WO2018225638A1 - 重金属の分離方法 - Google Patents

重金属の分離方法 Download PDF

Info

Publication number
WO2018225638A1
WO2018225638A1 PCT/JP2018/021139 JP2018021139W WO2018225638A1 WO 2018225638 A1 WO2018225638 A1 WO 2018225638A1 JP 2018021139 W JP2018021139 W JP 2018021139W WO 2018225638 A1 WO2018225638 A1 WO 2018225638A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
solid
phosphorus
heavy metal
less
Prior art date
Application number
PCT/JP2018/021139
Other languages
English (en)
French (fr)
Inventor
熙濬 金
Original Assignee
国立大学法人新潟大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人新潟大学 filed Critical 国立大学法人新潟大学
Priority to JP2019523501A priority Critical patent/JP7137223B2/ja
Priority to CN201880047299.2A priority patent/CN111315500A/zh
Priority to KR1020197038307A priority patent/KR102416448B1/ko
Publication of WO2018225638A1 publication Critical patent/WO2018225638A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/80Destroying solid waste or transforming solid waste into something useful or harmless involving an extraction step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Definitions

  • the present invention relates to a method for separating heavy metals.
  • the heavy metal separation method of the present invention includes a first dissolution step of mixing an object liquid containing phosphorus and heavy metal with an acidic liquid, and dissolving phosphorus and heavy metal contained in the object to be processed, and phosphorus and heavy metal.
  • a first solid-liquid separation step of separating the first liquid in which the solution is dissolved from the solid component, and mixing the first liquid with a precipitating agent and raising the pH, thereby precipitating the first solid containing phosphorus and heavy metal A first precipitation step, a second solid-liquid separation step of separating the first solid from a liquid component, and a second dissolution step of dissolving phosphorus contained in the first solid with an alkaline liquid
  • a third solid-liquid separation step for separating the second liquid in which phosphorus is dissolved from the solid component containing heavy metal.
  • the pH of the liquid phase at the end of the second precipitation step is preferably 2.0 or more and 12.0 or less.
  • FIG. 1 is a diagram schematically showing the relationship between the pH of the liquid phase at the end of the first precipitation step and the final phosphorus recovery rate.
  • FIG. 2 is a diagram showing the correspondence between the pH of the liquid phase at the end of the first precipitation step and the X-ray diffraction (XRD) pattern of the precipitate for Examples 1, 2, and 3.
  • FIG. 3 shows the recovery rate of phosphorus and main metal elements for the second solid obtained in Example 1 (that is, the amount contained in the second solid relative to the amount contained in the workpiece). It is a graph which shows (ratio).
  • FIG. 4 is a graph showing the results of the water solubility test and the solubility test for the second solid obtained in Example 1.
  • FIG. 1 is a diagram schematically showing the relationship between the pH of the liquid phase at the end of the first precipitation step and the final phosphorus recovery rate.
  • FIG. 2 is a diagram showing the correspondence between the pH of the liquid phase at the end of the first precipitation step and the X-ray
  • FIG. 5 is a graph showing an example of the relationship between the phosphorus elution rate and the acid / alkali concentration when the object to be treated (sludge ash) is subjected to acid treatment or alkali treatment.
  • FIG. 6 is a graph showing fluctuations in the dissolution rate of phosphorus when the temperature and stirring time of the acidic liquid in the first dissolution step are changed.
  • FIG. 7 shows precipitation of each metal (Al, Zn, Mn, Cu, Fe) when each metal is eluted in the first dissolution step, and then CaCl 2 is added and treated with NaOH solution to a predetermined pH. It is a graph which shows an example of a rate.
  • phosphorus typically oxides (P 2 O 5, etc.) and phosphoric acid
  • a form such as phosphoric acid salt.
  • a compound containing phosphorus as an atom including these forms (including an ionic substance) and a phosphorus atom contained in the compound may be simply referred to as phosphorus.
  • the phosphorus dissolution rate in the liquid phase at the end of this step is preferably 70% or more, more preferably 80% or more, and even more preferably 90% or more. Thereby, phosphorus which is a useful substance can be recovered more efficiently.
  • First deposition step In the first precipitation step, the first liquid separated from the solid component (solid phase) in the first solid-liquid separation step is mixed with the precipitation agent and the pH is increased, and the first liquid containing phosphorus and heavy metal is added. A solid is precipitated.
  • phosphorus is precipitated as a phosphate (eg, calcium hydrogen phosphate dihydrate, calcium phosphate, etc.).
  • any substance or composition may be used as long as it can be mixed with the precipitation agent and raise the pH, but it is preferable to use an alkaline liquid having a pH of 10 or more.
  • the precipitating agent only needs to have a function of promoting precipitation of phosphate and the like.
  • Ca-based materials such as CaCl 2 , Ca (OH) 2 and CaCO 3
  • Al-based materials such as Al salts
  • Fe Fe-based materials such as salts
  • Mg-based materials such as Mg salts
  • phosphorus can be deposited as a calcium salt of phosphoric acid (for example, calcium hydrogen phosphate dihydrate, calcium phosphate, etc.) in this step, and the subsequent steps can be performed more suitably.
  • a precipitate having a moderately small particle size and containing a large amount of unstable phosphate crystals can be obtained.
  • the phosphate can be dissolved more efficiently in the subsequent second dissolution step.
  • FIG. 1 is a diagram schematically showing the relationship between the pH of the liquid phase at the end of the first precipitation step and the final phosphorus recovery rate.
  • this step it is preferable to add calcium so as to satisfy the following conditions. That is, when the amount of phosphorus in the system at the end of this step is X P [mol] and the amount of calcium is X Ca [mol], 1.0 ⁇ X Ca / X P ⁇ 4.0 The relationship is preferably satisfied, the relationship 1.3 ⁇ X Ca / X P ⁇ 3.0 is more preferably satisfied, and the relationship 1.5 ⁇ X Ca / X P ⁇ 2.5 is satisfied. Is more preferable.
  • phosphorus contained in the first liquid can be more preferably precipitated as a calcium salt of phosphoric acid (approximately 100% is precipitated), and the proportion of phosphorus remaining in the liquid phase in the dissolved state Can be made particularly low. Moreover, it can prevent more effectively that the crystal
  • Such a liquid phase (a liquid phase that is substantially free of heavy metals and has a sufficiently low phosphorus content) has a small environmental load and can be drained without any problem.
  • the liquid phase obtained by solid-liquid separation may be used in the heavy metal separation method of the present invention. Thereby, the liquid which contains calcium with a comparatively high content rate can be reused, and it is preferable from a viewpoint of the further effective utilization of resources.
  • the method of solid-liquid separation is not specifically limited, For example, a decantation, filtration, centrifugation, etc. are mentioned, You may carry out combining several methods. In this step, the solid phase once separated may be washed with water or the like as necessary.
  • the phosphorus content in the solid-liquid separated liquid phase is preferably 1000 ppm or less, more preferably 100 ppm or less, and even more preferably 10 ppm or less.
  • the content of heavy metals in the solid-liquid separated liquid phase is preferably 4000 ppm or less, more preferably 500 ppm or less, and even more preferably 0.1 ppm or less.
  • ⁇ Second dissolution step> phosphorus contained in the first solid is dissolved with an alkaline liquid.
  • an alkaline liquid By using an alkaline liquid in this way, phosphorus can be selectively dissolved while preventing the dissolution of heavy metals contained in the first solid.
  • phosphate is precipitated under predetermined conditions, so that the nucleation and growth of the phosphate is suitably controlled, and the phosphate becomes alkaline. It is easy to dissolve.
  • heavy metals are generally difficult to dissolve in alkaline liquids.
  • phosphorus as a useful substance that can be used for fertilizers and heavy metals can be suitably separated.
  • the final solid waste (industrial waste) can be reduced.
  • the pH of the alkaline liquid used in this step is not particularly limited, but is preferably 10 or more, more preferably 11 or more and 14 or less, and further preferably 12 or more and 14 or less.
  • the alkaline liquid only needs to exhibit alkalinity as a whole liquid, and examples of the alkaline substance contained in the alkaline liquid include NaOH, KOH, Mg (OH) 2 , Ca (OH) 2 , Al (OH 3 ) Metal hydroxides such as 3 , metal carbonates such as CaCO 3 and MgCO 3 , and amine-based substances such as ammonia, triethylamine, and aniline.
  • the alkaline liquid used in this step preferably contains a metal hydroxide as an alkaline substance, more preferably contains an alkali metal hydroxide, and further contains NaOH. preferable.
  • the pH of the liquid phase at the end of this step is not particularly limited, but is preferably 10 or more, more preferably 11 or more and 14 or less, and still more preferably 12 or more and 14 or less.
  • the method of solid-liquid separation is not particularly limited, and examples thereof include decantation, filtration, and centrifugation, and a plurality of methods may be combined.
  • the solid phase once separated may be washed with water or the like as necessary. Thereby, the content rate of phosphorus in solid can be made lower.
  • the liquid used for washing the solid phase may be combined with the liquid phase obtained by the previous solid-liquid separation after recovery.
  • the phosphorus content in the solid-liquid separated solid phase is preferably 30% by mass or less, more preferably 10% by mass or less, and even more preferably 2% by mass or less.
  • the content of heavy metal in the liquid phase subjected to solid-liquid separation is preferably 1000 ppm or less, more preferably 10 ppm or less, and even more preferably 0.01 ppm or less.
  • ⁇ Second deposition step> In the present embodiment, after the third solid-liquid separation step described above, a second precipitation step of mixing the second liquid with the precipitation agent and lowering the pH to precipitate the second solid containing phosphorus is further performed. Have.
  • phosphorus can be handled as a phosphate that is a solid substance (for example, calcium hydrogen phosphate dihydrate, calcium phosphate, etc.), and storage, transportation, and the like can be performed more suitably.
