WO2018225858A1 - Dnaが編集された真核細胞を製造する方法、および当該方法に用いられるキット - Google Patents
Dnaが編集された真核細胞を製造する方法、および当該方法に用いられるキット Download PDFInfo
- Publication number
- WO2018225858A1 WO2018225858A1 PCT/JP2018/022066 JP2018022066W WO2018225858A1 WO 2018225858 A1 WO2018225858 A1 WO 2018225858A1 JP 2018022066 W JP2018022066 W JP 2018022066W WO 2018225858 A1 WO2018225858 A1 WO 2018225858A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cas3
- sequence
- crispr
- crrna
- dna
- Prior art date
Links
- 210000003527 eukaryotic cell Anatomy 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims description 70
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000010440 CRISPR–Cas3 gene editing Methods 0.000 claims abstract description 111
- 108090000623 proteins and genes Proteins 0.000 claims description 160
- 102000004169 proteins and genes Human genes 0.000 claims description 146
- 239000002157 polynucleotide Substances 0.000 claims description 131
- 108091033319 polynucleotide Proteins 0.000 claims description 130
- 102000040430 polynucleotide Human genes 0.000 claims description 130
- 239000013604 expression vector Substances 0.000 claims description 56
- 230000005937 nuclear translocation Effects 0.000 claims description 27
- 241001465754 Metazoa Species 0.000 claims description 20
- 238000012546 transfer Methods 0.000 claims description 10
- 239000002585 base Substances 0.000 description 117
- 230000000694 effects Effects 0.000 description 85
- 108020004414 DNA Proteins 0.000 description 81
- 239000013612 plasmid Substances 0.000 description 77
- 210000004027 cell Anatomy 0.000 description 75
- 239000013598 vector Substances 0.000 description 71
- 108091033409 CRISPR Proteins 0.000 description 31
- 230000007018 DNA scission Effects 0.000 description 29
- 125000006850 spacer group Chemical group 0.000 description 25
- 241000196324 Embryophyta Species 0.000 description 24
- 241000588724 Escherichia coli Species 0.000 description 24
- 238000010362 genome editing Methods 0.000 description 21
- 230000000295 complement effect Effects 0.000 description 20
- 238000010354 CRISPR gene editing Methods 0.000 description 19
- 102100035102 E3 ubiquitin-protein ligase MYCBP2 Human genes 0.000 description 19
- 238000012217 deletion Methods 0.000 description 18
- 230000037430 deletion Effects 0.000 description 18
- 101001048956 Homo sapiens Homeobox protein EMX1 Proteins 0.000 description 17
- 101710149870 C-C chemokine receptor type 5 Proteins 0.000 description 14
- 102100035875 C-C chemokine receptor type 5 Human genes 0.000 description 14
- 101150017501 CCR5 gene Proteins 0.000 description 14
- 101710163270 Nuclease Proteins 0.000 description 13
- 238000003776 cleavage reaction Methods 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 13
- 210000005260 human cell Anatomy 0.000 description 13
- 230000007017 scission Effects 0.000 description 13
- 210000001161 mammalian embryo Anatomy 0.000 description 12
- 108060004795 Methyltransferase Proteins 0.000 description 11
- 239000012124 Opti-MEM Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 230000035772 mutation Effects 0.000 description 11
- 239000013600 plasmid vector Substances 0.000 description 11
- 238000010356 CRISPR-Cas9 genome editing Methods 0.000 description 10
- 238000010442 DNA editing Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 239000002609 medium Substances 0.000 description 10
- 108090000765 processed proteins & peptides Proteins 0.000 description 10
- 102100023823 Homeobox protein EMX1 Human genes 0.000 description 9
- 239000003814 drug Substances 0.000 description 9
- 239000000499 gel Substances 0.000 description 9
- 210000000287 oocyte Anatomy 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 238000011144 upstream manufacturing Methods 0.000 description 9
- 238000003670 luciferase enzyme activity assay Methods 0.000 description 8
- 108091008146 restriction endonucleases Proteins 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 238000013518 transcription Methods 0.000 description 8
- 230000035897 transcription Effects 0.000 description 8
- 238000001890 transfection Methods 0.000 description 8
- 102000053602 DNA Human genes 0.000 description 7
- 238000003556 assay Methods 0.000 description 7
- 238000000605 extraction Methods 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 210000004962 mammalian cell Anatomy 0.000 description 7
- 239000000546 pharmaceutical excipient Substances 0.000 description 7
- 230000008685 targeting Effects 0.000 description 7
- 125000003275 alpha amino acid group Chemical group 0.000 description 6
- 238000009396 hybridization Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 239000002773 nucleotide Substances 0.000 description 6
- 125000003729 nucleotide group Chemical group 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000012163 sequencing technique Methods 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- 108091029865 Exogenous DNA Proteins 0.000 description 5
- 101100438883 Homo sapiens CCR5 gene Proteins 0.000 description 5
- 108010052090 Renilla Luciferases Proteins 0.000 description 5
- 241000700605 Viruses Species 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 210000004102 animal cell Anatomy 0.000 description 5
- 210000000349 chromosome Anatomy 0.000 description 5
- 238000010367 cloning Methods 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 239000003623 enhancer Substances 0.000 description 5
- 239000013613 expression plasmid Substances 0.000 description 5
- 108020001507 fusion proteins Proteins 0.000 description 5
- 102000037865 fusion proteins Human genes 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000013642 negative control Substances 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 238000012795 verification Methods 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 4
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 4
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 239000012097 Lipofectamine 2000 Substances 0.000 description 4
- 239000007984 Tris EDTA buffer Substances 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 210000004940 nucleus Anatomy 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- WURBVZBTWMNKQT-UHFFFAOYSA-N 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-yl)butan-2-one Chemical compound C1=NC=NN1C(C(=O)C(C)(C)C)OC1=CC=C(Cl)C=C1 WURBVZBTWMNKQT-UHFFFAOYSA-N 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 3
- 239000011543 agarose gel Substances 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- -1 and (C) crRNA Proteins 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 239000012636 effector Substances 0.000 description 3
- 235000013601 eggs Nutrition 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000002493 microarray Methods 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000007480 sanger sequencing Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- 108091093088 Amplicon Proteins 0.000 description 2
- 101000583086 Bunodosoma granuliferum Delta-actitoxin-Bgr2b Proteins 0.000 description 2
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 2
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 108010067770 Endopeptidase K Proteins 0.000 description 2
- 108700024394 Exon Proteins 0.000 description 2
- 108020005004 Guide RNA Proteins 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- 241000713666 Lentivirus Species 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 210000003855 cell nucleus Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 108010025678 empty spiracles homeobox proteins Proteins 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000004720 fertilization Effects 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 102000034356 gene-regulatory proteins Human genes 0.000 description 2
- 108091006104 gene-regulatory proteins Proteins 0.000 description 2
- 210000004602 germ cell Anatomy 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 244000144972 livestock Species 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 239000007758 minimum essential medium Substances 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 210000000472 morula Anatomy 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- 229940127557 pharmaceutical product Drugs 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 235000019419 proteases Nutrition 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 210000001082 somatic cell Anatomy 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000002054 transplantation Methods 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- 101710169336 5'-deoxyadenosine deaminase Proteins 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 102100036664 Adenosine deaminase Human genes 0.000 description 1
- 235000017060 Arachis glabrata Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000018262 Arachis monticola Nutrition 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 101000709520 Chlamydia trachomatis serovar L2 (strain 434/Bu / ATCC VR-902B) Atypical response regulator protein ChxR Proteins 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- 102100026846 Cytidine deaminase Human genes 0.000 description 1
- 108010031325 Cytidine deaminase Proteins 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- 102000004594 DNA Polymerase I Human genes 0.000 description 1
- 108010017826 DNA Polymerase I Proteins 0.000 description 1
- 230000005778 DNA damage Effects 0.000 description 1
- 231100000277 DNA damage Toxicity 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 230000033616 DNA repair Effects 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 240000006497 Dianthus caryophyllus Species 0.000 description 1
- 235000009355 Dianthus caryophyllus Nutrition 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 241001646716 Escherichia coli K-12 Species 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- 102000018997 Growth Hormone Human genes 0.000 description 1
- 102000010437 HD domains Human genes 0.000 description 1
- 108050001906 HD domains Proteins 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 1
- 108010034791 Heterochromatin Proteins 0.000 description 1
- 108091027305 Heteroduplex Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000615488 Homo sapiens Methyl-CpG-binding domain protein 2 Proteins 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 108010000521 Human Growth Hormone Proteins 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 108010061833 Integrases Proteins 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 108091027974 Mature messenger RNA Proteins 0.000 description 1
- 102100021299 Methyl-CpG-binding domain protein 2 Human genes 0.000 description 1
- 102000016397 Methyltransferase Human genes 0.000 description 1
- 108020005196 Mitochondrial DNA Proteins 0.000 description 1
- 241000711408 Murine respirovirus Species 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 240000008790 Musa x paradisiaca Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 241000282339 Mustela Species 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 108010077850 Nuclear Localization Signals Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 230000010718 Oxidation Activity Effects 0.000 description 1
- 238000010222 PCR analysis Methods 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 108091093078 Pyrimidine dimer Proteins 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 102000018120 Recombinases Human genes 0.000 description 1
- 108010091086 Recombinases Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000555745 Sciuridae Species 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 108091027544 Subgenomic mRNA Proteins 0.000 description 1
- 241000701093 Suid alphaherpesvirus 1 Species 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 238000010459 TALEN Methods 0.000 description 1
- 108010043645 Transcription Activator-Like Effector Nucleases Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 102000008579 Transposases Human genes 0.000 description 1
- 108010020764 Transposases Proteins 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000002535 acidifier Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 101150063416 add gene Proteins 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000003113 alkalizing effect Effects 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000008970 bacterial immunity Effects 0.000 description 1
- 238000002869 basic local alignment search tool Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 210000002449 bone cell Anatomy 0.000 description 1
- 108010006025 bovine growth hormone Proteins 0.000 description 1
- 210000004958 brain cell Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 210000004671 cell-free system Anatomy 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 101150037603 cst-1 gene Proteins 0.000 description 1
- 230000027832 depurination Effects 0.000 description 1
- 235000021186 dishes Nutrition 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000007688 edging Methods 0.000 description 1
- 210000002308 embryonic cell Anatomy 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 235000012055 fruits and vegetables Nutrition 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 101150046383 gene 5 gene Proteins 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000012268 genome sequencing Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 210000004458 heterochromatin Anatomy 0.000 description 1
- 230000008076 immune mechanism Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000007481 next generation sequencing Methods 0.000 description 1
- 230000012223 nuclear import Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000003883 ointment base Substances 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 210000001778 pluripotent stem cell Anatomy 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 239000013635 pyrimidine dimer Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 239000002511 suppository base Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/102—Mutagenizing nucleic acids
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8213—Targeted insertion of genes into the plant genome by homologous recombination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
- C12N15/907—Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/10—Cells modified by introduction of foreign genetic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/10—Cells modified by introduction of foreign genetic material
- C12N5/12—Fused cells, e.g. hybridomas
- C12N5/14—Plant cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/10—Cells modified by introduction of foreign genetic material
- C12N5/12—Fused cells, e.g. hybridomas
- C12N5/16—Animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases RNAses, DNAses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/09—Fusion polypeptide containing a localisation/targetting motif containing a nuclear localisation signal
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/20—Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/22—Vectors comprising a coding region that has been codon optimised for expression in a respective host
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/80—Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
Definitions
- the present invention relates to a method for producing eukaryotic cells, animals, and plants whose DNA has been edited, and a kit used in the method.
- Bacteria and archaea have an adaptive immune mechanism that specifically recognizes and eliminates organisms such as phages that are going to enter from outside.
- This system called the CRISPR-Cas system, first imports genome information of foreign organisms into its own genome (adaptation). When the same foreign organism tries to enter again, the foreign genome is cleaved using the complementarity of the information incorporated into the self genome and the genome sequence (interference).
- Non-patent Document 1 genome editing (DNA editing) technology has been developed using the above-mentioned CRISPR-Cas system as a “tool for DNA editing” (Non-patent Document 1).
- Non-Patent Document 1 reports a class 2 CRISPR-Cas system that cleaves DNA using Cas9.
- CRISPR-Cas3 system class 1 CRISPR-Cas system
- Cas3 class 1 CRISPR-Cas system
- Non-Patent Documents 2 and 3 simply using the CRISPR-Cas3 system, the target DNA was completely degraded in a cell-free system, and specific E. coli strains could be selectively removed.
- these do not imply a success in genome editing and have not been demonstrated in eukaryotic cells.
- Patent Document 1 since the CRISPR-Cas3 system degrades the target DNA in E.
- the present invention has been made in view of such circumstances, and an object thereof is to establish a CRISPR-Cas3 system in a eukaryotic cell.
- the present inventors have finally succeeded in establishing the CRISPR-Cas3 system in eukaryotic cells.
- the most widely used CRISPR-Cas9 system has succeeded in genome editing in various eukaryotic cells, but in this system, mature crRNA is usually used as crRNA.
- mature crRNA is usually used as crRNA.
- pre-crRNA pre-crRNA that is not used as a component of the system. For the first time, efficient genome editing was possible.
- the cleavage of crRNA by a protein constituting the cascade is important for the function of the CRISPR-Cas3 system in eukaryotic cells.
- the CRISPR-Cas3 system using this pre-crRNA could be widely applied not only to the type IE system but also to the type IF and type IG systems.
- a nuclear translocation signal particularly a bipartite translocation signal
- the present inventor has found that, according to the CRISPR-Cas3 system, unlike the CRISPR-Cas9 system, it can contain a PAM sequence or can cause a large deletion in the upstream region. It came to be completed.
- the present invention relates to the CRISPR-Cas3 system in eukaryotic cells, and more specifically, provides the following inventions.
- a method for producing a eukaryotic cell in which DNA is edited comprising introducing a CRISPR-Cas3 system into the eukaryotic cell, wherein the CRISPR-Cas3 system includes the following (A) to (C): Method.
- A Cas3 protein, a polynucleotide encoding the protein, or an expression vector containing the polynucleotide
- B a cascade protein, a polynucleotide encoding the protein, or an expression vector comprising the polynucleotide
- C crRNA, a polynucleotide encoding the crRNA, or an expression vector comprising the polynucleotide
- a method of producing an edited animal (except human) or plant comprising introducing a CRISPR-Cas3 system into an animal (except human) or plant, wherein the CRISPR-Cas3 system comprises the following (A ) To (C).
- A Cas3 protein, a polynucleotide encoding the protein, or an expression vector containing the polynucleotide
- B Cascade protein, polynucleotide encoding the protein, or expression vector containing the polynucleotide
- C crRNA, polynucleotide encoding the crRNA, or expression vector containing the polynucleotide
- A Cas3 protein, a polynucleotide encoding the protein, or an expression vector including the polynucleotide
- B a cascade protein, a polynucleotide encoding the protein, or an expression vector including the polynucleotide [8] crRNA
- polynucleotide means a polymer of nucleotides, and is used synonymously with the terms “gene”, “nucleic acid” or “nucleic acid molecule”.
- a polynucleotide can exist in the form of DNA (eg, cDNA or genomic DNA) or in the form of RNA (eg, mRNA).
- RNA eg, mRNA
- protein is used interchangeably with “peptide” or “polypeptide”.
- DNA can be edited in eukaryotic cells.
- FIG. 3 is a diagram showing a CCR5 gene (clone 4) from which a part of the base sequence is deleted by the CRISPR-Cas3 system.
- (A) is a schematic diagram showing the structure of a cascade plasmid.
- (B) is a schematic diagram showing the structure of the Cas3 plasmid.
- (C) is a schematic diagram showing the structure of a pre-crRNA plasmid.
