pH 1.5) until the average particle size became 10 nm or less, and 30 mass of titanium dioxide was obtained. % Aqueous dispersion was obtained.
- the content of TEOS (in terms of SiO 2 ) in the mixture is 2.6% by mass, and the molar ratio of hydrolyzable groups to water in TEOS (water / hydrolyzable groups) is 14.1, 1
- the concentration of the polyhydric alcohol is 46% by mass.
- the pH of the obtained photocatalyst coating solution is 1.6.
- the photocatalyst coating solution was stored at room temperature for the elapsed time described in Table 1.
- the photocatalyst coating solutions after storage did not have any problems such as aggregation and precipitation visually.
- the particle size distribution of the photocatalyst coating solution after storage was measured.
- a dynamic light scattering photometer (DLS-7000: dynamic light scattering measurement method, Ar laser 75 mW, manufactured by Otsuka Electronics Co., Ltd.) was used.
- the results volume average particle diameter Dv 50 (nm) are shown in Table 1.
- the photocatalyst layer obtained above was irradiated with ultraviolet light (black light, 1.0 mW / cm 2 ) for 24 hours from the 34th day to the 35th day after the preparation of the photocatalyst coating solution, and the catalyst layer surface was contacted with water. The horn and methylene blue degradation activity was measured.
- the method of measuring the contact angle to water was in accordance with JIS R 1703-1 (Fine Ceramics-Self-cleaning Performance Evaluation Method for Photocatalytic Material, Part 1: Measurement of Water Contact Angle).
- the methylene blue decomposition activity was tested according to JIS R 1703-2 (Fine ceramics-Evaluation method for self-cleaning performance of photocatalytic material-Part 2: Wet decomposition performance), and the decomposition activity index (nmol / L / min) was calculated and calculated as an average value of 2 times. The results are as shown in Table 1.
- Examples 2 to 6, Comparative Examples 1 to 4 Water (the amount is described in Table 2) and 23.14 g of alcoholic solvent Solmix AP-7 are separately added and mixed with 4.94 g of the same aqueous dispersion of titanium dioxide as in Example 1 (the order of addition is Subsequently, 4.86 g of TEOS was added and mixed, and the mixture was stirred at room temperature for 20 minutes to carry out a hydrolysis step to prepare a photocatalyst coating solution. In the mixing, the amount of water added was changed, and the order of adding water and an alcoholic solvent was changed and compared. As a result of the above, depending on the conditions, aggregation of solids was observed after TEOS mixing. In Examples 5 and 6, phase separation of the aqueous suspension and TEOS was observed immediately after mixing, but the hydrolysis step proceeded by increasing the stirring strength. The above results are shown in Table 2.
- the photocatalyst coating liquid of the present invention is excellent in strength and can form a photocatalyst layer exhibiting sufficient photocatalytic activity on metal, glass, ceramics, stone, concrete, cement, or a composite material of these, so the exterior material of the building Since it is possible to make it easy to remove dirt in waterborne products, glass products, etc., to prevent haze by hydrophilicity, and to be excellent in storage stability, it can be suitably used in these fields. Since the photocatalyst structure of the present invention has a photocatalyst layer which is excellent in strength and exerts sufficient photocatalytic activity, it can be suitably used in the above field.
