WO2018225623A1 - ラクターゼ原末及びラクターゼ製剤 - Google Patents

ラクターゼ原末及びラクターゼ製剤 Download PDF

Info

Publication number
WO2018225623A1
WO2018225623A1 PCT/JP2018/021025 JP2018021025W WO2018225623A1 WO 2018225623 A1 WO2018225623 A1 WO 2018225623A1 JP 2018021025 W JP2018021025 W JP 2018021025W WO 2018225623 A1 WO2018225623 A1 WO 2018225623A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactase
μmol
bulk powder
glucose
galactose
Prior art date
Application number
PCT/JP2018/021025
Other languages
English (en)
French (fr)
Inventor
黒田 学
真之 北條
Original Assignee
天野エンザイム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天野エンザイム株式会社 filed Critical 天野エンザイム株式会社
Priority to DK18813894.5T priority Critical patent/DK3636751T3/da
Priority to CN201880033134.XA priority patent/CN110651043A/zh
Priority to US16/620,467 priority patent/US11517613B2/en
Priority to JP2019523495A priority patent/JP7171560B2/ja
Priority to EP23217884.8A priority patent/EP4321212A3/en
Priority to EP18813894.5A priority patent/EP3636751B1/en
Publication of WO2018225623A1 publication Critical patent/WO2018225623A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/47Hydrolases (3) acting on glycosyl compounds (3.2), e.g. cellulases, lactases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2468Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on beta-galactose-glycoside bonds, e.g. carrageenases (3.2.1.83; 3.2.1.157); beta-agarase (3.2.1.81)
    • C12N9/2471Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/125Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/12Antidiarrhoeals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/14Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01108Lactase (3.2.1.108)

