WO2016060224A1 - ラクターゼ溶液及びそれを用いた乳 - Google Patents

ラクターゼ溶液及びそれを用いた乳 Download PDF

Info

Publication number
WO2016060224A1
WO2016060224A1 PCT/JP2015/079259 JP2015079259W WO2016060224A1 WO 2016060224 A1 WO2016060224 A1 WO 2016060224A1 JP 2015079259 W JP2015079259 W JP 2015079259W WO 2016060224 A1 WO2016060224 A1 WO 2016060224A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactase
solution
lactase solution
milk
reducing sugar
Prior art date
Application number
PCT/JP2015/079259
Other languages
English (en)
French (fr)
Inventor
直樹 長畑
博文 堀口
Original Assignee
合同酒精株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55746763&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016060224(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 合同酒精株式会社 filed Critical 合同酒精株式会社
Priority to US15/519,090 priority Critical patent/US20170215449A1/en
Priority to DK15850818.4T priority patent/DK3208332T3/da
Priority to AU2015331311A priority patent/AU2015331311B2/en
Priority to EP15850818.4A priority patent/EP3208332B1/en
Priority to NZ731204A priority patent/NZ731204A/en
Priority to JP2015551921A priority patent/JP5959132B1/ja
Publication of WO2016060224A1 publication Critical patent/WO2016060224A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/152Milk preparations; Milk powder or milk powder preparations containing additives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01108Lactase (3.2.1.108)