  • a highly pure phosphate substantially free of heavy metals can be obtained.
  • any substance or composition may be used as long as it can be mixed with the precipitating agent and the pH can be lowered, but an acidic liquid having a pH of ⁇ 1.0 or more and 2 or less is preferably used.
  • the pH of the mixture can be suitably lowered, and the second solid containing phosphorus can be precipitated more efficiently.
  • an acidic liquid having a pH of ⁇ 1.0 or more and 2 or less it is preferable to use an acidic liquid having a pH of ⁇ 1.0 or more and 2 or less, but the pH of the acidic liquid is more preferably ⁇ 0.5 or more and 1.3 or less, and 0 or more and 1. More preferably, it is 0 or less.
  • precipitating agent used in this step may have a function of promoting the precipitation of such phosphates
  • the precipitating agent for example, CaCl 2, Ca (OH) 2, CaCO 3 or the like
  • Ca Al-based materials such as Al-based materials, Al salts, Fe-based materials such as Fe salts, Mg-based materials such as Mg salts, and the like
  • the dissolution performance in an alkaline solution can be adjusted, and the phosphate can be obtained as a metal phosphate or calcium phosphate useful as a fertilizer or the like.
  • this step it is more preferable to use one or more selected from the group consisting of CaCl 2 , Ca (OH) 2 and CaCO 3 , and it is more preferable to use CaCl 2 .
  • this step the amount of the substance mixed with the second liquid can be suppressed, and this step can be efficiently advanced.
  • the balance between the calcium content and the pH in the mixture in this step can be suitably adjusted, and the impurity content in the second solid is lowered while improving the precipitation efficiency of phosphorus. be able to.
  • the pH of the liquid phase at the end of this step is preferably 2.0 or more and 12.0 or less, more preferably 2.5 or more and 10.0 or less, and 3.0 or more and 8.0 or less. Is more preferable.
  • this step it is preferable to add calcium so as to satisfy the following conditions. That is, when the amount of phosphorus in the system at the end of this step is X P [mol] and the amount of calcium is X Ca [mol], 1.0 ⁇ X Ca / X P ⁇ 4.0 The relationship is preferably satisfied, the relationship 1.3 ⁇ X Ca / X P ⁇ 3.0 is more preferably satisfied, and the relationship 1.5 ⁇ X Ca / X P ⁇ 2.5 is satisfied. Is more preferable.
  • phosphorus contained in the second liquid can be more suitably precipitated as a calcium salt of phosphoric acid, and the proportion of phosphorus remaining in the liquid phase in a dissolved state can be particularly reduced.
  • ⁇ Fourth solid-liquid separation process> it has the 4th solid-liquid separation process of isolate
  • the separated liquid phase does not need to be treated as an industrial waste liquid because it does not substantially contain heavy metals. Further, since the separated liquid phase has a sufficiently low phosphorus content, even if the liquid phase is discarded, it is not disadvantageous from the viewpoint of effective utilization of useful resources. Moreover, since the separated second solid contains phosphate in high purity and has a very low content of heavy metals, it can be suitably used for fertilizers and the like. In particular, even if no post-treatment or the like is performed, or even when post-treatment is performed, it can be suitably used as a fertilizer or the like with a simple treatment. In addition, the liquid phase obtained by solid-liquid separation may be used in the heavy metal separation method of the present invention.
  • the method of solid-liquid separation is not particularly limited, and examples thereof include decantation, filtration, and centrifugation, and a plurality of methods may be combined.
  • the solid phase once separated may be washed with water or the like as necessary. Thereby, the content rate of the chlorine ion in solid can be made lower.
  • the liquid used for washing the solid phase may be combined with the liquid phase obtained by the previous solid-liquid separation after recovery.
  • the heavy metal content in the solid-liquid separated solid phase (second solid) is preferably 1000 ppm or less, more preferably 500 ppm or less, and even more preferably 10 ppm or less.
  • the heavy metal separation method of the present invention may have steps (for example, a pretreatment step, an intermediate treatment step, a post treatment step, etc.) other than the steps described above.
  • the heavy metal separation method of the present invention includes a first dissolution step, a first solid-liquid separation step, a first precipitation step, a second solid-liquid separation step, and a second dissolution step. It is only necessary to have the third solid-liquid separation step, and the second precipitation step and the fourth solid-liquid separation step may not be included.
  • ⁇ 1 Separation of heavy metal and phosphorus
  • the filter paper was set in a filter and subjected to solid-liquid separation (first solid-liquid separation step).
  • the first liquid which is the filtrate (liquid phase) separated into solid and liquid, was made up into a sample solution.
  • the sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus elution rate was calculated from the measurement results.
  • a UV spectroscopic analyzer was used for analysis of the eluate.
  • concentrations of metals and heavy metals in the sample solution were obtained using ICP-AES and ICP-MS, and the amounts contained in the solid phase and the amounts contained in the liquid phase were calculated for the metals and heavy metals.
  • the mixture was further stirred for 30 minutes, and then the filter paper was set in a filter and solid-liquid separation was performed using a vacuum pump (second solid-liquid separation step).
  • the filtrate (liquid phase) separated into solid and liquid was diluted.
  • the diluted filtrate was diluted at a specific ratio, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the precipitation rate of phosphorus was calculated from the measurement results.
  • a UV spectroscopic analyzer was used to measure the phosphorus concentration.
  • concentrations of metals and heavy metals in the filtrate were determined using ICP-AES and ICP-MS, and the amounts of metals and heavy metals contained in the solid phase and the liquid phase were calculated.
  • the solid phase obtained in the second solid-liquid separation step was dried at 105 ° C. for 2 hours, then powdered and analyzed by XRD.
  • the solid phase obtained in the second solid-liquid separation step was dried and then charged into an Erlenmeyer flask containing 200 mL of 1.0 M NaOH aqueous solution and stirred at 60 ° C. for 20 minutes. Thereby, phosphorus was re-eluted (second dissolution step).
  • the second liquid (liquid phase) in which phosphorus was dissolved was solid-liquid separated with a filter paper and separated from a solid component (solid phase) containing heavy metal (third solid-liquid separation step).
  • the mixture was further stirred for 60 minutes while adjusting the pH between 2.0 and 12, followed by solid-liquid separation to obtain a solid mainly composed of calcium phosphate phosphate (fourth solid-liquid separation step). .
  • Example 5 Except that the pH at the end of the first precipitation step was changed as shown in Table 1, heavy metals and phosphorus were separated from the object to be treated in the same manner as in Example 1.
  • Comparative Example 1 Heavy metals and phosphorus were separated from the object to be processed in the same manner as in Example 1 except that only the first dissolution step and the first solid-liquid separation step were performed.
  • Comparative Example 2 In this comparative example, a 1M NaOH solution is added to the object to be treated, the pH is adjusted to 14, and the mixture is further stirred for 30 minutes. Thereafter, the filter paper is set in a filter, and a solid liquid is obtained using a vacuum pump. Separation was performed.
  • the processing conditions in the methods of the respective examples and comparative examples are summarized in Table 1.
  • the phosphorus content in the solid phase separated in the first solid-liquid separation step was 5% by mass or less, and was separated in the first solid-liquid separation step.
  • the heavy metal content in the solid phase is 1% or less of the initial content
  • the phosphorus content in the liquid phase separated in the second solid-liquid separation step is 1% by mass.
  • the content of heavy metals in the liquid phase separated in the second solid-liquid separation step is 1% by mass or less
  • in the solid phase separated in the third solid-liquid separation step The phosphorus content was 5% by mass or less
  • the heavy metal content in the solid phase separated in the third solid-liquid separation step was 90% or more of the initial content.
  • the heavy metal content in the solid phase separated in the fourth solid-liquid separation step was 0.1% or less of the initial content.
  • the phosphorus content was 60% or more of the initial content (the maximum was 85%).
  • the phosphorus elution amount and precipitation amount were calculated from the results obtained by quantifying the phosphoric acid concentration by molybdenum blue absorptiometry.
  • the behavior of metals and heavy metals during elution and precipitation was calculated by ICP spectroscopic analysis (ICP-AES), ICP mass spectrometry (ICP-MS), and elemental analysis equipment.
  • ICP-AES ICP spectroscopic analysis
  • ICP-MS ICP mass spectrometry
  • elemental analysis equipment ICP spectrometry
  • the identification of the precipitate was performed using an X-ray diffraction (XRD) method and an ICP-MS method.
  • heavy metals and phosphorus can be suitably separated from the workpiece.
  • the object for which the phosphorus extraction amount was determined as described above for each of the above examples, the solid (solid phase) separated in the fourth solid-liquid separation step, and for Comparative Examples 1 and 2,
  • the content of heavy metals relative to the total solid content contained in the liquid phase separated by liquid was determined, in the present invention, the content of heavy metals in the second solid in which phosphorus migrated from the object to be processed at a high ratio, It was very low. Therefore, the separated second solid can be suitably used for fertilizers and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Water Supply & Treatment (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Hydrology & Water Resources (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Removal Of Specific Substances (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本発明の重金属の分離方法は、リンおよび重金属を含む被処理物と酸性の液体とを混合し、前記被処理物中に含まれるリンおよび重金属を溶解させる第1の溶解工程と、リンおよび重金属が溶解した第1の液体を固体成分と分離する第1の固液分離工程と、前記第1の液体を析出剤と混合するとともにpHを上昇させ、リンおよび重金属を含む第1の固体を析出させる第1の析出工程と、前記第1の固体を液体成分と分離する第2の固液分離工程と、前記第1の固体中に含まれるリンをアルカリ性の液体で溶解させる第2の溶解工程と、リンが溶解した第2の液体を、重金属を含む固体成分と分離する第3の固液分離工程とを有することを特徴とする。本発明によれば、リンおよび重金属を含む被処理物から、低コストで効率よく重金属を分離することができる重金属の分離方法を提供することができる。