Definitions

  • the present invention relates to a lactase bulk powder and a lactase preparation. More specifically, the present invention relates to a lactase bulk powder and a lactase preparation which are industrially manufacturable but have high storage stability.
  • Lactase is an enzyme that hydrolyzes lactose (ie, lactose) into glucose and galactose, and is also called ⁇ -galactosidase.
  • Dairy products such as milk contain lactose.
  • lactose When dairy products are ingested, lactose is decomposed in the body by lactase present in many human small intestines and absorbed from the small intestine.
  • lactase there is not enough lactase in the small intestine, so even when dairy products are ingested, proper absorption in the small intestine does not occur, and symptoms such as indigestion, diarrhea, and abdominal bloating are exhibited.
  • Such a condition is called lactose intolerance.
  • the lactase agent contains at least one selected from the group consisting of trisodium citrate, sodium potassium tartrate, calcium carbonate, sodium carbonate, and calcium hydrogen phosphate together with lactase. Discloses a technique for degrading lactose in the body without inactivating lactase even if it is taken before ingestion of food or drink containing lactose.
  • Non-Patent Document 1 discloses that carbohydrates are important as excipients, and glycerol, ribose, xylose, sorbitol, mannitol, fructose, glucose, galactose, sucrose, maltose as carbohydrates that easily form glass. , Lactose, trehalose, maltotricose, raffinose.
  • Patent Document 2 points out that the Maillard reaction occurs during and after the drying of biological material in the presence of a carbohydrate excipient that stabilizes the enzyme by providing an amorphous or glass-like solid matrix.
  • a carbohydrate excipient that stabilizes the enzyme by providing an amorphous or glass-like solid matrix.
  • a method of drying biological material in the presence of an amount of a Maillard reaction inhibitor effective to substantially prevent the Maillard reaction is disclosed.
  • the activity of the enzyme is improved by drying alkaline phosphatase by including lysine as a Maillard reaction inhibitor in the presence of glucose as a carbohydrate excipient.
  • Patent Document 3 it is mentioned that water contained in the starting ingredients of food causes Maillard browning in cooking and manufacturing food using enzymes. And since the grade of Maillard browning will fall when there is less water, it has been disclosed that the means for controlling Maillard browning is to reduce the water content in the starting ingredients of food. On the other hand, it has been pointed out that drying by removing water, which is a means for controlling Maillard browning, causes other problems in food production. Therefore, as a means to solve this problem, after forming an aqueous mixture in which the oxidoreductase enzyme is added in an amount effective to prevent excessive browning in the starting ingredients of the food (whole milk or skim milk), it is dried. And the method of manufacturing food (cheese) is disclosed.
  • Patent Document 1 has a problem of reducing the activity in the body at the time of taking a lactase agent, and does not disclose a problem with respect to stability during storage of the lactase agent itself.
  • Non-Patent Document 1 describes that excipients such as glucose and galactose are necessary for the production of biologics such as enzyme agents from the viewpoint of stability during storage.
  • Patent document 2 makes it a subject to prevent the Maillard reaction which seems to correlate with the fall of enzyme activity as another problem caused by the carbohydrate excipient
  • the solution is predicated on drying in the presence of a carbohydrate excipient such as glucose, as in Non-Patent Document 1.
  • Patent Document 3 discloses that the cause of Maillard browning is the presence of water, and Maillard browning can be controlled by removing water.
  • enzymes produced for industrial use including lactase are usually produced by utilizing the fermentation action of microorganisms in view of production efficiency and production cost.
  • Examples of the method used for producing an enzyme using a microorganism include a solid culture method and a liquid culture method. In such a culture method, a medium containing saccharide is used.
  • glucose and galactose which are inevitably mixed in the production, greatly affect the storage stability of lactase even in a small amount, and even if the lactase is in a dry state. I found it.
  • an object of the present invention is to provide a lactase bulk powder and a lactase preparation with further improved storage stability.
  • the present inventor has found that the stability of the lactase bulk powder is improved by setting the allowable amount of glucose and / or galactose, which is inevitably generated in the lactase production process, within a predetermined range. Furthermore, the present inventor, if the lactase bulk powder in which the amount of glucose and / or galactose is defined as such, even if it is mixed with an excipient in a dry state and formulated into a lactase agent, It has been found that adverse effects on lactase by reducing sugars derived from the agent are suppressed. The present invention has been completed based on these findings. The present invention includes the following inventions.
  • Item 1 Including lactase and galactose and / or glucose, The lactase bulk powder in which the total amount of the galactose and glucose is more than 0 ⁇ mol and 50 ⁇ mol or less per 100,000 units of lactase.
  • Item 2. The lactase bulk powder according to Item 1, wherein the total amount of the galactose and glucose is more than 0 ⁇ mol and 30 ⁇ mol or less per 100,000 units of lactase.
  • Item 3. The lactase bulk powder according to Item 1, wherein the total amount of the galactose and glucose is more than 0 ⁇ mol and 8 ⁇ mol or less per 100,000 units of lactase.
  • Item 4. Item 4.
  • Item 4. The lactase bulk powder according to any one of Items 1 to 3, wherein the residual activity after standing at 105 ° C for 4 hours is 50% or more.
  • Item 4. The lactase bulk powder according to any one of Items 1 to 3, wherein the residual activity after standing at 105 ° C for 4 hours is 75% or more.
  • Item 8. Item 8.
  • a lactase preparation comprising the lactase bulk powder according to any one of items 1 to 7.
  • Item 9. Item 9. The lactase preparation according to Item 8, wherein the residual activity after standing at 105 ° C. for 4 hours is 10% or more.
  • Item 10. Item 10. The lactase preparation according to Item 8 or 9, further comprising a sugar excipient.
  • Item 11. Item 11. The lactase preparation according to Item 10, wherein the content of the sugar excipient is 10% by mass or more.
  • Item 12. Item 12. The lactase formulation according to any one of Items 8 to 11, wherein the total amount of galactose and glucose in the lactase formulation is greater than 0 ⁇ mol per 100,000 units of lactase.
  • Item 13 The lactase preparation according to any one of Items 8 to 12, which is a pharmaceutical product.
  • Item 14. Item 13. The lactase preparation according to any one of Items 8 to 12, which is a supplement.
  • Item 15. Item 13. The lactase preparation according to any one of Items 8 to 12, which is a food additive.
  • Item 16. A method for producing a lactase bulk powder comprising the following steps (1) and (2): (1) preparing a lactase-containing liquid in which the total amount of glucose and galactose is more than 0 ⁇ mol and 50 ⁇ mol or less per 100,000 units of lactase; and (2) A step of drying the lactase-containing liquid.
  • a method for producing a lactase preparation comprising the following steps (1) to (3): (1) preparing a lactase-containing solution in which the total amount of glucose and galactose is more than 0 ⁇ mol and 50 ⁇ mol or less per 100,000 units of lactase; (2) drying the lactase-containing liquid; and (3) A step of formulating a dried lactase product.
  • Item 10. A method for producing a pharmaceutical, comprising a step of mixing and / or molding the lactase bulk powder according to any one of Items 1 to 7 or the lactase formulation according to any one of Items 8 to 12 with other components. .
  • a method for producing a supplement comprising the step of mixing and / or molding the lactase bulk powder according to any one of items 1 to 7 or the lactase preparation according to any one of items 8 to 12 with other components.
  • a food additive comprising a step of mixing and / or molding the lactase bulk powder according to any one of items 1 to 7 or the lactase preparation according to any one of items 8 to 12 with other components.
  • Item 21. The manufacturing method of food and drink including the process of adding the lactase bulk powder of any one of claim
  • a lactase bulk powder and a lactase preparation with improved storage stability are provided.
  • FIG. 6 is a graph plotting the relationship between the total amount of galactose and glucose and the residual activity for the storage stability of the dried lactase concentrates of Examples 1 to 9 and Comparative Examples 1 to 6. It is the graph which expanded the case where the total amount of galactose and glucose in FIG. 1 is 50 micromol / 100,000 unit in the horizontal axis direction. It is the graph which overlapped on the graph of FIG. 1, and plotted with the circular dot about the dry lactase concentrate of Example 10 and the lactase shaped product of Example 11.
  • FIG. 1 plotting the relationship between the total amount of galactose and glucose and the residual activity for the storage stability of the dried lactase concentrates of Examples 1 to 9 and Comparative Examples 1 to 6. It is the graph which expanded the case where the total amount of galactose and glucose in FIG. 1 is 50 micromol / 100,000 unit in the horizontal axis direction. It is the graph which overlapped on the graph of FIG. 1, and plotted with the circular dot about
  • the lactase bulk powder of the present invention is a lactase concentrate in a dry state in which nothing is added after the drying step, which is the final step of the lactase bulk powder production process, and allows a predetermined amount of glucose and / or galactose to be mixed.
  • components that are produced in the production process of the lactase bulk powder may be mixed. From the viewpoint of industrial production, the above-mentioned components are preferably contained to such an extent that the stability is not greatly affected.
  • a form of the lactase bulk powder For example, a powder form, a granular form, etc. are mentioned, Preferably a powder form is mentioned.
  • the lactase contained in the lactase bulk powder is not particularly limited as long as it is industrially produced using the fermentation action of microorganisms. Specific examples include those isolated from microorganisms such as fungi, yeast, and bacteria. Among these microorganisms, fungi include those of the genus Aspergillus such as Aspergillus oryzae, Aspergillus flavus, Aspergillus candidus, Aspergillus niger, and the like, and And those of the genus Penicillium such as Penicillium multicolor.
  • yeast examples include Cryptococcus terrestris, Cryptococcus laurentii, and other Sporoboromyces genus, Sporobolomyces singularis
  • yeast examples include Kluyveromyces genus such as Kluyveromyces lactis, Saccharomyces fragilis, Torula cremoris, and Torula utilis.
  • bacteria Escherichia coli, Bacillus subtilis, Bacillus stearothermophilus, Bacillus circulans, Bacillus licheniformis, Bacillus licheniformis, ⁇ Bacillus genus bacteria such as Bacillus amyloliquefaciens, Lactococcus genus, Lactobacillus bulgaricus such as Lactobacillus genus, Streptococcus genus, Streptococcus Examples include lactic acid bacteria such as Bifidobacterium.
  • microorganisms may be used as they are as lactase-producing bacteria, or may be used as hosts for producing by genetically recombining their own lactase genes or lactase genes derived from other microorganisms.
  • the lactase gene derived from the microorganism may be used after genetic recombination in a host other than the microorganism.
  • fungi belonging to the genus Aspergillus are preferred, and among the fungi belonging to the genus Aspergillus, aspergillus oryzae is most preferred.
  • Specific examples of Aspergillus oryzae include Aspergillus oryzae RIB40 strain and the like.
  • microorganisms having improved lactase productivity obtained by screening using lactase activity as an index, and introducing a lactase gene by genetic recombination Also included are microorganisms with improved lactase productivity.
  • the amount of lactase contained in the lactase bulk powder is, for example, 1% by mass to 99% by mass, preferably 10% by mass to 95% by mass, more preferably 50% by mass to 90% by mass, and still more preferably 75% by mass. It may be 85 mass% or less.
  • the lactase activity of the lactase bulk powder is not particularly limited. For example, 1,000 to 200,000 ALU / g, preferably 2,000 to 150,000 ALU / g, more preferably 5,000 to 150,000 ALU / g, More preferred is 10,000 to 150,000 ALU / g, and particularly preferred is 50,000 to 150,000 ALU / g.
  • 1 ALU (1 Acid Lactase Unit) is 1 ⁇ mol per minute when reacted for 15 minutes at a reaction temperature of 37 ° C. and a reaction pH of 4.5 using o-nitrophenyl- ⁇ -galactopyranoside (ONPG) as a substrate. The amount of enzyme that liberates o-nitrophenol.
  • Glucose and galactose In the lactase bulk powder, only glucose or galactose among glucose and galactose may be mixed, or both of them may be mixed, but only galactose is mixed. It is preferable.
  • Glucose and galactose are both reducing sugars that are inevitably produced during the production of the lactase bulk powder. Additives unrelated to the production of the lactase bulk powder, such as carbohydrate excipients added to the powdered lactase bulk powder, etc. Does not result from the powdered saccharide additive.