- the method for producing a photocatalyst coating liquid and the method for producing a photocatalyst structure according to the present invention can easily produce the photocatalyst coating solution and the photocatalyst structure, they can be suitably used for producing them.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Dispersion Chemistry (AREA)
- Catalysts (AREA)
- Paints Or Removers (AREA)
Abstract
本発明の課題は、強度に優れ、かつ十分な光触媒活性を発揮する光触媒層を容易に形成するための光触媒塗布液及びその製造方法、並びに強度に優れ、かつ十分な光触媒活性を発揮する光触媒層を有する光触媒構造体及びその製造方法を提供することにある。 式(1):Si(OR)4 (式中、Rは炭素数1~4のアルキル基を表し、4個のRは同じであっても異なっていてもよい。)で示される加水分解性シラン化合物と、炭素数1~4の1価アルコールと、酸と、水と、光触媒材料微粒子とを混合し、前記加水分解性シラン化合物の含有量がSiO2換算で5質量%以下であり、前記加水分解性シラン化合物の加水分解性基と前記水とのモル比(水/加水分解性基)が8以上であり、前記炭素数1~4の1価アルコールの含有量が20~50質量%である混合物を調製する工程、及び、前記混合物中の加水分解性シラン化合物に前記酸を触媒として用いて加水分解又は加水分解縮合を行う工程を含む、光触媒塗布液の製造方法。
Description
本発明は、光触媒塗布液及びその製造方法並びに光触媒構造体及びその製造方法に関する。
光触媒は、各種材料の表面に担持させることにより、建築物の外装材や水回り製品において汚れを落ち易くしたり、親水性によってガラス製品等の曇りを防止したりするために利用されている。
セラミックス等の耐熱性材料を基材として、その表面に光触媒層を担持させる場合には、該材料の製造工程に組み入れた形で、500℃前後の高温での焼成によって光触媒を担持させることが多い。しかしそのためには、光触媒層形成のために焼成工程を設ける必要があった。また焼成温度が低く、あるいは焼成時間が短いと、光触媒被膜の強度が劣ることがあった。
特許文献1には、光触媒性酸化チタン粒子の水分散液に加水分解性ケイ素化合物を添加し反応させ、この液を基材に塗布し、100℃で乾燥させ塗膜とすることが記載されている。
特定の光触媒材料に関しては、アルコキシシラン加水分解物を併用するのが好ましいことが示されている。例えば、特許文献2には、シリカで被覆された光触媒性二酸化チタンとテトラアルコキシシランの酸部分加水分解物とを特定比率で含有するコーティング材組成物が有機基材用に適することが記載されている。
特許文献3には、テトラアルコキシシランとアナターゼ型酸化チタンゾルとの混合物を基材に塗布し、加熱により加水分解及び脱水縮重合させるコーティング方法が記載されている。
特許文献4には、4官能加水分解性オルガノシランを、水の加水分解性基に対するモル比を1未満として、酸性触媒存在下で加水分解して得られたシリコーンレジンを主要成分とし、さらにフィラーを含有する塗料を基材に塗装し、250℃で焼成して得られた塗装品が記載されており、酸性触媒としては酸化チタンゾル等のフィラーを兼用してもよいことが記載されている。
特許文献5には、4官能加水分解性オルガノシランを塩酸で加水分解した後、酸化チタン含有量が製膜後の全固形分に対し30~70重量%となるように硝酸解膠酸化チタン水ゾルと混合して得られた塗料を基材に塗装し、120℃以上で焼成して得られた塗装品が記載されている。
セラミックス等の耐熱性材料を基材として、その表面に光触媒層を担持させる場合には、該材料の製造工程に組み入れた形で、500℃前後の高温での焼成によって光触媒を担持させることが多い。しかしそのためには、光触媒層形成のために焼成工程を設ける必要があった。また焼成温度が低く、あるいは焼成時間が短いと、光触媒被膜の強度が劣ることがあった。
特許文献1には、光触媒性酸化チタン粒子の水分散液に加水分解性ケイ素化合物を添加し反応させ、この液を基材に塗布し、100℃で乾燥させ塗膜とすることが記載されている。
特定の光触媒材料に関しては、アルコキシシラン加水分解物を併用するのが好ましいことが示されている。例えば、特許文献2には、シリカで被覆された光触媒性二酸化チタンとテトラアルコキシシランの酸部分加水分解物とを特定比率で含有するコーティング材組成物が有機基材用に適することが記載されている。
特許文献3には、テトラアルコキシシランとアナターゼ型酸化チタンゾルとの混合物を基材に塗布し、加熱により加水分解及び脱水縮重合させるコーティング方法が記載されている。
特許文献4には、4官能加水分解性オルガノシランを、水の加水分解性基に対するモル比を1未満として、酸性触媒存在下で加水分解して得られたシリコーンレジンを主要成分とし、さらにフィラーを含有する塗料を基材に塗装し、250℃で焼成して得られた塗装品が記載されており、酸性触媒としては酸化チタンゾル等のフィラーを兼用してもよいことが記載されている。
特許文献5には、4官能加水分解性オルガノシランを塩酸で加水分解した後、酸化チタン含有量が製膜後の全固形分に対し30~70重量%となるように硝酸解膠酸化チタン水ゾルと混合して得られた塗料を基材に塗装し、120℃以上で焼成して得られた塗装品が記載されている。
本発明は、強度に優れ、かつ十分な光触媒活性を発揮する光触媒層を容易に形成するための光触媒塗布液及びその製造方法、並びに強度に優れ、かつ十分な光触媒活性を発揮する光触媒層を有する光触媒構造体及びその製造方法を提供することを目的とする。
本発明者らは、光触媒及び特定量のアルコールの存在下でテトラアルコキシシランを酸触媒により加水分解したものを含む光触媒塗布液を基材上に塗布することにより、上記課題を解決した光触媒担持構造体が得られることを見出し、本発明を完成するに至った。
すなわち、本発明は、以下に示す事項により特定されるものである。
(1)光触媒塗布液の製造方法であって、式(1)
Si(OR)4 (1)
(式中、Rは炭素数1~4のアルキル基を表し、4個のRは同じであっても異なっていてもよい。)で示される加水分解性シラン化合物と、炭素数1~4の1価アルコールと、酸と、水と、光触媒材料微粒子とを混合し、
前記加水分解性シラン化合物の含有量がSiO2換算で5質量%以下であり、前記加水分解性シラン化合物の加水分解性基と前記水とのモル比(水/加水分解性基)が8以上であり、前記炭素数1~4の1価アルコールの含有量が20~50質量%である混合物を調製する工程、及び、
前記混合物中の加水分解性シラン化合物に前記酸を触媒として用いて加水分解又は加水分解縮合を行う工程
を含む、光触媒塗布液の製造方法。
(2)加水分解が60℃以下で行われる、上記(1)に記載の光触媒塗布液の製造方法。
(3)加水分解性シラン化合物のSiO2換算質量と光触媒材料微粒子との質量比が、1:5~10:1である、上記(1)又は(2)に記載の光触媒塗布液の製造方法。
(4)光触媒材料微粒子が、結晶性二酸化チタン微粒子を含むものである、上記(1)~(3)のいずれかに記載の光触媒塗布液の製造方法。
(5)上記(1)~(4)のいずれかに記載の方法により製造される光触媒塗布液。
(6)基材の表面に上記(5)に記載の光触媒塗布液を塗布し光触媒層を形成する工程を含む、光触媒構造体の製造方法。
(7)基材の表面に光触媒塗布液を塗布する前に、前記基材を予熱することを特徴とする、上記(6)に記載の光触媒構造体の製造方法。