- (D) is a schematic diagram showing the structure of a reporter vector (including a target sequence). It is the schematic showing the position of the target sequence in EMX1 gene. It is a figure showing EMX1 gene (clone 1) which deleted a part of base sequence by CRISPR-Cas3 system. It is a figure showing EMX1 gene (clone 2) which deleted other part of the base sequence by CRISPR-Cas3 system.
- FIG. 6 is a diagram showing the effect of PAM sequences on the DNA cleavage activity of the CRISPR-Cas3 system.
- FIG. 3 is a graph showing the effect of a single spacer mismatch on the DNA cleavage activity of the CRISPR-Cas3 system. It is a figure showing the effect of the mutation of Cas3 in HD nuclease domain (H74A), SF2 helicase domain motif 1 (K320A), and motif 3 (S483 / T485A).
- H74A HD nuclease domain
- K320A SF2 helicase domain motif 1
- S483 / T485A motif 3
- FIG. 2 is a diagram showing a comparison of DNA cleavage activity of type IE, type IF, and type IG CRISPR-Cas3 systems. It is a figure showing the magnitude
- size of the deletion by CRISPR-Cas3 system detected by the sequence of the TA cloning sample of PCR product. It is a figure showing the position of the deletion by the CRISPR-Cas3 system detected by the mass processing sequence of TA clone (n 49). It is a figure showing the number detected for every deletion size by the CRISPR-Cas3 system using a microarray-based capture sequence of 1000 kb or more around the targeted EMX1 locus.
- FIG. 4 is a diagram showing the number detected for each deletion size by the CRISPR-Cas3 system using a microarray-based capture sequence of 1000 kb or more around the targeted CCR5 locus.
- the method of the present invention includes introducing a CRISPR-Cas3 system into a eukaryotic cell, and the CRISPR-Cas3 system comprises the following (A): (C).
- C) crRNA, a polynucleotide encoding the crRNA, or an expression vector comprising the polynucleotide CRISPR- Cas systems are classified into type I and type III. Furthermore, type I is classified into type IA, type, depending on the type of protein constituting the cascade (hereinafter simply referred to as “cascade” or “cascade protein”).
- Type IB Type IC, Type ID, Type IE, and Type IF, and Type IG, which is a subtype of Type IB (for example, [ van der Ost J et al. (2014) Unrav llling the structural and mechanical basis of CRISPR-Cas systems, Nature Reviews Microbiology, Vol. 12 (No. 7), pp. 479-492, [Jackson Rit. Tree, Current Opinion in Structural Biology, Vol. 24, pp. 106-114].
- the type I CRISPR-Cas system has a function of cleaving DNA by the cooperation of Cas3 (protein having nuclease activity and helicase activity), cascade and crRNA. Since Cas3 is used as a nuclease, it is referred to as “CRISPR-Cas3 system” in the present invention.
- crRNA used in the CRISPR-Cas3 system generally recognizes a target sequence of 32 to 37 bases (Ming Li et al., Nucleic Acids Res. 2017 May 5; 45 (8): 4642- 4654).
- crRNA used in the CRISPR-Cas9 system generally recognizes target sequences of 18 to 24 bases. For this reason, it is considered that the CRISPR-Cas3 system can recognize the target sequence more accurately than the CRISPR-Cas9 system.
- the PAM sequence of the CRISPR-Cas9 system which is a class 2 type II system
- N is an arbitrary base
- the PAM sequence of the CRISPR-Cpf1 system which is a class 2 type V system
- AA adjacent to the 5 ′ side of the target sequence.
- the PAM sequence of the CRISPR-Cas3 system of the present invention has an “AAG” adjacent to the 5 ′ side of the target sequence or a similar base sequence (for example, “AGG”, “GAG”, “TAC”, "ATG”, “TAG”, etc.) (FIG. 12). Therefore, using the CRISPR-Cas3 system of the present invention, it is considered that regions that could not be recognized by the conventional method can be targeted for DNA editing.
- the CRISPR-Cas3 system causes DNA breaks at multiple locations. For this reason, when the CRISPR-Cas3 system of the present invention is used, a wide range of deletion mutations of 100 to several thousand bases and possibly more can be generated (FIGS. 3, 6, 16 to 18). This function can be used to knock out a long genomic region or to knock in a long DNA. When knocking in, donor DNA is usually used, and the donor DNA is also a molecule constituting the CRISPR-Cas3 system of the present invention.
- the CRISPR-Cas3 system of the present invention includes all six subtypes of type I. That is, the proteins constituting the CRISPR-Cas3 system may differ slightly depending on the subtype (for example, the proteins constituting the cascade are different), but the present invention encompasses all of these proteins. . In fact, in this example, it was found that genome editing is possible not only in type IE but also in type 1-G and type IF systems (FIG. 15).
- a type IE CRISPR-Cas3 system which is common among type I CRISPR-Cas3 systems, has crRNA cooperating with Cas3 and cascades (Cse1 (Cas8), Cse2 (Cas11), Cas5, Cas6, and Cas7). To cleave the DNA.
- Cas8a1, Csa5 (Cas11), Cas5, Cas6, and Cas7 are constituent elements as cascades
- Cas8b1, Cas5, Cas6, and Cas7 are constituent elements as cascades
- Cas8c, Cas5, and Cas7 are constituent elements as cascades.
- Cas10d, Csc1 (Cas5), Cas6, and Csc2 (Cas7) are constituent elements in cascade, and in Type IF , Csy1 (Cas8f), Csy2 (Cas5), Cas6, and Csy3 (Cas7) as components, and in a type IG system, Cst1 (Cas8a1), Cas5, Cas6, and Cst2 a (Cas7) as a constituent element.
- Cas3 and the cascade are collectively referred to as “Cas protein group”.
- the Cas protein group is introduced into a eukaryotic cell in the form of a protein, in the form of a polynucleotide encoding the protein, or in the form of an expression vector containing the polynucleotide.
- the Cas protein group is introduced into a eukaryotic cell in the form of a protein, the amount of each protein and the like can be appropriately adjusted, which is excellent in terms of handling. Further, in consideration of intracellular cleavage efficiency and the like, a Cas protein group complex can be first formed and then introduced into a eukaryotic cell.
- a nuclear translocation signal to the Cas protein group.
- the nuclear localization signal can be added to the N-terminal side and / or the C-terminal side of the Cas protein group (the 5′-terminal side and / or the 3′-terminal side of the polynucleotide encoding each Cas protein group).
- the above-mentioned nuclear translocation signal is a peptide sequence composed of several to several tens of basic amino acids, and the sequence is not particularly limited as long as the protein is translocated into the nucleus.
- a specific example of such a nuclear translocation signal is, for example, [Wu J et al. (2009) The Intracellular Mobility of Nuclear Import Receptors and NLS Cargoes, Biophysical journal, Vol. 96 (Issue 9), pp. 3840-3849], and any nuclear translocation signal commonly used in the art can be used in the present invention.
- the nuclear translocation signal can be, for example, PKKKRKV (SEQ ID NO: 52) (encoded by the base sequence CCCAAGAAGAAGCGGAAGGTG (SEQ ID NO: 53)).
- PKKKRKV SEQ ID NO: 52
- CCCAAGAAGAAGCGGAAGGTG SEQ ID NO: 53
- the nuclear translocation signal can be, for example, KRTADGSEFEPKKKKRKVE (SEQ ID NO: 54) (base sequence AAGCGGAACTGCTGGATGGCAGGTGAATTTGAGTCCCCCAAAAGAGAAGAGAAAGGTGGAA (SEQ ID NO: 55)).
- SEQ ID NO: 54 base sequence AAGCGGAACTGCTGGATGGCAGGTGAATTTGAGTCCCCCAAAAGAGAAGAGAAAGGTGGAA (SEQ ID NO: 55)
- placing a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 55 at both ends of each polynucleotide encoding the Cas protein group ie, “bipartite nuclear translocation signal (bpNLS)”.
- Such modification is important for efficient expression and function of the CRISPR-Cas3 system of the present invention in eukaryotic cells in combination with the use of pre-crRNA described later.
- Cas protein group used in the present invention is as follows. Cas3; protein Cse1 (Cas8) encoded by a polynucleotide consisting of the base sequence shown in SEQ ID NO: 1 or 7; protein Cse2 encoded by a polynucleotide consisting of the base sequence shown in SEQ ID NO: 2 or SEQ ID NO: 8 (Cas11); protein Cas5 encoded by a polynucleotide consisting of the base sequence shown by SEQ ID NO: 3 or SEQ ID NO: 9; protein Cas6 encoded by a polynucleotide consisting of the base sequence shown by SEQ ID NO: 4 or SEQ ID NO: 10; Protein Cas7 encoded by a polynucleotide consisting of the base sequence shown by SEQ ID NO: 5 or SEQ ID NO: 11; Protein encoded by a polynucleotide consisting of the base sequence shown by SEQ ID NO: 6 or SEQ ID NO: 12
- each protein of the Cas protein group used in the present invention is a protein encoded by a base sequence having 90% or more sequence identity with the base sequence of the Cas protein group.
- Another embodiment of each protein of the Cas protein group used in the present invention is encoded by a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a base sequence complementary to the base sequence of the Cas protein group.
- Each of the above proteins has a DNA-cleaving activity when formed into a complex with other proteins constituting the Cas protein group. The meaning of terms such as “sequence identity” and “stringent conditions” will be described later.
- the polynucleotide encoding the wild-type protein constituting the type IE CRISPR-Cas system includes a polynucleotide modified so as to be efficiently expressed in a eukaryotic cell. That is, a modified polynucleotide encoding the Cas protein group can be used.
- One preferred embodiment of the modification of the polynucleotide is a modification to a base sequence suitable for expression in eukaryotic cells, for example, optimization of codons to express in eukaryotic cells.
- polynucleotide encoding the Cas protein group used in the present invention is as follows.
- Polynucleotide Cas5 consisting of the base sequence shown by SEQ ID NO: 4 or SEQ ID NO: 10; polynucleotide Cas6 consisting of the base sequence shown by SEQ ID NO: 5 or SEQ ID NO: 11; 6 or a polynucleotide consisting of the base sequence shown in SEQ ID NO: 12
- the artificial modification of the above polynucleotide is to modify the nucleotide sequence suitable for expression in a eukaryotic cell and to add a nuclear translocation signal.
- the modification of the base sequence and the addition of the nuclear translocation signal are as described above. Thereby, a sufficient increase in the expression level of the Cas protein group and an increase in function can be expected.
- Another embodiment of the polynucleotide encoding the Cas protein group used in the present invention is a wild-type Cas protein group consisting of a base sequence having 90% or more sequence identity with the base sequence of the Cas protein group.
- a protein expressed from each of these polynucleotides has a DNA-cleaving activity when formed into a complex with a protein expressed from another polynucleotide constituting the Cas protein group.
- the sequence identity of the base sequence is at least 90% or more, more preferably 95% or more (for example, 95%, 96%, etc.) in the entire base sequence (or a region encoding a portion necessary for the function of Cse3). 97%, 98%, 99% or more).
- the identity of the base sequence can be determined using a program such as BLASTN ([Altschul SF (1990) Basic local alignment search tool, Journal of Molecular Biology, Vol. 215, Issue 403, Issue 3). -410]).
- “having DNA cleavage activity” means that the polynucleotide chain can be cleaved at at least one location.
- the CRISPR-Cas3 system of the present invention preferably cleaves DNA by specifically recognizing a target sequence. Whether or not the CRISPR-Cas3 system specifically recognizes the target sequence can be determined, for example, by the dual-Luciferase assay described in Example A-1.
- polynucleotide encoding the Cas protein group used in the present invention is a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a base sequence complementary to the base sequence of the Cas protein group. is there.
- a protein expressed from each of these polynucleotides has a DNA-cleaving activity when formed into a complex with a protein expressed from another polynucleotide constituting the Cas protein group.
- the “stringent condition” is a condition in which two polynucleotide strands form a double-stranded polynucleotide specific to a base sequence, but do not form a non-specific double-stranded polynucleotide.
- “hybridizes under stringent conditions” means that the temperature is 15 ° C. lower, preferably 10 ° C. lower than the melting temperature (Tm value) of nucleic acids having high sequence identity (for example, perfectly matched hybrids). It can also be said that the conditions allow hybridization in a temperature range, more preferably in a temperature range up to 5 ° C.
- An example of stringent conditions is as follows. First, in a buffer solution (pH 7.2) composed of 0.25M Na 2 HPO 4 , 7% SDS, 1 mM EDTA, 1 ⁇ Denhardt solution at 60 to 68 ° C. (preferably 65 ° C., more preferably 68 ° C.). , Hybridize the two polynucleotides for 16-24 hours. Thereafter, washing is performed for 2 minutes at 60 to 68 ° C. (preferably 65 ° C., more preferably 68 ° C.) in a buffer solution (pH 7.2) comprising 20 mM Na 2 HPO 4 , 1% SDS and 1 mM EDTA. Do it once.
- Normal conditions Washed at about 37 ° C. using 1 ⁇ SSC and 0.1% SDS as a washing solution. Severe conditions; Wash at about 42 ° C. as 5 ⁇ SSC and 0.1% SDS washing solution. More severe conditions: Wash at about 65 ° C. using 0.2 ⁇ SSC and 0.1% SDS as a washing solution.
- the more severe the washing conditions for hybridization the more specific hybridization is achieved.
- the combination of the above SSC, SDS and temperature conditions is merely an example. It is possible to achieve the same stringency as described above by appropriately combining the above-mentioned factors that determine the stringency of hybridization, or other factors (for example, probe concentration, probe length, hybridization reaction time, etc.). it can. For example, [Joseph Sambrook & David W. Russell, Molecular cloning: a laboratory manual 3rd Ed. , New York: Cold Spring Harbor Laboratory Press, 2001].
- an expression vector for expressing the Cas protein group can be used.
- the substrate vector various commonly used vectors can be used as the substrate vector, and can be appropriately selected depending on the cell to be introduced or the introduction method. Specifically, plasmids, phages, cosmids and the like can be used.
- the specific type of vector is not particularly limited, and a vector that can be expressed in a host cell may be appropriately selected.
- Examples of the expression vectors described above include phage vectors, plasmid vectors, viral vectors, retroviral vectors, chromosomal vectors, episomal vectors and viral vectors (bacterial plasmids, bacteriophages, yeast episomes, etc.), yeast chromosomal elements and viruses (baculo And vectors derived from viruses, papovaviruses, vaccinia viruses, adenoviruses, tripox viruses, pseudorabies viruses, herpes viruses, lentiviruses, retroviruses, and the like, and combinations thereof (cosmids, phagemids, etc.).
- the expression vector further includes sites for transcription initiation and transcription termination, and a ribosome binding site in the transcription region.
- the coding portion of the mature transcript in the vector will contain a transcription start codon AUG at the beginning of the polypeptide to be translated and a stop codon appropriately located at the end.
- the expression vector for expressing the Cas protein group may include a promoter sequence.
- the promoter sequence may be appropriately selected according to the type of eukaryotic cell serving as a host.
- the expression vector may contain a sequence for enhancing transcription from DNA, for example, an enhancer sequence.
- Enhancers include, for example, the SV40 enhancer (which is located 100-270 bp downstream of the origin of replication), the cytomegalovirus early promoter enhancer, the polyoma enhancer and adenovirus enhancer located downstream of the origin of replication. Can be mentioned.
- the expression vector may contain a sequence for stabilizing the transcribed RNA, for example, a poly A addition sequence (polyadenylation sequence, polyA).
- poly A addition sequences examples include growth hormone gene-derived poly A addition sequences, bovine growth hormone gene-derived poly A addition sequences, human growth hormone gene-derived poly A addition sequences, SV40 virus-derived poly A addition sequences, human or An example is a poly A addition sequence derived from a rabbit ⁇ -globin gene.