Definitions

  • the present invention relates to a lactase solution in which the amount of reducing sugar is a predetermined value or less and a method for producing milk, dairy products, etc. using the same.
  • Lactase is an enzyme that decomposes lactose into glucose and galactose. Lactose is present in dairy products using milk ingredients such as milk. Since lactase is present in many human small intestines, lactose in dairy products is broken down into glucose and galactose in the small intestine. However, in some humans where lactase does not act sufficiently, lactose is not sufficiently degraded, resulting in symptoms of diarrhea and indigestion. In order to prevent such symptoms, lactase is widely used to produce dairy products in which lactose has been previously degraded.
  • lactase used in the production of dairy products is produced using microorganisms such as yeast, mold, and bacteria.
  • microorganisms such as yeast, mold, and bacteria.
  • the lactase solution usually contains substances other than lactase.
  • enzymes generally have the disadvantages that they are less stable against heat and pH changes, and that they are easily affected by coexisting substances.
  • the enzyme-containing form is a system containing water or an aqueous solution
  • Enzyme deactivation is generally considered to be denatured deactivation based on structural changes due to thermal motion.
  • a proteolytic enzyme is contained as a substance other than lactase, inactivation due to mutual degradation (autolysis) occurs.
  • various measures such as adding various stabilizers and refrigerated storage are taken.
  • Patent Document 1 there is a technique for putting a saccharide into a glycerol kinase solution in order to reduce inactivation due to the action of a preservative.
  • Patent Document 2 it has been proposed to add a polysaccharide to stabilize the protease solution (Patent Document 2).
  • JP 2004-141162 A Japanese Patent Laid-Open No. 3-4790
  • An object of the present invention is to provide means for improving the storage stability of a lactase solution.
  • the inventors of the present invention attempted to add sugars to the lactase solution based on the techniques according to Patent Documents 1 and 2. However, it has been found that sufficient storage stability of the lactase solution cannot be achieved by simply adding saccharides. The inventors of the present invention have found that the storage stability of the lactase solution can be achieved by limiting the amount of the saccharide to a specific amount and setting the amount of reducing sugar to a predetermined value or less, thereby completing the present invention. It was.
  • a lactase solution Containing 0.1 g / kg to 100 g / kg of saccharides based on the total mass of the lactase solution, A lactase solution, wherein the amount of reducing sugar in the lactase solution is 2.0 mg / g or less; [2] The lactase solution according to [1], wherein the residual activity after standing for 7 days at 50 ° C.
  • the storage stability of lactase as an enzyme is improved. Thereby, even when there is a time lag between production of lactase and addition to milk, high lactase activity can be maintained at the time of addition to milk.
  • the solution containing lactase usually contains substances other than lactase as described above. In order to remove substances other than lactase (for example, proteins and peptides having different properties and various low molecular weight substances) from the solution, various purification steps are required.
  • the purification step can be omitted or shortened, which contributes to the efficiency of the lactase purification step. be able to.
  • the present invention can provide a lactase solution excellent in storage stability and economical.
  • FIG. 1 is a graph showing the relationship between the amount of reducing sugar of saccharide and the residual activity after 7 days at 50 ° C. in a lactase solution to which saccharide has been added.
  • the lactase solution according to the present invention contains, together with lactase, saccharides to an extent that minimizes the influence on the lactase activity at the sugar end exhibiting reducibility, and optionally contains additives such as stabilizers.
  • additives such as stabilizers.
  • (1) components of the lactase solution, (2) the composition of the lactase solution, (3) the properties of the lactase solution (particularly the amount of reducing sugar), (4) a method for producing the lactase solution, (5) a method for using the lactase solution ⁇ Description will be given in the order of usage.
  • Lactase has been isolated from a very wide range of organisms, including microorganisms.
  • the kind of microorganisms such as yeast, mold and bacteria producing lactase is not particularly limited.
  • microorganisms that produce lactase include microorganisms belonging to the genus Kluyveromyces, Aspergillus, Bacillus, and Penicillium. Among these, microorganisms belonging to the genus Kluyveromyces are more preferable.
  • Kluyveromyces fragilis K.
  • Iberomyces lactis is more preferred.
  • Aspergillus genus microorganisms include Aspergillus oryzae or Aspergillus niger, and examples of Penicillium genus microorganisms include Penicillium multicolor.
  • the lactase used in the present invention is neutral lactase or acid lactase.
  • Neutral lactase and acid lactase may be used in combination.
  • the neutral lactase is preferably one having an optimum pH of activity in the neutral region and having a property of being deactivated in the acidic region, and capable of degrading lactose in the active state.
  • the optimum pH for neutral lactase activity is 6.0 to 7.5, and the inactivation pH is more preferably 4.0 to 6.0.
  • the acid lactase preferably has an optimum pH for activity in the acidic region and can decompose lactose in the active state.
  • the optimum pH for acid lactase activity is 3.0 to 5.9.
  • Sugars include all monosaccharides, oligosaccharides and polysaccharides.
  • the number of sugars constituting the saccharide may be one, or two or more.
  • the saccharide can have a linear structure, a side chain structure, and a ring structure. One saccharide may have these multiple structures.
  • sugar which comprises saccharides is not limited.
  • reducing sugar means that one terminal functional group constituting one molecule of sugar has reducibility. All monosaccharides are reducing sugars, and some oligosaccharides and some polysaccharides are also included in reducing sugars.
  • the saccharide is a linear polysaccharide
  • the end of the saccharide has 0, 1 or 2 functional groups showing reducibility.
  • a saccharide whose terminal end is one or two functional groups exhibiting reducibility is a reducing sugar.
  • the functional group showing reducibility tends to increase more than the linear polysaccharide due to the structure. From the above definition of reducing sugar, it is preferable to use a polysaccharide having a high degree of polymerization as the saccharide contained in the lactase solution.
  • the amount of reducing sugar contained in saccharide means a value measured by the DNS method described later.
  • the amount of reducing sugar contained in the lactase solution needs to be 2.0 mg / g or less. Preferably it is 0.5 mg / g or less, More preferably, it is 0.1 mg / g% or less. As the amount of reducing sugar contained in the lactase solution increases, the storage stability of the lactase solution tends to decrease.
  • polysaccharide refers to a carbohydrate in which 7 or more monosaccharides are bound. Examples include starch, cellulose, dextrin, cyclodextrin, pullulan, dextran, arabinoxylan, chitin, chitosan, pectin, inulin, galactan, mannan (galactomannan, glucomannan, etc.), indigestible dextrin, polydextrose, and the like. There is no particular limitation as long as it is a carbohydrate that can be used as a food or drink. These may be single or a mixture of two or more.
  • the soluble polysaccharide refers to one having a solubility in 100 g of water at 25 ° C. of 1.5 g or more. Specifically, it is a polysaccharide in which 1.5% by mass of polysaccharide is added to water and gently stirred for 24 hours, and then the absorbance (OD 600 nm) of the solution does not increase by 0.01 or more compared to before addition. .
  • Polydextrose suitably used in the present invention is produced by polycondensation using glucose as a main raw material in the presence of sorbitol and citric acid, and is a powdered, water-soluble, indigestible polysaccharide, widely used as a food material. It is what is used. Examples thereof include commercially available polydextrose and “Liteth” (trade name, manufactured by DuPont), which is an improved product of polydextrose.
  • the pullulan that can be suitably used in the present invention is a natural polysaccharide obtained by culturing Aureobasidium pullulans, which is a kind of black yeast, using starch as a raw material, and maltotriose is regularly ⁇ -1,6-linked, It is a tasteless and odorless white powder.
  • polysaccharides are pullulan and polydextrose, and among the polydextrose, “Liteth”, in particular “Liteth Ultra” is preferable because of its small amount of reducing sugar.
  • the lactase solution can contain a stabilizer. By containing a stabilizer, the lactase activity of the lactase solution can be maintained over a long period of time.
  • the stabilizer include sorbitol, glycerol, glycerol trimethylolpropane, neopentyl glycol, triethanolamine, glycol, diglycol, triethylene glycol, glycol having a molecular weight of less than 1000. it can. Stabilizers can be contained in the lactase solution alone or in combination.
  • the lactase solution of the present invention may contain other various components as necessary. Specific examples include metal salts that contribute to the stabilization of lactase, ascorbic acid, or inorganic salts having a buffering action.