(8)光触媒塗布液の塗布後に加熱することを特徴とする、上記(6)又は(7)に記載の光触媒構造体の製造方法。
(9)光触媒層の膜厚が0.1~5μmである、上記(6)~(8)のいずれかに記載の光触媒構造体の製造方法。
(10)基材が、金属、ガラス、セラミックス、石、コンクリート、セメント又はこれらの2種以上からなる複合材料のいずれかである、上記(6)~(9)のいずれかに記載の光触媒構造体の製造方法。
(11)上記(6)~(10)のいずれかに記載の方法により製造される光触媒構造体。
(1)光触媒塗布液の製造方法であって、式(1)
Si(OR)4 (1)
(式中、Rは炭素数1~4のアルキル基を表し、4個のRは同じであっても異なっていてもよい。)で示される加水分解性シラン化合物と、炭素数1~4の1価アルコールと、酸と、水と、光触媒材料微粒子とを混合し、
前記加水分解性シラン化合物の含有量がSiO2換算で5質量%以下であり、前記加水分解性シラン化合物の加水分解性基と前記水とのモル比(水/加水分解性基)が8以上であり、前記炭素数1~4の1価アルコールの含有量が20~50質量%である混合物を調製する工程、及び、
前記混合物中の加水分解性シラン化合物に前記酸を触媒として用いて加水分解又は加水分解縮合を行う工程
を含む、光触媒塗布液の製造方法。
(2)加水分解が60℃以下で行われる、上記(1)に記載の光触媒塗布液の製造方法。
(3)加水分解性シラン化合物のSiO2換算質量と光触媒材料微粒子との質量比が、1:5~10:1である、上記(1)又は(2)に記載の光触媒塗布液の製造方法。
(4)光触媒材料微粒子が、結晶性二酸化チタン微粒子を含むものである、上記(1)~(3)のいずれかに記載の光触媒塗布液の製造方法。
(5)上記(1)~(4)のいずれかに記載の方法により製造される光触媒塗布液。
(6)基材の表面に上記(5)に記載の光触媒塗布液を塗布し光触媒層を形成する工程を含む、光触媒構造体の製造方法。
(7)基材の表面に光触媒塗布液を塗布する前に、前記基材を予熱することを特徴とする、上記(6)に記載の光触媒構造体の製造方法。
(8)光触媒塗布液の塗布後に加熱することを特徴とする、上記(6)又は(7)に記載の光触媒構造体の製造方法。
(9)光触媒層の膜厚が0.1~5μmである、上記(6)~(8)のいずれかに記載の光触媒構造体の製造方法。
(10)基材が、金属、ガラス、セラミックス、石、コンクリート、セメント又はこれらの2種以上からなる複合材料のいずれかである、上記(6)~(9)のいずれかに記載の光触媒構造体の製造方法。
(11)上記(6)~(10)のいずれかに記載の方法により製造される光触媒構造体。
本発明の光触媒塗布液は、強度に優れ、十分な光触媒活性を発揮する光触媒層を形成することができる。また、本発明の光触媒塗布液は、保存安定性に優れる。本発明の光触媒塗布液の製造方法によると、強度に優れ、十分な光触媒活性を発揮する光触媒層を形成できる光触媒塗布液を製造することができ、本発明の光触媒塗布液の製造方法により製造された光触媒塗布液は保存安定性に優れる。本発明の光触媒構造体は、強度に優れ、十分な光触媒活性を発揮する光触媒層を有する。本発明の光触媒構造体の製造方法によると、強度に優れ、十分な光触媒活性を発揮する光触媒層を有する光触媒構造体を製造できる。
本発明の光触媒塗布液の製造方法は、式(1)
Si(OR)4 (1)
(式中、Rは炭素数1~4のアルキル基を表し、4個のRは同じであっても異なっていてもよい。)で示される加水分解性シラン化合物と、炭素数1~4の1価アルコールと、酸と、水と、光触媒材料微粒子とを混合し、該混合物中で、前記加水分解性シラン化合物の含有量がSiO2換算で5質量%以下であり、前記加水分解性シラン化合物の加水分解性基と光触媒塗布液中における前記水とのモル比(水/加水分解性基)が8以上であり、前記炭素数1~4の1価アルコールの含有量が20~50質量%である混合物を調製する工程、及び、前記混合物中の加水分解性シラン化合物に前記酸を触媒として用いて加水分解又は加水分解縮合を行う工程を含むことを特徴とする。
また、本発明の光触媒塗布液は、式(1)
Si(OR)4 (1)
(式中、Rは炭素数1~4のアルキル基を表し、4個のRは同じであっても異なっていてもよい。)で示される加水分解性シラン化合物と、炭素数1~4の1価アルコールと、酸と、水と、光触媒材料微粒子とを混合し、前記加水分解性シラン化合物の含有量がSiO2換算で5質量%以下であり、前記加水分解性シラン化合物の加水分解性基と前記水とのモル比(水/加水分解性基)が8以上であり、前記炭素数1~4の1価アルコールの含有量が20~50質量%である混合物を調製し、この混合物に、前記酸を触媒として用いて加水分解又は加水分解縮合を行って得られる、光触媒塗布液である。ここで、SiO2換算の含有量とは、加水分解性シラン化合物中のSiが全てSiO2に転化したときの含有量をいう。
Si(OR)4 (1)
(式中、Rは炭素数1~4のアルキル基を表し、4個のRは同じであっても異なっていてもよい。)で示される加水分解性シラン化合物と、炭素数1~4の1価アルコールと、酸と、水と、光触媒材料微粒子とを混合し、該混合物中で、前記加水分解性シラン化合物の含有量がSiO2換算で5質量%以下であり、前記加水分解性シラン化合物の加水分解性基と光触媒塗布液中における前記水とのモル比(水/加水分解性基)が8以上であり、前記炭素数1~4の1価アルコールの含有量が20~50質量%である混合物を調製する工程、及び、前記混合物中の加水分解性シラン化合物に前記酸を触媒として用いて加水分解又は加水分解縮合を行う工程を含むことを特徴とする。
また、本発明の光触媒塗布液は、式(1)
Si(OR)4 (1)
(式中、Rは炭素数1~4のアルキル基を表し、4個のRは同じであっても異なっていてもよい。)で示される加水分解性シラン化合物と、炭素数1~4の1価アルコールと、酸と、水と、光触媒材料微粒子とを混合し、前記加水分解性シラン化合物の含有量がSiO2換算で5質量%以下であり、前記加水分解性シラン化合物の加水分解性基と前記水とのモル比(水/加水分解性基)が8以上であり、前記炭素数1~4の1価アルコールの含有量が20~50質量%である混合物を調製し、この混合物に、前記酸を触媒として用いて加水分解又は加水分解縮合を行って得られる、光触媒塗布液である。ここで、SiO2換算の含有量とは、加水分解性シラン化合物中のSiが全てSiO2に転化したときの含有量をいう。
式(1)で表される加水分解性シラン化合物としては、いずれか少なくとも1種が含有されていればよく、2種以上の混合物であってもよい。
式(1)で表される加水分解性シラン化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシラン等が挙げられる。特に加水分解後の塗布液の有害性が低い点で、テトラエトキシシランが好ましい。
式(1)で表される加水分解性シラン化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシラン等が挙げられる。特に加水分解後の塗布液の有害性が低い点で、テトラエトキシシランが好ましい。
本発明の光触媒塗布液の製造における加水分解開始時には、前記混合物における加水分解性シラン化合物の含有量は前記混合物全量に対してSiO2換算で5質量%以下であり、4質量%以下であることがより好ましい。下限値は成膜できるかぎり特に限定されないが、1質量%以上が好ましく、2質量%以上であることがより好ましい。また、前記混合物における加水分解性シラン化合物の含有量は前記混合物全量に対してSiO2換算で1~5質量%が好ましく、2~4質量%がより好ましい。
また、本発明の光触媒塗布液の製造における加水分解開始時には、前記混合物における加水分解性シラン化合物の加水分解性基と水とのモル比(水/加水分解性基)は8以上であり、10以上であることが好ましい。該モル比の上限は特に限定されないが、20以下であることが好ましく、16以下であることがより好ましい。また、前記モル比は、8~20が好ましく、10~16がより好ましい。
