WO2018225789A1 - ゴム架橋物およびその製造方法 - Google Patents

ゴム架橋物およびその製造方法 Download PDF

Info

Publication number
WO2018225789A1
WO2018225789A1 PCT/JP2018/021709 JP2018021709W WO2018225789A1 WO 2018225789 A1 WO2018225789 A1 WO 2018225789A1 JP 2018021709 W JP2018021709 W JP 2018021709W WO 2018225789 A1 WO2018225789 A1 WO 2018225789A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
fluororubber
rubber
cross
parts
Prior art date
Application number
PCT/JP2018/021709
Other languages
English (en)
French (fr)
Inventor
小松 正明
安奈 金指
誠介 阿多
賢治 畠
茂樹 友納
Original Assignee
日本ゼオン株式会社
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社, 国立研究開発法人産業技術総合研究所 filed Critical 日本ゼオン株式会社
Priority to CN201880035108.0A priority Critical patent/CN110709464B/zh
Priority to JP2019523947A priority patent/JP7173003B2/ja
Priority to US16/618,231 priority patent/US11084910B2/en
Publication of WO2018225789A1 publication Critical patent/WO2018225789A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/28Component parts, details or accessories; Auxiliary operations for measuring, controlling or regulating, e.g. viscosity control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/52Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices with rollers or the like, e.g. calenders
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2315/00Characterised by the use of rubber derivatives
    • C08J2315/02Rubber derivatives containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/20Homopolymers or copolymers of hexafluoropropene