- the number of polynucleotides encoding the Cas protein group incorporated in the same vector is not particularly limited as long as the function of the CRISPR-Cas system can be exhibited in the host cell into which the expression vector has been introduced.
- a design in which a polynucleotide encoding a cascade protein is mounted on one (identical) vector and a polynucleotide encoding Cas3 is mounted on another vector is possible.
- a method of mounting polynucleotides encoding each Cas protein group on six different types of vectors is used.
- a plurality of polynucleotides encoding the same protein may be mounted in the same vector for the purpose of adjusting the expression level.
- the cell includes a plurality of base sequences encoding Cas protein group, and a base sequence encoding an amino acid sequence (such as 2A peptide) cleaved by intracellular protease is inserted between the plurality of base sequences.
- Expression vectors may be used (see, for example, the vector structure of FIG. 8).
- a polynucleotide having such a base sequence is transcribed and translated, a polypeptide chain linked together in the cell is expressed. Thereafter, the Cas protein group is separated by the action of intracellular protease, and after forming individual proteins, forms a complex and functions. Thereby, the quantity ratio of Cas protein group expressed in a cell can be adjusted.
- Cas3 and Cse1 (Cas8) will be expressed in equal amounts from “an expression vector containing one base sequence encoding Cas3 and one base sequence encoding Cse1 (Cas8)”.
- an expression vector containing one base sequence encoding Cas3 and one base sequence encoding Cse1 (Cas8)”.
- a plurality of Cas protein groups can be expressed with one type of expression vector, it is advantageous in terms of excellent handling properties.
- the embodiment in which the Cas protein group is usually expressed by different expression vectors is superior.
- the expression vector used in the present invention can be prepared by a known technique. Examples of such methods include the methods described in various manuals in addition to the methods described in the implementation manual attached to the kit for preparing the vector. For example, [Joseph Sambrook & David W. Russell, Molecular cloning: a laboratory manual 3rd Ed. , New York: Cold Spring Harbor Laboratory Press, 2001] is a comprehensive guide.
- the CRISPR-Cas3 system of the present invention includes crRNA, a polynucleotide encoding crRNA, or an expression vector containing the polynucleotide for targeting to DNA for genome editing.
- CrRNA is RNA that forms part of the CRISPR-Cas system and has a base sequence complementary to the target sequence.
- the CRISPR-Cas3 system of the present invention makes it possible to specifically recognize a target sequence by cRNA and cleave the sequence.
- mature crRNA has usually been used as cRNA so far.
- pre-crRNA instead of mature crRNA. This fact is clear from a comparison experiment between mature crRNA and pre-crRNA (FIG. 10). Therefore, it is particularly preferable to use pre-crRNA as the crRNA of the present invention.
- the pre-crRNA used in the present invention typically has a structure of “leader sequence-repeat sequence-spacer sequence-repeat sequence (LRSR structure)” or “repeat sequence-spacer sequence-repeat sequence (RSR structure)”.
- the leader sequence is an AT-rich sequence and functions as a promoter for expressing pre-crRNA.
- the repeat sequence is a sequence that repeats via a spacer sequence, and the spacer sequence is a sequence designed in the present invention as a sequence complementary to the target DNA (originally, a foreign sequence incorporated in the adaptation process). DNA-derived sequence).
- a pre-crRNA becomes a mature crRNA when cleaved by a protein constituting a cascade (for example, Cas6 for type IA, B, and D, and Cas5 for type IC).
- the leader sequence has a chain length of 86 bases
- the repeat sequence has a chain length of 29 bases.
- the chain length of the spacer sequence is, for example, 10 to 60 bases, preferably 20 to 50 bases, more preferably 25 to 40 bases, and typically 32 to 37 bases. Therefore, the length of the pre-crRNA used in the present invention is, for example, 154 to 204 bases, preferably 164 to 194 bases, more preferably 169 to 184 bases, typically 176 to 181 bases in the case of the LRSR structure. It is. In the case of the RSR structure, for example, it is 68 to 118 bases, preferably 78 to 108 bases, more preferably 83 to 98 bases, and typically 90 to 95 bases.
- a preferred embodiment of the method of the present invention thus includes a step in which crRNA is cleaved by a protein constituting a cascade after introducing the CRISPR-Cas3 system into a eukaryotic cell.
- the mature crRNA produced by cleaving the pre-crRNA has a structure of “5 ′ handle sequence-spacer sequence-3 ′ handle sequence”.
- the 5 'handle sequence is composed of 8 bases at positions 22 to 29 of the repeat sequence and is held in Cas5.
- the 3 'handle sequence is composed of 21 bases from the 1st to 21st positions of the repeat sequence, and forms a stem loop structure at the 6th to 21st bases and is held in Cas6. Therefore, the length of mature crRNA is usually 61 to 66 bases.
- some mature crRNAs do not have a 3 'handle sequence, so in this case, the chain length is shortened by 21 bases.
- RNA sequence may be appropriately designed according to the target sequence for which DNA editing is desired.
- RNA synthesis can be performed using any method known in the art.
- eukaryotic cells examples include animal cells, plant cells, algal cells, and fungal cells.
- animal cells include cells of fish, birds, reptiles, amphibians and insects in addition to mammalian cells.
- Animal cells include, for example, cells constituting individual animals, cells constituting organs / tissues extracted from animals, cultured cells derived from animal tissues, and the like. Specifically, for example, germ cells such as oocytes and sperm; embryonic cells of each stage embryo (eg, 1-cell stage embryo, 2-cell stage embryo, 4-cell stage embryo, 8-cell stage embryo, 16-cell stage) Embryos, morulas, etc.); stem cells such as induced pluripotent stem (iPS) cells and embryonic stem (ES) cells; fibroblasts, hematopoietic cells, neurons, muscle cells, bone cells, hepatocytes, pancreatic cells And somatic cells such as brain cells and kidney cells.
- germ cells such as oocytes and sperm
- embryonic cells of each stage embryo eg, 1-cell stage embryo, 2-cell stage embryo, 4-cell stage embryo, 8-cell stage embryo, 16-cell stage
- Embryos eg. 1-cell stage embryo, 2-cell stage embryo, 4-cell stage embryo
- an oocyte used for producing a genome-edited animal an oocyte before and after fertilization can be used, and an oocyte after fertilization, that is, a fertilized egg is preferable.
- the fertilized egg is that of a pronuclear stage embryo.
- the oocyte can be used after thawing a cryopreserved one.
- mammal is a concept encompassing human and non-human mammals.
- non-human mammals include cattle, wild boar, pigs, sheep, goats and other cloven-hoofed animals, horses and other odd-hoofed animals, mice, rats, guinea pigs, hamsters, squirrels and other rodents, and rabbits such as rabbits And meat such as dogs, cats and ferrets.
- the non-human mammal described above may be a domestic animal, a companion animal (come animal), or a wild animal.
- plant cells include cells of cereals, oil crops, feed crops, fruits and vegetables.
- the “plant cell” includes, for example, a cell constituting an individual plant, a cell constituting an organ or tissue separated from a plant, a cultured cell derived from a plant tissue, and the like.
- plant organs and tissues include leaves, stems, shoot tips (growth points), roots, tubers, and calluses.
- plants include rice, corn, banana, peanut, sunflower, tomato, rape, tobacco, wheat, barley, potato, soybean, cotton, carnation, etc., and their propagation materials (eg seeds, tuberous roots, tubers, etc.) ) Is also included.
- editing eukaryotic DNA may be a step of editing eukaryotic DNA in vivo or a step of performing in vitro.
- editing DNA intends operations (including combinations thereof) exemplified in the following types.
- the DNA used in the above context includes not only DNA existing in the cell nucleus but also DNA existing outside the cell nucleus such as mitochondrial DNA, and exogenous DNA.
- 1. Cleave the DNA strand at the target site. 2. The base of the DNA strand at the target site is deleted. 3. A base is inserted into the DNA strand at the target site. 4). Replace the base of the DNA strand at the target site. 5). Modify the base of the DNA strand at the target site. 6). Regulates transcription of DNA (gene) at the target site.
- a protein having an enzyme activity that modifies target DNA is used by a method other than introducing DNA cleavage.
- This aspect can be achieved, for example, by fusing Cas3 or a cascade with a heterologous protein having a desired enzyme activity to form a chimeric protein.
- “Cas3” and “cascade” in the present invention include such fusion proteins.
- Examples of the enzyme activity of the protein to be fused include deaminase activity (eg, cytidine deaminase activity, adenosine deaminase activity), methyltransferase activity, demethylase activity, DNA repair activity, DNA damage activity, dismutase activity, alkylation activity, Examples include, but are not limited to, depurination activity, oxidation activity, pyrimidine dimer formation activity, integrase activity, transposase activity, recombinase activity, polymerase activity, ligase activity, light recovery enzyme activity, and glycosylase activity.
- Cas3 is a mutant in which a part or all of these activities are deleted (for example, a mutant of D domain H74A (dnCas3)), A mutant of K320N of SF2 domain motif 1 (dhCas3) and a double mutant of S483A / T485A of SF2 domain motif 3 (dh2Cas3)) can be used.
- dnCas3 D domain H74A
- dhCas3 A mutant of K320N of SF2 domain motif 1
- dh2Cas3 double mutant of S483A / T485A of SF2 domain motif 3
- gene transcription at the binding site of the system is regulated without DNA cleavage.
- This aspect can be achieved, for example, by fusing Cas3 or a cascade with a desired transcription regulatory protein to form a chimeric protein.
- Cas3 and cascade in the present invention include such fusion proteins.
- the transcription regulatory protein include, but are not limited to, a light-induced transcription control factor, a small molecule / drug-responsive transcription control factor, a transcription factor, and a transcription repression factor.
- Cas3 is a mutant in which a part or all of these activities are deleted (for example, a mutant of D domain H74A (dnCas3)), A mutant of K320N of SF2 domain motif 1 (dhCas3) and a double mutant of S483A / T485A of SF2 domain motif 3 (dh2Cas3)) can be used.
- Techniques for applying transcriptional regulatory proteins to the CRISPR-Cas system are known to those skilled in the art.
- a protein having another nuclease activity may be fused with Cas3 or the cascade. Good. Such an embodiment is also included in the present invention.
- DNA editing may be performed on DNA contained in specific cells within an individual. Such DNA editing can be performed, for example, by targeting a specific cell among cells constituting an individual of an animal or plant.
- the method for introducing a molecule constituting the CRISPR-Cas3 system of the present invention into a eukaryotic cell in the form of a polynucleotide or an expression vector containing the polynucleotide is not particularly limited.
- electroporation method calcium phosphate method, liposome method, DEAE dextran method, microinjection method, cationic lipid-mediated transfection, electroporation, transduction, infection using virus vector, and the like.
- electroporation method calcium phosphate method, liposome method, DEAE dextran method, microinjection method, cationic lipid-mediated transfection, electroporation, transduction, infection using virus vector, and the like.
- Such a method is described in many standard laboratory manuals such as “Leonard G. Daviset al., Basic methods in molecular biology, New York: Elsevier, 1986”.
- the method for introducing the CRISPR-Cas3 system of the present invention into a eukaryotic cell in the form of a protein is not particularly limited.
- electroporation, cationic lipid-mediated transfection, microinjection and the like can be mentioned.
- the DNA editing according to the present invention can be applied to various fields. Applications include, for example, gene therapy, breed improvement, production of transgenic animals or cells, production of useful substances, life science research and the like.
- a method for producing a non-human individual from cells a known method can be used.
- non-human individuals are produced from cells in animals, germ cells or pluripotent stem cells are usually used.
- a molecule constituting the CRISPR-Cas3 system of the present invention is introduced into an oocyte, and the resulting oocyte is then transplanted into the uterus of a female non-human mammal that has been put into a pseudopregnant state, after which the litter is obtain.
- Transplantation can be performed in fertilized eggs of 1-cell stage embryo, 2-cell stage embryo, 4-cell stage embryo, 8-cell stage embryo, 16-cell stage embryo, or morula stage embryo.
- Oocytes can be cultured under appropriate conditions until transplanted, if necessary.
- Oocyte transplantation and culture can be performed based on conventionally known methods (Nagy A. et al., Manipulating the Mouse Embry. Cold Spring Harbor, New York: Cold Spring Harbor 3). From the obtained non-human individual, offspring and clones in which the desired DNA is edited can also be obtained.
- somatic cells have totipotency, and methods for regenerating plant bodies from plant cells have been established in various plants. Therefore, for example, by introducing a molecule constituting the CRISPR-Cas3 system of the present invention into a plant cell and regenerating the plant body from the obtained plant cell, a plant body in which a desired DNA is knocked in can be obtained. . From the obtained plant body, a progeny, a clone, or a propagation material in which a desired DNA is edited can be obtained.
- Kit used for CRISPR-Cas3 system includes the following (A) and (B).
- A Cas3 protein, a polynucleotide encoding the protein, or an expression vector containing the polynucleotide
- B a cascade protein, a polynucleotide encoding the protein, or an expression vector containing the polynucleotide.
- CrRNA A polynucleotide encoding the crRNA or an expression vector containing the polynucleotide may be included.
- the components of the kit of the present invention may be in a mode in which all or part of them are mixed, or in a mode in which each is independent.
- the kit of the present invention can be used, for example, in fields such as pharmaceuticals, food, livestock, fisheries, industry, biotechnology, and life science research.
- kit of the present invention will be described assuming a drug (drug).
- drug drug
- it can implement by replacing suitably the following description based on the technical common sense of the said field
- a pharmaceutical for editing DNA of animal cells including humans using the CRISPR-Cas3 system of the present invention can be prepared by a conventional method. More specifically, the molecule constituting the CRISPR-Cas3 system of the present invention can be prepared by, for example, blending with a pharmaceutical additive.
- pharmaceutical additives means substances other than active ingredients contained in pharmaceuticals.
- a pharmaceutical additive is a substance contained in a pharmaceutical for the purpose of facilitating formulation, stabilizing quality, enhancing usefulness, and the like.
- the pharmaceutical additive includes an excipient, a binder, a disintegrant, a lubricant, a fluidizing agent (a solid preventing agent), a colorant, a capsule film, a coating agent, a plasticizer, a corrigent, a sweetener, Flavoring agent, solvent, solubilizer, emulsifier, suspending agent (adhesive), thickener, pH adjuster (acidifying agent, alkalizing agent, buffering agent), wetting agent (solubilizing agent), antibacterial And preservatives, chelating agents, suppository bases, ointment bases, hardeners, softeners, medical water, propellants, stabilizers, preservatives.
- These pharmaceutical additives can be readily selected by those skilled in the art
- the pharmaceutical product for editing the DNA of animal cells using the CRISPR-Cas3 system of the present invention may further contain an active ingredient.
- the additional active ingredient is not particularly limited and can be appropriately designed by those skilled in the art.
- active ingredients and pharmaceutical additives described above can be found, for example, according to standards established by the US Food and Drug Administration (FDA), the European Medicines Agency (EMA), the Japanese Ministry of Health, Labor and Welfare.
- FDA US Food and Drug Administration
- EMA European Medicines Agency
- Examples of a method for delivering a pharmaceutical product to a desired cell include, for example, a virus vector (such as an adenovirus vector, an adeno-associated virus vector, a lentivirus vector, or a Sendai virus vector) that targets the cell, and specifically recognizes the cell.
- a virus vector such as an adenovirus vector, an adeno-associated virus vector, a lentivirus vector, or a Sendai virus vector
- the medicine can take any dosage form depending on the purpose.
- the said pharmaceutical is prescribed suitably by a doctor or a medical worker.
- the kit of the present invention preferably further comprises instructions for use.
- the target sequence was a human CCR5 gene-derived sequence (SEQ ID NO: 19) and a CRISPR spacer sequence (SEQ ID NO: 22) of Escherichia coli.