上記モル比の範囲で加水分解性シラン化合物を加水分解した場合、条件によっては加水分解に引き続く縮合が進みすぎ、粘度が上昇するなどして、塗布液が不安定になったり塗布に支障を来したりすることがある。従来技術ではこれを防ぐため、加水分解性シラン化合物の部分加水分解物を用いることが多かった。
しかし本発明においては、光触媒材料微粒子の存在下で加水分解が実施されるため、縮合が抑制され、長時間に亘って安定な塗布液が得られる。
また、本発明の光触媒塗布液の製造における加水分解開始時には、前記混合物における加水分解性シラン化合物の加水分解性基と水とのモル比(水/加水分解性基)は8以上であり、10以上であることが好ましい。該モル比の上限は特に限定されないが、20以下であることが好ましく、16以下であることがより好ましい。また、前記モル比は、8~20が好ましく、10~16がより好ましい。
上記モル比の範囲で加水分解性シラン化合物を加水分解した場合、条件によっては加水分解に引き続く縮合が進みすぎ、粘度が上昇するなどして、塗布液が不安定になったり塗布に支障を来したりすることがある。従来技術ではこれを防ぐため、加水分解性シラン化合物の部分加水分解物を用いることが多かった。
しかし本発明においては、光触媒材料微粒子の存在下で加水分解が実施されるため、縮合が抑制され、長時間に亘って安定な塗布液が得られる。
本発明の光触媒塗布液の製造における加水分解開始時には、前記混合物において炭素数1~4の1価アルコールが、前記混合物全量に対して20~50質量%存在する必要がある。
前記1価アルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール、またこれらから選ばれる2種以上の混合物等が挙げられる。特に有害性の低い点から、エタノール、1-プロパノール、2-プロパノール、又はこれらから選ばれる2種以上の混合物が好ましい。
1価アルコールの量を20質量%より少なくした場合、加水分解性シラン化合物をその他の成分と混合しても、2相に分離し、加水分解が容易でないため安定な光触媒塗布液を得ることは困難である。1価アルコールの量が20質量%以上あれば、強く撹拌することにより加水分解は進行する。また1価アルコールの量を50質量%より多くした場合、加水分解性シラン化合物の添加後に固形分の凝集が起き、均一かつ安定な光触媒塗布液は得られない。前記混合物における炭素数1~4の1価アルコールの含有量は、30~50質量%が好ましく、40~50質量%がより好ましい。特に、炭素数1~4の1価アルコールが40~50質量%存在すれば、弱い撹拌でも加水分解が進行し、製造が容易である。
なお、本発明のアルコール濃度範囲であれば危険物に該当せず消防上も安全である。
本発明における混合物を調製するための水は、その添加方法は特に限定されないが、後述する酸性水溶液又は光触媒材料水分散液中の水として混合されることが好ましい。これに加えて、加水分解性シラン化合物の含有量、加水分解性シラン化合物の加水分解性基と水の全添加量とのモル比、及び必要であれば光触媒材料の量(加水分解性シラン化合物との比率)を調整するため、さらに水を適宜添加してもよい。この場合には、予め前記1価アルコールを、必要量の水と混合し、アルコール水溶液として混合することもできる。
前記1価アルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール、またこれらから選ばれる2種以上の混合物等が挙げられる。特に有害性の低い点から、エタノール、1-プロパノール、2-プロパノール、又はこれらから選ばれる2種以上の混合物が好ましい。
1価アルコールの量を20質量%より少なくした場合、加水分解性シラン化合物をその他の成分と混合しても、2相に分離し、加水分解が容易でないため安定な光触媒塗布液を得ることは困難である。1価アルコールの量が20質量%以上あれば、強く撹拌することにより加水分解は進行する。また1価アルコールの量を50質量%より多くした場合、加水分解性シラン化合物の添加後に固形分の凝集が起き、均一かつ安定な光触媒塗布液は得られない。前記混合物における炭素数1~4の1価アルコールの含有量は、30~50質量%が好ましく、40~50質量%がより好ましい。特に、炭素数1~4の1価アルコールが40~50質量%存在すれば、弱い撹拌でも加水分解が進行し、製造が容易である。
なお、本発明のアルコール濃度範囲であれば危険物に該当せず消防上も安全である。
本発明における混合物を調製するための水は、その添加方法は特に限定されないが、後述する酸性水溶液又は光触媒材料水分散液中の水として混合されることが好ましい。これに加えて、加水分解性シラン化合物の含有量、加水分解性シラン化合物の加水分解性基と水の全添加量とのモル比、及び必要であれば光触媒材料の量(加水分解性シラン化合物との比率)を調整するため、さらに水を適宜添加してもよい。この場合には、予め前記1価アルコールを、必要量の水と混合し、アルコール水溶液として混合することもできる。
式(1)で表される加水分解性シラン化合物は、水が存在すると加水分解し、さらにこの加水分解物が脱水して縮合物に変化する。一般には、この加水分解を促進するために、加熱、または酸、アルカリ等の触媒が使用される。本発明においては、加水分解触媒として酸を用いる。
もし加水分解触媒としてアルカリを用いると、加水分解後さらに縮合が進行しやすく、それによって塗布液の粘度が上昇し、あるいはゲル化しやすいため、塗布液は長期の保存に耐えず不安定となり、塗布に際しても扱いが困難で、特にスプレーによる塗布は困難となる。酸を用いることでこれらの問題が回避される。
酸としては、塩酸、硝酸、硫酸等の可溶性無機酸、酢酸等の有機酸、あるいは酸性シリカゾル等の液中に分散可能な固体微粒子が使用可能であるが、塗膜形成後に速やかに揮発し、強度や光触媒活性に影響を与えない点から、塩酸または硝酸が好ましい。
前記加水分解性シラン化合物の加水分解に用いる酸の量は、加水分解性シラン化合物のモル数に対する酸の当量数の比で0.0001~0.01の範囲であること、又は加水分解工程におけるpHが1~5であることが好ましい。該pHは1~3であることがより好ましく、加水分解後も同pH範囲で特に安定性が優れる。この範囲に調整するために、酸を予め水で希釈して酸性水溶液とし、これをさらに他の成分と混合することが好ましい。
特に、光触媒材料微粒子の安定な水性分散液として、硝酸等で酸性としたものが広く用いられている。光触媒材料としてこのような分散液を用いる場合には、特に酸を追加せず、該酸性分散液を酸触媒として兼用してもよい。
もし加水分解触媒としてアルカリを用いると、加水分解後さらに縮合が進行しやすく、それによって塗布液の粘度が上昇し、あるいはゲル化しやすいため、塗布液は長期の保存に耐えず不安定となり、塗布に際しても扱いが困難で、特にスプレーによる塗布は困難となる。酸を用いることでこれらの問題が回避される。
酸としては、塩酸、硝酸、硫酸等の可溶性無機酸、酢酸等の有機酸、あるいは酸性シリカゾル等の液中に分散可能な固体微粒子が使用可能であるが、塗膜形成後に速やかに揮発し、強度や光触媒活性に影響を与えない点から、塩酸または硝酸が好ましい。
前記加水分解性シラン化合物の加水分解に用いる酸の量は、加水分解性シラン化合物のモル数に対する酸の当量数の比で0.0001~0.01の範囲であること、又は加水分解工程におけるpHが1~5であることが好ましい。該pHは1~3であることがより好ましく、加水分解後も同pH範囲で特に安定性が優れる。この範囲に調整するために、酸を予め水で希釈して酸性水溶液とし、これをさらに他の成分と混合することが好ましい。
特に、光触媒材料微粒子の安定な水性分散液として、硝酸等で酸性としたものが広く用いられている。光触媒材料としてこのような分散液を用いる場合には、特に酸を追加せず、該酸性分散液を酸触媒として兼用してもよい。
本発明の光触媒含有塗布液に用いる光触媒材料微粒子は、光触媒活性を有する金属酸化物等を含む無機材料からなる微粒子である。