  • the sugar content is 0.1 g / kg to 100 g / kg based on the total mass of the lactase solution. It is preferably 0.5 g / kg to 50 g / kg, more preferably 1.0 g / kg to 10 g / kg.
  • the saccharide content is less than the lower limit, the load of the purification process increases, and a lactase solution excellent in economic efficiency cannot be provided.
  • the saccharide content exceeds the upper limit value, the storage stability of the lactase solution tends to decrease.
  • the viscosity of the lactase solution is likely to cause a problem in handling properties, and thus there may be cases where a lactase solution excellent in economy cannot be provided.
  • the amount of the stabilizer contained in the lactase solution is preferably 10% by mass to 90% by mass, more preferably 20% by mass to 80% by mass, and 30% by mass to 70% by mass. More preferably, the content is 40% by mass to 60% by mass.
  • the amount of the stabilizer is at least the lower limit value, it is easy to maintain the lactase activity of the lactase solution over a long period of time.
  • the amount of the stabilizer exceeds the upper limit value, the viscosity of the lactase solution increases, so that the filtration time becomes longer and workability is lowered.
  • the lactase solution of the present invention desirably has a lactase activity of 10 to 100,000 NLU / g.
  • NLU is a Neutral Lactase Unit.
  • the method for measuring the activity is, for example, as follows. Measured by hydrolysis of the substrate o-nitrophenyl- ⁇ -galactopyranoside (ONPG) to o-nitrophenyl and galactose. The reaction is terminated by the addition of sodium carbonate. The o-nitrophenyl formed turns yellow in alkaline medium and the change in absorbance is used to measure enzyme activity (expressed in NLU / g). This procedure was published in US Food Chemical Codex (FCC) 4th edition, July 1, 1996, pages 801-802 / Lactase (neutral) ( ⁇ -galactosidase) activity. Yes.
  • the lactase activity of the lactase solution is preferably 10 to 250,000 U / mL, more preferably 100 to 120,000 U / mL, and even more preferably 2,500 to 60,000 U / mL.
  • the lactase activity can be adjusted by adding a solvent, concentrating lactase, or the like.
  • the lactase solution contains various sugars, one of which is reducing sugar.
  • the reducing sugar include a reducing sugar derived from a medium, a reducing sugar derived from a saccharide metabolized by a lactase-producing microorganism, a reducing sugar modified by a protein metabolized by a lactase-producing microorganism, and the like.
  • As the amount of reducing sugar increases it becomes more difficult to maintain lactase activity over a long period of time. Therefore, it is assumed that reducing sugar degrades lactase protein and adversely affects stabilization.
  • the amount of reducing sugar contained in the saccharide can be measured by the following method. After 1.5 g of saccharide to be measured is added to a flask containing 100 ml of water (Milli-Q water), it is stirred with a magnetic stirrer (Tytec Co., Ltd.) at 200 rpm and completely dissolved. The amount of reducing sugar in each solution is quantified by the DNS method (dinitrosalicylic acid method).
  • the DNS method is performed according to the following procedure.
  • DNS solution (0.7% -3,5-dinitrosalicylic acid, 1.21% -sodium hydroxide, 0.02% -Rochelle salt, 0.57% -phenol, 0.55% -sodium bicarbonate ) 0.6 mL is dispensed into a test tube, and
  • glucose standard solution (0.1%, 0.2%) and 0.2 ml of the saccharide solution prepared above are added to the test tube of (1).
  • Color development by heating in a boiling water bath for 5 minutes, (4) After water cooling (15 ° C.), 4.2 ml of milli-Q water is added, and the absorbance at a wavelength of 550 nm is measured with a spectrophotometer.
  • the amount of reducing sugar in the saccharide solution is quantified as glucose from the standard solution.
  • Whether or not the lactase activity is maintained for a long period of time can be determined by leaving a lactase solution described later in a heating environment for a certain period of time (accelerated stability test).
  • the lactase solution is allowed to stand for 1 to 2 weeks in a heating environment at 50 ° C., and then the lactase activity of the lactase solution is measured by the FCC method.
  • ⁇ Accelerated stability test> (Sample preparation method) A saccharide to be measured is added to a lactase solution with adjusted lactase activity (the amount of saccharide and reducing sugar is almost 0) so that the final concentration is 1.5% by mass, and stirred at room temperature to be completely dissolved. Subsequently, a sample is obtained through a plurality of filtration steps. In addition, all the saccharides used in this test were soluble polysaccharides.
  • the lactase of the present invention has a residual activity for 7 days of 60% or more, and preferably 86% or more.
  • the specific method for producing the lactase of the present invention includes, for example, (1) an extraction step of lactase accompanied by cell wall destruction after culturing of yeast, and (2) contamination derived from the culture from the extracted lactase. Purification step for removing substances and the like.
  • (3) a saccharide (+ other additives as required) is added to the above lactase (which may be prepared immediately or commercially available), if necessary, A step of adjusting the amounts of sugar and reducing sugar to a predetermined range, and (4) a step of filtering for sterilization.
  • the culture of the microorganism producing lactase is preferably performed in a medium containing lactose or a nitrogen source, for example, at a pH of 3 to 10 at 20 to 40 ° C. for 24 to 180 hours.
  • a medium containing lactose or a nitrogen source for example, at a pH of 3 to 10 at 20 to 40 ° C. for 24 to 180 hours.
  • the lactase solution from the obtained culture for example, it may be extracted from the collected cells, or mutant cells that are discharged to the outside of the cell may be used.
  • the culture solution itself may be used.
  • Examples of a method for purifying lactase from a microorganism culture include chromatographic methods such as ammonium sulfate fractionation, affinity chromatography, and hydrophobic chromatography. Since microbial cultures contain various substances, these methods are usually combined to increase the activity of lactase.
  • the lactase solution can also be powdered by freeze drying or spray drying.
  • the lactase solution of the present invention can be widely used for various dairy products.
  • dairy products include milk drinks such as milk, fermented milk, ice cream, milk jam and the like.
  • Milk drink is a raw material for fermented milk such as yogurt.
  • Milk beverages include those before sterilization and those after sterilization.
  • the lactase-containing composition can be added before or after sterilization according to the law.
  • Specific ingredients for milk beverages include water, raw milk, pasteurized milk, skim milk, whole milk powder, skim milk powder, buttermilk, butter, cream, whey protein concentrate (WPC), whey protein isolate (WPI) ), ⁇ (alpha) -La, ⁇ (beta) -Lg, and the like.
  • WPC whey protein concentrate
  • WPI whey protein isolate
  • ⁇ (alpha) -La, ⁇ (beta) -Lg Prewarmed gelatin or the like may be added as appropriate.
  • Raw material milk is publicly known and may be prepared according to a publicly known method. As a raw material of the milk beverage in the present invention, it is preferable to contain milk. You may use the raw material of a milk drink which consists of 100% of milk
  • “Fermented milk” may be any of “fermented milk”, “dairy lactic acid bacteria beverage”, and “lactic acid bacteria beverage” defined by the ordinances of yogurt and milk.
  • plain yogurt is manufactured by filling a raw material in a container and then fermenting it (post-fermentation).
  • soft yogurt and drink yogurt are manufactured by filling fermented fermented milk into a container (pre-fermentation) after atomization or homogenization.
  • the lactase solution of the present invention can be used for both post-fermentation and pre-fermentation.
  • As a raw material of fermented milk it is preferable to contain milk.
  • the raw material for fermented milk may be 100% milk.
  • the lactase solution of the present invention is used in the production of long life milk as a specific form of use.
  • Long-life milk is milk that has been stored for a long time, and the manufacturing process consists of a sterilization process and a continuous aseptic packaging process. Generally, it is processed by ultra-high temperature short-time sterilization at 135 to 150 ° C for several seconds.
  • a paper container previously sterilized with hydrogen peroxide is filled in a process capable of aseptic packaging.
  • lactase When considering the use of lactase, it is roughly divided into two types depending on whether it is a neutral lactase or an acid lactase. This depends on the pH profile in the application. For neutral pH applications, neutral lactase is usually preferred, and acid lactase is more suitable for acidic range applications.
  • ⁇ Reference Example 1 Preparation of a lactase solution containing no reducing sugar>
  • a lactase solution containing no reducing sugar was prepared as follows. After sterilizing a liquid medium containing 7% corn steep liquor and 2% lactose (pH 5.5 after sterilization), Kluyveromyces lactisNo. 013-2 (ATCC 8585 strain) was inoculated and cultured at 30 ° C. for 24 hours with aeration of 12000 L / min. After culturing, the mixture was allowed to stand for 4 hours while cooling, and then the supernatant was removed from the upper part of the tank to obtain 1500 kg of bacterial cells that aggregated and settled at the bottom of the tank.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Dairy Products (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