- a polynucleotide (SEQ ID NO: 21) was prepared.
- a synthetic polynucleotide (SEQ ID NO: 23) comprising a target sequence (SEQ ID NO: 22) derived from the CRISPR spacer sequence of E. coli, and a synthetic polynucleotide (SEQ ID NO: 22) comprising a sequence complementary to the target sequence (SEQ ID NO: 22) Number 24) was prepared. All the above synthetic polynucleotides were obtained from Hokkaido System Science Co., Ltd.
- the above-mentioned polynucleotide is [Sakuma T et al. (2013) Efficient TALEN construction and evaluation methods for human cell and animal applications, Genes to Cells, Vol. 18 (Issue 4), pp. 315-326] and inserted into a reporter vector.
- the outline is as follows. First, polynucleotides having sequences complementary to each other (the polynucleotide of SEQ ID NO: 20 and the polynucleotide of SEQ ID NO: 21; the polynucleotide of SEQ ID NO: 23 and the polynucleotide of SEQ ID NO: 24) were heated at 95 ° C for 5 minutes. Thereafter, the mixture was cooled to room temperature and hybridized. A block incubator (BI-515A, Astech) was used for the above steps. Next, the polynucleotide that had been hybridized to form a double-stranded structure was inserted into a substrate vector to obtain a reporter vector.
- the sequences of the prepared reporter vectors are shown in SEQ ID NO: 31 (reporter vector containing a target sequence derived from human CCR5 gene) and SEQ ID NO: 32 (reporter vector containing a target sequence derived from the CRISPR spacer sequence of E. coli).
- the structure of the reporter vector is shown in FIG.
- Cse1 (Cas8), Cse2 (Cas11), Cas5, Cas6, Cas7 and crRNA expression vectors [Insert amplification and preparation] Polynucleotides having modified base sequences encoding Cse1 (Cas8), Cse2 (Cas11), Cas5, Cas6 and Cas7 (SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6, respectively) ), First, a polynucleotide (Cse1 (Cas8) -Cse2 (Cas11) -Cas7-Cas5-Cas6) linked in the order of SEQ ID NO: 2-SEQ ID NO: 3-SEQ ID NO: 6-SEQ ID NO: 4-SEQ ID NO: 5 , Polynucleotides in which the base sequences encoding each of them were linked) were outsourced to Genscript and obtained.
- the base sequence encoding the 2A peptide was slightly different depending on each Cas protein linking part and was as follows. Sequence between Cse1 (Cas8) and Cse2 (Cas11): GGAAGCGGAGCAACCAACTTCAGCCTGCTGAAGCAGGCCGGCGGATGGGAGGAGAATCCAGGCCCCC (SEQ ID NO: 59). Sequence between Cse2 (Cas11) and Cas7: GGCTCCGGGCGCCACCAATTTTTCTCTGCTGAAGCAGGCAGGCGATGTGGAGGAGAACCCAGGACCT (SEQ ID NO: 60).
- Sequence between Cas7 and Cas5 GGATCTGAGCCCCAATTTTCACGCTTGCTGAAGCAAGCAGGCGACCGTGGAAGAAAAACCCGAGACCA (SEQ ID NO: 61). Sequence between Cas5 and Cas6: GGATCTGGGGCTACTAATTTTTCTCTGCTGAAGCAAGCCGGCGAGCGTGGAAGGAATCCAGGACCG (SEQ ID NO: 62).
- each polynucleotide was amplified under the PCR conditions (primers and time course) shown in the following table.
- 2720 Thermal cycler applied biosystems
- a polynucleotide having the following complementary sequence was obtained as a polynucleotide having a base sequence for expressing crRNA.
- Polynucleotide for expressing crRNA corresponding to the sequence derived from human CCR5 gene (SEQ ID NOs: 25 and 26, obtained from Hokkaido System Science) 2.
- Polynucleotide for expressing crRNA corresponding to CRISPR spacer sequence of E. coli (SEQ ID NOs: 27 and 28, obtained from Hokkaido System Science) 3.
- a polynucleotide for expressing crRNA corresponding to a sequence derived from the human EMX1 gene SEQ ID NOs: 29 and 30, obtained from Fasmac).
- PPB-CAG-EBNXN (provided by Sanger Center) was used as a substrate plasmid.
- NEB buffer 1.6 ⁇ g of the base plasmid, 1 ⁇ l of restriction enzyme BglII (New England Biolabs) and 0.5 ⁇ l of XhoI (New England Biolabs) were mixed and reacted at 37 ° C. for 2 hours.
- the cleaved substrate plasmid was purified with a Gel extraction kit (Qiagen).
- the base material plasmid thus prepared and the above insert were ligated using a Gibson Assembly system. Ligation was performed according to the protocol of Gibson Assembly system so that the ratio of the base plasmid to the insert was 1: 1 (total volume of reaction solution: 8 ⁇ L at 50 ° C. for 25 minutes).
- transformation was performed by a usual method using 6 ⁇ L of the plasmid solution (ligation reaction solution) obtained above and a competent cell (manufactured by Takeda Laboratory).
- the plasmid vector was purified from the transformed E. coli by the alkali prep method. Briefly, the plasmid vector was recovered using QIAprep Spin Miniprep Kit (Qiagen), and the recovered plasmid vector was purified by ethanol precipitation and prepared to a concentration of 1 ⁇ g / ⁇ L in TE buffer. .
- each plasmid vector is shown in (a) to (c) of FIG.
- the base sequence of the expression vector for pre-crRNA is expressed by SEQ ID NO: 33 (expression vector for expressing crRNA corresponding to the sequence derived from human CCR5 gene) and SEQ ID NO: 34 (crRNA corresponding to the spacer sequence of CRISPR of E. coli) Expression vector) and SEQ ID NO: 35 (expression vector for expressing crRNA corresponding to a sequence derived from human EMX1 gene).
- the above vector was cleaved with the restriction enzyme NotI.
- 2 U of Klenow Fragment (Takara Bio Inc.) and 1 ⁇ L of 2.5 mM dNTP Mixture (Takara Bio Inc.) were used to smooth the fragments.
- the above fragment was purified using Gel extraction (Qiagen).
- the purified fragment was further cleaved with a restriction enzyme XhoI, and purified using Gel extraction (Qiagen).
- the purified fragment was ligated using a substrate plasmid (pTL2-CAG-IRES-NEO vector, produced by Takeda Lab) and a ligation kit (Mighty Mix, Takara Bio Inc.). Ligated. Then, transformation and purification were performed by the same operation as [2].
- the recovered plasmid vector was prepared to a concentration of 1 ⁇ g / ⁇ L in TE buffer.
- disconnection location by BgIII sequence which provided the cutting
- the pMK vector incorporating the above sequence was cleaved with restriction enzymes BgIII and XhoI, and purified using Gel extraction (Qiagen).
- the purified fragment was ligated using a substrate plasmid (pPB-CAG-EBNXN, provided by Sanger Center) and a ligation kit (Mighty Mix, Takara Bio Inc.). Then, transformation and purification were performed by the same operation as [2].
- the recovered plasmid vector was prepared to a concentration of 1 ⁇ g / ⁇ L in TE buffer.
- NLS-Cse1 (Cas8): SEQ ID NO: 2) -2A- (NLS-Cse2 (Cas11): SEQ ID NO: 3) -2A- (NLS-Cas7: SEQ ID NO: 6) -2A- (NLS An expression vector arranged in the order of -Cas5: SEQ ID NO: 4) -2A- (NLS-Cas6: SEQ ID NO: 5) was prepared (see FIG. 8).
- the amino acid sequence of NLS is PKKKRKV (SEQ ID NO: 52), and the base sequence is CCCAAGAAGAAGCGGAAGGTG (SEQ ID NO: 53).
- the amino acid sequence of the 2A peptide is GSGATNFSLLKQAGDVEENGPP (SEQ ID NO: 58) (corresponding base sequences are SEQ ID NOs: 59 to 62, respectively).
- a polypeptide having the above base sequence was obtained from GenScript.
- PUC57 vector incorporating the above sequence was cleaved with restriction enzyme EcoRI-HF and purified using Gel extraction (Qiagen).
- the purified fragment was ligated using a substrate plasmid (pTL2-CAG-IRES-Puro vector, produced by Takeda Laboratory) and a ligation kit (Mighty Mix, Takara Bio Inc.). Then, transformation and purification were performed by the same operation as [2].
- the recovered plasmid vector was prepared to a concentration of 1 ⁇ g / ⁇ L in TE buffer.
- Example A-1 Cas3, Cse1 (Cas8), Cse2 (Cas11), Cas5, Cas6 and Cas7 and crRNA modified with the base sequence and added with nuclear translocation signal are expressed in HEK (human embroidic kidney) 293T cells, and the exogenous DNA The cleavage activity of the target sequence was evaluated.
- HEK293T cells Prior to transfection, HEK293T cells were cultured in 10 cm dishes. HEK293T cells were cultured in EF medium (GIBCO) at 37 ° C. in a 5% CO 2 atmosphere. Density of HEK293T cells in EF medium was prepared in 3 ⁇ 10 4 / 100 ⁇ L.
- the conditions using a reporter vector having a CCR5-derived target sequence as the reporter vector correspond to 1 in FIG. 1, and the conditions using a reporter vector having a CRISPR spacer sequence of E. coli correspond to 10 in FIG.
- Lipofectamine 2000 1.5 ⁇ L and OptiMEM (Thermo Fisher Scientific) 25 ⁇ L were mixed and incubated at room temperature for 5 minutes. Then, said plasmid + OptiMEM mixture and Lipofectamine2000 + OptiMEM mixture were mixed, and it incubated at room temperature for 20 minutes. The obtained mixture was mixed with 1 mL of the EF medium containing HEK293T cells and seeded in a 96-well plate (one well for each vector combination was seeded in a total of 12 wells).
- a plasmid that expresses crRNA corresponding to the spacer sequence of CRISPR of E. coli is mixed (8 in FIG. 1), and when targeting the spacer sequence of CRISPR of E. coli, A plasmid for expressing crRNA corresponding to the sequence derived from the CCR5 gene was mixed and expressed (11 in FIG. 1). 3.
- a negative control only a reporter vector having a target sequence derived from CCR5 (9 in FIG. 1) and only a reporter vector having a CRISPR spacer sequence of E. coli (12 in FIG. 1) were expressed.
- CCR5-target and “spacer-target” represent the CCR5-derived target sequence and the CRISPR spacer sequence of E. coli, respectively.
- CCR5-crRNA and “spacer-crRNA” represent a sequence complementary to the CCR5-target and a sequence complementary to spacer-target, respectively.
- FIG. 1 a system in which a Cas3 plasmid, a Cse1 (Cas8) plasmid, a Cse2 (Cas11) plasmid, a Cas5 plasmid, a Cas6 plasmid, and a Cas7 plasmid, and a crRNA plasmid complementary to a target sequence are introduced,
- a Cas3 plasmid a Cse1 (Cas8) plasmid, a Cse2 (Cas11) plasmid
- Cas5 plasmid a Cas6 plasmid
- Cas7 plasmid a crRNA plasmid complementary to a target sequence
- the cleavage activity was the same level as that of the negative control in the system expressing crRNA that was not complementary to the target sequence. That is, it was suggested that the CRISPR-Cas3 system of the present invention can specifically cleave a sequence complementary to crRNA in mammalian cells.
- Example A-2 Using the same method as in Example A-1, an experiment was conducted to evaluate whether or not endogenous DNA of human cells can be cleaved by the type I CRISPR-Cas system.
- Cas3, Cse1 (Cas8), Cse2 (Cas11), Cas5, Cas6, and Cas7 modified with a base sequence in a human cell and added with a nuclear translocation signal, and pre-crRNA are expressed, and the endogenous of the cell is expressed. It was evaluated whether the sequence of the sex CCR5 gene was cleaved.
- Example A-1 The same HEK239T cells as in Example A-1 were seeded in a 24-well plate at a density of 1 ⁇ 10 5 cells / well and cultured for 24 hours.
- the medium was exchanged with 1 mL of EF medium. 48 hours after transfection (24 hours after medium change), cells were collected and adjusted to a concentration of 1 ⁇ 10 4 cells / 5 ⁇ L in PBS.
- the cells were heated at 95 ° C. for 10 minutes. Next, 10 mg of proteinase K was added and incubated at 55 ° C. for 70 minutes. Furthermore, what was heat-treated at 95 ° C. for 10 minutes was used as a PCR template.
- dA was added to the 3 ′ end of the obtained purified DNA.
- the purified DNA was electrophoresed in a 2% agarose gel, and a band of about 500 to 700 bp was excised. Then, the DNA was extracted from the excised gel and purified using Gel extraction kit (QIAGEN). Next, TA cloning was performed using pGEM-T easy vector Systems (Promega) to clone the DNA. Finally, DNA cloned by the alkali prep method was extracted and analyzed by Sanger sequencing. For analysis, BigDye (registered trademark) Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific) and Applied Biosystems 3730 DNA Analyzer (ThermoFisher) were used.
- a sequence in the CCR5 gene located in the third chromosome short arm (P) 21 region was targeted (FIG. 2; SEQ ID NO: 46 shows the full length of the base sequence of CCR5).
- the sequence in exon 3 of the CCR5 gene was used as the target sequence.
- the target sequence of Cas9 was also arranged at almost the same position. That is, the entire underlined sequence is the target sequence of the type I CRISPR-Cas system (AAG followed by 32 bases), and the double underlined sequence is the target sequence of Cas9 (CGG followed by 20 bases) .
- the sequence of the crRNA was designed to allow guidance to the target sequence of the type I CRISPR-Cas system (AAG followed by 32 bases).
- Example A-3 Using the same method as in Example A-1, an experiment was conducted to evaluate whether the endogenous DNA of human cells can be cleaved by the CRISPR-Cas3 system.
- Cas3, Cse1 (Cas8), Cse2 (Cas11), Cas5, Cas6, and Cas7 modified with a base sequence in a human cell and added with a nuclear translocation signal, and pre-crRNA are expressed, and the endogenous of the cell is expressed. It was evaluated whether the sequence of the sex EMX1 gene was cleaved.
- Example A-1 The same HEK293T cells as in Example A-1 were seeded in a 24-well plate at a density of 1 ⁇ 10 5 cells / well and cultured for 24 hours.
- Cas3 plasmid 500 ng, Cse1 (Cas8) plasmid 500 ng, Cse2 (Cas11) plasmid 1 ⁇ g, Cas5 plasmid 1 ⁇ g, Cas6 plasmid 1 ⁇ g, Cas7 plasmid 3 ⁇ g, and crRNA plasmid 500 ⁇ g were mixed in Opti-MEM (Thermo Fisher Scientific 50). 4 ⁇ L of Lipofectamine (registered trademark) 2000 (Thermo Fisher Scientific) and 50 ⁇ L of Opti-MEM (Thermo Fisher Scientific) were further added to the above mixture and mixed. The resulting mixture was incubated at room temperature for 20 minutes and then added to the HEK293T cells.
- FIG. 7 shows the structure of the expression vector of the Cas protein group used in Example A-3.
- the expression vector is obtained by sandwiching the sequence encoding the Cas protein group before and after BPNLS (bipartite NLS) ([Suzuki K et al. (2016) In vivo gene editing). via CRISPR / Cas9, mediate homology-independent, targeted integration, Nature, Vol. 540 (Issue 7631), pp. 144-149].
- the amino acid sequence of BPNLS is KRTADGSSEFESPKKKKRKVE (SEQ ID NO: 54), and the base sequence is AAGCGGACTGCTGGATGCAGTGAATTTGAGTCCCCCAAAGAAGAGAGAAAAGGTGGAA (SEQ ID NO: 55).