Definitions

  • the present invention relates to a rubber cross-linked product and a method for producing the rubber cross-linked product, and particularly relates to a fluororubber cross-linked product containing carbon nanotubes and a method for producing the same.
  • the crosslinkable rubber composition is prepared using an open roll. Specifically, in Patent Documents 1 to 3, a fluorine-containing elastomer is introduced into an open roll and masticated, and the fluorine-containing elastomer is converted into carbon by appropriately cutting the molecular chain of the fluorine-containing elastomer to generate free radicals. After making it easy to bind to the nanotubes, add the carbon nanotubes and bituminous coal pulverized product to the kneaded fluorine-containing elastomer and knead and pass through with an open roll. Finally, add a peroxide cross-linking agent and A crosslinkable rubber composition is prepared by kneading again.
  • Patent Documents 1 to 3 a cross-linkable rubber composition prepared as described above is molded and cross-linked to obtain a seal member made of a cross-linked rubber.
  • the sealing member formed using the conventional crosslinkable rubber composition exhibits sufficient sealing performance for a long period of time under a high temperature (for example, 200 ° C. or higher) and high pressure (for example, 70 MPa or higher) environment. I could't.
  • An object of the present invention is to advantageously solve the above-described problems, and the rubber cross-linked product of the present invention is a cross-link containing fluororubber, carbon black, carbon nanotube, and an organic peroxide cross-linking agent.
  • the rubber composition is crosslinked, has a 50% modulus of 5 MPa or more, a compression set (230 ° C., 500 hours) of 80% or less, and an elongation at break before and after a heat aging test (230 ° C., 72 hours). The rate of change is from -10% to 10%.
  • the rubber cross-linked product having the above-described properties it is possible to obtain a seal member that is excellent in long-term sealability (hereinafter sometimes simply referred to as “long-term sealability”) under a high temperature and high pressure environment.
  • the “50% modulus” of the rubber cross-linked product can be measured according to JIS K6251.
  • “compression set (230 ° C., 500 hours)” of the rubber cross-linked product is a compression after holding at a compression rate of 25% and a temperature of 230 ° C. for 500 hours, measured according to JIS K6262. Permanent distortion.
  • “change rate of elongation at break before and after thermal aging test (230 ° C., 72 hours)” of the rubber cross-linked product is a heat aging test for 72 hours at 230 ° C. in accordance with JIS K6257.
  • the carbon black preferably contains coal having a carbon content of 60% by mass or more and 90% by mass or less. If carbon black containing coal having a carbon content of 60% by mass or more and 90% by mass or less is used, the heat resistance (heat aging resistance) of the rubber cross-linked product can be improved. Therefore, the long-term sealing performance of the seal member can be further enhanced.
  • the “carbon content” of coal be measured by the Liebig method according to JIS M8813?
  • the rubber cross-linked product of the present invention contains the coal at a ratio of 0.5 parts by mass or more and less than 5 parts by mass per 100 parts by mass of the fluororubber.
  • the content ratio of coal having a carbon content of 60% by mass or more and 90% by mass or less is within the above range, the strength and heat resistance of the rubber cross-linked product can be achieved at a high level. Therefore, the long-term sealing performance can be further enhanced while ensuring the strength of the sealing member.
  • the coal is preferably bituminous coal. If carbon black containing bituminous coal is used, the heat resistance of the rubber cross-linked product can be increased. Therefore, the long-term sealing performance of the seal member can be further enhanced.
  • the rubber cross-linked product of the present invention preferably has a breaking strength of 23 MPa or more.
  • the breaking strength is 23 MPa or more, the strength of the rubber cross-linked product can be sufficiently ensured, and the long-term sealability of the sealing member can be further enhanced.
  • the “breaking strength” of the rubber cross-linked product can be measured according to JIS K6251.
  • the glass transition temperature of the fluororubber is preferably ⁇ 7 ° C. or lower. If a fluororubber having a glass transition temperature of ⁇ 7 ° C. or lower is used, a crosslinked rubber having excellent low-temperature characteristics can be obtained. Therefore, it is possible to obtain a seal member that exhibits good sealing characteristics even in a low temperature environment.
  • the “glass transition temperature” of fluororubber can be measured by a differential scanning calorimetry (DSC) method.
  • the rubber cross-linked product of the present invention contains the carbon nanotubes at a ratio of 0.4 parts by mass or more and less than 10 parts by mass per 100 parts by mass of the fluororubber. If the content rate of a carbon nanotube is in the said range, the intensity
  • the manufacturing method of the rubber crosslinked material of this invention is a manufacturing method of the rubber crosslinked material mentioned above, Comprising: A step (A) of obtaining a composite comprising carbon nanotubes dispersed in fluororubber, and a step of kneading the composite, carbon black, and an organic peroxide crosslinking agent to obtain a crosslinkable rubber composition (B) and the step (C) of forming and cross-linking the cross-linkable rubber composition to obtain a cross-linked rubber, and the step (A) includes fluoro rubber, carbon nanotubes, and an organic solvent. After the mixture is wet-dispersed, the composite is obtained by removing the organic solvent.
  • a wet dispersion process is used when preparing a composite in the step (A), a rubber cross-linked product having the above-described physical properties can be prepared satisfactorily.
  • the organic solvent is preferably removed by thin film drying. If the organic solvent is removed by thin film drying, the organic solvent can be quickly removed with a small amount of heating. Therefore, it is possible to obtain a crosslinked rubber product that suppresses aggregation of the carbon nanotubes when the organic solvent is removed, and achieves both strength and heat resistance at a high level.
  • the step (B) includes a step (B1) of kneading the composite and the carbon black to obtain a pre-compound, the pre-compound and the organic compound.
  • the mixture in the step (A), is preferably subjected to a wet dispersion treatment using a jet mill. If a jet mill is used, a rubber cross-linked product having both strength and heat resistance at a high level can be obtained.
  • the method for producing a crosslinked rubber product of the present invention it is preferable to perform kneading using a closed kneader in the step (B). If a closed kneader is used, the heat resistance of the rubber cross-linked product can be further increased.
  • the closed kneader is preferably a pressure kneader. If a pressure type kneader is used, the heat resistance of the rubber cross-linked product can be further increased.
  • a rubber cross-linked product capable of providing a sealing member excellent in long-term sealability under a high temperature and high pressure environment can be obtained.
  • crosslinkable rubber composition that can be used for the preparation of the rubber cross-linked product of the present invention, the method for producing the cross-linkable rubber composition, the rubber cross-linked product of the present invention and the method for producing the rubber cross-linked product of the present invention, This will be explained in terms of items.
  • the crosslinkable rubber composition that can be used for the preparation of the rubber cross-linked product of the present invention contains fluororubber, carbon nanotubes, carbon black, and an organic peroxide cross-linking agent, and optionally includes a cross-linking aid and an acid acceptor. An additive such as an agent is further contained.
  • the use of the crosslinkable rubber composition is not limited to the preparation of the rubber cross-linked product of the present invention.
  • the fluororubber is not particularly limited, and examples thereof include vinylidene fluoride rubber (FKM), tetrafluoroethylene-propylene rubber (FEPM), and tetrafluoroethylene-purple fluorovinyl ether rubber (FFKM).
  • FKM vinylidene fluoride rubber
  • FEPM tetrafluoroethylene-propylene rubber
  • FFKM tetrafluoroethylene-purple fluorovinyl ether rubber
  • FKM vinylidene fluoride rubber
  • FKM tetrafluoroethylene-propylene rubber
  • FFKM tetrafluoroethylene-purple fluorovinyl ether rubber
  • FKM vinylidene fluoride rubber
  • type 3 FKM, type 4 FKM or type 5 FKM specified in ASTM D1418 are preferred, and one of the monomers used in FKM is a perfluoro (alkyl vinyl ether) monomer.
  • Those used for example, Type 3
  • the fluororubber has a glass transition temperature of preferably ⁇ 7 ° C. or lower, and more preferably ⁇ 15 ° C. or lower.
  • the glass transition temperature of the fluororubber is not more than the above upper limit value, the low temperature characteristics of the crosslinked rubber obtained by crosslinking the crosslinkable rubber composition can be improved. Therefore, when a rubber cross-linked product is used for the seal member, a seal member having excellent low temperature characteristics can be obtained.
  • the glass transition temperature of fluororubber is usually ⁇ 40 ° C. or higher.
  • the carbon nanotube (hereinafter sometimes abbreviated as “CNT”) is not particularly limited, and single-walled carbon nanotubes and / or multi-walled carbon nanotubes can be used. Carbon nanotubes up to a single layer are preferable, and single-walled carbon nanotubes are more preferable. As the number of carbon nanotube layers is smaller, the strength of the crosslinked rubber obtained by crosslinking the crosslinkable rubber composition can be improved. Therefore, when a rubber cross-linked product is used for the seal member, safety can be improved.
  • the crosslinkable rubber composition further includes a fibrous carbon nanostructure such as a carbon nanostructure in which a carbon six-membered ring network is formed in a non-cylindrical shape (for example, a flat cylindrical shape). You may go out.
  • a fibrous carbon nanostructure such as a carbon nanostructure in which a carbon six-membered ring network is formed in a non-cylindrical shape (for example, a flat cylindrical shape). You may go out.
  • the average diameter of the CNTs is preferably 1 nm or more, preferably 60 nm or less, more preferably 30 nm or less, further preferably 10 nm or less, and particularly preferably 6 nm or less. preferable.
  • the average diameter of the CNT is within the above range, the strength of the crosslinked rubber obtained by crosslinking the crosslinkable rubber composition can be improved. Therefore, when a rubber cross-linked product is used for the seal member, safety can be improved.
  • the “average diameter of CNT” can be obtained by, for example, measuring the diameter (outer diameter) of 20 CNTs on a transmission electron microscope (TEM) image and calculating the number average value. .
  • the average length of the CNTs is preferably 1 ⁇ m or more, more preferably 50 ⁇ m or more, further preferably 80 ⁇ m or more, preferably 600 ⁇ m or less, and preferably 550 ⁇ m or less. More preferably, it is more preferably 500 ⁇ m or less.
  • the average length of CNTs is within the above range, the strength of the crosslinked rubber obtained by crosslinking the crosslinkable rubber composition can be improved. Therefore, when a rubber cross-linked product is used for the seal member, safety can be improved.
  • the “average length of CNT” is obtained by, for example, measuring the length of 20 CNTs on a scanning electron microscope (SEM) image and calculating the number average value. it can.
  • the CNT has a BET specific surface area of preferably 200 m 2 / g or more, more preferably 400 m 2 / g or more, still more preferably 600 m 2 / g or more, and 2000 m 2 / g or less. It is preferable that it is 1800 m ⁇ 2 > / g or less, and it is still more preferable that it is 1500 m ⁇ 2 > / g or less. If the BET specific surface area of CNT is not less than the above lower limit, the strength of the crosslinked rubber obtained by crosslinking the crosslinkable rubber composition can be improved. Therefore, when a rubber cross-linked product is used for the seal member, safety can be improved.
  • BET specific surface area of CNT is below the said upper limit, CNT can be favorably disperse
  • the “BET specific surface area” refers to a nitrogen adsorption specific surface area measured using the BET method.
  • the carbon purity of the CNT is preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and particularly preferably 99% by mass or more. preferable.
  • the carbon purity of the CNT is set to the above lower limit value or more, the strength and heat aging resistance of the crosslinked rubber obtained by crosslinking the crosslinkable rubber composition can be improved. Therefore, when a rubber cross-linked product is used for the sealing member, safety and long-term sealing properties can be improved.
  • Carbon purity can be determined by elemental analysis using fluorescent X-rays.
  • CNT can be manufactured using the synthesis
  • CVD method chemical vapor deposition method
  • a chemical vapor deposition method by supplying a raw material compound and a carrier gas onto a substrate having a catalyst layer for producing carbon nanotubes on the surface thereof, for example.
  • CVD method chemical vapor deposition method
  • oxidizing agent catalyst activating substance
  • the carbon nanotube obtained by the super growth method may be referred to as “SGCNT”.
  • CNT manufactured by the super growth method may be comprised only from SGCNT, and may contain the non-cylindrical carbon nanostructure etc. in addition to SGCNT, for example.
  • the quantity of CNT contained in a crosslinkable rubber composition is not specifically limited, For example, it is preferable that it is 0.4 mass part or more and less than 10 mass parts per 100 mass parts of fluororubber. If the amount of CNT is not less than the above lower limit, the strength of the crosslinked rubber obtained by crosslinking the crosslinkable rubber composition can be improved. Therefore, when the rubber cross-linked product is used for the seal member, the strength of the seal member can be sufficiently ensured. Moreover, if the quantity of CNT is below the said upper limit, the heat resistance of the rubber crosslinked material obtained by bridge
  • the long-term sealability of the seal member can be sufficiently enhanced.
  • the CNT is a single-walled carbon nanotube (SWCNT)
  • the amount of CNT contained in the crosslinkable rubber composition is 0.5 parts by mass or more and 5 parts by mass or less per 100 parts by mass of the fluororubber. It is preferably 0.5 parts by mass or more and 3 parts by mass or less, more preferably 0.7 parts by mass or more and 2 parts by mass or less, and 0.9 parts by mass or more and 2 parts by mass or less.
  • the amount of CNT contained in the crosslinkable rubber composition is 1 part by mass or more and less than 10 parts by mass per 100 parts by mass of the fluororubber. Is preferably 2 parts by mass or more and 9 parts by mass or less.
  • the reason why the heat resistance of the rubber cross-linked product can be improved and the long-term sealability of the seal member can be improved by setting the amount of CNT to a predetermined amount or less is not clear.
  • the CNT inhibits the cross-linking reaction, so that it easily deteriorates by heat, and since the CNT forms a network (three-dimensional network structure) in the rubber cross-linked product, elastic recovery is hindered and compression set is prevented. It is guessed that it gets worse.
  • strength of a rubber crosslinked material cannot fully be improved.
  • Carbon black examples include, but are not limited to, furnace black, thermal black, ketjen black, and acetylene black. Carbon black also includes coal having a carbon content of 60% by mass or more and 90% by mass or less. In addition, these carbon black can be used individually by 1 type or in mixture of 2 or more types. Moreover, the particle diameter and structure of carbon black are not particularly limited.
  • carbon black has a carbon content.
  • the thermal black can improve the heat resistance of the rubber cross-linked product and improve the long-term sealability of the seal member using the rubber cross-linked product. Because it is high, it hardly affects the heat aging resistance of the rubber cross-linked product, and since it is difficult to cause cross-linking inhibition, the heat resistance is improved and the cohesive force is smaller than other carbon blacks, so the elasticity of the rubber cross-linked product is low. This is probably because it is difficult to inhibit recovery.
  • the coal having the carbon content of 60% by mass or more and 90% by mass or less is not particularly limited, and examples thereof include bituminous coal. Moreover, as bituminous coal, it does not specifically limit, For example, commercially available Austin black etc. can be used.
  • the total amount of carbon black contained in the crosslinkable rubber composition can be appropriately adjusted depending on the use of the rubber cross-linked product.
  • the total amount of carbon black contained in the crosslinkable rubber composition is not particularly limited, and is preferably 5 parts by mass or more and 70 parts by mass or less per 100 parts by mass of the fluororubber, More preferably, they are 45 to 60 mass parts. If the total amount of carbon black is equal to or more than the above lower limit value, a sufficient reinforcing effect can be obtained, and CNT can be sterically hindered from forming a network (three-dimensional network structure) in a rubber cross-linked product, and compression permanent Deterioration of distortion can be suppressed. Therefore, the long-term sealability of the seal member can be sufficiently enhanced. Moreover, if the total amount of carbon black is less than or equal to the above upper limit value, it is possible to suppress the occurrence of poor carbon black dispersion and to prevent the rubber cross-linked product from becoming excessively hard.
  • the amount of coal having a carbon content of 60% by mass or more and 90% by mass or less contained in the crosslinkable rubber composition is not particularly limited, and is, for example, 0 per 100 parts by mass of the fluororubber. It is preferably from 5 parts by weight to less than 5 parts by weight, more preferably from 0.5 parts by weight to 3 parts by weight, and still more preferably from 0.5 parts by weight to 2 parts by weight. If the amount of coal having a carbon content of 60% by mass or more and 90% by mass or less is equal to or more than the lower limit, rubber crosslinking obtained by sufficiently suppressing a decrease in physical properties due to thermal deterioration and crosslinking a crosslinkable rubber composition The heat resistance of the object can be improved.