【課題】 ラクターゼ溶液の安定性を図る手段の提供。 【解決手段】 ラクターゼ溶液であって、前記ラクターゼ溶液の全質量を基準として、糖類を0.1g/kg~100g/kg含有し、前記ラクターゼ溶液の還元糖量が2.0mg/g以下であることを特徴とするラクターゼ溶液。

Description

ラクターゼ溶液及びそれを用いた乳
 本発明は、還元糖量を所定値以下としたラクターゼ溶液及びそれを用いた乳、乳製品などの製造方法に関する。
 ラクターゼは、ラクトースをグルコース及びガラクトースに分解する酵素である。牛乳等の乳原料を使用した乳製品中にはラクトースが存在する。多くのヒトの小腸にはラクターゼが存在するため、乳製品中のラクトースは小腸でグルコースとガラクトースに分解される。しかし、ラクターゼが十分に作用しない一部のヒトにおいては、ラクトースが十分に分解されず、下痢や消化不良の症状が生じる。このような症状を防ぐために、ラクターゼはラクトースを予め分解した乳製品を製造するために広く使用されている。
 現在の技術水準において、化学的にラクターゼを合成することは極めて困難であるため、乳製品の製造に使用されるラクターゼは、酵母やカビ、細菌等の微生物を用いて生産される。しかしながら、当該微生物はラクターゼ以外の物質も生産するため、ラクターゼ溶液にはラクターゼ以外の物質も含むことが通常である。
 ここで、酵素は一般に、熱やpH変化などに対する安定性が低いうえ、共存する物質の影響を受けやすいという欠点がある。特に、酵素を含有する形態が水を含む系であったり、水溶液である場合、保存中にも活性が徐々に低下する問題点がある。酵素の失活は、一般には熱運動による構造変化に基づく変性失活が考えられる。またラクターゼ以外の物質として、タンパク質分解酵素が含まれる場合、更に酵素相互の分解(自己消化)による失活も起こる。これらの問題解決のため、種々の安定化剤を添加したり、冷蔵保存するなどの対策が取られている。
 たとえば、防腐剤の作用による失活を低減するために、グリセロールキナーゼ溶液に糖類を入れる技術が存在する(特許文献1)。また、プロテアーゼ溶液の安定化のために多糖類を添加することが提案されている(特許文献2)。
特開2004‐141162号公報 特開平3-4790号公報
 本発明は、ラクターゼ溶液の保存安定性を図る手段を提供することを課題とする。
 本発明者らは、特許文献1及び2に係る技術に基づき、ラクターゼ溶液への糖類の添加を試みた。しかし、単に糖類を添加することによっては、ラクターゼ溶液の十分な保存安定性を図ることが出来ない旨の知見を得た。本発明者らは、当該糖類の量を特定量に限定し、且つ、還元糖量を所定値以下とすることで、ラクターゼ溶液の保存安定性を図ることができることを見出し、本発明を完成させた。
 したがって、本発明によれば、
[1] ラクターゼ溶液であって、
 前記ラクターゼ溶液の全質量を基準として、糖類を0.1g/kg~100g/kg含有し、
 前記ラクターゼ溶液の還元糖量が2.0mg/g以下である
ことを特徴とするラクターゼ溶液;
[2] 50℃で7日間放置後の残存活性が60%以上である、[1]に記載のラクターゼ溶液;
[3] 前記糖類の重量平均分子量が500~2,000,000である、[1]又は[2]に記載のラクターゼ溶液;
[4] ラクターゼの活性が、10~100,000NLU/gである、[1]~[3]のいずれか1項に記載のラクターゼ溶液;
[5] ラクターゼ溶液が安定剤を含有する、[1]~[4]のいずれか1項に記載のラクターゼ溶液;
[6] [1]~[5]のいずれか1項記載のラクターゼ溶液を添加することにより得られた乳;
[7] [1]~[5]のいずれか1項記載のラクターゼ溶液又は請求項6記載の乳を少なくとも一原料として得られた乳製品
が提供される。
 本発明により、ラクターゼの酵素としての保存安定性が改善される。それにより、ラクターゼの製造と乳への添加との間にタイムラグがあるような場合であっても、乳への添加時に、高いラクターゼ活性を維持することができる。微生物を用いてラクターゼを生産する場合、上記のようにラクターゼを含む溶液にはラクターゼ以外の物質も含むことが通常である。当該溶液からラクターゼ以外の物質(例えば、互いに性質の異なるタンパク質やペプチド、種々の低分子量物質)を除去するには様々な精製工程が必要となる。本発明によれば、上記溶液に含まれる還元糖量を指標とすることで、上記精製工程の省略あるいは短時間化を図ることができるようになるため、ラクターゼの精製工程の効率化に寄与することができる。本発明は、保存安定性に優れ、且つ経済性に優れたラクターゼ溶液を提供することができるものである。
図1は、糖類の還元糖量と糖類を添加したラクターゼ溶液における50℃で7日間経過後の残存活性との関係を表す図である。
 本発明に係るラクターゼ溶液は、ラクターゼとともに、糖類を、還元性を示す糖末端のラクターゼ活性への影響を最小限にする程度に含み、安定剤等の添加剤を任意で含有する。以下、(1)ラクターゼ溶液の構成成分、(2)ラクターゼ溶液の組成、(3)ラクターゼ溶液の性質(特に還元糖量)、(4)ラクターゼ溶液の製造方法、(5)ラクターゼ溶液の使用方法・用途、の順で説明する。
≪ラクターゼ溶液の構成成分≫
<ラクターゼ>
(原料生物の種類)
 ラクターゼは、微生物を含む、非常に広範囲の生物から単離されている。ラクターゼを産生する酵母やカビ、細菌等の微生物の種類は特に制限されない。ラクターゼを産生する微生物としては、クルイベロマイセス属(Kluyveromyces)、アスペルギルス属(Aspergillus)、バチルス属(Bacillus)、ペニシリウム属(Penicillium)に属する微生物が挙げられる。このうちクルイベロマイセス属に属する微生物がより好ましい。クルイベロマイセス属に属する微生物のうち、クルイベロマイセス・フラジリス(K. fragillis)、クルイベロマイセス・ラクティス(K. lactis)、クルイベロマイセス・マーキシアヌス(K.marxianus)が好ましく、クルイベロマイセス・ラクティスがより好ましい。アスペルギルス(Aspergillus)属の微生物は、アスペルギルス・オリゼ(Aspergillus oryzae)又はアスペルギルス・ニガー(Aspergillus niger)が例示され、ペニシリウム(Penicillium)属の微生物はペニシリウム・マルチカラー(Penicillium multicolor)が例示される。
(ラクターゼの至適pH)
 本発明において使用するラクターゼは、中性ラクターゼ又は酸性ラクターゼである。中性ラクターゼと酸性ラクターゼは混合して使用してもよい。中性ラクターゼは、活性の至適pHが中性領域であり、且つ、酸性領域で失活する性質を有するものであって、活性状態において乳糖を分解できるものが好ましい。中性ラクターゼ活性の至適pHは6.0~7.5であり、失活pH4.0~6.0であるのがより好ましい。酸性ラクターゼは、活性の至適pHが酸性領域であって、活性状態において乳糖を分解できるものであることが好ましい。酸性ラクターゼ活性の至適pHは3.0~5.9である。
<糖類>
 糖類には、単糖類、オリゴ糖類及び多糖類の全てが含まれる。糖類を構成する糖の種類は1つであってもよいし、2つ以上であっても良い。糖類は、直鎖構造、側鎖構造及び環構造を有することができる。1つの糖類が、これら複数の構造を有していてもよい。糖類を構成する糖の結合方式は限定されない。
(還元糖)
 糖類が還元糖を多く含む場合、ラクターゼ溶液の保存安定性を大きく低下させる。ここで還元糖とは、ある1分子の糖を構成する一末端の官能基が還元性を有するものをいう。全ての単糖類は還元糖であり、一部のオリゴ糖類及び一部の多糖類も還元糖に含まれる。例えば、糖類が直鎖多糖類である場合、その糖の末端は、0、1又は2つの還元性を示す官能基を有する。糖の末端が、1又は2つの還元性を示す官能基である糖類は還元糖である。糖類が側鎖構造を有する場合、その構造上、還元性を示す官能基は直鎖多糖類より増えやすい。上記の還元糖の定義から、ラクターゼ溶液が含む糖類として重合度が大きい多糖類を使用することが好ましい。
