WO2018225638A1 - 重金属の分離方法 - Google Patents
重金属の分離方法 Download PDFInfo
- Publication number
- WO2018225638A1 WO2018225638A1 PCT/JP2018/021139 JP2018021139W WO2018225638A1 WO 2018225638 A1 WO2018225638 A1 WO 2018225638A1 JP 2018021139 W JP2018021139 W JP 2018021139W WO 2018225638 A1 WO2018225638 A1 WO 2018225638A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid
- solid
- phosphorus
- heavy metal
- less
- Prior art date
Links
- 229910001385 heavy metal Inorganic materials 0.000 title claims abstract description 163
- 238000000034 method Methods 0.000 title claims abstract description 47
- 239000007788 liquid Substances 0.000 claims abstract description 190
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 174
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 172
- 239000011574 phosphorus Substances 0.000 claims abstract description 171
- 238000000926 separation method Methods 0.000 claims abstract description 99
- 239000007787 solid Substances 0.000 claims abstract description 80
- 238000001556 precipitation Methods 0.000 claims abstract description 60
- 238000004090 dissolution Methods 0.000 claims abstract description 45
- 230000002378 acidificating effect Effects 0.000 claims abstract description 29
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 15
- 239000007791 liquid phase Substances 0.000 claims description 49
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 33
- 230000001376 precipitating effect Effects 0.000 claims description 16
- 229910052742 iron Inorganic materials 0.000 claims description 11
- 238000002156 mixing Methods 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 229910052749 magnesium Inorganic materials 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 7
- 150000001805 chlorine compounds Chemical class 0.000 claims description 2
- 229910019142 PO4 Inorganic materials 0.000 description 27
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 27
- 235000021317 phosphate Nutrition 0.000 description 27
- 239000007790 solid phase Substances 0.000 description 27
- 239000010452 phosphate Substances 0.000 description 26
- 239000011575 calcium Substances 0.000 description 24
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 20
- 239000000126 substance Substances 0.000 description 19
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000010802 sludge Substances 0.000 description 18
- 239000000463 material Substances 0.000 description 17
- 239000002184 metal Substances 0.000 description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- 238000011084 recovery Methods 0.000 description 14
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 13
- 229910052791 calcium Inorganic materials 0.000 description 13
- 239000000243 solution Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 10
- 239000002440 industrial waste Substances 0.000 description 10
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- 238000010828 elution Methods 0.000 description 9
- 239000012535 impurity Substances 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- 159000000007 calcium salts Chemical class 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000001506 calcium phosphate Substances 0.000 description 7
- 229910000389 calcium phosphate Inorganic materials 0.000 description 7
- 235000011010 calcium phosphates Nutrition 0.000 description 7
- 239000003337 fertilizer Substances 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 239000003513 alkali Substances 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- XAAHAAMILDNBPS-UHFFFAOYSA-L calcium hydrogenphosphate dihydrate Chemical compound O.O.[Ca+2].OP([O-])([O-])=O XAAHAAMILDNBPS-UHFFFAOYSA-L 0.000 description 5
- 235000019700 dicalcium phosphate Nutrition 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 229910052785 arsenic Inorganic materials 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000010908 decantation Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- -1 double oxides) Chemical class 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 239000012488 sample solution Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 229960004106 citric acid Drugs 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 229940043430 calcium compound Drugs 0.000 description 2
- 150000001674 calcium compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 239000013081 microcrystal Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- YASYEJJMZJALEJ-UHFFFAOYSA-N Citric acid monohydrate Chemical compound O.OC(=O)CC(O)(C(O)=O)CC(O)=O YASYEJJMZJALEJ-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000000956 alloy Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- YYRMJZQKEFZXMX-UHFFFAOYSA-L calcium bis(dihydrogenphosphate) Chemical compound [Ca+2].OP(O)([O-])=O.OP(O)([O-])=O YYRMJZQKEFZXMX-UHFFFAOYSA-L 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 229960002303 citric acid monohydrate Drugs 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004889 fertilizer analysis Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910001463 metal phosphate Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- IBIRZFNPWYRWOG-UHFFFAOYSA-N phosphane;phosphoric acid Chemical compound P.OP(O)(O)=O IBIRZFNPWYRWOG-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
- B09B3/80—Destroying solid waste or transforming solid waste into something useful or harmless involving an extraction step
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/32—Phosphates of magnesium, calcium, strontium, or barium
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
- C02F1/62—Heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/04—Extraction of metal compounds from ores or concentrates by wet processes by leaching
- C22B3/06—Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/44—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/20—Waste processing or separation
Definitions
- the present invention relates to a method for separating heavy metals.