  • coal having a carbon content of 60% by mass or more and 90% by mass or less has a lower reinforcing effect than other carbon blacks, and the amount of coal having a carbon content of 60% by mass or more and 90% by mass or less is the above upper limit value. If it is below, the strength of the rubber cross-linked product, particularly the strength after the heat aging test can be improved. Therefore, when the rubber cross-linked product is used for the seal member, the strength of the seal member can be sufficiently ensured.
  • Organic peroxide crosslinking agent is not particularly limited as long as it can crosslink fluororubber.
  • organic peroxide crosslinking agents commercially available products (for example, manufactured by NOF Corporation, Perhexa 25B, Perhexa 25B-40, etc.) can be used as they are. From the viewpoint of ease of handling, a commercial product such as Perhexa 25B-40 diluted with a filler is easy to handle, but from the viewpoint of long-term physical properties such as heat aging resistance, it has a high purity that is not diluted with a filler such as silicon oxide. It is preferable to use a liquid peroxide cross-linking agent (such as perhexa 25B in the commercial product). And the compounding quantity of an organic peroxide crosslinking agent can be suitably adjusted according to the kind etc. of fluororubber. In addition, these organic peroxide crosslinking agents can be used individually by 1 type or in mixture of 2 or more types.
  • the additive is not particularly limited, and additives generally used in the field of rubber compositions such as a crosslinking aid and an acid acceptor can be used.
  • crosslinking aid is not particularly limited, and examples thereof include triallyl isocyanurate (TAIC), triallyl cyanurate, diallyl phthalate, trivinyl isocyanurate, tri (5-norbornene-2-methylene) cyanurate.
  • TAIC triallyl isocyanurate
  • diallyl phthalate diallyl phthalate
  • trivinyl isocyanurate tri (5-norbornene-2-methylene) cyanurate.
  • the acid acceptor is not particularly limited, and known acid acceptors such as magnesium oxide, lead oxide, zinc oxide, lead carbonate, zinc carbonate, hydrotalcite, and the like can be used. Of these, zinc oxide is preferable. In addition, these acid acceptors can be used individually by 1 type or in mixture of 2 or more types.
  • the compounding quantity of the additive mentioned above can be suitably adjusted according to the kind etc. of fluororubber or an organic peroxide crosslinking agent.
  • the crosslinkable rubber composition described above can be prepared by mixing fluororubber, carbon nanotubes, carbon black, an organic peroxide crosslinking agent, and any additive.
  • fluororubber carbon nanotubes, carbon black, an organic peroxide crosslinking agent, and an additive
  • description is abbreviate
  • the mixing of the above-described blending components is not particularly limited, and all the blending components may be kneaded and mixed together using a kneader or a roll, or mixed in multiple stages. Also good.
  • the blending components described above it is preferable to mix the blending components described above in multiple stages.
  • the composite, carbon black, and an organic peroxide crosslinking agent are prepared. It is preferable to obtain a crosslinkable rubber composition by kneading with an optional additive and the like.
  • compounding ingredients (fluororubber, carbon nanotube, carbon black and optional additives) other than the organic peroxide crosslinking agent are mixed.
  • a cross-linkable rubber composition by kneading the pre-compound and an organic peroxide cross-linking agent after preparing the pre-compound, and from the viewpoint of suppressing the progress of cross-linking while favorably dispersing CNTs
  • the composite, carbon black, optional additives, and the like are kneaded to prepare a pre-compound, and finally the pre-compound and It is more preferable to knead an organic peroxide crosslinking agent to obtain a crosslinkable rubber composition.
  • the method for obtaining a composite by dispersing CNT in fluororubber there is no particular limitation on the method for obtaining a composite by dispersing CNT in fluororubber, and the composite is obtained by dry-mixing fluororubber and CNT in the absence of a solvent using a kneader, roll, mixer, etc.
  • a compound may be prepared, or a mixture containing fluororubber, carbon nanotubes, and an organic solvent may be wet-dispersed, and then the compound may be prepared by removing the organic solvent.
  • the preparation of the composite includes fluororubber, carbon nanotubes, and an organic solvent.
  • the mixture is preferably subjected to a wet dispersion treatment and then the organic solvent is removed.
  • the heat generated by the reaction of the radicals generated in the rubber crosslinked product with the impurities contained in the coal described above is not obtained, if the radical scavenging ability of CNTs is reduced during the preparation of the composite, the radical scavenging ability of CNTs has the effect of suppressing thermal degradation described above. This is because the same effect can be obtained.
  • the total amount of the fluororubber used for the preparation of the crosslinkable rubber composition may be used for the preparation of the composite, only a part of the fluororubber used for the preparation of the crosslinkable rubber composition (for example, You may use 33 mass% or more and less than 100 mass% of all fluororubbers.
  • the remainder of the fluororubber can be kneaded with the composite at an arbitrary timing, and the remaining compounding components and composite are combined. It is preferable to knead with the composite before kneading.
  • the organic solvent any organic solvent capable of dissolving the fluororubber can be used.
  • the organic solvent is not particularly limited, and for example, ketone solvents such as methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK), ether solvents, and mixtures thereof can be used. .
  • ketone solvents such as methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK)
  • ether solvents and mixtures thereof
  • ether solvents and mixtures thereof
  • methyl ethyl ketone it is preferable to use methyl ethyl ketone as the organic solvent.
  • the term “capable of dissolving fluororubber” means that the solubility at a temperature of 40 ° C. is 10 g-fluororubber / 100 g-organic solvent or more.
  • the mixture may be prepared by adding CNTs to an organic solvent solution of fluororubber, or by mixing a CNT dispersion obtained by dispersing CNTs in an organic solvent and an organic solvent solution of fluororubber. It may be prepared by adding fluororubber to a CNT dispersion obtained by dispersing CNT in an organic solvent. Especially, it is preferable to prepare a mixture by adding CNT in the organic solvent solution of fluororubber.
  • blend dispersing agents such as surfactant
  • fluororubber can suppress the aggregation of CNTs. Therefore, from the viewpoint of suppressing a decrease in physical properties of a crosslinked rubber obtained by crosslinking a crosslinkable rubber composition, the mixture contains It is preferable not to add a dispersant.
  • the concentration of the fluororubber in the mixture is preferably 3% by mass or more, and 5% by mass or more. More preferably, it is preferably 20% by mass or less, and more preferably 15% by mass or less.
  • the amount of CNT in the mixture is 0.1 parts by mass or more and 10 parts by mass per 100 parts by mass of the organic solvent.
  • the following is preferable.
  • CNT is SWCNT
  • the quantity of CNT in a mixture is 0.1 to 0.5 mass part per 100 mass parts of organic solvents.
  • CNT is MWCNT
  • the amount of CNT in the mixture is 1 part by mass or more and 10 parts by mass or less per 100 parts by mass of the organic solvent.
  • the wet dispersion treatment is not particularly limited, and can be performed using, for example, an ultrasonic disperser, a homogenizer, a thin film swirl type high speed mixer, a bead mill, a wet jet mill, a twin screw kneader, or the like.
  • the wet dispersion treatment can also be performed using a method of biaxially kneading the mixture in the presence of carbon dioxide in a supercritical state.
  • a thin-film swivel type high-speed mixer, bead mill, and wet jet mill which can provide a rubber cross-linked product with excellent physical properties while suppressing damage to CNTs.
  • a wet jet mill it is more preferable to use a wet jet mill.
  • the removal of the organic solvent is not particularly limited, and can be performed using any drying method such as hot air drying, vacuum drying, spray drying, and thin film drying. Especially, it is preferable to remove an organic solvent using thin film drying from a viewpoint of removing an organic solvent rapidly with a small heating amount. If the organic solvent is removed quickly, the dispersed carbon nanotubes can be prevented from aggregating again. Therefore, a crosslinkable rubber composition capable of providing a rubber cross-linked product having excellent strength can be obtained. Further, if the organic solvent is removed with a small heating amount, it is possible to obtain a crosslinkable rubber composition capable of suppressing the thermal deterioration of the fluororubber and providing a rubber cross-linked product having excellent heat resistance.
  • the amount of CNT contained in the composite prepared as described above is the amount of CNT per 100 parts by mass of fluororubber (M1) contained in the crosslinkable rubber composition.
  • the amount is preferably 1 to 3 times the amount of CNT per 100 parts by mass (M2). That is, if the amount of CNT contained in the crosslinkable rubber composition prepared using the composite is 1 part by mass per 100 parts by mass of the fluororubber, the amount of CNT contained in the composite is within the composite. It is preferable that they are 1 mass part or more and 3 mass parts or less per 100 mass parts of fluororubber.
  • M1 exceeds 3 times M2
  • the amount of fluororubber kneaded with the composite increases, making it difficult to disperse CNTs well in the crosslinkable rubber composition.
  • M1 is preferably 3 times or less of M2
  • M1 can be evaluated by, for example, the value of Mooney viscosity stress relaxation measurement. That is, it can be judged by looking at the decay state of torque when the rotor is stopped after measurement of Mooney viscosity (Moone viscosity at 100 ° C., rotor rotation speed is 2 rpm, preheating 1 minute, test time 10 minutes), It is preferable that the Mooney viscosity 5 seconds after the rotor rotation stops is 10 Mooney or less.
  • the kneading of the composite, carbon black, organic peroxide cross-linking agent, optional additives and the remainder of the fluororubber is not particularly limited, and is performed using an open kneader such as an open roll.
  • an open kneader such as an open roll.
  • a closed kneader such as a Banbury mixer and a pressure kneader may be used, or a closed kneader and an open kneader may be used in combination.
  • kneading of the composite, carbon black, organic peroxide cross-linking agent, optional additives and the remainder of the fluororubber is preferably performed using a closed kneader, using a pressure kneader. More preferably.
  • a closed kneader when carbon black containing coal having a carbon content of 60% by mass or more and 90% by mass or less is not used as the carbon black, it is particularly preferable to use a closed kneader, and an MS pressure kneader (for example, Japan It is even more preferable to use a pressure type kneader such as Spindle Manufacturing Co., Ltd., Wonder Kneader (registered trademark) or the like.
  • the heat generated by the reaction of the radicals generated in the rubber crosslinked product with the impurities contained in the coal described above is obtained, if a closed kneader, particularly a pressure kneader such as a wonder kneader, is used, shear heat generation during kneading is reduced, and the radical scavenging ability of CNT is consumed. It is because it can suppress.
  • the compound, carbon black, optional additives and the remainder of the fluororubber are kneaded to obtain a pre-compound, and then the pre-compound and the organic peroxide cross-linking agent are kneaded to cross-link the rubber.
  • a closed kneader at least for preparing the pre-compound. It is because it can suppress that the radical scavenging ability which CNT has is consumed.
  • carbon black containing coal having a carbon content of 60% by mass or more and 90% by mass or less is not used as carbon black, for the same reason as described above, pre-compound preparation and pre-compound and organic peroxidation are performed.
  • a closed kneader particularly a pressure kneader such as a wonder kneader, for both kneading with the product cross-linking agent.
  • knead when knead
  • the rubber cross-linked product of the present invention is obtained by cross-linking a cross-linkable rubber composition containing fluororubber, carbon black, carbon nanotubes, and an organic peroxide cross-linking agent, and has a 50% modulus of 5 MPa or more.
  • the compression set (230 ° C., 500 hours) is 80% or less, and the rate of change in elongation at break before and after the thermal aging test (230 ° C., 72 hours) is ⁇ 10% or more and 10% or less.
  • the rubber cross-linked product of the present invention preferably has a breaking strength of 23 MPa or more.
  • the rubber cross-linked product of the present invention is obtained by cross-linking a predetermined cross-linkable rubber composition and has predetermined physical properties, it is excellent for a long time when used as a seal member. Sealing performance can be exhibited.
  • crosslinkable rubber composition described above can be used as the crosslinkable rubber composition.
  • the crosslinking of the crosslinkable rubber composition is not particularly limited, and can be performed using a known crosslinking method such as heating and pressurization of the crosslinkable rubber composition in a mold.
  • the crosslinking conditions can be appropriately set according to the type of fluororubber contained in the crosslinkable rubber composition and the use of the rubber crosslinked product.
  • the rubber cross-linked product of the present invention needs to have a 50% modulus of 5 MPa or more, preferably 7 MPa or more.
  • a sufficiently high strength and sealability can be exhibited when used as a seal member.
  • the occurrence of protrusion breakage can be suppressed, and the high-pressure sealability is excellent.
  • the rubber cross-linked product of the present invention needs to have a compression set (230 ° C., 500 hours) of 80% or less, and preferably 75% or less.
  • a compression set 230 ° C., 500 hours
  • the compression set after compression for a long time (500 hours) at a high temperature (230 ° C.) in a cross-linked fluororubber compounded with CNT is due to the fact that CNT inhibits the cross-linking reaction. It is an index that encompasses all the effects of poor crosslinking, easy disappearance of cross-linked sites due to thermal degradation, and inhibition of elastic recovery due to the formation of a three-dimensional network structure by CNTs.
  • Compression set (230 ° C., 500 This is because if the time) is 80% or less, it is possible to sufficiently prevent the deterioration of the sealing performance over time due to the influence of the various factors described above.
  • the compression set after compression for a long time (500 hours) at a high temperature (230 ° C.) is that the initial creep deformation of the rubber cross-linked product is caused at a low temperature or for a short time compression of about 70 hours, for example. This is because the influence can only be evaluated, and the influence of the inhibition of the cross-linking reaction and the influence of the ease of disappearance of the cross-linked site due to thermal deterioration cannot be sufficiently grasped.
  • fluorine rubber having high heat resistance long-term sealability cannot be predicted by a compression set in a short time of about 70 hours or a change in compression set over time.
  • fluororubber shows decomposition-type deterioration behavior in the long run, but at a relatively early stage up to 70 hours, depending on the type of compounding, there may be a competitive reaction between decomposition-type and curing-type, It is necessary to evaluate the compression set after a long time of at least 300 hours or more.
  • the compression set test is performed in a state of poor crosslinking, even if the compression set is relatively good for about 200 hours, it may deteriorate rapidly from about 300 hours due to the disappearance of the crosslinked part from the crosslinked rubber. Because there is.
  • the rubber cross-linked product of the present invention needs to have a rate of change in elongation at break before and after a heat aging test (230 ° C., 72 hours) of ⁇ 10% to 10%. If the rate of change in elongation at break before and after thermal aging test (230 ° C, 72 hours) is -10% or more and 10% or less, the occurrence of protrusion failure is sufficiently suppressed and excellent sealing performance is demonstrated over a long period of time. can do.
  • the rubber cross-linked product of the present invention preferably has a breaking strength of 23 MPa or more, and more preferably 25 MPa or more. If the breaking strength is 23 MPa or more, the strength of the rubber cross-linked product can be sufficiently secured, the occurrence of protrusion breakage and the like can be sufficiently suppressed, and the long-term sealability of the sealing member can be further enhanced.
  • the above-mentioned rubber cross-linked product of the present invention is not particularly limited, and can be manufactured using the method for manufacturing a rubber cross-linked product of the present invention described below. However, you may manufacture the rubber crosslinked material of this invention by methods other than the manufacturing method of the rubber crosslinked material of this invention.
  • the method for producing a rubber cross-linked product of the present invention is a method for producing the above-mentioned rubber cross-linked product, the step (A) of obtaining a composite comprising fluororubber and carbon nanotubes dispersed in the fluororubber, and the composite A step of kneading carbon black and an organic peroxide crosslinking agent to obtain a crosslinkable rubber composition (B), and a step of molding and crosslinking the crosslinkable rubber composition to obtain a crosslinked rubber product (C) ).
  • the manufacturing method of the rubber crosslinked material of this invention is a process (A) WHEREIN: After wet-dispersing the mixture containing fluororubber, a carbon nanotube, and an organic solvent, a composite material is removed by removing an organic solvent. It is characterized by obtaining.
  • the manufacturing method of the rubber cross-linked product of the present invention suppresses the reduction of the CNT radical scavenging ability during the production of the rubber cross-linked product by using a wet dispersion treatment in the step (A), and is particularly limited. However, it can be used particularly advantageously when carbon black containing coal having a carbon content of 60% by mass to 90% by mass is not used as carbon black.
  • the crosslinked rubber product having the above-mentioned physical properties can be produced satisfactorily.
  • step (A) can be carried out in accordance with the contents described in the section ⁇ Preparation of compounded product> in the method for producing the crosslinkable rubber composition described above.