 糖類に含まれる還元糖量は、後述するDNS法によって測定した値を意味する。ラクターゼ溶液に含まれる還元糖量は2.0mg/g以下であることが必要である。好ましくは0.5mg/g以下、より好ましくは0.1mg/g%以下である。ラクターゼ溶液に含まれる還元糖量が増えるにつれて、ラクターゼ溶液の保存安定性が低下する傾向を示す。
<多糖類>
 本発明において「多糖類」とは、単糖が7個以上結合した糖質をいう。例えば、澱粉、セルロース、デキストリン、シクロデキストリン、プルラン、デキストラン、アラビノキシラン、キチン、キトサン、ペクチン、イヌリン、ガラクタン、マンナン(ガラクトマンナン、グルコマンナン等)、難消化性デキストリン、ポリデキストロース、等が挙げられるが、飲食品として利用可能な糖質であれば特段制限は無い。これらは、単一又は二種以上を混合しているものであってもよい。
 多糖類には不溶性、難溶性、可溶性のものがある。不溶性、難溶性の多糖類は、ラクターゼ溶液について膜等の担体を用いて濾過あるいは除菌等をする場合、目詰まりの問題を生じやすい。多糖類としては可溶性のものを使用することが好ましい。可溶性の多糖類とは、25℃における水100gに対する溶解度が1.5g以上のものをいう。具体的には、水に1.5質量%の多糖類を添加し穏やかに24時間撹拌後、その溶液の吸光度(OD600nm)が添加前と比べて0.01以上上昇しない多糖類のことである。
(ポリデキストロース)
 本発明に好適に用いられるポリデキストロースは、グルコースを主原料としてソルビトールとクエン酸の存在下で、縮重合することにより製造され、粉末で水溶性の難消化性多糖類であり、食品素材として広く使用されているものである。例えば、市販のポリデキストロースやポリデキストロースの改良品である「ライテス」(商品名、デュポン社製)等が挙げられる。
(プルラン)
 本発明に好適に用いることのできるプルランは、澱粉を原料とし、黒酵母の一種であるAureobasidium pullulansを培養して得られた、マルトトリオースが規則正しくα-1,6結合した天然多糖類で、無味無臭の白色粉末である。
 これらのうち、最も好適な多糖類は、プルラン、ポリデキストロースであり、ポリデキストロースの中でも「ライテス」、特に「ライテスウルトラ」が、その還元糖量の少なさから好ましい。
<添加物>
(安定化剤)
 ラクターゼ溶液には、安定化剤を含有させることができる。安定化剤を含有させることによって、ラクターゼ溶液のラクターゼ活性を長期にわたって維持することができる。
 安定化剤として具体的には、ソルビトール、グリセロール、グリセロールトリメチロールプロパン、ネオペンチルグリコール、トリエタノールアミン、グリコール、ジグリコール、トリエチレングリコール、グリコールであって分子量が1000未満であるものを挙げることができる。安定化剤は単独で又は複数を混合してラクターゼ溶液に含有させることができる。
(任意成分)
 本発明のラクターゼ溶液は、必要に応じ、その他の各種成分を含有していてもよい。具体例としては、ラクターゼの安定化に寄与する金属塩類、アスコルビン酸、又は緩衝作用を有する無機塩類等を挙げることができる。
≪ラクターゼ溶液の組成≫
<糖類>
 糖類の含有量は、ラクターゼ溶液の全質量を基準として、0.1g/kg~100g/kg含有する。好ましくは0.5g/kg~50g/kg、より好ましくは1.0g/kg~10g/kgである。糖類の含有量を下限値未満にする場合は精製工程の負荷が大きくなり、経済性に優れたラクターゼ溶液を提供できない。糖類の含有量が上限値超になると、ラクターゼ溶液の保存安定性が低下しやすくなる。糖類の種類にもよるが、ラクターゼ溶液の粘性が高くなることで取扱性に問題が生じやすくなるため、経済性に優れたラクターゼ溶液を提供できない場合が生じる。
<任意成分>
 ラクターゼ溶液に含有させるその他の任意成分の量は、適宜設定すればよい。
<添加物>
(安定化剤)
 ラクターゼ溶液に含有させる安定化剤の量は、10質量%~90質量%であることが好ましく、20質量%~80質量%であることがより好ましく、30質量%~70質量%であることが更に好ましく、40質量%~60質量%であることが特に好ましい。安定化剤の量が下限値以上であると、ラクターゼ溶液のラクターゼ活性を長期にわたって維持することが容易になる。安定化剤の量が上限値超であると、ラクターゼ溶液の粘度が増すことから、濾過の時間が長くなり、作業性が低下する。
≪ラクターゼ溶液の性質≫
<ラクターゼ活性>
 本発明のラクターゼ溶液は、10~100,000NLU/gのラクターゼ活性を有することが望ましい。「NLU」はNeutral Lactase Unitである。活性の測定方法は、例えば、以下のとおりである。基質o-ニトロフェニル-β-ガラクトピラノシド(ONPG)を、o-ニトロフェニル及びガラクトースにする加水分解によって測定される。反応は、炭酸ナトリウムの添加によって終了する。形成されたo-ニトロフェニルは、アルカリ媒体中で黄色になり、吸光度の変化が酵素活性(NLU/gで表される)を測定するのに使用される。この手順は、米国食品化学物質規格集(FCC; Food Chemical Codex)第4版、1996年7月1日、第801~802頁/ラクターゼ(中性)(β-ガラクトシダーゼ)活性で、公表されている。
 ラクターゼ溶液のラクターゼ活性は、10~250,000U/mLが好ましく、100~120,000U/mLがより好ましく、2,500~60,000U/mLがさらに好ましい。ラクターゼ活性は溶媒の添加や、ラクターゼの濃縮等により調整することができる。
 ラクターゼ溶液には様々な糖類が含まれ、そのうちの1つが還元糖である。還元糖としては、例えば、培地由来の還元糖、ラクターゼ産生微生物が代謝する糖類に由来する還元糖、ラクターゼ産生微生物が代謝するタンパク質に修飾された還元糖等が含まれる。還元糖量が多くなるほど、ラクターゼ活性を長期にわたって維持することが難しくなることから、還元糖はラクターゼタンパクを分解し、安定化に悪影響を及ぼすものと推測される。
<還元糖量測定方法>
 糖類に含まれる還元糖量は、以下の方法により測定することができる。測定対象の糖類1.5gを、水(ミリQ水)100mlが入ったフラスコに添加後、マグネチックスターラー(タイテック株式会社)で、200rpmにて撹拌し、完全に溶解させる。各溶液の還元糖量をDNS法(ジニトロサリチル酸法)で定量する。
 DNS法は、以下の手順で行う。(1)DNS溶液(0.7%-3,5-ジニトロサリチル酸、1.21%-水酸化ナトリウム、0.02%-ロッシェル塩、0.57%-フェノール、0.55%-炭酸水素ナトリウム)0.6mLを試験管に分注し、(2)グルコース標準液(0.1%、0.2%)及び上記で調製した糖類の溶液0.2mlを(1)の試験管に加える。(3)沸騰水浴中で5分間加熱発色させ、(4)水冷(15℃)後、4.2mlのミリQ水を添加し、分光光度計で、波長550nmの吸光度を測定する。グルコースを標準液から糖類溶液の還元糖量をグルコースとして定量する。
<ラクターゼ活性の安定性>
 ラクターゼ活性を長期間維持しているか否かは、後述するラクターゼ溶液を加熱環境下で一定期間放置すること(加速安定性試験)で判断することができる。 本発明においては、ラクターゼ溶液を50℃の加熱環境下で1週間から2週間放置した後、当該ラクターゼ溶液のラクターゼ活性をFCC法で測定する。
<加速安定性試験>
(サンプルの調製方法)
 ラクターゼ活性を調整したラクターゼ溶液(糖類及び還元糖量はほぼ0)に、終濃度で1.5質量%となるように測定対象となる糖類を添加し、室温で撹拌し、完全に溶解させる。続いて、複数のろ過工程を経てサンプルを得る。なお、本試験に使用する糖類は、いずれも可溶性の多糖類を使用した。
(加速安定性測定)