- the heavy metal separation method of the present invention includes a first dissolution step of mixing an object liquid containing phosphorus and heavy metal with an acidic liquid, and dissolving phosphorus and heavy metal contained in the object to be processed, and phosphorus and heavy metal.
- a first solid-liquid separation step of separating the first liquid in which the solution is dissolved from the solid component, and mixing the first liquid with a precipitating agent and raising the pH, thereby precipitating the first solid containing phosphorus and heavy metal A first precipitation step, a second solid-liquid separation step of separating the first solid from a liquid component, and a second dissolution step of dissolving phosphorus contained in the first solid with an alkaline liquid
- a third solid-liquid separation step for separating the second liquid in which phosphorus is dissolved from the solid component containing heavy metal.
- the pH of the liquid phase at the end of the second precipitation step is preferably 2.0 or more and 12.0 or less.
- FIG. 1 is a diagram schematically showing the relationship between the pH of the liquid phase at the end of the first precipitation step and the final phosphorus recovery rate.
- FIG. 2 is a diagram showing the correspondence between the pH of the liquid phase at the end of the first precipitation step and the X-ray diffraction (XRD) pattern of the precipitate for Examples 1, 2, and 3.
- FIG. 3 shows the recovery rate of phosphorus and main metal elements for the second solid obtained in Example 1 (that is, the amount contained in the second solid relative to the amount contained in the workpiece). It is a graph which shows (ratio).
- FIG. 4 is a graph showing the results of the water solubility test and the solubility test for the second solid obtained in Example 1.
- FIG. 1 is a diagram schematically showing the relationship between the pH of the liquid phase at the end of the first precipitation step and the final phosphorus recovery rate.
- FIG. 2 is a diagram showing the correspondence between the pH of the liquid phase at the end of the first precipitation step and the X-ray
- FIG. 5 is a graph showing an example of the relationship between the phosphorus elution rate and the acid / alkali concentration when the object to be treated (sludge ash) is subjected to acid treatment or alkali treatment.
- FIG. 6 is a graph showing fluctuations in the dissolution rate of phosphorus when the temperature and stirring time of the acidic liquid in the first dissolution step are changed.
- FIG. 7 shows precipitation of each metal (Al, Zn, Mn, Cu, Fe) when each metal is eluted in the first dissolution step, and then CaCl 2 is added and treated with NaOH solution to a predetermined pH. It is a graph which shows an example of a rate.
- phosphorus typically oxides (P 2 O 5, etc.) and phosphoric acid
- a form such as phosphoric acid salt.
- a compound containing phosphorus as an atom including these forms (including an ionic substance) and a phosphorus atom contained in the compound may be simply referred to as phosphorus.
- the phosphorus dissolution rate in the liquid phase at the end of this step is preferably 70% or more, more preferably 80% or more, and even more preferably 90% or more. Thereby, phosphorus which is a useful substance can be recovered more efficiently.
- First deposition step In the first precipitation step, the first liquid separated from the solid component (solid phase) in the first solid-liquid separation step is mixed with the precipitation agent and the pH is increased, and the first liquid containing phosphorus and heavy metal is added. A solid is precipitated.
- phosphorus is precipitated as a phosphate (eg, calcium hydrogen phosphate dihydrate, calcium phosphate, etc.).
- any substance or composition may be used as long as it can be mixed with the precipitation agent and raise the pH, but it is preferable to use an alkaline liquid having a pH of 10 or more.
- the precipitating agent only needs to have a function of promoting precipitation of phosphate and the like.
- Ca-based materials such as CaCl 2 , Ca (OH) 2 and CaCO 3
- Al-based materials such as Al salts
- Fe Fe-based materials such as salts
- Mg-based materials such as Mg salts
- phosphorus can be deposited as a calcium salt of phosphoric acid (for example, calcium hydrogen phosphate dihydrate, calcium phosphate, etc.) in this step, and the subsequent steps can be performed more suitably.
- a precipitate having a moderately small particle size and containing a large amount of unstable phosphate crystals can be obtained.
- the phosphate can be dissolved more efficiently in the subsequent second dissolution step.
- FIG. 1 is a diagram schematically showing the relationship between the pH of the liquid phase at the end of the first precipitation step and the final phosphorus recovery rate.
- this step it is preferable to add calcium so as to satisfy the following conditions. That is, when the amount of phosphorus in the system at the end of this step is X P [mol] and the amount of calcium is X Ca [mol], 1.0 ⁇ X Ca / X P ⁇ 4.0 The relationship is preferably satisfied, the relationship 1.3 ⁇ X Ca / X P ⁇ 3.0 is more preferably satisfied, and the relationship 1.5 ⁇ X Ca / X P ⁇ 2.5 is satisfied. Is more preferable.