Description

重金属の分離方法
 本発明は、重金属の分離方法に関する。
 汚泥灰は、一般に、有用性の高い資源としてのリンを多く含んでおり、リンを分離回収し、有効利用する試みがある(例えば、特許文献1参照)。
 このように、汚泥灰は、一般に、有用性の高い資源としてのリンを多く含んでいるものの、その一方で、比較的高い含有率で重金属も含んでいる。リンとともに重金属を含んでいると、リンを有効利用するためには、あらかじめ重金属を除去する必要がある。
 しかしながら、従来の方法では、リンの回収率が低く、また、重金属の含有率を十分に低くするためには、処理に要する時間が長く、また、多大なコストがかかるという問題があった。そのため、有用成分としてのリンを含むにもかかわらず、産業廃棄物として埋め立て処分されており、資源の有効活用や環境保護の観点から大きな問題となっていた。
特許第5647838号公報
 本発明の目的は、リンおよび重金属を含む被処理物から、低コストで効率よく重金属を分離することができる重金属の分離方法を提供することにある。
 このような目的は、下記の本発明により達成される。
 本発明の重金属の分離方法は、リンおよび重金属を含む被処理物と酸性の液体とを混合し、前記被処理物中に含まれるリンおよび重金属を溶解させる第1の溶解工程と、リンおよび重金属が溶解した第1の液体を固体成分と分離する第1の固液分離工程と、前記第1の液体を析出剤と混合するとともにpHを上昇させ、リンおよび重金属を含む第1の固体を析出させる第1の析出工程と、前記第1の固体を液体成分と分離する第2の固液分離工程と、前記第1の固体中に含まれるリンをアルカリ性の液体で溶解させる第2の溶解工程と、リンが溶解した第2の液体を、重金属を含む固体成分と分離する第3の固液分離工程とを有することを特徴とする。
 本発明の重金属の分離方法では、前記第3の固液分離工程の後に、前記第2の液体を析出剤と混合するとともにpHを低下させ、リンを含む第2の固体を析出させる第2の析出工程をさらに有することが好ましい。
 本発明の重金属の分離方法では、前記第2の析出工程の終了時における液相のpHが2.0以上12.0以下であることが好ましい。
 本発明の重金属の分離方法では、前記第2の析出工程で、pHが-1.0以上2以下の酸性液体を用いることが好ましい。
 本発明の重金属の分離方法では、前記第2の析出工程で、CaCl、Ca(OH)およびCaCOよりなる群から選択される1種または2種以上を用いることが好ましい。
 本発明の重金属の分離方法では、前記第1の溶解工程で、前記酸性の液体としてpHが-1.0以上1.5以下の強酸を用いることが好ましい。
 本発明の重金属の分離方法では、前記第1の析出工程の終了時における液相のpHが1.0以上12以下であることが好ましい。
 本発明の重金属の分離方法では、前記第1の析出工程で、pHが10以上のアルカリ性液体を用いることが好ましい。
 本発明の重金属の分離方法では、前記第1の析出工程で、CaCl、Ca(OH)、CaCOおよび、Al、Mg、Fe成分を持つ塩化物よりなる群から選択される1種または2種以上を用いることが好ましい。
 本発明の重金属の分離方法では、前記第2の溶解工程で、NaOHを含む液体を用いることが好ましい。
 本発明によれば、リンおよび重金属を含む被処理物から、低コストで効率よく重金属を分離することができる重金属の分離方法を提供することができる。
図1は、第1の析出工程の終了時における液相のpHと、最終的なリンの回収率との関係を模式的に示す図である。 図2は、実施例1、2および3についての、第1の析出工程の終了時における液相のpHと、析出物のX線回折(XRD)パターンとの対応を示す図である。 図3は、実施例1で得られた第2の固体について、リンおよび主要金属元素の回収率(すなわち、被処理物中に含まれていた量に対する第2の固体中に含まれている量の比率)を示すグラフである。 図4は、実施例1で得られた第2の固体についての、水溶性試験、ク溶性試験の結果を示すグラフである。 図5は、被処理物(汚泥灰)について、酸処理またはアルカリ処理を施した場合のリンの溶出率と、酸・アルカリの濃度との関係の一例を示すグラフである。 図6は、第1の溶解工程での酸性の液体の温度、撹拌時間を変更した場合のリンの溶出率の変動を示すグラフである。 図7は、第1の溶解工程で各金属を溶出させた後、CaClを添加し、NaOH溶液で所定のpHに処理した場合の各金属(Al、Zn、Mn、Cu、Fe)の析出率の一例を示すグラフである。 図8は、第1の溶解工程で各重金属を溶出させた後、CaClを添加し、NaOH溶液で所定のpHに処理した場合の各重金属(As、Ni、Cd、Pd)の析出率の一例を示すグラフである。 図9は、被処理物(汚泥灰)を、所定の酸性の液体で処理した場合の処理温度と各金属の溶出率との関係の一例を示すグラフである。
 本発明の重金属の分離方法は、リンおよび重金属を含む被処理物と酸性の液体とを混合し、前記被処理物中に含まれるリンおよび重金属を溶解させる第1の溶解工程と、リンおよび重金属が溶解した第1の液体を固体成分と分離する第1の固液分離工程と、前記第1の液体を析出剤と混合するとともにpHを上昇させ、リンおよび重金属を含む第1の固体を析出させる第1の析出工程と、前記第1の固体を液体成分と分離する第2の固液分離工程と、前記第1の固体中に含まれるリンをアルカリ性の液体で溶解させる第2の溶解工程と、リンが溶解した第2の液体を、重金属を含む固体成分と分離する第3の固液分離工程とを有する。
 これにより、リンおよび重金属を含む被処理物から、低コストで効率よく重金属を分離することができる重金属の分離方法を提供することができる。
 また、上記のようなことから、例えば、産業廃棄物の量を大幅に削減することができる。より具体的には、最終的な産業廃棄物量を、例えば、被処理物の2体積%以下(例えば、約1.5体積%程度)まで減量することができる。また、産業廃棄物の処理に要する費用も大幅に削減すること(例えば、50分の1以下に削減すること)ができる。
 また、重金属を除去した後に後処理を行うことにより、リンを、重金属の含有率が極めて低い状態で回収することができる。その結果、有用性の高い資源としてのリンを、被処理物中から好適に回収し、好適に再利用することができる。また、被処理物から、非常に高い回収率(例えば、80%以上)でリンを回収することができる。
 特に、酸を用いた第1の溶解工程の後に、アルカリを用いた第1の析出工程を行うことにより、第1の析出工程で析出するリン酸塩(例えば、リン酸水素カルシウム2水和物、リン酸カルシウム等)の結晶粒径を好適に制御すること(より具体的には微結晶として析出させること)ができ、その後のアルカリを用いた第2の溶解工程で、リン酸塩を高い溶解率で溶解させることができ、リンを高い回収率で回収することができる。
 なお、本発明では、重金属とは、対応する単体金属が、25℃において、鉄の比重よりも大きい比重を有する金属元素のことをいう。
<第1の溶解工程>
 第1の溶解工程では、リンおよび重金属を含む被処理物と、酸性の液体とを混合する。
 これにより、被処理物中に含まれるリンおよび重金属を溶解させる。
 なお、被処理物中において、リンは、通常、酸化物(P等)やリン酸、リン酸塩等の形態で含まれている。本明細書では、これらの形態を含めて原子としてのリンを含む化合物(イオン性物質を含む)や当該化合物中に含まれるリン原子のことを、単にリンということがある。
 また、被処理物中において、重金属は、金属酸化物(複酸化物を含む)や単体金属、合金、金属塩等の形態で含まれている。本明細書では、これらの形態を含めて原子としての重金属を含む化合物(イオン性物質を含む)や当該化合物中に含まれる重金属原子のことを、単に重金属ということがある。また、他の元素名や元素記号で示す成分についても同様である。
 本工程で用いる被処理物は、リンおよび重金属を含んでいれば、いかなるものであってもよいが、リンおよび重金属に加え、Fe、Al、Mg等の不純物を含んでいるのが好ましい。
 これにより、本工程において、被処理物中に含まれるリンおよび重金属とともに、Fe、Al、Mg等の不純物を溶解させることができる。これらの成分は、後の第1の析出工程において、不純物として機能し、リン酸塩(特に、例えば、リン酸水素カルシウム2水和物、リン酸カルシウム等のリン酸のカルシウム塩)の結晶の粗大化をより効果的に防止することができる。その結果、形成されるリン酸塩の結晶は、比較的不安定で、アルカリ性の液体で溶解しやすくなる。その結果、第2の溶解工程で、より高い選択性で、リン酸塩を溶解させることができる。
 被処理物としては、例えば、汚泥灰を好適に用いることができる。
 汚泥灰は、一般に、重金属とともに、貴重な資源であるリンを含んでおり、また、世界各地で大量に発生している。したがって、被処理物として汚泥灰を用いることにより、産業廃棄物量の削減効果が特に大きく、貴重な資源であるリンも多量に回収できる可能性がある。また、汚泥灰は、一般に、リンおよび重金属とともに、Fe、Al、Mg等の不純物をより適切な割合で含有している。したがって、上記のようなリン酸塩の結晶粒径の制御をより好適に行うことができ、重金属の分離効率、リンの回収効率をより向上させることができる。言い換えると、被処理物として汚泥灰を用いることにより、本発明による効果がより顕著に発揮される。
 本工程で用いる酸性の液体は、特に限定されないが、pH(水素イオン指数)が-1.0以上1.5以下の強酸であるのが好ましい。
 これにより、安全性を確保しつつ、酸性の液体の使用量を抑制し、本工程を効率よく行うことができる。また、本工程での処理後の組成物(すなわち、被処理物と酸性の液体との混合物)の体積が大きくなりすぎることを効果的に防止することができる。また、その後の工程のし易さ、処理すべき廃液量の削減の観点からも好ましい。
 本工程で用いる酸性の液体のpHは、-1.0以上1.5以下であるのが好ましいが、特に、-0.5以上1.3以下であるのがより好ましく、0以上1.0以下であるのがさらに好ましい。
 これにより、前述した効果がより顕著に発揮される。
 酸性の液体としては、例えば、硫酸、硝酸、酢酸、塩酸や、これらのうちの2種以上を含む液体等を用いることができる。
 本工程の終了時における液相(すなわち、リンおよび重金属が溶解した第1の液体)のpHは、0.5以上6.8以下であるのが好ましいが、特に、1.0以上6.5以下であるのがより好ましく、1.5以上6.0以下であるのがさらに好ましい。