 上記で調製したサンプルを15ml容のチューブに10mlずつ分注し、50℃で保存する。0日間(保存前)、7日間、14日間保存時のラクターゼ活性を測定し、保存前の活性を100としたときの残存するラクターゼ活性を測定する。本発明のラクターゼは、7日間の残存活性が60%以上であり、好ましくは、86%以上である。
≪ラクターゼ溶液の製造方法≫
 本発明のラクターゼの具体的製造方法は、例えば、(1)酵母の培養を行った後の、細胞壁の破壊を伴うラクターゼの抽出工程と、(2)当該抽出したラクターゼから、培養物由来の夾雑物等を除去するための精製工程と、を含む。本発明のラクターゼ溶液の製造方法は、(3)上記のラクターゼ(直前に調製したものでも市販品でもよい)に、必要に応じて糖類(+必要に応じて他の添加剤)を添加し、糖類及び還元糖量を所定の範囲に調整する工程と、(4)滅菌のためにろ過する工程と、を含む。
<微生物の培養と抽出>
 ラクターゼを産生する微生物の培養は、例えば乳糖や窒素源を含有する培地中で、pH3~10の条件下、20~40℃で24~180時間行うのが好ましい。得られた培養物からラクターゼ溶液を採取するには、例えば回収した細胞から抽出してもよいし、細胞外に排出されるような変異細胞等を用いてもよく、液体培地中で培養した場合においては培養液そのものを使用してもよい。
<精製工程>
 微生物培養物からのラクターゼの精製方法としては、例えば、硫安分画やアフィニティクロマトグラフィー、疎水クロマトグラフィーなどのクロマトグラフィー等の方法が挙げられる。微生物培養物には種々の物質が含まれているところ、ラクターゼの活性を高めるには、これらの方法を組み合わせるのが通常である。尚、ラクターゼ溶液は凍結乾燥、噴霧乾燥により粉末化することもできる。
≪ラクターゼ溶液の使用方法・用途≫
 本発明のラクターゼ溶液は、各種乳製品に広く使用できる。乳製品としては、牛乳等の乳飲料、発酵乳、アイスクリーム、ミルクジャム等が挙げられる。
 「乳飲料」は、ヨーグルトなどの発酵乳の原料となるものである。乳飲料には、殺菌前のものも、殺菌後のものも含まれる。ラクターゼ含有組成物は法令に従い、殺菌前又は殺菌後に添加することができる。乳飲料の具体的な原料として、水、生乳、殺菌処理した乳、脱脂乳、全脂粉乳、脱脂粉乳、バターミルク、バター、クリーム、ホエータンパク質濃縮物(WPC)、ホエータンパク質単離物(WPI)、α(アルファ)-La、β(ベータ)-Lgなどがあげられる。あらかじめ温めたゼラチンなどを適宜添加しても良い。原料乳は、公知であり、公知の方法に従って調製すれば良い。本発明における乳飲料の原料としては、牛乳を含むことが好ましい。乳飲料の原料は、牛乳100%からなるものを使用してもよい。
 「発酵乳」とは,ヨーグルト,乳等省令で定義される「発酵乳」、「乳製品乳酸菌飲料」、及び「乳酸菌飲料」の何れであっても良い。一般に、プレーンヨーグルトは、容器に原料を充填させ、その後に発酵させること(後発酵)により製造される。一方、ソフトヨーグルトやドリンクヨーグルトは、発酵させた発酵乳を微粒化処理や均質化処理した後に、容器に充填させること(前発酵)により製造される。本発明のラクターゼ溶液は、後発酵及び前発酵のいずれにも使用することができる。発酵乳の原料としては、牛乳を含むことが好ましい。発酵乳の原料は、牛乳100%からなるものを使用してもよい。
 さらに、本発明のラクターゼ溶液の具体的な利用形態として、ロングライフミルクの製造において用いられる。ロングライフミルクは、長期保存牛乳のことで、製造工程は滅菌工程と連続式無菌包装工程からなっており、一般的には、135~150℃数秒間の超高温短時間滅菌法で処理され、あらかじめ過酸化水素で滅菌した紙容器を無菌包装できる工程で充填される。
<ラクターゼの用途とそのpHプロファイル>
 また、ラクターゼの用途を考える場合には、中性ラクターゼであるか、又は酸性ラクターゼであるかにより大きく2つに大別される。これは、用途におけるpHプロファイルに依るものである。中性pHの用途では、通常、中性ラクターゼが好ましく、酸性ラクターゼは、酸性範囲の用途により適しているといえる。
 本発明を実施例及び比較例により、更に詳細に説明するが、本発明は、これらの例によって何ら限定されるものではない。
<参考例1:還元糖を含まないラクターゼ溶液の調製>
 還元糖の影響を調べるために、下記のようにして還元糖を含まないラクターゼ溶液を調製した。コーン・スティープ・リカー7%、ラクトース2%を含有する液体培地を加圧殺菌後(殺菌後のpH5.5)、Kluyveromyces lactisNo.013-2(ATCC 8585株)を植菌し、30℃にて24時間、12000L/minの通気で培養した。培養終了後冷却しながら4時間放置後、タンク上部から上澄液を除き、タンク底部に凝集沈降した菌体1500kgを得た。次いでここに得られた菌体のうち1500gを水道水で洗浄後、トルエン80mlを加え混和後、1500mlの0.05Mリン酸緩衝液(pH7.0)を加え撹拌均一化し、密栓を施して30℃、15時間放置し自己消化せしめた。
 この消化液を遠心分離して得た上清2500mlに等容の冷アセトンを加え一夜放置した。生じた沈殿を遠心分離にて集め600mlの水道水に溶かし、酵素溶液を得た。この濃縮前酵素溶液600mlを4℃に冷却しながら、硫酸アンモニウム粉末を60分間かけて少しずつ添加し、50%飽和水溶液を得た。当該水溶液を80時間4℃で放置(静置)しラクターゼを沈殿させた後、濾過によって固液分離し、固体状のラクターゼを回収した。当該ラクターゼを600mlの水道水に再溶解させた後、限外濃縮を行った。脱塩されたラクターゼに脱塩水を添加し、pHを7.5に中和した後、硫安を最終濃度1Mに添加したものを脱塩後サンプルとした。
 20mlの脱塩後サンプルを、直径16mm、長さ10cm、直線流速150cm/hで、20mlのHiPrepフェニル16/10カラムに適用した。カラムは、pH7.5の100mMトリス中の1M硫安で平衡化した。カラムを充填した後、平衡バッファーで流速150cm/hで、ベースラインが届くまで洗浄した。ラクダーゼの溶出は、150cm/hで段階的勾配下(100mMトリス、pH7.5)で行った。ラクターゼの溶出後、ラクターゼ液を脱塩し濃縮した。濃縮後、終濃度が50%となるようにグリセリンを添加し、マグネチックスターラー(タイテック株式会社)で200rpm、室温で18時間撹拌し、参考例1のラクターゼ溶液(53,000NLU/g)を得た。参考例1のラクターゼ溶液に含まれる糖類及び還元糖量は、いずれも0%であった。
<還元糖量測定>
 上述した還元糖量測定方法に従って、本発明に好適なライテス3種類、下記表2および表3に記載したそれぞれの糖類について、還元糖量を測定した。結果を表1~表2に示す。
Figure JPOXMLDOC01-appb-T000001
<加速安定性試験>
(サンプルの調製)
(1)参考例1のラクターゼ溶液に下記表2及び3の糖類を別々に添加し、サンプルとした。
(還元糖量と残存活性)
 同様に下記表2記載の糖類について、上述する方法により測定した還元糖量と加速安定性測定の条件を50℃で7日間経過後とした時の残存活性の関係について、結果を表2及び図1に示す。
Figure JPOXMLDOC01-appb-T000002
(加速安定性測定)
 下記表3の糖類を添加した各ラクターゼ溶液の上記サンプルについて、上述した加速安定性測定方法により、50℃において、0日間、7日間及び14日間保存時、並びに40℃において、0日間、31日間及び61日間保存時のラクターゼ活性を測定し、残存活性を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
(結果)
 ラクターゼ中の還元糖量が2.0mg/g以下であれば、50℃において7日間で少なくとも60%以上の残存活性を有することがわかった。
 ラクターゼ溶液に含まれる還元糖量を指標とすることで、ラクターゼ溶液の精製工程の省略あるいは短時間化を図ることができるようになるため、ラクターゼの精製工程の効率化に寄与することができる。