  • Specific examples of reducing sugars inevitably generated in the process of producing lactase bulk powder include, specifically, a product derived from a medium used in the process of producing lactase bulk powder, and a sugar derived from a microorganism used in the production of the lactase bulk powder. Examples thereof include sugars modified to proteins metabolized by microorganisms used in the production of lactase bulk powder, saccharides added before the drying step, which is the final step in the production process of lactase bulk powder, and their derivatives.
  • the total amount of glucose and galactose contained in the lactase bulk powder is more than 0 ⁇ mol, preferably 0.1 ⁇ mol or more, more preferably 1 ⁇ mol or more, in terms of industrial production efficiency, as the amount per 100,000 units of lactase. From the viewpoint of improving the property, it is 50 ⁇ mol or less. From the viewpoint of obtaining these effects better, the total amount is, for example, more than 0 ⁇ mol and 50 ⁇ mol or less, preferably 0.1 ⁇ mol or more and 50 ⁇ mol or less, more preferably 1 ⁇ mol or more and 50 ⁇ mol or less, more preferably 0 ⁇ mol or more and 30 ⁇ mol per 100,000 units of lactase.
  • 1 ⁇ m or less more preferably 0.1 ⁇ mol or more and 6 ⁇ mol or less, particularly preferably 1 ⁇ mol or more and 6 ⁇ mol or less, even more preferably more than 0 ⁇ mol and 2 ⁇ mol or less, particularly preferably 0.1 ⁇ mol or more and 2 ⁇ mol or less, and most preferably 1 ⁇ mol or less.
  • the amount is 2 ⁇ mol or less.
  • the total amount of glucose and galactose can be adjusted by appropriately combining, for example, concentration / desalting with an ultrafiltration membrane, salting out such as ammonium sulfate precipitation, dialysis, and various chromatography such as ion exchange resin. It is also possible to use an activity inhibitor in order to avoid production from residual saccharides by lactase or contaminating sugar hydrolase in the process from completion of cultivation to drying, or to appropriately set conditions such that the reaction is difficult to proceed. Can be adjusted.
  • the content ratio of glucose and galactose is not particularly limited, and may be a higher ratio of glucose, a higher ratio of galactose, or an equivalent ratio.
  • the lactase bulk powder may contain saccharides other than the glucose and galactose described above.
  • Other saccharides include polysaccharides, oligosaccharides, disaccharides, and monosaccharides other than glucose and galactose.
  • the other saccharides may be included in one or a plurality of mixed states.
  • the content of other saccharides in the lactase bulk powder may be, for example, 0% by mass to 50% by mass, preferably 0% by mass to 20% by mass, and more preferably 0% by mass to 10% by mass.
  • Other sugars may be reducing sugars and non-reducing sugars, but from the viewpoint of obtaining good lactase stability, it is preferable that there are as few reducing sugars as possible other than the above-mentioned glucose and galactose.
  • examples of other reducing sugars include fructose, maltose, and lactose.
  • the total amount of other reducing sugars is the total amount of reducing sugars in the whole lactase bulk (that is, the sum of the total amount of glucose and galactose and the total amount of other reducing sugars), for example, 100,000 units of lactase in terms of glucose amount by the DNS method.
  • the amount may be 15 mg or less, preferably 10 mg or less, more preferably 7 mg or less.
  • polysaccharides such as starch, dextrin, indigestible dextrin, trehalose, mannitol, sucrose, sorbitol, may be contained. From the viewpoint of obtaining good stability of lactase, it is preferable that the total amount of reducing sugar in the whole lactase bulk does not affect the stability of lactase even when these polysaccharides are added.
  • the lactase bulk powder may contain preservatives such as paraoxybenzoates, chlorobutanol, benzyl alcohol and the like in addition to the above.
  • the storage stability of the lactase bulk powder is, for example, 10% or more, preferably 50% or more when the pre-storage activity is 100% when stored at 105 ° C. for 4 hours under super-accelerated conditions. More preferably, it is 70% or more, further preferably 75% or more, more preferably 80% or more, and still more preferably 90% or more.
  • This storage stability can be adjusted by, for example, the total amount of glucose and galactose in the lactase bulk powder.
  • the total amount may be, for example, 50 ⁇ mol or less.
  • the residual activity is 50% or more, the total amount may be, for example, 30 ⁇ mol or less, and the residual activity is 70% or more.
  • the total amount may be 9 ⁇ mol or less, for example, when the residual activity is 75% or more, the total amount may be 8 ⁇ mol or less, and when the residual activity is 80% or more, the total amount may be 6 ⁇ mol or less, When the residual activity is 90% or more, the total amount may be 2 ⁇ mol or less, for example.
  • the lactase bulk powder is preferably stored in a temperature-controlled and / or humidity-controlled environment in order to maintain storage stability.
  • the storage temperature may be room temperature or lower, for example 40 ° C. or lower, preferably 25 ° C. or lower.
  • the storage humidity may be, for example, 80% RH or less, preferably 65% RH or less at 25 ° C.
  • the method for producing a lactase bulk powder includes a step of preparing a lactase-containing solution in which the total amount of glucose and galactose is greater than 0 ⁇ mol and 50 ⁇ mol or less per 100,000 units of lactase (step (1)), and a step of drying the lactase-containing solution (step) (2)). Both the step (1) and the step (2) can be used without any particular limitation on industrially used techniques.
  • Examples of the method for preparing the lactase-containing liquid in the step (1) include culture methods such as the solid culture method and the liquid culture method using the above-mentioned microorganisms, and the liquid culture method is preferably used.
  • the medium is not particularly limited as long as the microorganism to be used can grow.
  • carbon sources such as glucose, sucrose, gentiobiose, soluble starch, glycerin, dextrin, molasses, organic acids, ammonium sulfate, ammonium carbonate, ammonium phosphate, ammonium acetate, or peptone, yeast extract, corn steep liquor, casein
  • Nitrogen sources such as hydrolyzate, bran, yellow flour, meat extract, and further added with inorganic salts such as potassium salt, magnesium salt, sodium salt, phosphate, manganese salt, iron salt, zinc salt can be used.
  • vitamins, amino acids and the like may be added to the medium.
  • an antifoaming agent may be added to the medium.
  • the pH of the medium is adjusted to, for example, about 3 to 8, preferably about 4 to 7, and the culture temperature is usually about 20 to 40 ° C., preferably about 25 to 35 ° C. for 1 to 10 days, preferably 3 to Incubate under aerobic conditions for about 7 days.
  • the culture method for example, a shaking culture method or an aerobic deep culture method using a jar fermenter can be used. After culturing under the above conditions, the target enzyme is recovered from the culture solution or the cells. When recovering from the culture solution, for example, the culture supernatant is filtered, centrifuged, etc.
  • the lactase-containing liquid can be obtained by performing separation and purification by appropriately combining various chromatographies such as resins.
  • the bacterial cells are crushed by pressure treatment, ultrasonic treatment, etc., and then separated and purified in the same manner as described above to obtain the lactase-containing liquid.
  • the total amount of glucose and galactose contained in the lactase-containing solution obtained in step (1) is more than 0 ⁇ mol, preferably 0.1 ⁇ mol or more, more preferably from the viewpoint of production efficiency of lactase bulk powder as the amount per 100,000 units of lactase. Is 1 ⁇ mol or more and 50 ⁇ mol or less from the viewpoint of improving the stability of lactase.
  • the total amount is, for example, more than 0 ⁇ mol and 50 ⁇ mol or less, preferably 0.1 ⁇ mol or more and 50 ⁇ mol or less, more preferably 1 ⁇ mol or more and 50 ⁇ mol or less, more preferably 0 ⁇ mol or more and 30 ⁇ mol per 100,000 units of lactase. Or less, more preferably 0.1 ⁇ mol or more and 30 ⁇ mol or less, further preferably 1 ⁇ mol or more and 30 ⁇ mol or less, more preferably more than 0 ⁇ mol and 9 ⁇ mol or less, more preferably 0.1 ⁇ mol or more and 9 ⁇ mol or less, and even more preferably 1 ⁇ mol or more and 9 ⁇ mol or less.
  • the amount is 2 ⁇ mol or less.
  • step (2) the lactase-containing solution obtained in step (1) with a total amount of glucose and galactose of more than 0 ⁇ mol and 50 ⁇ mol or less per 100,000 units of lactase is dried.
  • the drying method include freeze-drying, vacuum drying, and spray drying. Thereby, lactase bulk powder is obtained.
  • the method for producing lactase bulk powder does not include a step of adding any components after step (2).
  • the lactase bulk powder may be used for a predetermined application as it is.
  • the lactase bulk powder may be used as a raw material in the production of a lactase preparation that can be used for the predetermined application.
  • Examples of the predetermined use of the lactase bulk powder include use as an industrial enzyme agent and use as an enzyme reagent.
  • Applications as industrial enzyme agents include, for example, applications as pharmaceuticals, supplements, or food additives (for the purpose of addition to food or beverages, regardless of business or household use). Furthermore, the use etc. of food-drinks are mentioned.
  • the production of pharmaceuticals includes the production of pharmaceuticals intended for lactose intolerant and mixed with the lactase bulk powder of the present invention.
  • the manufacture of a pharmaceutical product may include a step of mixing and / or shaping the lactase bulk powder of the present invention with other components.
  • Other components include excipients, preservatives, stabilizers and the like.
  • molding include powdering, granulating, tableting and the like.
  • the process described in the manufacturing method of the lactase formulation mentioned later may be performed.
  • Supplementary supplements include dietary supplements (health foods) in which the lactase bulk powder of the present invention is mixed.
  • the manufacture of the supplement may include a step of mixing and / or shaping the lactase bulk powder of the present invention with other components.
  • Other ingredients include excipients, lactic acid bacteria, vitamins, minerals, amino acids and the like. Examples of molding include powdering, granulating, tableting and the like. Or in manufacture of a supplement, the process described in the manufacturing method of the lactase formulation mentioned later may be performed.
  • Production of food additives includes production of food and drink containing lactose (for example, dairy products such as milk, yogurt, cheese, butter, cream, powdered milk, etc.) and additives to be added to raw materials for producing galactooligosaccharides. It is done.
  • lactose for example, dairy products such as milk, yogurt, cheese, butter, cream, powdered milk, etc.
  • additives to be added to raw materials for producing galactooligosaccharides It is done.
  • a step of mixing and / or molding the lactase bulk powder of the present invention with other components may be mentioned.
  • other components include enzymes (excluding lactase), preservatives, stabilizers, manufacturing agents, sweeteners, seasonings and the like.
  • molding include powdering, granulating, tableting and the like. Or in manufacture of a food additive, the process described in the manufacturing method of the lactase formulation mentioned later may be performed.
  • the production of food and drink includes food and drink in which lactose is decomposed (for example, dairy products such as milk, yogurt, cheese, butter, cream, and powdered milk) and food and drink in which galactose has been transferred to the sugar, and the lactase of the present invention.
  • lactose for example, dairy products such as milk, yogurt, cheese, butter, cream, and powdered milk
  • examples include the production of raw materials.
  • the production of food and drink includes a step of adding the lactase bulk powder of the present invention to a food and drink material containing lactose.
  • a food / beverage material containing lactose becomes a lactose-decomposed food / beverage when it is appropriately subjected to lactase activity conditions to allow the lactose decomposition treatment to proceed.
  • the food and beverage material containing lactose to which the lactase bulk powder should be added may be in a state in which lactose has not been decomposed yet has been completed as a food or beverage embodiment, or a food or beverage material (raw material or intermediate) The material) may be in a state in which lactose has not been decomposed yet. Therefore, the timing for adding the lactase bulk powder of the present invention may be after the production process of food or drink containing lactose or during the production process of food or drink containing lactose.
  • Applications as enzyme reagents include, for example, applications as reagents in biochemical diagnosis.
  • the lactase preparation may be prepared by using the above-mentioned lactase bulk powder as an active ingredient, and may be formulated as a molded product of the lactase bulk powder, or as a mixture of the lactase powder and other ingredients. And those formulated as a mixture of a lactase bulk powder and other components. Preferably, it is formulated containing other components.
  • the form of the lactase preparation is not particularly limited as long as it can be taken orally, and examples thereof include powders, fine granules, granules, pills, tablets, capsules, and lozenges.