  • the composite, carbon black, and the organic peroxide cross-linking agent may be kneaded together.
  • the composite and carbon black are kneaded.
  • a process (B), a process (B1), and a process (B2) are implemented based on the content described in the section of ⁇ the preparation of a crosslinkable rubber composition> of the manufacturing method of a crosslinkable rubber composition mentioned above. be able to.
  • the method for molding and crosslinking the crosslinkable rubber composition in the step (C) is not particularly limited.
  • the cross-linkable rubber composition may be molded using a known molding apparatus such as a roll and then the molded body may be heated to perform cross-linking, or an extrusion molding machine, an injection molding machine, a calendar. Molding and crosslinking may be performed simultaneously by putting the crosslinkable rubber composition into a molding machine or a mold and heating and pressing. From the viewpoint of imparting heat resistance through cross-linking control, compression molding in which a cross-linkable rubber composition is put into a mold and heated and pressurized is preferred.
  • vacuum compression molding capable of positively discharging generated gas is particularly preferable.
  • the primary crosslinking conditions it is preferable to set the temperature and time from a crosslinking curve obtained from a crosslinking tester.
  • the primary crosslinking time is 15 times. It is preferable that it is more than minutes.
  • a sheet obtained using the crosslinkable rubber composition is punched to obtain a molded body having a predetermined thickness
  • a plurality of sheets can be stacked to have an arbitrary thickness, but from the viewpoint of long-term sealing properties. It is preferable to obtain a molded product having a predetermined thickness by stacking two or less sheets.
  • test piece a cylindrical small test piece (diameter: 13.0 ⁇ 0.5 mm, height: 6.3 ⁇ 0.3 mm) prepared using the crosslinkable rubber composition was used.
  • the crosslinking conditions for preparing the small test pieces were the same as those for the rubber crosslinked product. Specifically, the test was carried out using an air circulation oven heated to 230 ° C. (gear-type oven, manufactured by Toyo Seiki Co., Ltd.) and a compression set test mold manufactured by Dumbbell. After the small test piece was placed in a compression set test mold so that the compression rate was 25%, a spacer having a thickness of 4.725 mm was placed and compressed so that the thickness of the small test piece was 4.725 mm.
  • ⁇ Change rate of elongation at break The rate of change in elongation at break was calculated by measuring the elongation at break by a method according to JIS K6251 after carrying out a heat aging test according to a method according to JIS K6257. Specifically, a dumbbell is obtained by punching a test piece from a rubber cross-linked sheet (thickness: 2.0 ⁇ 0.2 mm) using a dumbbell-shaped No. 3 super dumbbell cutter (manufactured by Dumbbell). A No. 3 type test piece was obtained. Next, a dumbbell-shaped No.
  • test piece is attached to a test piece mounting frame that rotates around the vertical axis of a forced circulation type heat aging test machine (gear type oven, manufactured by Toyo Seiki Co., Ltd.) heated to 230 ° C. While the test piece was rotated 7 times per minute, air was forcibly circulated in the horizontal direction at an average wind speed of 0.5 m / sec, and a heat aging test for 72 hours was performed. Then, the dumbbell-shaped No. 3 test piece after the heat aging test is tensioned with a video non-contact extensometer (TRVierX500S, manufactured by Shimadzu Corporation) under constant temperature and humidity conditions of 23 ° C. and 50% humidity.
  • TRVierX500S video non-contact extensometer
  • a testing machine (AGS-X, manufactured by Shimadzu Corporation), a tensile test was performed at a tensile speed of 500 mm / min. The initial distance between marked lines was 20 mm.
  • the elongation at break was defined as the elongation at break after the heat aging test. Further, the elongation at break was measured in advance in the same manner as the test piece after the heat aging test on the test piece before the heat aging test, and the change rate of the breaking elongation was obtained.
  • a dumbbell is obtained by punching a test piece from a rubber cross-linked sheet (thickness: 2.0 ⁇ 0.2 mm) using a dumbbell-shaped No. 3 super dumbbell cutter (manufactured by Dumbbell). A No. 3 type test piece was obtained. Then, using a tensile tester (AGS-X, manufactured by Shimadzu Corp.) equipped with a video non-contact extensometer (TRVierX500S, manufactured by Shimadzu Corp.), in a constant temperature and humidity room of 23 ° C. and 50% humidity, 500 mm Tensile tests were performed at a pulling rate of / min. The initial distance between marked lines was 20 mm.
  • the pressure inside the pressure vessel was increased by 10 MPa using a variable discharge pump (VFMP-15H) and a booster pump.
  • the sealability was evaluated by the presence or absence of pressure drop. Specifically, hold the same pressure for 5 minutes, close the booster circuit after 5 minutes, and pass (no pressure drop) if the pressure drop after 5 to 10 minutes is less than 10% (no pressure drop), 10% or more If there was, it was judged as rejected (there was a pressure drop).
  • long-term sealing property was evaluated on the following reference
  • Example 1 Preparation of composite> A fluorororubber solution having a concentration of 10% by mass was prepared by dissolving 1 kg of ternary fluororubber (VitonGBL600S, manufactured by Chemers) in 9 kg of methyl ethyl ketone (MEK).
  • ternary fluororubber VitonGBL600S, manufactured by Chemers
  • the average particle size was measured with a laser diffraction particle size distribution analyzer (LA-960, manufactured by HORIBA), the average particle size was 24 ⁇ m, indicating that the particle size distribution is monodisperse indicating unimodal distribution. confirmed. Further, it was confirmed that the CNT having a particle diameter of 100 ⁇ m or more was 10% by volume or less.
  • the obtained wet dispersion treatment liquid was dried by a thin film drying method. Specifically, after the wet dispersion treatment liquid is dropped in a place heated to about 130 ° C. so that the thickness after drying becomes about 500 ⁇ m, and dried until the solid concentration becomes 99% by mass or more.
  • step (A) a vacuum drying treatment was performed at 90 ° C. to obtain a composite containing 2 parts by mass of single-walled carbon nanotubes per 100 parts by mass of fluororubber (step (A)).
  • step (A) a vacuum drying treatment was performed at 90 ° C. to obtain a composite containing 2 parts by mass of single-walled carbon nanotubes per 100 parts by mass of fluororubber.
  • step (A) ⁇ Precompound preparation> Using a Banbury mixer, the composite, ternary fluororubber (VitonGBL600S, manufactured by Chemers), carbon black, crosslinking aid, and acid acceptor were kneaded to prepare a pre-compound. Specifically, after setting a Banbury mixer at a temperature of 50 ° C.
  • ternary fluororubber (VitonGBL600S, manufactured by Chemers) at 50 rpm for 1 minute, 51 parts by mass of a composite (amount of fluororubber: 50 parts by mass) was added, and the mixture was further kneaded for 1 minute.
  • the roll gap was generally between 0.7 mm and 1.5 mm. Finally, the roll gap was set to 0.5 mm, and rounding was performed 5 times to obtain a crosslinkable rubber composition (step (B2)). Note that the surface temperature (final temperature reached) of the crosslinkable rubber composition immediately after rounding was 84 ° C. ⁇ Preparation of rubber cross-linked product> Subsequently, dispensing was performed to adjust the thickness of the sheet in accordance with the shape of the molded product with two rolls to obtain a sheet of a crosslinkable rubber composition. Next, using a compression molding machine of 150 t, primary crosslinking was performed at a temperature of 177 ° C.
  • step (C) various physical properties were evaluated. The results are shown in Table 1.
  • Example 2 At the time of preparing the composite, the amount of single-walled carbon nanotubes was changed to 16.0 g to prepare a composite containing 1.6 parts by weight of single-walled carbon nanotubes per 100 parts by weight of fluororubber. At the time of preparation, the amount of the composite is changed to 50.8 parts by mass (fluororubber amount: 50 parts by mass) and the amount of Austin black added in two portions is added to 4 parts by mass (2 parts by mass x 2). A composite, a pre-compound, a crosslinkable rubber composition and a rubber cross-linked product were prepared in the same manner as in Example 1 except for the changes. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 A composite containing 1.0 part by mass of single-walled carbon nanotubes per 100 parts by mass of fluororubber was prepared in the same manner as in Example 1 except that the amount of single-walled carbon nanotubes was changed to 10.0 g ( Step (A)).
  • Precompound preparation> Using a wonder kneader, the composite, ternary fluororubber (VitonGBL600S, manufactured by Chemers), carbon black, a crosslinking aid, and an acid acceptor were kneaded to prepare a pre-compound.
  • the wonder kneader has a structure with a uniform clearance as compared with the Banbury mixer, and has a high cooling capacity, so that shear heat generation during kneading can be suppressed to a low level.
  • a wonder kneader Nihon Spindle Co., Ltd., Wonder Kneader D0.5-3, a kneader equipped with a wonder blade
  • ternary fluororubber VitonGBL600S, Chemers 50 parts by mass and 50.5 parts by mass of the composite (amount of fluororubber: 50 parts by mass) were kneaded.
  • the final reached temperature of the kneaded product was 150 ° C.
  • the filling amount was adjusted so that the filling rate was 85% of the volume.
  • ⁇ Preparation of crosslinkable rubber composition> Thereafter, the pre-compound was cooled to 10 ° C. by lowering to a set temperature of 50 ° C., and after the temperature was stabilized for 5 minutes, an organic peroxide crosslinking agent (Perhexa 25B-40, manufactured by NOF Corporation, 2,5-dimethyl-2, 2 parts by mass of 5-di (t-butylperoxy) hexane diluted with 40% silica was added to the pre-compound over 3 minutes.
  • an organic peroxide crosslinking agent Perhexa 25B-40, manufactured by NOF Corporation, 2,5-dimethyl-2, 2 parts by mass of 5-di (t-butylperoxy) hexane diluted with 40% silica was added to the pre-compound over 3 minutes.
  • step (B2) The mixture was further kneaded for 15 minutes to obtain a crosslinkable rubber composition (step (B2)).
  • the final temperature of the rubber was 83 ° C.
  • ⁇ Preparation of rubber cross-linked product> After two or more reciprocations of 3/4 turnover of the crosslinkable rubber composition with two rolls heated to 40 ° C., dispensing is performed to adjust the sheet thickness according to the shape of the molded product. A sheet of material was obtained.
  • primary crosslinking was performed at a temperature of 160 ° C. for 30 minutes by applying a pressure of 100 tons to a steel mold having a size of 40 cm ⁇ 40 cm.
  • secondary crosslinking was performed at a temperature of 232 ° C. for 2 hours to obtain a rubber crosslinked product (step (C)).
  • evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 At the time of preparation of the composite, a binary fluororubber (Dai-el G801, manufactured by Daikin Industries) was used in place of the ternary fluororubber, and the amount of single-walled carbon nanotubes was changed to 40.0 g.
  • a composite containing 4.0 parts by mass of single-walled carbon nanotubes per 100 parts by mass was prepared, the pre-compound was prepared as follows, and the organic peroxide was crosslinked during the preparation of the crosslinkable rubber composition.
  • As the agent 1.5 parts by mass of Perhexa 25B, manufactured by NOF Corporation, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane) was used.
  • the organic peroxide crosslinking agent was a liquid, it was carefully added to the bank portion in several portions with a dropper so that the liquid did not adhere to the roll. Further, during the preparation of the rubber cross-linked product, the primary cross-linking conditions were set at 160 ° C. for 20 minutes, and the secondary cross-linking conditions were set at a temperature of 180 ° C. for 4 hours. Other than that was carried out similarly to Example 1, and prepared the composite, the pre-compound, the crosslinkable rubber composition, and the rubber crosslinked material. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • ⁇ Precompound preparation> Using a Banbury mixer, the composite, binary fluororubber (Dai-el G801, manufactured by Daikin Industries), carbon black, and a crosslinking aid were kneaded to prepare a pre-compound. Specifically, after setting a Banbury mixer at a temperature of 50 ° C. and masticating 50 parts by mass of binary fluororubber (Dai-el G801, manufactured by Daikin Industries) at 50 rpm for 1 minute, 52 parts by mass of the composite ( The amount of fluororubber: 50 parts by mass) was added and further kneaded for 1 minute.
  • binary fluorororubber (Dai-el G801, manufactured by Daikin Industries)
  • medium-grain pyrolysis thermal black as carbon black (manufactured by Cancarb, Termax N990) and 1 part by mass of Austin black (manufactured by COAL FILLERS, bituminous coal with a carbon content of 87% by mass) and a crosslinking aid 4 parts by mass of TAIC (manufactured by Nippon Kasei Co., Ltd., triallyl isocyanurate) was added and kneaded for 1 minute.
  • 25 parts by mass of medium grain pyrolysis thermal black (Cancarb, Termax N990) as carbon black and 1 part by mass of Austin Black (COAL FILLERS, bituminous coal with a carbon content of 87% by mass) were added.
  • Example 5 At the time of preparing the composite, in place of 20.0 g of single-walled carbon nanotubes, multi-walled carbon nanotubes (NC7000, manufactured by Nanocyl, average diameter of 9.5 nm, average length of 1.5 ⁇ m, BET specific surface area of 280 m 2 / g, carbon purity of 90 (Mass%) 120.0 g was used to prepare a composite containing 12.0 parts by mass of multi-walled carbon nanotubes per 100 parts by mass of fluororubber, and when the pre-compound was prepared, the amount of the composite was 56.0. Implemented except that the amount of medium-sized pyrolytic thermal black added in two portions was changed to 45 parts by mass (22.5 parts by mass ⁇ 2). In the same manner as in Example 1, a composite, a pre-compound, a crosslinkable rubber composition and a rubber cross-linked product were prepared. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 When preparing composites and precompounds, use ternary fluororubber (VitonGFLT600S, Chemers) instead of ternary fluororubber (VitonGBL600S, Chemers), and use multiple layers when preparing composites.
  • the amount of carbon nanotubes was changed to 60.0 g to prepare a composite containing 6.0 parts by weight of single-walled carbon nanotubes per 100 parts by weight of fluororubber, and the amount of the composite was adjusted during preparation of the pre-compound.
  • Example 5 and Example 5 except that the amount of Austin Black added in two portions was changed to 4 parts by mass (2 parts by mass ⁇ 2) in addition to changing to 53.0 parts by mass (fluororubber amount: 50 parts by mass) Similarly, a composite, a pre-compound, a crosslinkable rubber composition and a rubber cross-linked product were prepared. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 1 A pre-compound, a crosslinkable rubber composition and a rubber cross-linked product were prepared in the same manner as in Example 1 except that the compound was not prepared and the pre-compound was prepared as follows. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1. ⁇ Precompound preparation> Using a Banbury mixer, a ternary fluororubber (VitonGBL600S, manufactured by Chemers), carbon black, a crosslinking aid, and an acid acceptor were kneaded to prepare a pre-compound.
  • a ternary fluororubber VitonGBL600S, manufactured by Chemers
  • a Banbury mixer was set to a temperature of 50 ° C., and 100 parts by mass of ternary fluororubber (VitonGBL600S, manufactured by Chemers) was masticated at 50 rpm for 1 minute. Thereafter, 22.5 parts by mass of medium-sized pyrolytic thermal black (Cancarb, Termax N990) as carbon black, 3 parts by mass of TAIC (Nihon Kasei Co., triallyl isocyanurate) as a crosslinking aid, 3 parts by mass of zinc oxide (manufactured by Hakusuitec) as an acid agent was added and kneaded for 1 minute.
  • ternary fluororubber VitonGBL600S, manufactured by Chemers
  • step (B1) 22.5 parts by mass of medium-grain pyrolysis thermal black (Cancarb, Termax N990) as carbon black was further added and kneaded for 1 minute, and the ingredients other than the organic peroxide crosslinking agent were mixed. A pre-compound was obtained (step (B1)).
  • the torque was not stable during kneading, the kneading was further continued for 1 minute.
  • the temperature of the kneaded product was adjusted to be in the range of 150 to 175 ° C. Further, the filling amount was adjusted so that the filling rate was 70% of the volume.
  • Example 4 A crosslinkable rubber composition and a rubber cross-linked product were prepared in the same manner as in Example 1 except that the composite and pre-compound were not prepared and the cross-linkable rubber composition was prepared as follows. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1. ⁇ Preparation of crosslinkable rubber composition> 100 parts by mass of ternary fluororubber (VitonGBL600S, manufactured by Chemers) was put into an open roll having a roll diameter of 6 inches (roll temperature: 15 ° C.) and wound around the roll.
  • ternary fluororubber VitonGBL600S, manufactured by Chemers
  • the roll gap d was set to 1.5 mm. Subsequently, the roll gap d was narrowed from 1.5 mm to 0.3 mm, and thinning was performed 5 times to obtain a pre-compound. At this time, the surface speed ratio of the two rolls was set to 1.1.
  • the roll temperature setting was changed from 15 ° C. to 60 ° C., and an organic peroxide crosslinking agent (Perhexa 25B-40, manufactured by NOF Corporation, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane 2 parts by weight of the above (40% silica diluted product) was added to the pre-compound.
  • an organic peroxide crosslinking agent Perhexa 25B-40, manufactured by NOF Corporation, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane 2 parts by weight of the above (40% silica diluted product
  • the rubber cross-linked products of Examples 1 to 6 are superior in sealing properties when used as a sealing member as compared with the rubber cross-linked products of Comparative Examples 1 to 4. Further, from Table 1, the rubber cross-linked products of Examples 1 to 4 using single-walled carbon nanotubes were compared with the rubber cross-linked products of Examples 5 to 6 using multi-walled carbon nanotubes when used as a sealing member. It turns out that it is excellent in safety. In addition, when the glass transition temperature of the rubber crosslinked material was measured in each Example and Comparative Example, it was confirmed that the increase from the glass transition temperature of the fluororubber was 5 ° C. or less.
  • a rubber cross-linked product capable of providing a sealing member excellent in long-term sealability under a high temperature and high pressure environment can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Sealing Material Composition (AREA)