 これにより、リンおよび重金属をより効率よく溶出させることができ、本工程の終了時における固相中におけるリンおよび重金属の残存量をより確実に少なくすることができる。また、後の第1の析出工程より前にリンや重金属が不本意に析出することをより確実に防止することができる。
 本工程の終了時における液相中へのリンの溶解率は、70%以上であるのが好ましく、80%以上であるのがより好ましく、90%以上であるのがさらに好ましい。
 これにより、有用物質であるリンをより効率よく回収することができる。
 また、本工程は、被処理物と酸性の液体との混合物を撹拌しつつ行うのが好ましい。
 これにより、被処理物と酸性の液体とをより効率よく接触させることができ、より効率よく、リンおよび重金属を溶解させることができる。
 被処理物と酸性の液体との混合物の撹拌には、各種撹拌装置、各種混合装置を用いることができる。
 また、本工程は、バッチ式で行ってもよいし、連続式で行ってもよい。
<第1の固液分離工程>
 第1の固液分離工程では、リンおよび重金属が溶解した第1の液体を固体成分と分離する。
 これにより、重金属を実質的に含まない固体を得ることができる。このような固体は、例えば、産業廃棄物ではない一般の廃棄物として廃棄することができる。また、例えば、埋め立て用材や、レンガ、コンクリート等の構成材料として好適に利用することができる。また、このような固体は、リンの含有率が低いため、セメント原料、土地改良材として有効利用も望ましい。
 固液分離の方法は、特に限定されないが、例えば、デカンテーション、ろ過、遠心分離等が挙げられ、複数の方法を組み合わせて行ってもよい。
 また、本工程では、必要に応じて、一旦分離された固相を水等により洗浄してもよい。
 これにより、酸成分のイオン濃度、固体中のリン、重金属の含有率をより低くすることができる。
 なお、固相の洗浄に用いた液体は、回収後、先の固液分離により得られた液相と合わせて、次工程に用いてもよい。
 固液分離された固相中におけるリンの含有率は、3質量%以下であるのが好ましく、1.5質量%以下であるのがより好ましく、1.0質量%以下であるのがさらに好ましい。
 固液分離された固相中における重金属の含有率(ただし、複数種の重金属元素を含む場合には、これらの総量。以下、同様。)は、10質量%以下であるのが好ましく、1質量%以下であるのがより好ましく、0.1質量%以下であるのがさらに好ましい。
<第1の析出工程>
 第1の析出工程では、第1の固液分離工程で固体成分(固相)から分離された第1の液体を、析出剤と混合するとともにpHを上昇させ、リンおよび重金属を含む第1の固体を析出させる。特に、リンをリン酸塩(例えば、リン酸水素カルシウム2水和物、リン酸カルシウム等)として析出させる。
 これにより、後の工程における、リンおよび重金属以外を含む物質の取り扱いが容易となる。また、リンおよび重金属以外を含む物質中におけるリンおよび重金属以外の成分の含有率を低下させることができ、重金属の分離における選択性や、リンを回収における不純物の混入量を低下させることができる。
 また、このような条件でリン酸塩を析出させることにより、当該リン酸塩の核生成および成長を好適に制御することができ、当該リン酸塩を微結晶として析出させることができる。その結果、後の第2の溶解工程において、当該リン酸塩を溶解させやすくすることができ、リン(溶解状態のリン)を重金属(固体状態の重金属)から好適に分離することができる。
 また、被処理物が、リンおよび重金属とともに、Fe、Al、Mg等の不純物を含んでいると、本工程において、当該不純物がリン酸塩(特に、リン酸のカルシウム塩)の結晶の粗大化をより効果的に防止することができる。これにより、形成されるリン酸塩の結晶は、比較的不安定で、アルカリ性の液体で溶解しやすくなる。その結果、後の工程で、より高い選択性で、リン酸塩を溶解させることができる。
 本工程では、析出剤と混合するとともにpHを上昇させることができれば、どのような物質、組成物を用いてもよいが、pHが10以上のアルカリ性液体を用いるのが好ましい。
 これにより、混合物のpHを好適に上昇させることができ、リンおよび重金属を含む第1の固体をより効率よく析出させることができる。また、後の第2の固液分離工程の完了前にリンや重金属が不本意に再溶解してしまうことをより確実に防止することができる。また、本工程において析出する析出物中に含まれるリン酸塩の結晶が粗大化することをより効果的に防止することができる。
 析出剤は、リン酸塩等の析出を促進する機能を有していればよく、例えば、CaCl、Ca(OH)、CaCO等のCa系物質、Al塩等のAl系物質、Fe塩等のFe系物質、Mg塩等のMg系物質等を用いることができるが、Ca系物質を用いるのが好ましい。これにより、本工程で、リンをリン酸のカルシウム塩(例えば、リン酸水素カルシウム2水和物、リン酸カルシウム等)として析出させることができ、後の工程をより好適に行うことができる。
 本工程では、pHが10以上のアルカリ性液体を用いるのが好ましいが、当該アルカリ性液体のpHは、11以上であるのがより好ましく、12以上14以下であるのがさらに好ましい。
 これにより、前述したような効果がより顕著に発揮されるとともに、当該アルカリ性液体を容易かつ安定的に入手することができる。
 また、本工程で、アルカリ性カルシウム化合物(イオン性物質)を用いるのが好ましく、例えば、硫酸アルミニウム、硫酸鉄等の硫酸塩を用いることができるが、CaCl、Ca(OH)、CaCOおよび、Al、Mg、Fe成分を持つ塩化物(例えば、ポリ塩化アルミニウム、塩化鉄等)よりなる群から選択される1種または2種以上を用いるのがより好ましく、CaCl、Ca(OH)およびCaCOよりなる群から選択される1種または2種以上を用いるのがさらに好ましく、CaClを用いるのがもっとも好ましい。
 これにより、これらのカルシウム化合物は、析出剤として好適に機能させることができ、リン酸のカルシウム塩の一部となるカルシウム成分を系内に効率よく供給しつつ、混合物のpHを好適に調整することができる。その結果、本工程で、第1の液体に混合される物質の使用量を抑制し、本工程を効率よく進行させることができる。また、本工程での混合物中における、カルシウム含有率とpHとのバランスを好適に調整することができ、リンおよび重金属の析出効率を向上させつつ、第1の液体中における不純物の含有率をより低くすることができる。また、後の第2の固液分離工程の完了前にリンや重金属が不本意に再溶解してしまうことをより確実に防止することができる。
 本工程の終了時における液相のpHは、1.0以上12以下であるのが好ましく、1.5以上9.0以下であるのがより好ましく、2.0以上8.0以下であるのがさらに好ましい。
 これにより、後の第2の固液分離工程の完了前にリンや重金属が不本意に再溶解してしまうことをより確実に防止することができる。
 また、pHの上昇に用いる材料の使用量が必要以上に多くなることを防止しつつ、液相中に残存するリン、重金属の量をより少なくすることができる。
 また、粒径が適度に小さく、不安定なリン酸塩の結晶を多く含む析出物を得ることができる。その結果、後の第2の溶解工程で、リン酸塩をより効率よく溶解させることができる。
 これに対し、本工程の終了時における液相のpHが低すぎると、リンの析出率が低下して最終的なリンの回収率が低下する。
 また、本工程の終了時における液相のpHが高すぎると、本工程で得られる析出物(第1の固体)中に含まれるリンのアルカリ性の液体への溶解度、溶解速度が低くなり、最終的なリンの回収率が低下する。
 図1は、第1の析出工程の終了時における液相のpHと、最終的なリンの回収率との関係を模式的に示す図である。
 本工程では、以下の条件を満足するように、カルシウムを加えるのが好ましい。すなわち、本工程の終了時における系内のリンの物質量をX[mol]、カルシウムの物質量をXCa[mol]としたとき、1.0≦XCa/X≦4.0の関係を満足するのが好ましく、1.3≦XCa/X≦3.0の関係を満足するのがより好ましく、1.5≦XCa/X≦2.5の関係を満足するのがさらに好ましい。
 これにより、第1の液体中に含まれていたリンをリン酸のカルシウム塩としてより好適に析出させること(ほぼ100%析出させること)ができ、溶解状態で液相中に残存するリンの割合を特に低くさせることができる。また、本工程において析出する析出物中に含まれるリン酸のカルシウム塩の結晶が粗大化することをより効果的に防止することができる。
<第2の固液分離工程>
 第2の固液分離工程では、リンおよび重金属を含む第1の固体を、液体成分と分離する。
 これにより、高濃度のリンおよび重金属を含む固体(第1の固体)と、重金属を実質的に含まない液相とに分離することができる。また、一般に、液相中に含まれるリンの含有量は十分に少ない。
 このような液相(重金属を実質的に含まず、リンの含有量が十分に少ない液相)は、環境に対する負荷が小さく、排水しても問題がない。また、固液分離された液相は、本発明の重金属の分離方法に利用してもよい。これにより、カルシウムを比較的高い含有率で含む液体を再利用することができ、資源のさらなる有効利用の観点から好ましい。
 固液分離の方法は、特に限定されないが、例えば、デカンテーション、ろ過、遠心分離等が挙げられ、複数の方法を組み合わせて行ってもよい。
 また、本工程では、必要に応じて、一旦分離された固相を水等により洗浄してもよい。
 固液分離された液相中におけるリンの含有率は、1000ppm以下であるのが好ましく、100ppm以下であるのがより好ましく、10ppm以下であるのがさらに好ましい。
 固液分離された液相中における重金属の含有率は、4000ppm以下であるのが好ましく、500ppm以下であるのがより好ましく、0.1ppm以下であるのがさらに好ましい。
<第2の溶解工程>
 第2の溶解工程では、第1の固体中に含まれるリンをアルカリ性の液体で溶解させる。
 このようにアルカリ性の液体を用いることにより、第1の固体中に含まれる重金属の溶解を防止しつつ、リンを選択的に溶解させることができる。特に、前述したように、第1の析出工程では、所定の条件でリン酸塩を析出させているため、当該リン酸塩の核生成および成長が好適に制御され、当該リン酸塩がアルカリに溶解しやすい状態になっている。その一方で、重金属は、一般に、アルカリ性の液体には、溶解しにくい。その結果、肥料等に利用可能な有用物質としてのリンと、重金属とを好適に分離することができる。また、最終的な固体廃棄物(産業廃棄物)を少なくすることができる。