  • lactase The amount of lactase in the lactase preparation may be, for example, 1% by mass to 99% by mass, preferably 10% by mass to 90% by mass, more preferably 55% by mass to 65% by mass.
  • the lactase preparation of the present invention may contain a sugar excipient as another component.
  • the sugar excipient that may be contained in the lactase preparation of the present invention is not added to the lactase solution to be concentrated in the process of lactase concentration, but is added to the lactase bulk powder that has been concentrated and dried. On the other hand, they are mixed in a dry state.
  • the sugar excipient is a saccharide that can be used as an excipient and may be in a solid state at room temperature. Furthermore, the sugar excipient may have a galactose residue and / or a glucose residue as a constituent sugar residue.
  • sugar excipients include dextrin, indigestible dextrin, starch, potato starch, corn starch, sucrose, mannitol, sorbitol, lactose, trehalose. Since the storage stability of the above-mentioned lactase bulk powder is good, the amount of the sugar excipient to be added is not particularly limited as long as it is in a dry state.
  • the amount of the sugar excipient in the lactase preparation can be appropriately set from the viewpoint of obtaining a better shaping effect and / or storage stability, but for example 10% by mass It may be 90% by mass or less, more preferably 15% by mass or more and 80% by mass or less, and further preferably 20% by mass or more and 70% by mass or less.
  • the lactase preparation of the present invention contains a sugar excipient
  • the lactase preparation may contain galactose and / or glucose generated from the sugar excipient by the action of lactase.
  • the total amount of galactose and glucose contained in the lactase preparation is the total amount of the amount produced from the sugar excipient by the action of lactase and the amount contained in the lactase bulk powder, and the shaping effect and / or lactase preparation From the viewpoint of obtaining good storage stability, it can be appropriately set, for example, more than 0 ⁇ mol, preferably 0.1 ⁇ mol or more and 1000 ⁇ mol or less, more preferably 1 ⁇ mol or more and 500 ⁇ mol or less, more preferably 5 ⁇ mol or more and 300 ⁇ mol or less, per 100,000 units of lactase, More preferably, it may be 50 ⁇ mol or more and 200 ⁇ mol or less.
  • the lactase preparation of the present invention has good storage stability even if it contains a sugar excipient as another component.
  • the storage stability of the lactase preparation is such that, when stored under super-accelerated conditions at 105 ° C. for 4 hours, the residual activity is preferably 10% or more, for example, when the activity before storage is 100%. May be 50% or more, more preferably 70% or more, and even more preferably 75% or more.
  • the lactase preparation is preferably stored in a temperature-controlled and / or humidity-controlled environment in order to maintain storage stability.
  • the storage temperature may be room temperature or lower, for example 40 ° C. or lower, preferably 25 ° C. or lower.
  • the storage humidity may be, for example, 80% RH or less, preferably 65% RH or less at 25 ° C.
  • the lactase preparation of the present invention may contain other components other than the above-mentioned sugar excipient as other components.
  • examples include excipients other than sugar excipients, lubricants, disintegrants, preservatives, and antacids.
  • excipients other than sugar excipients include inorganic excipients such as talc.
  • examples of the lubricant include aluminum stearate, magnesium stearate, calcium stearate, polyethylene glycol and the like.
  • the disintegrant include sodium carboxymethyl starch, carmellose calcium, carmellose, corn starch and the like.
  • preservative examples include paraoxybenzoates, chlorobutanol, benzyl alcohol and the like.
  • antacids include trisodium citrate, sodium potassium tartrate, calcium carbonate, sodium carbonate, and calcium hydrogen phosphate.
  • components (additives) according to the use of the lactase preparation may be appropriately selected by those skilled in the art. Examples include preservatives, stabilizers, lactic acid bacteria, vitamins, minerals, amino acids, production agents, sweeteners, seasonings and the like.
  • the lactase preparation can be obtained, for example, by formulating the aforementioned lactase bulk powder. That is, the method for producing a lactase preparation includes the above-described steps (1) and (2) and a step (3) of formulating a lactase bulk powder.
  • the lactase bulk powder is molded and / or mixed with other components. Examples of molding include powdering, granulating, tableting and the like. Other components are as described above. Thereby, it can be formulated into any preparation form (for example, powder, fine granules, granules, pills, tablets, capsules, troches) that can be taken orally.
  • Step (3) is preferably performed in a dry state throughout.
  • both the lactase bulk powder and the sugar excipient are mixed in a dry state.
  • the mixture containing the lactase bulk powder and the sugar excipient is obtained as a lactase preparation without being liquefied.
  • the lactase preparation may be used for a predetermined application as it is.
  • Examples of the predetermined use of the lactase preparation include use as an industrial enzyme agent and use as an enzyme reagent.
  • Applications as industrial enzyme agents include, for example, applications as pharmaceuticals, supplements, or food additives (for the purpose of addition to food or beverages, regardless of business or household use). Furthermore, the use etc. of food-drinks are mentioned.
  • the manufacture of pharmaceuticals includes the manufacture of drugs for lactose intolerant and mixed with the lactase preparation of the present invention.
  • the lactase preparation of the present invention may comprise a step of mixing and / or shaping with other ingredients.
  • other components include excipients, preservatives, and stabilizers.
  • molding include powdering, granulating, tableting and the like.
  • Supplementary supplements include dietary supplements (health foods) that are mixed with the lactase preparation of the present invention.
  • the manufacture of supplements may include a step of mixing and / or shaping the lactase powder of the present invention with other ingredients.
  • Other ingredients include excipients, lactic acid bacteria, vitamins, minerals, amino acids and the like. Examples of molding include powdering, granulating, tableting and the like.
  • Production of food additives includes production of food and drink containing lactose (for example, dairy products such as milk, yogurt, cheese, butter, cream, powdered milk, etc.) and additives to be added to raw materials for producing galactooligosaccharides. It is done.
  • lactose for example, dairy products such as milk, yogurt, cheese, butter, cream, powdered milk, etc.
  • additives to be added to raw materials for producing galactooligosaccharides It is done.
  • a step of mixing and / or molding the lactase powder of the present invention with other components may be mentioned.
  • other components include enzymes (excluding lactase), preservatives, stabilizers, manufacturing agents, sweeteners, seasonings and the like.
  • molding include powdering, granulating, tableting and the like.
  • the production of food and drink includes food and drink in which lactose is decomposed (for example, dairy products such as milk, yogurt, cheese, butter, cream, and powdered milk) and food and drink in which galactose has been transferred to the sugar, and the lactase of the present invention.
  • lactose for example, dairy products such as milk, yogurt, cheese, butter, cream, and powdered milk
  • examples include the production of a product treated with a preparation.
  • the production of food and drink includes a step of adding the lactase preparation of the present invention to a food and drink material containing lactose.
  • the food and drink material containing lactose to which the lactase preparation should be added may be in a state where the lactose has not been decomposed yet has been completed as a food or drink, or a food or drink material (raw material or intermediate material) ) In which lactose has not been decomposed yet. Accordingly, the timing for adding the lactase preparation of the present invention may be after the production of food or drink containing lactose or during the production process of food or drink containing lactose.
  • Applications as enzyme reagents include, for example, applications as reagents in biochemical diagnosis.
  • Example 1 (A) Preparation of lactase bulk powder (dry lactase concentrate) A lactase bulk powder (dry lactase concentrate) was prepared as follows. 1. The producing bacterium (Aspergillus oryzae) was cultured in liquid culture at 30 ° C. for 5 days. A medium containing wheat bran 4 w / v%, yellow powder 1 w / v%, ammonium phosphate 0.25 w / v%, soluble starch 3 w / v% was used. 2. Production cells were removed by diatomaceous earth filtration. 3. It concentrated so that the activity of the lactase bulk powder might become 10,000 ALU / g or more by the ultrafiltration membrane. 4).
  • the total amount of reducing sugar in the dry lactase concentrate was measured by the DNS method (dinitrosalicylic acid method). Specifically, DNS solution (0.7 w / v% 3,5-dinitrosalicylic acid, 1.21 w / v% sodium hydroxide, 0.02 w / v% potassium sodium tartrate, 0.57 w / v% phenol, 0.55 w / v% 0.6 mL of sodium hydrogen carbonate) was dispensed into a test tube, and 0.2 mL of a lactase solution obtained by diluting the dry lactase concentrate with purified water to an appropriate concentration was added.
  • DNS method dinitrosalicylic acid method
  • a glucose calibration curve was prepared by performing the same operation with a glucose solution (0, 0.5, 1, 2, 3, 4, 5 mg / mL) instead of the lactase solution. From the prepared calibration curve, the total amount of reducing sugar in the dry lactase concentrate was calculated as the amount of glucose.
  • o-nitrophenyl- ⁇ -galactopyranoside (ONPG) is used as a substrate and reacted at a reaction temperature of 37 ° C. and a reaction pH of 4.5 minutes, 1 ⁇ mol of o-nitrophenol is added per minute.
  • the amount of enzyme released was defined as 1 unit (1 ALU; 1 Acid Lactase Unit).
  • Examples 2 to 5, Comparative Examples 1 to 3 The lactase bulk powder (dried lactase concentrate) obtained in Example 1 was dissolved in purified water to prepare a lactase solution. Galactose was added and dissolved at different concentrations in the lactase solution, and then pulverized by freeze-drying to prepare dry lactase concentrates having different amounts of galactose. About the obtained dry lactase concentrate, the content of galactose and glucose and the total amount of reducing sugar were measured in the same manner as in Example 1, and the storage stability was evaluated.
  • Examples 6 to 9, Comparative Examples 4 to 6 The lactase bulk powder (dried lactase concentrate) obtained in Example 1 was dissolved in purified water to prepare a lactase solution. Glucose was added to the lactase solution at different concentrations for dissolution, and then pulverized by freeze-drying to prepare dry lactase concentrates with different amounts of glucose. About the obtained dry lactase concentrate, the content of galactose and glucose and the total amount of reducing sugar were measured in the same manner as in Example 1, and the storage stability was evaluated.
  • the total amount of galactose and glucose contained in the lactase solution to be concentrated is 50 ⁇ mol / 100,000 units or less as the content after drying.
  • the residual activity was improved as compared with Comparative Examples 1 to 6 in which the total amount exceeded 50 ⁇ mol / 100,000 units as the content after drying.
  • the effect of improving the residual activity is better observed in Examples 1 to 4 and 6 to 8 in which the total amount is 30 ⁇ mol / 100,000 units or less, and Examples 1 to 2 in which the total amount is 8 ⁇ mol / 100,000 units or less. And 6 were even better.
  • Example 10 In the same manner as in Example 1, a lactase bulk powder was prepared, the contents of galactose and glucose and the total amount of reducing sugar were measured, and the storage stability was evaluated.
  • the amount of protein in the lactase bulk powder was 80 ⁇ 5% by mass, and the total amount of polysaccharide and oligosaccharide was 5 ⁇ 10% by mass.
  • a lactase preparation (shaped product) was prepared by mixing dextrin as an excipient with the lactase bulk powder obtained in Example 10 in a dry state to obtain a lactase composition.
  • the proportion of dextrin in the obtained shaped product was 20% by mass.
  • the content of galactose and glucose and the total amount of reducing sugar were measured in the same manner as in Example 1 to evaluate the storage stability.
  • the amount of protein in the lactase preparation was 60 ⁇ 5% by mass, and the total amount of polysaccharide and oligosaccharide was 25 ⁇ 5% by mass.
  • Example 11 In the lactase preparation (formation product) of Example 11 prepared by mixing the lactase bulk powder and the excipient in Example 10 in a dry state, galactose and a reducing sugar derived from the excipient are further mixed. Although the total amount of glucose was increased, it was observed that good residual activity was maintained. In addition, although the total amount of galactose and glucose contained in the lactase preparation (shaped product) of Example 11 is the same as Comparative Example 1 or slightly higher than Comparative Example 4, galactose and glucose from the time of the liquid state before concentration It was confirmed that the residual activity was significantly improved as compared with Comparative Example 1 and Comparative Example 4 in which the total amount of glucose was included.