Claims (7)

  1.  ラクターゼ溶液であって、
     前記ラクターゼ溶液の全質量を基準として、糖類を0.1g/kg~100g/kg含有し、
     前記ラクターゼ溶液に含まれる還元糖量が2.0mg/g以下である
    ことを特徴とするラクターゼ溶液。
  2.  50℃で7日間放置後の残存活性が60%以上である、請求項1に記載のラクターゼ溶液。
  3.  前記糖類の重量平均分子量が500~2,000,000である、請求項1又は2に記載のラクターゼ溶液。
  4.  ラクターゼの活性が、10~100,000NLU/gである、請求項1~3のいずれか1項に記載のラクターゼ溶液。
  5.  ラクターゼ溶液が安定剤を含有する、請求項1~4のいずれか1項に記載のラクターゼ溶液。
  6.  請求項1~5のいずれか1項記載のラクターゼ溶液を添加することにより得られた乳。
  7.  請求項1~5のいずれか1項記載のラクターゼ溶液又は請求項6記載の乳を少なくとも一原料として得られた乳製品。
PCT/JP2015/079259 2014-10-17 2015-10-16 ラクターゼ溶液及びそれを用いた乳 WO2016060224A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/519,090 US20170215449A1 (en) 2014-10-17 2015-10-16 Lactase solution and milk using the same
DK15850818.4T DK3208332T3 (da) 2014-10-17 2015-10-16 Laktaseopløsning og mælk med samme
AU2015331311A AU2015331311B2 (en) 2014-10-17 2015-10-16 Lactase solution and milk using same
EP15850818.4A EP3208332B1 (en) 2014-10-17 2015-10-16 Lactase solution and milk using same
NZ731204A NZ731204A (en) 2014-10-17 2015-10-16 Lactase solution and milk using same
JP2015551921A JP5959132B1 (ja) 2014-10-17 2015-10-16 ラクターゼ溶液及びそれを用いた乳

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-213093 2014-10-17
JP2014213093 2014-10-17

Publications (1)

Publication Number Publication Date
WO2016060224A1 true WO2016060224A1 (ja) 2016-04-21

Family

ID=55746763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079259 WO2016060224A1 (ja) 2014-10-17 2015-10-16 ラクターゼ溶液及びそれを用いた乳

Country Status (7)