光触媒材料の主成分としては、酸化チタン、酸化亜鉛、酸化錫、酸化ジルコニウム、酸化タングステン、酸化クロム、酸化モリブデン、酸化鉄、酸化ニッケル、酸化ルテニウム、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化ロジウム、酸化レニウム等が挙げられる。これらの中でも、酸化チタン、酸化タングステン等、特にアナターゼ型又はルチル型の酸化チタンが好ましい。さらにこれらに窒素、炭素、硫黄等の元素をドープしたものも使用できる。
光触媒材料の主成分としては、酸化チタン、酸化亜鉛、酸化錫、酸化ジルコニウム、酸化タングステン、酸化クロム、酸化モリブデン、酸化鉄、酸化ニッケル、酸化ルテニウム、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化ロジウム、酸化レニウム等が挙げられる。これらの中でも、酸化チタン、酸化タングステン等、特にアナターゼ型又はルチル型の酸化チタンが好ましい。さらにこれらに窒素、炭素、硫黄等の元素をドープしたものも使用できる。
また、これらに、Pt、Rh、Ru、Nb、Cu、Sn、Ni、Fe、Ag等の金属若しくはこれらの酸化物を添加したものも用いることができる。
特に、CuOが担持されたルチル型酸化チタンは、紫外線のみならず可視光にも応答して光触媒機能を発揮することから好ましい。
特に、CuOが担持されたルチル型酸化チタンは、紫外線のみならず可視光にも応答して光触媒機能を発揮することから好ましい。
混合する光触媒材料微粒子の平均粒径は、必ずしも限定されないが、光触媒塗布液の塗布により形成される光触媒層が過度に不均一とならないよう、200nm以下であることが好ましく、1~20nmであることがより好ましい。光触媒材料微粒子の平均粒径は、動的光散乱測定法により求めることができる。
光触媒材料微粒子の状態は、粉末状態でもよいが、混合を容易にするために、溶媒に分散された懸濁液又はゾルの状態であることが好ましい。
特に、上述の通り、硝酸等で酸性とした光触媒材料分散液が広く用いられているので、特に酸を追加せず、該分散液を酸触媒として兼用してもよい。
光触媒材料微粒子の状態は、粉末状態でもよいが、混合を容易にするために、溶媒に分散された懸濁液又はゾルの状態であることが好ましい。
特に、上述の通り、硝酸等で酸性とした光触媒材料分散液が広く用いられているので、特に酸を追加せず、該分散液を酸触媒として兼用してもよい。
加水分解開始時において、前記混合物における光触媒材料微粒子の含有量は、必ずしも限定されないが、前記混合物全量に対して0.5~10質量%であることが好ましく、1~4質量%であることがより好ましい。また、加水分解性シラン化合物のSiO2換算質量と光触媒材料微粒子との質量比は、1:5~10:1であることが好ましく、1:2~3:1であることがより好ましい。
本発明の光触媒塗布液の製造方法は、少なくとも上述の成分を混合して混合物とした後、加水分解工程を実施することを特徴とする。
このことにより、シラノール構造が光触媒塗布液中で安定して存在し、塗布後には光触媒材料と基材との間が架橋され、強靭な光触媒構造体が得られると考えられる。
各成分の混合の方法や混合の順序は必ずしも限定されないが、加水分解性シラン化合物の加水分解を適切な条件下に行うために、少なくとも、炭素数1~4の1価アルコールと、酸と、水と、光触媒材料微粒子とを先に混合し、この混合物に加水分解性シラン化合物を混合することが好ましい。
さらにこれに先立ち、1価アルコールを水と混合してアルコール水溶液とし、また光触媒微粒子を酸性水溶液中で均一な分散液とし、この2種を混合して前記混合物とすることが好ましい。この場合、光触媒塗布液の出発材料であるアルコール水溶液、光触媒微粒子分散液、及び加水分解性シラン化合物は、いずれも長期間に亘り安定に保存が可能である。
このことにより、シラノール構造が光触媒塗布液中で安定して存在し、塗布後には光触媒材料と基材との間が架橋され、強靭な光触媒構造体が得られると考えられる。
各成分の混合の方法や混合の順序は必ずしも限定されないが、加水分解性シラン化合物の加水分解を適切な条件下に行うために、少なくとも、炭素数1~4の1価アルコールと、酸と、水と、光触媒材料微粒子とを先に混合し、この混合物に加水分解性シラン化合物を混合することが好ましい。
さらにこれに先立ち、1価アルコールを水と混合してアルコール水溶液とし、また光触媒微粒子を酸性水溶液中で均一な分散液とし、この2種を混合して前記混合物とすることが好ましい。この場合、光触媒塗布液の出発材料であるアルコール水溶液、光触媒微粒子分散液、及び加水分解性シラン化合物は、いずれも長期間に亘り安定に保存が可能である。
次に、以上の混合物を撹拌することにより、加水分解工程を実施する。
加水分解工程では、さらに加熱することで反応を促進することが可能であるが、本発明においては、縮合反応を適度に抑制するために、必要であれば冷却しながら行うことが好ましい。加水分解工程の温度は60℃以下に調整することが好ましく、特に室温が30℃以下である環境下で30℃以下に調整することが好ましい。
加水分解工程では、上記条件において、一定時間撹拌を行う。この時間は特に限定されないが、10分以上であることが好ましい。また長時間にしても格別の効果は得られないので、実用上、1時間以下とすることが好ましく、30分以下とすることがより好ましい。
以上の条件で加水分解を実施することにより、加水分解性シラン化合物が完全に加水分解する。これはH-NMRを用いて、シラン化合物中のアルキル基が存在しないことで確認することができる。
このようにして調製された光触媒塗布液は、室温付近であれば長期間安定に保存できる。
加水分解工程では、さらに加熱することで反応を促進することが可能であるが、本発明においては、縮合反応を適度に抑制するために、必要であれば冷却しながら行うことが好ましい。加水分解工程の温度は60℃以下に調整することが好ましく、特に室温が30℃以下である環境下で30℃以下に調整することが好ましい。
加水分解工程では、上記条件において、一定時間撹拌を行う。この時間は特に限定されないが、10分以上であることが好ましい。また長時間にしても格別の効果は得られないので、実用上、1時間以下とすることが好ましく、30分以下とすることがより好ましい。
以上の条件で加水分解を実施することにより、加水分解性シラン化合物が完全に加水分解する。これはH-NMRを用いて、シラン化合物中のアルキル基が存在しないことで確認することができる。
このようにして調製された光触媒塗布液は、室温付近であれば長期間安定に保存できる。
本発明の光触媒塗布液は、固形分濃度、すなわち上述の光触媒材料微粒子と加水分解性シラン化合物のSiO2換算量との合計濃度が、光触媒塗布液全量に対して0.3~20質量%であることが好ましい。0.3質量%より低いと光触媒層として定着する量が少ないため光触媒活性が十分でないことがあり、20質量%より高いと光触媒層が過度に不均一となり美観を損ねることがある。
特に、スプレー法で塗布する場合には、光触媒層は必ずしも連続的である必要はないが、光触媒材料微粒子が均一に分散していることが望ましく、そのため固形分濃度を低濃度とすることが好ましい。この場合、固形分濃度は0.3~10質量%が好ましく、0.3~5質量%がより好ましい。
特に、スプレー法で塗布する場合には、光触媒層は必ずしも連続的である必要はないが、光触媒材料微粒子が均一に分散していることが望ましく、そのため固形分濃度を低濃度とすることが好ましい。この場合、固形分濃度は0.3~10質量%が好ましく、0.3~5質量%がより好ましい。
本発明の光触媒構造体の製造方法は、基材の表面に、上述の光触媒塗布液を塗布し光触媒層を形成する工程を含む方法である。
前記基材は必ずしも限定されない。基材の表面に光触媒塗布液を塗布するに当たっては、基材自体に直接塗布する方法を採用してもよいし、基材表面に予め接着層を形成し、接着層の上に光触媒塗布液を塗布する方法を採用してもよい。
接着層とは、基材と光触媒層との接着性を改善し、剥離等を防ぐために設ける構造である。特に、基材が有機材料である場合には、光触媒作用により基材表面が損傷し、或いはそのため光触媒層が剥離することがあるが、基材表面に予め接着層を形成することにより、このようなことが防止できる。