Abstract

保存安定性をより向上させたラクターゼ原末及びラクターゼ製剤を提供する。ラクターゼ原末の製造工程で不可避的に生じるグルコース及び/又はガラクトースの量の許容量を所定範囲内とすることで、ラクターゼ原末の安定性を向上させる。ラクターゼと、ガラクトース及び/又はグルコースとを含み、前記ガラクトース及び前記グルコースの総量が、ラクターゼ10万単位当たり0μmol超50μmol以下である、ラクターゼ原末;及び当該ラクターゼ原末を有効成分として含むラクターゼ製剤。

Description

ラクターゼ原末及びラクターゼ製剤
 本発明は、ラクターゼ原末及びラクターゼ製剤に関する。より具体的には、本発明は、工業的に製造可能でありながら保存安定性の高いラクターゼ原末及びラクターゼ製剤に関する。
 ラクターゼは、ラクトース(すなわち乳糖)をグルコース及びガラクトースへ加水分解する酵素であり、βガラクトシダーゼとも呼ばれる。
 牛乳等の乳製品にはラクトースが含まれている。乳製品を摂取すると、多くのヒトの小腸に存在するラクターゼによって体内でラクトースが分解され、小腸から吸収される。しかしながら、一部のヒトにおいては小腸に十分なラクターゼが存在しないため乳製品を摂取しても小腸での適切な吸収が起こらず、消化不良、下痢、腹部膨満感などの症状を呈する。このような病態は乳糖不耐症と呼ばれる。
 乳糖不耐症の症状を抑えるため、ラクターゼ剤を服用することがよく知られている。このため、ラクターゼ剤は多くの国で製造販売されている。一方で、ラクターゼは、乳製品の摂取前に服用すると、その効果が低下したり無効化したりすることが知られている。そこで、特許文献1には、ラクターゼ剤に、ラクターゼとともに、制酸剤のクエン酸三ナトリウム、酒石酸ナトリウムカリウム、炭酸カルシウム、炭酸ナトリウム又はリン酸水素カルシウムの中から選ばれる少なくとも1種を含有させることによって、ラクトースを含む飲食物の摂取前に服用してもラクターゼが失活することなく体内でラクトースを分解する技術が開示されている。
 一般に酵素剤のような生物製剤の製造においては、非特許文献1に記載のように、不安定な生物活性物質を安定な製品とするために、それをガラス化しやすい賦形剤とともに乾燥し、水溶性のガラス内に封じ込めることが推奨されている。非特許文献1には、賦形剤として炭水化物が重要であることが開示されており、ガラスを形成しやすい炭水化物として、グリセロール、リボース、キシロース、ソルビトール、マンニトール、フルクトース、グルコース、ガラクトース、スクロース、マルトース、ラクトース、トレハロース、マルトトリコース、ラフィノースが挙げられている。
 一方、特許文献2では、非晶質またはガラス様固体マトリックスを与えることで酵素を安定化させる炭水化物賦形剤の存在下で行われる生物物質の乾燥中及び乾燥後に、メイラード反応が起きることが指摘されている。そして、メイラード反応による着色の程度が、酵素活性の低下と相関するようであることが報告されている。そこで、炭水化物賦形剤によるメイラード反応を防止し、乾燥された生物物質の寿命を延長させる目的で、乾燥された生物物質を安定化するのに有効な量の炭水化物賦形剤の存在下で、かつメイラード反応を実質的に防止するのに有効な量のメイラード反応阻害剤の存在下で、生物物質を乾燥させる方法が開示されている。具体例として、炭水化物賦形剤としてグルコースの存在下で、メイラード反応阻害剤としてのリジンを含ませてアルカリホスファターゼを乾燥させることで、当該酵素の活性が向上したことが示されている。
 また、特許文献3では、酵素を用いた食品の調理製造において、食品の出発成分中に含まれる水がメイラード褐変をもたらすことが挙げられている。そして、水がより少ないとメイラード褐変の程度が低下することから、メイラード褐変を制御するための手段が食品の出発成分中の水分量を減らすことである旨が開示されている。一方で、食品の調理製造においては、メイラード褐変を制御するための手段である水の除去による乾燥が他の問題を引き起こすことも指摘されている。そこで、この問題を解決する手段として、食品の出発成分(全乳又は脱脂乳)中に、過剰な褐変を予防するのに有効な量のオキシドレダクターゼ酵素を加えた水性混合物を形成した後に、乾燥して食品(チーズ)を製造する方法が開示されている。
国際公開第2011/037058号 特表平10-505591号公報 特開2016-129525号公報
蛋白質核酸酵素Vol.41,No.6(1996)p.810-816
 特許文献1は、ラクターゼ剤の服用時における体内での活性低下を課題とするものであり、ラクターゼ剤自体の保存時安定性に対する課題については開示していない。非特許文献1では、保存時安定性の観点から、酵素剤のような生物製剤の製造にグルコースやガラクトースなどの賦形剤が必要であることが記載されている。特許文献2は、炭水化物賦形剤によって引き起こされる別の問題として、酵素活性の低下と相関するようであるというところのメイラード反応を防止することを課題としている。しかしながらその解決手段は、非特許文献1と同様、グルコースのような炭水化物賦形剤の存在下で乾燥させることが前提となっている。特許文献3では、メイラード褐変の要因が水の存在であり、水の除去によりメイラード褐変を制御できることを開示する。
 しかしながら、いずれの文献も、保存時の酵素の安定性に影響を与える要因として、グルコースなどの炭水化物賦形剤以外の要因については何らの示唆もされていない。また、酵素活性の低下と相関するようであると開示されているメイラード反応に対して影響を与える要因としても、グルコースなどの炭水化物賦形剤や水以外の要因について何らの示唆もされていない。
 ここで、ラクターゼをはじめ工業用に生産される酵素は、製造効率及び製造コストに鑑み、微生物の発酵作用を利用して生産されることが通常である。微生物を用いた酵素の生産に用いられる方法としては、固体培養法や液体培養法が挙げられる。このような培養法には糖類を含む培地が用いられる。
 微生物発酵によって生産されたラクターゼやアミラーゼなどの糖加水分解酵素は、培地に含まれている糖類を分解する。このため、工業的に製造されるラクターゼには、培地に含まれていた糖類や工程中に添加した糖類の分解物等として、グルコースやガラクトースが不可避的に混在する。このように製造上不可避的に生じるグルコースやガラクトースは、賦形剤として後から添加されるグルコースやガラクトースに比べて極めて少ない量であると言える。したがって、このような製造上不可避的に混在するグルコースやガラクトースがラクトースに与える影響は、従来の技術常識上、特に考慮されることなく無視されてきた。さらに、ラクターゼが粉末状つまり乾燥状態であれば、特許文献3等が開示する水による影響もないため、製造上不可避的に混在するグルコースやガラクトースが考慮される動機付けはなおさら無い。
 しかしながら本発明者は、この製造上不可避的に混在するグルコースやガラクトースが、たとえ少量であってもラクターゼの保存安定性に大きく影響し、かつ、その影響は、たとえ乾燥状態のラクターゼであっても及ぶことを発見した。
 そこで本発明の目的は、保存安定性をより向上させたラクターゼ原末及びラクターゼ製剤を提供することにある。
 本発明者は、ラクターゼの製造工程で不可避的に生じるグルコース及び/又はガラクトースの量の許容量を所定範囲内とすることで、ラクターゼ原末の安定性が向上することを見出した。さらに本発明者は、そのようにグルコース及び/又はガラクトースの量が規定されたラクターゼ原末であれば、乾燥状態で賦形剤と混合されラクターゼ剤へ製剤された場合であっても、賦形剤由来の還元糖によるラクターゼへの悪影響が抑制されることを見出した。本発明は、これらの知見に基づいて完成された。
 本発明は以下の発明を含む。
項1. ラクターゼと、ガラクトース及び/又はグルコースとを含み、
 前記ガラクトース及び前記グルコースの総量が、ラクターゼ10万単位当たり0μmol超50μmol以下である、ラクターゼ原末。
項2. 前記ガラクトース及び前記グルコースの総量が、ラクターゼ10万単位当たり0μmol超30μmol以下である、項1に記載のラクターゼ原末。
項3. 前記ガラクトース及び前記グルコースの総量が、ラクターゼ10万単位当たり0μmol超8μmol以下である、項1に記載のラクターゼ原末。
項4. 105℃で4時間放置後の残存活性が10%以上である、項1から3のいずれか1項に記載のラクターゼ原末。
項5. 105℃で4時間放置後の残存活性が50%以上である、項1から3のいずれか1項に記載のラクターゼ原末。
項6. 105℃で4時間放置後の残存活性が75%以上である、項1から3のいずれか1項に記載のラクターゼ原末。
項7. 前記ラクターゼが、Aspergillus oryzaeが産生するラクターゼである、項1から6のいずれか1項に記載のラクターゼ原末。
項8. 項1から7のいずれか1項に記載のラクターゼ原末を含む、ラクターゼ製剤。
項9. 105℃で4時間放置後の残存活性が10%以上である、項8に記載のラクターゼ製剤。
項10. 糖賦形剤をさらに含む、項8又は9に記載のラクターゼ製剤。
項11. 前記糖賦形剤の含有量が10質量%以上である、項10に記載のラクターゼ製剤。
項12. ラクターゼ製剤中のガラクトース及びグルコースの総量が、ラクターゼ10万単位当たり0μmol超である、項8から11のいずれか1項に記載のラクターゼ製剤。
項13. 医薬品である、項8から12のいずれか1項に記載のラクターゼ製剤。
項14. サプリメントである、項8から12のいずれか1項に記載のラクターゼ製剤。
項15. 食品添加物である、項8から12のいずれか1項に記載のラクターゼ製剤。
項16. 以下の工程(1)及び(2)を含む、ラクターゼ原末の製造方法:
(1)グルコース及びガラクトースの総量が、ラクターゼ10万単位当たり0μmol超50μmol以下であるラクターゼ含有液を準備する工程;及び
(2)上記ラクターゼ含有液を乾燥する工程。
項17. 以下の工程(1)~(3)を含む、ラクターゼ製剤の製造方法:
(1)グルコース及びガラクトースの総量が、ラクターゼ10万単位当たり0μmol超50μmol以下であるラクターゼ含有液を準備する工程;
(2)上記ラクターゼ含有液を乾燥する工程;及び
(3)ラクターゼ乾燥物を製剤化する工程。
項18. 項1から7のいずれか1項に記載のラクターゼ原末又は項8から12のいずれか1項に記載のラクターゼ製剤を、他の成分と混合及び/又は成形する工程を含む、医薬品の製造方法。
項19. 項1から7のいずれか1項に記載のラクターゼ原末又は項8から12のいずれか1項に記載のラクターゼ製剤を、他の成分と混合及び/又は成形する工程を含む、サプリメントの製造方法。
項20. 項1から7のいずれか1項に記載のラクターゼ原末又は項8から12のいずれか1項に記載のラクターゼ製剤を、他の成分と混合及び/又は成形する工程を含む、食品添加物の製造方法。
項21. 項1から7のいずれか1項に記載のラクターゼ原末、項8から12及び15のいずれか1項に記載のラクターゼ製剤を飲食材料に添加する工程を含む、飲食物の製造方法。
 本発明によれば、保存安定性をより向上させたラクターゼ原末及びラクターゼ製剤が提供される。
実施例1~9及び比較例1~6の乾燥ラクターゼ濃縮物の保存安定性について、ガラクトース及びグルコースの総量と残存活性との関係をプロットしたグラフである。 図1におけるガラクトース及びグルコースの総量が50μmol/10万単位である場合を横軸方向に拡大したグラフである。 実施例10の乾燥ラクターゼ濃縮物及び実施例11のラクターゼ賦形品について、図1のグラフに重ねて円ドットでプロットしたグラフである。
[1.ラクターゼ原末(乾燥ラクターゼ濃縮物)]
 本発明のラクターゼ原末は、ラクターゼ原末の製造工程の最終工程である乾燥工程後に何も添加されていない乾燥状態のラクターゼ濃縮物であり、所定量のグルコース及び/またはガラクトースの混在を許容する。
 また、ラクターゼ原末の製造工程において発生する成分(培地成分や培養工程などで生成した夾雑タンパク質、製造工程にて添加した成分など)が混在していても良い。工業的製造の観点から、好ましくは、安定性低下に大きく影響しない程度に、上記成分を含んでいる。ラクターゼ原末の形態としては、特に限定されないが、例えば、粉末状、顆粒状等が挙げられ、好ましくは粉末状が挙げられる。
[1-1.ラクターゼ]
 ラクターゼ原末に含まれるラクターゼは、工業的に微生物の発酵作用を利用して生産されるものであれば、その由来としては特に限定されるものではない。具体的には、真菌、酵母、細菌等の微生物から単離されたものが挙げられる。これらの微生物のうち、真菌としては、コウジカビ(Aspergillus oryzae)、アスペルギルス・フラバス(Aspergillus flavus)、アスペルギルス・キャンディダス(Aspergillus candidus)、クロコウジカビ(Aspergillus niger)等のアスペルギルス(Aspergillus)属のもの、及び、ペニシリウム・マルチカラー(Penicillium multicolor)等のペニシリウム(Penicillium)属のものが挙げられる。酵母としては、クリプトコッカス・テレストリス(Cryptococcus terrestris)、クリプトコッカス・ローレンティ(Cryptococcus laurentii)等のクリプトコッカス(Cryptococcus)属、スポロボロマイセス・シングラリス(Sporobolomyces singularis)等のスポロボロマイセス(Sporobolomyces)属、クルイベロマイセス・ラクティス(Kluyveromyces lactis)等のクルイベロマイセス(Kluyveromyces)属、サッカロミセス・フラジリス(Saccharomyces fragilis)、トルラ・クレモリス(Torula cremoris)、およびトルラ・ユーティリス(Torula utilis)等が挙げられる。細菌としては、エシェリキア・コリ(Escherichia coli)、バチルス・ズブチリス(Bacillus subtilis)、バチルス・ステアロサーモフィラス(Bacillus stearothermophilus)、バチルス・サーキュランス(Bacillus circulans)、バチルス・リケニフォルミス(Bacillus licheniformis)、バチルス・アミノリクファシエンス(Bacillus amyloliquefaciens)などのバチルス(Bacillus)属細菌、ラクトコッカス(Lactococcus)属、ラクトバチルス・ブルガリクス(Lactobacillus bulgaricus)などのラクトバチルス(Lactobacillus)属、ストレプトコッカス(Streptococcus)属、ビフィドバクテリウム(Bifidobacterium)属等の乳酸菌が挙げられる。これらの微生物はそのままラクターゼの生産菌として使用しても良く、自らのラクターゼ遺伝子や他の微生物由来のラクターゼ遺伝子を遺伝子組み換えして生産する際の宿主として使用しても良い。また、上記微生物由来のラクターゼ遺伝子を上記微生物以外の宿主に遺伝子組み換えして使用しても良い。