- the HEK293T cells were cultured at 37 ° C. in a 5% CO 2 atmosphere for 24 hours, and then the medium was exchanged with 1 mL of EF medium (1 mL per well). 48 hours after transfection (24 hours after medium change), cells were collected and adjusted to a concentration of 1 ⁇ 10 4 cells / 5 ⁇ L in PBS.
- the cells were heated at 95 ° C. for 10 minutes. Next, 10 mg of proteinase K was added and incubated at 55 ° C. for 70 minutes. Furthermore, what was heat-treated at 95 ° C. for 10 minutes was used as a PCR template.
- Example A-3 a sequence in the EMX1 gene located in the second chromosome short arm (P) 13 region was targeted (FIG. 5; SEQ ID NO: 49 shows the full length of the base sequence of EMX1). Specifically, the sequence in exon 3 of the EMX1 gene was used as the target sequence. As a control, the target sequence of Cas9 was also arranged at almost the same position. That is, the underlined sequence at the upstream is the target sequence (AAG followed by 32 bases) of the type I CRISPR-Cas system, and the downstream sequence at the downstream is the target sequence for Cas9 (TGG and preceding it) 20 bases).
- the crRNA sequence used in Example A-3 was designed to allow guidance to the target sequence (AAG followed by 32 bases) of the CRISPR-Cas3 system.
- Example A-3 the result of Example A-3 more strongly supports the suggestion obtained from Example A-2.
- Example A-4 The CRISPR-Cas3 system in which the base sequence was modified and the base sequence encoding the cascade protein was linked was expressed in HEK293T cells, and the cleavage activity of the target sequence of exogenous DNA was evaluated.
- the conditions using a reporter vector having a target sequence derived from CCR5 as the reporter vector correspond to 1 in FIG. 9B, and the conditions using a reporter vector having a CRISPR spacer sequence of E. coli are shown in FIG. 6).
- reporter vector two types of reporter vectors produced in [Production Example] [1] (that is, vectors having the structure shown in FIG. 4D) were used.
- the cascade (2A) plasmid used was the expression vector prepared in [4] of [Production Example] (that is, the vector having the structure shown in FIG. 8).
- a dual-Luciferase assay was performed in the same manner as in Example A-1, except that the above expression vector was used.
- the same experiment was performed under the following conditions. 1. Instead of either the Cas3 plasmid or the cascade (2A) plasmid, the same amount of pBluescriptII KS (+) vector (Agilent Technologies) was mixed and expressed (2 and 3 in FIG. 9). 2. Instead of the crRNA plasmid used in the above procedure, a plasmid that expresses crRNA that is not complementary to the target sequence was mixed. That is, for a target sequence derived from the CCR5 gene, a plasmid expressing crRNA corresponding to the spacer sequence of CRISPR of E. coli is mixed (4 in FIG. 9), and when targeting the spacer sequence of CRISPR of E.
- a plasmid for expressing gRNA corresponding to the sequence derived from the CCR5 gene was mixed and expressed (7 in FIG. 9). 3.
- a negative control only a reporter vector having a target sequence derived from CCR5 (5 in FIG. 9) and only a reporter vector having a CRISPR spacer sequence of E. coli (8 in FIG. 9) were expressed.
- CCR5-target and “spacer-target” represent the target sequence derived from CCR5 and the spacer sequence of CRISPR of E. coli, respectively.
- CCR5-crRNA and “spacer-crRNA” represent a sequence complementary to the CCR5-target and a sequence complementary to spacer-target, respectively.
- the system in which both the Cas3 plasmid and the cascade (2A) plasmid and the crRNA plasmid complementary to the target sequence were introduced had a significantly higher cleavage activity than the other systems. (Compare 1 and 2 to 5, 6 and 7 to 8, respectively).
- a sequence complementary to crRNA is expressed in mammalian cells. It was suggested that it can cleave specifically.
- Cas3 mutants such as H74A (dead nickase; dn), K320N (dead helicase; dh), double mutants of S483A and T485A (dead helicase ver. 2; dh2) self-ligate PCR products of PrimeSTAR MAX. It was made with.
- the crRNA expression plasmid a crRNA sequence having two BbsI restriction enzyme sites at the position of the spacer under the U6 promoter was synthesized. All crRNA expression plasmids were prepared by inserting a 32-base pair double-stranded oligo of the target sequence into the BbsI restriction enzyme site.
- the Cas9-sgRNA expression plasmid pX330-U6-Chemeric_BB-CBh-hSpCas9 was obtained from Addgene.
- CRISPR web tool, CRISPR design tool, and / or CRISPRdirect which predict a unique target site in the human genome were used.
- the target sequence was cloned into the sgRNA scaffold of pX330 according to the protocol of the Feng Zhang laboratory.
- the SSA reporter plasmid containing two BsaI restriction enzyme sites was donated by Professor Takashi Yamamoto of Hiroshima University.
- the target sequence of the genomic region was inserted into the BsaI site.
- PRL-TK Promega was obtained as a Renilla luciferase vector. All plasmids were prepared by the midiprep or maxiprep method using the PureLink HiPure Plasmid Purification Kit (Thermo Fisher).
- HEK293T cells 2.5 x 10 24 hours after seeding 4 cells into wells of a 24-well plate, Cas3, Cse1, Cse2, Cas7, Cas5, Cas6, crRNA expression plasmids (250 ng each) HEK293T cells were transfected using lipofectamine 2000 and OptiMEM (Life Technologies) according to a slightly modified protocol. Two days after transfection, total DNA was extracted from the collected cells using a Tissue XS kit (Takara-bio) according to the protocol. The target locus was amplified using Gflex (Takara bio) or Quick Taq HS DyeMix (TOYOBO) and electrophoresed on an agarose gel.
- Gflex Takara bio
- TOYOBO Quick Taq HS DyeMix
- SURVEYOR Mutation Detection Kit Integrated DNA Technologies
- TA cloning pCR4 Blunt-TOPO plasmid vector (Life Technologies) was used according to the protocol.
- BigDye Terminator Cycle Sequencing Kit and ABI PRISM 3130 Genetic Analyzer were used.
- a DNA library of PCR amplification products was prepared using TruSeq Nano DNA Library Prep Kit (Illumina), and amplicon sequencing was performed with MiSeq (2 x 150 bp) according to the standard procedure of Macrogen. It was. The raw reads of each sample were mapped to hg38 of the human genome by BWA-MEM. Coverage data was visualized with Integrative Genomics Viewer (IGV), and a histogram in the target area was extracted.
- IGV Integrative Genomics Viewer
- Reporter HEK293T cells with mCherry-P2A-EGFP c321C> G for detection of SNP-KI (snip knock-in) in mammalian cells were donated by Professor Shinichiro Nakata. Reporter cells were cultured with 1 ⁇ g / ml puromycin. 500 ng donor plasmid or single stranded DNA was co-introduced with CRISPR-Cas3 as described above. All cells were collected 5 days after transfection, and FACS analysis was performed using AriaIIIu (BD). GFP positive cells were sorted and total DNA was extracted by the method described above. SNP exchange in the genome was detected by PCR amplification using HiDi DNA polymerase (myPOLS Biotec).
- Type IE RISPR off-target candidates were detected using GGGenome in two different procedures in hg38 of the human genome.
- PAM candidate sequences include those already reported (Leenay, RT, et al. Mol. Cell 62, 137-147 (2016), Jung, et al. Mol. Cell. 2017 Jung et al., Cell 170, 35-47). (2017)), AAG, ATG, AGG, GAG, TAG and AAC were selected. Since it was reported that multiple positions of 6 were not recognized as target sites (Kune et al., Molecular Cell 63, 1-13 (2016)), in the first approach, 32 Those with fewer mismatches with respect to base pairs were selected. In the next approach, regions that perfectly matched the 5 'end of the target sequence on the PAM side were detected and listed in descending order.
- the Genome Analysis Toolkit BadMateFilter was used to remove read pairs mapped to different chromosomes. The total number of discordant read pairs or split reads in each 100 kb region was counted with Bedtools, and the error rate with the negative control was calculated.
- SureSelectXT custom DNA probes were designed by SureDesign under moderately stringent conditions and produced by Agilent technologies. The target area was selected as follows. Probes near the target area covered 800 kb upstream and 200 kb downstream of the PAM.
- Example B-1 Effect of crRNA and type of nuclear translocation signal on DNA cleavage activity
- pre-RNA LRSR; leader sequence-repeat sequence-spacer sequence-repeat sequence
- crRNA Using the CRISPR-Cas3 system, we succeeded in genome editing in eukaryotic cells.
- LRSR leader sequence-repeat sequence-spacer sequence-repeat sequence
- pre-crRNA pre-crRNA
- RSR repeat sequence-spacer sequence-repeat sequence
- mature crRNA 5 ′ handle sequence-spacer sequence-3 ′ handle sequence
- the CRISPR-Cas3 system using mature crRNA showed no target DNA cleavage activity.
- pre-crRNA LRSR, RSR
- LRSR pre-crRNA
- a very high target DNA cleavage activity was observed.
- This result in the CRISPR-Cas3 system is in contrast to the CRISPR-Cas9 system where high DNA cleavage activity is observed by using mature crRNA.
- mature crRNA has been used as one of the main reasons why the CRISPR-Cas3 system has not succeeded in genome editing in eukaryotic cells so far.
- pre-crRNA LRSR
- a bipartite nuclear transfer signal was used as a nuclear transfer signal.
- Example B-2 Effect of PAM sequence on DNA cleavage activity
- Fig. 12 the effect of various PAM sequences on DNA cleavage activity was examined.
- 5'-AAG PAM showed the highest activity, and AGG, GAG, TAC, ATG, and TAG also showed remarkable activity.
- Example B-3 Effect of crRNA and spacer sequence mismatch on DNA cleavage activity
- a heteroduplex of 5 bases was formed between crRNA and spacer DNA. This is due to the fact that the base pairing breaks at every sixth position due to the thumb element of the Cas7 effector (FIG. 13).
- the effect of crRNA and spacer sequence mismatch on DNA cleavage activity was evaluated (FIG. 1g). With the exception of the base that was not recognized as a target (position 6), any single mismatch in the seed region (positions 1-8) dramatically reduced the cleavage activity.
- Example B-4 Verification of the necessity of each Cas3 domain for DNA cleavage activity
- the N-terminal HD nuclease domain cleaves a single-stranded region of a DNA substrate. Subsequently, it was revealed that the C-terminal SF2 helicase domain unwinds in a 3 ′ to 5 ′ direction on the target DNA in an ATP-dependent manner.
- Three Cas3 mutants a HD domain H74A mutant (dnCas3), a SF320 domain motif 1 K320N mutant (dhCas3), and a SF2 domain motif 3 S483A / T485A double mutant (dh2Cas3).
- Example B-5 Verification of DNA cleavage activity in various types of CRISPR-Cas3 systems
- the type 1 CRISPR-Cas3 systems are highly diversified (seven types A to G of type 1).
- the DNA cleavage activity in eukaryotic cells in the type IE CRISPR-Cas3 system was verified.
- other type 1 CRISPR-Cas3 systems type IF and type The DNA cleavage activity in IG
- Cas I and Cas 5-7 of type IF Schwanella putrefaciens and Cas 5-8 of type I-G Pyrocox friosus were codon-optimized and cloned (FIG. 15).
- DNA cleavage activity was also observed in these type 1 CRISPR-Cas3 systems in the SSA assay using 293T cells.
- Example B-6 Verification of mutation introduced into endogenous gene by CRISPR-Cas3 system The mutation introduced into endogenous gene by CRISPR-Cas3 system was verified by using type IE system. EMX1 gene and CCR5 gene were selected as target genes, and a pre-crRNA (LRSR) plasmid was prepared. As a result of lipofecting 293T cells with a plasmid encoding pre-crRNA and 6 Cas (3,5-8,11) effectors, deletion of several hundred to several thousand base pairs by CRISPR-Cas3 mainly resulted in spacer sequences in the target region. It was revealed that this occurred in the upstream direction of 5′PAM (FIG. 16).
- LRSR pre-crRNA
- a 5-10 base pair microhomology at the repaired junction could be confirmed, possibly due to the annealing of the complementary strand through an annealing-dependent repair pathway.
- genome editing in the EMX1 and CCR5 regions was not observed.
- Cas3 was further characterized by next generation sequencing with PCR amplification products with primer sets in a broader region such as 3.8 kb of EMX1 gene and 9.7 kb of CCR5.
- AAG was 38.2%
- ATG was 56.4%
- a wide range upstream of the PAM site compared to 86.4% for TTT and 86.4% for Cas9 targeting EMX1.
- the coverage rate in the genomic region was greatly reduced. The decrease in coverage was the same when the CCR5 region was targeted.
- a microarray-based capture sequence of 1000 kb or more around the targeted EMX1 and CCR5 loci was utilized (FIGS. 18A, B) .
- a maximum of 24 kb deletion was observed at the EMX1 locus and a maximum of 43 kb deletion was observed at the CCR5 locus, but 90% of the mutations in EMX1 and 95% of the mutations in CCR5 were less than 10 kb.