- phosphorus contained in the first liquid can be more preferably precipitated as a calcium salt of phosphoric acid (approximately 100% is precipitated), and the proportion of phosphorus remaining in the liquid phase in the dissolved state Can be made particularly low. Moreover, it can prevent more effectively that the crystal
- Such a liquid phase (a liquid phase that is substantially free of heavy metals and has a sufficiently low phosphorus content) has a small environmental load and can be drained without any problem.
- the liquid phase obtained by solid-liquid separation may be used in the heavy metal separation method of the present invention. Thereby, the liquid which contains calcium with a comparatively high content rate can be reused, and it is preferable from a viewpoint of the further effective utilization of resources.
- the method of solid-liquid separation is not specifically limited, For example, a decantation, filtration, centrifugation, etc. are mentioned, You may carry out combining several methods. In this step, the solid phase once separated may be washed with water or the like as necessary.
- the phosphorus content in the solid-liquid separated liquid phase is preferably 1000 ppm or less, more preferably 100 ppm or less, and even more preferably 10 ppm or less.
- the content of heavy metals in the solid-liquid separated liquid phase is preferably 4000 ppm or less, more preferably 500 ppm or less, and even more preferably 0.1 ppm or less.
- ⁇ Second dissolution step> phosphorus contained in the first solid is dissolved with an alkaline liquid.
- an alkaline liquid By using an alkaline liquid in this way, phosphorus can be selectively dissolved while preventing the dissolution of heavy metals contained in the first solid.
- phosphate is precipitated under predetermined conditions, so that the nucleation and growth of the phosphate is suitably controlled, and the phosphate becomes alkaline. It is easy to dissolve.
- heavy metals are generally difficult to dissolve in alkaline liquids.
- phosphorus as a useful substance that can be used for fertilizers and heavy metals can be suitably separated.
- the final solid waste (industrial waste) can be reduced.
- the pH of the alkaline liquid used in this step is not particularly limited, but is preferably 10 or more, more preferably 11 or more and 14 or less, and further preferably 12 or more and 14 or less.
- the alkaline liquid only needs to exhibit alkalinity as a whole liquid, and examples of the alkaline substance contained in the alkaline liquid include NaOH, KOH, Mg (OH) 2 , Ca (OH) 2 , Al (OH 3 ) Metal hydroxides such as 3 , metal carbonates such as CaCO 3 and MgCO 3 , and amine-based substances such as ammonia, triethylamine, and aniline.
- the alkaline liquid used in this step preferably contains a metal hydroxide as an alkaline substance, more preferably contains an alkali metal hydroxide, and further contains NaOH. preferable.
- the pH of the liquid phase at the end of this step is not particularly limited, but is preferably 10 or more, more preferably 11 or more and 14 or less, and still more preferably 12 or more and 14 or less.
- the method of solid-liquid separation is not particularly limited, and examples thereof include decantation, filtration, and centrifugation, and a plurality of methods may be combined.
- the solid phase once separated may be washed with water or the like as necessary. Thereby, the content rate of phosphorus in solid can be made lower.
- the liquid used for washing the solid phase may be combined with the liquid phase obtained by the previous solid-liquid separation after recovery.
- the phosphorus content in the solid-liquid separated solid phase is preferably 30% by mass or less, more preferably 10% by mass or less, and even more preferably 2% by mass or less.
- the content of heavy metal in the liquid phase subjected to solid-liquid separation is preferably 1000 ppm or less, more preferably 10 ppm or less, and even more preferably 0.01 ppm or less.
- ⁇ Second deposition step> In the present embodiment, after the third solid-liquid separation step described above, a second precipitation step of mixing the second liquid with the precipitation agent and lowering the pH to precipitate the second solid containing phosphorus is further performed. Have.
- phosphorus can be handled as a phosphate that is a solid substance (for example, calcium hydrogen phosphate dihydrate, calcium phosphate, etc.), and storage, transportation, and the like can be performed more suitably.
- a highly pure phosphate substantially free of heavy metals can be obtained.
- any substance or composition may be used as long as it can be mixed with the precipitating agent and the pH can be lowered, but an acidic liquid having a pH of ⁇ 1.0 or more and 2 or less is preferably used.
- the pH of the mixture can be suitably lowered, and the second solid containing phosphorus can be precipitated more efficiently.
- an acidic liquid having a pH of ⁇ 1.0 or more and 2 or less it is preferable to use an acidic liquid having a pH of ⁇ 1.0 or more and 2 or less, but the pH of the acidic liquid is more preferably ⁇ 0.5 or more and 1.3 or less, and 0 or more and 1. More preferably, it is 0 or less.