 上述の微生物の中でも、安定性向上効果を良好に得る観点から、アスペルギルス(Aspergillus)属の真菌が好ましく、アスペルギルス(Aspergillus)属の真菌の中でもコウジカビ(Aspergillus oryzae)が最も好ましい。コウジカビ(Aspergillus oryzae)の具体例として、例えば、Aspergillus oryzae RIB40株などが挙げられる。さらに、上記微生物に対して紫外線処理などの変異処理を施した上で、ラクターゼ活性を指標にスクリーニングすることで得られるラクターゼ生産性を向上させた微生物、及び遺伝子組み換えによってラクターゼ遺伝子を導入することでラクターゼ生産性を向上させた微生物も挙げられる。
 ラクターゼ原末に含まれるラクターゼの量は、例えば1質量%以上99質量%以下、好ましくは10質量%以上95質量%以下、より好ましくは50質量%以上90質量%以下、さらに好ましくは75質量%以上85質量%以下であってよい。
 また、ラクターゼ原末のラクターゼ活性は特に限定されないが、例えば1,000~200,000ALU/g、好ましくは2,000~150,000ALU/g、より好ましくは5,000~150,000ALU/g、さらに好ましくは10,000~150,000ALU/g、特に好ましくは50,000~150,000ALU/gが挙げられる。なお、1ALU(1 Acid Lactase Unit)は、o-ニトロフェニル-β-ガラクトピラノシド(ONPG)を基質として、反応温度37℃、反応pH4.5で15分間反応させたとき、1分間に1μmolのo-ニトロフェノールを遊離する酵素量をいう。
[1-2.グルコース及びガラクトース]
 ラクターゼ原末には、グルコース及びガラクトースのうち、グルコースのみが混在してよいし、ガラクトースのみが混在していてもよいし、その両方が混在していてもよいが、ガラクトースのみが混在していることが好ましい。
 グルコース及びガラクトースはいずれも、ラクターゼ原末の生産過程で不可避的に生じる還元糖であり、ラクターゼ原末の生産には無関係の添加物、たとえば粉末状のラクターゼ原末に添加した炭水化物賦形剤等の粉末状の糖類添加物から生じるものではない。ラクターゼ原末の生産過程で不可避的に生じる還元糖としては、具体的には、ラクターゼ原末の生産過程で用いられる培地の由来物、ラクターゼ原末の生産に用いる微生物が代謝する糖類の由来物、ラクターゼ原末の生産に用いる微生物が代謝するタンパク質に修飾された糖、ラクターゼ原末の製造工程の最終工程である乾燥工程前に添加された糖類やその由来物等が挙げられる。
 ラクターゼ原末に含まれるグルコース及びガラクトースの総量は、ラクターゼ10万単位当たりの量として、工業的生産効率の観点から0μmol超、好ましくは0.1μmol以上、より好ましくは1μmol以上、かつ、ラクターゼの安定性向上の観点から50μmol以下である。これらの効果をより良好に得る観点で、当該総量は、ラクターゼ10万単位当たり例えば0μmol超50μmol以下、好ましくは0.1μmol以上50μmol以下、より好ましくは1μmol以上50μmol以下であり、好ましくは0μmol超30μmol以下、より好ましくは0.1μmol以上30μmol以下、さらに好ましくは1μmol以上30μmol以下であり、より好ましくは0μmol超9μmol以下、一層好ましくは0.1μmol以上9μmol以下、より一層好ましくは1μmol以上9μmol以下であり、一層好ましくは0μmol超8μmol以下、より一層好ましくは0.1μmol以上8μmol以下、さらに一層好ましくは1μmol以上8μmol以下であり、より一層好ましくは0μmol超6μmol以下、さらに一層好ましくは0.1μmol以上6μmol以下、特に好ましくは1μmol以上6μmol以下であり、さらに一層好ましくは0μmol超2μmol以下、特に好ましくは、0.1μmol以上2μmol以下であり、最も好ましくは1μmol以上2μmol以下である。
 グルコース及びガラクトースの総量は、たとえば、限外ろ過膜による濃縮・脱塩、硫安沈殿等の塩析、透析、イオン交換樹脂等の各種クロマトグラフィーなどを適宜組み合わせることで調節することができる。また、培養完了後から乾燥までの工程においてラクターゼや夾雑の糖加水分解酵素によって残存する糖類からの生成を回避するために活性阻害剤を用いたり、反応が進みにくい条件などを適宜設定することでも調節することができる。
 グルコースとガラクトースとの含有比率については特に限定されず、グルコースがより高い比率であってもよいし、ガラクトースがより高い比率であってもよいし、同等の比率であってもよい。
[1-3.他の成分]
 ラクターゼ原末には、上述のグルコース及びガラクトース以外の他の糖類が含まれていてもよい。他の糖類としては、多糖、オリゴ糖、二糖、及びグルコース及びガラクトース以外の単糖が挙げられる。他の糖類が含まれる場合、他の糖類は、1種または複数種の混合状態で含まれていてよい。ラクターゼ原末中の他の糖類の含有量は、例えば0質量%以上50質量%以下、好ましくは0質量%以上20質量%以下、さらに好ましくは0質量%以上10質量%以下であってよい。
 他の糖類は、還元糖及び非還元糖を問わないが、ラクターゼの安定性を良好に得る観点からは、上述のグルコース及びガラクトース以外の他の還元糖はできるだけ少ないことが好ましい。他の還元糖としては、例えば、フルクトース、マルトース、ラクトース等が挙げられる。他の還元糖の総量は、ラクターゼ原末全体における還元糖の総量(つまり、グルコース及びガラクトースの総量と他の還元糖の総量との和)が、DNS法によるグルコース量換算で例えばラクターゼ10万単位当たり15mg以下、好ましくは10mg以下、より好ましくは7mg以下となる量であってよい。また、デンプン、デキストリン、難消化性デキストリン、トレハロース、マンニトール、ショ糖、ソルビトールなどの多糖が含まれていても良い。ラクターゼの安定性を良好に得る観点からは、これらの多糖の添加によってもラクターゼ原末全体における還元糖の総量がラクターゼの安定性に影響を与えない前述の範囲であるのが好ましい。
 ラクターゼ原末には、上述の他、例えばパラオキシ安息香酸エステル類、クロロブタノール、ベンジルアルコール等の防腐剤等を含んでいてもよい。
[1-4.保存安定性]
 ラクターゼ原末の保存安定性は、105℃で4時間の超促進条件下で保存した場合に、当該保存前の活性を100%とした場合の残存活性が例えば10%以上、好ましくは50%以上、より好ましくは70%以上、さらに好ましくは75%以上、一層好ましくは80%以上、より一層好ましくは90%以上である。
 この保存安定性は、例えばラクターゼ原末中のグルコース及びガラクトースの総量によって調節することができる。当該残存活性を10%以上とする場合は当該総量を例えば50μmol以下としてよく、当該残存活性を50%以上とする場合は当該総量を例えば30μmol以下としてよく、当該残存活性を70%以上とする場合は当該総量を例えば9μmol以下としてよく、当該残存活性を75%以上とする場合は当該総量を例えば8μmol以下としてよく、当該残存活性を80%以上とする場合は当該総量を例えば6μmol以下としてよく、当該残存活性を90%以上とする場合は当該総量を例えば2μmol以下としてよい。
 ラクターゼ原末は、保存安定性の維持のため、温度制御及び/又は湿度制御された環境で保存されることが好ましい。保存温度は、室温以下、例えば40℃以下、好ましくは25℃以下であってよい。保存湿度は、例えば25℃での相対湿度80%RH以下、好ましくは65%RH以下であってよい。
[1-5.製造方法]
 ラクターゼ原末の製造方法は、グルコース及びガラクトースの総量がラクターゼ10万単位当たり0μmol超50μmol以下であるラクターゼ含有液を準備する工程(工程(1))と、前記ラクターゼ含有液を乾燥する工程(工程(2))とを含む。工程(1)及び工程(2)ともに、工業的に用いられる手法が特に限定されることなく用いられる。
 工程(1)においてラクターゼ含有液を準備する手法としては、上述の微生物を用いた、固体培養法及び液体培養法などの培養法が挙げられるが、好ましくは液体培養法が利用される。培地としては、使用する微生物が生育可能な培地であれば、特に限定されない。例えば、グルコース、シュクロース、ゲンチオビオース、可溶性デンプン、グリセリン、デキストリン、糖蜜、有機酸等の炭素源、更に硫酸アンモニウム、炭酸アンモニウム、リン酸アンモニウム、酢酸アンモニウム、あるいは、ペプトン、酵母エキス、コーンスティープリカー、カゼイン加水分解物、ふすま、黄粉、肉エキス等の窒素源、更にカリウム塩、マグネシウム塩、ナトリウム塩、リン酸塩、マンガン塩、鉄塩、亜鉛塩等の無機塩を添加したものを用いることができる。使用する形質転換体の生育を促進するためにビタミン、アミノ酸などを培地に添加してもよい。培養中に発泡する場合は、消泡剤を培地に添加してもよい。培地のpHは例えば約3~8、好ましくは約4~7程度に調整し、培養温度は通常約20~40℃、好ましくは約25~35℃程度で、1~10日間、好ましくは3~7日間程度好気的条件下で培養する。培養法としては例えば振盪培養法、ジャー・ファーメンターによる好気的深部培養法が利用できる。以上の条件で培養した後、培養液又は菌体より目的の酵素を回収する。培養液から回収する場合には、例えば培養上清をろ過、遠心処理等することによって不溶物を除去した後、限外ろ過膜による濃縮・脱塩、硫安沈殿等の塩析、透析、イオン交換樹脂等の各種クロマトグラフィーなどを適宜組み合わせて分離、精製を行うことにより前記ラクターゼ含有液を得ることができる。他方、菌体内から回収する場合には、例えば菌体を加圧処理、超音波処理などによって破砕した後、上記と同様に分離、精製を行うことにより前記ラクターゼ含有液を得ることができる。尚、ろ過、遠心処理などによって予め培養液から菌体を回収した後、上記一連の工程(菌体の破砕、分離、精製)を行うことにより前記ラクターゼ含有液を得てもよい。
 工程(1)で得られるラクターゼ含有液に含まれるグルコース及びガラクトースの総量は、ラクターゼ10万単位当たりの量として、ラクターゼ原末の製造効率の観点から0μmol超、好ましくは0.1μmol以上、より好ましくは1μmol以上、かつ、ラクターゼの安定性向上の観点から50μmol以下である。これらの効果をより良好に得る観点で、当該総量は、ラクターゼ10万単位当たり例えば0μmol超50μmol以下、好ましくは0.1μmol以上50μmol以下、より好ましくは1μmol以上50μmol以下であり、好ましくは0μmol超30μmol以下、より好ましくは0.1μmol以上30μmol以下、さらに好ましくは1μmol以上30μmol以下であり、より好ましくは0μmol超9μmol以下、一層好ましくは0.1μmol以上9μmol以下、より一層好ましくは1μmol以上9μmol以下であり、一層好ましくは0μmol超8μmol以下、より一層好ましくは0.1μmol以上8μmol以下、さらに一層好ましくは1μmol以上8μmol以下であり、より一層好ましくは0μmol超6μmol以下、さらに一層好ましくは0.1μmol以上6μmol以下、特に好ましくは1μmol以上6μmol以下であり、さらに一層好ましくは0μmol超2μmol以下、特に好ましくは、0.1μmol以上2μmol以下であり、最も好ましくは1μmol以上2μmol以下である。
 工程(2)では、工程(1)で得られた、グルコース及びガラクトースの総量がラクターゼ10万単位当たり0μmol超50μmol以下の前記ラクターゼ含有液を、乾燥させる。乾燥の手法としては、例えば凍結乾燥、真空乾燥、噴霧乾燥等が挙げられる。これによって、ラクターゼ原末が得られる。なお、ラクターゼ原末の製造方法においては、工程(2)の後には何らの成分を添加する工程も含まない。
[1-6.使用]
 ラクターゼ原末は、そのままで所定の用途に用いられてよい。また、ラクターゼ原末は、当該所定の用途に供されうるラクターゼ製剤の製造における原料用途に用いられてもよい。
 ラクターゼ原末の上記所定の用途としては、産業用酵素剤としての用途及び酵素試薬としての用途などが挙げられる。
 産業用酵素剤としての用途には、例えば、医薬品、サプリメント、又は食品添加物(食品又は飲料への添加を目的とするものであり、業務用及び家庭用を問わない)としての用途が挙げられ、さらに、飲食物の製造用途等が挙げられる。
 医薬品の製造としては、乳糖不耐症者を対象とした医薬品であって、本発明のラクターゼ原末が混合されたものの製造が挙げられる。医薬品の製造では、本発明のラクターゼ原末を、他の成分と混合及び/又は成形する工程を含んでよい。他の成分としては、賦形剤、保存料、安定剤などが挙げられる。成形としては、粉末化、顆粒化、打錠等が挙げられる。あるいは、医薬品の製造では、後述のラクターゼ製剤の製造方法に記載する工程が行われてもよい。
 サプリメントの製造としては、ダイエタリーサプリメント(健康食品)であって、本発明のラクターゼ原末が混合されたものの製造が挙げられる。サプリメントの製造では、本発明のラクターゼ原末を、他の成分と混合及び/又は成形する工程を含んでよい。他の成分としては、賦形剤、乳酸菌、ビタミン、ミネラル、アミノ酸などが挙げられる。成形としては、粉末化、顆粒化、打錠等が挙げられる。あるいは、サプリメントの製造では、後述のラクターゼ製剤の製造方法に記載する工程が行われてもよい。
 食品添加物の製造としては、乳糖を含む飲食物(たとえば、牛乳、ヨーグルト、チーズ、バター、クリーム、粉ミルクなどの乳製品)やガラクトオリゴ糖の製造用原料に添加するための添加物の製造が挙げられる。食品添加物の製造では、本発明のラクターゼ原末を、他の成分と混合及び/又は成形する工程が挙げられる。他の成分としては、酵素(ラクターゼを除く)、保存料、安定剤、製造用剤、甘味料、調味料などが挙げられる。成形としては、粉末化、顆粒化、打錠等が挙げられる。あるいは、食品添加物の製造では、後述のラクターゼ製剤の製造方法に記載する工程が行われてもよい。
 飲食物の製造としては、乳糖が分解された飲食物(たとえば、牛乳、ヨーグルト、チーズ、バター、クリーム、粉ミルクなどの乳製品)やガラクトースが糖転移された飲食物であって、本発明のラクターゼ原末で処理されたものの製造が挙げられる。飲食物の製造では、本発明のラクターゼ原末を、乳糖を含む飲食材料に添加する工程を含む。乳糖を含む飲食材料は、適宜ラクターゼ活性条件下に供して乳糖分解処理を進行させると、乳糖分解された飲食料となる。ラクターゼ原末を添加すべき乳糖を含む飲食材料としては、飲食物の態様として完成しているが乳糖がまだ分解されていない状態のものであってもよいし、飲食物の材料(原材料または中間材料)の態様であって乳糖もまだ分解されていない状態のものであってもよい。したがって、本発明のラクターゼ原末を添加するタイミングとしては、乳糖が含まれる飲食物の製造工程後であっても良いし、乳糖が含まれる飲食物の製造工程中であっても良い。
 酵素試薬としての用途には、例えば生化学診断における試薬としての用途等が含まれる。
 ラクターゼ製剤の製造では、後述のラクターゼ製剤の製造方法に記載する工程が行われる。
[2.ラクターゼ製剤]
 ラクターゼ製剤は、上述のラクターゼ原末を有効成分として製剤化されたものであればよく、ラクターゼ原末の成形物として製剤化されたもの、ラクターゼ原末と他の成分との混合物として製剤化されたもの、及びラクターゼ原末と他の成分との混合物の成形物として製剤化されたものが挙げられる。好ましくは、他の成分を含んで製剤化されたものである。ラクターゼ製剤の製剤形態としては、経口で摂取できれば特に限定されず、例えば粉末剤、細粒剤、顆粒剤、丸剤、錠剤、カプセル剤、トローチ剤などの形態が挙げられる。