- the CRISPR-Cas3 system of the present invention can edit DNA of eukaryotic cells, it can be used in fields where genome editing is required, such as medicine, agriculture, forestry and fisheries, industry, life science, biotechnology, gene therapy, etc. Can be widely used in the field.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Mycology (AREA)
- Environmental Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Botany (AREA)
- Biodiversity & Conservation Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Animal Husbandry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
(B)カスケードタンパク質、該タンパク質をコードするポリヌクレオチド、または該ポリヌクレオチドを含む発現ベクター、および
(C)crRNA、該crRNAをコードするポリヌクレオチド、または該ポリヌクレオチドを含む発現ベクター
[2]DNAが編集された動物(ただしヒトを除く)または植物を製造する方法であって、動物(ただしヒトを除く)または植物にCRISPR-Cas3システムを導入することを含み、CRISPR-Cas3システムが以下の(A)~(C)を含む方法。
(B)カスケードタンパク質、該タンパク質をコードするポリヌクレオチド、または該ポリヌクレオチドを含む発現ベクター、および
(C)crRNA、該crRNAをコードするポリヌクレオチド、または該ポリヌクレオチドを含む発現ベクター
[3]真核細胞にCRISPR-Cas3システムを導入した後に、カスケードタンパク質を構成するタンパク質によりcrRNAが切断される工程を含む、[1]または[2]に記載の方法。
(B)カスケードタンパク質、該タンパク質をコードするポリヌクレオチド、または該ポリヌクレオチドを含む発現ベクター
[8]crRNA、該crRNAをコードするポリヌクレオチド、または該ポリヌクレオチド含む発現ベクターをさらに含む、[7]に記載のキット。
本発明の方法は、真核細胞にCRISPR-Cas3システムを導入することを含み、CRISPR-Cas3システムが以下の(A)~(C)を含む方法である。
(B)カスケードタンパク質、該タンパク質をコードするポリヌクレオチド、または該ポリヌクレオチドを含む発現ベクター、および
(C)crRNA、該crRNAをコードするポリヌクレオチド、または該ポリヌクレオチドを含む発現ベクター
クラス1のCRISPR-Casシステムは、タイプIおよびタイプIIIに分類され、さらに、タイプIは、カスケードを構成するタンパク質(以下、単に「カスケード」または「カスケードタンパク質」と称する。)の種類によって、タイプI-A、タイプI-B、タイプI-C、タイプI-D、タイプI-E、およびタイプI-Fの6種類、並びにタイプI-BのサブタイプであるタイプI-Gに分類される(例えば、[van der Oost J et al. (2014) Unravelling the structural and mechanistic basis of CRISPR-Cas systems, Nature Reviews Microbiologym, Vol.12 (No.7), pp.479-492]、[Jackson RN et al. (2014) Fitting CRISPR-associated Cas3 into the Helicase Family Tree, Current Opinion in Structural Biology, Vol.24, pp.106-114]を参照)。
本発明のCRISPR-Cas3システムにおいて、Casタンパク質群は、タンパク質の形態で、当該タンパク質をコードするポリヌクレオチドの形態で、あるいは、当該ポリヌクレオチドを含む発現ベクターの形態で、真核細胞に導入することができる。Casタンパク質群をタンパク質の形態で真核細胞に導入する場合には、各タンパク質の量等を適宜調製することが可能であり、ハンドリングの観点で優れている。また、細胞内での切断効率等を考慮して、Casタンパク質群の複合体を先に形成させた後に、真核細胞へ導入することもできる。
Cas3;配列番号1または配列番号7で示される塩基配列からなるポリヌクレオチドによりコードされるタンパク質
Cse1(Cas8);配列番号2または配列番号8で示される塩基配列からなるポリヌクレオチドによりコードされるタンパク質
Cse2(Cas11);配列番号3または配列番号9で示される塩基配列からなるポリヌクレオチドによりコードされるタンパク質
Cas5;配列番号4または配列番号10で示される塩基配列からなるポリヌクレオチドによりコードされるタンパク質
Cas6;配列番号5または配列番号11で示される塩基配列からなるポリヌクレオチドによりコードされるタンパク質
Cas7;配列番号6または配列番号12で示される塩基配列からなるポリヌクレオチドによりコードされるタンパク質
上記Casタンパク質群は、(1)野生型大腸菌のCas3、Cse1(Cas8)、Cse2(Cas11)、Cas5、Cas6、Cas7のN末端に、核移行シグナルとしてPKKKRKV(配列番号52)を付加したタンパク質、または(2)野生型大腸菌のCas3、Cse1(Cas8)、Cse2(Cas11)、Cas5、Cas6、Cas7のN末端およびC末端に、核移行シグナルとしてKRTADGSEFESPKKKRKVE(配列番号54)を付加したタンパク質である。このようなアミノ酸配列のタンパク質とすることにより、上記Casタンパク質群を真核細胞の核内へ移行させることができる。このようにして核内に移行した上記Casタンパク質群は、標的のDNAを切断する。また、CRISPAR-Cas9システムでは困難であると考えられている、強固な構造を有するDNA領域(ヘテロクロマチンなど)においても、標的のDNAの編集が可能となる。
タイプI-EのCRISPR-Casシステムを構成する野生型のタンパク質をコードするポリヌクレオチドは、真核細胞内で効率的に発現するように改変を施したポリヌクレオチドを含む。すなわち、Casタンパク質群をコードし、改変が施されたポリヌクレオチドを用いることができる。ポリヌクレオチドの改変の一つの好ましい態様は、真核細胞内での発現に適した塩基配列への改変であり、例えば、真核細胞内で発現するようにコドンを最適化することである。
Cas3;配列番号1または配列番号7で示される塩基配列からなるポリヌクレオチド
Cse1(Cas8);配列番号2または配列番号8で示される塩基配列からなるポリヌクレオチド
Cse2(Cas11);配列番号3または配列番号9で示される塩基配列からなるポリヌクレオチド
Cas5;配列番号4または配列番号10で示される塩基配列からなるポリヌクレオチド
Cas6;配列番号5または配列番号11で示される塩基配列からなるポリヌクレオチド
Cas7;配列番号6または配列番号12で示される塩基配列からなるポリヌクレオチド
これらは、大腸菌の野生型Casタンパク質群をコードする塩基配列(Cas3;配列番号13、Cse1(Cas8);配列番号14、Cse2(Cas11);配列番号15、Cas5;配列番号16、Cas6;配列番号17、Cas7;配列番号18)を、人工的に改変することにより、哺乳動物細胞において発現および機能できるようにしたポリヌクレオチドである。
本発明においては、Casタンパク質群を発現させるための発現ベクターを利用することができる。発現ベクターは、基材ベクターとして、一般的に使用される種々のベクターを用いることができ、導入される細胞または導入方法に応じて適宜選択されうる。具体的には、プラスミド、ファージ、コスミドなどを用いることができる。ベクターの具体的な種類は特に限定されるものではなく、宿主細胞中で発現可能なベクターを適宜選択すればよい。
本発明のCRISPR-Cas3システムは、ゲノム編集を行うDNAへの標的化のために、crRNA、crRNAをコードするポリヌクレオチド、または該ポリヌクレオチドを含む発現ベクターを含む。
本発明における「真核細胞」としては、例えば、動物細胞、植物細胞、藻細胞、真菌細胞が挙げられる。また動物細胞としては、例えば、哺乳動物細胞の他、魚類、鳥類、爬虫類、両生類、昆虫類の細胞が挙げられる。
本発明において、「真核細胞のDNAを編集する」とは、真核細胞のDNAの編集をインビボで行う工程であってもよく、インビトロで行う工程であってもよい。また、「DNAを編集する」とは、以下の類型に例示される操作(その組み合わせを含む)を意図する。
1.標的部位におけるDNA鎖を切断する。
2.標的部位におけるDNA鎖の塩基を欠失させる。
3.標的部位におけるDNA鎖に塩基を挿入する。
4.標的部位におけるDNA鎖の塩基を置換する。
5.標的部位におけるDNA鎖の塩基を修飾する。
6.標的部位におけるDNA(遺伝子)の転写を調節する。
本発明のCRISPR-Cas3システムに用いられるキットは、以下の(A)および(B)を含む。
(B)カスケードタンパク質、該タンパク質をコードするポリヌクレオチド、または該ポリヌクレオチドを含む発現ベクター
さらに、crRNA、該crRNAをコードするポリヌクレオチド、または該ポリヌクレオチド含む発現ベクターを含んでもよい。
〔材料と方法〕
[1]標的配列を含むレポーターベクターの作製
標的配列は、ヒトCCR5遺伝子由来の配列(配列番号19)、および大腸菌のCRISPRのスペーサー配列(配列番号22)とした。
[インサートの増幅および調製]
Cse1(Cas8)、Cse2(Cas11)、Cas5、Cas6およびCas7をコードする、改変された塩基配列を有するポリヌクレオチド(それぞれ、配列番号2、配列番号3、配列番号4、配列番号5および配列番号6)については、まず、配列番号2-配列番号3-配列番号6-配列番号4-配列番号5の順に連結されたポリヌクレオチド(Cse1(Cas8)-Cse2(Cas11)-Cas7-Cas5-Cas6の順に、それぞれをコードする塩基配列が連結されたポリヌクレオチド)を、ジェンスクリプト社に製造委託し、入手した。Cse1(Cas8)-Cse2(Cas11)-Cas7-Cas5-Cas6の各タンパク質をコードする塩基配列間は、2Aペプチド(アミノ酸配列:GSGATNFSLLKQAGDVEENPGP(配列番号58))で連結した。
1.ヒトCCR5遺伝子由来の配列に対応するcrRNAを発現させるためのポリヌクレオチド(配列番号25および26、北海道システムサイエンス社より入手)
2.大腸菌のCRISPRのスペーサー配列に対応するcrRNAを発現させるためのポリヌクレオチド(配列番号27および28、北海道システムサイエンス社より入手)
3.ヒトEMX1遺伝子由来の配列に対応するcrRNAを発現させるためのポリヌクレオチド(配列番号29および30、ファスマック社より入手)。
基材プラスミドとして、pPB-CAG-EBNXN(Sanger Centerより供与)を用いた。NEBバッファー中で、基材プラスミド1.6μgと、制限酵素BglII(New England Biolabs社)1μlおよびXhoI(New England Biolabs社)0.5μlとを混合し、37℃にて2時間反応させた。切断された基材プラスミドは、Gel extraction kit(Qiagen社)にて精製した。
Cas3をコードする、改変された塩基配列を有するポリヌクレオチド(配列番号1)は、Genscript社より入手した。具体的には、上記のポリヌクレオチドが組み込まれているpUC57 vectorを、Genscript社より入手した。
BPNLSを5’末端および3’末端に連結させた、Cas3、Cse1(Cas8)、Cse2(Cas11)、Cas5、Cas6およびCas7発現ベクターを作製した(図7を参照)。
Cse1(Cas8)、Cse2(Cas11)、Cas7、Cas5およびCas6が、この順に連結された塩基配列の発現ベクターを作製した。より具体的には、(NLS-Cse1(Cas8):配列番号2)-2A-(NLS-Cse2(Cas11):配列番号3)-2A-(NLS-Cas7:配列番号6)-2A-(NLS-Cas5:配列番号4)-2A-(NLS-Cas6:配列番号5)の順に配置された発現ベクターを作製した(図8参照)。なお、NLSのアミノ酸配列はPKKKRKV(配列番号52)、塩基配列はCCCAAGAAGAAGCGGAAGGTG(配列番号53)である。また、2Aペプチドのアミノ酸配列はGSGATNFSLLKQAGDVEENPGP(配列番号58)である(対応する塩基配列は、それぞれ配列番号59~62である)。
塩基配列を改変し、核移行シグナルを付加したCas3、Cse1(Cas8)、Cse2(Cas11)、Cas5、Cas6およびCas7と、crRNAとをHEK(human embryonic kidney)293T細胞に発現させ、外因性DNAの標的配列の切断活性を評価した。
1.Cas3プラスミド、Cse1(Cas8)プラスミド、Cse2(Cas11)プラスミド、Cas5プラスミド、Cas6プラスミドまたはCas7プラスミドのいずれか1つの代わりに、同量のpBluecscriptII KS(+)ベクター(Agilent Technologies社)を混合し、発現させた(図1の2~7)。
2.上記の操作手順で用いたcrRNAプラスミドの代わりに、標的配列とは相補的でないcrRNAを発現させるプラスミドを混合した。すなわち、CCR5遺伝子由来の標的配列に対しては、大腸菌のCRISPRのスペーサー配列に対応するcrRNAを発現させるプラスミドを混合させ(図1の8)、大腸菌のCRISPRのスペーサー配列を標的とする場合は、CCR5遺伝子由来の配列に対応するcrRNAを発現させるプラスミドを混合し、発現させた(図1の11)。
3.ネガティブコントロールとして、CCR5由来の標的配列を有するレポーターベクターのみ(図1の9)、大腸菌のCRISPRのスペーサー配列を有するレポーターベクターのみ(図1の12)を発現させた。
dual-Luciferaseアッセイの結果を図1上のグラフに、実験条件を図1下の表に示した。図1の(b)中、「CCR5-target」および「spacer-target」は、それぞれ、CCR5由来の標的配列および大腸菌のCRISPRのスペーサー配列を表す。また、「CCR5-crRNA」および「spacer-crRNA」は、それぞれ、上記CCR5-targetと相補的な配列およびspacer-targetと相補的な配列を表す。
実施例A-1と同様の方法を用いて、タイプIのCRISPR-Casシステムによりヒト細胞の内因性DNAを切断できるか否かを評価するための実験を行った。
上記実験の結果、元々の塩基配列と比較して、401bpが欠失しているクローン1、341bpが欠失しているクローン2、268bpが欠失しているクローン3、および344bpが欠失しているクローン4が得られた(図3A~D)。このことより、本発明のCRISPR-Cas3システムによって、ヒト細胞の内因性DNAを欠失できることが示された。すなわち、上記CRISPR-Casシステムによって、ヒト細胞のDNAの編集が可能であることが示唆された。
実施例A-1と同様の方法を用いて、CRISPR-Cas3システムによりヒト細胞の内因性DNAを切断できるか否かを評価するための、実験を行った。
上記実験の結果、元々の塩基配列と比較して、513bpおよび363bpの2箇所が欠失しているクローン1、ならびに694bpが欠失しているクローン2が得られた(図6A、B)。この実験結果からも、本発明のCRISPR-Cas3システムによって、ヒト細胞の内因性DNAを欠失できることが示された。すなわち、上記CRISPR-Cas3システムによって、ヒト細胞のDNAの編集が可能であることが示唆された。
塩基配列を改変し、さらにカスケードタンパク質をコードする塩基配列を連結したCRISPR-Cas3システムを、HEK293T細胞に発現させ、外因性DNAの標的配列の切断活性を評価した。
1.Cas3プラスミドおよびカスケード(2A)プラスミドのいずれか一方の代わりに、同量のpBluscriptII KS(+)ベクター(Agilent Technologies社)を混合し、発現させた(図9の2および3)。
2.上記の操作手順で用いたcrRNAプラスミドの代わりに、標的配列とは相補的でないcrRNAを発現させるプラスミドを混合した。すなわち、CCR5遺伝子由来の標的配列に対しては、大腸菌のCRISPRのスペーサー配列に対応するcrRNAを発現させるプラスミドを混合させ(図9の4)、大腸菌のCRISPRのスペーサー配列を標的とする場合は、CCR5遺伝子由来の配列に対応するgRNAを発現させるプラスミドを混合し、発現させた(図9の7)。
3.ネガティブコントロールとして、CCR5由来の標的配列を有するレポーターベクターのみ(図9の5)、大腸菌のCRISPRのスペーサー配列を有するレポーターベクターのみ(図9の8)を発現させた。
dual-Luciferaseアッセイの結果を図9上のグラフに、実験条件を図9下の表に示した。図9において、「CCR5-target」および「spacer-target」は、それぞれ、CCR5由来の標的配列および大腸菌のCRISPRのスペーサー配列を表す。また、「CCR5-crRNA」および「spacer-crRNA」は、それぞれ、上記CCR5-targetと相補的な配列およびspacer-targetと相補的な配列を表す。
〔材料と方法〕
[1]Cas遺伝子とcrRNAの構成
bpNLSをそれぞれの5’側および3’側に付加した、大腸菌K-12株由来のCas3とカスケードの構成遺伝子(Cse1, Cse2, Cas5, Cas6, Cas7)を設計し、哺乳動物細胞にコドンオプティマイズ後に遺伝子合成によりクローニングした。これらの遺伝子は、サンガー研究所より寄贈されたpPB-CAG.EBNXNプラスミドのCAGプロモーターの下流にサブクローニングした。H74A(dead nickase; dn)、K320N(dead helicase; dh)、S483AとT485Aの二重変異体(dead helicase ver.2; dh2)といったCas3の変異体は、PrimeSTAR MAXのPCR産物をセルフライゲーションすることで作製した。crRNAの発現プラスミドに関して、U6プロモーター下のスペーサーの位置に2カ所のBbsI制限酵素部位を持っているcrRNAの配列を合成した。全てのcrRNA発現プラスミドは、BbsI制限酵素サイトに、標的配列の32塩基対の二重鎖オリゴを挿入することで作製した。
哺乳動物細胞でDNA切断活性を検出するために、実施例Aと同様に、SSAアッセイを実施した。HEK293T細胞は、10%胎児ウシ血清を加えたhigh-Glucose Dulbecco’s modified Eagle’s medium(Thermo fisher社)で、37℃、5%CO2下で培養した。0.5×104個の細胞を96穴プレートのウェルに播種し、24時間後に、Cas3、Cse1、Cse2、Cas7、Cas5、Cas6、crRNA発現プラスミド(それぞれ100ng)、SSAレポーターベクター(100ng)、レニラルシフェラーゼベクター(60ng)を、lipofectamine2000およびOptiMEM(Life Technologies社)を用いて、わずかに修正したプロトコルに従い、HEK293T細胞にトランスフェクションした。トランスフェクションの24時間後に、Dual-Glo luciferase assay system(Promega社)を用い、プロトコルに従って、デュアルルシフェラーゼアッセイを行った。
2.5x104個の細胞を24穴プレートのウェルに播種した24時間後に、Cas3、Cse1、Cse2、Cas7、Cas5、Cas6、crRNA発現プラスミド(それぞれ250ng)を、lipofectamine2000とOptiMEM(Life Technologies社)を用い、わずかに修正したプロトコルに従って、HEK293T細胞にトランスフェクションした。トランスフェクションの2日後、Tissue XS kit(Takara-bio社)を用いて、プロトコルに従い、回収した細胞から全DNAを抽出した。標的遺伝子座をGflex (Takara bio社)またはQuick Taq HS DyeMix (TOYOBO社)を用いて増幅し、アガロースゲルで電気泳動した。PCR産物における小さな挿入/欠失変異を検出するために、SURVEYOR Mutation Detection Kit(Integrated DNA Technologies社)をプロトコルに従い用いた。TAクローニングでは、pCR4Blunt-TOPO plasmid vector(Life Technologies社)をプロトコルに従い用いた。シークエンス解析には、BigDye Terminator Cycle Sequencing KitおよびABI PRISM 3130 Genetic Analyzer(Life Technologies社)を用いた。
タイプI-E CRISPRのオフターゲット候補は、ヒトゲノムのhg38において、2つの異なった手順によりGGGenomeを用いて検出した。PAM候補の配列としては、既報(Leenay, R.T, et al. Mol. Cell 62, 137-147(2016)、Jung, et al. Mol. Cell. 2017Jung et al., Cell 170, 35-47(2017))に従い、AAG、ATG、AGG、GAG、TAG、AACを選択した。6の倍数のポジションは標的部位として認識されないことが報告されていたことから(Kunne et al., Molecular Cell 63, 1-13(2016))、最初のアプローチでは、これらを除いた標的配列の32塩基対に対して、よりミスマッチが少ないものを選択した。次のアプローチでは、標的配列のPAM側5’端に完全にマッチしている領域を検出し、高い順にリストした。