接着層とは、基材と光触媒層との接着性を改善し、剥離等を防ぐために設ける構造である。特に、基材が有機材料である場合には、光触媒作用により基材表面が損傷し、或いはそのため光触媒層が剥離することがあるが、基材表面に予め接着層を形成することにより、このようなことが防止できる。
基材としては特に、耐熱性である、金属、ガラス、セラミックス、石、コンクリート、セメント、又はこれらの2種以上からなる複合材料のいずれかであることが好ましく、これらの材料であれば必ずしも接着層を設ける必要はない。特に陶磁器、琺瑯等のセラミックス製品が好ましく、具体的な用途としてはタイル、瓦等が挙げられ、最も好ましくは建築物の外壁材料として使用するタイルが挙げられる。
本発明の光触媒構造体の製造においては、光触媒塗布液を塗布後に単に常温で乾燥させる方法も可能であるが、加熱することが好ましい。加熱によって光触媒層の強靭性が増す。
加熱方法は特に限定されず、基材を予熱する方法でも、塗布後に加熱する方法でもよく、適宜選択することができる。
塗布後に加熱する場合には、材料表面の温度は、50℃以上であることが好ましく、100℃以上であることがより好ましい。材料表面温度の上限は特に限定されないが、あまり高温にしても効果はないので300℃以下が好ましい。
加熱方法は特に限定されず、基材を予熱する方法でも、塗布後に加熱する方法でもよく、適宜選択することができる。
塗布後に加熱する場合には、材料表面の温度は、50℃以上であることが好ましく、100℃以上であることがより好ましい。材料表面温度の上限は特に限定されないが、あまり高温にしても効果はないので300℃以下が好ましい。
前記予熱とは、塗布対象である材料を、塗布前に加熱し、塗布時における材料表面の温度を一定温度以上とすることである。塗布時における材料表面の温度は、好ましくは50℃以上、より好ましくは100℃以上であり、この予熱により光触媒塗布液は速やかに乾燥し硬化する。また塗布時における材料表面の温度は、あまりに高温であると、塗布の際に塗膜が過度に不均一となることがあるので、300℃以下であることが好ましい。
特に基材としてセラミックス製品を用いる場合には、該製品の製造工程として高温で焼成する工程があるため、該工程の直後に、本発明の光触媒層形成工程を設けることで、新たな焼成工程を設けずに、光触媒が担持されたセラミックス製品を製造することができる。
特に基材としてセラミックス製品を用いる場合には、該製品の製造工程として高温で焼成する工程があるため、該工程の直後に、本発明の光触媒層形成工程を設けることで、新たな焼成工程を設けずに、光触媒が担持されたセラミックス製品を製造することができる。
本発明において光触媒塗布液を塗布する工程は、特に限定されず、ディッピング法、スプレー法、スピンコート法、バーコート法、カーテンコート法、ロールコート法、刷毛塗り法等の公知の方法を用いることができる。このうち、セラミックス製品の製造工程に導入するのに適する点、また基材の温度が急激に低下しないため強度に優れた均一な光触媒層が得られる点から、スプレー法が好ましい。
また光触媒層の硬化後の膜厚は、特に限定されないが、優れた光触媒活性及び強度を発揮する点で、通常0.1~5μmが好ましく、より好ましくは0.2~5μmであり、さらに好ましくは0.5~3μmである。
光触媒層は必ずしも基材表面を連続的に、あるいは完全に被覆している必要はなく、むしろ美観を改善するために、光触媒層が基材表面に不連続で均一に分散していることが好ましい場合もあり、基材や用途に応じていずれかの形態を選択することができる。このような不連続分散形態を採用するためには、スプレー法が実施容易であり好ましい。
一方、光触媒活性を高くするためには、光触媒層による被覆率が高い方が好ましく、膜を厚くしても光触媒活性増強効果は乏しい。
スプレー法を用いる場合には、光触媒塗布液の固形分濃度を低くする方が、膜を過度に厚くせずに被覆率を高めることができる。
以上の点で、スプレー法を用いて光触媒活性を高くするためには、光触媒塗布液の固形分濃度を0.3~10質量%とすることが好ましく、0.3~5質量%とすることがより好ましい。
また光触媒層の硬化後の膜厚は、特に限定されないが、優れた光触媒活性及び強度を発揮する点で、通常0.1~5μmが好ましく、より好ましくは0.2~5μmであり、さらに好ましくは0.5~3μmである。
光触媒層は必ずしも基材表面を連続的に、あるいは完全に被覆している必要はなく、むしろ美観を改善するために、光触媒層が基材表面に不連続で均一に分散していることが好ましい場合もあり、基材や用途に応じていずれかの形態を選択することができる。このような不連続分散形態を採用するためには、スプレー法が実施容易であり好ましい。
一方、光触媒活性を高くするためには、光触媒層による被覆率が高い方が好ましく、膜を厚くしても光触媒活性増強効果は乏しい。
スプレー法を用いる場合には、光触媒塗布液の固形分濃度を低くする方が、膜を過度に厚くせずに被覆率を高めることができる。
以上の点で、スプレー法を用いて光触媒活性を高くするためには、光触媒塗布液の固形分濃度を0.3~10質量%とすることが好ましく、0.3~5質量%とすることがより好ましい。
以下、実施例により本発明を具体的に説明する。ただし、本発明はこれらの例により制限されるものではない。
(実施例1)
アナターゼ型光触媒性二酸化チタン(IV)(和光純薬工業社製)を、硝酸酸性下(pH1.5)にて、平均粒径が10nm以下になるまでビーズミルによる粉砕を行い、二酸化チタンの30質量%水分散体を得た。
この水分散体9gを、水・アルコール混合液82g(水36g及びアルコール系溶媒ソルミックス(登録商標)AP-7(日本アルコール販売社製)46gからなる)と混合し、続けてテトラエトキシシラン(TEOS)9gを添加して混合し、室温で20分間撹拌して加水分解工程を行い、光触媒塗布液を得た。
上記混合時において、混合物におけるTEOS含有量(SiO2換算)は2.6質量%、TEOSの加水分解性基と水とのモル比(水/加水分解性基)は14.1であり、1価アルコールの濃度は46質量%である。また得られた光触媒塗布液のpHは1.6である。
アナターゼ型光触媒性二酸化チタン(IV)(和光純薬工業社製)を、硝酸酸性下(pH1.5)にて、平均粒径が10nm以下になるまでビーズミルによる粉砕を行い、二酸化チタンの30質量%水分散体を得た。
この水分散体9gを、水・アルコール混合液82g(水36g及びアルコール系溶媒ソルミックス(登録商標)AP-7(日本アルコール販売社製)46gからなる)と混合し、続けてテトラエトキシシラン(TEOS)9gを添加して混合し、室温で20分間撹拌して加水分解工程を行い、光触媒塗布液を得た。
上記混合時において、混合物におけるTEOS含有量(SiO2換算)は2.6質量%、TEOSの加水分解性基と水とのモル比(水/加水分解性基)は14.1であり、1価アルコールの濃度は46質量%である。また得られた光触媒塗布液のpHは1.6である。
前記光触媒塗布液を、表1に記載した経過時間に亘り室温で保存した。これら保存後の光触媒塗布液にはいずれも目視で凝集、沈殿等の問題はなかった。
また保存後の光触媒塗布液の粒径分布を測定した。測定には、ダイナミック光散乱光度計(DLS-7000:動的光散乱測定法、Arレーザー75mW、大塚電子社製)を用いた。その結果(体積平均粒径Dv50(nm))を表1に示した。
また保存後の光触媒塗布液の粒径分布を測定した。測定には、ダイナミック光散乱光度計(DLS-7000:動的光散乱測定法、Arレーザー75mW、大塚電子社製)を用いた。その結果(体積平均粒径Dv50(nm))を表1に示した。
上記保存後の光触媒塗布液を、150~160℃に予熱したタイルの表面にスプレーガン1往復でスプレー塗布し、光触媒層を形成した。その結果、外観、強度とも特に問題はなかった。
以上により得られた各光触媒層に対し、紫外光照射(ブラックライト、1.0mW/cm2)を光触媒塗布液調製後34日目~35日目の24時間行い、触媒層表面の水に対する接触角、及びメチレンブルー分解活性を測定した。