- precipitating agent used in this step may have a function of promoting the precipitation of such phosphates
- the precipitating agent for example, CaCl 2, Ca (OH) 2, CaCO 3 or the like
- Ca Al-based materials such as Al-based materials, Al salts, Fe-based materials such as Fe salts, Mg-based materials such as Mg salts, and the like
- the dissolution performance in an alkaline solution can be adjusted, and the phosphate can be obtained as a metal phosphate or calcium phosphate useful as a fertilizer or the like.
- this step it is more preferable to use one or more selected from the group consisting of CaCl 2 , Ca (OH) 2 and CaCO 3 , and it is more preferable to use CaCl 2 .
- this step the amount of the substance mixed with the second liquid can be suppressed, and this step can be efficiently advanced.
- the balance between the calcium content and the pH in the mixture in this step can be suitably adjusted, and the impurity content in the second solid is lowered while improving the precipitation efficiency of phosphorus. be able to.
- the pH of the liquid phase at the end of this step is preferably 2.0 or more and 12.0 or less, more preferably 2.5 or more and 10.0 or less, and 3.0 or more and 8.0 or less. Is more preferable.
- this step it is preferable to add calcium so as to satisfy the following conditions. That is, when the amount of phosphorus in the system at the end of this step is X P [mol] and the amount of calcium is X Ca [mol], 1.0 ⁇ X Ca / X P ⁇ 4.0 The relationship is preferably satisfied, the relationship 1.3 ⁇ X Ca / X P ⁇ 3.0 is more preferably satisfied, and the relationship 1.5 ⁇ X Ca / X P ⁇ 2.5 is satisfied. Is more preferable.
- phosphorus contained in the second liquid can be more suitably precipitated as a calcium salt of phosphoric acid, and the proportion of phosphorus remaining in the liquid phase in a dissolved state can be particularly reduced.
- ⁇ Fourth solid-liquid separation process> it has the 4th solid-liquid separation process of isolate
- the separated liquid phase does not need to be treated as an industrial waste liquid because it does not substantially contain heavy metals. Further, since the separated liquid phase has a sufficiently low phosphorus content, even if the liquid phase is discarded, it is not disadvantageous from the viewpoint of effective utilization of useful resources. Moreover, since the separated second solid contains phosphate in high purity and has a very low content of heavy metals, it can be suitably used for fertilizers and the like. In particular, even if no post-treatment or the like is performed, or even when post-treatment is performed, it can be suitably used as a fertilizer or the like with a simple treatment. In addition, the liquid phase obtained by solid-liquid separation may be used in the heavy metal separation method of the present invention.
- the method of solid-liquid separation is not particularly limited, and examples thereof include decantation, filtration, and centrifugation, and a plurality of methods may be combined.
- the solid phase once separated may be washed with water or the like as necessary. Thereby, the content rate of the chlorine ion in solid can be made lower.
- the liquid used for washing the solid phase may be combined with the liquid phase obtained by the previous solid-liquid separation after recovery.
- the heavy metal content in the solid-liquid separated solid phase (second solid) is preferably 1000 ppm or less, more preferably 500 ppm or less, and even more preferably 10 ppm or less.
- the heavy metal separation method of the present invention may have steps (for example, a pretreatment step, an intermediate treatment step, a post treatment step, etc.) other than the steps described above.
- the heavy metal separation method of the present invention includes a first dissolution step, a first solid-liquid separation step, a first precipitation step, a second solid-liquid separation step, and a second dissolution step. It is only necessary to have the third solid-liquid separation step, and the second precipitation step and the fourth solid-liquid separation step may not be included.
- ⁇ 1 Separation of heavy metal and phosphorus
- the filter paper was set in a filter and subjected to solid-liquid separation (first solid-liquid separation step).
- the first liquid which is the filtrate (liquid phase) separated into solid and liquid, was made up into a sample solution.
- the sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus elution rate was calculated from the measurement results.
- a UV spectroscopic analyzer was used for analysis of the eluate.
- concentrations of metals and heavy metals in the sample solution were obtained using ICP-AES and ICP-MS, and the amounts contained in the solid phase and the amounts contained in the liquid phase were calculated for the metals and heavy metals.
- the mixture was further stirred for 30 minutes, and then the filter paper was set in a filter and solid-liquid separation was performed using a vacuum pump (second solid-liquid separation step).
- the filtrate (liquid phase) separated into solid and liquid was diluted.
- the diluted filtrate was diluted at a specific ratio, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the precipitation rate of phosphorus was calculated from the measurement results.