 特に、汚泥灰のような被処理物から直接選択的にリンを溶解させようとする場合(重金属の溶解を防止しつつ、リンを選択的に溶解させようとする場合)に比べて、約3倍の高溶解率でリンを溶解させることができる。
 また、前述した工程(特に、第1の固液分離工程)で、被処理物はすでに大幅に減量されているため、本工程では、小型の装置(例えば、従来の方法で用いていた処理装置の5分の1程度の体積の装置)を用いることができる。
 本工程で用いるアルカリ性の液体のpHは、特に限定されないが、10以上であるのが好ましく、11以上14以下であるのがより好ましく、12以上14以下であるのがさらに好ましい。
 これにより、重金属の再溶解を防止しつつ、リン(リン酸塩)をより効率よく溶解させることができる。また、後の第3の固液分離工程の完了前にリンが不本意に析出してしまうことをより確実に防止することができる。
 アルカリ性の液体は、液体全体としてアルカリ性を呈するものであればよく、アルカリ性の液体中に含まれるアルカリ性物質としては、例えば、NaOH、KOH、Mg(OH)、Ca(OH)、Al(OH)等の金属水酸化物、CaCO、MgCO等の金属炭酸塩、アンモニア、トリエチルアミン、アニリン等のアミン系物質等が挙げられる。
 中でも、本工程で用いるアルカリ性の液体は、アルカリ性物質として、金属水酸化物を含んでいるのが好ましく、アルカリ金属の水酸化物を含んでいるのがより好ましく、NaOHを含んでいるのがさらに好ましい。
 これにより、重金属の再溶解をより効果的に防止しつつ、第1の固体中に含まれるリンをより効率よく溶解させることができる。また、このようなアルカリ性物質は、安価でかつ入手が容易であり、コスト削減、安定的な処理等の観点からも好ましい。
 本工程の終了時における液相のpHは、特に限定されないが、10以上であるのが好ましく、11以上14以下であるのがより好ましく、12以上14以下であるのがさらに好ましい。
 これにより、重金属の再溶解をより効果的に防止しつつ、第1の固体中に含まれるリンをより効率よく溶解させることができ、pHの上昇に用いる材料の使用量が必要以上に多くなることを防止しつつ、液相中に残存するリンの量をより少なくすることができる。また、後の第3の固液分離工程の完了前にリンが不本意に析出してしまうことや重金属が不本意に溶解してしまうことをより確実に防止することができる。
<第3の固液分離工程>
 第3の固液分離工程では、リンが溶解した第2の液体を、重金属を含む固体成分と分離する。
 これにより、リンと重金属とを分離することができる。また、厳重な処理が求められる重金属を固体として取り扱うことができるため、重金属の取り扱いが容易となる。また、重金属を含む材料の体積を大幅に減少させることができるため、例えば、産業廃棄物として処理する場合であってもその処理が容易となる。また、分離された液相は、重金属を実質的に含んでいないため、産業廃棄物として処理する必要がない。
 固液分離の方法は、特に限定されないが、例えば、デカンテーション、ろ過、遠心分離等が挙げられ、複数の方法を組み合わせて行ってもよい。
 また、本工程では、必要に応じて、一旦分離された固相を水等により洗浄してもよい。
 これにより、固体中のリンの含有率をより低くすることができる。
 なお、固相の洗浄に用いた液体は、回収後、先の固液分離により得られた液相と合わせてもよい。
 固液分離された固相中におけるリンの含有率は、30質量%以下であるのが好ましく、10質量%以下であるのがより好ましく、2質量%以下であるのがさらに好ましい。
 固液分離された液相中における重金属の含有率は、1000ppm以下であるのが好ましく、10ppm以下であるのがより好ましく、0.01ppm以下であるのがさらに好ましい。
<第2の析出工程>
 本実施形態では、前述した第3の固液分離工程の後に、第2の液体を析出剤と混合するとともにpHを低下させ、リンを含む第2の固体を析出させる第2の析出工程をさらに有している。
 これにより、リンを固体状物質であるリン酸塩(例えば、リン酸水素カルシウム2水和物、リン酸カルシウム等)として取り扱うことができ、保管や輸送等をより好適に行うことができる。特に、本工程では、重金属を実質的にほぼ含まない純度の高いリン酸塩を得ることができる。
 本工程では、析出剤と混合するとともにpHを下降させることができれば、どのような物質、組成物を用いてもよいが、pHが-1.0以上2以下の酸性液体を用いるのが好ましい。
 これにより、混合物のpHを好適に低下させることができ、リンを含む第2の固体をより効率よく析出させることができる。また、後の第4の固液分離工程の完了前にリンが不本意に再溶解してしまうことをより確実に防止することができる。
 本工程では、pHが-1.0以上2以下の酸性液体を用いるのが好ましいが、当該酸性液体のpHは、-0.5以上1.3以下であるのがより好ましく、0以上1.0以下であるのがさらに好ましい。
 これにより、前述したような効果がより顕著に発揮されるとともに、当該酸性液体を容易かつ安定的に入手することができる。
 また、本工程で用いる析出剤は、リン酸塩等の析出を促進する機能を有していればよく、当該析出剤としては、例えば、CaCl、Ca(OH)、CaCO等のCa系物質、Al塩等のAl系物質、Fe塩等のFe系物質、Mg塩等のMg系物質等を用いることができる。これにより、アルカリ溶液での溶解性能を調節可能になり、さらに、リン酸塩を、肥料等に有用なリン酸金属塩やリン酸カルシウム塩として得ることができる。
 特に、本工程では、CaCl、Ca(OH)およびCaCOよりなる群から選択される1種または2種以上を用いるのがより好ましく、CaClを用いるのがより好ましい。
 これにより、リン酸のカルシウム塩の一部となるカルシウム成分を系内に効率よく供給しつつ、混合物のpHを好適に調整することができる。その結果、本工程で、第2の液体に混合される物質の使用量を抑制し、本工程を効率よく進行させることができる。また、本工程での混合物中における、カルシウム含有率とpHとのバランスを好適に調整することができ、リンの析出効率を向上させつつ、第2の固体中における不純物の含有率をより低くすることができる。また、後の第4の固液分離工程の完了前にリンが不本意に再溶解してしまうことをより確実に防止することができる。
 本工程の終了時における液相のpHは、2.0以上12.0以下であるのが好ましく2.5以上10.0以下であるのがより好ましく、3.0以上8.0以下であるのがさらに好ましい。
 これにより、後の第4の固液分離工程の完了前にリンが不本意に再溶解してしまうことをより確実に防止することができる。また、pHの上昇に用いる材料の使用量が必要以上に多くなることを防止しつつ、液相中に残存するリンの量をより少なくすることができる。
 本工程では、以下の条件を満足するように、カルシウムを加えるのが好ましい。すなわち、本工程の終了時における系内のリンの物質量をX[mol]、カルシウムの物質量をXCa[mol]としたとき、1.0≦XCa/X≦4.0の関係を満足するのが好ましく、1.3≦XCa/X≦3.0の関係を満足するのがより好ましく、1.5≦XCa/X≦2.5の関係を満足するのがさらに好ましい。
 これにより、第2の液体中に含まれていたリンをリン酸のカルシウム塩としてより好適に析出させることができ、溶解状態で液相中に残存するリンの割合を特に低くさせることができる。
<第4の固液分離工程>
 本実施形態では、前述した第2の析出工程の後に、リンを含む第2の固体(固相)と液体成分(液相)とを分離する第4の固液分離工程を有している。
 これにより、リンを含む材料を固体として扱うことができ、その取扱いが容易となる。なお、分離された液相は、重金属を実質的に含んでいないため、産業廃棄液として処理する必要がない。また、分離された液相は、リンの含有率が十分に低いため、当該液相を廃棄しても、有用資源の有効利用の観点から不利ではない。また、分離された第2の固体は、リン酸塩を高純度で含み、重金属の含有率が極めて低いため、肥料等に好適に用いることができる。特に、後処理等を行わなくても、また、後処理を行う場合であっても、簡易な処理で、肥料等に好適に用いることができる。また、固液分離された液相は、本発明の重金属の分離方法に利用してもよい。
 固液分離の方法は、特に限定されないが、例えば、デカンテーション、ろ過、遠心分離等が挙げられ、複数の方法を組み合わせて行ってもよい。
 また、本工程では、必要に応じて、一旦分離された固相を水等により洗浄してもよい。
 これにより、固体中の塩素イオンの含有率をより低くすることができる。
 なお、固相の洗浄に用いた液体は、回収後、先の固液分離により得られた液相と合わせてもよい。
 固液分離された固相(第2の固体)中における重金属の含有率は、1000ppm以下であるのが好ましく、500ppm以下であるのがより好ましく、10ppm以下であるのがさらに好ましい。
 以上、本発明の好適な実施形態について説明したが、本発明は、これらに限定されない。
 例えば、本発明の重金属の分離方法は、前述した工程以外の工程(例えば、前処理工程、中間処理工程、後処理工程等)を有していてもよい。
 また、本発明の重金属の分離方法は、第1の溶解工程と、第1の固液分離工程と、第1の析出工程と、第2の固液分離工程と、第2の溶解工程と、第3の固液分離工程とを有していればよく、第2の析出工程、第4の固液分離工程は有していなくてもよい。
 以下、本発明を具体的な実施例に基づいて詳細に説明するが、本発明はこれに限定されない。
 《1》重金属、リンの分離
(実施例1)
 まず、汚泥灰を用意し、これに110℃で2時間の乾燥処理を施し、含水率を0%にした。この汚泥灰は、リン、重金属に加え、Fe、Al、Mgを含んでいた。
 次に、300mLの三角フラスコに1Mの塩酸200mLを入れ、80℃で加熱した後、汚泥灰10gをこの三角フラスコ内に添加し、マグネットスターラーを用いて40分間撹拌した。これにより、汚泥中の酸化リンをリン酸イオンとして溶出させた(第1の溶解工程)。
 60分間撹拌を行った後、ろ紙を濾過器にセットし、固液分離した(第1の固液分離工程)。
 500mLのメスフラスコを用いて、固液分離した濾液(液相)である第1の液体をメスアップし、サンプル液をした。
 サンプル液を希釈し、モリブデン青吸光度法にてリン濃度を測定し、測定結果から、リンの溶出率を算出した。溶出液の分析には、UV分光分析器を用いた。