水に対する接触角の測定方法は、JIS R 1703-1(ファインセラミックス-光触媒材料のセルフクリーニング性能評価方法・第1部:水接触角の測定)に準拠した。
メチレンブルー分解活性は、JIS R 1703-2(ファインセラミックス-光触媒材料のセルフクリーニング性能評価方法・第2部:湿式分解性能)に準拠して試験を実施し、分解活性指数(nmol/L/min)を算出し、2回の平均値として求めた。
結果は表1の通りであった。
水に対する接触角の測定方法は、JIS R 1703-1(ファインセラミックス-光触媒材料のセルフクリーニング性能評価方法・第1部:水接触角の測定)に準拠した。
メチレンブルー分解活性は、JIS R 1703-2(ファインセラミックス-光触媒材料のセルフクリーニング性能評価方法・第2部:湿式分解性能)に準拠して試験を実施し、分解活性指数(nmol/L/min)を算出し、2回の平均値として求めた。
結果は表1の通りであった。
以上から、光触媒塗布液を長期間保存しても、粒径の変化はほとんどなく安定であり保存安定性に優れること、またこれらを用いて形成される光触媒層の光触媒活性も同様に優れていることが示された。
(実施例2~6、比較例1~4)
実施例1と同じ二酸化チタンの水分散体4.94gに、水(その量を表2に記載)とアルコール系溶媒ソルミックスAP-7 23.14gとを別に添加して混合し(添加順序を表2に記載)、続けてTEOS4.86gを添加して混合し、室温で20分間撹拌して加水分解工程を行い、光触媒塗布液を調製した。
前記混合において、水の添加量を変え、また水とアルコール系溶媒とを添加する順序を変えて比較した。
以上の結果、TEOS混合後に、条件によっては、固形分の凝集が見られた。なお、実施例5及び6では、混合直後に水性懸濁液とTEOSの相分離が見られたが、撹拌強度を高めることにより加水分解工程は進行した。以上の結果を表2に示した。
実施例1と同じ二酸化チタンの水分散体4.94gに、水(その量を表2に記載)とアルコール系溶媒ソルミックスAP-7 23.14gとを別に添加して混合し(添加順序を表2に記載)、続けてTEOS4.86gを添加して混合し、室温で20分間撹拌して加水分解工程を行い、光触媒塗布液を調製した。
前記混合において、水の添加量を変え、また水とアルコール系溶媒とを添加する順序を変えて比較した。
以上の結果、TEOS混合後に、条件によっては、固形分の凝集が見られた。なお、実施例5及び6では、混合直後に水性懸濁液とTEOSの相分離が見られたが、撹拌強度を高めることにより加水分解工程は進行した。以上の結果を表2に示した。
以上から、凝集を防ぐために、各成分の量比を本発明における範囲に限定する必要があること、またTEOS以外の成分については添加順序を変えてもほとんど影響がないことが示された。
本発明の光触媒塗布液は、強度に優れ、十分な光触媒活性を発揮する光触媒層を、金属、ガラス、セラミックス、石、コンクリート、セメント又はこれらの複合材料上に形成できるので、建築物の外装材、水回り製品、ガラス製品等において汚れを落ち易くしたり、親水性によって曇りを防止したりすることができ、また保存安定性に優れるので、これらの分野に好適に利用できる。本発明の光触媒構造体は、強度に優れ、十分な光触媒活性を発揮する光触媒層を有するので、前記分野に好適に利用できる。また、本発明の光触媒塗布液の製造方法及び光触媒構造体の製造方法は、前記光触媒塗布液及び光触媒構造体を容易に製造できるので、これらの製造に好適に利用できる。
Claims (11)
- 光触媒塗布液の製造方法であって、式(1)
Si(OR)4 (1)
(式中、Rは炭素数1~4のアルキル基を表し、4個のRは同じであっても異なっていてもよい。)で示される加水分解性シラン化合物と、炭素数1~4の1価アルコールと、酸と、水と、光触媒材料微粒子とを混合し、
前記加水分解性シラン化合物の含有量がSiO2換算で5質量%以下であり、前記加水分解性シラン化合物の加水分解性基と前記水とのモル比(水/加水分解性基)が8以上であり、前記炭素数1~4の1価アルコールの含有量が20~50質量%である混合物を調製する工程、及び、
前記混合物中の加水分解性シラン化合物に前記酸を触媒として用いて加水分解又は加水分解縮合を行う工程
を含む、光触媒塗布液の製造方法。 - 加水分解が60℃以下で行われる、請求項1に記載の光触媒塗布液の製造方法。
- 加水分解性シラン化合物のSiO2換算質量と光触媒材料微粒子との質量比が、1:5~10:1である、請求項1又は2に記載の光触媒塗布液の製造方法。
- 光触媒材料微粒子が、結晶性二酸化チタン微粒子を含むものである、請求項1~3のいずれかに記載の光触媒塗布液の製造方法。
- 請求項1~4のいずれかに記載の方法により製造される光触媒塗布液。
- 基材の表面に請求項5に記載の光触媒塗布液を塗布し光触媒層を形成する工程を含む、光触媒構造体の製造方法。
- 基材の表面に光触媒塗布液を塗布する前に、前記基材を予熱することを特徴とする、請求項6に記載の光触媒構造体の製造方法。
- 光触媒塗布液の塗布後に加熱することを特徴とする、請求項6又は7に記載の光触媒構造体の製造方法。
- 光触媒層の膜厚が0.1~5μmである、請求項6~8のいずれかに記載の光触媒構造体の製造方法。
- 基材が、金属、ガラス、セラミックス、石、コンクリート、セメント又はこれらの2種以上からなる複合材料のいずれかである、請求項6~9のいずれかに記載の光触媒構造体の製造方法。
- 請求項6~10のいずれかに記載の方法により製造される光触媒構造体。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019526845A JP6850348B2 (ja) | 2017-06-29 | 2018-06-21 | 光触媒塗布液、光触媒構造体及びその製造方法 |
PH12019550298A PH12019550298A1 (en) | 2017-06-29 | 2019-12-20 | Photocatalyst application liquid, photocatalytic structure, and production method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017126970 | 2017-06-29 | ||
JP2017-126970 | 2017-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019004050A1 true WO2019004050A1 (ja) | 2019-01-03 |
Family
ID=64740695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/023600 WO2019004050A1 (ja) | 2017-06-29 | 2018-06-21 | 光触媒塗布液、光触媒構造体及びその製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6850348B2 (ja) |
PH (1) | PH12019550298A1 (ja) |
WO (1) | WO2019004050A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10180115A (ja) * | 1996-12-24 | 1998-07-07 | Nitto Denko Corp | 光触媒粒子体およびその製造法 |
JPH11197513A (ja) * | 1998-01-13 | 1999-07-27 | Sumitomo Osaka Cement Co Ltd | 複合光触媒微粒子およびその製造方法ならびに有機物成形体 |
JP2000051708A (ja) * | 1998-08-10 | 2000-02-22 | Showa Alum Corp | 光触媒皮膜およびその形成方法 |