- a UV spectroscopic analyzer was used to measure the phosphorus concentration.
- concentrations of metals and heavy metals in the filtrate were determined using ICP-AES and ICP-MS, and the amounts of metals and heavy metals contained in the solid phase and the liquid phase were calculated.
- the solid phase obtained in the second solid-liquid separation step was dried at 105 ° C. for 2 hours, then powdered and analyzed by XRD.
- the solid phase obtained in the second solid-liquid separation step was dried and then charged into an Erlenmeyer flask containing 200 mL of 1.0 M NaOH aqueous solution and stirred at 60 ° C. for 20 minutes. Thereby, phosphorus was re-eluted (second dissolution step).
- the second liquid (liquid phase) in which phosphorus was dissolved was solid-liquid separated with a filter paper and separated from a solid component (solid phase) containing heavy metal (third solid-liquid separation step).
- the mixture was further stirred for 60 minutes while adjusting the pH between 2.0 and 12, followed by solid-liquid separation to obtain a solid mainly composed of calcium phosphate phosphate (fourth solid-liquid separation step). .
- Example 5 Except that the pH at the end of the first precipitation step was changed as shown in Table 1, heavy metals and phosphorus were separated from the object to be treated in the same manner as in Example 1.
- Comparative Example 1 Heavy metals and phosphorus were separated from the object to be processed in the same manner as in Example 1 except that only the first dissolution step and the first solid-liquid separation step were performed.
- Comparative Example 2 In this comparative example, a 1M NaOH solution is added to the object to be treated, the pH is adjusted to 14, and the mixture is further stirred for 30 minutes. Thereafter, the filter paper is set in a filter, and a solid liquid is obtained using a vacuum pump. Separation was performed.
- the processing conditions in the methods of the respective examples and comparative examples are summarized in Table 1.
- the phosphorus content in the solid phase separated in the first solid-liquid separation step was 5% by mass or less, and was separated in the first solid-liquid separation step.
- the heavy metal content in the solid phase is 1% or less of the initial content
- the phosphorus content in the liquid phase separated in the second solid-liquid separation step is 1% by mass.
- the content of heavy metals in the liquid phase separated in the second solid-liquid separation step is 1% by mass or less
- in the solid phase separated in the third solid-liquid separation step The phosphorus content was 5% by mass or less
- the heavy metal content in the solid phase separated in the third solid-liquid separation step was 90% or more of the initial content.
- the heavy metal content in the solid phase separated in the fourth solid-liquid separation step was 0.1% or less of the initial content.
- the phosphorus content was 60% or more of the initial content (the maximum was 85%).
- the phosphorus elution amount and precipitation amount were calculated from the results obtained by quantifying the phosphoric acid concentration by molybdenum blue absorptiometry.