 また、ICP-AES、ICP-MSを用いてサンプル液中の金属・重金属の濃度を求め、金属・重金属について、固相に含まれる量と液相に含まれる量とを算出した。
 次に、第1の液体を用いて調製したサンプル液に対し、溶出したリンの物質量とカルシウムの物質量との比が1:2となるように塩化カルシウムを添加し、1MのNaOH溶液を添加しながら、pHメーターを用いてpHを測定し、撹拌を行いながらリンおよび重金属を析出させた(第1の析出工程)。このとき、リンは、主にリン酸塩として析出した。
 pHを4に調整した後、さらに30分撹拌し、その後、ろ紙を濾過機にセットし、真空ポンプを用いて固液分離を行った(第2の固液分離工程)。
 500mLのメスフラスコを用いて、固液分離した濾液(液相)をメスアップした。
 メスアップした濾液を特定の割合で希釈し、モリブデン青吸光度法によりリン濃度を測定し、測定結果から、リンの析出率を算出した。リン濃度の測定には、UV分光分析器を用いた。
 また、ICP-AES、ICP-MSを用いて濾液中の金属・重金属の濃度を求め、金属・重金属について、固相に含まれる量と液相に含まれる量とを算出した。
 また、第2の固液分離工程で得られた固相については、105℃で2時間乾燥した後に、粉末にし、XRDによる分析も行った。
 第2の固液分離工程で得られた固相を、乾燥した後、200mLの1.0MのNaOH水溶液が入っている三角フラスコに投入し、60℃で20分間撹拌した。これにより、リンを再溶出させた(第2の溶解工程)。
 リンが溶解した第2の液体(液相)をろ紙で固液分離し、重金属を含む固体成分(固相)と分離した(第3の固液分離工程)。
 次に、固液分離した第2の液体に対し、第2の液体中のリンの物質量と、添加するカルシウムの物質量との比が1:2となるように塩化カルシウムを添加し、1Mの塩酸を添加しながら、pHメーターを用いてpHを測定し、撹拌を行いながら、リン酸のカルシウム塩を析出させた(第2の析出工程)。本工程は、液温が20℃以上80℃以下となるようにして行った。
 pHを2.0~12の間で調整しながら、さらに60分間撹拌した後、固液分離を行い、主としてリン酸のカルシウム塩で構成された固体を得た(第4の固液分離工程)。
(実施例2~5)
 第1の析出工程の終了時におけるpHを表1に示すように変更した以外は、前記実施例1と同様にして、被処理物からの重金属、リンの分離を行った。
(比較例1)
 本比較例では、第1の溶解工程および第1の固液分離工程のみを行った以外は、前記実施例1と同様にして、被処理物からの重金属、リンの分離を行った。
(比較例2)
 本比較例では、被処理物に対し、1MのNaOH溶液を添加し、pHを14に調整した後、さらに30分撹拌し、その後、ろ紙を濾過機にセットし、真空ポンプを用いて固液分離を行った。
 前記各実施例および前記各比較例の方法での処理条件を表1にまとめて示す。なお、前記各実施例では、第1の固液分離工程で分離された固相中におけるリンの含有率は、いずれも、5質量%以下であり、第1の固液分離工程で分離された固相中における重金属の含有率は、いずれも、初期含有率の1%以下であり、第2の固液分離工程で分離された液相中におけるリンの含有率は、いずれも、1質量%以下であり、第2の固液分離工程で分離された液相中における重金属の含有率は、いずれも、1質量%以下であり、第3の固液分離工程で分離された固相中におけるリンの含有率は、いずれも、5質量%以下であり、第3の固液分離工程で分離された固相中における重金属の含有率は、いずれも、初期含有率の90%以上であった。第4の固液分離工程で分離された固相中における重金属の含有率は、いずれも、初期含有率の0.1%以下であった。リンの含有率は、初期含有率の60%以上であった(最高は85%)。
Figure JPOXMLDOC01-appb-T000001
 《2》評価
 被処理物中に含まれていたリンの総量に対する抽出されたリンの比率(前記各実施例については、第4の固液分離工程で分離された固体(固相)として回収されたリンの比率、比較例1、2については、被処理物から液相に移行したリンの比率)から求めた。
 また、上記のようにしてリンの抽出量を求めた対象物(前記各実施例については、第4の固液分離工程で分離された固体(固相)、比較例1、2については、固液分離された液相)に含まれる全固形分に対する重金属の含有率を求めた。
 なお、リンの溶出量、析出量は、モリブデン青吸光光度法によりリン酸濃度を定量し、その結果から算出した。また、溶出、析出時の金属・重金属の挙動は、ICP分光分析(ICP-AES)・ICP質量分析(ICP-MS)・元素分析機器により算出した。また、析出物の同定は、X線回折(XRD)法とICP-MS法を用いて行った。
 これらの結果を表2にまとめて示す。
 なお、実施例1、2および3についての、第1の析出工程の終了時における液相のpHと、析出物のX線回折(XRD)パターンとの対応を図2に示した。
Figure JPOXMLDOC01-appb-T000002
 本発明では、被処理物から重金属およびリンを、好適に分離することができた。
 また、上記のようにしてリンの抽出量を求めた対象物(前記各実施例については、第4の固液分離工程で分離された固体(固相)、比較例1、2については、固液分離された液相)に含まれる全固形分に対する重金属の含有率を求めたところ、本発明では、被処理物から高い比率でリンが移行した第2の固体中における重金属の含有率は、非常に低かった。したがって、分離された第2の固体は、肥料等に好適に利用することができるものであった。
 これに対し、比較例では満足のいく結果が得られなかった。すなわち、比較例1では、被処理物から高い割合で重金属およびリンを抽出することができたものの、重金属とリンとを分離することはできなかった。また、比較例2では、リンの抽出率が特に低かった。
 実施例1で得られた第2の固体について、リンおよび主要金属元素の回収率(被処理物中に含まれていた量に対する第2の固体中に含まれている量の比率)を図3に示す。なお、第2の固体中におけるヒ素(As)回収率は、他の重金属に比べると高いが、第2の固体中におけるヒ素の含有率は46.4mg/kgであり、肥料の基準値である1400mg/kgを大幅に下回っており、安全性に問題はないと考えられる。
 また、前記各実施例で得られた第2の固体について、肥料としての適性を評価する目的で、独立行政法人農林水産消費安全技術センター(FAMIC)により定められている肥料分析法を参考に、水溶性試験およびク溶性試験を行った。
 水溶性試験では、試料(第2の固体):0.15gに対し溶媒(水)量を12mLとし、常温で30分間撹拌した後、固液分離し、溶解したリン濃度をモリブデン青吸光光度法で測定し、リン溶出率を算出した。
 ク溶性試験では、試料(第2の固体):0.10gに対しクエン酸水溶液8mLを添加し、30℃で60分間撹拌しながら溶出を行った。ここで、用いたクエン酸溶液は、100gのクエン酸一水和物を水100mLに溶かし、その溶液を5倍希釈したものである。
 その結果、前記各実施例で得られた第2の固体は、いずれも、水での溶出量が少ない一方で、クエン酸溶出量が多かった。
 代表的に、実施例1で得られた第2の固体についての、水溶性試験、ク溶性試験の結果を図4に示す。
 また、第1の溶解工程で用いる酸性の液体を、pHが-1.0以上1.5以下の範囲で変更した以外は、前記実施例と同様の方法を行ったところ、前記と同様の結果が得られた。
 また、第1の析出工程の終了時おける液相のpHが2.0以上10以下となるようにアルカリ性液体の使用量を変更した以外は、前記実施例と同様の方法を行ったところ、前記と同様の結果が得られた。
 また、第1の析出工程の終了時における系内のリンの物質量をX[mol]、カルシウムの物質量をXCa[mol]としたとき、XCa/Xの値が1.3以上3.0以下となるように析出剤の使用量を変更した以外は、前記実施例と同様の方法を行ったところ、前記と同様の結果が得られた。
 また、第2の析出工程の終了時における液相のpHが2.0以上12.0以下となるように酸性液体の使用量を変更した以外は、前記実施例と同様の方法を行ったところ、前記と同様の結果が得られた。
 また、第2の析出工程で用いる酸性液体を、pHが-1.0以上2以下の範囲で変更した以外は、前記実施例と同様の方法を行ったところ、前記と同様の結果が得られた。
 また、第2の析出工程の終了時における系内のリンの物質量をX[mol]、カルシウムの物質量をXCa[mol]としたとき、XCa/Xの値が1.3以上3.0以下となるように析出剤の使用量を変更した以外は、前記実施例と同様の方法を行ったところ、前記と同様の結果が得られた。
 また、第1の析出工程、第2の析出工程で、CaClの代わりに、Ca(OH)およびCaCOを用いた以外は、前記実施例と同様の方法を行ったところ、前記と同様の結果が得られた。
 また、被処理物(汚泥灰)について、酸処理またはアルカリ処理を施した場合のリンの溶出率と、酸・アルカリの濃度との関係の一例を図5に示す。
 また、第1の溶解工程での酸性の液体の温度、撹拌時間を変更した場合のリンの溶出率の変動を図6に示す。
 また、被処理物(汚泥灰)を第1の溶解工程で各金属を溶出させた後、CaClを添加し、NaOH溶液で所定のpHに処理した場合の各金属(Al、Zn、Mn、Cu、Fe)の析出率の一例を図7に示し、被処理物(汚泥灰)を第1の溶解工程で各重金属を溶出させた後、CaClを添加し、NaOH溶液で所定のpHに処理した場合の各重金属(As、Ni、Cd、Pd)の析出率の一例を図8に示す。
 また、被処理物(汚泥灰)を、所定の酸性の液体で処理した場合の処理温度と各金属の溶出率との関係の一例を図9に示す。
 本発明の重金属の分離方法は、リンおよび重金属を含む被処理物と酸性の液体とを混合し、前記被処理物中に含まれるリンおよび重金属を溶解させる第1の溶解工程と、リンおよび重金属が溶解した第1の液体を固体成分と分離する第1の固液分離工程と、前記第1の液体を析出剤と混合するとともにpHを上昇させ、リンおよび重金属を含む第1の固体を析出させる第1の析出工程と、前記第1の固体を液体成分と分離する第2の固液分離工程と、前記第1の固体中に含まれるリンをアルカリ性の液体で溶解させる第2の溶解工程と、リンが溶解した第2の液体を、重金属を含む固体成分と分離する第3の固液分離工程とを有する。そのため、リンおよび重金属を含む被処理物から、低コストで効率よく重金属を分離することができる重金属の分離方法を提供することができる。したがって、本発明の重金属の分離方法は、産業上の利用可能性を有する。