Abstract

本発明は、シール部材の高温・高圧環境下での長期シール性を向上させ得るゴム架橋物を提供することを目的とする。本発明のゴム架橋物は、フッ素ゴムと、カーボンブラックと、カーボンナノチューブと、有機過酸化物架橋剤とを含む架橋性ゴム組成物を架橋してなり、50%モジュラスが5MPa以上であり、圧縮永久歪み(230℃、500時間)が80%以下であり、熱老化試験(230℃、72時間)前後の破断伸びの変化率が-10%以上10%以下である。

Description

ゴム架橋物およびその製造方法
 本発明は、ゴム架橋物およびゴム架橋物の製造方法に関し、特には、カーボンナノチューブを含有するフッ素ゴム架橋物およびその製造方法に関するものである。
 従来、パッキンやガスケットなどのシール部材の形成に用いられる材料として、含フッ素エラストマーと、カーボンナノチューブと、瀝青炭粉砕物と、パーオキサイド架橋剤(有機過酸化物架橋剤)とを含む架橋性ゴム組成物が知られている(例えば、特許文献1~3参照)。
 ここで、特許文献1~3では、オープンロールを使用して上記架橋性ゴム組成物を調製している。具体的には、特許文献1~3では、オープンロールに含フッ素エラストマーを投入して素練りし、含フッ素エラストマーの分子鎖を適度に切断してフリーラジカルを生成させることにより含フッ素エラストマーをカーボンナノチューブと結びつき易い状態にした後、素練りした含フッ素エラストマーにカーボンナノチューブおよび瀝青炭粉砕物を添加してオープンロールで混練りおよび薄通しを行い、最後にパーオキサイド架橋剤を添加してオープンロールで再び混練りすることにより、架橋性ゴム組成物を調製している。
 そして、特許文献1~3では、上述のようにして調製した架橋性ゴム組成物を成形および架橋して、ゴム架橋物よりなるシール部材を得ている。
特開2016-108476号公報 特開2015-168777号公報 特開2014-81073号公報
 しかし、上記従来の架橋性ゴム組成物を用いて形成したシール部材は、高温(例えば、200℃以上)、高圧(例えば、70MPa以上)環境下では、長期間に亘り十分なシール性を発揮することができなかった。
 そのため、高温・高圧環境下での長期シール性に優れるシール部材を提供可能なゴム架橋物が求められていた。
 この発明は、上記課題を有利に解決することを目的とするものであり、本発明のゴム架橋物は、フッ素ゴムと、カーボンブラックと、カーボンナノチューブと、有機過酸化物架橋剤とを含む架橋性ゴム組成物を架橋してなり、50%モジュラスが5MPa以上であり、圧縮永久歪み(230℃、500時間)が80%以下であり、熱老化試験(230℃、72時間)前後の破断伸びの変化率が-10%以上10%以下であることを特徴とする。上述した性状のゴム架橋物を使用すれば、高温・高圧環境下での長期シール性(以下、単に「長期シール性」と称することがある。)に優れるシール部材を得ることができる。
 ここで、本発明において、ゴム架橋物の「50%モジュラス」は、JIS K6251に準拠して測定することができる。
 また、本発明において、ゴム架橋物の「圧縮永久歪み(230℃、500時間)」とは、JIS K6262に準拠して測定した、圧縮率25%、温度230℃で500時間保持した後の圧縮永久歪みを指す。
 更に、本発明において、ゴム架橋物の「熱老化試験(230℃、72時間)前後の破断伸びの変化率」とは、JIS K6257に準拠して温度230℃で72時間の熱老化試験を実施した際の、熱老化試験前の破断伸び(EB:JIS K6251に準拠して測定)に対する熱老化試験後の破断伸び(EB:JIS K6251に準拠して測定)の変化率(={(EB-EB)/EB}×100%)を指す。
 ここで、本発明のゴム架橋物は、前記カーボンブラックが、炭素含有率が60質量%以上90質量%以下の石炭を含むことが好ましい。炭素含有率が60質量%以上90質量%以下の石炭を含むカーボンブラックを使用すれば、ゴム架橋物の耐熱性(耐熱老化性)を高めることができる。従って、シール部材の長期シール性を更に高めることができる。
 なお、本発明において、石炭の「炭素含有率」は、JIS M8813に準拠してリービッヒ法で測定することができる?
 また、本発明のゴム架橋物は、前記フッ素ゴム100質量部当たり、前記石炭を0.5質量部以上5質量部未満の割合で含有することが好ましい。炭素含有率が60質量%以上90質量%以下の石炭の含有割合が上記範囲内であれば、ゴム架橋物の強度と耐熱性とを高いレベルで両立させることができる。従って、シール部材の強度を確保しつつ長期シール性を更に高めることができる。
 更に、本発明のゴム架橋物は、前記石炭が瀝青炭であることが好ましい。瀝青炭を含むカーボンブラックを使用すれば、ゴム架橋物の耐熱性を高めることができる。従って、シール部材の長期シール性を更に高めることができる。
 また、本発明のゴム架橋物は、破断強度が23MPa以上であることが好ましい。破断強度が23MPa以上であれば、ゴム架橋物の強度を十分に確保し、シール部材の長期シール性を更に高めることができる。
 なお、本発明において、ゴム架橋物の「破断強度」は、JIS K6251に準拠して測定することができる。
 更に、本発明のゴム架橋物は、前記フッ素ゴムのガラス転移温度が-7℃以下であることが好ましい。ガラス転移温度が-7℃以下のフッ素ゴムを使用すれば、低温特性に優れるゴム架橋物が得られる。従って、低温環境下においても良好なシール特性を発揮するシール部材を得ることができる。
 なお、本発明において、フッ素ゴムの「ガラス転移温度」は、示差走査熱量分析(DSC)法により測定することができる。
 そして、本発明のゴム架橋物は、前記フッ素ゴム100質量部当たり、前記カーボンナノチューブを0.4質量部以上10質量部未満の割合で含有することが好ましい。カーボンナノチューブの含有割合が上記範囲内であれば、ゴム架橋物の強度と耐熱性とを高いレベルで両立させることができる。従って、シール部材の強度を確保しつつ長期シール性を更に高めることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のゴム架橋物の製造方法は、上述したゴム架橋物の製造方法であって、フッ素ゴムと、前記フッ素ゴム中に分散したカーボンナノチューブとを含む複合化物を得る工程(A)と、前記複合化物と、カーボンブラックと、有機過酸化物架橋剤とを混練りし、架橋性ゴム組成物を得る工程(B)と、前記架橋性ゴム組成物を成形および架橋してゴム架橋物を得る工程(C)とを含み、前記工程(A)では、フッ素ゴムと、カーボンナノチューブと、有機溶媒とを含む混合物を湿式分散処理した後、前記有機溶媒を除去することにより前記複合化物を得ることを特徴とする。このように、工程(A)において複合化物を調製する際に湿式分散処理を用いれば、上述した物性を有するゴム架橋物を良好に調製することができる。
 ここで、本発明のゴム架橋物の製造方法は、前記工程(A)では、前記有機溶媒の除去を薄膜乾燥により行うことが好ましい。薄膜乾燥により有機溶媒を除去すれば、少ない加熱量で有機溶媒を迅速に除去することができる。従って、有機溶媒の除去時にカーボンナノチューブが凝集するのを抑制して、強度と耐熱性とを高いレベルで両立させたゴム架橋物が得られる。
 また、本発明のゴム架橋物の製造方法は、前記工程(B)は、前記複合化物と前記カーボンブラックとを混練りしてプリコンパウンドを得る工程(B1)と、前記プリコンパウンドと前記有機過酸化物架橋剤とを混練りして前記架橋性ゴム組成物を得る工程(B2)とを含み、前記工程(B2)では、混練物の温度が90℃以上にならないように混練りを行うことが好ましい。プリコンパウンドと有機過酸化物架橋剤とを混練りする際に混練物の温度が90℃以上にならないようにすれば、ゴム架橋物の耐熱性を更に高めることができる。
 更に、本発明のゴム架橋物の製造方法は、前記工程(A)では、ジェットミルを用いて前記混合物を湿式分散処理することが好ましい。ジェットミルを使用すれば、強度と耐熱性とを高いレベルで両立させたゴム架橋物が得られる。
 また、本発明のゴム架橋物の製造方法は、前記工程(B)では、密閉式混練機を用いて混練りを行うことが好ましい。密閉式混練機を使用すれば、ゴム架橋物の耐熱性を更に高めることができる。
 そして、本発明のゴム架橋物の製造方法は、前記密閉式混練機が加圧型ニーダーであることが好ましい。加圧型ニーダーを使用すれば、ゴム架橋物の耐熱性を更に高めることができる。
 本発明によれば、高温・高圧環境下での長期シール性に優れるシール部材を提供可能なゴム架橋物が得られる。
 以下、本発明のゴム架橋物の調製に使用し得る架橋性ゴム組成物および当該架橋性ゴム組成物の製造方法、並びに、本発明のゴム架橋物および本発明のゴム架橋物の製造方法について、項分けして説明する。
(架橋性ゴム組成物)
 本発明のゴム架橋物の調製に使用し得る架橋性ゴム組成物は、フッ素ゴムと、カーボンナノチューブと、カーボンブラックと、有機過酸化物架橋剤とを含み、任意に、架橋助剤や受酸剤などの添加剤を更に含有する。
 なお、架橋性ゴム組成物の用途は、本発明のゴム架橋物の調製に限定されるものではない。
<フッ素ゴム>
 フッ素ゴムとしては、特に限定されることなく、例えば、フッ化ビニリデン系ゴム(FKM)、テトラフルオロエチレン-プロピレン系ゴム(FEPM)およびテトラフルオロエチレン-パープルオロビニルエーテル系ゴム(FFKM)が挙げられる。中でも、低温特性に優れるという観点から、フッ素ゴムとしては、フッ化ビニリデン系ゴム(FKM)が好ましい。また、FKMの中でも特に、ASTM D1418に規定のタイプがタイプ3のFKM、タイプ4のFKMまたはタイプ5のFKMが好ましく、FKMに用いられるモノマーの1つにパーフルオロ(アルキルビニルエーテル)系のモノマーが使用されているもの(例えば、タイプ3のFKMおよびタイプ5のFKM)が低温特性およびアミン耐性に優れるという観点から特に好ましい。
 なお、これらのフッ素ゴムは、1種単独で、または、2種以上を混合して用いることができる。
 そして、フッ素ゴムは、ガラス転移温度が、-7℃以下であることが好ましく、-15℃以下であることがより好ましい。フッ素ゴムのガラス転移温度が上記上限値以下であれば、架橋性ゴム組成物を架橋して得られるゴム架橋物の低温特性を向上させることができる。従って、ゴム架橋物をシール部材に使用した場合には、低温特性に優れるシール部材を得ることができる。なお、フッ素ゴムのガラス転移温度は、通常、-40℃以上である。
<カーボンナノチューブ>
 カーボンナノチューブ(以下、「CNT」と略記することがある。)としては、特に限定されることなく、単層カーボンナノチューブおよび/または多層カーボンナノチューブを用いることができるが、CNTは、単層から5層までのカーボンナノチューブであることが好ましく、単層カーボンナノチューブであることがより好ましい。カーボンナノチューブの層数が少ないほど、架橋性ゴム組成物を架橋して得られるゴム架橋物の強度を向上させることができる。従って、ゴム架橋物をシール部材に使用した場合には、安全性を高めることができる。
 なお、架橋性ゴム組成物は、CNT以外に、炭素の六員環ネットワークが非円筒形状(例えば、扁平筒状)に形成されてなる炭素ナノ構造体などの繊維状炭素ナノ構造体を更に含んでいてもよい。
 ここで、CNTの平均直径は、1nm以上であることが好ましく、60nm以下であることが好ましく、30nm以下であることがより好ましく、10nm以下であることが更に好ましく、6nm以下であることが特に好ましい。CNTの平均直径を上記範囲内とすれば、架橋性ゴム組成物を架橋して得られるゴム架橋物の強度を向上させることができる。従って、ゴム架橋物をシール部材に使用した場合には、安全性を高めることができる。
 ここで、「CNTの平均直径」は、透過型電子顕微鏡(TEM)画像上で、例えば、20本のCNTについて直径(外径)を測定し、個数平均値を算出することで求めることができる。
 また、CNTは、平均長さが、1μm以上であることが好ましく、50μm以上であることがより好ましく、80μm以上であることがさらに好ましく、600μm以下であることが好ましく、550μm以下であることがより好ましく、500μm以下であることがさらに好ましい。CNTの平均長さを上記範囲内とすれば、架橋性ゴム組成物を架橋して得られるゴム架橋物の強度を向上させることができる。従って、ゴム架橋物をシール部材に使用した場合には、安全性を高めることができる。
 なお、本発明において、「CNTの平均長さ」は、走査型電子顕微鏡(SEM)画像上で、例えば、20本のCNTについて長さを測定し、個数平均値を算出することで求めることができる。
 また、CNTは、BET比表面積が、200m/g以上であることが好ましく、400m/g以上であることがより好ましく、600m/g以上であることが更に好ましく、2000m/g以下であることが好ましく、1800m/g以下であることがより好ましく、1500m/g以下であることが更に好ましい。CNTのBET比表面積が上記下限値以上であれば、架橋性ゴム組成物を架橋して得られるゴム架橋物の強度を向上させることができる。従って、ゴム架橋物をシール部材に使用した場合には、安全性を高めることができる。また、CNTのBET比表面積が上記上限値以下であれば、架橋性ゴム組成物中でCNTを良好に分散させることができる。
 なお、「BET比表面積」とは、BET法を用いて測定した窒素吸着比表面積を指す。
 更に、CNTは、炭素純度が、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが更に好ましく、99質量%以上であることが特に好ましい。CNTの炭素純度を上記下限値以上とすれば、架橋性ゴム組成物を架橋して得られるゴム架橋物の強度および耐熱老化性を向上させることができる。従って、ゴム架橋物をシール部材に使用した場合には、安全性および長期シール性を高めることができる。
 なお、炭素純度は、蛍光X線を用いた元素分析により求めることができる。
 なお、CNTは、特に限定されることなく、アーク放電法、レーザーアブレーション法、化学的気相成長法(CVD法)などの既知のCNTの合成方法を用いて製造することができる。具体的には、CNTは、例えば、カーボンナノチューブ製造用の触媒層を表面に有する基材上に原料化合物およびキャリアガスを供給し、化学的気相成長法(CVD法)によりCNTを合成する際に、系内に微量の酸化剤(触媒賦活物質)を存在させることで、触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)に準じて、効率的に製造することができる。なお、以下では、スーパーグロース法により得られるカーボンナノチューブを「SGCNT」と称することがある。
 そして、スーパーグロース法により製造されたCNTは、SGCNTのみから構成されていてもよいし、SGCNTに加え、例えば、非円筒形状の炭素ナノ構造体等を含んでいてもよい。
 そして、架橋性ゴム組成物中に含まれているCNTの量は、特に限定されることなく、例えば、フッ素ゴム100質量部当たり、0.4質量部以上10質量部未満であることが好ましい。CNTの量が上記下限値以上であれば、架橋性ゴム組成物を架橋して得られるゴム架橋物の強度を向上させることができる。従って、ゴム架橋物をシール部材に使用した場合には、シール部材の強度を十分に確保することができる。また、CNTの量が上記上限値以下であれば、架橋性ゴム組成物を架橋して得られるゴム架橋物の耐熱性を向上させることができる。従って、ゴム架橋物をシール部材に使用した場合には、シール部材の長期シール性を十分に高めることができる。
 中でも、CNTが単層カーボンナノチューブ(SWCNT)である場合には、架橋性ゴム組成物中に含まれているCNTの量は、フッ素ゴム100質量部当たり、0.5質量部以上5質量部以下であることが好ましく、0.5質量部以上3質量部以下であることがより好ましく、0.7質量部以上2質量部以下であることが更に好ましく、0.9質量部以上2質量部以下であることが特に好ましい。一方、CNTが多層カーボンナノチューブ(MWCNT)である場合には、架橋性ゴム組成物中に含まれているCNTの量は、フッ素ゴム100質量部当たり、1質量部以上10質量部未満であることが好ましく、2質量部以上9質量部以下であることが好ましい。
 ここで、CNTの量を所定量以下にすることでゴム架橋物の耐熱性を向上させると共にシール部材の長期シール性を向上させることができる理由は、明らかではないが、CNTを含有する架橋性ゴム組成物ではCNTによって架橋反応が阻害されるために熱劣化し易くなると共に、CNTがゴム架橋物中でネットワーク(三次元網目構造)を形成するために弾性回復が阻害されて圧縮永久歪みが悪化するからであると推察される。
 なお、CNTを配合しない場合には、ゴム架橋物の強度を十分に向上させることができない。
<カーボンブラック>
 カーボンブラックとしては、特に限定されることなく、ファーネスブラック、サーマルブラック、ケッチェンブラック、アセチレンブラックなどが挙げられる。また、カーボンブラックとしては、炭素含有率が60質量%以上90質量%以下の石炭も挙げられる。
 なお、これらのカーボンブラックは、1種単独で、または、2種以上を混合して用いることができる。また、カーボンブラックの粒子径およびストラクチャーは特に限定されない。
 中でも、架橋性ゴム組成物を架橋して得られるゴム架橋物の耐熱性を向上させると共にゴム架橋物を用いたシール部材の長期シール性を向上させる観点からは、カーボンブラックとしては、炭素含有率が60質量%以上90質量%以下の石炭を用いることが好ましく、炭素含有率が60質量%以上90質量%以下の石炭と、ファーネスブラック、サーマルブラック、ケッチェンブラックおよびアセチレンブラックからなる群より選択される少なくとも1種とを組み合わせて用いることがより好ましく、炭素含有率が60質量%以上90質量%以下の石炭とサーマルブラックとを組み合わせて用いることが更に好ましい。
 なお、炭素含有率が60質量%以上90質量%以下の石炭を使用することによりゴム架橋物の耐熱性を向上させると共にゴム架橋物を用いたシール部材の長期シール性を向上させることができる理由は、明らかではないが、加熱による架橋部位の切断などの分解反応によってゴム架橋物中に生じたラジカルが、停止反応に至るまで分解反応に寄与し続けるのではなく、上記石炭中に含まれている不純物と反応して新たな架橋構造を形成するため、熱劣化による物性の低下(例えば、ゴム架橋物の軟化および弾性低下)を抑制することができるからであると推察される。
 また、サーマルブラックを併用することでゴム架橋物の耐熱性を向上させると共にゴム架橋物を用いたシール部材の長期シール性を向上させることができる理由は、明らかではないが、サーマルブラックは炭素純度が高いためにゴム架橋物の耐熱老化性に影響を与え難く、また、架橋阻害を起こしにくいために耐熱性を向上させると共に凝集力が他のカーボンブラックに比べて小さいためにゴム架橋物の弾性回復を阻害し難いためであると推察される。
 なお、上記炭素含有率が60質量%以上90質量%以下の石炭としては、特に限定されることなく、例えば、瀝青炭が挙げられる。また、瀝青炭としては、特に限定されることなく、例えば、市販のオースチンブラック等を用いることができる。
 そして、架橋性ゴム組成物中に含まれているカーボンブラックの合計量は、ゴム架橋物の用途に応じて適宜調整することができる。中でも、架橋性ゴム組成物中に含まれているカーボンブラックの合計量は、特に限定されることなく、例えば、フッ素ゴム100質量部当たり、5質量部以上70質量部以下であることが好ましく、45質量部以上60質量部以下であることがより好ましい。カーボンブラックの合計量が上記下限値以上であれば、十分な補強効果が得られると共に、CNTがゴム架橋物中でネットワーク(三次元網目構造)を形成するのを立体的に阻害し、圧縮永久歪みが悪化するのを抑制することができる。従って、シール部材の長期シール性を十分に高めることができる。また、カーボンブラックの合計量が上記上限値以下であれば、カーボンブラックの分散不良が起こるのを抑制することができると共に、ゴム架橋物が過度に硬くなるのを防止することができる。
 また、架橋性ゴム組成物中に含まれている、上記炭素含有率が60質量%以上90質量%以下の石炭の量は、特に限定されることなく、例えば、フッ素ゴム100質量部当たり、0.5質量部以上5質量部未満であることが好ましく、0.5質量部以上3質量部以下であることがより好ましく、0.5質量部以上2質量部以下であることが更に好ましい。炭素含有率が60質量%以上90質量%以下の石炭の量が上記下限値以上であれば、熱劣化による物性の低下を十分に抑制し、架橋性ゴム組成物を架橋して得られるゴム架橋物の耐熱性を向上させることができる。従って、ゴム架橋物をシール部材に使用した場合には、シール部材の長期シール性を十分に高めることができる。また、炭素含有率が60質量%以上90質量%以下の石炭は他のカーボンブラックに比べて補強効果が低いところ、炭素含有率が60質量%以上90質量%以下の石炭の量が上記上限値以下であれば、ゴム架橋物の強度、特には熱老化試験後の強度を向上させることができる。従って、ゴム架橋物をシール部材に使用した場合には、シール部材の強度を十分に確保することができる。
<有機過酸化物架橋剤>
 有機過酸化物架橋剤としては、フッ素ゴムを架橋可能であれば特に限定されることなく、例えば、2,5-ジメチルヘキサン-2,5-ジヒドロペルオキシド、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキサイド、ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、1,1-ジ(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、1,3-ジ(t-ブチルパーオキシイソプロピル)ベンゼン、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソプロピルカーボネート、n-ブチル-4,4-ジ(t-ブチルパーオキシ)バレレートなどの有機過酸化物が用いられる。また、これらの有機過酸化物架橋剤としては、市販品(例えば、日本油脂製、パーヘキサ25Bおよびパーヘキサ25B-40など)をそのまま用いることができる。取扱いの容易さの観点では、フィラーで希釈されたパーヘキサ25B-40のような市販品が扱いやすいが、耐熱老化性など長期物性の観点で、酸化ケイ素などのフィラーで希釈されていない純度の高い液体状の過酸化物架橋剤(市販品ではパーヘキサ25Bなど)を用いることが好ましい。そして、有機過酸化物架橋剤の配合量は、フッ素ゴムの種類等に応じて適宜調整することができる。