- the behavior of metals and heavy metals during elution and precipitation was calculated by ICP spectroscopic analysis (ICP-AES), ICP mass spectrometry (ICP-MS), and elemental analysis equipment.
- ICP-AES ICP spectroscopic analysis
- ICP-MS ICP mass spectrometry
- elemental analysis equipment ICP spectrometry
- the identification of the precipitate was performed using an X-ray diffraction (XRD) method and an ICP-MS method.
- heavy metals and phosphorus can be suitably separated from the workpiece.
- the object for which the phosphorus extraction amount was determined as described above for each of the above examples, the solid (solid phase) separated in the fourth solid-liquid separation step, and for Comparative Examples 1 and 2,
- the content of heavy metals relative to the total solid content contained in the liquid phase separated by liquid was determined, in the present invention, the content of heavy metals in the second solid in which phosphorus migrated from the object to be processed at a high ratio, It was very low. Therefore, the separated second solid can be suitably used for fertilizers and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Metallurgy (AREA)
- Water Supply & Treatment (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Hydrology & Water Resources (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Removal Of Specific Substances (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
第1の溶解工程では、リンおよび重金属を含む被処理物と、酸性の液体とを混合する。
これにより、被処理物中に含まれるリンおよび重金属を溶解させる。
汚泥灰は、一般に、重金属とともに、貴重な資源であるリンを含んでおり、また、世界各地で大量に発生している。したがって、被処理物として汚泥灰を用いることにより、産業廃棄物量の削減効果が特に大きく、貴重な資源であるリンも多量に回収できる可能性がある。また、汚泥灰は、一般に、リンおよび重金属とともに、Fe、Al、Mg等の不純物をより適切な割合で含有している。したがって、上記のようなリン酸塩の結晶粒径の制御をより好適に行うことができ、重金属の分離効率、リンの回収効率をより向上させることができる。言い換えると、被処理物として汚泥灰を用いることにより、本発明による効果がより顕著に発揮される。
これにより、前述した効果がより顕著に発揮される。
これにより、有用物質であるリンをより効率よく回収することができる。
これにより、被処理物と酸性の液体とをより効率よく接触させることができ、より効率よく、リンおよび重金属を溶解させることができる。
被処理物と酸性の液体との混合物の撹拌には、各種撹拌装置、各種混合装置を用いることができる。
また、本工程は、バッチ式で行ってもよいし、連続式で行ってもよい。
第1の固液分離工程では、リンおよび重金属が溶解した第1の液体を固体成分と分離する。
これにより、酸成分のイオン濃度、固体中のリン、重金属の含有率をより低くすることができる。
第1の析出工程では、第1の固液分離工程で固体成分(固相)から分離された第1の液体を、析出剤と混合するとともにpHを上昇させ、リンおよび重金属を含む第1の固体を析出させる。特に、リンをリン酸塩(例えば、リン酸水素カルシウム2水和物、リン酸カルシウム等)として析出させる。
第2の固液分離工程では、リンおよび重金属を含む第1の固体を、液体成分と分離する。
また、本工程では、必要に応じて、一旦分離された固相を水等により洗浄してもよい。
第2の溶解工程では、第1の固体中に含まれるリンをアルカリ性の液体で溶解させる。
このようにアルカリ性の液体を用いることにより、第1の固体中に含まれる重金属の溶解を防止しつつ、リンを選択的に溶解させることができる。特に、前述したように、第1の析出工程では、所定の条件でリン酸塩を析出させているため、当該リン酸塩の核生成および成長が好適に制御され、当該リン酸塩がアルカリに溶解しやすい状態になっている。その一方で、重金属は、一般に、アルカリ性の液体には、溶解しにくい。その結果、肥料等に利用可能な有用物質としてのリンと、重金属とを好適に分離することができる。また、最終的な固体廃棄物(産業廃棄物)を少なくすることができる。
第3の固液分離工程では、リンが溶解した第2の液体を、重金属を含む固体成分と分離する。
これにより、固体中のリンの含有率をより低くすることができる。
本実施形態では、前述した第3の固液分離工程の後に、第2の液体を析出剤と混合するとともにpHを低下させ、リンを含む第2の固体を析出させる第2の析出工程をさらに有している。
本実施形態では、前述した第2の析出工程の後に、リンを含む第2の固体(固相)と液体成分(液相)とを分離する第4の固液分離工程を有している。
これにより、固体中の塩素イオンの含有率をより低くすることができる。
(実施例1)
まず、汚泥灰を用意し、これに110℃で2時間の乾燥処理を施し、含水率を0%にした。この汚泥灰は、リン、重金属に加え、Fe、Al、Mgを含んでいた。
メスアップした濾液を特定の割合で希釈し、モリブデン青吸光度法によりリン濃度を測定し、測定結果から、リンの析出率を算出した。リン濃度の測定には、UV分光分析器を用いた。
第1の析出工程の終了時におけるpHを表1に示すように変更した以外は、前記実施例1と同様にして、被処理物からの重金属、リンの分離を行った。
本比較例では、第1の溶解工程および第1の固液分離工程のみを行った以外は、前記実施例1と同様にして、被処理物からの重金属、リンの分離を行った。
本比較例では、被処理物に対し、1MのNaOH溶液を添加し、pHを14に調整した後、さらに30分撹拌し、その後、ろ紙を濾過機にセットし、真空ポンプを用いて固液分離を行った。