Claims (10)

  1.  リンおよび重金属を含む被処理物と酸性の液体とを混合し、前記被処理物中に含まれるリンおよび重金属を溶解させる第1の溶解工程と、
     リンおよび重金属が溶解した第1の液体を固体成分と分離する第1の固液分離工程と、
     前記第1の液体を析出剤と混合するとともにpHを上昇させ、リンおよび重金属を含む第1の固体を析出させる第1の析出工程と、
     前記第1の固体を液体成分と分離する第2の固液分離工程と、
     前記第1の固体中に含まれるリンをアルカリ性の液体で溶解させる第2の溶解工程と、
     リンが溶解した第2の液体を、重金属を含む固体成分と分離する第3の固液分離工程とを有することを特徴とする重金属の分離方法。
  2.  前記第3の固液分離工程の後に、前記第2の液体を析出剤と混合するとともにpHを低下させ、リンを含む第2の固体を析出させる第2の析出工程をさらに有する請求項1に記載の重金属の分離方法。
  3.  前記第2の析出工程の終了時における液相のpHが2.0以上12.0以下である請求項2に記載の重金属の分離方法。
  4.  前記第2の析出工程で、pHが-1.0以上2以下の酸性液体を用いる請求項2または3に記載の重金属の分離方法。
  5.  前記第2の析出工程で、CaCl、Ca(OH)およびCaCOよりなる群から選択される1種または2種以上を用いる請求項2ないし4のいずれか1項に記載の重金属の分離方法。
  6.  前記第1の溶解工程で、前記酸性の液体としてpHが-1.0以上1.5以下の強酸を用いる請求項1ないし5のいずれか1項に記載の重金属の分離方法。
  7.  前記第1の析出工程の終了時における液相のpHが1.0以上12以下である請求項1ないし6のいずれか1項に記載の重金属の分離方法。
  8.  前記第1の析出工程で、pHが10以上のアルカリ性液体を用いる請求項1ないし7のいずれか1項に記載の重金属の分離方法。
  9.  前記第1の析出工程で、CaCl、Ca(OH)、CaCOおよび、Al、Mg、Fe成分を持つ塩化物よりなる群から選択される1種または2種以上を用いる請求項1ないし8のいずれか1項に記載の重金属の分離方法。
  10.  前記第2の溶解工程で、NaOHを含む液体を用いる請求項1ないし9のいずれか1項に記載の重金属の分離方法。
PCT/JP2018/021139 2017-06-07 2018-06-01 重金属の分離方法 WO2018225638A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019523501A JP7137223B2 (ja) 2017-06-07 2018-06-01 重金属の分離方法
CN201880047299.2A CN111315500A (zh) 2017-06-07 2018-06-01 重金属的分离方法
KR1020197038307A KR102416448B1 (ko) 2017-06-07 2018-06-01 중금속의 분리방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017112428 2017-06-07
JP2017-112428 2017-06-07