全ゲノムシークエンスでは、トランスフェクションされたHEK293T細胞からゲノムDNAを抽出し、Covaris sonicatorを使用して切断した。TruSeq DNA PCR-Free LT Library Prep Kit(Illumina社)を用いてDNAライブラリを準備し、タカラバイオの標準手順に従い、HiSeq X(2×150bp)を用いてゲノムシークエンスを行った。それぞれのサンプルのローリード(raw reads)を、BWA-MEMによりヒトゲノムのhg38にマップし、Trimmomatic programによってクリーニングした。ディスコーダントリードペア(Discordant read pairs)とスプリットリード(split reads)は、それぞれsamtoolsとLumpy-svによって除外した。同じ染色体での大きい欠失だけを検出するために、Genome Analysis Toolkit programのBadMateFilterを用いて、異なる染色体にマップされたリードペアを除去した。それぞれ100kb領域でのディスコーダントリードペアまたはスプリットリードの総数をBedtoolsでカウントし、ネガティブコントロールとのエラー率を算出した。シークエンス前のオフターゲット候補を豊富にするために、SureSelectXT custom DNA probesをSureDesignによって適度にストリンジェントな条件で設計し、Agilent technologiesが作製した。標的領域は、以下の通り、選択した。標的領域付近のプローブは、PAMの上流800kbと下流200kbをカバーした。CRISPR-Cas3のオフターゲット領域付近では、PAM候補の9kb上流と1kb下流をカバーした。CRISPR-Cas9のオフターゲット領域付近では、PAMの上流、下流それぞれ1kbをカバーした。SureSelectXT reagent kitとcustom probe kitによるDNAライブラリの準備の後、タカラバイオの標準手順に従い、Hiseq 2500(2×150bp)により、ゲノムシークエンスを行った。同一の染色体でのディスコーダントリードペアとスプリットリードは、上記の方法で除外した。それぞれ10kb領域でのディスコーダントリードペアまたはスプリットリードの総数をBedtoolsでカウントし、ネガティブコントロールとのエラー率を算出した。
実施例Aでは、偶然にも、crRNAとしてプレcrRNA(LRSR;リーダー配列-リピート配列-スペーサー配列-リピート配列)を含むCRISPR-Cas3システムを利用して真核細胞におけるゲノム編集に成功した。ここで、本発明者は、これまで長年に渡ってCRISPR-Cas3システムを利用した真核細胞でのゲノム編集に成功しなかった理由が、crRNAとして成熟crRNAが用いられてきたことにあるのではないかと考えた。そこで、crRNAとして、プレcrRNA(LRSR)の他に、プレcrRNA(RSR;リピート配列-スペーサー配列-リピート配列)と成熟crRNA(5’ハンドル配列-スペーサー配列-3’ハンドル配列)を調製し、実施例Aのレポーターシステムによりゲノム編集効率を検証した(図10A、B)。なお、プレcrRNA(LRSR)、プレcrRNA(RSR)、成熟crRNAの塩基配列を、それぞれ配列番号:63、64、65に示す。
CRISPR-Cas3システムの標的特異性を確認するために、DNA切断活性における様々なPAM配列の効果を調べた(図12)。SSAアッセイでは、異なったPAM配列によってDNA切断活性は様々な結果となった。5’-AAG PAMが最も高い活性を示し、AGG、GAG、TAC、ATG、TAGも注目すべき活性をみせた。
大腸菌のカスケードの結晶構造の過去の研究では、crRNAとスペーサーDNAとの間で5塩基区画のヘテロ2本鎖を形成することが示されており、これはCas7エフェクターのサムエレメントにより、6番目のポジション毎に塩基対合が破綻することによる(図13)。DNA切断活性でのcrRNAとスペーサー配列のミスマッチの影響を評価した(図1g)。標的として認識されない塩基(ポジション6)を除いて、シード領域(ポジション1-8)でのどの単一ミスマッチでも切断活性は劇的に落ちた。
Cas3タンパクの触媒的特徴のインビトロでの性質決定では、N末端のHDヌクレアーゼドメインがDNA基質の1本鎖領域を切断し、続いて、C末端のSF2ヘリケースドメインが、ATP依存的に、標的DNA上を3’から5‘方向へ進行してほどいていくことが明らかになった。3つのCas3の変異体、すなわち、HDドメインH74Aの変異体(dnCas3)、SF2ドメインモチーフ1のK320Nの変異体(dhCas3)、およびSF2ドメインモチーフ3のS483A/T485Aのダブルの変異体(dh2Cas3)を作製して、Cas3ドメインがDNA切断に必要か否かを検証した(図14)。その結果、3つ全てのCas3タンパクの変異体でDNA切断活性が完全に消失しており、Cas3はHDヌクレアーゼドメインとSF2ヘリケースドメインを通して標的DNAを切断できることが判明した。
タイプ1のCRISPR-Cas3システムは高度に多様化している(タイプ1のA~Gの7種類)。上記実施例では、タイプI-EのCRISPR-Cas3システムにおける真核細胞でのDNA切断活性を検証したが、本実施例では、それ以外のタイプ1のCRISPR-Cas3システム(タイプI-FとタイプI-G)におけるDNA切断活性の検証を行った。具体的には、タイプI-Fのシュワネラ・プトレファシエンスのCas3、Cas5-7、およびタイプI-Gのピュロコックス・フリオススのCas5-8をコドンオプティマイズしクローニングした(図15)。その結果、DNA切断活性の強さに差異はあるものの、293T細胞を用いたSSAアッセイにおいて、これらのタイプ1のCRISPR-Cas3システムにもDNA切断活性が認められた。
CRISPR-Cas3システムにより内因性遺伝子に導入された変異を、タイプI-Eシステムを利用して検証した。EMX1遺伝子とCCR5遺伝子を標的遺伝子として選択し、プレcrRNA(LRSR)プラスミドを調製した。293T細胞にプレcrRNAと6つのCas(3,5-8,11)エフェクターをコードするプラスミドをリポフェクションした結果、CRISPR-Cas3により数百から数千塩基対の欠失が主に標的領域のスペーサー配列の5’PAMの上流方向で起きたことが明らかとなった(図16)。修復されたジャンクションでの5-10塩基対のマイクロホモロジーが確認でき、アニーリング依存性の修復経路による相補鎖のアニーリングによって起こったのかもしれない。なお、成熟crRNAプラスミドでは、EMX1とCCR5領域でのゲノム編集は見られなかった。
Claims (11)
- DNAが編集された真核細胞を製造する方法であって、真核細胞にCRISPR-Cas3システムを導入することを含み、CRISPR-Cas3システムが以下の(A)~(C)を含む方法。
(A)Cas3タンパク質、該タンパク質をコードするポリヌクレオチド、または該ポリヌクレオチドを含む発現ベクター、
(B)カスケードタンパク質、該タンパク質をコードするポリヌクレオチド、または該ポリヌクレオチドを含む発現ベクター、および
(C)crRNA、該crRNAをコードするポリヌクレオチド、または該ポリヌクレオチドを含む発現ベクター - DNAが編集された動物(ただしヒトを除く)または植物を製造する方法であって、動物(ただしヒトを除く)または植物にCRISPR-Cas3システムを導入することを含み、CRISPR-Cas3システムが以下の(A)~(C)を含む方法。
(A)Cas3タンパク質、該タンパク質をコードするポリヌクレオチド、または該ポリヌクレオチドを含む発現ベクター、
(B)カスケードタンパク質、該タンパク質をコードするポリヌクレオチド、または該ポリヌクレオチドを含む発現ベクター、および
(C)crRNA、該crRNAをコードするポリヌクレオチド、または該ポリヌクレオチドを含む発現ベクター - 真核細胞にCRISPR-Cas3システムを導入した後に、カスケードタンパク質を構成するタンパク質によりcrRNAが切断される工程を含む、請求項1または2に記載の方法。
- crRNAがプレcrRNAである、請求項1または2に記載の方法。
- Cas3タンパク質および/またはカスケードタンパク質に核移行シグナルが付加されている、請求項1~4のいずれかに記載の方法。
- 核移行シグナルがバイパルタイト核移行シグナルである、請求項5に記載の方法。
- 以下の(A)および(B)を含む、請求項1~6のいずれかに記載の方法に用いるためのキット。
(A)Cas3タンパク質、該タンパク質をコードするポリヌクレオチド、または該ポリヌクレオチドを含む発現ベクター、および
(B)カスケードタンパク質、該タンパク質をコードするポリヌクレオチド、または該ポリヌクレオチドを含む発現ベクター - crRNA、該crRNAをコードするポリヌクレオチド、または該ポリヌクレオチド含む発現ベクターをさらに含む、請求項7に記載のキット。
- crRNAがプレcrRNAである、請求項8に記載のキット。
- Cas3タンパク質および/またはカスケードタンパク質に核移行シグナルが付加されている、請求項7~9のいずれかに記載のキット。
- 核移行シグナルがバイパルタイト核移行シグナルである、請求項10に記載のキット。
Priority Applications (17)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018554598A JP6480647B1 (ja) | 2017-06-08 | 2018-06-08 | Dnaが編集された真核細胞を製造する方法、および当該方法に用いられるキット |
EP24158618.9A EP4349973A3 (en) | 2017-06-08 | 2018-06-08 | Method for manufacturing dna-edited eukaryotic cell |
ES18812837T ES2980050T3 (es) | 2017-06-08 | 2018-06-08 | Método para fabricar células eucariotas editadas con ADN |
AU2018279457A AU2018279457B2 (en) | 2017-06-08 | 2018-06-08 | Method for manufacturing DNA-edited eukaryotic cell, and kit used in method |
EP18812837.5A EP3636753B1 (en) | 2017-06-08 | 2018-06-08 | Method for manufacturing dna-edited eukaryotic cell |
DK18812837.5T DK3636753T5 (da) | 2017-06-08 | 2018-06-08 | Fremgangsmåde til fremstilling af DNA-redigeret eukaryotisk celle |
KR1020207000115A KR102541398B1 (ko) | 2017-06-08 | 2018-06-08 | Dna가 편집된 진핵 세포를 제조하는 방법 및 당해 방법에 사용되는 키트 |
CN201880037636.XA CN110770342B (zh) | 2017-06-08 | 2018-06-08 | Dna被编辑了的真核细胞的制造方法、和在该方法中使用的试剂盒 |
FIEP18812837.5T FI3636753T3 (fi) | 2017-06-08 | 2018-06-08 | Menetelmä DNA-muokatun eukaryoottisen solun valmistamiseksi |
BR112019025717-9A BR112019025717A2 (pt) | 2017-06-08 | 2018-06-08 | método para produzir célula eucariótica de dna editado e kit usado no mesmo |
MX2019014497A MX2019014497A (es) | 2017-06-08 | 2018-06-08 | Metodo para producir celula eucariota de adn editado, y kit usado en el mismo. |
CA3066599A CA3066599A1 (en) | 2017-06-08 | 2018-06-08 | Method for producing dna-edited eukaryotic cell, and kit used in the same |
EA201992795A EA201992795A1 (ru) | 2017-06-08 | 2018-06-08 | Способ получения эукариотических клеток с отредактированной днк и набор, используемый в этом способе |
US16/611,308 US11807869B2 (en) | 2017-06-08 | 2018-06-08 | Method for producing DNA-edited eukaryotic cell, and kit used in the same |
CN202311603183.1A CN117778466A (zh) | 2017-06-08 | 2018-06-08 | Dna经编辑的真核细胞制造方法和用于该方法的试剂盒 |
US18/467,356 US20240117381A1 (en) | 2017-06-08 | 2023-09-14 | Method for producing dna-edited eukaryotic cell, and kit used in the same |
US18/467,297 US20240124898A1 (en) | 2017-06-08 | 2023-09-14 | Method for producing dna-edited eukaryotic cell, and kit used in the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017113747 | 2017-06-08 | ||
JP2017-113747 | 2017-06-08 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/611,308 A-371-Of-International US11807869B2 (en) | 2017-06-08 | 2018-06-08 | Method for producing DNA-edited eukaryotic cell, and kit used in the same |
US18/467,297 Continuation US20240124898A1 (en) | 2017-06-08 | 2023-09-14 | Method for producing dna-edited eukaryotic cell, and kit used in the same |
US18/467,356 Division US20240117381A1 (en) | 2017-06-08 | 2023-09-14 | Method for producing dna-edited eukaryotic cell, and kit used in the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018225858A1 true WO2018225858A1 (ja) | 2018-12-13 |
Family
ID=64566087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/022066 WO2018225858A1 (ja) | 2017-06-08 | 2018-06-08 | Dnaが編集された真核細胞を製造する方法、および当該方法に用いられるキット |
Country Status (15)
Country | Link |
---|---|
US (3) | US11807869B2 (ja) |
EP (2) | EP4349973A3 (ja) |
JP (6) | JP6480647B1 (ja) |
KR (1) | KR102541398B1 (ja) |
CN (2) | CN110770342B (ja) |
AU (1) | AU2018279457B2 (ja) |
BR (1) | BR112019025717A2 (ja) |
CA (1) | CA3066599A1 (ja) |
DK (1) | DK3636753T5 (ja) |
EA (1) | EA201992795A1 (ja) |
ES (1) | ES2980050T3 (ja) |
FI (1) | FI3636753T3 (ja) |
MX (1) | MX2019014497A (ja) |
PT (1) | PT3636753T (ja) |
WO (1) | WO2018225858A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020122104A1 (ja) * | 2018-12-11 | 2020-06-18 | 国立大学法人京都大学 | ゲノムdnaに欠失を誘導する方法 |
WO2020184723A1 (ja) * | 2019-03-14 | 2020-09-17 | 国立大学法人徳島大学 | Crisprタイプi-dシステムを利用した標的配列改変技術 |
WO2020204159A1 (ja) | 2019-04-05 | 2020-10-08 | 国立大学法人大阪大学 | ノックイン細胞の作製方法 |
WO2021149829A1 (ja) | 2020-01-24 | 2021-07-29 | C4U株式会社 | 試料中の特定のdnaを検出する方法 |
WO2021251493A1 (ja) * | 2020-06-12 | 2021-12-16 | 国立研究開発法人産業技術総合研究所 | 卵白タンパク質遺伝子における目的タンパク質をコードする遺伝子がノックインされた家禽細胞またはその製造方法 |
WO2022097663A1 (ja) | 2020-11-06 | 2022-05-12 | エディットフォース株式会社 | FokIヌクレアーゼドメインの変異体 |
WO2022186063A1 (ja) | 2021-03-01 | 2022-09-09 | C4U株式会社 | Cas3タンパク質を製造する方法 |
CN115595330A (zh) * | 2021-07-12 | 2023-01-13 | 中国科学院微生物研究所(Cn) | 一种CRISPR-Cas3系统及其在抗植物病毒方面的应用 |
US12012596B2 (en) | 2017-08-21 | 2024-06-18 | Tokushima University | Target sequence specific alteration technology using nucleotide target recognition |
WO2024204287A1 (ja) * | 2023-03-27 | 2024-10-03 | 国立大学法人京都大学 | 修飾ヌクレオチドを有するcrRNA |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11807869B2 (en) | 2017-06-08 | 2023-11-07 | Osaka University | Method for producing DNA-edited eukaryotic cell, and kit used in the same |
SG11202009319YA (en) | 2018-03-26 | 2020-10-29 | Univ Kobe Nat Univ Corp | Method for modifying target site in double-stranded dna in cell |
SG11202109550TA (en) | 2019-03-07 | 2021-09-29 | Univ Columbia | Rna-guided dna integration using tn7-like transposons |
US11008557B1 (en) * | 2019-12-18 | 2021-05-18 | Inscripta, Inc. | Cascade/dCas3 complementation assays for in vivo detection of nucleic acid-guided nuclease edited cells |
US20240229081A1 (en) * | 2021-05-26 | 2024-07-11 | The Regents Of The University Of Michigan | Crispr-cas3 systems for targeted genome engineering |
CN113549650B (zh) * | 2021-07-05 | 2023-05-09 | 天津协和生物科技开发有限公司 | 一种CRISPR-SaCas9基因编辑系统及其应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015503535A (ja) * | 2011-12-30 | 2015-02-02 | ヴァーヘニンヘン ウニフェルジテイト | 改変されたcascadeリボ核タンパク質およびそれらの用途 |
WO2017043573A1 (ja) * | 2015-09-09 | 2017-03-16 | 国立大学法人神戸大学 | 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体 |
WO2017066497A2 (en) * | 2015-10-13 | 2017-04-20 | Duke University | Genome engineering with type i crispr systems in eukaryotic cells |