被処理物中に含まれていたリンの総量に対する抽出されたリンの比率(前記各実施例については、第4の固液分離工程で分離された固体(固相)として回収されたリンの比率、比較例1、2については、被処理物から液相に移行したリンの比率)から求めた。
これらの結果を表2にまとめて示す。
また、上記のようにしてリンの抽出量を求めた対象物(前記各実施例については、第4の固液分離工程で分離された固体(固相)、比較例1、2については、固液分離された液相)に含まれる全固形分に対する重金属の含有率を求めたところ、本発明では、被処理物から高い比率でリンが移行した第2の固体中における重金属の含有率は、非常に低かった。したがって、分離された第2の固体は、肥料等に好適に利用することができるものであった。
Claims (10)
- リンおよび重金属を含む被処理物と酸性の液体とを混合し、前記被処理物中に含まれるリンおよび重金属を溶解させる第1の溶解工程と、
リンおよび重金属が溶解した第1の液体を固体成分と分離する第1の固液分離工程と、
前記第1の液体を析出剤と混合するとともにpHを上昇させ、リンおよび重金属を含む第1の固体を析出させる第1の析出工程と、
前記第1の固体を液体成分と分離する第2の固液分離工程と、
前記第1の固体中に含まれるリンをアルカリ性の液体で溶解させる第2の溶解工程と、
リンが溶解した第2の液体を、重金属を含む固体成分と分離する第3の固液分離工程とを有することを特徴とする重金属の分離方法。 - 前記第3の固液分離工程の後に、前記第2の液体を析出剤と混合するとともにpHを低下させ、リンを含む第2の固体を析出させる第2の析出工程をさらに有する請求項1に記載の重金属の分離方法。
- 前記第2の析出工程の終了時における液相のpHが2.0以上12.0以下である請求項2に記載の重金属の分離方法。
- 前記第2の析出工程で、pHが-1.0以上2以下の酸性液体を用いる請求項2または3に記載の重金属の分離方法。
- 前記第2の析出工程で、CaCl2、Ca(OH)2およびCaCO3よりなる群から選択される1種または2種以上を用いる請求項2ないし4のいずれか1項に記載の重金属の分離方法。
- 前記第1の溶解工程で、前記酸性の液体としてpHが-1.0以上1.5以下の強酸を用いる請求項1ないし5のいずれか1項に記載の重金属の分離方法。
- 前記第1の析出工程の終了時における液相のpHが1.0以上12以下である請求項1ないし6のいずれか1項に記載の重金属の分離方法。
- 前記第1の析出工程で、pHが10以上のアルカリ性液体を用いる請求項1ないし7のいずれか1項に記載の重金属の分離方法。
- 前記第1の析出工程で、CaCl2、Ca(OH)2、CaCO3および、Al、Mg、Fe成分を持つ塩化物よりなる群から選択される1種または2種以上を用いる請求項1ないし8のいずれか1項に記載の重金属の分離方法。
- 前記第2の溶解工程で、NaOHを含む液体を用いる請求項1ないし9のいずれか1項に記載の重金属の分離方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019523501A JP7137223B2 (ja) | 2017-06-07 | 2018-06-01 | 重金属の分離方法 |
CN201880047299.2A CN111315500A (zh) | 2017-06-07 | 2018-06-01 | 重金属的分离方法 |
KR1020197038307A KR102416448B1 (ko) | 2017-06-07 | 2018-06-01 | 중금속의 분리방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017112428 | 2017-06-07 | ||
JP2017-112428 | 2017-06-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018225638A1 true WO2018225638A1 (ja) | 2018-12-13 |
Family
ID=64566496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/021139 WO2018225638A1 (ja) | 2017-06-07 | 2018-06-01 | 重金属の分離方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7137223B2 (ja) |
KR (1) | KR102416448B1 (ja) |
CN (1) | CN111315500A (ja) |
WO (1) | WO2018225638A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020192483A (ja) * | 2019-05-24 | 2020-12-03 | 国立大学法人 新潟大学 | 処理方法 |
CN113683221A (zh) * | 2021-06-25 | 2021-11-23 | 安徽浩悦环境科技有限责任公司 | 一种磷酸氨基盐废液处理的装置及其处理方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10101332A (ja) * | 1996-09-27 | 1998-04-21 | Mie Pref Gov | 酸処理による焼却灰からのカルシウム、リン、金属の分別回収法 |
JP2001130903A (ja) * | 1999-08-23 | 2001-05-15 | Nkk Plant Engineering Corp | リン酸塩回収方法 |
JP2010132465A (ja) * | 2008-12-02 | 2010-06-17 | Hiroshima Univ | 有機物焼却灰からのリン回収方法及び肥料の製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51143573A (en) | 1975-06-06 | 1976-12-09 | Furukawa Electric Co Ltd:The | Process for removing heavy metals in waste fluid |
JP4243649B2 (ja) | 2002-12-24 | 2009-03-25 | 川崎市 | 汚泥焼却灰からリン酸カルシウムおよび水酸化アルミニウムを製造する方法 |
KR101153739B1 (ko) * | 2009-12-17 | 2012-06-07 | 명장엔비텍 주식회사 | 폐수로부터 인산 성분을 회수하는 방법 |
WO2014177228A1 (en) | 2013-05-03 | 2014-11-06 | Outotec (Finland) Oy | Process and plant for separating heavy metals from phosphoric starting material |
CN103951112B (zh) * | 2014-05-13 | 2016-06-01 | 中国科学院城市环境研究所 | 一种去除废水磷回收产品中重金属的方法 |
CN105772484B (zh) * | 2016-03-23 | 2017-12-19 | 武汉纺织大学 | 一种城市生活污泥焚烧灰渣无害化处理技术及磷化合物的回收方法 |