 なお、これらの有機過酸化物架橋剤は、1種単独で、または、2種以上を混合して用いることができる。
<添加剤>
 添加剤としては、特に限定されることなく、架橋助剤や受酸剤などの、ゴム組成物の分野において一般的に用いられている添加剤を用いることができる。
[架橋助剤]
 ここで、架橋助剤としては、特に限定されることなく、例えば、トリアリルイソシアヌレート(TAIC)、トリアリルシアヌレート、ジアリルフタレート、トリビニルイソシアヌレート、トリ(5-ノルボルネン-2-メチレン)シアヌレート、1,3-ブチレングリコールジメタクリレート、1,4-ブチレングリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、トリアリルホルマール、トリアリルトリメリテート、ジプロパギルテレフタレート、テトラアリルテレフタレートアミド、トリアリルホスフェート、フッ素化トリアリルイソシアヌレート(1,3,5-トリス(2,3,3-トリフルオロ-2-プロペニル)-1,3,5-トリアジン-2,4,6-トリオン)、亜リン酸トリアリル、N,N-ジアリルアクリルアミド、ヘキサアリルホスホルアミド、N,N,N’,N’-テトラアリルテトラフタラミド、N,N,N’,N’-テトラアリルマロンアミド、2,4,6-トリビニルメチルトリシロキサン、トリアリルホスファイトなどの既知の架橋助剤を用いることができる。中でも、TAICが好ましい。
 なお、これらの架橋助剤は、1種単独で、または、2種以上を混合して用いることができる。
[受酸剤]
 また、受酸剤としては、特に限定されることなく、例えば、酸化マグネシウム、酸化鉛、酸化亜鉛、炭酸鉛、炭酸亜鉛、ハイドロタルサイトなどの既知の受酸剤を用いることができる。中でも、酸化亜鉛が好ましい。
 なお、これらの受酸剤は、1種単独で、または、2種以上を混合して用いることができる。
 なお、上述した添加剤の配合量は、フッ素ゴムや有機過酸化物架橋剤の種類等に応じて適宜調整することができる。
(架橋性ゴム組成物の製造方法)
 上述した架橋性ゴム組成物は、フッ素ゴムと、カーボンナノチューブと、カーボンブラックと、有機過酸化物架橋剤と、任意の添加剤とを混合して調製することができる。なお、フッ素ゴム、カーボンナノチューブ、カーボンブラック、有機過酸化物架橋剤および添加剤としては、上述したものを用いることができるので、以下では説明を省略する。
 ここで、上述した配合成分の混合は、特に限定されることなく、ニーダーやロールを用いて全ての配合成分を一括で混練りして混合してもよいし、多段階に分けて混合してもよい。
 中でも、配合成分を均一に混合する観点からは、上述した配合成分の混合は、多段階に分けて行うことが好ましい。そして、CNTが良好に分散した架橋性ゴム組成物を得る観点からは、フッ素ゴム中にCNTを分散させてなる複合化物を調製した後に、複合化物と、カーボンブラックと、有機過酸化物架橋剤と、任意の添加剤等とを混練りして架橋性ゴム組成物を得ることが好ましい。また、架橋性ゴム組成物の調製中に架橋が進行するのを抑制する観点からは、有機過酸化物架橋剤以外の配合成分(フッ素ゴム、カーボンナノチューブ、カーボンブラックおよび任意の添加剤)を混合してなるプリコンパウンドを調製した後に、プリコンパウンドと有機過酸化物架橋剤とを混練りして架橋性ゴム組成物を得ることが好ましく、CNTを良好に分散させつつ架橋の進行を抑制する観点からは、フッ素ゴム中にCNTを分散させてなる複合化物を調製した後に、複合化物と、カーボンブラックと、任意の添加剤等とを混練りしてプリコンパウンドを調製し、最後にプリコンパウンドと有機過酸化物架橋剤とを混練りして架橋性ゴム組成物を得ることがより好ましい。
<複合化物の調製>
 ここで、フッ素ゴム中にCNTを分散させて複合化物を得る方法に特に制限は無く、ニーダー、ロール、ミキサー等を用いて溶媒の不存在下でフッ素ゴムとCNTとを乾式混合することにより複合化物を調製してもよいし、フッ素ゴムと、カーボンナノチューブと、有機溶媒とを含む混合物を湿式分散処理した後、有機溶媒を除去することにより複合化物を調製してもよい。中でも、CNTのバンドル構造を良好に解繊してCNTの分散性を高める観点、および、CNTが有するラジカル捕捉能が複合化物の調製時に消費されるのを抑制する観点からは、複合化物の調製は、フッ素ゴムと、カーボンナノチューブと、有機溶媒とを含む混合物を湿式分散処理した後、有機溶媒を除去することにより行うことが好ましい。また、カーボンブラックとして炭素含有率が60質量%以上90質量%以下の石炭を含むカーボンブラックを使用しない場合には特に、複合化物の調製は、フッ素ゴムと、カーボンナノチューブと、有機溶媒とを含む混合物を湿式分散処理した後、有機溶媒を除去することにより行うことが好ましい。炭素含有率が60質量%以上90質量%以下の石炭を含有しない架橋性ゴム組成物では、前述した、ゴム架橋物中に生じたラジカルが石炭中に含まれている不純物と反応することによる熱劣化の抑制効果が得られないところ、複合化物の調製時にCNTが有するラジカル捕捉能が消費されるのを抑制すれば、CNTが有しているラジカル捕捉能により、上述した熱劣化の抑制効果と同様の効果を得ることができるからである。
 なお、複合化物の調製には、架橋性ゴム組成物の調製に使用するフッ素ゴムの全量を使用してもよいが、架橋性ゴム組成物の調製に使用するフッ素ゴムの一部のみ(例えば、全フッ素ゴムの33質量%以上100質量%未満)を使用してもよい。そして、フッ素ゴムの一部のみを使用して複合化物を調製した場合には、フッ素ゴムの残部は、任意のタイミングで複合化物と混練りすることができ、残りの配合成分と複合化物とを混練りする前に複合化物と混練することが好ましい。
[有機溶媒]
 ここで、有機溶媒としては、フッ素ゴムを溶解可能な任意の有機溶媒を用いることができる。具体的には、有機溶媒としては、特に限定されることなく、例えば、メチルエチルケトン(MEK)およびメチルイソブチルケトン(MIBK)などのケトン系溶媒、エーテル系溶媒、並びに、それらの混合物を用いることができる。中でも、コストおよびハンドリング性の観点からは、有機溶媒としては、メチルエチルケトンを用いることが好ましい。
 なお、本発明において、「フッ素ゴムを溶解可能」とは、温度40℃における溶解度が10g-フッ素ゴム/100g-有機溶媒以上であることを指す。
[混合物]
 混合物は、フッ素ゴムの有機溶媒溶液中にCNTを添加することにより調製してもよいし、有機溶媒中にCNTを分散させてなるCNT分散液とフッ素ゴムの有機溶媒溶液とを混合することにより調製してもよいし、有機溶媒中にCNTを分散させてなるCNT分散液中にフッ素ゴムを添加することにより調製してもよい。中でも、混合物は、フッ素ゴムの有機溶媒溶液中にCNTを添加することにより調製することが好ましい。
 なお、混合物には、CNTの分散性を高める目的で界面活性剤などの分散剤を配合してもよい。しかし、湿式分散処理を用いた場合にはフッ素ゴムがCNTの凝集を抑制し得るため、架橋性ゴム組成物を架橋してなるゴム架橋物の物性の低下を抑制する観点からは、混合物には分散剤を配合しないことが好ましい。
 そして、特に限定されるものではないが、CNTの分散性および複合化物の生産性の観点からは、混合物中のフッ素ゴムの濃度は、3質量%以上であることが好ましく、5質量%以上であることがより好ましく、20質量%以下であることが好ましく、15質量%以下であることがより好ましい。
 また、特に限定されるものではないが、CNTの分散性および複合化物の生産性の観点からは、混合物中のCNTの量は、有機溶媒100質量部当たり、0.1質量部以上10質量部以下であることが好ましい。なお、CNTがSWCNTの場合には、混合物中のCNTの量は、有機溶媒100質量部当たり、0.1質量部以上0.5質量部以下であることがより好ましい。また、CNTがMWCNTの場合には、混合物中のCNTの量は、有機溶媒100質量部当たり、1質量部以上10質量部以下であることがより好ましい。
[湿式分散処理]
 湿式分散処理は、特に限定されることなく、例えば、超音波分散機、ホモジナイザー、薄膜旋回型高速ミキサー、ビーズミル、湿式ジェットミル、二軸混練機などを用いて行うことができる。また、湿式分散処理は、超臨界状態の二酸化炭素の存在下で混合物を二軸混練する方法を用いて行うこともできる。中でも、フッ素ゴムに過度なせん断力を与えない観点からは、薄膜旋回型高速ミキサー、ビーズミル、湿式ジェットミルを用いることが好ましく、CNTの損傷を抑制しつつ優れた物性のゴム架橋物を提供可能な架橋性ゴム組成物を得る観点からは、湿式ジェットミルを用いることがより好ましい。
[有機溶媒の除去]
 有機溶媒の除去は、特に限定されることなく、例えば、熱風乾燥、真空乾燥、噴霧乾燥、薄膜乾燥などの任意の乾燥方法を用いて行うことができる。中でも、少ない加熱量で有機溶媒を迅速に除去する観点からは、薄膜乾燥を用いて有機溶媒を除去することが好ましい。有機溶媒を迅速に除去すれば、分散させたカーボンナノチューブが再び凝集するのを抑制することができる。従って、強度の優れたゴム架橋物を提供可能な架橋性ゴム組成物を得ることができる。また、少ない加熱量で有機溶媒を除去すれば、フッ素ゴムが熱劣化するのを抑制し、耐熱性に優れるゴム架橋物を提供可能な架橋性ゴム組成物を得ることができる。
[複合化物]
 なお、上述のようにして調製した複合化物中に含まれているCNTの量は、フッ素ゴム100質量部当たりのCNTの量(M1)が、架橋性ゴム組成物中に含まれているフッ素ゴム100質量部当たりのCNTの量(M2)の1倍以上3倍以下になる量であることが好ましい。即ち、複合化物を用いて調製する架橋性ゴム組成物中に含まれるCNTの量がフッ素ゴム100質量部当たり1質量部であれば、複合化物中に含まれているCNTの量は複合化物中のフッ素ゴム100質量部当たり1質量部以上3質量部以下であることが好ましい。M1がM2の3倍超えの場合、複合化物と混練りするフッ素ゴムの量が増加し、架橋性ゴム組成物中においてCNTを良好に分散させることが困難になるからである。
 M1がM2の3倍以下であることが良いことの指標として、例えばムーニー粘度の応力緩和測定の値で評価することができる。即ち、ムーニー粘度(100℃でローター回転速度が2rpmで、予備加熱1分、試験時間10分後のムーニー粘度)測定後にローターを停止させた時の、トルクの減衰状態を見ることで判断でき、ローター回転停止後の5秒後のムーニー粘度が10ムーニー以下であることが好ましい。
<架橋性ゴム組成物の調製>
 複合化物と、カーボンブラックと、有機過酸化物架橋剤と、任意の添加剤およびフッ素ゴムの残部との混練りは、特に限定されることなく、オープンロールなどの開放式混練機を用いて行ってもよいし、バンバリーミキサーおよび加圧型ニーダーなどの密閉式混練機を用いて行ってもよいし、密閉式混練機と開放式混練機とを組み合わせて用いて行ってもよい。中でも、複合化物と、カーボンブラックと、有機過酸化物架橋剤と、任意の添加剤およびフッ素ゴムの残部との混練りは、密閉式混練機を用いて行うことが好ましく、加圧型ニーダーを用いて行うことがより好ましい。特に、カーボンブラックとして炭素含有率が60質量%以上90質量%以下の石炭を含むカーボンブラックを使用しない場合には、密閉式混練機を用いることが特に好ましく、MS式加圧型ニーダー(例えば、日本スピンドル製造株式会社製、ワンダーニーダー(登録商標)等)などの加圧型ニーダーを用いることがより一層好ましい。炭素含有率が60質量%以上90質量%以下の石炭を含有しない架橋性ゴム組成物では、前述した、ゴム架橋物中に生じたラジカルが石炭中に含まれている不純物と反応することによる熱劣化の抑制効果が得られないところ、密閉式混練機、特にはワンダーニーダーなどの加圧型ニーダーを使用すれば、混練り時のせん断発熱を低減し、CNTが有するラジカル捕捉能が消費されるのを抑制することができるからである。
 また、複合化物と、カーボンブラックと、任意の添加剤およびフッ素ゴムの残部との混練りしてプリコンパウンドを得た後、プリコンパウンドと有機過酸化物架橋剤とを混練りして架橋性ゴム組成物を得る場合には、少なくともプリコンパウンドの調製に密閉式混練機を用いることが好ましい。CNTが有するラジカル捕捉能が消費されるのを抑制することができるからである。更に、カーボンブラックとして炭素含有率が60質量%以上90質量%以下の石炭を含むカーボンブラックを使用しない場合には、上述したのと同様の理由により、プリコンパウンドの調製およびプリコンパウンドと有機過酸化物架橋剤との混練りの双方に密閉式混練機、特にはワンダーニーダーなどの加圧型ニーダーを使用することが好ましい。
 なお、プリコンパウンドと有機過酸化物架橋剤とを混練りして架橋性ゴム組成物を得る際には、混練物の温度が90℃以上にならないように混練りを行うことが好ましい。CNTが有するラジカル捕捉能が消費されるのを抑制し、架橋性ゴム組成物を架橋してなるゴム架橋物の耐熱性を向上させることができるからである。
(ゴム架橋物)
 本発明のゴム架橋物は、フッ素ゴムと、カーボンブラックと、カーボンナノチューブと、有機過酸化物架橋剤とを含む架橋性ゴム組成物を架橋してなり、且つ、50%モジュラスが5MPa以上であり、圧縮永久歪み(230℃、500時間)が80%以下であり、熱老化試験(230℃、72時間)前後の破断伸びの変化率が-10%以上10%以下である。なお、本発明のゴム架橋物は、破断強度が23MPa以上であることが好ましい。
 そして、本発明のゴム架橋物は、所定の架橋性ゴム組成物を架橋してなり、且つ、所定の物性を有しているので、シール部材として使用した際には、長期に亘って優れたシール性を発揮することができる。
<架橋性ゴム組成物>
 ここで、架橋性ゴム組成物としては、上述した架橋性ゴム組成物を用いることができる。
<架橋>
 また、架橋性ゴム組成物の架橋は、特に限定されることなく、例えば金型内での架橋性ゴム組成物の加熱および加圧などの既知の架橋方法を用いて行うことができる。なお、架橋条件は、架橋性ゴム組成物に含まれているフッ素ゴムの種類やゴム架橋物の用途に応じて適宜に設定することができる。
<50%モジュラス>
 そして、本発明のゴム架橋物は、50%モジュラスが5MPa以上である必要があり、7MPa以上であることが好ましい。50%モジュラスが5MPa以上であれば、シール部材として使用した際に十分に高い強度およびシール性を発揮することができる。特に、O-リングとして使用した際には、はみ出し破壊の発生を抑制することができ、高圧シール性に優れる。
<圧縮永久歪み>
 また、本発明のゴム架橋物は、圧縮永久歪み(230℃、500時間)が80%以下である必要があり、75%以下であることが好ましい。本発明者らの研究によれば、CNTを配合したフッ素ゴム架橋物における、高温(230℃)下、長時間(500時間)圧縮後の圧縮永久歪みは、CNTが架橋反応を阻害することによる架橋不良と、熱劣化による架橋部位の消失し易さと、CNTが三次元網目構造を形成することによる弾性回復の阻害との全ての影響を包括した指標であり、圧縮永久歪み(230℃、500時間)が80%以下であれば、上述した様々な因子の影響によるシール性の経時的な低下を十分に防止することができるからである。なお、高温(230℃)下、長時間(500時間)圧縮後の圧縮永久歪みとしたのは、低温下や、例えば70時間程度の短時間の圧縮では、ゴム架橋物の初期のクリープ変形の影響を評価できるだけであり、架橋反応の阻害の影響や熱劣化による架橋部位の消失し易さの影響を十分に把握できないからである。特に、耐熱性の高いフッ素ゴムでは、70時間程度の短時間での圧縮永久歪みや、それまでの圧縮永久歪みの経時変化では、長期シール性を予測することが出来ない。更に、フッ素ゴムは長期的に見ると分解型の劣化挙動を示すが、70時間までの比較的初期の段階では、配合の種類によっては分解型と硬化型の競争反応を示す場合もあるため、少なくとも300時間以上の長時間後の圧縮永久歪みを評価する必要がある。また、架橋不良の状態で圧縮永久歪み試験を実施すると、200時間程度は圧縮永久歪みが比較的良好でも架橋部位のゴム架橋物からの消失に伴い300時間を超える頃から急激に悪化する場合もあるからである。
<破断伸びの変化率>
 更に、本発明のゴム架橋物は、熱老化試験(230℃、72時間)前後の破断伸びの変化率が-10%以上10%以下である必要がある。熱老化試験(230℃、72時間)前後の破断伸びの変化率が-10%以上10%以下であれば、はみ出し破壊などの発生を十分に抑制し、長期に亘って優れたシール性を発揮することができる。
<破断強度>
 そして、本発明のゴム架橋物は、破断強度が23MPa以上であることが好ましく、25MPa以上であることがより好ましい。破断強度が23MPa以上であれば、ゴム架橋物の強度を十分に確保し、はみ出し破壊などの発生を十分に抑制し、シール部材の長期シール性を更に高めることができる。
 なお、上述した本発明のゴム架橋物は、特に限定されることなく、以下に説明する本発明のゴム架橋物の製造方法を用いて製造することができる。但し、本発明のゴム架橋物は、本発明のゴム架橋物の製造方法以外の方法で製造してもよい。
(ゴム架橋物の製造方法)
 本発明のゴム架橋物の製造方法は、上述したゴム架橋物の製造方法であって、フッ素ゴムと、フッ素ゴム中に分散したカーボンナノチューブとを含む複合化物を得る工程(A)と、複合化物と、カーボンブラックと、有機過酸化物架橋剤とを混練りし、架橋性ゴム組成物を得る工程(B)と、架橋性ゴム組成物を成形および架橋してゴム架橋物を得る工程(C)とを含む。そして、本発明のゴム架橋物の製造方法は、工程(A)において、フッ素ゴムと、カーボンナノチューブと、有機溶媒とを含む混合物を湿式分散処理した後、有機溶媒を除去することにより複合化物を得ることを特徴とする。
 なお、本発明のゴム架橋物の製造方法は、工程(A)において湿式分散処理を用いることによりゴム架橋物の製造中にCNTのラジカル捕捉能が低下するのを抑制したものであり、特に限定されるものではないが、カーボンブラックとして炭素含有率が60質量%以上90質量%以下の石炭を含むカーボンブラックを使用しない場合に特に有利に用いることができる。
 そして、本発明のゴム架橋物の製造方法によれば、上述した物性を有するゴム架橋物を良好に製造することができる。
<工程(A)>
 ここで、工程(A)は、上述した架橋性ゴム組成物の製造方法の<複合化物の調製>の項に記載した内容に準拠して実施することができる。
<工程(B)>
 また、工程(B)では、複合化物と、カーボンブラックと、有機過酸化物架橋剤とを一括して混練りしてもよいが、工程(B)は、複合化物とカーボンブラックとを混練りしてプリコンパウンドを得る工程(B1)と、プリコンパウンドと有機過酸化物架橋剤とを混練りして前記架橋性ゴム組成物を得る工程(B2)とを含むことが好ましい。そして、工程(B2)では、混練物の温度が90℃以上にならないように混練りを行うことが好ましい。
 そして、工程(B)、工程(B1)および工程(B2)は、上述した架橋性ゴム組成物の製造方法の<架橋性ゴム組成物の調製>の項に記載した内容に準拠して実施することができる。
<工程(C)>
 工程(C)において架橋性ゴム組成物を成形および架橋する方法は、特に限定されない。工程(C)では、例えば、ロール等の既知の成形装置を用いて架橋性ゴム組成物を成形した後に成形体を加熱して架橋を行ってもよいし、押出成形機、射出成形機、カレンダー成形機または金型に架橋性ゴム組成物を投入して加熱および加圧することにより成形と架橋を同時に行ってもよい。
 架橋制御による耐熱性付与の観点では、金型に架橋性ゴム組成物を投入して加熱および加圧する圧縮成形が好ましい。中でも、生じるガスを積極的に排出できる真空圧縮成形が特に好ましい。また、2次架橋を1次架橋よりも高温で実施することが好ましい。1次架橋条件は、架橋試験機から得られる架橋曲線から温度と時間を設定するのが好ましいが、多数のサンプルを作製した際のサンプル間の形状安定性の観点から、1次架橋時間は15分以上であることが好ましい。
 なお、架橋性ゴム組成物を用いて得たシートを打抜いて所定の厚みの成形体を得る際には、複数枚数を重ねて任意の厚みにすることが出来るが、長期シール性の観点で、2枚以下の枚数を重ねて所定の厚みの成形品を得ることが好ましい。
 以下、本発明について実施例を用いて更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 なお、実施例および比較例において、フッ素ゴムのガラス転移温度、ゴム架橋物の50%モジュラス、圧縮永久歪み、破断伸びの変化率、破断強度および破断伸び、並びに、ゴム架橋物を用いたシール部材の長期シール性および安全性は、それぞれ以下の方法を使用して測定および評価した。
<ガラス転移温度>
 ガラス転移温度は、日立ハイテクサイエンス社製のDSC7000を用い、DSC法にて測定した。
 具体的には、フッ素ゴム20mgをアルミパン上に載せ、昇温速度10℃/分で50℃まで加温した後、液体窒素で-70℃まで急冷し、再び10℃/分で昇温させてDSC曲線からガラス転移温度を読み取った。
<50%モジュラス>
 50%モジュラスは、JIS K6251に準拠した方法で測定した。
 具体的には、ゴム架橋物のシート(厚さ:2.0±0.2mm)から、ダンベル状3号形用スーパーダンベルカッター(ダンベル社製)を用いて試験片を打抜くことで、ダンベル状3号形の試験片を得た。