JP2017512481A (ja) * | 2014-04-08 | 2017-05-25 | ノースカロライナ ステート ユニバーシティーNorth Carolina State University | Crispr関連遺伝子を用いた、rna依存性の転写抑制のための方法および組成物 |
WO2017219033A1 (en) * | 2016-06-17 | 2017-12-21 | Montana State University | Bidirectional targeting for genome editing |
CN107557373A (zh) * | 2017-09-19 | 2018-01-09 | 安徽大学 | 一种基于I‑B型CRISPR‑Cas系统基因cas3的基因编辑方法 |
CN107557378A (zh) * | 2017-09-19 | 2018-01-09 | 安徽大学 | 一种基于I型CRISPR‑Cas系统中基因cas7‑3的真核基因编辑方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4286402A3 (en) * | 2012-12-12 | 2024-02-14 | The Broad Institute, Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
CN109536474A (zh) * | 2015-06-18 | 2019-03-29 | 布罗德研究所有限公司 | 降低脱靶效应的crispr酶突变 |
US11807869B2 (en) | 2017-06-08 | 2023-11-07 | Osaka University | Method for producing DNA-edited eukaryotic cell, and kit used in the same |
MX2020001998A (es) * | 2017-08-21 | 2020-10-05 | Univ Tokushima | Tecnología de alteración específica de secuencia objetivo utilizando reconocimiento de objetivos del nucleotído. |
CN113528408B (zh) * | 2021-06-08 | 2022-03-01 | 湖北大学 | 一种基于CRISPR-nCas3系统的高效基因组大片段删除方法及应用 |
-
2018
- 2018-06-08 US US16/611,308 patent/US11807869B2/en active Active
- 2018-06-08 WO PCT/JP2018/022066 patent/WO2018225858A1/ja unknown
- 2018-06-08 DK DK18812837.5T patent/DK3636753T5/da active
- 2018-06-08 AU AU2018279457A patent/AU2018279457B2/en active Active
- 2018-06-08 BR BR112019025717-9A patent/BR112019025717A2/pt unknown
- 2018-06-08 EA EA201992795A patent/EA201992795A1/ru unknown
- 2018-06-08 MX MX2019014497A patent/MX2019014497A/es unknown
- 2018-06-08 EP EP24158618.9A patent/EP4349973A3/en active Pending
- 2018-06-08 KR KR1020207000115A patent/KR102541398B1/ko active IP Right Grant
- 2018-06-08 CN CN201880037636.XA patent/CN110770342B/zh active Active
- 2018-06-08 FI FIEP18812837.5T patent/FI3636753T3/fi active
- 2018-06-08 CA CA3066599A patent/CA3066599A1/en active Pending
- 2018-06-08 CN CN202311603183.1A patent/CN117778466A/zh active Pending
- 2018-06-08 JP JP2018554598A patent/JP6480647B1/ja active Active
- 2018-06-08 PT PT188128375T patent/PT3636753T/pt unknown
- 2018-06-08 EP EP18812837.5A patent/EP3636753B1/en active Active
- 2018-06-08 ES ES18812837T patent/ES2980050T3/es active Active
-
2019
- 2019-01-31 JP JP2019015315A patent/JP2019062921A/ja active Pending
- 2019-01-31 JP JP2019015318A patent/JP2019062922A/ja active Pending
- 2019-01-31 JP JP2019015319A patent/JP7301332B2/ja active Active
-
2023
- 2023-02-21 JP JP2023025086A patent/JP7430358B2/ja active Active
- 2023-09-14 US US18/467,356 patent/US20240117381A1/en active Pending
- 2023-09-14 US US18/467,297 patent/US20240124898A1/en active Pending
-
2024
- 2024-01-26 JP JP2024010099A patent/JP2024028649A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015503535A (ja) * | 2011-12-30 | 2015-02-02 | ヴァーヘニンヘン ウニフェルジテイト | 改変されたcascadeリボ核タンパク質およびそれらの用途 |
JP2017512481A (ja) * | 2014-04-08 | 2017-05-25 | ノースカロライナ ステート ユニバーシティーNorth Carolina State University | Crispr関連遺伝子を用いた、rna依存性の転写抑制のための方法および組成物 |
WO2017043573A1 (ja) * | 2015-09-09 | 2017-03-16 | 国立大学法人神戸大学 | 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体 |
WO2017066497A2 (en) * | 2015-10-13 | 2017-04-20 | Duke University | Genome engineering with type i crispr systems in eukaryotic cells |
WO2017219033A1 (en) * | 2016-06-17 | 2017-12-21 | Montana State University | Bidirectional targeting for genome editing |
CN107557373A (zh) * | 2017-09-19 | 2018-01-09 | 安徽大学 | 一种基于I‑B型CRISPR‑Cas系统基因cas3的基因编辑方法 |
CN107557378A (zh) * | 2017-09-19 | 2018-01-09 | 安徽大学 | 一种基于I型CRISPR‑Cas系统中基因cas7‑3的真核基因编辑方法 |
Non-Patent Citations (21)
Title |
---|
AHMED A. GOMAA ET AL.: "Programmable Reomoval of Bacterial Strains by Use of Genome Targeting CRISPR-Cas Systems", MBIO.ASM.ORG, vol. 5, no. 1, 2014, pages e00928 - 13 |
ALTSCHUL SF: "Basic local alignment search tool", JOURNAL OF MOLECULAR BIOLOGY, vol. 215, no. 3, 1990, pages 403 - 410, XP002949123, DOI: 10.1006/jmbi.1990.9999 |
JACKSON RN ET AL.: "Fitting CRISPR-associated Cas3 into the Helicase Family Tree", CURRENT OPINION IN STRUCTURAL BIOLOGY, vol. 24, 2014, pages 106 - 114 |
JINEK M ET AL.: "A Programmable Dual-RNA Guided DNA Endonuclease in Adaptive Bacterial Immunity", SCIENCE, vol. 337, no. 6096, 2012, pages 816 - 821, XP055549487, DOI: 10.1126/science.1225829 |
JOSEPH SAMBROOKDAVID W. RUSSELL: "Molecular cloning: a laboratory manual 3rd Ed.", 2001, COLD SPRING HARBOR LABORATORY PRESS |
JUNG ET AL., CELL, vol. 170, 2017, pages 35 - 47 |
JUNG ET AL., MOL. CELL., 2017 |
LEENAY, R. T ET AL., MOL. CELL, vol. 62, 2016, pages 137 - 147 |
LEONARD G. DAVIS ET AL.: "Basic methods in molecular biology", 1986, ELSEVIER |
MING LI ET AL., NUCLEIC ACIDS RES., vol. 45, no. 8, 5 May 2017 (2017-05-05), pages 4642 - 4654 |
MORISAKA, H. ET AL.: "Abstrac 490: Genome editing in mammalian cells by cascade and Cas3", J. INVEST, DERMATOL., vol. 137, no. 5, May 2017 (2017-05-01), pages S84, XP055561205 * |
MORISAKA, HIROYUKI ET AL.: "P07-20: Genome editing in mammalian cells by Cascade and Cas3", PROGRAMS AND ABSTRACTS OF 42TH ANNUAL ACADEMIC CONFERENCE AND GENERAL CONFERENCE OF THE JAPANESE SOCIETY FOR INVESTIGATE DERMATOLOGY, 2 November 2017 (2017-11-02), pages 232, XP009517845 * |
MULEPATI SBAILEY S: "In Vitro Reconstitution of an Escherichia coli RNA-guided Immune System Reveals Unidirectional, ATP-dependent Degradation of DNA Target", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 288, no. 31, 2013, pages 22184 - 22192 |
NAGY A. ET AL.: "Manipulating the Mouse Embryo", 2003, COLD SPRING HARBOUR LABORATORY PRESS |
NISHIDA K. ET AL.: "Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems", SCIENCE, 2016 |
SAKUMA T ET AL.: "Efficient TALEN construction and evaluation methods for human cell and animal applications", GENES TO CELLS, vol. 18, no. 4, 2013, pages 315 - 326 |
SUZUKI K ET AL.: "In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration", NATURE, vol. 540, no. 7631, 2016, pages 144 - 149, XP055414804, DOI: 10.1038/nature20565 |
SUZUKI, KELLCHLRO ET AL.: "In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration", NATURE, vol. 540, 16 November 2016 (2016-11-16), pages 144 - 149, XP055414804 * |
TABEI YUTAKA, KAGAKU-DOJIN, 2012, pages 340 - 347 |
VAN DER OOST J ET AL.: "Unravelling the structural and mechanistic basis of CRISPR-Cas systems", NATURE REVIEWS MICROBIOLOGYM, vol. 12, no. 7, 2014, pages 479 - 492, XP055619310, DOI: 10.1038/nrmicro3279 |
WU J ET AL.: "The Intracellular Mobility of Nuclear Import Receptors and NLS Cargoes", BIOPHYSICAL JOURNAL, vol. 96, no. 9, 2009, pages 3840 - 3849 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12012596B2 (en) | 2017-08-21 | 2024-06-18 | Tokushima University | Target sequence specific alteration technology using nucleotide target recognition |
JP7395159B2 (ja) | 2018-12-11 | 2023-12-11 | 国立大学法人京都大学 | ゲノムdnaに欠失を誘導する方法 |
WO2020122104A1 (ja) * | 2018-12-11 | 2020-06-18 | 国立大学法人京都大学 | ゲノムdnaに欠失を誘導する方法 |
JPWO2020122104A1 (ja) * | 2018-12-11 | 2021-10-21 | 国立大学法人京都大学 | ゲノムdnaに欠失を誘導する方法 |
WO2020184723A1 (ja) * | 2019-03-14 | 2020-09-17 | 国立大学法人徳島大学 | Crisprタイプi-dシステムを利用した標的配列改変技術 |
JP7489112B2 (ja) | 2019-03-14 | 2024-05-23 | 国立大学法人徳島大学 | Crisprタイプi-dシステムを利用した標的配列改変技術 |
WO2020204159A1 (ja) | 2019-04-05 | 2020-10-08 | 国立大学法人大阪大学 | ノックイン細胞の作製方法 |
JP6940086B1 (ja) * | 2020-01-24 | 2021-09-22 | C4U株式会社 | 試料中の特定のdnaを検出する方法 |
KR20220130727A (ko) | 2020-01-24 | 2022-09-27 | 씨포유 가부시키가이샤 | 시료 중의 특정한 dna를 검출하는 방법 |
WO2021149829A1 (ja) | 2020-01-24 | 2021-07-29 | C4U株式会社 | 試料中の特定のdnaを検出する方法 |
EP4095245A4 (en) * | 2020-01-24 | 2024-10-09 | C4U Corp | METHOD FOR DETECTING SPECIFIC DNA IN A SAMPLE |
WO2021251493A1 (ja) * | 2020-06-12 | 2021-12-16 | 国立研究開発法人産業技術総合研究所 | 卵白タンパク質遺伝子における目的タンパク質をコードする遺伝子がノックインされた家禽細胞またはその製造方法 |
WO2022097663A1 (ja) | 2020-11-06 | 2022-05-12 | エディットフォース株式会社 | FokIヌクレアーゼドメインの変異体 |
WO2022186063A1 (ja) | 2021-03-01 | 2022-09-09 | C4U株式会社 | Cas3タンパク質を製造する方法 |
CN115595330A (zh) * | 2021-07-12 | 2023-01-13 | 中国科学院微生物研究所(Cn) | 一种CRISPR-Cas3系统及其在抗植物病毒方面的应用 |
WO2024204287A1 (ja) * | 2023-03-27 | 2024-10-03 | 国立大学法人京都大学 | 修飾ヌクレオチドを有するcrRNA |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6480647B1 (ja) | Dnaが編集された真核細胞を製造する方法、および当該方法に用いられるキット | |
AU2013277214B2 (en) | Genetically edited animals and methods for making the same | |
CN111471719A (zh) | 有效的非减数分裂等位基因渐渗 | |
JP2017513510A (ja) | ブタにおける多重遺伝子編集 | |
JP6958917B2 (ja) | 遺伝子ノックイン細胞の作製方法 | |
KR20150105475A (ko) | 유각의 가축 | |
US20190223417A1 (en) | Genetically modified animals having increased heat tolerance | |
JP2018531003A6 (ja) | 向上した耐暑性を有する遺伝子改変動物 | |
WO2020198541A1 (en) | Porcine reproductive and respiratory syndrome virus (prrsv) resistant swine | |
WO2022097663A1 (ja) | FokIヌクレアーゼドメインの変異体 | |
WO2022050377A1 (ja) | 標的dnaの編集方法、標的dnaが編集された細胞の製造方法、及びそれらに用いるdna編集システム | |
WO2021171688A1 (ja) | 遺伝子ノックイン方法、遺伝子ノックイン細胞作製方法、遺伝子ノックイン細胞、がん化リスク評価方法、がん細胞製造方法、及びこれらに用いるためのキット | |
EA040859B1 (ru) | Способ получения эукариотических клеток с отредактированной днк и набор, используемый в этом способе | |
JP2023131616A (ja) | Dna編集システム、並びに、それを用いた標的dnaの編集方法及び標的dnaが編集された細胞の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018554598 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18812837 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018279457 Country of ref document: AU Date of ref document: 20180608 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3066599 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019025717 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20207000115 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018812837 Country of ref document: EP Effective date: 20200108 |
|
ENP | Entry into the national phase |
Ref document number: 112019025717 Country of ref document: BR Kind code of ref document: A2 Effective date: 20191205 |