CN106430136B (zh) * | 2016-09-08 | 2018-04-27 | 张国闽 | 一种从污泥单独焚烧灰渣中回收磷和去除重金属的方法 |
-
2018
- 2018-06-01 WO PCT/JP2018/021139 patent/WO2018225638A1/ja active Application Filing
- 2018-06-01 JP JP2019523501A patent/JP7137223B2/ja active Active
- 2018-06-01 CN CN201880047299.2A patent/CN111315500A/zh active Pending
- 2018-06-01 KR KR1020197038307A patent/KR102416448B1/ko active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10101332A (ja) * | 1996-09-27 | 1998-04-21 | Mie Pref Gov | 酸処理による焼却灰からのカルシウム、リン、金属の分別回収法 |
JP2001130903A (ja) * | 1999-08-23 | 2001-05-15 | Nkk Plant Engineering Corp | リン酸塩回収方法 |
JP2010132465A (ja) * | 2008-12-02 | 2010-06-17 | Hiroshima Univ | 有機物焼却灰からのリン回収方法及び肥料の製造方法 |
Non-Patent Citations (1)
Title |
---|
ORIHARA, YUYA ET AL.: "Development of method for highly efficiently collecting phosphorus, and removal of heavy metal", LECTURE PROGRAMS OF THE 80TH (2015) ANNUAL RESEARCH PRESENTATION OF THE SOCIETY OF CHEMICAL ENGINEERS , JAPAN, March 2015 (2015-03-01) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020192483A (ja) * | 2019-05-24 | 2020-12-03 | 国立大学法人 新潟大学 | 処理方法 |
JP7221529B2 (ja) | 2019-05-24 | 2023-02-14 | 国立大学法人 新潟大学 | 処理方法 |
CN113683221A (zh) * | 2021-06-25 | 2021-11-23 | 安徽浩悦环境科技有限责任公司 | 一种磷酸氨基盐废液处理的装置及其处理方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7137223B2 (ja) | 2022-09-14 |
JPWO2018225638A1 (ja) | 2020-07-30 |
CN111315500A (zh) | 2020-06-19 |
KR20200012921A (ko) | 2020-02-05 |
KR102416448B1 (ko) | 2022-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101093557B1 (ko) | 철광석 폐수를 이용한 하수 또는 폐수에 포함된 인과 질소의 처리방법 | |
CN113474069B (zh) | 从含镍和钴的氢氧化物制造含镍和钴的溶液的制造方法 | |
WO2016069263A1 (en) | Method for removing iron in the manufacture of phosphoric acid | |
AU2015310078A1 (en) | Method for separating scandium | |
Kumbasar et al. | Separation and concentration of cobalt from ammoniacal solutions containing cobalt and nickel by emulsion liquid membranes using 5, 7-dibromo-8-hydroxyquinoline (DBHQ) | |
US11214849B2 (en) | Method for recovering scandium | |
JP2017014605A (ja) | 希土類元素の回収方法 | |
WO2018225638A1 (ja) | 重金属の分離方法 | |
CN1821117B (zh) | 废水的处理方法 | |
JPH0517832A (ja) | 廃リチウム電池からのリチウム回収方法 | |
CN112771185B (zh) | 对磷石膏中的稀土进行提纯和浓缩的工艺 | |
CN101041496B (zh) | 含氟离子的排水的处理方法及排水处理剂 | |
JP7331329B2 (ja) | 液体肥料の製造方法 | |
TWI694057B (zh) | 石膏的製造方法及水泥組成物的製造方法 | |
JP2011161386A (ja) | チオ亜ヒ酸塩の処理方法 | |
JP7221529B2 (ja) | 処理方法 | |
JP7284596B2 (ja) | 二水石膏の製造方法 | |
JP2006083457A (ja) | 亜鉛浸出残渣等の処理方法 | |
Eyupoglu et al. | Separation of Co (II) from zinc plant acidic thiocyanate leach solutions containing Co (II) and Ni (II) by solvent extraction using Trioctylamine in Toluene | |
JP2023011213A (ja) | 処理方法 | |
AU746788B2 (en) | Process for the treatment of fluoboric electrolyte sludges | |
JP6901807B1 (ja) | セレン酸イオンを含む水の処理方法 | |
JP2024078487A (ja) | 不純物を含む有機溶媒から有機系不純物を除去する除去方法 | |
JP2024086132A (ja) | 不純物を含む有機溶媒から有機系不純物を除去する除去方法 | |
JP2508543B2 (ja) | インジウム塩類水溶液の精製方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18812809 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019523501 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197038307 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18812809 Country of ref document: EP Kind code of ref document: A1 |