Publications (1)

Publication Number Publication Date
WO2018225638A1 true WO2018225638A1 (ja) 2018-12-13

Family

ID=64566496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021139 WO2018225638A1 (ja) 2017-06-07 2018-06-01 重金属の分離方法

Country Status (4)

Country Link
JP (1) JP7137223B2 (ja)
KR (1) KR102416448B1 (ja)
CN (1) CN111315500A (ja)
WO (1) WO2018225638A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020192483A (ja) * 2019-05-24 2020-12-03 国立大学法人 新潟大学 処理方法
CN113683221A (zh) * 2021-06-25 2021-11-23 安徽浩悦环境科技有限责任公司 一种磷酸氨基盐废液处理的装置及其处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10101332A (ja) * 1996-09-27 1998-04-21 Mie Pref Gov 酸処理による焼却灰からのカルシウム、リン、金属の分別回収法
JP2001130903A (ja) * 1999-08-23 2001-05-15 Nkk Plant Engineering Corp リン酸塩回収方法
JP2010132465A (ja) * 2008-12-02 2010-06-17 Hiroshima Univ 有機物焼却灰からのリン回収方法及び肥料の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143573A (en) 1975-06-06 1976-12-09 Furukawa Electric Co Ltd:The Process for removing heavy metals in waste fluid
JP4243649B2 (ja) 2002-12-24 2009-03-25 川崎市 汚泥焼却灰からリン酸カルシウムおよび水酸化アルミニウムを製造する方法
KR101153739B1 (ko) * 2009-12-17 2012-06-07 명장엔비텍 주식회사 폐수로부터 인산 성분을 회수하는 방법
WO2014177228A1 (en) 2013-05-03 2014-11-06 Outotec (Finland) Oy Process and plant for separating heavy metals from phosphoric starting material
CN103951112B (zh) * 2014-05-13 2016-06-01 中国科学院城市环境研究所 一种去除废水磷回收产品中重金属的方法
CN105772484B (zh) * 2016-03-23 2017-12-19 武汉纺织大学 一种城市生活污泥焚烧灰渣无害化处理技术及磷化合物的回收方法
CN106430136B (zh) * 2016-09-08 2018-04-27 张国闽 一种从污泥单独焚烧灰渣中回收磷和去除重金属的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10101332A (ja) * 1996-09-27 1998-04-21 Mie Pref Gov 酸処理による焼却灰からのカルシウム、リン、金属の分別回収法
JP2001130903A (ja) * 1999-08-23 2001-05-15 Nkk Plant Engineering Corp リン酸塩回収方法
JP2010132465A (ja) * 2008-12-02 2010-06-17 Hiroshima Univ 有機物焼却灰からのリン回収方法及び肥料の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ORIHARA, YUYA ET AL.: "Development of method for highly efficiently collecting phosphorus, and removal of heavy metal", LECTURE PROGRAMS OF THE 80TH (2015) ANNUAL RESEARCH PRESENTATION OF THE SOCIETY OF CHEMICAL ENGINEERS , JAPAN, March 2015 (2015-03-01) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020192483A (ja) * 2019-05-24 2020-12-03 国立大学法人 新潟大学 処理方法
JP7221529B2 (ja) 2019-05-24 2023-02-14 国立大学法人 新潟大学 処理方法
CN113683221A (zh) * 2021-06-25 2021-11-23 安徽浩悦环境科技有限责任公司 一种磷酸氨基盐废液处理的装置及其处理方法

Also Published As

Publication number Publication date
JP7137223B2 (ja) 2022-09-14
JPWO2018225638A1 (ja) 2020-07-30
CN111315500A (zh) 2020-06-19
KR20200012921A (ko) 2020-02-05
KR102416448B1 (ko) 2022-07-01

Similar Documents

Publication Publication Date Title
KR101093557B1 (ko) 철광석 폐수를 이용한 하수 또는 폐수에 포함된 인과 질소의 처리방법
CN113474069B (zh) 从含镍和钴的氢氧化物制造含镍和钴的溶液的制造方法
WO2016069263A1 (en) Method for removing iron in the manufacture of phosphoric acid
AU2015310078A1 (en) Method for separating scandium
Kumbasar et al. Separation and concentration of cobalt from ammoniacal solutions containing cobalt and nickel by emulsion liquid membranes using 5, 7-dibromo-8-hydroxyquinoline (DBHQ)
US11214849B2 (en) Method for recovering scandium
JP2017014605A (ja) 希土類元素の回収方法
WO2018225638A1 (ja) 重金属の分離方法
CN1821117B (zh) 废水的处理方法
JPH0517832A (ja) 廃リチウム電池からのリチウム回収方法
CN112771185B (zh) 对磷石膏中的稀土进行提纯和浓缩的工艺
CN101041496B (zh) 含氟离子的排水的处理方法及排水处理剂
JP7331329B2 (ja) 液体肥料の製造方法
TWI694057B (zh) 石膏的製造方法及水泥組成物的製造方法
JP2011161386A (ja) チオ亜ヒ酸塩の処理方法
JP7221529B2 (ja) 処理方法
JP7284596B2 (ja) 二水石膏の製造方法
JP2006083457A (ja) 亜鉛浸出残渣等の処理方法
Eyupoglu et al. Separation of Co (II) from zinc plant acidic thiocyanate leach solutions containing Co (II) and Ni (II) by solvent extraction using Trioctylamine in Toluene
JP2023011213A (ja) 処理方法
AU746788B2 (en) Process for the treatment of fluoboric electrolyte sludges
JP6901807B1 (ja) セレン酸イオンを含む水の処理方法
JP2024078487A (ja) 不純物を含む有機溶媒から有機系不純物を除去する除去方法
JP2024086132A (ja) 不純物を含む有機溶媒から有機系不純物を除去する除去方法
JP2508543B2 (ja) インジウム塩類水溶液の精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18812809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523501

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197038307

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18812809

Country of ref document: EP

Kind code of ref document: A1