[2-1.ラクターゼ]
 ラクターゼ製剤中のラクターゼの量は、例えば1質量%以上99質量%以下、好ましくは10質量%以上90質量%以下、より好ましくは55質量%以上65質量%以下であってよい。
[2-2.糖賦形剤]
 本発明のラクターゼ製剤は、他の成分として糖賦形剤を含んでいても良い。つまり本発明のラクターゼ製剤に含まれていてよい糖賦形剤は、ラクターゼの濃縮の過程において濃縮すべきラクターゼ液中に加えられたものではなく、濃縮されて乾燥状態となったラクターゼ原末に対し乾燥状態で混合されたものである。
 糖賦形剤は、賦形剤として使用可能な糖類であって、室温で固体状態のものであればよい。さらに、糖賦形剤は、ガラクトース残基及び/又はグルコース残基を構成糖残基として有するものであってよい。糖賦形剤の例としては、デキストリン、難消化性デキストリン、デンプン、バレイショデンプン、トウモロコシデンプン、ショ糖、マンニトール、ソルビトール、ラクトース、トレハロースが挙げられる。上述のラクターゼ原末の保存安定性が良好であるため、乾燥状態であれば、添加される糖賦形剤の量は特に制限されない。ラクターゼ製剤中の糖賦形剤の量は、賦形効果及び/又は保存安定性をより良好に得る観点から、ラクターゼ製剤中の糖賦形剤の量は、適宜設定できるが、例えば10質量%以上90質量%以下、より好ましくは15質量%以上80質量%以下、さらに好ましくは20質量%以上70質量%以下であってよい。
[2-3.グルコース及びガラクトース]
 本発明のラクターゼ製剤が糖賦形剤を含んでいる場合、ラクターゼ製剤は、ラクターゼの作用により糖賦形剤から生じたガラクトース及び/又はグルコースを含んでよい。ラクターゼ製剤に含まれるガラクトース及びグルコースの総量は、ラクターゼの作用により糖賦形剤から生じた分と、ラクターゼ原末に含まれていた分とを合わせた総量として、賦形効果及び/又はラクターゼ製剤の保存安定性を良好に得る観点から、適宜設定できるが、ラクターゼ10万単位当たり例えば0μmol超、好ましくは0.1μmol以上1000μmol以下、より好ましくは1μmol以上500μmol以下、さらに好ましくは5μmol以上300μmol以下、一層好ましくは50μmol以上200μmol以下であってよい。
[2-4.保存安定性]
 本発明のラクターゼ製剤は、他の成分として糖賦形剤を含んでも良好な保存安定性を有する。具体的には、ラクターゼ製剤の保存安定性は、105℃で4時間の超促進条件下で保存した場合に、当該保存前の活性を100%とした場合の残存活性が例えば10%以上、好ましくは50%以上、より好ましくは70%以上、一層好ましくは75%以上、であってよい。
 ラクターゼ製剤は、保存安定性の維持のため、温度制御及び/又は湿度制御された環境で保存されることが好ましい。保存温度は、室温以下、例えば40℃以下、好ましくは25℃以下であってよい。保存湿度は、例えば25℃での相対湿度80%RH以下、好ましくは65%RH以下であってよい。
[2-5.さらなる他の成分]
 本発明のラクターゼ製剤には、他の成分として、上述の糖賦形剤以外のさらなる他の成分を含んでよい。たとえば、糖賦形剤以外の賦形剤、滑沢剤、崩壊剤、防腐剤、制酸剤などが挙げられる。糖賦形剤以外の賦形剤としては、例えばタルク等の無機賦形剤が挙げられる。滑沢剤としては、例えばステアリン酸アルミニウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、ポリエチレングリコール等が挙げられる。崩壊剤としては、例えばカルボキシメチルスターチナトリウム、カルメロースカルシウム、カルメロース、トウモロコシデンプン等が挙げられる。防腐剤としては、例えばパラオキシ安息香酸エステル類、クロロブタノール、ベンジルアルコール等が挙げられる。制酸剤としては、クエン酸三ナトリウム、酒石酸ナトリウムカリウム、炭酸カルシウム、炭酸ナトリウム、リン酸水素カルシウムが挙げられる。上述以外にも、他の成分としては、ラクターゼ製剤の用途(例えば、医薬品、サプリメント、食品添加物等)に応じた成分(添加剤)が適宜当業者によって選択されてよい。例えば、保存料、安定剤、乳酸菌、ビタミン、ミネラル、アミノ酸、製造用剤、甘味料、調味料等が挙げられる。
[2-6.製造方法]
 ラクターゼ製剤は、例えば上述のラクターゼ原末を製剤化することで得られる。つまり、ラクターゼ製剤の製造方法は、上述の工程(1)及び工程(2)と、ラクターゼ原末を製剤化する工程(3)とを含む。工程(3)においては、ラクターゼ原末の成形及び/又は他の成分との混合が行われる。成形としては、粉末化、顆粒化、打錠等が挙げられる。他の成分は、上述の通りである。これによって、経口で摂取できる任意の製剤形態(例えば、粉末剤、細粒剤、顆粒剤、丸剤、錠剤、カプセル剤、トローチ剤)に製剤することができる。工程(3)は、終始乾燥状態で行われることが好ましい。糖賦形剤を用いて製剤化する場合は、ラクターゼ原末と糖賦形剤とはいずれも乾燥状態で混合する。ラクターゼ原末と糖賦形剤とを含む混合物は、液体化されることなくラクターゼ製剤として得る。
[2-7.使用]
 ラクターゼ製剤は、そのままで所定の用途に用いられてよい。ラクターゼ製剤の当該所定の用途としては、産業用酵素剤としての用途及び酵素試薬としての用途などが挙げられる。
 産業用酵素剤としての用途には、例えば、医薬品、サプリメント、又は食品添加物(食品又は飲料への添加を目的とするものであり、業務用及び家庭用を問わない)としての用途が挙げられ、さらに、飲食物の製造用途等が挙げられる。
 医薬品の製造としては、乳糖不耐症者を対象とした医薬品であって、本発明のラクターゼ製剤が混合されたものの製造が挙げられる。医薬品の製造では、本発明のラクターゼ製剤を、他の成分と混合及び/又は成形する工程を含んでよい。他の成分としては、賦形剤や保存料、安定剤などが挙げられる。成形としては、粉末化、顆粒化、打錠等が挙げられる。
 サプリメントの製造としては、ダイエタリーサプリメント(健康食品)であって、本発明のラクターゼ製剤が混合されたものの製造が挙げられる。サプリメントの製造では、本発明のラクターゼ粉末を、他の成分と混合及び/又は成形する工程を含んでよい。他の成分としては、賦形剤、乳酸菌、ビタミン、ミネラル、アミノ酸などが挙げられる。成形としては、粉末化、顆粒化、打錠等が挙げられる。
 食品添加物の製造としては、乳糖を含む飲食物(たとえば、牛乳、ヨーグルト、チーズ、バター、クリーム、粉ミルクなどの乳製品)やガラクトオリゴ糖の製造用原料に添加するための添加物の製造が挙げられる。食品添加物の製造では、本発明のラクターゼ粉末を、他の成分と混合及び/又は成形する工程が挙げられる。他の成分としては、酵素(ラクターゼを除く)、保存料、安定剤、製造用剤、甘味料、調味料などが挙げられる。成形としては、粉末化、顆粒化、打錠等が挙げられる。
 飲食物の製造としては、乳糖が分解された飲食物(たとえば、牛乳、ヨーグルト、チーズ、バター、クリーム、粉ミルクなどの乳製品)やガラクトースが糖転移された飲食物であって、本発明のラクターゼ製剤で処理されたものの製造が挙げられる。飲食物の製造では、本発明のラクターゼ製剤を、乳糖を含む飲食材料に添加する工程を含む。乳糖含む飲食材料は、適宜ラクターゼ活性条件下に供して乳糖分解処理を進行させると、乳糖分解された飲食料となる。ラクターゼ製剤を添加すべき乳糖を含む飲食材料としては、飲食物の態様として完成しているが乳糖がまだ分解されていない状態のものであってもよいし、飲食物の材料(原材料または中間材料)の態様であって乳糖もまだ分解されていない状態のものであってもよい。したがって、本発明のラクターゼ製剤を添加するタイミングとしては、乳糖が含まれる飲食物の製造後であっても良いし、乳糖が含まれる飲食物の製造工程中であっても良い。
 酵素試薬としての用途には、例えば生化学診断における試薬としての用途等が含まれる。
[実施例1]
(A)ラクターゼ原末(乾燥ラクターゼ濃縮物)の調製
 以下のようにして、ラクターゼ原末(乾燥ラクターゼ濃縮物)を調製した。
1.生産菌(Aspergillus oryzae)を液体培養で30℃、5日間培養した。小麦ふすま4w/v%、黄粉1w/v%、リン酸アンモニウム0.25w/v%、可溶性でんぷん3w/v%を含む培地を使用した。
2.ケイソウ土ろ過によって生産菌体を除去した。
3.限外ろ過膜によってラクターゼ原末の活性が10,000ALU/g以上になるよう濃縮した。
4.限外ろ過膜によって、等量加水し、元の液量まで濃縮する工程を5回以上繰り返すことで脱塩すると共にガラクトース及びグルコースの総量を調節した。
5.噴霧乾燥あるいは凍結乾燥で粉末化した。
(B)ガラクトース含量及びグルコース含量の測定
 乾燥ラクターゼ濃縮物中のガラクトース含量を、ガラクトース測定キットであるLactose/D-Galactose(R-Biopharm、catalog No.10 176 303 035)を用い、自動分析装置TBA-120FR(東芝メディカルシステムズ)にて測定した。
 乾燥ラクターゼ濃縮物中のグルコース含量を、グルコース測定キットであるグルコースCII-テストワコー(和光純薬工業、Code 439-90901)を用いて測定した。
(C)還元糖総量の測定
 乾燥ラクターゼ濃縮物中の還元糖総量を、DNS法(ジニトロサリチル酸法)にて測定した。具体的には、DNS溶液(0.7w/v% 3,5-ジニトロサリチル酸、1.21w/v% 水酸化ナトリウム、0.02w/v% 酒石酸カリウムナトリウム、0.57w/v% フェノール、0.55w/v% 炭酸水素ナトリウム)0.6mLを試験管に分注し、さらに、乾燥ラクターゼ濃縮物を精製水で適当な濃度に希釈したラクターゼ溶液を0.2mL加えた。沸騰水中で5分間加熱発色させ、流水中で15分間冷却した後、4.2mLの精製水を添加し、分光光度計で波長550nmの吸光度を測定した。また、ラクターゼ溶液の代わりにグルコース溶液(0、0.5、1、2、3、4、5 mg/mL)で同様の操作を行いグルコース検量線を作成した。作成した検量線より乾燥ラクターゼ濃縮物中の還元糖量の総量をグルコースの量として算出した。
(D)保存安定性
 乾燥ラクターゼ濃縮物の保存安定性を、加速保存安定性試験により評価した。加速条件としては、乾燥ラクターゼ濃縮物を105℃で4時間保存とした。評価は、加速条件での保存前後におけるラクターゼ活性から以下に基づいて残存活性(%)を算出した。
     残存活性(%)=保存後の活性(ALU/g)/保存前の活性(ALU/g)×100
 ラクターゼ活性は、米国食品化学物質規格(FCC:Food Chemical Codex)第4版にLactase(Acid)(β-galactosidase)として収載されている方法に準じて測定した。具体的には、o-ニトロフェニル-β-ガラクトピラノシド(ONPG)を基質として、反応温度37℃、反応pH4.5で15分間反応させたとき、1分間に1μmolのo-ニトロフェノールを遊離する酵素量を1単位(1ALU;1 Acid Lactase Unit)とした。
[実施例2~5、比較例1~3]
 実施例1で得られたラクターゼ原末(乾燥ラクターゼ濃縮物)を精製水に溶解し、ラクターゼ溶液を調製した。ラクターゼ溶液に異なる濃度でガラクトースを添加して溶解し、その後、凍結乾燥にて粉末化し、ガラクトース量の異なる乾燥ラクターゼ濃縮物を調製した。得られた乾燥ラクターゼ濃縮物について、実施例1と同様にガラクトース及びグルコースの含有量及び還元糖総量を測定し、かつ、保存安定性を評価した。
[実施例6~9、比較例4~6]
 実施例1で得られたラクターゼ原末(乾燥ラクターゼ濃縮物)を精製水に溶解し、ラクターゼ溶液を調製した。ラクターゼ溶液に異なる濃度でグルコースを添加して溶解し、その後、凍結乾燥にて粉末化し、グルコース量の異なる乾燥ラクターゼ濃縮物を調製した。得られた乾燥ラクターゼ濃縮物について、実施例1と同様にガラクトース及びグルコースの含有量及び還元糖総量を測定し、かつ、保存安定性を評価した。
[結果]
 実施例1~9及び比較例1~6の結果を表1に示す。このうち、保存安定性について、ガラクトース及びグルコースの総量と残存活性との関係をプロットしたグラフを図1に示す。さらに、図1におけるガラクトース及びグルコースの総量が50μmol/10万単位である場合を横軸方向に拡大したグラフを図2に示す。
Figure JPOXMLDOC01-appb-T000001
 上記表1並びに図1及び図2に示されるように、濃縮すべきラクターゼ溶液中に含まれていたガラクトース及びグルコースの総量が、乾燥後の含量として50μmol/10万単位以下である実施例1~9で、当該総量が乾燥後の含量として50μmol/10万単位を上回る比較例1~6に比べて残存活性の向上が認められた。残存活性の向上効果は、当該総量が30μmol/10万単位以下である実施例1~4及び6~8でより良好に認められ、当該総量が8μmol/10万単位以下である実施例1~2及び6でより一層良好に認められた。
[実施例10]
 実施例1と同様にして、ラクターゼ原末を調製し、ガラクトース及びグルコースの含有量及び還元糖総量を測定し、かつ、保存安定性を評価した。なお、ラクターゼ原末中のタンパク質の量は80±5質量%、多糖及びオリゴ糖の総量は5±10質量%であった。
[実施例11]
 実施例10で得られたラクターゼ原末に、賦形剤としてデキストリンを乾燥状態で混合してラクターゼ組成物とすることで、ラクターゼ製剤(賦形品)を調製した。得られた賦形品中におけるデキストリンの割合は、20質量%であった。この賦形品についても、実施例1と同様にして、ガラクトース及びグルコースの含有量及び還元糖総量を測定し、保存安定性を評価した。なお、ラクターゼ製剤中のタンパク質の量は60±5質量%、多糖及びオリゴ糖の総量は25±5質量%であった。
[結果]
 実施例10~11の結果を表2に示す。表2においては、比較参照用に、比較例1及び比較例4の結果も併せて示している。さらに、実施例10~11について、図1のグラフに重ねて円ドットでプロットしたグラフを図3に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例10のラクターゼ原末と賦形剤とを乾燥状態で混合して調製した実施例11のラクターゼ製剤(賦形品)では、賦形剤に由来する還元糖がさらに混入することでガラクトース及びグルコースの総量が増えているものの、良好な残存活性が維持されていることが認められた。なお、実施例11のラクターゼ製剤(賦形品)に含まれるガラクトース及びグルコースの総量は、比較例1と同等または比較例4より少し多い程度であるが、濃縮前の液体状態の時点からガラクトース及びグルコースの総量が相当量含まれていた比較例1及び比較例4と比べて、残存活性が大幅に向上したことが認められた。つまり、濃縮前の液体状態の時点でガラクトース及びグルコースの総量が少なくなるように調整すれば、乾燥後に糖賦形剤を加えたとしても、糖賦形剤が酵素に対して不所望の悪影響を及ぼさないことが示された。
 本発明の好ましい実施形態は上記の通りであるが、本発明はそれらのみに限定されるものではなく、本発明の趣旨から逸脱することのない様々な実施形態が他になされる。