Country Link
US (1) US20170215449A1 (ja)
EP (1) EP3208332B1 (ja)
JP (2) JP5959132B1 (ja)
AU (1) AU2015331311B2 (ja)
DK (1) DK3208332T3 (ja)
NZ (1) NZ731204A (ja)
WO (1) WO2016060224A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073723A1 (ja) * 2015-10-29 2017-05-04 合同酒精株式会社 乳または乳製品
WO2018225623A1 (ja) * 2017-06-07 2018-12-13 天野エンザイム株式会社 ラクターゼ原末及びラクターゼ製剤
JP2019522968A (ja) * 2016-06-14 2019-08-22 セーホーエル.ハンセン アクティーゼルスカブ 低乳糖含量の発酵乳製品
WO2021210659A1 (ja) 2020-04-17 2021-10-21 合同酒精株式会社 容器詰めラクターゼ溶液

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112021007244A2 (pt) * 2018-10-17 2021-08-10 Chr. Hansen A/S enzimas lactase com propriedades melhoradas em ph ácido

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104556A (ja) * 1982-12-07 1984-06-16 Sekisui Chem Co Ltd 蛋白質安定化剤
JPH01117786A (ja) * 1987-10-28 1989-05-10 Nippon Shinyaku Co Ltd 酵素安定化剤
JPH034791A (ja) * 1989-05-30 1991-01-10 Kanebo Ltd 酵素の安定化方法
JP2004534527A (ja) * 2001-04-04 2004-11-18 デーエスエム イーペー アセッツ ベスローテン フェンノートシャップ 精製ラクターゼ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK388982A (da) 1981-09-01 1983-03-02 Sturge John & E Ltd Stabiliserede lactaseoploesninger og fremgangsmaade til stabilisering deraf
EP0584228B1 (en) * 1991-05-17 2000-07-12 Biovail Technologies Ltd. A method of producing thermoplastic polymeric material
CA2363147A1 (en) 2000-11-17 2002-05-17 James Walter Stable lactase compositions
DK3068879T3 (da) 2013-11-14 2020-03-16 Danisco Us Inc Stabile enzymer opnået ved glykeringsreduktion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104556A (ja) * 1982-12-07 1984-06-16 Sekisui Chem Co Ltd 蛋白質安定化剤
JPH01117786A (ja) * 1987-10-28 1989-05-10 Nippon Shinyaku Co Ltd 酵素安定化剤
JPH034791A (ja) * 1989-05-30 1991-01-10 Kanebo Ltd 酵素の安定化方法
JP2004534527A (ja) * 2001-04-04 2004-11-18 デーエスエム イーペー アセッツ ベスローテン フェンノートシャップ 精製ラクターゼ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3208332A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073723A1 (ja) * 2015-10-29 2017-05-04 合同酒精株式会社 乳または乳製品
JP2019522968A (ja) * 2016-06-14 2019-08-22 セーホーエル.ハンセン アクティーゼルスカブ 低乳糖含量の発酵乳製品
JP7096169B2 (ja) 2016-06-14 2022-07-05 セーホーエル.ハンセン アクティーゼルスカブ 低乳糖含量の発酵乳製品
WO2018225623A1 (ja) * 2017-06-07 2018-12-13 天野エンザイム株式会社 ラクターゼ原末及びラクターゼ製剤
JPWO2018225623A1 (ja) * 2017-06-07 2020-04-09 天野エンザイム株式会社 ラクターゼ原末及びラクターゼ製剤
JP7171560B2 (ja) 2017-06-07 2022-11-15 天野エンザイム株式会社 ラクターゼ原末及びラクターゼ製剤
US11517613B2 (en) 2017-06-07 2022-12-06 Amano Enzyme Inc. Lactase bulk powder and lactase preparation
EP4321212A3 (en) * 2017-06-07 2024-05-15 Amano Enzyme Inc. Lactase bulk powder and lactase preparation
WO2021210659A1 (ja) 2020-04-17 2021-10-21 合同酒精株式会社 容器詰めラクターゼ溶液

Also Published As

Publication number Publication date
EP3208332B1 (en) 2020-03-04
AU2015331311A1 (en) 2017-05-18
JP5959132B1 (ja) 2016-08-02
JPWO2016060224A1 (ja) 2017-04-27
NZ731204A (en) 2018-11-30
DK3208332T3 (da) 2020-03-30
EP3208332A1 (en) 2017-08-23
AU2015331311B2 (en) 2019-07-18
JP2016163597A (ja) 2016-09-08
EP3208332A4 (en) 2018-03-07
US20170215449A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP5959132B1 (ja) ラクターゼ溶液及びそれを用いた乳
CA2910629C (en) Method for preparing a liquid oat base and products prepared by the method
US20080299255A1 (en) Juice beverages with probiotic bacteria
JP6603230B2 (ja) 液状ラクターゼ組成物
JP6193439B2 (ja) ラクトバチルス属乳酸菌の増殖促進剤及び/又は生残性向上剤
Randazzo et al. Survival of Lactobacillus rhamnosus probiotic strains in peach jam during storage at different temperatures
US20230138822A1 (en) Method for making a fermented whey protein product
CN105475484A (zh) 一种在保质期内具有高活菌数的发酵乳及其制备方法
TR201802987T4 (tr) Süt teknolojisinde siyalidaz kullanımı.
JP5603036B2 (ja) プロバイオティクス増殖促進剤
JP4220865B2 (ja) 発酵抑制剤及びそれが含まれた発酵食品
Baglio et al. The modern yoghurt: introduction to fermentative processes
WO2009150888A1 (ja) 乳タンパク質分解物、乳タンパク質分解物の製造方法及びビフィズス菌増殖促進剤
Saji et al. β-Galactosidase: Application in Dairy and Food Industry
WO2023176971A1 (ja) 酵素含有溶液及び乳製品の製造方法
WO2018225623A1 (ja) ラクターゼ原末及びラクターゼ製剤
Anjos Study of Kefir and Kefiran Production
JP2017143799A (ja) 発酵乳飲食品
Ratanapongleka The enzymatic removal of lactose from skimmed milk using a membrane reactor
JP2019165725A (ja) ラクツロース含有製品及びラクツロース含有製品の製造方法
JPS639812B2 (ja)
Sabo Biotechnological production and application of antimicrobial biomolecules by Lactobacillus plantarum in milk whey
Vasiljevic Lactose hydrolysis by disrupted thermophilic lactic acid bacteria
ANJOS JOSHUA ANDRÉ
WO2009110791A1 (en) Low-viscosity fibre compositions

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015551921

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850818

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15519090

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015850818

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015331311

Country of ref document: AU

Date of ref document: 20151016

Kind code of ref document: A