 そして、ビデオ式非接触式伸び幅計(TRVierX500S、島津製作所社製)を備える引張試験機(AGS-X、島津製作所社製)を用い、23℃、50%湿度の恒温恒湿室内で、500mm/分の引張速度で引張試験を行った。なお、初期の標線間距離は20mmとした。
 そして、試験片を50%伸ばした時の引張力を試験片の初期断面積で除して50%モジュラスを算出した。
<圧縮永久歪み>
 圧縮永久歪みは、JIS K6262に準拠した方法で測定した。なお、試験片としては、架橋性ゴム組成物を用いて調製した円柱状の小型試験片(直径13.0±0.5mm、高さ6.3±0.3mm)を用いた。また、小型試験片を調製する際の架橋条件はゴム架橋物と同様の条件とした。
 具体的には、230℃に加温した空気循環式オーブン(ギアー式オーブン、東洋精機社製)と、ダンベル社製の圧縮永久歪試験用金型とを用いて試験を実施した。小型試験片を25%の圧縮率となるように圧縮永久歪試験用金型に設置後、厚さ4.725mmのスペーサーを設置し、小型試験片の厚みが4.725mmになるように圧縮した状態で空気循環式オーブン内にて加熱した。
 加熱開始後、24時間、72時間、168時間、336時間、504時間毎に空気循環式オーブンから小型試験片を取り出し、歪解放後に小型試験片を23℃、50%湿度の恒温恒湿室に30分間放置し、30分間放置後の厚みから各時間における圧縮永久歪み(%)を算出した。
 そして、横軸に時間を、縦軸に圧縮永久歪みの値をプロットし、得られた曲線から加熱時間が500時間における圧縮永久歪み(%)の値を読み取った。
<破断伸びの変化率>
 破断伸びの変化率は、JIS K6257に準拠した方法で熱老化試験を実施した後、JIS K6251に準拠した方法で破断伸びを測定して算出した。
 具体的には、ゴム架橋物のシート(厚さ:2.0±0.2mm)から、ダンベル状3号形用スーパーダンベルカッター(ダンベル社製)を用いて試験片を打抜くことで、ダンベル状3号形の試験片を得た。
 次に、230℃に加温した強制循環形熱老化試験機(ギアー式オーブン、東洋精機社製)の垂直軸を中心に回転する試験片取付枠に、ダンベル状3号形の試験片を取り付け、試験片を毎分7回転させつつ、水平方向に0.5m/秒の平均風速で空気を強制循環させて、72時間の熱老化試験を実施した。
 そして、熱老化試験後のダンベル状3号形の試験片について、23℃、50%湿度の恒温恒湿条件にて、ビデオ式非接触式伸び幅計(TRVierX500S、島津製作所社製)を備える引張試験機(AGS-X、島津製作所社製)を用い、500mm/分の引張速度で引張試験を行った。なお、初期の標線間距離は20mmとした。
 そして、切断時伸びを熱老化試験後の破断伸びとした。
 また、予め、熱老化試験前の試験片について熱老化試験後の試験片と同様にして破断伸びを測定しておき、破断伸びの変化率を求めた。
<破断強度および破断伸び>
 破断強度および破断伸びは、JIS K6251に準拠した方法で測定した。
 具体的には、ゴム架橋物のシート(厚さ:2.0±0.2mm)から、ダンベル状3号形用スーパーダンベルカッター(ダンベル社製)を用いて試験片を打抜くことで、ダンベル状3号形の試験片を得た。
 そして、ビデオ式非接触式伸び幅計(TRVierX500S、島津製作所社製)を備える引張試験機(AGS-X、島津製作所社製)を用い、23℃、50%湿度の恒温恒湿室内で、500mm/分の引張速度で引張試験を行った。なお、初期の標線間距離は20mmとした。
 そして、切断時引張強さを破断強度とし、切断時伸びを破断伸びとした。
<長期シール性>
 AS568-223型の金型を使用し、表1に示す架橋条件で線径3.53±0.1mm、内径40.87±0.5mmのO-リングを作製した。
 次に、理研機器社製の200MPa高圧仕様の圧力容器に、O-リングを圧縮率が20~25%の範囲になるように装着した。バンドヒーターを使用し、230℃で500時間O-リングを加温した後、可変吐出型ポンプ(VFMP-15H)とブースターポンプを用いて圧力容器内の圧力を10MPaずつ昇圧させ、10分後の圧力低下の有無でシール性の評価を行った。具体的には、5分間同じ圧力を保持させ、5分後に昇圧回路を閉じ、5分後~10分後の圧力低下が10%未満であれば合格(圧力低下が無い)、10%以上であれば不合格(圧力低下がある)と判断した。そして、長期シール性を以下の基準で評価した。圧力低下が確認された圧力が大きいほど長期シール性に優れていることを示す。
 A:110MPaでも圧力低下が無かった
 B:70MPa以上100MPa以下で圧力低下が確認
 C:60MPa以下で圧力低下が確認
<安全性>
 AS568-223型の金型を使用し、表1に示す架橋条件で線径3.53±0.1mm、内径40.87±0.5mmのO-リングを作製した。
 作製したO-リングを、450℃の窒素ガス雰囲気の電気炉に入れて3時間加熱分解させた。そして、サンプルを取り出し形状観察を行い、以下の基準で評価を行った。形状が維持されているものは安全性に優れている。
 A:形状が維持されている
 B:クラックが多数存在するが、形状は維持されている
 C:形状は維持されておらず、バラバラに壊れている
(実施例1)
<複合化物の調製>
 3元系フッ素ゴム(VitonGBL600S、ケマーズ社製)1kgを9kgのメチルエチルケトン(MEK)に溶解させることで濃度10質量%のフッ素ゴム溶液を作製した。
 次に、単層カーボンナノチューブ(ZEONANO SG101、ゼオンナノテクノロジー社製、SGCNT、平均直径4nm、平均長さ420μm、BET比表面積1240m/g、炭素純度99.91質量%)20.0gを濃度10質量%のフッ素ゴム溶液に加え、ホモジナイザーを用いて3000rpmで3時間撹拌させ、プレ分散処理を行った。そして、湿式ジェットミル(ナノヴェイダ、吉田機械興業社製)に、直径170μmと直径180μmのノズルが接続されたストレートノズルを接続し、プレ分散処理液を30MPaで1パス通過させて詰りが無いことを確認した。その後、100MPaで5パス通過させ、湿式分散処理を行った。
 そして、レーザー回折式粒度分布計(HORIBA社製、LA-960)で平均粒径を測定したところ、平均粒径は24μmであり単峰性の分布状況を示す単分散であることを粒度分布で確認した。また、100μm以上の粒径を有するCNTは10体積%以下であることを確認した。
 その後、得られた湿式分散処理液を、薄膜式乾燥法にて乾燥した。具体的には、乾燥後の厚さが500μm程度になるように湿式分散処理液を130℃程度に加温された場所に滴下し、固形物濃度が99質量%以上になるまで乾燥させた後に、90℃で真空乾燥処理を行い、フッ素ゴム100質量部当たり単層カーボンナノチューブを2質量部の割合で含有する複合化物を得た(工程(A))。
<プリコンパウンドの調製>
 バンバリーミキサーを使用し、複合化物と、3元系フッ素ゴム(VitonGBL600S、ケマーズ社製)と、カーボンブラックと、架橋助剤と、受酸剤とを混練し、プリコンパウンドを調製した。
 具体的には、バンバリーミキサーを温度50℃に設定し、50rpmで3元系フッ素ゴム(VitonGBL600S、ケマーズ社製)50質量部を1分間素練りした後に、複合化物51質量部(フッ素ゴム量:50質量部)を加え、更に1分間練った。その後、カーボンブラックとしての中粒熱分解サーマルブラック(Cancarb社製、Termax N990)29質量部およびオースチンブラック(COAL FILLERS社製、炭素含有率87質量%の瀝青炭)1質量部と、架橋助剤としてのTAIC(日本化成社製、トリアリルイソシアヌレート)3質量部と、受酸剤としての酸化亜鉛(ハクスイテック社製)3質量部とを添加し、1分間混練した。その後、更にカーボンブラックとしての中粒熱分解サーマルブラック(Cancarb社製、Termax N990)29質量部およびオースチンブラック(COAL FILLERS社製、炭素含有率87質量%の瀝青炭)1質量部を添加し、1分間混練して、有機過酸化物架橋剤以外の配合成分が混合されたプリコンパウンドを得た(工程(B1))。
 なお、混練時にトルクが安定しない時は、更に1分間追加で混練した。また、混練物の温度は、150~175℃の範囲になるようにした。また、充填率は容積の70%になるように充填量を調整した。
<架橋性ゴム組成物の調製>
 得られたプリコンパウンドをバンバリーミキサーから排出し、60℃に温度設定した二本ロールにて有機過酸化物架橋剤(パーヘキサ25B-40、日油社製、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサンの40%シリカ希釈品)2質量部をプリコンパウンドに添加した。なお、バンバリーミキサーから排出された直後のプリコンパウンドに熱電対を刺し温度を測定すると162℃であった。
 有機過酸化物架橋剤を全て添加した後に、3/4切り返しを3往復実施した。なお、ロール間隙は概ね0.7mm~1.5mmの間とした。
 最後に、ロール間隙を0.5mmとし、丸目通しを5回実施し、架橋性ゴム組成物を得た(工程(B2))。なお、丸目通しを行った直後の架橋性ゴム組成物の表面温度(最終到達温度)は84℃だった。
<ゴム架橋物の調製>
 引き続き二本ロールにて成形品の形状に合わせてシート厚みを調整する分出しを行い、架橋性ゴム組成物のシートを得た。
 次に、150tの圧縮成形機を用い、40cm×40cmの大きさの鋼材製金型に対して100tonの圧力をかけて温度177℃で7分間の1次架橋を行った。更に、温度232℃で2時間の2次架橋を行って、ゴム架橋物を得た(工程(C))。
 そして、各種物性を評価した。結果を表1に示す。
(実施例2)
 複合化物の調製時に、単層カーボンナノチューブの量を16.0gに変更してフッ素ゴム100質量部当たり単層カーボンナノチューブを1.6質量部の割合で含有する複合化物を調製し、プリコンパウンドの調製時に、複合化物の量を50.8質量部(フッ素ゴム量:50質量部)に変更すると共に2回に分けて添加するオースチンブラックの量を合計4質量部(2質量部×2)に変更した以外は実施例1と同様にして、複合化物、プリコンパウンド、架橋性ゴム組成物およびゴム架橋物を調製した。
 そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例3)
<複合化物の調製>
 単層カーボンナノチューブの量を10.0gに変更した以外は実施例1と同様にして、フッ素ゴム100質量部当たり単層カーボンナノチューブを1.0質量部の割合で含有する複合化物を調製した(工程(A))。
<プリコンパウンドの調製>
 ワンダーニーダーを使用し、複合化物と、3元系フッ素ゴム(VitonGBL600S、ケマーズ社製)と、カーボンブラックと、架橋助剤と、受酸剤とを混練し、プリコンパウンドを調製した。なお、ワンダーニーダーは、バンバリーミキサーに比べてクリアランスが均質な構造になっており、冷却能力が高いため混練時のせん断発熱を低く抑えることが出来る。
 具体的には、80℃に加温したワンダーニーダー(日本スピンドル社製、ワンダーニーダーD0.5-3、ワンダーブレードを搭載したニーダー)を使用し、50rpmで3元系フッ素ゴム(VitonGBL600S、ケマーズ社製)50質量部および複合化物50.5質量部(フッ素ゴム量:50質量部)を練った。その後、カーボンブラックとしての中粒熱分解サーマルブラック(Cancarb社製、Termax N990)35質量部と、受酸剤としての酸化亜鉛(ハクスイテック社製)3質量部とを添加し、1分間混練した。その後、更にカーボンブラックとしての中粒熱分解サーマルブラック(Cancarb社製、Termax N990)35質量部と、架橋助剤としてのTAIC(日本化成社製、トリアリルイソシアヌレート)3質量部とを添加し、3分間混練して、有機過酸化物架橋剤以外の配合成分が混合されたプリコンパウンドを得た(工程(B1))。
 なお、混練物の最終到達温度は、150℃であった。また、充填率は容積の85%になるように充填量を調整した。
<架橋性ゴム組成物の調製>
 その後、設定温度50℃まで下げて10rpmでプリコンパウンドを冷却し、5分間温度が安定した後に、有機過酸化物架橋剤(パーヘキサ25B-40、日油社製、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサンの40%シリカ希釈品)2質量部をプリコンパウンドに3分間かけて分割添加した。そして、更に15分間混練し、架橋性ゴム組成物を得た(工程(B2))。なお、ゴムの最終到達温度は83℃であった。
<ゴム架橋物の調製>
 40℃に加温した二本ロールにて、架橋性ゴム組成物の3/4切り返しを3往復以上した後、成形品の形状に合わせてシート厚みを調整する分出しを行い、架橋性ゴム組成物のシートを得た。
 次に、150tの圧縮成形機を用い、40cm×40cmの大きさの鋼材製金型に対して100tonの圧力をかけて温度160℃で30分間の1次架橋を行った。更に、温度232℃で2時間の2次架橋を行って、ゴム架橋物を得た(工程(C))。
 そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例4)
 複合化物の調製時に、3元系フッ素ゴムに替えて2元系フッ素ゴム(Dai-el G801、ダイキン工業社製)を使用し、単層カーボンナノチューブの量を40.0gに変更してフッ素ゴム100質量部当たり単層カーボンナノチューブを4.0質量部の割合で含有する複合化物を調製し、プリコンパウンドの調製を以下のようにして行い、架橋性ゴム組成物の調製時に有機過酸化物架橋剤としてパーヘキサ25B、日油社製、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン)1.5質量部を使用した。なお、有機過酸化物架橋剤は液体であったため、液体がロールに付着しないようにスポイトで複数回に分けて注意深くバンク部分に添加した。また、ゴム架橋物の調製時に、1次架橋の条件を温度160℃で20分間にし、2次架橋の条件を温度180℃で4時間にした。それ以外は実施例1と同様にして、複合化物、プリコンパウンド、架橋性ゴム組成物およびゴム架橋物を調製した。
 そして、実施例1と同様にして評価を行った。結果を表1に示す。
<プリコンパウンドの調製>
 バンバリーミキサーを使用し、複合化物と、2元系フッ素ゴム(Dai-el G801、ダイキン工業社製)と、カーボンブラックと、架橋助剤とを混練し、プリコンパウンドを調製した。
 具体的には、バンバリーミキサーを温度50℃に設定し、50rpmで2元系フッ素ゴム(Dai-el G801、ダイキン工業社製)50質量部を1分間素練りした後に、複合化物52質量部(フッ素ゴム量:50質量部)を加え、更に1分間練った。その後、カーボンブラックとしての中粒熱分解サーマルブラック(Cancarb社製、Termax N990)25質量部およびオースチンブラック(COAL FILLERS社製、炭素含有率87質量%の瀝青炭)1質量部と、架橋助剤としてのTAIC(日本化成社製、トリアリルイソシアヌレート)4質量部とを添加し、1分間混練した。その後、更にカーボンブラックとしての中粒熱分解サーマルブラック(Cancarb社製、Termax N990)25質量部およびオースチンブラック(COAL FILLERS社製、炭素含有率87質量%の瀝青炭)1質量部を添加し、1分間混練して、有機過酸化物架橋剤以外の配合成分が混合されたプリコンパウンドを得た(工程(B1))。
 なお、混練時にトルクが安定しない時は、更に1分間追加で混練した。また、混練物の温度は、150~175℃の範囲になるようにした。また、充填率は容積の70%になるように充填量を調整した。
(実施例5)
 複合化物の調製時に、単層カーボンナノチューブ20.0gに替えて多層カーボンナノチューブ(NC7000、Nanocyl社製、平均直径9.5nm、平均長さ1.5μm、BET比表面積280m/g、炭素純度90質量%)120.0gを使用してフッ素ゴム100質量部当たり多層カーボンナノチューブを12.0質量部の割合で含有する複合化物を調製し、プリコンパウンドの調製時に、複合化物の量を56.0質量部(フッ素ゴム量:50質量部)に変更すると共に2回に分けて添加する中粒熱分解サーマルブラックの量を合計45質量部(22.5質量部×2)に変更した以外は実施例1と同様にして、複合化物、プリコンパウンド、架橋性ゴム組成物およびゴム架橋物を調製した。
 そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例6)
 複合化物の調製時およびプリコンパウンドの調製時に、3元系フッ素ゴム(VitonGBL600S、ケマーズ社製)に替えて3元系フッ素ゴム(VitonGFLT600S、ケマーズ社製)を使用し、複合化物の調製時に、多層カーボンナノチューブの量を60.0gに変更してフッ素ゴム100質量部当たり単層カーボンナノチューブを6.0質量部の割合で含有する複合化物を調製し、プリコンパウンドの調製時に、複合化物の量を53.0質量部(フッ素ゴム量:50質量部)に変更すると共に2回に分けて添加するオースチンブラックの量を合計4質量部(2質量部×2)に変更した以外は実施例5と同様にして、複合化物、プリコンパウンド、架橋性ゴム組成物およびゴム架橋物を調製した。
 そして、実施例1と同様にして評価を行った。結果を表1に示す。
(比較例1)
 複合化物を調製せず、プリコンパウンドの調製を以下のようにして行った以外は実施例1と同様にして、プリコンパウンド、架橋性ゴム組成物およびゴム架橋物を調製した。
 そして、実施例1と同様にして評価を行った。結果を表1に示す。
<プリコンパウンドの調製>
 バンバリーミキサーを使用し、3元系フッ素ゴム(VitonGBL600S、ケマーズ社製)と、カーボンブラックと、架橋助剤と、受酸剤とを混練し、プリコンパウンドを調製した。
 具体的には、バンバリーミキサーを温度50℃に設定し、50rpmで3元系フッ素ゴム(VitonGBL600S、ケマーズ社製)100質量部を1分間素練りした。その後、カーボンブラックとしての中粒熱分解サーマルブラック(Cancarb社製、Termax N990)22.5質量部と、架橋助剤としてのTAIC(日本化成社製、トリアリルイソシアヌレート)3質量部と、受酸剤としての酸化亜鉛(ハクスイテック社製)3質量部とを添加し、1分間混練した。その後、更にカーボンブラックとしての中粒熱分解サーマルブラック(Cancarb社製、Termax N990)22.5質量部を添加し、1分間混練して、有機過酸化物架橋剤以外の配合成分が混合されたプリコンパウンドを得た(工程(B1))。
 なお、混練時にトルクが安定しない時は、更に1分間追加で混練した。また、混練物の温度は、150~175℃の範囲になるようにした。また、充填率は容積の70%になるように充填量を調整した。
(比較例2~3)
 プリコンパウンドの調製時に、2回に分けて添加する中粒熱分解サーマルブラックの合計量をそれぞれ60質量部(30質量部×2)および70質量部(35質量部×2)に変更した以外は比較例1と同様にして、プリコンパウンド、架橋性ゴム組成物およびゴム架橋物を調製した。
 そして、実施例1と同様にして評価を行った。結果を表1に示す。
(比較例4)
 複合化物およびプリコンパウンドを調製せず、架橋性ゴム組成物の調製を以下のようにして行った以外は実施例1と同様にして、架橋性ゴム組成物およびゴム架橋物を調製した。
 そして、実施例1と同様にして評価を行った。結果を表1に示す。
<架橋性ゴム組成物の調製>
 ロール径が6インチのオープンロール(ロール温度15℃)に、3元系フッ素ゴム(VitonGBL600S、ケマーズ社製)100質量部を投入して、ロールに巻き付かせた。
 次に、カーボンブラックとしての中粒熱分解サーマルブラック(Cancarb社製、Termax N990)10質量部、ハイストラクチャーファーネスブラック(東海カーボン社製、シーストFY、算術平均粒子径72nm、DBP吸油量152cm/100g)15質量部、およびオースチンブラック(COAL FILLERS社製、炭素含有率87質量%の瀝青炭)6質量部、CNTとしての単層カーボンナノチューブ(SG101、ゼオンナノテクノロジー社製、SGCNT、平均直径4nm、平均長さ420μm、BET比表面積1240m/g、炭素純度99.91質量%)2質量部、架橋助剤としてのTAIC(日本化成社製、トリアリルイソシアヌレート)3質量部と、受酸剤としての酸化亜鉛(ハクスイテック社製)3質量部をフッ素ゴムに投入した。このとき、ロール間隙dを1.5mmとした。続いて、ロール間隙dを1.5mmから0.3mmと狭くして薄通しを5回行い、プリコンパウンドを得た。このとき、2本のロールの表面速度比を1.1とした。
 ロール温度の設定を15℃から60℃に変更し、有機過酸化物架橋剤(パーヘキサ25B-40、日油社製、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサンの40%シリカ希釈品)2質量部をプリコンパウンドに添加した。有機過酸化物架橋剤を全て添加した後に、3/4切り返しを3往復実施した。なお、ロール間隙は概ね0.7mm~1.5mmの間とした。
 最後に、ロール間隙を0.5mmとし、丸目通しを5回実施し、架橋性ゴム組成物を得た。
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~6のゴム架橋物は、比較例1~4のゴム架橋物と比較し、シール部材として用いた際のシール性に優れていることが分かる。
 また、表1より、単層カーボンナノチューブを用いた実施例1~4のゴム架橋物は、多層カーボンナノチューブを用いた実施例5~6のゴム架橋物と比較し、シール部材として用いた際の安全性に優れていることが分かる。
 なお、各実施例および比較例においてゴム架橋物のガラス転移温度を測定したところ、フッ素ゴムのガラス転移温度からの上昇は5℃以下であることが確認された。
 本発明によれば、高温・高圧環境下での長期シール性に優れるシール部材を提供可能なゴム架橋物が得られる。