JP2001198474A (ja) * | 2000-01-20 | 2001-07-24 | Natl Inst Of Advanced Industrial Science & Technology Meti | 光触媒担持体及びその製造方法 |
JP2002146283A (ja) * | 2000-11-07 | 2002-05-22 | Taki Chem Co Ltd | 酸化チタン含有光触媒塗布液およびその製造方法ならびに酸化チタン光触媒構造体 |
JP2002180005A (ja) * | 2000-08-31 | 2002-06-26 | Nippon Soda Co Ltd | 光触媒層形成用組成物、光触媒担持ブラインド及びそれらの製造方法並びに着臭防止方法 |
JP2003155448A (ja) * | 2001-11-21 | 2003-05-30 | Sumitomo Metal Mining Co Ltd | 二液型光触媒塗料及び光触媒含有塗膜、光触媒含有塗膜の形成方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015226858A (ja) * | 2012-09-27 | 2015-12-17 | Toto株式会社 | 光触媒性コーティング組成物 |
-
2018
- 2018-06-21 JP JP2019526845A patent/JP6850348B2/ja active Active
- 2018-06-21 WO PCT/JP2018/023600 patent/WO2019004050A1/ja active Application Filing
-
2019
- 2019-12-20 PH PH12019550298A patent/PH12019550298A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10180115A (ja) * | 1996-12-24 | 1998-07-07 | Nitto Denko Corp | 光触媒粒子体およびその製造法 |
JPH11197513A (ja) * | 1998-01-13 | 1999-07-27 | Sumitomo Osaka Cement Co Ltd | 複合光触媒微粒子およびその製造方法ならびに有機物成形体 |
JP2000051708A (ja) * | 1998-08-10 | 2000-02-22 | Showa Alum Corp | 光触媒皮膜およびその形成方法 |
JP2001198474A (ja) * | 2000-01-20 | 2001-07-24 | Natl Inst Of Advanced Industrial Science & Technology Meti | 光触媒担持体及びその製造方法 |
JP2002180005A (ja) * | 2000-08-31 | 2002-06-26 | Nippon Soda Co Ltd | 光触媒層形成用組成物、光触媒担持ブラインド及びそれらの製造方法並びに着臭防止方法 |
JP2002146283A (ja) * | 2000-11-07 | 2002-05-22 | Taki Chem Co Ltd | 酸化チタン含有光触媒塗布液およびその製造方法ならびに酸化チタン光触媒構造体 |
JP2003155448A (ja) * | 2001-11-21 | 2003-05-30 | Sumitomo Metal Mining Co Ltd | 二液型光触媒塗料及び光触媒含有塗膜、光触媒含有塗膜の形成方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6850348B2 (ja) | 2021-03-31 |
JPWO2019004050A1 (ja) | 2020-04-23 |
PH12019550298A1 (en) | 2021-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4335446B2 (ja) | 酸化チタンゾル、薄膜およびそれらの製造法 | |
JP3559892B2 (ja) | 光触媒皮膜およびその形成方法 | |
JP5427093B2 (ja) | 均一分散性光触媒コーティング液及びその製造方法並びにこれを用いて得られる光触媒活性複合材 | |
JP2020520396A (ja) | 亜鉛末塗料用の貯蔵安定性前駆体としての水性ゾル・ゲル組成物 | |
WO2001023483A1 (en) | Photocatalytic coating composition and product having thin photocatalytic film | |
JP5118068B2 (ja) | 光触媒薄膜、光触媒薄膜の形成方法及び光触媒薄膜被覆製品 | |
JP2002038054A (ja) | 酸化チタン膜形成用塗布剤、酸化チタン膜形成方法及び光触媒 | |
EP2644662B1 (en) | Hybrid photocatalytic coatings, method for applying said coatings to different substrates and uses of the substrates thus coated | |
JP6850348B2 (ja) | 光触媒塗布液、光触媒構造体及びその製造方法 | |
ES2812613T3 (es) | Sustrato provisto de un recubrimiento de baja reflexión, método para su producción y dispositivo de conversión fotoeléctrica que lo contiene | |
US20200070124A1 (en) | Photocatalytic coating, process for producing photocatalytic coating, and process for producing photocatalytic body | |
JP4110279B2 (ja) | 光触媒皮膜を塗布した基材および光触媒皮膜を基材上に形成する方法 | |
JP6653627B2 (ja) | 光触媒塗布液、光触媒構造体及びその製造方法 | |
JP3499525B2 (ja) | 光触媒塗料組成物 | |
JP2003138163A (ja) | 光触媒コーティング用組成物及びその製造方法並びにそれを使用した光触媒体 | |
JP2002320917A (ja) | 光触媒性塗膜の製造方法、および光触媒性部材 | |
JPH10212120A (ja) | 酸化チタン膜の製造方法及び酸化チタン分散液組成物 | |
WO2017146015A1 (ja) | 光触媒構造体及びその製造方法 | |
JP7463164B2 (ja) | コーティング液 | |
KR100442919B1 (ko) | 높은 투명도와 광활성도를 갖는 광촉매 졸의 제조 방법 | |
JP3980290B2 (ja) | 酸化チタン薄膜形成塗布液及びその製造方法 | |
JP4608042B2 (ja) | 無機膜形成用塗布剤、その製造方法及びその無機膜形成方法 | |
JP4034885B2 (ja) | 光触媒性塗料組成物 | |
JP2023150249A (ja) | コーティング液 | |
JP4811389B2 (ja) | 防曇性付与方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18825055 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019526845 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18825055 Country of ref document: EP Kind code of ref document: A1 |