Claims (21)

  1.  ラクターゼと、ガラクトース及び/又はグルコースとを含み、
     前記ガラクトース及び前記グルコースの総量が、ラクターゼ10万単位当たり0μmol超50μmol以下である、ラクターゼ原末。
  2.  前記ガラクトース及び前記グルコースの総量が、ラクターゼ10万単位当たり0μmol超30μmol以下である、請求項1に記載のラクターゼ原末。
  3.  前記ガラクトース及び前記グルコースの総量が、ラクターゼ10万単位当たり0μmol超8μmol以下である、請求項1に記載のラクターゼ原末。
  4.  105℃で4時間放置後の残存活性が10%以上である、請求項1から3のいずれか1項に記載のラクターゼ原末。
  5.  105℃で4時間放置後の残存活性が50%以上である、請求項1から3のいずれか1項に記載のラクターゼ原末。
  6.  105℃で4時間放置後の残存活性が75%以上である、請求項1から3のいずれか1項に記載のラクターゼ原末。
  7.  前記ラクターゼが、Aspergillus oryzaeが産生するラクターゼである、請求項1から6のいずれか1項に記載のラクターゼ原末。
  8.  請求項1から7のいずれか1項に記載のラクターゼ原末を含む、ラクターゼ製剤。
  9.  105℃で4時間放置後の残存活性が10%以上である、請求項8に記載のラクターゼ製剤。
  10.  糖賦形剤をさらに含む、請求項8又は9に記載のラクターゼ製剤。
  11.  前記糖賦形剤の含有量が10質量%以上である、請求項10に記載のラクターゼ製剤。
  12.  ラクターゼ製剤中のガラクトース及びグルコースの総量が、ラクターゼ10万単位当たり0μmol超である、請求項8から11のいずれか1項に記載のラクターゼ製剤。
  13.  医薬品である、請求項8から12のいずれか1項に記載のラクターゼ製剤。
  14.  サプリメントである、請求項8から12のいずれか1項に記載のラクターゼ製剤。
  15.  食品添加物である、請求項8から12のいずれか1項に記載のラクターゼ製剤。
  16.  以下の工程(1)及び(2)を含む、ラクターゼ原末の製造方法:
    (1)グルコース及びガラクトースの総量が、ラクターゼ10万単位当たり0μmol超50μmol以下であるラクターゼ含有液を準備する工程;及び
    (2)上記ラクターゼ含有液を乾燥する工程。
  17.  以下の工程(1)~(3)を含む、ラクターゼ製剤の製造方法:
    (1)グルコース及びガラクトースの総量が、ラクターゼ10万単位当たり0μmol超50μmol以下であるラクターゼ含有液を準備する工程;
    (2)上記ラクターゼ含有液を乾燥する工程;及び
    (3)ラクターゼ乾燥物を製剤化する工程。
  18.  請求項1から7のいずれか1項に記載のラクターゼ原末又は請求項8から12のいずれか1項に記載のラクターゼ製剤を、他の成分と混合及び/又は成形する工程を含む、医薬品の製造方法。
  19.  請求項1から7のいずれか1項に記載のラクターゼ原末又は請求項8から12のいずれか1項に記載のラクターゼ製剤を、他の成分と混合及び/又は成形する工程を含む、サプリメントの製造方法。
  20.  請求項1から7のいずれか1項に記載のラクターゼ原末又は請求項8から12のいずれか1項に記載のラクターゼ製剤を、他の成分と混合及び/又は成形する工程を含む、食品添加物の製造方法。
  21.  請求項1から7のいずれか1項に記載のラクターゼ原末、請求項8から12及び15のいずれか1項に記載のラクターゼ製剤を飲食材料に添加する工程を含む、飲食物の製造方法。
PCT/JP2018/021025 2017-06-07 2018-05-31 ラクターゼ原末及びラクターゼ製剤 WO2018225623A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DK18813894.5T DK3636751T3 (da) 2017-06-07 2018-05-31 Lactase-bulkpulver og lactasepræparat
CN201880033134.XA CN110651043A (zh) 2017-06-07 2018-05-31 乳糖酶原料粉末和乳糖酶制剂
US16/620,467 US11517613B2 (en) 2017-06-07 2018-05-31 Lactase bulk powder and lactase preparation
JP2019523495A JP7171560B2 (ja) 2017-06-07 2018-05-31 ラクターゼ原末及びラクターゼ製剤
EP23217884.8A EP4321212A3 (en) 2017-06-07 2018-05-31 Lactase bulk powder and lactase preparation
EP18813894.5A EP3636751B1 (en) 2017-06-07 2018-05-31 Lactase bulk powder and lactase preparation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-112848 2017-06-07
JP2017112848 2017-06-07

Publications (1)

Publication Number Publication Date
WO2018225623A1 true WO2018225623A1 (ja) 2018-12-13

Family

ID=64566138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021025 WO2018225623A1 (ja) 2017-06-07 2018-05-31 ラクターゼ原末及びラクターゼ製剤

Country Status (6)

Country Link
US (1) US11517613B2 (ja)
EP (2) EP3636751B1 (ja)
JP (1) JP7171560B2 (ja)
CN (1) CN110651043A (ja)
DK (1) DK3636751T3 (ja)
WO (1) WO2018225623A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114246833B (zh) * 2020-09-23 2023-05-23 北京量子高科制药科技有限公司 一种乳糖酶组合物及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187854A (ja) * 2000-11-17 2002-07-05 Mcneil Ppc Inc 安定なラクターゼ組成物
WO2011037058A1 (ja) 2009-09-22 2011-03-31 天野エンザイム株式会社 ラクターゼ剤
WO2016060224A1 (ja) * 2014-10-17 2016-04-21 合同酒精株式会社 ラクターゼ溶液及びそれを用いた乳
JP2016129525A (ja) 2004-07-07 2016-07-21 レプリノ フーズ カンパニー オキシドレダクターゼで処理した食品成分および食品生成物、ならびにこのような食品成分および食品生成物を調製するための方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2506131A1 (fr) * 1981-05-21 1982-11-26 Agral Sarl Nouveau produit lacto-remplaceur a usage d'alimentation animale obtenu a partir de lait ou de sous-produits laitiers
GB2288732B (en) 1994-04-13 1998-04-29 Quadrant Holdings Cambridge Pharmaceutical compositions
US5955448A (en) 1994-08-19 1999-09-21 Quadrant Holdings Cambridge Limited Method for stabilization of biological substances during drying and subsequent storage and compositions thereof
EP0814162A3 (en) * 1996-06-21 1999-05-12 Hoechst Aktiengesellschaft Expression of the alpha-toxin gene (hla) of staphylococcus aureus using a chromosomally encoded hla-lacZ gene fusion
JP2003504048A (ja) * 1999-07-09 2003-02-04 ユニベルシテ ドゥ リエージュ 低温活性ベータ・ガラクトシダーゼ、その製法、及びその使用
US20020081352A1 (en) * 2000-12-22 2002-06-27 Rhode Rodger R. Enzyme food supplement composition comprising lipase and lactase
ES2858527T3 (es) * 2001-04-04 2021-09-30 Dsm Ip Assets Bv Lactasa purificada
US8236297B2 (en) * 2007-10-11 2012-08-07 Kenneth Manzo Method of treating lactose intolerance using genetically engineered bacteria
US20090317514A1 (en) * 2008-06-24 2009-12-24 Sizer Charles E Process For Making A Shelf-Stable Milk Based Beverage Concentrate
CA2697999C (en) * 2009-04-24 2013-04-30 Werner Hoelke A stabilized aqueous alpha-galactosidase composition and methods relating thereto
ES2533617T3 (es) 2009-06-23 2015-04-13 Nestec S.A. Leche en polvo que contiene lactasa
CN102933707B (zh) * 2010-03-02 2015-09-30 普罗塔里克斯有限公司 稳定的α-半乳糖苷酶及其用途
CN103667391B (zh) * 2012-09-03 2016-01-13 山东百龙创园生物科技有限公司 一种高纯度低聚半乳糖联产半乳糖醇的制备方法
JP6294228B2 (ja) * 2012-09-14 2018-03-14 天野エンザイム株式会社 糖質酸化酵素とその製造方法並びに用途
WO2015132349A1 (en) * 2014-03-05 2015-09-11 Dsm Ip Assets B.V. Liquid lactase compositions
WO2015186151A1 (en) * 2014-06-03 2015-12-10 Ciampini Di G. Ciampini E C. Snc Confectionery product suitable for lactose intolerant persons
CN106332965A (zh) * 2016-08-30 2017-01-18 山东统元食品有限公司 一种无糖褐色乳酸菌饮品及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187854A (ja) * 2000-11-17 2002-07-05 Mcneil Ppc Inc 安定なラクターゼ組成物
JP2016129525A (ja) 2004-07-07 2016-07-21 レプリノ フーズ カンパニー オキシドレダクターゼで処理した食品成分および食品生成物、ならびにこのような食品成分および食品生成物を調製するための方法
WO2011037058A1 (ja) 2009-09-22 2011-03-31 天野エンザイム株式会社 ラクターゼ剤
WO2016060224A1 (ja) * 2014-10-17 2016-04-21 合同酒精株式会社 ラクターゼ溶液及びそれを用いた乳

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NUCLEIC ACID AND ENZYME, vol. 41, no. 6, 1996, pages 810 - 816
See also references of EP3636751A4

Also Published As

Publication number Publication date
DK3636751T3 (da) 2024-01-29
JP7171560B2 (ja) 2022-11-15
US11517613B2 (en) 2022-12-06
EP3636751A1 (en) 2020-04-15
CN110651043A (zh) 2020-01-03
US20210145942A1 (en) 2021-05-20
EP3636751A4 (en) 2020-12-23
EP3636751B1 (en) 2024-01-10
EP4321212A3 (en) 2024-05-15
JPWO2018225623A1 (ja) 2020-04-09
EP4321212A2 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
Panesar et al. Microbial production, immobilization and applications of β‐D‐galactosidase
WO2021201277A1 (ja) 蛋白質の脱アミド方法
Golowczyc et al. Use of whey permeate containing in situ synthesised galacto-oligosaccharides for the growth and preservation of Lactobacillus plantarum
CN110607255A (zh) 一种德氏乳杆菌及直投式德氏乳杆菌发酵剂的制备方法和应用
EP3208332B1 (en) Lactase solution and milk using same
CA1300023C (en) Lactobacillus bifidus proliferation promoting composition
Panesar et al. Enzymes in food processing: fundamentals and potential applications
WO2018225623A1 (ja) ラクターゼ原末及びラクターゼ製剤
JP3017456B2 (ja) プロピオン酸菌の高濃度培養方法及び培養物ならびにその加工物
JP2002065199A (ja) 発酵ウコンの製造法
JP4382295B2 (ja) ウレアーゼ不活性化組成物及び飲食品
TWI784019B (zh) 半乳糖寡糖的製造方法
CN110506105B (zh) 新型双歧杆菌属细菌
JP2002306125A (ja) プロバイオティクスを含有する包装容器入り乳幼児用栄養組成物
KR20140012932A (ko) 유산균 추출물 및 유청을 이용한 갈락토올리고당의 제조방법
C Perotti et al. Dairy products modified in their lactose content
JP2002187854A (ja) 安定なラクターゼ組成物
Saji et al. β-Galactosidase: Application in Dairy and Food Industry
Oliveira et al. Carbohydrate-active enzymes in the production of lactose-derived tagatose
KR102567791B1 (ko) 숙취 해소 효능을 갖는 락토바실러스 플란타룸 gfc_b001 균주 및 이를 유효성분으로 포함하는 식품 조성물
Niamah et al. Chemistry and Sources of Lactase Enzyme with an Emphasis on Microbial Biotransformation in Milk
JP2022057336A (ja) 芳香族乳酸を含む組成物の製造方法
JP3138323B2 (ja) 耐熱性菌増殖抑制剤及びそれを配合した飲食品及び餌飼料
Cardoso Validation and optimization of β-galactosidasev production by Aspergillus lacticoffeatus
JP2021112166A (ja) 新規ビフィドバクテリウム属細菌、および当該細菌を含む組成物、並びに当該細菌の増殖促進用の組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523495

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018813894

Country of ref document: EP

Effective date: 20200107