Claims (13)

  1.  フッ素ゴムと、カーボンブラックと、カーボンナノチューブと、有機過酸化物架橋剤とを含む架橋性ゴム組成物を架橋してなり、
     50%モジュラスが5MPa以上であり、
     圧縮永久歪み(230℃、500時間)が80%以下であり、
     熱老化試験(230℃、72時間)前後の破断伸びの変化率が-10%以上10%以下である、ゴム架橋物。
  2.  前記カーボンブラックが、炭素含有率が60質量%以上90質量%以下の石炭を含む、請求項1に記載のゴム架橋物。
  3.  前記フッ素ゴム100質量部当たり、前記石炭を0.5質量部以上5質量部未満の割合で含有する、請求項2に記載のゴム架橋物。
  4.  前記石炭が瀝青炭である、請求項2または3に記載のゴム架橋物。
  5.  破断強度が23MPa以上である、請求項1~4の何れかに記載のゴム架橋物。
  6.  前記フッ素ゴムのガラス転移温度が-7℃以下である、請求項1~5の何れかに記載のゴム架橋物。
  7.  前記フッ素ゴム100質量部当たり、前記カーボンナノチューブを0.4質量部以上10質量部未満の割合で含有する、請求項1~6の何れかに記載のゴム架橋物。
  8.  請求項1~7の何れかに記載のゴム架橋物の製造方法であって、
     フッ素ゴムと、前記フッ素ゴム中に分散したカーボンナノチューブとを含む複合化物を得る工程(A)と、
     前記複合化物と、カーボンブラックと、有機過酸化物架橋剤とを混練りし、架橋性ゴム組成物を得る工程(B)と、
     前記架橋性ゴム組成物を成形および架橋してゴム架橋物を得る工程(C)と、
    を含み、
     前記工程(A)では、フッ素ゴムと、カーボンナノチューブと、有機溶媒とを含む混合物を湿式分散処理した後、前記有機溶媒を除去することにより前記複合化物を得る、ゴム架橋物の製造方法。
  9.  前記工程(A)では、前記有機溶媒の除去を薄膜乾燥により行う、請求項8に記載のゴム架橋物の製造方法。
  10.  前記工程(B)は、前記複合化物と前記カーボンブラックとを混練りしてプリコンパウンドを得る工程(B1)と、前記プリコンパウンドと前記有機過酸化物架橋剤とを混練りして前記架橋性ゴム組成物を得る工程(B2)とを含み、
     前記工程(B2)では、混練物の温度が90℃以上にならないように混練りを行う、請求項8または9に記載のゴム架橋物の製造方法。
  11.  前記工程(A)では、ジェットミルを用いて前記混合物を湿式分散処理する、請求項8~10の何れかに記載のゴム架橋物の製造方法。
  12.  前記工程(B)では、密閉式混練機を用いて混練りを行う、請求項8~11の何れかに記載のゴム架橋物の製造方法。
  13.  前記密閉式混練機が加圧型ニーダーである、請求項12に記載のゴム架橋物の製造方法。
PCT/JP2018/021709 2017-06-06 2018-06-06 ゴム架橋物およびその製造方法 WO2018225789A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880035108.0A CN110709464B (zh) 2017-06-06 2018-06-06 橡胶交联物及其制造方法
JP2019523947A JP7173003B2 (ja) 2017-06-06 2018-06-06 ゴム架橋物およびその製造方法
US16/618,231 US11084910B2 (en) 2017-06-06 2018-06-06 Cross-linked rubber and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017112088 2017-06-06
JP2017-112088 2017-06-06

Publications (1)

Publication Number Publication Date
WO2018225789A1 true WO2018225789A1 (ja) 2018-12-13

Family

ID=64565909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021709 WO2018225789A1 (ja) 2017-06-06 2018-06-06 ゴム架橋物およびその製造方法

Country Status (4)

Country Link
US (1) US11084910B2 (ja)
JP (1) JP7173003B2 (ja)
CN (1) CN110709464B (ja)
WO (1) WO2018225789A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109735029A (zh) * 2018-12-27 2019-05-10 江苏时恒电子科技有限公司 一种制备热敏电阻保护套的方法
WO2020175331A1 (ja) * 2019-02-28 2020-09-03 日本ゼオン株式会社 含フッ素エラストマー組成物、フッ素ゴム成形体、含フッ素エラストマー溶液の製造方法、及び含フッ素エラストマー組成物の製造方法
JP2021155635A (ja) * 2020-03-27 2021-10-07 日本ゼオン株式会社 エラストマー成形体およびその使用方法、ならびに半導体製造装置
WO2023054716A1 (ja) * 2021-09-30 2023-04-06 日本ゼオン株式会社 フッ素ゴム組成物及び成形体
JP7506034B2 (ja) 2021-07-01 2024-06-25 信越化学工業株式会社 付加硬化型シリコーンゴム組成物及びシリコーンゴム硬化物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113683849A (zh) * 2021-08-25 2021-11-23 上海道氟实业有限公司 一种fkm混炼胶及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003051931A1 (fr) * 2001-12-19 2003-06-26 Asahi Glass Company, Limited Procedes de production de fluororesines en poudre portant des groupes fonctionnels durcissables et compositions de revetement les contenant
JP2014081073A (ja) * 2012-09-28 2014-05-08 Kitz Corp 耐蒸気性に優れた無端状シール部材及びバルブ
JP2015168777A (ja) * 2014-03-07 2015-09-28 日信工業株式会社 炭素繊維複合材料及びシール部材
JP2016108476A (ja) * 2014-12-08 2016-06-20 日信工業株式会社 炭素繊維複合材料
WO2016208203A1 (ja) * 2015-06-26 2016-12-29 日本ゼオン株式会社 ガスシール部材用組成物およびガスシール部材
JP2017014314A (ja) * 2015-06-26 2017-01-19 昭和電工株式会社 エラストマー組成物の製造方法、エラストマー組成物、マスターバッチ及びエラストマー混合物
WO2017175807A1 (ja) * 2016-04-07 2017-10-12 日本ゼオン株式会社 含フッ素エラストマー組成物および成形体
JP2017186476A (ja) * 2016-04-07 2017-10-12 日本ゼオン株式会社 含フッ素エラストマー組成物の製造方法およびオイルシール部材の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6646077B1 (en) * 2002-07-11 2003-11-11 Dupont Dow Elastomers Llc Peroxide curable fluoroelastomers
US7098270B2 (en) * 2002-09-10 2006-08-29 Freudenberg-Nok General Partnership Fluoroelastomer composition
WO2006011655A1 (ja) 2004-07-27 2006-02-02 National Institute Of Advanced Industrial Scienceand Technology 単層カーボンナノチューブおよび配向単層カーボンナノチューブ・バルク構造体ならびにそれらの製造方法・装置および用途
WO2006011547A1 (ja) * 2004-07-28 2006-02-02 Daikin Industries, Ltd. 過酸化物加硫可能な含フッ素エラストマー組成物
CN101296989A (zh) 2005-10-27 2008-10-29 大金工业株式会社 交联性组合物以及由该组合物形成的成型品
US20090124759A1 (en) * 2005-10-27 2009-05-14 Daikin Industries, Ltd. Crosslinkable composition and molded article made of same
WO2011077595A1 (ja) 2009-12-25 2011-06-30 日信工業株式会社 動的シール部材
US20120259054A1 (en) * 2010-08-25 2012-10-11 E.I. Du Pont De Nemours And Company Heat resistant fluoroelastomer bushings
JP5418683B2 (ja) * 2011-04-06 2014-02-19 Nok株式会社 フッ素ゴム組成物
JP5844064B2 (ja) 2011-04-22 2016-01-13 日信工業株式会社 炭素繊維複合材料の製造方法
KR20150140636A (ko) * 2013-04-09 2015-12-16 니찌아스 카부시키카이샤 가교 플루오로엘라스토머의 제조 방법
DE102013103759A1 (de) * 2013-04-15 2014-10-16 Contitech Mgw Gmbh Kautschukmischung und Schlauch enthaltend die Kautschukmischung
US20160090464A1 (en) * 2013-04-26 2016-03-31 Zeon Corporation Nitrile rubber composition, cross-linkable rubber composition, and cross-linked rubber
CN104327429A (zh) * 2014-11-17 2015-02-04 中昊晨光化工研究院有限公司 一种汽车用高速旋转油封用混料
CN108137893A (zh) * 2015-10-19 2018-06-08 旭硝子株式会社 交联物的制造方法及氟弹性体组合物
CN106633544B (zh) * 2016-11-17 2019-07-19 上海如实密封科技有限公司 一种耐高温高压密封件用氟橡胶材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003051931A1 (fr) * 2001-12-19 2003-06-26 Asahi Glass Company, Limited Procedes de production de fluororesines en poudre portant des groupes fonctionnels durcissables et compositions de revetement les contenant
JP2014081073A (ja) * 2012-09-28 2014-05-08 Kitz Corp 耐蒸気性に優れた無端状シール部材及びバルブ
JP2015168777A (ja) * 2014-03-07 2015-09-28 日信工業株式会社 炭素繊維複合材料及びシール部材
JP2016108476A (ja) * 2014-12-08 2016-06-20 日信工業株式会社 炭素繊維複合材料
WO2016208203A1 (ja) * 2015-06-26 2016-12-29 日本ゼオン株式会社 ガスシール部材用組成物およびガスシール部材
JP2017014314A (ja) * 2015-06-26 2017-01-19 昭和電工株式会社 エラストマー組成物の製造方法、エラストマー組成物、マスターバッチ及びエラストマー混合物
WO2017175807A1 (ja) * 2016-04-07 2017-10-12 日本ゼオン株式会社 含フッ素エラストマー組成物および成形体
JP2017186476A (ja) * 2016-04-07 2017-10-12 日本ゼオン株式会社 含フッ素エラストマー組成物の製造方法およびオイルシール部材の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109735029A (zh) * 2018-12-27 2019-05-10 江苏时恒电子科技有限公司 一种制备热敏电阻保护套的方法
WO2020175331A1 (ja) * 2019-02-28 2020-09-03 日本ゼオン株式会社 含フッ素エラストマー組成物、フッ素ゴム成形体、含フッ素エラストマー溶液の製造方法、及び含フッ素エラストマー組成物の製造方法
JPWO2020175331A1 (ja) * 2019-02-28 2020-09-03
JP7505480B2 (ja) 2019-02-28 2024-06-25 日本ゼオン株式会社 含フッ素エラストマー組成物、フッ素ゴム成形体、含フッ素エラストマー溶液の製造方法、及び含フッ素エラストマー組成物の製造方法
JP2021155635A (ja) * 2020-03-27 2021-10-07 日本ゼオン株式会社 エラストマー成形体およびその使用方法、ならびに半導体製造装置
JP7476613B2 (ja) 2020-03-27 2024-05-01 日本ゼオン株式会社 エラストマー成形体およびその使用方法、ならびに半導体製造装置
JP7506034B2 (ja) 2021-07-01 2024-06-25 信越化学工業株式会社 付加硬化型シリコーンゴム組成物及びシリコーンゴム硬化物
WO2023054716A1 (ja) * 2021-09-30 2023-04-06 日本ゼオン株式会社 フッ素ゴム組成物及び成形体

Also Published As

Publication number Publication date
US11084910B2 (en) 2021-08-10
US20200115512A1 (en) 2020-04-16
JPWO2018225789A1 (ja) 2020-04-16
CN110709464A (zh) 2020-01-17
JP7173003B2 (ja) 2022-11-16
CN110709464B (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
JP7173003B2 (ja) ゴム架橋物およびその製造方法
Li et al. Thermal degradation behavior of multi-walled carbon nanotubes/polyamide 6 composites
US10982083B2 (en) Fluorinated elastomer composition and shaped article
EP3315576B1 (en) Composition for gas seal member, and gas seal member
JP2017186476A (ja) 含フッ素エラストマー組成物の製造方法およびオイルシール部材の製造方法
TWI816861B (zh) 密封材
JP7151760B2 (ja) ゴム組成物の製造方法
EP3126439A1 (en) Method for rubber reinforced with carbon nanotubes
JP7505480B2 (ja) 含フッ素エラストマー組成物、フッ素ゴム成形体、含フッ素エラストマー溶液の製造方法、及び含フッ素エラストマー組成物の製造方法
JP7173023B2 (ja) ゴム組成物
CN115103878A (zh) 弹性体组合物及其制造方法、以及交联物和成型体
JP2015168777A (ja) 炭素繊維複合材料及びシール部材
WO2022070780A1 (ja) エラストマー組成物、エラストマー組成物の製造方法、架橋物、及び成形体
JP2015172148A (ja) 熱可塑性樹脂組成物の製造方法及び熱可塑性樹脂組成物
JP7276319B2 (ja) 複合材料の製造方法
EP3778752A1 (en) Uncrosslinked elastomer composition and crosslinked product of same
JP7468062B2 (ja) エラストマー組成物の製造方法
JPH06212025A (ja) ゴム組成物
JP2016023262A (ja) 熱可塑性樹脂組成物の製造方法及び熱可塑性樹脂組成物
JP2015164982A (ja) 加硫ブラダー用ゴム組成物およびそれを用いたタイヤ用加硫ブラダー
JP7243710B2 (ja) 繊維状炭素ナノ構造体分散液の製造方法および複合材料の製造方法
JP2009144131A (ja) ゴム組成物およびそれを用いたタイヤ
JP4097962B2 (ja) ソフト系ファーネスカーボンブラック及びこれを含むゴム組成物
WO2023054716A1 (ja) フッ素ゴム組成物及び成形体
JP2023124728A (ja) エラストマー組成物、架橋物および成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18814127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523947

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18814127

Country of ref document: EP

Kind code of ref document: A1